NASA Technical Reports Server (NTRS)
Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.
1999-01-01
Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.
Pulsed Plasma Accelerator Modeling
NASA Technical Reports Server (NTRS)
Goodman, M.; Kazeminezhad, F.; Owens, T.
2009-01-01
This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.
NASA Technical Reports Server (NTRS)
Gallagher, Dennis L.; Craven, Paul D.; Comfort, Richard H.
1999-01-01
Over 40 years of ground and spacecraft plasmaspheric measurements have resulted in many statistical descriptions of plasmaspheric properties. In some cases, these properties have been represented as analytical descriptions that are valid for specific regions or conditions. For the most part, what has not been done is to extend regional empirical descriptions or models to the plasmasphere as a whole. In contrast, many related investigations depend on the use of representative plasmaspheric conditions throughout the inner magnetosphere. Wave propagation, involving the transport of energy through the magnetosphere, is strongly affected by thermal plasma density and its composition. Ring current collisional and wave particle losses also strongly depend on these quantities. Plasmaspheric also plays a secondary role in influencing radio signals from the Global Positioning System satellites. The Global Core Plasma Model (GCPM) is an attempt to assimilate previous empirical evidence and regional models for plasmaspheric density into a continuous, smooth model of thermal plasma density in the inner magnetosphere. In that spirit, the International Reference Ionosphere is currently used to complete the low altitude description of density and composition in the model. The models and measurements on which the GCPM is currently based and its relationship to IRI will be discussed.
Modeling electronegative plasma discharge
Lichtenberg, A.J.; Lieberman, M.A.
1995-12-31
Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.
Hopkins, Matthew Morgan; DeChant, Lawrence Justin.; Piekos, Edward Stanley; Pointon, Timothy David
2009-02-01
This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficient resources to complete the project and it was terminated mid-year.
NASA Astrophysics Data System (ADS)
Akdim, Mohamed Reda
2003-09-01
Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is
Modeling of Photoionized Plasmas
NASA Technical Reports Server (NTRS)
Kallman, Timothy R.
2010-01-01
In this paper I review the motivation and current status of modeling of plasmas exposed to strong radiation fields, as it applies to the study of cosmic X-ray sources. This includes some of the astrophysical issues which can be addressed, the ingredients for the models, the current computational tools, the limitations imposed by currently available atomic data, and the validity of some of the standard assumptions. I will also discuss ideas for the future: challenges associated with future missions, opportunities presented by improved computers, and goals for atomic data collection.
Béquin, Ph; Castor, K; Herzog, Ph; Montembault, V
2007-04-01
This paper deals with the acoustic modeling and measurement of a needle-to-grid plasma loudspeaker using a negative Corona discharge. In the first part, we summarize the model described in previous papers, where the electrode gap is divided into a charged particle production region near the needle and a drift region which occupies most of the inter-electrode gap. In each region, interactions between charged and neutral particles in the ionized gas lead to a perturbation of the surrounding air, and thus generate an acoustic field. In each region, viewed as a separate acoustic source, an acoustical model requiring only a few parameters is proposed. In the second part of the paper, an experimental setup is presented for measuring acoustic pressures and directivities. This setup was developed and used to study the evolution of the parameters with physical properties, such as the geometrical and electrical configuration and the needle material. In the last part of this paper, a study on the electroacoustic efficiency of the plasma loudspeaker is described, and differences with respect to the design parameters are analyzed. Although this work is mainly aimed at understanding transduction phenomena, it may be found useful for the development of an audio loudspeaker. PMID:17471712
Model for resonant plasma probe.
Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue
2007-04-01
This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.
Strongly magnetized classical plasma models
NASA Technical Reports Server (NTRS)
Montgomery, D.; Peyraud, J.; Dewitt, C.
1974-01-01
Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model).
Modeling the Europa plasma torus
NASA Astrophysics Data System (ADS)
Schreier, Ron; Eviatar, Aharon; Vasyliunas, Vytenis M.; Richardson, John D.
1993-12-01
The existence of a torus of plasma generated by sputtering from Jupiter's satellite Europa has long been suspected but never yet convincingly demonstrated. Temperature profiles from Voyager plasma observations indicate the presence of hot, possibly freshly picked-up ions in the general vicinity of the orbit of Europa, which may be interpreted as evidence for a local plasma torus. Studies of ion partitioning in the outer regions of the Io torus reveal that the oxygen to sulfur mixing ratio varies with radial distance; this may indicates that oxygen-rich matter is injected from a non-Io source, most probably Europa. We have constructed a quantitative model of a plasma torus near the orbit of Europa which takes into account plasma input from the Io torus, sputtering from the surface of Europa, a great number of ionization and charge exchange processes, and plasma loss by diffusive transport. When the transport time is chosen so that the model's total number density in consistent with the observed total plasma density, the contribution from Europa is found to be significant although not dominant. The model predicts in detail the ion composition, charge states, and the relative fractions of hot Europa-generated and (presumed) cold Io-generated ions. The results are generally consistent with observations from Voyager and can in principle (subject to limitations of data coverage) be confirmed in more detail by Ulysses.
Tokamak plasma modelling and atomic processes
NASA Astrophysics Data System (ADS)
Kawamura, T.
1986-06-01
Topics addressed include: particle control in a tokomak device; ionizing and recombining plasmas; effects of data accuracy on tokamak impurity transport modeling; plasma modeling of tokamaks; and ultraviolet and X-ray spectroscopy of tokamak plasmas.
Modelling the Plasma Jet in Multi-Arc Plasma Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.
2016-08-01
Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.
NASA Astrophysics Data System (ADS)
Mason, Caroline F.; Mason, Rodney J.; Faehl, R. J.; Kirkpatrick, R. C.
2011-10-01
The implicit simulation code ePLAS has been applied to plasma jets generated with mini-rail guns for plasma production and compression aimed at use with PLX. The rails are typically planar, 2.5 cm apart and arranged to transport an initial 1 cm or wider vertical plasma fill some 10 cm into a void. The driving magnetic field is 3.2 T. The plasma singly ionized argon at 1017 cm-3. We use ePLAS in both its traditional implicit/hybrid form where it is restricted by an electron Courant time step, and in a new super-hybrid form that extracts the main electron moments from the E&B-field solutions. This provides numerical stability at ion Courant limits, for at least a 10 times larger time step, thus probing microsecond jet dynamics with computational economy. We examine possible field penetration at the cathode and anode gun electrodes. Cathode erosion and EMHD B - Field penetration are possible at lower jet densities. We examine jet transport beyond the gun, modeling possible ionization with either analytic or tabular EOSs. We study the merger of jets with ions represented as either fluids or particles. Work supported by the USDOE under SBIR GRANT DE-SC0004207.
Computer Modeling of a Fusion Plasma
Cohen, B I
2000-12-15
Progress in the study of plasma physics and controlled fusion has been profoundly influenced by dramatic increases in computing capability. Computational plasma physics has become an equal partner with experiment and traditional theory. This presentation illustrates some of the progress in computer modeling of plasma physics and controlled fusion.
Mathematical and computational models of plasma flows
NASA Astrophysics Data System (ADS)
Brushlinsky, K. V.
Investigations of plasma flows are of interest, firstly, due to numerous applications, and secondly, because of their general principles, which form a special branch of physics: the plasma dynamics. Numerical simulation and computation, together with theoretic and experimental methods, play an important part in these investigations. Speaking on flows, a relatively dense plasma is mentioned, so its mathematical models appertain to the fluid mechanics, i.e., they are based on the magnetohydrodynamic description of plasma. Time dependent two dimensional models of plasma flows of two wide-spread types are considered: the flows across the magnetic field and those in the magnetic field plane.
Plasma model for charging damage
Vella, M.C.; Lukaszek, W.; Current, M.I.; Tripsas, N.H.
1994-07-01
The mechanism responsible for charging damage is treated as beam/plasma driven differences in local floating potentials on the process surface. A cold plasma flood is shown to limit these potential differences. Beam/plasma J-V characteristics obtained with CHARM2 in a high current implanter are fit with the theory. With flood OFF, the fit corresponds to plasma buildup over the target surface.
Dynamic modeling of plasma-vapor interactions during plasma disruptions
Hassanein, A.; Ehst, D.A.
1992-05-01
Intense deposition of energy in short times on fusion reactor components during a plasma disruption may cause severe surface erosion due to ablation of these components. The exact amount of the eroded material is very important to the reactor design and its lifetime. During the plasma deposition, the vaporized wall material will interact with the incoming plasma particles and may shield the rest of the wall from damage. The vapor shielding may then prolong the lifetime of these components and increase the reactor duty cycle. To correctly evaluate the impact of vapor shielding effect a comprehensive model is developed. In this model the dynamic slowing down of the plasma particles, both ions and electrons, with the eroded wall material is established. Different interaction processes between the plasma particles and the ablated material is included. The generated photons radiation source and the transport of this radiation through the vapor to the wall is modeled. Recent experimental data on disruptions is analyzed and compared with model predictions. Vapor shielding may be effective in reducing the overall erosion rate for certain plasma disruption parameters and conditions.
Boundary plasma modelling for ITER
Braams, B.J.
1993-01-01
Computer programs were developed to model the effect of nonaxisymmetric magnetic perturbations upon divertor heat load, and have explored what kind of externally applied perturbations are the most effective for heat load reduction without destroying core plasma confinement. We find that a carefully tuned set of coils located about 0.3 m outside the separatrix can be used to spread the heat load over about 0.1 m perpendicular to flux surfaces at the ITER divertor plate, even at a very low level of anomalous cross-field heat transport. As such a spreading would significantly extend the permissible regime of operation for ITER, we recommend that this study be pursued at the level of detail required for engineering design. In other work under this grant we are in the process of modifying the B2 code to handle correctly a non-orthogonal geometry.
Water bag modeling of a multispecies plasma
Morel, P.; Gravier, E.; Besse, N.; Klein, R.; Ghizzo, A.; Bertrand, P.; Bourdelle, C.; Garbet, X.
2011-03-15
We report in the present paper a new modeling method to study multiple species dynamics in magnetized plasmas. Such a method is based on the gyrowater bag modeling, which consists in using a multistep-like distribution function along the velocity direction parallel to the magnetic field. The choice of a water bag representation allows an elegant link between kinetic and fluid descriptions of a plasma. The gyrowater bag model has been recently adapted to the context of strongly magnetized plasmas. We present its extension to the case of multi ion species magnetized plasmas: each ion species being modeled via a multiwater bag distribution function. The water bag modelization will be discussed in details, under the simplification of a cylindrical geometry that is convenient for linear plasma devices. As an illustration, results obtained in the linear framework for ion temperature gradient instabilities are presented, that are shown to agree qualitatively with older works.
Modeling combined collisional/collisionless plasma interpenetration
Thomas, V.A.
1997-04-01
This paper describes one technique by which multifluid modeling capability can be achieved within the context of a Lagrangean single-fluid model. This technique is applied to the interpenetration of laser-produced, substantially collisionless plasmas. A single-fluid model by itself cannot simulate the interpenetration of a collisionless plasma correctly, but must be augmented with some other tool. One tool that can calculate collisionless plasma interpenetration correctly is ISIS, a particle code for plasma simulations which includes appropriate collision models. However, ISIS does not have the necessary physics to do the laser deposition, the atomic physics, the radiation transport, and does not possess a realistic electron temperature model. With appropriate integration of the single-fluid code and ISIS, a new capability is achieved which allows simulation of the colliding plasma problem, a problem that neither code can properly simulate individually.
Modeling the expansion of a contactor plasma
NASA Astrophysics Data System (ADS)
Hogan, E. A.; Delzanno, G.; Camporeale, E.; Borovsky, J. E.; MacDonald, E.; Thomsen, M. F.
2012-12-01
Plasma contactor technology is widely used on board spacecraft to keep spacecraft charging levels under control. On the International Space Station, for instance, it is used to prevent high current discharges between differently charged surfaces. It consists of emitting a neutral plasma to create a plasma reservoir near the spacecraft in order to balance the currents collected by the spacecraft from the magnetospheric environment. One approach to modeling the contactor plasma plume applies a self-similar solution in order to gain insight into the plume dynamics without requiring expensive numerical simulations [1, 2]. Typically, hydrodynamic fluid equations are used to model the plasma behavior. We present a comparison of different self-similar plume models existing in the literature [1, 2] and compare these with our Particle-In-Cell simulations in the near-field to assess their validity. We will consider both the unmagnetized and the magnetized limit, treating the magnitude and angle (relative to the plasma injection velocity) of the magnetic field as a parameter. [1] F. F. Gabdullin, A. G. Korsun, E. M. Tverdokhlebova, 'The plasma plume emitted onboard the international space station under the effect of the geomagnetic field', IEEE Trans. Plasma Science 36(5) 2207 (2008). [2] M. Merino, E. Ahedo, C. Bombardelli, H. Urrutxua, J. Pelaez, 'Hypersonic plasma plume expansion in space', 32nd International Electric Propulsion Conference, IEPC-2011-086, Wiesbaden, Germany, 2011.
RF models for plasma-surface interactions
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter
2013-09-01
Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.
Modeling of voids in colloidal plasmas.
Akdim, M R; Goedheer, W J
2002-01-01
A two-dimensional fluid model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently, is used to study the behavior of voids, i.e., dust-free regions inside dust clouds. These voids appear in plasma crystal experiments performed under microgravity conditions. The ion drag force turns out to be the most promising driving force behind these voids. The contribution of the thermophoretic force, driven by the temperature gradient induced by gas heating from ion-neutral collisions, can be neglected in the quasineutral center of the plasma.
Dust in fusion plasmas: theory and modeling
Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.
2008-09-07
Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.
Model of electron collecting plasma contactors
Davis, V.A.; Katz, I.; Mandell, M.J.; Parks, D.E. )
1991-06-01
In laboratory experiments, plasma contactors are observed to collect ampere-level electron currents with low impedance. In order to extend the laboratory experience to the low-earth-orbit environment, a model of plasma contactors is being developed. Laboratory results are being used to support and validate the model development. The important physical processes observed in the laboratory are that the source plasma is separated from the background plasma by a double layer and that ionization of the expellant gas by the collected electrons creates the bulk of the ions that leave the source plasma. The model, which uses Poisson's equation with a physical charge density that includes the ion and electron components of both the source and the ambient plasmas, reproduces this phenomenon for typical experimental parameters. The calculations, in agreement with the laboratory results, show little convergence of the accelerated electrons. The angular momentum of the incoming electrons dramatically reduces the peak electron density. These electrons ionize enough gas to generate the source plasma. Calculations show that the increase in ionization rate with potential produces a steep rise in collected current with increasing potential as seen in the laboratory. 26 refs.
Jovian plasma modeling for mission design
NASA Technical Reports Server (NTRS)
Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin
2015-01-01
The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and
Jovian Plasma Modeling for Mission Design
NASA Technical Reports Server (NTRS)
Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin
2015-01-01
The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and
NASA Technical Reports Server (NTRS)
Matsuda, Y.
1974-01-01
A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.
Modelling of Ion Cyclotron Wall Conditioning plasmas
NASA Astrophysics Data System (ADS)
Douai, D.; Wauters, T.; Lyssoivan, A.; Marchuk, O.; Wünderlich, D.; Brémond, S.; Lombard, G.; Mollard, P.; Pegourié, B.; Van Oost, G.
2011-12-01
Ion Cyclotron Wall Conditioning (ICWC) is envisioned in ITER to clean the wall from impurities, to control the wall isotopic ratio and the hydrogen recycling in the presence of the toroidal magnetic field. Various experiments and modelling are advancing to consolidate this technique. In this contribution the modeling of ICWC is presented, which can be divided in two parts: plasma description and plasma wall interaction. Firstly a 0D plasma model, based on a set of energy and particle balance equations for Maxwellian Hydrogen and Helium species, is presented. The model takes into account elementary collision processes, coupled RF power, particle confinement, wall recycling, and active gas injection and pumping. The RF plasma production process is based mainly on electron collisional ionization. The dependency of the plasma parameters, the Hydrogen and Helium partial pressures and neutral or ionic fluxes on pressure and RF power are quantitatively in good agreement with those obtained experimentally on TORE SUPRA. Secondly an extension of the 0D model including the description of the wall interaction is presented and compared to TORE SUPRA multi-pulse ICWC discharges.
Generalized hydrodynamics model for strongly coupled plasmas
NASA Astrophysics Data System (ADS)
Diaw, A.; Murillo, M. S.
2015-07-01
Beginning with the exact equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum, and stress tensor-moment equations. We close the moment equations with two closures, one that guarantees an equilibrium state given by density-functional theory and another that includes collisions in the relaxation of the stress tensor. The introduction of a density functional-theory closure ensures self-consistency in the equation-of-state properties of the plasma (ideal and excess pressure, electric fields, and correlations). The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency (viscoelastic) response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasilocalized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those of the current autocorrelation function obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. Generalizations of this model to mixtures and quantum systems should be straightforward.
Model of a Hollow Cathode Insert Plasma
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.
2004-01-01
A 2-D axisymmetric fluid model of the plasma in the insert region of a hollow cathode is presented. The level of sophistication included in the model is motivated in part by the need to determine quantitatively plasma fluxes to the emitter surface. The ultimate goal is to assess whether plasma effects can degrade the life of impregnated inserts beyond those documented throughout the 30-50 year history of vacuum cathode technologies. Results from simulations of a 1.2-cm diameter cathode operating at a discharge current of 25 A, and a gas flow rate of 5 sccm, suggest that approximately 10 A of electron current, and 3.5 A of ion current return to the emitter surface. The total emitted electron current computed by the model is about 35 A. Comparisons with plasma measurements suggest that anomalous heating of the plasma due to two-stream instabilities is possible near the orifice region. Solution to the heavy species energy equation, with classical transport and no viscous effects, predicts heavy species temperatures as high as 2640 K.
Sensitivity Analysis in Complex Plasma Chemistry Models
NASA Astrophysics Data System (ADS)
Turner, Miles
2015-09-01
The purpose of a plasma chemistry model is prediction of chemical species densities, including understanding the mechanisms by which such species are formed. These aims are compromised by an uncertain knowledge of the rate constants included in the model, which directly causes uncertainty in the model predictions. We recently showed that this predictive uncertainty can be large--a factor of ten or more in some cases. There is probably no context in which a plasma chemistry model might be used where the existence of uncertainty on this scale could not be a matter of concern. A question that at once follows is: Which rate constants cause such uncertainty? In the present paper we show how this question can be answered by applying a systematic screening procedure--the so-called Morris method--to identify sensitive rate constants. We investigate the topical example of the helium-oxygen chemistry. Beginning with a model with almost four hundred reactions, we show that only about fifty rate constants materially affect the model results, and as few as ten cause most of the uncertainty. This means that the model can be improved, and the uncertainty substantially reduced, by focussing attention on this tractably small set of rate constants. Work supported by Science Foundation Ireland under grant08/SRC/I1411, and by COST Action MP1101 ``Biomedical Applications of Atmospheric Pressure Plasmas.''
Mathematical modeling plasma transport in tokamaks
Quiang, Ji
1995-12-31
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10{sup 20}/m{sup 3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
Spectroscopic Modeling of Single Element Plasma
Ghomeishi, Mostafa; Yap, S. L.; Wong, C. S.; Saboohi, S.; Chan, L. S.
2011-03-30
A strategy for spectroscopic analysis of single element plasmas is through modeling. An experimental investigation or generation of a specified emission spectrum can be attempted based on the modeling results which are currently under investigating by many researchers in the world. In the emission spectroscopy, the K-shell emission is more interesting than emissions from other shells due to their unique EUV and SXR frequencies that can be applied in various scientific and industrial applications. Population information of our model is based on a steady state kinetic code which is calculated for a given electron temperature and an estimated electron density. Thus for each single element plasma it needs large amounts of experimental or theoretical database. Depending on the parameter of the plasma, theories based on local thermodynamic equilibrium (LTE) and non-LTE are considered. In the non-LTE case, the Corona model is used and the total absolute number densities are calculated based on the ion densities that are related to the electron density corresponds to the mean charge of the ions. The spectra generated by the model can then be compared with spectroscopic data obtained experimentally.
Experimental Investigation of Iron Plasma Opacity Models
Bailey, J. E.; Rochau, G. A.; Hansen, S. B.; Nash, T. J.; Nielsen, D. S.; Lake, P. W.; Iglesias, C. A.; Mancini, R. C.; MacFarlane, J. J.; Golovkin, I.; Wang, P.; Blancard, C.; Cosse, Ph.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Abdallah, J. Jr.; Pradhan, A. K.; Nahar, S. N.
2009-09-10
Recent experiments extended iron opacity model tests to temperatures above 150 eV for the first time. The experiments use the Z Facility to volumetrically heat a CH-tamped Fe/Mg plasma using x-rays. The frequency dependent sample transmission is measured by viewing a backlight through the sample. The plasma conditions are inferred from the Mg K-shell absorption. The strategy for this research is to examine the underlying physics within Fe opacity models by comparisons with the measured transmission. Physics topics of interest include charge state distribution, energy level structure, and line broadening. In this talk we discuss methods to exploit the data and advance understanding for these topics. In addition, we review new experiments under way to further improve the data and to achieve higher energy density conditions.
Landau Fluid Models for Magnetized Plasmas
Sulem, P. L.; Passot, T.; Marradi, L.
2008-10-15
A Landau fluid model for a magnetized plasma, that retains a linear description of low-frequency kinetic effects involving transverse scales significantly smaller than the ion Larmor radius, is discussed and validated in the context of nonlinear wave dynamics. Preliminary simulations of the turbulent regime are presented in one space dimension, as a first step towards more realistic three-dimensional computations, aimed to analyze the combined effect of dispersion and collisionless dissipation on the energy cascade.
Database in low temperature plasma modeling
NASA Astrophysics Data System (ADS)
Sakai, Y.
2002-05-01
This article is composed of recommended sets of electron collision cross-sections and reaction cross-sections of excited species assessed by a swam method and of information on transport coefficients and reaction rates (cross-sections) of ions, which are needed in low temperature plasma modeling. These data have been piled up by the Investigation Committee on "Discharge Plasma Electron Collision Cross-sections", IEE Japan, and the author's laboratory. The gases taken for the assessment in this work are rare gases, Hg, N 2, O 2, CO 2, CF 4, CH 4, GeH 4, SiH 4, SF 6, C 2H 6, Si 2H 6, c-C 4F 8 and CCl 2F 2.
Plasma simulation studies using multilevel physics models
Park, W.; Belova, E.V.; Fu, G.Y.
2000-01-19
The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future.
Astrophysical Plasmas: Codes, Models, and Observations
NASA Astrophysics Data System (ADS)
Canto, Jorge; Rodriguez, Luis F.
2000-05-01
The conference Astrophysical Plasmas: Codes, Models, and Observations was aimed at discussing the most recent advances, arid some of the avenues for future work, in the field of cosmical plasmas. It was held (hiring the week of October 25th to 29th 1999, at the Centro Nacional de las Artes (CNA) in Mexico City, Mexico it modern and impressive center of theaters and schools devoted to the performing arts. This was an excellent setting, for reviewing the present status of observational (both on earth and in space) arid theoretical research. as well as some of the recent advances of laboratory research that are relevant, to astrophysics. The demography of the meeting was impressive: 128 participants from 12 countries in 4 continents, a large fraction of them, 29% were women and most of them were young persons (either recent Ph.Ds. or graduate students). This created it very lively and friendly atmosphere that made it easy to move from the ionization of the Universe and high-redshift absorbers, to Active Galactic Nucleotides (AGN)s and X-rays from galaxies, to the gas in the Magellanic Clouds and our Galaxy, to the evolution of H II regions and Planetary Nebulae (PNe), and to the details of plasmas in the Solar System and the lab. All these topics were well covered with 23 invited talks, 43 contributed talks. and 22 posters. Most of them are contained in these proceedings, in the same order of the presentations.
Low Earth Orbit Plasma Variability Model
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2003-01-01
The empirical International Reference Ionosphere is a widely used model for estimating low Earth orbit plasma characteristics for use in spacecraft design and mission analysis. The climatological model provides mean values of plasma density, temperature, composition, and other ionospheric parameters that can be used to estimate the average magnitude of spacecraft charging, current collection for electrodynamic tethers, and other effects on spacecraft design. Mean IRI parameters are not adequate to answer questions such as what is the maximum or minimum value of the spacecraft potential, does the maximum spacecraft potential exceed a program requirement, will an electrodynamic tether provide adequate drag to deorbit a satellite at end of life, and will the tether provide sufficient thrust to reboost a spacecraft at any time in the solar cycle. These questions require estimates of the variability of the ionospheric environment about the mean values. This presentation describes the status of work at MSFC to develop an empirical ionospheric variability model that can be used in conjunction with the climatological IRI model to provide both mean ionospheric parameters and variations of the environment about the mean. Our technique will use an extensive database of satellite and radar observations of the electron density and temperature to derive variances of the data about the model values. The variances will then be incorporated into Fortran wrapper software that calls the IRI-2001 model and provides statistical estimates of the deviation of the environment about the mean IRI values. We will provide an update on the state of the database development and provide examples of analysis and modeling efforts completed specifically for an International Space Station application.
Integrated models for plasma/material interaction during loss of plasma confinement.
Hassanein, A.
1998-07-29
A comprehensive computer package, High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS), has been developed to evaluate the damage incurred on plasma-facing materials during loss of plasma confinement. The HEIGHTS package consists of several integrated computer models that follow the start of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the energy deposited. The package includes new models to study turbulent plasma behavior in the SOL and predicts the plasma parameters and conditions at the divertor plate. Full two-dimensional comprehensive radiation magnetohydrodynamic models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. A brief description of the HEIGHTS package and its capabilities are given in this work with emphasis on turbulent plasma behavior in the SOL during disruptions.
Modeling of nonequilibrium space plasma flows
NASA Technical Reports Server (NTRS)
Gombosi, Tamas
1995-01-01
Godunov-type numerical solution of the 20 moment plasma transport equations. One of the centerpieces of our proposal was the development of a higher order Godunov-type numerical scheme to solve the gyration dominated 20 moment transport equations. In the first step we explored some fundamental analytic properties of the 20 moment transport equations for a low b plasma, including the eigenvectors and eigenvalues of propagating disturbances. The eigenvalues correspond to wave speeds, while the eigenvectors characterize the transported physical quantities. In this paper we also explored the physically meaningful parameter range of the normalized heat flow components. In the second step a new Godunov scheme type numerical method was developed to solve the coupled set of 20 moment transport equations for a quasineutral single-ion plasma. The numerical method and the first results were presented at several national and international meetings and a paper describing the method has been published in the Journal of Computational Physics. To our knowledge this is the first numerical method which is capable of producing stable time-dependent solutions to the full 20 (or 16) moment set of transport equations, including the full heat flow equation. Previous attempts resulted in unstable (oscillating) solutions of the heat flow equations. Our group invested over two man-years into the development and implementation of the new method. The present model solves the 20 moment transport equations for an ion species and thermal electrons in 8 domain extending from a collision dominated to a collisionless region (200 km to 12,000 km). This model has been applied to study O+ acceleration due to Joule heating in the lower ionosphere.
Modeling Growth of Nanostructures in Plasmas
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.
2004-01-01
As semiconductor circuits shrink to CDs below 0.1 nm, it is becoming increasingly critical to replace and/or enhance existing technology with nanoscale structures, such as nanowires for interconnects. Nanowires grown in plasmas are strongly dependent on processing conditions, such as gas composition and substrate temperature. Growth occurs at specific sites, or step-edges, with the bulk growth rate of the nanowires determined from the equation of motion of the nucleating crystalline steps. Traditional front-tracking algorithms, such as string-based or level set methods, suffer either from numerical complications in higher spatial dimensions, or from difficulties in incorporating surface-intense physical and chemical phenomena. Phase field models have the robustness of the level set method, combined with the ability to implement surface-specific chemistry that is required to model crystal growth, although they do not necessarily directly solve for the advancing front location. We have adopted a phase field approach and will present results of the adatom density and step-growth location in time as a function of processing conditions, such as temperature and plasma gas composition.
A More General, Quasineutral Plasma Model
NASA Astrophysics Data System (ADS)
Fernsler, Richard
2003-10-01
More than seventy-five years ago, Irving Langmuir proposed a quasineutral plasma model still widely used today. The electrostatic field is derived from the electron density using the Boltzmann approximation, while the electron density is obtained from the ion densities using quasineutrality. However, the Boltzmann approximation is not always valid and has no relationship to quasineutrality. Moreover, the solutions thus obtained are usually singular near the ion sound speed, thus necessitating an additional boundary condition known as the Bohm condition. This condition is difficult to use when multiple ion species are present, is ill posed in kinetic treatments, and does not always apply. In this talk, a more general quasineutral model is presented to circumvent these limitations.
Computer modeling of plasma: Past, present, and future
Dawson, J.M.
1995-06-01
Computer modeling has become a powerful tool for exploring the physics of plasmas. Early computers could handle only relatively simple models but nevertheless showed that these devices could shed a lot of light on the complex physics of plasmas. This capability has proved not only valuable to research but also is becoming an important teaching tool; modeling allows students to experience in concrete ways plasma phenomena which are otherwise presented only abstractly. Present-day plasma models combined with parallel computing provide sufficient power that numerical modeling of laboratory experiments on complex devices has become possible. Two examples of simulations are discussed in some detail: The ``Beat Wave Accelerator`` and the ``Numerical Tokamak.``
A kinetic model of plasma turbulence
NASA Astrophysics Data System (ADS)
Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.
2015-01-01
A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature
Global modeling of micro plasma discharge in deionized water
NASA Astrophysics Data System (ADS)
Mujumdar, Soham S.; Curreli, Davide; Kapoor, Shiv G.; Ruzic, David
2013-09-01
One of the major applications of plasmas in liquids is the micro electro-discharge machining process (μ-EDM) where the material from one of the electrodes is removed by creating repeated pulsed plasma discharges in the inter-electrode gap filled with a dielectric liquid. One of the most commonly used dielectric for the process is deionized water. A model of a single plasma discharge event in deionized water during the μ-EDM process is presented in this paper. The plasma is modeled using a global modeling approach where the plasma is assumed to be spatially uniform, and equations of mass and energy conservation are solved together in conjunction with the expanding plasma bubble dynamics. The model is simulated for different combinations of the applied electric field and the discharge gap distance to obtain complete temporal characterization of the H2O plasma in terms of the composition of the plasma, temperature of the plasma and the radius of the plasma bubble. The model predicts time-averaged plasma temperature in the range of 12282-29572 K and electron density in the range of 5 . 12 - 30 . 22 ×1024 m-3 for applied electric fields in the range of 10 - 2000 MV/m and discharge gaps in the range of 0.5 - 20 μm.
Advances in Plasma Process Equipment Development using Plasma and Electromagnetics Modeling
NASA Astrophysics Data System (ADS)
Agarwal, Ankur
2013-10-01
Plasma processing is widely used in the semiconductor industry for thin film etching and deposition, modification of near-surface material, and cleaning. In particular, the challenges for plasma etching have increased as the critical feature dimensions for advanced semiconductor devices have decreased to 20 nm and below. Critical scaling limitations are increasingly driving the transition to 3D solutions such as multi-gate MOSFETs and 3D NAND structures. These structures create significant challenges for dielectric and conductor etching, especially given the high aspect ratio (HAR) of the features. Plasma etching equipment must therefore be capable of exacting profile control across the entire wafer for feature aspect ratios up to 80:1, high throughput, and exceptionally high selectivity. The multiple challenges for advanced 3D structures are addressed by Applied Material's plasma etching chambers by providing highly sophisticated control of ion energy, wafer temperature and plasma chemistry. Given the costs associated with such complex designs and reduced development time-scales, much of these design innovations have been enabled by utilizing advanced computational plasma modeling tools. We have expended considerable effort to develop 3-dimensional coupled plasma and electromagnetic modeling tools in recent years. In this work, we report on these modeling software and their application to plasma processing system design and evaluation of strategies for hardware and process improvement. Several of these examples deal with process uniformity, which is one of the major challenges facing plasma processing equipment design on large substrates. Three-dimensional plasma modeling is used to understand the sources of plasma non-uniformity, including the radio-frequency (RF) current path, and develop uniformity improvement techniques. Examples from coupled equipment and process models to investigate the dynamics of pulsed plasmas and their impact on plasma chemistry will
A New Global Core Plasma Model of the Plasmasphere
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Comfort, R. H.; Craven, P. D.
2014-01-01
The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, makes possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented.
Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow
NASA Astrophysics Data System (ADS)
Agarwal, Pulkit
Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self
Theoretical model for plasma opening switch
Baker, L.
1980-07-01
The theory of an explosive plasma switch is developed and compared with the experimental results of Pavlovskii and work at Sandia. A simple analytic model is developed, which predicts that such switches may achieve opening times of approximately 100 ns. When the switching time is limited by channel mixing it scales as t = C(m d/sub 0/)/sup 1/2/P/sub 0//sup 2/P/sub e//sup -5/2/ where m is the foil mass per unit area, d/sub 0/ the channel thickness and P/sub 0/ the channel pressure (at explosive breakout), P/sub e/ the explosive pressure, C a constant of order 10 for c.g.s. units. Thus faster switching times may be achieved by minimizing foil mass and channel pressure, or increasing explosive product pressure, with the scaling exponents as shown suggesting that changes in pressures would be more effective.
Modeling of thermal plasma arc technology FY 1994 report
Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.
1995-03-01
The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.
Circuit Model for Capacitive Coupling in Inductively Coupled Plasmas
NASA Astrophysics Data System (ADS)
Watanabe, M.; Shaw, D. M.; Collins, G. J.; Sugai, H.
1998-10-01
A crude circuit model has been developed to illustrate and account for capacitive coupling between the rf coil and the bulk plasma in a stove top inductively coupled plasma source. The circuit model is composed of three levels of capacitance: the dielectric window capacitance, sheath capacitance contiguous to the dielectric window, and the chamber to ground sheath capacitance. The model is verified by quantitative comparison with the measured rf plasma potential in the bulk plasma body, plasma feedstock gas (argon) pressures below 2 mTorr. At higher pressures above 5 mTorr, the measured results diverge from the circuit model due to the transition from a spatially uniform electron density throughout the bulk plasma at pressures less than 2 mTorr to a less spatially uniform electron density at pressures above 5 mTorr.
Modelling the ITER glow discharge plasma
NASA Astrophysics Data System (ADS)
Kogut, D.; Douai, D.; Hagelaar, G.; Pitts, R. A.
2015-08-01
The ITER glow discharge cleaning (GDC) system (Maruyama et al., 2012) is aimed to prepare in-vessel component surfaces prior to the machine start-up. In order to assess glow discharge uniformity and wall coverage, thus conditioning efficiency of the system, a new 2D multi-fluid model has been developed (Hagelaar, 2012). In this work the model is compared with published experimental data on GDC wall ion fluxes in JET and RFX (Douai et al., 2013; Canton et al., 2013). The simulations of H2-GDC in ITER for the case of 1 or 2 anodes indicate a good level of homogeneity of plasma parameters in the negative glow and of the wall ion flux in the common pressure domain for GDC: 0.1-0.5 Pa. Although the model geometry does not allow simulation of all seven ITER anodes operating simultaneously, the results can be extrapolated to the full system with an average ion current density of 0.21 A/m2, which is comparable to JET (0.10 A/m2).
A quantitative model of plasma in Neptune's magnetosphere
NASA Astrophysics Data System (ADS)
Richardson, J. D.
1993-07-01
A model encompassing plasma transport and energy processes is applied to Neptune's magnetosphere. Starting with profiles of the neutral densities and the electron temperature, the model calculates the plasma density and ion temperature profiles. Good agreement between model results and observations is obtained for a neutral source of 5 x 10 exp 25/s if the diffusion coefficient is 10 exp -8 L3R(N)/2s, plasma is lost at a rate 1/3 that of the strong diffusion rate, and plasma subcorotates in the region outside Triton.
Three-Dimensional Electromagnetic Plasma Modeling of Inductively Coupled Plasma Source and Antenna
NASA Astrophysics Data System (ADS)
Rauf, Shahid; Agarwal, Ankur; Kenney, Jason; Wu, Ming-Feng; Collins, Ken
2012-10-01
Inductively coupled plasmas (ICP) are widely used for etching and deposition in the semiconductor industry. As device dimensions shrink with concomitant decreased tolerance for variability, it is critical to improve plasma and process uniformity in all plasma processes. In ICP systems, one of the major sources of non-uniformity is the radio-frequency (RF) antenna used to generate the electromagnetic wave. Discontinuities at current feed and grounding locations as well as electromagnetic field variations along the antenna coils can perturb the azimuthal electric field, resulting in a non-uniform plasma. For plasma modeling of ICP systems, a related problem is how capacitive coupling from the antenna is accounted for. ICP models have generally considered field variation along the antenna and capacitive coupling using simplified circuit models for the antenna structures. Modern ICP antennas are however quite complicated, making circuit approximations of the antenna too crude for system design. A three-dimensional parallel plasma model is described in this paper, where the full set of Maxwell equations are solved in conjunction with plasma transport equations for the plasma and the antenna. Several examples from the use of this model in ICP system design are presented.
Modelling Coulomb Collisions in Anisotropic Plasmas
NASA Astrophysics Data System (ADS)
Hellinger, P.; Travnicek, P. M.
2009-12-01
Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.
NASA Astrophysics Data System (ADS)
Christlieb, Andrew
2015-09-01
Ultra cold neutral plasmas have gained attention over the past 15 years as being a unique environment for studying moderately to strongly coupled neutral systems. The first ultra cold neutral plasmas were generated by ionizing a Bose Einstein condensate, generating a plasma with .1K ions and 2-4K electrons. These neutral plasmas have the unique property that the ratio of their potential energy to their kinetic energy, (Γ = PE / KE), can greatly exceed 1, leading to a strongly correlated system. The high degree of correlation means that everything from wave propagation through collision dynamics behaves quite differently from their counterpart in traditional neutral plasmas. Currently, a range of gases and different methods for cooling have been used to generate these plasmas from supersonic expansion, through penning trap configurations (reference Tom, Jake and Ed). These systems have time scales form picoseconds to milliseconds have a particle numbers from 105 to 109. These systems present a unique environment for studying the physics of correlation due to their low particle number and small size. We start by reviewing ultra cold plasmas and the current sate of the art in generating these correlated systems. Then we introduce the methods we will use for exploring these systems through direct simulation of Molecular Dynamics models; Momentum Dependent Potentials, Treecodes and Particle-Particle Particle-Mesh methods. We use these tools to look at two key areas of ultra cold plasmas; development of methods to generate a plasma with a Γ >> 1 and the impact of correlation of collisional relaxation. Our eventual goal is to use what we learn to develop models that can simulate correlation in large plasma systems that are outside of the scope of Molecular Dynamics models. In collaboration with Gautham Dharmuman, Mayur Jain, Michael Murillo and John Verboncoeur. This work it supposed by Air Force Office of Scientific Research.
Stopping Power in Dense Plasmas: Models, Simulations and Experiments
NASA Astrophysics Data System (ADS)
Grabowski, Paul; Fichtl, Chris; Graziani, Frank; Hazi, Andrew; Murillo, Michael; Sheperd, Ronnie; Surh, Mike; Cimarron Collaboration
2011-10-01
Our goal is to conclusively determine the minimal model for stopping power in dense plasmas via a three-pronged theoretical, simulation, and experimental program. Stopping power in dense plasma is important for ion beam heating of targets (e.g., fast ignition) and alpha particle energy deposition in inertial confinement fusion targets. We wish to minimize our uncertainties in the stopping power by comparing a wide range of theoretical approaches to both detailed molecular dynamics (MD) simulations and experiments. The largest uncertainties occur for slow-to-moderate velocity projectiles, dense plasmas, and highly charged projectiles. We have performed MD simulations of a classical, one component plasma to reveal where there are weaknesses in our kinetic theories of stopping power, over a wide range of plasma conditions. We have also performed stopping experiments of protons in heated warm dense carbon for validation of such models, including MD calculations, of realistic plasmas for which bound contributions are important.
Progress in modeling erosion and redeposition on plasma facing materials
NASA Astrophysics Data System (ADS)
Ohya, Kaoru
2011-08-01
The unavoidable contact of plasmas with surrounding walls results in plasma-surface interactions (PSIs). Computer modeling has become increasingly important in understanding PSI mechanisms within current fusion devices, ITER, and those beyond. This paper describes recent modeling codes covering various PSI themes and their physical and chemical bases. Particular emphasis is placed on physical and chemical sputtering of wall surfaces, transport of impurities released in the plasma, redeposition of returning impurities and resultant material mixing. Calculation results, such as those corresponding to light emission patterns above surfaces and deposition/erosion distributions on surfaces, are used for comparison with experimental observations made with small test limiters and tracing gas injections. Although the given profiles of various plasma parameters are taken from measurements or plasma code simulations, direct coupling to a plasma code is under development for the express purpose of better understanding local and global features of erosion and redeposition in fusion devices.
PlasmaPIC: A tool for modeling low-temperature plasma discharges
NASA Astrophysics Data System (ADS)
Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian
2015-09-01
PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.
Guiding center plasma models in three dimensions
Sugiyama, Linda E.
2008-09-15
Guiding center plasma models describe the fast charged particle gyration around magnetic field lines by an angle coordinate, defined relative to local orthogonal coordinate axes (e{sub 1},e{sub 2},b=B/B) at each guiding center location. In three dimensions (3D), unlike uniform straight two-dimensional (2D) fields, geometrical effects make the small gyroradius expansion nonuniform in velocity phase space in first order O({rho}{sub i}/L). At second order, Hamiltonian and Lagrangian solutions may be undefined even when good magnetic flux surfaces exist; existence requires the magnetic field torsion {tau}=b{center_dot}{nabla}xb=0 and {tau}{sub g}{identical_to}b{center_dot}({nabla}e{sub 1}){center_dot}e{sub 2}=0, unless the magnetic field has a 2D symmetry, such as toroidal axisymmetry. Keeping complete 3D geometrical effects also requires the magnetic vector potential term to appear in the electric field at the same order as the electrostatic potential. These problems express properties of magnetic vector potentials, Lagrangians, and the curvature of manifolds, and have analogies to attempts to connect small scale Lagrangian theories to higher dimensional, large scale ones in the grand unification theories of physics.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
A computer model of solar panel-plasma interactions
NASA Technical Reports Server (NTRS)
Cooke, D. L.; Freeman, J. W.
1980-01-01
High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.
Modeling of plasma jet production from rail and coaxial guns for imploding plasma liner formation*
NASA Astrophysics Data System (ADS)
Mason, R. J.; Faehl, R. J.; Kirikpatrick, R. C.; Witherspoon, D.; Cassibry, J.
2010-11-01
We study the generation of plasma jets for forming imploding plasma liners using an enhanced version of the ePLAS implicit/hybrid model.^1 Typically, the jets are partially ionized D or Ar gases, in initial 3-10 cm long slugs at 10^16-10^18 electron/cm^3, accelerated for microseconds along 15-30 cm rail or coaxial guns with a 1 cm inter-electrode gap and driven by magnetic fields of a few Tesla. We re-examine the B-field penetration mechanisms that can be active in such wall-connected plasmas,^2 including erosion and EMHD influences, which can subsequently impact plasma liner formation and implosion. For the background and emitted plasma components we discuss optimized PIC and fluid modeling techniques, and the use of implicit fields and hybridized electrons to speed simulation. The plasmas are relatively cold (˜3 eV), so results with fixed atomic Z are compared to those from a simple analytic EOS, and allowing radiative heat loss from the plasma. The use of PIC ions is explored to extract large mean-free-path kinetic effects. 1. R. J. Mason and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986) 2. R. Mason, et al., Phys. Fluids B, 5, 1115 (1993). [4pt] *Research supported in part by USDOE Grant DE-SC0004207.
Modeling of Erosion and Deposition on Plasma Facing Walls
Ohya, K.
2010-05-20
The unavoidable contact of plasmas with surrounding walls results in plasma-surface interactions (PSIs) that are strongly interlinked and cannot be studied separately. Computer modeling has become increasingly important in understanding mechanisms of PSIs in present devices, ITER and beyond. Modeling of erosion and deposition requires self-consistent calculations of (1) erosion of the wall surface, (2) transport of eroded impurities in the plasma above the surface, (3) redeposition of returning impurities on the surface and (4) resultant material mixing below the surface. In addition, it is necessary to use exact rate coefficients for collision reactions in the plasma and related data for the surface reactions on plasma-facing walls. This chapter describes modeling codes in terms of such PSI issues and the physical and chemical bases of the interactions.
Mathematical Model Of Variable-Polarity Plasma Arc Welding
NASA Technical Reports Server (NTRS)
Hung, R. J.
1996-01-01
Mathematical model of variable-polarity plasma arc (VPPA) welding process developed for use in predicting characteristics of welds and thus serves as guide for selection of process parameters. Parameters include welding electric currents in, and durations of, straight and reverse polarities; rates of flow of plasma and shielding gases; and sizes and relative positions of welding electrode, welding orifice, and workpiece.
A Simplified Model Joining the Sheath and the Plasma in Electronegative Plasmas
NASA Astrophysics Data System (ADS)
Fernández Palop, J. I.; Ballesteros, J.; Hernández, M. A.; Crespo, R. Morales; Del Pino, S. Borrego
2004-02-01
An extension of the previous work which only dealt with the sheath zone is used to analyze the wall-plasma interaction in electronegative plasmas. Ionization is introduced as the presheath mechanism. This extension includes the joining of the sheath and the plasma solutions. For certain plasma parameters a stratified presheath is obtained. In this case, the plasma and the sheath solutions are matched in a very simplified way, by introducing a discontinuity in the electric field. This discontinuity is equivalent to consideration of a negatively charged layer between the presheath and the sheath. The parameter space region in which this matching should be made has been delimited. The model includes the previous one in the limiting case of no ionization.
Alternative modeling methods for plasma-based Rf ion sources
NASA Astrophysics Data System (ADS)
Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.
2016-02-01
Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models
Alternative modeling methods for plasma-based Rf ion sources.
Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C
2016-02-01
Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD
Progress in plasma liner modeling for MIF
NASA Astrophysics Data System (ADS)
Loverich, John; Hakim, Ammar; Zhou, Sean
2009-11-01
Magnetic confinement fusion and inertial confinement fusion represent the two extremes in terms of density and confinement time in fusion energy research. Both approaches have been studied extensively through the decades pushing technology to the limits. An alternative fusion approach exists between these regimes called magnetized target fusion. In magnetized target fusion longer confinement times are achieved than in ICF through the use of strong magnetic fields, the long confinement time reduces the required plasma density to reach ignition--the approach has advantages over MFE in that it is much more compact and higher density. This work explores computationally a form of magnetized target implosion using a plasma liner. This concept is to be compared with solid liner implosion approach which may not be commercially viable as a reactor due to the ``standoff'' problem, portions of the device are destroyed with each target implosion. We present simulation results of plasma liner formation, jet merging, and plasma jet magnetized target interaction using a fluid plasma code (TxFluids) developed at Tech-X corporation.
PLASIMO modelling of a helium atmospheric plasma jet
NASA Astrophysics Data System (ADS)
Mihailova, Diana; Sobota, Ana; van Dijk, Jan
2015-09-01
Atmospheric plasma jets are intensively studied because of their wide range of potential applications, in particular for surface treatments and in plasma medicine. The PLASIMO modeling toolkit is used to simulate the capillary plasma-jet in order to quantify the delivery of fluxes and fields to the treated sample. The setup under study consists of capillary powered electrode through which helium gas flows and a grounded ring electrode placed a distance of few mm in front of the capillary. The discharge is excited by sinusoidal voltage with amplitude of 2kV and 30KHz repetition rate. The plume emanating from the jet, or the plasma bullets, propagates through a Pyrex tube and the gas phase channel of helium exits into the surrounding air. The drift-diffusion module of PLASIMO is used to construct a model of the helium plasma jet with the aim to study the dynamics of the plasma inside and outside the source. We discuss the properties of the plasma source and the plasma plume or bullet emitted into the atmosphere. The modeling results are qualitatively compared with experimental observations.
A note on antenna models in a warm isotropic plasma
NASA Technical Reports Server (NTRS)
Singh, N.
1980-01-01
The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.
Uncertainty and error in complex plasma chemistry models
NASA Astrophysics Data System (ADS)
Turner, Miles M.
2015-06-01
Chemistry models that include dozens of species and hundreds to thousands of reactions are common in low-temperature plasma physics. The rate constants used in such models are uncertain, because they are obtained from some combination of experiments and approximate theories. Since the predictions of these models are a function of the rate constants, these predictions must also be uncertain. However, systematic investigations of the influence of uncertain rate constants on model predictions are rare to non-existent. In this work we examine a particular chemistry model, for helium-oxygen plasmas. This chemistry is of topical interest because of its relevance to biomedical applications of atmospheric pressure plasmas. We trace the primary sources for every rate constant in the model, and hence associate an error bar (or equivalently, an uncertainty) with each. We then use a Monte Carlo procedure to quantify the uncertainty in predicted plasma species densities caused by the uncertainty in the rate constants. Under the conditions investigated, the range of uncertainty in most species densities is a factor of two to five. However, the uncertainty can vary strongly for different species, over time, and with other plasma conditions. There are extreme (pathological) cases where the uncertainty is more than a factor of ten. One should therefore be cautious in drawing any conclusion from plasma chemistry modelling, without first ensuring that the conclusion in question survives an examination of the related uncertainty.
Collisional-radiative modelling of an Ar helicon plasma discharge
NASA Astrophysics Data System (ADS)
Loch, Stuart
2005-10-01
We report on recent modelling results of emission observed from a helicon plasma, comparing theoretical and observed line intensities and line ratios of Ar, Ar^+ and Ar^2+. Our Helicon plasma is from the ASTRAL device at Auburn University, with spectral measurements from 275 nm through to 1015 nm. We concentrate on the Ar^+ ion stage, and present the results of a collisional-radiative model using various qualities of atomic data. In particular, we compare the modelling results using Plane-Wave Born, Distorted-Wave and R-matrix electron impact excitation data with those observed from the plasma. As part of the modelling work, we investigate the potential use of various lines as plasma diagnostic tools.
The Martian Plasma Environment: Model Calculations and Observations
NASA Astrophysics Data System (ADS)
Lichtenegger, H. I. M.; Dubinin, E.; Schwingenschuh, K.; Riedler, W.
Based on a modified version of the model of an induced martian magnetosphere developed by Luhmann (1990), the dynamics and spatial distribution of different planetary ion species is examined. Three main regions are identified: A cloud of ions travelling along cycloidal trajectories, a plasma mantle and a plasma sheet. The latter predominantly consists of oxygen ions of ionospheric origin with minor portions of light particles. Comparison of model results with Phobos-2 observations shows reasonable agreement.
Collisional Radiative Models for non-Maxwellian plasmas
NASA Astrophysics Data System (ADS)
Hartgers, Bart; van Dijk, Jan; van der Mullen, Joost
1999-10-01
Collisional Radiative models are a useful tool for studying plasmas. In their simplest form, they are used to calculate an atomic state distribution function (ASDF) from given electron and neutral densities and an electron temperature. Additionally, global ionization and recombination coefficients can be calculated as a function of electron density and temperature. In turn, these coefficients are used as input for the general plasma model
Singular perturbation methods and the warm plasma model
NASA Technical Reports Server (NTRS)
Lee, S. W.; Deschamps, G. A.
1971-01-01
The application of techniques of the singular perturbation theory to the analysis of warm plasma is discussed. Typically, the cold plasma model can be applied over wide ranges of parameters and only over narrow ranges forming so-called boundary layers is the warm plasma model used. Simplified equations can be used and the solutions matched on both sides of the layer's boundary. Simple examples to illustrate the solution are presented. The analysis confirms that some results are highly sensitive to the values of: (1) wire radius or gap size for an antenna, (2) temperature of the medium, and (3) incident angle of a plane wave.
Recent progress in plasma modelling at INFN-LNS
NASA Astrophysics Data System (ADS)
Neri, L.; Castro, G.; Torrisi, G.; Galatà, A.; Mascali, D.; Celona, L.; Gammino, S.
2016-02-01
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.
Recent progress in plasma modelling at INFN-LNS.
Neri, L; Castro, G; Torrisi, G; Galatà, A; Mascali, D; Celona, L; Gammino, S
2016-02-01
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.
Recent progress in plasma modelling at INFN-LNS.
Neri, L; Castro, G; Torrisi, G; Galatà, A; Mascali, D; Celona, L; Gammino, S
2016-02-01
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase. PMID:26931913
Modeling of extinguishing ELMs in detached divertor plasmas
NASA Astrophysics Data System (ADS)
Pigarov, A.; Krasheninnikov, S.; Hollmann, E.; Rognlien, T.
2015-11-01
Detached plasmas, the primary operational regime for divertors in next-step fusion devices, should be compatible with both good H-mode confinement and relatively small ELMs providing tolerable heat power loads on divertor targets. Here, dynamics of boundary plasma, impurities and material walls over a sequence of many type-I ELM events under detached divertor plasma conditions is studied with UEGDE-MB-W, the newest version of 2D edge plasma transport code, which incorporates Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. We present the results of multi-parametric analysis on the impact of the size and frequency of ELMs on the divertor plasma parameters where we vary the MB characteristics under different pedestals and divertor configurations. We discuss the conditions, under which small but frequent type-I ELMs (typical for high-power H-mode discharges on current tokamaks with hard deuterium gas puff) are not ``burning through'' the formed detached divertor plasma. In this case, the inner and outer divertors are filled by sub-eV, recombining, highly-impure plasma. Variations of impurity plasma content, radiation pattern, and deuterium wall inventory over the ELM cycle are analyzed. UEDGE-MB-W modeling results are compared to available experimental data.
A solvable blob-model for magnetized plasmas
NASA Astrophysics Data System (ADS)
Pécseli, H. L.; Sortland, D. S.; Garcia, O. E.
2016-11-01
A simple analytically solvable model for blobs in magnetized plasmas is proposed. The model gives results for a scaling of the blob velocity and acceleration with varying plasma parameters. Limiting cases are considered: one where the plasma motion is strictly perpendicular to an externally imposed toroidal magnetic field, and one where the electrons can move along magnetic field lines to compensate partly the collective electric fields. For these limiting cases, the model predicts scaling laws for the dependence of the blob velocities and accelerations with varying plasma density, temperature and magnetic field strength. Also the scaling with the dominant ion mass is derived. The analysis is completed by including the effects of collisions between ions and neutrals.
An FDTD model of scattering from meteor head plasma
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Close, S.
2015-07-01
We have developed a three-dimensional finite difference time domain (FDTD) model of scattering of radar waves from meteor head plasma. The model treats the meteor head plasma as a cold, collisional, and magnetized plasma, and solves Maxwell's equations and the Langevin equation simultaneously and self-consistently in and around the plasma. We use this model to investigate scattering of radar waves from a meteor head (the "head echo") under a range of plasma densities, meteor scale sizes, and wave frequencies. In this way we relate the radar cross section (RCS) to these variable parameters. We find that computed RCS disagrees with previous analytical theory at certain meteor sizes and densities, in some cases by over an order of magnitude. We find that the calculated meteor head RCS is monotonically related to the "overdense area" of the meteor, defined as the cross-section area of the part of the meteor where the plasma frequency exceeds the wave frequency. These results provides a physical measure of the meteor size and density that can be inferred from measured RCS values from ground-based radars. Meteoroid mass can then be inferred from the meteor plasma distribution using established methods.
Model for a transformer-coupled toroidal plasma source
NASA Astrophysics Data System (ADS)
Rauf, Shahid; Balakrishna, Ajit; Chen, Zhigang; Collins, Ken
2012-01-01
A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH3 plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH3, NHx+ ions are more prevalent near the gas inlet and Ar+ ions are the dominant ions farther downstream. NH3 and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH3 dissociates more readily and NHx+ ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH3 dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH4+ ions are produced and dissociation by-products have higher concentrations near the outlet.
Theoretical model for plasma expansion generated by hypervelocity impact
Ju, Yuanyuan; Zhang, Qingming Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng
2014-09-15
The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.
Modeling RF-induced Plasma-Surface Interactions with VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.
Integrated predictive modelling simulations of burning plasma experiment designs
NASA Astrophysics Data System (ADS)
Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H.
2003-11-01
Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied.
Nonlinear lower hybrid modeling in tokamak plasmas
Napoli, F.; Schettini, G.; Castaldo, C.; Cesario, R.
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
Numerical Modeling of Weakly Ionized Plasmas
NASA Astrophysics Data System (ADS)
O'Sullivan, S.; Downes, T. P.
2006-12-01
Numerical investigations of astrophysical plasma flows often rely on the ideal magnetohydrodynamic (MHD) approximation. In the case of weakly ionized plasmas the most questionable assumption of this is that the gas may be adequately approximated as a perfectly conducting single fluid. In direct consequence, the field lines are frozen into the bulk flow and may exert unrealistic forces on the gas in situations where magnetic diffusion should be important. A more appropriate treatment under these conditions is to discard the flux-freezing approximation by allowing charged species (i.e. electrons, ions, charge carrying dust grains) to have relative motions and compete in their interactions with the neutral gas component and the magnetic field. Taking such a multifluid approach admits ambipolar and Hall diffusion effects which can have a significant influence on the dynamics of the plasma. Conventional explicit numerical schemes have been shown to have a vanishing stable time step limit as the Hall effect becomes large and implicit schemes are, by nature, difficult to implement on distributed architectures, particularly when adaptive mesh refinement (AMR) is used. We present a novel explicit numerical scheme which allows a very significant claw-back of the deficit in efficiency when compared with implicit techniques. In addition, given that the scheme is explicit, it is straightforward to plug into existing AMR packages.
Numerical modeling of deflagration mode in coaxial plasma guns
NASA Astrophysics Data System (ADS)
Sitaraman, Hariswaran; Raja, Laxminarayan
2012-10-01
Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)
An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas
NASA Astrophysics Data System (ADS)
Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot
2015-09-01
Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel–Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.
Stochastic modeling of plasma mode forecasting in tokamak
NASA Astrophysics Data System (ADS)
Saadat, Sh.; Salem, M.; Ghoranneviss, M.; Khorshid, P.
2012-04-01
The structure of magnetohydrodynamic (MHD) modes has always been an interesting study in tokamaks. The mode number of tokamak plasma is the most important parameter, which plays a vital role in MHD instabilities. If it could be predicted, then the time of exerting external fields, such as feedback fields and Resonance Helical Field, could be obtained. Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average are useful models to predict stochastic processes. In this paper, we suggest using ARIMA model to forecast mode number. The ARIMA model shows correct mode number (m = 4) about 0.5 ms in IR-T1 tokamak and equations of Mirnov coil fluctuations are obtained. It is found that the recursive estimates of the ARIMA model parameters change as the plasma mode changes. A discriminator function has been proposed to determine plasma mode based on the recursive estimates of model parameters.
Modeling laser-plasma acceleration in the laboratory frame
2011-01-01
A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame."
Kinetic model for the collisionless sheath of a collisional plasma
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; Guo, Zehua
2016-08-01
Collisional plasmas typically have mean-free-path still much greater than the Debye length, so the sheath is mostly collisionless. Once the plasma density, temperature, and flow are specified at the sheath entrance, the profile variation of electron and ion density, temperature, flow speed, and conductive heat fluxes inside the sheath is set by collisionless dynamics, and can be predicted by an analytical kinetic model distribution. These predictions are contrasted here with direct kinetic simulations, showing good agreement.
A preliminary model of ion beam neutralization. [in thruster plasmas
NASA Technical Reports Server (NTRS)
Parks, D. E.; Katz, I.
1979-01-01
A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
NASA Technical Reports Server (NTRS)
Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.
2014-01-01
An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that
Mathematical model of gas plasma applied to chronic wounds
Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Zhang, Y. T.
2013-11-15
Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.
Theory and Modeling of the Plasma Liner Experiment (PLX)
NASA Astrophysics Data System (ADS)
Cassibry, J. T.; Stanic, M. D.; Awe, T. J.; Hanna, D. S.; Davis, J. S.; Hsu, S. C.; Witherspoon, F. D.
2010-11-01
High pressures and temperatures may be generated at the center an imploding plasma liner. These phenomena are being studied on the Plasma Liner Experiment (PLX) in which a spherical liner is formed via the merging of plasma jets. The basic physical processes include pulsed plasma acceleration, plasma jet propagation in a vacuum, plasma jet merging, liner formation, liner implosion, stagnation, and rarefaction. Each of these processes is dominated by different physics, requiring different models. For example, λei at the jet merging radius may be ˜1 cm, so that liner formation is partially collisionless, while liner implosion is collision dominated. Further, the liner transitions from optically thin to gray during the implosion. An overview of the theory and modeling plan in support of PLX will be given, which includes 1D rad-hydro, 3D hydro, 3D MHD, 2D PIC, and 2D hybrid codes. We will emphasize our recent 3D hydro modeling, which provides insights into liner formation, implosion, and effects of initial jet parameters on scaling of peak pressure.
Modelling of collective Thomson scattering from collisional plasmas
NASA Astrophysics Data System (ADS)
Tierney, T. E., IV; Montgomery, D. S.; Benage, J. F., Jr.; Wysocki, F. J.; Murillo, M. S.
2003-06-01
Anomalous broadening of ion-acoustic modes has been observed using collective Thomson scattering from both the electron plasma and ion-acoustic waves in ion-collisional plasmas. Ion-acoustic waves may be broadened by Landau damping, plasma inhomogeneities and instrumental effects. A model was constructed to calculate the contribution of these effects based upon spatially and spectrally resolved measurements of collective Thomson scattering. Collisional broadening effects were then calculated using a modification of the Mermin formalism. The computational model was used to interpret experimental measurements of collisional damping rates in dense, moderately coupled, plasmas. Collisional broadening is weakly dependent of ion-acoustic frequency in nearly isothermal plasmas; and therefore collective Thomson scattering can be used as a measurement technique for collisional damping rates provided all additional broadening mechanisms are taken into account. This paper further demonstrates that modelling of collective Thomson scattering from ion-collisional ion-acoustic modes must account for inhomogeneities, Landau damping, and collisions in order to evaluate plasma parameters, such as temperature and average ionization.
There Is No Simple Model of the Plasma Membrane Organization
Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek
2016-01-01
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212
PIC Simulation Models of Hypersonic Plasma
NASA Astrophysics Data System (ADS)
Niehoff, Dustin; Ashour-Abdalla, Maha; Niemann, Chris; Decyk, Viktor; Schriver, David; Clark, S. Eric; Sotnikov, Vladimir
2013-10-01
The plasma sheaths formed around hypersonic aircraft (Mach number over 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. PIC simulations are necessary when phenomena are expected to be observed below typical ion scales; however, if the scales of the problem are not significantly below this, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation while still retaining structures of interest. In order to avoid excess computational expense, we use a radial density profile from hybrid simulation results to seed the distribution of a self-consistent PIC simulation in one direction, transverse to an external magnetic field. To further reduce the expense, we also use a Darwin approximation which neglects retardation, but effects from lower frequency modes are unchanged, allowing us to feasibly simulate over the required distances and durations. The simulation will be run in two spatial dimensions but retain three velocity dimensions, and the results will be used to explore the growth of micro-instabilities present in hypersonic plasmas in the high-density region as it moves through the simulation box. Work supported by the AFRL.
Plasma gun pellet acceleration modeling and experiment
Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.
1996-12-31
Modifications to the electrothermal plasma gun SIRENS have been completed to allow for acceleration experiments using plastic pellets. Modifications have been implemented to the 1-D, time dependent code ODIN to include pellet friction, momentum, and kinetic energy with options of variable barrel length. The code results in the new version, POSEIDON, compare favorably with experimental data and with code results from ODIN. Predicted values show an increased pellet velocity along the barrel length, achieving 2 km/s exit velocity. Measured velocity, at three locations along the barrel length, showed good correlation with predicted values. The code has also been used to investigate the effectiveness of longer pulse length on pellet velocity using simulated ramp up and down currents with flat top, and triangular current pulses with early and late peaking. 16 refs., 5 figs.
A feedback model of magnetron sputtering plasmas in HIPIMS
NASA Astrophysics Data System (ADS)
Ross, A. E.; Ganesan, R.; Bilek, M. M. M.; McKenzie, D. R.
2015-04-01
We present a 1D feedback model that captures the essential elements of plasma pulse initiation and is useful for control and diagnostics of sputtering plasmas. Our model falls into the class of single-species population models with recruitment and time delay, which show no oscillatory behaviour. The model can reproduce essential features of published time-current traces from plasma discharges and is useful to determine the key parameters affecting the evolution of the discharge. We include the external circuit and we focus on the time evolution of the current as a function of the applied voltage and the plasma parameters. We find the necessity of a nonlinear loss term in the time-dependent plasma ion population to ensure a stable discharge, and we show that a higher secondary electron emission coefficient reduces the time delay for current initiation. We report that I-V characteristics in the plateau region, where it exists, fit a power curve of the form I = kVn, where n is influenced most strongly by the nonlinear loss term.
A new model for plasma transport and chemistry at Saturn
NASA Technical Reports Server (NTRS)
Richardson, John D.
1992-01-01
A model of plasma transport and chemistry is described which calculates the evolution of a plasma population in latitude and radial distance. This model is applied to the magnetosphere of Saturn, where it is used to fit the density profile of the heavy ions assuming both satellite and ring sources of plasma. Use of an extended source region is found to significantly alter the resulting plasma profile. Water ions cannot fit the observed density profile inside L = 6 even with a large ring source. Oxygen ions can fit the density profile throughout the region inside L = 12 given a suitable profile of neutral hydrogen; a suitable profile contains up to 5 H/cu cm outside L = 4 with the number increasing inside this. Preferred values of K are 1-3 x 10 exp -10 R(S)2/s, but any value K less than 10 exp -9 R(S)2/s can be accommodated. The temperature profile is shown to favor models invoking in situ plasma formation and loss as opposed to models where transport is important.
Hybrid numerical model of shock waves in collisionless plasma
NASA Astrophysics Data System (ADS)
Vshivkova, L.; Dudnikova, G.; Vshivkov, K.
2016-10-01
We present a 2D hybrid numerical plasma model of generation and structure of collisionless shock waves in plasma and ion acceleration on their front considering physical processes in supernova remnant shock precursor. In modeling a shock wave is generated by sending a supersonic flow against a reflecting wall. The consequent interaction between incoming and reflected plasma flows lead to formation of waves, the structure of which depends on a flow velocity. The hybrid approach reduces the computational expenses relative to a fully kinetic one, and on the other hand, permits to model ions with a greater accuracy than the magnetohydrodynamics (MHD) allows. Also, another important advantage of the hybrid approach is the possibility to study the important instabilities on an ion time scale, neglecting the modes associated with electrons. In the current work a new computational scheme where stability condition allows carry out computations on more wide set of computational and physical parameters is presented.
Mathematical modeling of plasma deposition and hardening of coatings-switched electrical parameters
NASA Astrophysics Data System (ADS)
Kadyrmetov, A. M.; Sharifullin, S. N.; Pustovalov, AS
2016-01-01
This paper presents the results of simulation of plasma deposition and hardening of coatings in modulating the electrical parameters. Mathematical models are based on physical models of gas-dynamic mechanisms more dynamic and thermal processes of the plasma jet. As an example the modeling of dynamic processes of heterogeneous plasma jet, modulated current pulses indirect arc plasma torch.
The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data
NASA Astrophysics Data System (ADS)
Kushner, Mark J.
2015-09-01
Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.
Ion sphere model for Yukawa systems (dusty plasmas)
Khrapak, S. A.; Khrapak, A. G.; Ivlev, A. V.; Thomas, H. M.
2014-12-15
Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems.
Ion sphere model for Yukawa systems (dusty plasmas)
NASA Astrophysics Data System (ADS)
Khrapak, S. A.; Khrapak, A. G.; Ivlev, A. V.; Thomas, H. M.
2014-12-01
Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems.
Verification strategies for fluid-based plasma simulation models
NASA Astrophysics Data System (ADS)
Mahadevan, Shankar
2012-10-01
Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.
Self-consistent chemical model of partially ionized plasmas
Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E.
2011-01-15
A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.
A Generalized Hydrodynamics Model for Strongly Coupled Plasmas
NASA Astrophysics Data System (ADS)
Diaw, Abdourahmane; Murillo, Michael Sean
2015-11-01
Starting with the equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum and stress tensor-moment equations. The closure proceeds in two steps. The first that guarantees an equilibrium state is given by density functional theory. It ensures self consistency in the equation-of-state properties of the plasma. The second involves modifying the two-body distribution function to include collisions in the relaxation of the stress tensor. The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasi-localized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).
Hydrodynamic Modeling of the Plasma Liner Experiment (PLX)
NASA Astrophysics Data System (ADS)
Cassibry, Jason; Hsu, Scott; Witherspoon, Doug; Gilmore, Marc
2009-11-01
Implosions of plasma liners in cylindrically or spherically convergent geometries can produce high pressures and temperatures with a confinement or dwell time of the order of the rarefaction timescale of the liner. The Plasma Liner Experiment (PLX), to be built at LANL, will explore and demonstrate the feasibility of forming imploding plasma liners with the spherical convergence of hypersonic plasma jets. Modeling will be performed using SPHC and MACH2. According to preliminary 3D SPHC results, high Z plasma liners imploding on vacuum with ˜1.5MJ of initial stored energy will reach ˜100kbar, which is a main objective of the experimental program. Among the objectives of the theoretical PLX effort are to assist in the diagnostic analysis of the PLX, identify possible deleterious effects due to instabilities or asymmetries, identify departures from ideal behavior due to thermal and radiative transport, and help determine scaling laws for possible follow-on applications of ˜1 Mbar HEDP plasmas and magneto-inertial fusion. An overview of the plan to accomplish these objectives will be presented, and preliminary results will be summarized.
Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhodko, V. V.; Tsidulko, Yu. A.
2016-03-01
The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model.
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
NASA Technical Reports Server (NTRS)
Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.
2015-01-01
An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.
Predictive models for fast ion profiles relaxation in burning plasmas
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai; Heidbrink, W. W.; Lestz, J.; Podesta, M.; van Zeeland, M.; White, R. B.
2014-10-01
The performance of the burning plasmas is limited by the confinement of superalfvenic fusion products, alpha particles, which are capable to resonate with the Alfvénic eigenmodes (AEs). Two techniques based on linear AE stability theory are developed to evaluate the AE induced fast ion relaxation. The first is the reduced quasilinear technique or critical gradient model (CGM) where marginally unstable (or critical) gradient of fast ion pressure is due to unstable AEs. It allows the reconstruction of fast ion pressure profile and compute their losses. The second technique is called hybrid that is also based on NOVA-K linear stability computations of TAE (or RSAE) mode structures and growth rates. AE amplitudes are computed from the nonlinear theory perturbatively and used in numerical runs. With the help of the guiding center code ORBIT the hybrid model predicts the relaxation of the fast particle profiles. We apply these models for NSTX and DIII-D plasmas with the neutral beam injections in order to validate the models. Both methods are relatively fast ways to predict the fast ion profiles in burning plasmas and can be used for plasma modeling prior to building experimental devices such as ITER. Partially supported by US DOE Contract DE-AC02-09CH11466.
Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data
NASA Astrophysics Data System (ADS)
Kushner, Mark J.
2016-05-01
Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.
Modeling plasma pressure anisotropy's effect on Saturn's global magnetospheric dynamics
NASA Astrophysics Data System (ADS)
Tilley, M.; Harnett, E. M.; Winglee, R.
2014-12-01
A 3D multi-fluid, multi-scale plasma model with a complete treatment of plasma pressure anisotropy is employed to study global magnetospheric dynamics at Saturn. Cassini has observed anisotropies in the Saturnian magnetosphere, and analyses have showed correlations between anisotropy and plasma convection, ring current structure and intensity, confinement of plasma to the equatorial plane, as well as mass transport to the outer magnetosphere. The energization and transport of plasma within Saturn's magnetosphere is impactful upon the induced magnetic environments and atmospheres of potentially habitable satellites such as Enceladus and Titan. Recent efforts to couple pressure anisotropy with 3D multi-fluid plasma modeling have shown a significant move towards matching observations for simulations of Earth's magnetosphere. Our approach is used to study the effects of plasma pressure anisotropy on global processes of the Saturnian magnetosphere such as identifying the effect of pressure anisotropy on the centrifugal interchange instability. Previous simulation results have not completely replicated all aspects of the structure and formation of the interchange 'fingers' measured by Cassini at Saturn. The related effects of anisotropy, in addition to those mentioned above, include contribution to formation of MHD waves (e.g. reduction of Alfvén wave speed) and formation of firehose and mirror instabilities. An accurate understanding of processes such as the interchange instability is required if a complete picture of mass and energy transport at Saturn is to be realized. The results presented here will detail how the inclusion of a full treatment of pressure anisotropy for idealized solar wind conditions modifies the interchange structure and shape of the tail current sheet. Simulation results are compared to observations made by Cassini.
Contribution to arc plasma modeling for welding TIG application
NASA Astrophysics Data System (ADS)
Borel, Damien; Delalondre, Clarisse; Carpreau, Jean-Michel; Chéron, B. G.; Boubert, J.-P.
2014-06-01
In this paper we present a numerical model that simulates transferred energy by a welding thermal plasma to the weld pool. This energy transfer allows materials melting. The originality of our model is to include the modeling of transition zones and the vaporization of the anode. The cathodic and anodic areas are taken into account in the model by means of heat balance at the gas-solid interfaces. We report the heating and cooling effects they induce on the solid (cathode, anode) and plasma. Code_Saturne® the CFD software developed at EDF R&D is used for this work Comparisons between simulations and measurements of temperature and electron density confirm the model assumptions for TIG welding.
Kinetic modeling and sensitivity analysis of plasma-assisted combustion
NASA Astrophysics Data System (ADS)
Togai, Kuninori
Plasma-assisted combustion (PAC) is a promising combustion enhancement technique that shows great potential for applications to a number of different practical combustion systems. In this dissertation, the chemical kinetics associated with PAC are investigated numerically with a newly developed model that describes the chemical processes induced by plasma. To support the model development, experiments were performed using a plasma flow reactor in which the fuel oxidation proceeds with the aid of plasma discharges below and above the self-ignition thermal limit of the reactive mixtures. The mixtures used were heavily diluted with Ar in order to study the reactions with temperature-controlled environments by suppressing the temperature changes due to chemical reactions. The temperature of the reactor was varied from 420 K to 1250 K and the pressure was fixed at 1 atm. Simulations were performed for the conditions corresponding to the experiments and the results are compared against each other. Important reaction paths were identified through path flux and sensitivity analyses. Reaction systems studied in this work are oxidation of hydrogen, ethylene, and methane, as well as the kinetics of NOx in plasma. In the fuel oxidation studies, reaction schemes that control the fuel oxidation are analyzed and discussed. With all the fuels studied, the oxidation reactions were extended to lower temperatures with plasma discharges compared to the cases without plasma. The analyses showed that radicals produced by dissociation of the reactants in plasma plays an important role of initiating the reaction sequence. At low temperatures where the system exhibits a chain-terminating nature, reactions of HO2 were found to play important roles on overall fuel oxidation. The effectiveness of HO2 as a chain terminator was weakened in the ethylene oxidation system, because the reactions of C 2H4 + O that have low activation energies deflects the flux of O atoms away from HO2. For the
Tritium permeation model for plasma facing components
Longhurst, G.R.
1992-12-01
This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.
Combined plasma and thermal hollow cathode insert model
NASA Technical Reports Server (NTRS)
Katz, Ira; Polk, James E.; Mikellides, Ionnis G.; Goebel, Dan m.; Hornbeck, Sarah E.
2005-01-01
In this paper, we present the first results from a Hollow Cathode Thermal (HCThermal) model that uses the spatially distributed plasma fluxes calculated by the InsertRegion of an Orificed Cathode (IROrCa2D) code as the heat source to predict the hollow cathode and insert temperatures.
Heat transfer modelling of first walls subject to plasma disruption
Fillo, J.A.; Makowitz, H.
1981-01-01
A brief description of the plasma disruption problem and potential thermal consequences to the first wall is given. Thermal models reviewed include: a) melting of a solid with melt layer in place; b) melting of a solid with complete removal of melt (ablation); c) melting/vaporization of a solid; and d) vaporization of a solid but no phase change affecting the temperature profile.
A New Global Core Plasma Model of the Plasmasphere
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Comfort, R. H.; Craven, P. D.
2014-01-01
The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, make possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented. Specifically shown here are the inner-plasmasphere RIMS measurements, radial fits to densities and temperatures for H(+), He(+), He(++), O(+), and O(+) and the error associated with these initial simple fits. Also shown are more subtle dependencies on the f10.7 P-value (see Richards et al. [1994]).
RF Models for Plasma-Surface Interactions in VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.
Modeling aluminum etch chemistry in high density plasmas
Meeks, E.; Ho, P.; Buss, R.
1997-08-01
The authors have assembled a chemical reaction mechanism that describes the BCl{sub 3}/Cl{sub 2}/Ar plasma etch of Al metallization layers. The reaction set for gas-phase and surface processes was derived either from literature data or estimated from data on related systems. A well-mixed reactor model was used to develop the mechanism and test it against experimental measurements of plasma species and etch-rates in processing reactors. Finally, use of reduced chemistry mechanisms are demonstrated in 2-D simulations for a complex reactor geometry.
Viscous quark-gluon plasma model through fluid QCD approach
Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id
2014-09-25
A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.
Quark-Gluon Plasma Model and Origin of Magic Numbers
Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.
2008-04-21
Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.
PLASMA NEAR THE HELIOSHEATH: OBSERVATIONS AND MODELING
Borovikov, Sergey N.; Pogorelov, Nikolai V.; Burlaga, Leonard F.; Richardson, John D.
2011-02-10
Sound numerical modeling is capable of providing important predictive information about the solar wind interaction with the local interstellar medium. The results of our three-dimensional simulation show a good agreement with Voyager observations from 2007 to 2010. We analyze the termination shock properties at the Voyager crossing points and juxtapose them with the observed data. The heliospheric current sheet structure in the inner heliosheath is examined.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
NASA Technical Reports Server (NTRS)
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Plasma physics modeling and the Cray-2 multiprocessor
Killeen, J.
1985-01-01
The importance of computer modeling in the magnetic fusion energy research program is discussed. The need for the most advanced supercomputers is described. To meet the demand for more powerful scientific computers to solve larger and more complicated problems, the computer industry is developing multiprocessors. The role of the Cray-2 in plasma physics modeling is discussed with some examples. 28 refs., 2 figs., 1 tab.
Advanced modeling techniques in application to plasma pulse treatment
NASA Astrophysics Data System (ADS)
Pashchenko, A. F.; Pashchenko, F. F.
2016-06-01
Different approaches considered for simulation of plasma pulse treatment process. The assumption of a significant non-linearity of processes in the treatment of oil wells has been confirmed. Method of functional transformations and fuzzy logic methods suggested for construction of a mathematical model. It is shown, that models, based on fuzzy logic are able to provide a satisfactory accuracy of simulation and prediction of non-linear processes observed.
Modeling of far SOL plasma transport in NSTX
Sergei Krasheninnikov; Alexander Pigarov
2005-11-02
For better understanding and characterization of non-diffusive transport occurring in the NSTX tokamak edge plasma, we performed extensive simulations of NSTX edge plasmas with the multi-fluid two-dimensional UEDGE code by using realistic model for impurity sputtering sources and hybrid model for anomalous cross-field transport. Our cross-field transport model incorporates the effects of non-diffusive intermittent transport by introducing anomalous convective velocities whose spatial profile is adjusted for each ion charge state to match available experimental data. The research in 2002-2005 financial years was focused on the following areas: (i) development of capabilities for UEDGE simulation of NSTX spectroscopy data (i.e., the 3D real-geometry postprocessor UEDGE tools for comparison between UEDGE and experimental data), (ii) simulation of multi-diagnostic data from NSTX with UEDGE, (iii) study of anomalous cross-field convective transport of impurity ions, (iv) analysis of divertor plasma opacity to resonance radiation, and (v) study the effects of ballooning-like anomalous cross-field transport and spherical-torus magnetic configuration on parallel plasma flows in the SOL.
Order of lipid phases in model and plasma membranes
Kaiser, Hermann-Josef; Lingwood, Daniel; Levental, Ilya; Sampaio, Julio L.; Kalvodova, Lucie; Rajendran, Lawrence; Simons, Kai
2009-01-01
Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins that contribute to lateral heterogeneity in eukaryotic membranes. Separation of artificial membranes into liquid-ordered (Lo) and liquid-disordered phases is regarded as a common model for this compartmentalization. However, tight lipid packing in Lo phases seems to conflict with efficient partitioning of raft-associated transmembrane (TM) proteins. To assess membrane order as a component of raft organization, we performed fluorescence spectroscopy and microscopy with the membrane probes Laurdan and C-laurdan. First, we assessed lipid packing in model membranes of various compositions and found cholesterol and acyl chain dependence of membrane order. Then we probed cell membranes by using two novel systems that exhibit inducible phase separation: giant plasma membrane vesicles [Baumgart et al. (2007) Proc Natl Acad Sci USA 104:3165–3170] and plasma membrane spheres. Notably, only the latter support selective inclusion of raft TM proteins with the ganglioside GM1 into one phase. We measured comparable small differences in order between the separated phases of both biomembranes. Lateral packing in the ordered phase of giant plasma membrane vesicles resembled the Lo domain of model membranes, whereas the GM1 phase in plasma membrane spheres exhibited considerably lower order, consistent with different partitioning of lipid and TM protein markers. Thus, lipid-mediated coalescence of the GM1 raft domain seems to be distinct from the formation of a Lo phase, suggesting additional interactions between proteins and lipids to be effective. PMID:19805351
Modeling of transport phenomena in tokamak plasmas with neural networks
Meneghini, O.; Luna, C. J.; Smith, S. P.; Lao, L. L.
2014-06-15
A new transport model that uses neural networks (NNs) to yield electron and ion heat flux profiles has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest fidelity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport profiles. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range of plasma regimes. Although each radial location is calculated independently from the others, the heat flux profiles are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-defined, non-stochastic relationship between the input parameters and the experimentally measured transport fluxes. The numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.
Two-dimensional s-polarized solitary waves in relativistic plasmas. I. The fluid plasma model
Sanchez-Arriaga, G.; Lefebvre, E.
2011-09-15
The properties of two-dimensional linearly s-polarized solitary waves are investigated by fluid-Maxwell equations and particle-in-cell (PIC) simulations. These self-trapped electromagnetic waves appear during laser-plasma interactions, and they have a dominant electric field component E{sub z}, normal to the plane of the wave, that oscillates at a frequency below the electron plasma frequency {omega}{sub pe}. A set of equations that describe the waves are derived from the plasma fluid model in the case of cold or warm plasma and then solved numerically. The main features, including the maximum value of the vector potential amplitude, the total energy, the width, and the cavitation radius are presented as a function of the frequency. The amplitude of the vector potential increases monotonically as the frequency of the wave decreases, whereas the width reaches a minimum value at a frequency of the order of 0.82 {omega}{sub pe}. The results are compared with a set of PIC simulations where the solitary waves are excited by a high-intensity laser pulse.
A model for plasma volume changes during short duration spaceflight
NASA Technical Reports Server (NTRS)
Davis, John E.
1989-01-01
It is well established that plasma volume decreases during spaceflight and simulated weightlessness (bedrest). The decrement in plasma volume is thought to contribute to the orthostatic intolerance that has been observed in some crew members following spaceflight. To date, no studies have evaluated the effectiveness of fluid countermeasures of varying osmolality in the restoration of plasma volume and orthostatic tolerance in a controlled study. The overall objectives of this project were to: (1) provide a model that would rapidly and safely produce a fluid loss comparable to that which occurs during short duration spaceflight; and (2) design a study that would determine the optimal drink solution to restore orthostatic tolerance and describe the mechanism(s) whereby orthostatic tolerance is restored. In summary, Lasix can be used as a way of simulating the plasma volume changes that occur during short duration spaceflight. The total loss of plasma is comparable to spaceflight. Lasix is fast acting, and has relatively few side effects. The present design for evaluating the optimal fluid countermeasures will have important implications in restoring orthostatic tolerance and function in the latter stages of spaceflight when it is essential for safe operation of the spacecraft.
Modelling spectral emission from fusion plasmas
Summers, H. P.; Badnell, N. R.; Foster, A. R.; Giunta, A.; Guzman, F.; Menchero, L.; Nicholas, C. H.; O'Mullane, M. G.; Whiteford, A. D.; Meigs, A.; Contributors, JET-EFDA
2012-05-25
The paper is a tribute to Nicol Peacock and has a focus on interests and developments at Culham Laboratory from {approx} 1970 when Nicol led the UKAEA spectroscopy team. The paper charts a little of the evolution of these models and their data through the seventies and eighties on into this century at Culham. The paper concludes with the state of efforts to enable easy, universal access to spectral analysis across the scope of Culham activity, of which it is hoped Nicol would approve.
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
NASA Astrophysics Data System (ADS)
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an
A dynamical model of plasma turbulence in the solar wind
Howes, G. G.
2015-01-01
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075
A dynamical model of plasma turbulence in the solar wind.
Howes, G G
2015-05-13
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.
A dynamical model of plasma turbulence in the solar wind.
Howes, G G
2015-05-13
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075
PLASIMO model of micro-plasma jet for biomedical applications
NASA Astrophysics Data System (ADS)
Mihailova, Diana; Sobota, Ana; Graef, Wouter; van Dijk, Jan; Hagelaar, Gerjan
2014-10-01
Non-equilibrium atmospheric pressure micro-plasma jets are widely studied for use in biotechnology, including treatment of human tissue. The setup under study consists of capillary powered electrode through which helium gas flows and a grounded ring electrode placed a distance of few mm in front of the capillary. The discharge is excited by sinusoidal voltage with amplitude of 2 kV and 30 KHz repetition rate. The plume emanating from the jet, or the plasma bullets, propagates through a Pyrex tube and the gas phase channel of helium into the surrounding air.aim of this work is to get insight into the plasma constituents that can affect directly or indirectly living tissue. This includes radicals (OH, NO, O,), ions and electrons, UV radiation, electrical fields. PLASIMO modelling toolkit is used to simulate the capillary plasma-jet in order to quantify the delivery of fluxes and fields to the treated tissue. Verification is made by comparing results obtained with the PLASIMO and MAGMA codes (developed at LAPLACE, Toulouse) for the same input specifications. Both models are validated by comparison with experimental observations at various operating parameters.
Numerical model of the plasma formation at electron beam welding
Trushnikov, D. N.; Mladenov, G. M.
2015-01-07
The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.
Analytic model for coaxial helicity injection in tokamak plasmas
Weening, R. H.
2011-12-15
Using a partial differential equation for the time evolution of the mean-field poloidal magnetic flux that incorporates resistivity {eta} and hyper-resistivity {Lambda} terms, an exact analytic solution is obtained for steady-state coaxial helicity injection (CHI) in force-free large aspect ratio tokamaks. The analytic mean-field Ohm's law model allows for calculation of the tokamak CHI current drive efficiency and the plasma inductances at arbitrary levels of magnetic fluctuations, or dynamo activity. The results of the mean-field model suggest that CHI approaching Ohmic efficiency is only possible in tokamaks when the size of the effective current drive boundary layer, {delta}{identical_to}({Lambda}/{eta}){sup 1/2}, becomes greater than half the size of the plasma, {delta}>a/2, with a the plasma minor radius. The electron thermal diffusivity due to magnetic fluctuation induced transport is obtained from the expression {chi}{sub e}={Lambda}/{mu}{sub 0}d{sub e}{sup 2}, with {mu}{sub 0} the permeability of free space and d{sub e} the electron skin depth, which for typical tokamak fusion plasma parameters is on the order of a millimeter. Thus, the ratio of the energy confinement time to the resistive diffusion time in a tokamak plasma driven by steady-state CHI approaching Ohmic efficiency is shown to be constrained by the relation {tau}{sub E}/{tau}{sub {eta}}<(d{sub e}/a){sup 2}{approx_equal}10{sup -6}. The mean-field model suggests that steady-state CHI can be viewed most simply as a boundary layer of stochastically wandering magnetic field lines.
Observations and modeling of plasma flows driven by solar flares
NASA Astrophysics Data System (ADS)
Brannon, Sean Robert
One of the fundamental statements that can be made about the solar atmosphere is that it is structured. This structuring is generally believed to be the result of both the arrangement of the magnetic field in the corona and the distribution of plasma along magnetic loops. The standard model of solar flares involves plasma transported into coronal loops via a process known as chromospheric evaporation, and the resulting evolution of the flare loops is believed to be sensitive to the physical mechanism of energy input into the chromosphere by the flare. We present here the results of three investigations into chromospheric plasma flows driven by solar flare energy release and transport. First, we develop a 1-D hydrodynamic code to simulate the response of a simplified model chromosphere to energy input via thermal conduction from reconnection-driven shocks. We use the results from a set of simulations spanning a parameter space in both shock speed and chromospheric-to-coronal temperature ratio to infer power-law relationships between these quantities and observable evaporation properties. Second, we use imaging and spectral observations of a quasi-periodic oscillation of a flare ribbon to determine the phase relationship between Doppler shifts of the ribbon plasma and the oscillation. The phase difference we find leads us to suggest an origin in a current sheet instability. Finally, we use imaging and spectral data of an on-disk flare event and resulting flare loop plasma flows to generally validate the standard picture of flare loop evolution, including evaporation, cooling time, and draining downflows, and we use a simple free-fall model to produce the first direct comparison between observed and synthetic downflow spectra.
Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying
NASA Astrophysics Data System (ADS)
Bobzin, Kirsten; Bagcivan, Nazlim; Zhao, Lidong; Petkovic, Ivica; Schein, Jochen; Hartz-Behrend, Karsten; Kirner, Stefan; Marqués, José-Luis; Forster, Günter
2011-09-01
Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.
Challenges in plasma and extraction modelling of negative ion sources
NASA Astrophysics Data System (ADS)
Kalvas, Taneli
2013-09-01
The physical processes taking place in negative ion source plasmas are modelled by state-of-the-art 3D particle-in-cell (PIC) codes. These codes are used to gain understanding and to find optimal solutions for negative ion beam production. The PIC codes can be made to match to the reality if all relevant processes were included. This is unfortunately limited by the availability of data about the processes and the huge amount of computational resources needed for the simulations. The optimization of the extraction system and beam transport ion optics is often made using computationally less intensive methods utilized in so-called gun codes. These codes use simplified plasma models to provide a starting point for the extracted beams being simulated. The relatively fast computation allows systematic studies, which are not practical with PIC codes. The gun codes often match well to reality, but they do have difficulties reproducing some effects, especially in negative ion extraction, due to the approximations made in the plasma model. Could the future solutions for beam production modelling couple the two types of simulations?
Time dependent modeling of non-LTE plasmas: Final report
Not Available
1988-06-01
During the period of performance of this contract Science Applications International Corporation (SAIC) has aided Lawrence Livermore National Laboratory (LLNL) in the development of an unclassified modeling tool for studying time evolution of high temperature ionizing and recombining plasmas. This report covers the numerical code developed, (D)ynamic (D)etailed (C)onfiguration (A)ccounting (DDCA), which was written to run on the National Magnetic Fusion Energy Computing Center (NMFECC) network as well as the classified Livermore Computer Center (OCTOPUS) network. DDCA is a One-Dimensional (1D) time dependent hydrodynamic model which makes use of the non-LTE detailed atomic physics ionization model DCA. 5 refs.
Model of the plasma jet originating from a cathode spot
Gavrilov, V.N.; Litvinov, E.A.; Mesyats, G.A.
1995-12-31
The 2-D NM model of the vacuum-arc plasma jet presented here is in outgrowth of the 1-D hydrodynamic model discussed by us. The computation carried out in 1-D approximation have provided the principal characteristics of a cathode jet being in satisfactory agreement with experimental data. Nevertheless, there results cannot be considered completely adequate, since actually the plum parameters of a cathode jet are distributed highly nonuniformly over its cross section. Furthermore, a 1-D model falls to take in to account the effects related to the influence of the self-magnetic field of the cathode jet.
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
Effect of Hydrogen Plasma on Model Corrosion Layers of Bronze
NASA Astrophysics Data System (ADS)
Fojtíková, P.; Sázavská, V.; Mika, F.; Krčma, F.
2016-05-01
Our work is about plasmachemical reduction of model corrosion layers. The model corrosion layers were produced on bronze samples with size of 10 × 10 × 5 mm3, containing Cu and Sn. Concentrated hydrochloric acid was used as a corrosive environment. The application of reduction process in low-pressure low-temperature hydrogen plasma followed. A quartz cylindrical reactor with two outer copper electrodes was used. Plasma discharge was generated in pure hydrogen by a RF generator. Each corroded sample was treated in different conditions (supplied power and a continual or pulsed regime with a variable duty cycle mode). Process monitoring was ensured by optical emission spectroscopy. After treatment, samples were analyzed by SEM and EDX.
Kinetic Modeling of the Lunar Dust-Plasma Environment
NASA Astrophysics Data System (ADS)
Kallio, Esa; Alho, Markku; Alvarez, Francisco; Barabash, Stas; Dyadechkin, Sergey; Fernandes, Vera; Futaana, Yoshifumi; Harri, Ari-Matti; Haunia, Touko; Heilimo, Jyri; Holmström, Mats; Jarvinen, Riku; Lue, Charles; Makela, Jakke; Porjo, Niko; Schmidt, Walter; Shahab, Fatemi; Siili, Tero; Wurz, Peter
2014-05-01
Modeling of the lunar dust and plasma environment is a challenging task because a self-consistent model should include ions, electrons and dust particles and numerous other factors. However, most of the parameters are not well established or constrained by measurements in the lunar environment. More precisely, a comprehensive model should contain electrons originating from 1) the solar wind, 2) the lunar material (photoelectrons, secondary electrons) and 3) the lunar dust. Ions originate from the solar wind, the lunar material, the lunar exosphere and the dust. To model the role of the dust in the lunar plasma environment is a highly complex task since the properties of the dust particles in the exosphere are poorly known (e.g. mass, size, shape, conductivity) or not known (e.g. charge and photoelectron emission) and probably are time dependent. Models should also include the effects of interactions between the surface and solar wind and energetic particles, and micrometeorites. Largely different temporal and spatial scales are also a challenge for the numerical models. In addition, the modeling of a region on the Moon - for example on the South Pole - at a given time requires also knowledge of the solar illumination conditions at that time, mineralogical and electric properties of the local lunar surface, lunar magnetic anomalies, solar UV flux and the properties of the solar wind. Harmful effects of lunar dust to technical devices and to human health as well as modeling of the properties of the lunar plasma and dust environment have been topics of two ESA funded projects L-DEPP and DPEM. In the presentation we will summarize some basic results and characteristics of plasma and fields near and around the Moon as studied and discovered in these projects. Especially, we analyse three different space and time scales by kinetic models: [1] the "microscale" region near surface with an electrostatic PIC (ions and electrons are particles) model, [2] the "mesoscale
Multi-field plasma sandpile model in tokamaks and applications
NASA Astrophysics Data System (ADS)
Peng, X. D.; Xu, J. Q.
2016-08-01
A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
NASA Technical Reports Server (NTRS)
Wu, L.; Tam, V.; Chow, Diana S. L.; Putcha, Lakshmi
2014-01-01
An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP.
3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems
NASA Astrophysics Data System (ADS)
Rauf, Shahid
2008-10-01
Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.
Unified Model of the rf Plasma Sheath, Part II
NASA Astrophysics Data System (ADS)
Riley, Merle
1996-10-01
By developing an approximation to the first integral of the Poisson equation, one can obtain solutions for the current-voltage characteristics of an rf plasma sheath that are valid over the whole range of inertial response of the ions to an imposed rf voltage or current. (M.E.Riley, 1995 GEC, abstract QA5, published in Bull. Am. Phys. Soc., 40, 1587 (1995).) The theory has been shown to adequately reproduce current-voltage characteristics of two extreme cases (M.A. Lieberman, IEEE Trans. Plasma Sci. 16, 638 (1988). A. Metze, D.W. Ernie, and H.J.Oskam, J.Appl.Phys., 60, 3081 (1986).) of ion response. In this work I show the effect of different conventions for connecting the sheath model to the bulk plasma. Modifications of the Mach number and a finite electric field at the Bohm point are natural choices. The differences are examined for a sheath in a high density Ar plasma and are found to be insignificant. A theoretical argument favors the electric field modification. *Work performed at Sandia National Labs and supported by US DoE under contract DE-AC04-94AL85000.
Multi-level molecular modelling for plasma medicine
NASA Astrophysics Data System (ADS)
Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.
2016-02-01
Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.
Growth model of binary alloy nanopowders for thermal plasma synthesis
NASA Astrophysics Data System (ADS)
Shigeta, Masaya; Watanabe, Takayuki
2010-08-01
A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.
Growth model of binary alloy nanopowders for thermal plasma synthesis
Shigeta, Masaya; Watanabe, Takayuki
2010-08-15
A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.
Modeling of neutral gas dynamics in high-density plasmas
NASA Astrophysics Data System (ADS)
Canupp, Patrick Wellington
This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact
Lee, Hyo-Chang; Chung, Chin-Wook
2015-01-01
Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650
Lee, Hyo-Chang; Chung, Chin-Wook
2015-10-20
Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.
NASA Astrophysics Data System (ADS)
Lee, Hyo-Chang; Chung, Chin-Wook
2015-10-01
Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.
Ferrokinetics: a biologic model for plasma iron exchange in man
Cook, J. D.; Marsaglia, G.; Eschbach, J. W.; Funk, D. D.; Finch, C. A.
1970-01-01
A method is presented for calculating internal iron kinetics. An early reflux associated with extravascular exchange and a late reflux associated with erythropoiesis are described. A biologic model of iron exchange is proposed in which erythron iron turnover is divided into an effective portion (iron fixed in circulating red cells) and wastage iron of erythropoiesis (late reflux). Nonerythroid iron exchange also has a fixed portion (parenchymal uptake) and an early reflux (lymphatic circuit), both of which correlate in amount with the amount of plasma iron. Ferrokinetic measurements in normal subjects and in various pathologic states are presented to validate the model. PMID:5411779
Mathematical models of plasma discharge control in a tokamak
NASA Astrophysics Data System (ADS)
Andreev, V. F.; Dnestrovskij, Yu. N.; Kostomarov, D. P.; Popov, A. M.
A model for program description of discharge development in a tokomak is considered and the problem of optimal control of poloidal fields and total current in plasma is determined. A comparison of the formulated problem solution methods is performed. A quasi-optimal control model is proposed, allowing one to take account of real power supplies. Analysis of the control task stability and correctness is conducted. The numerical code for optimal control task solution is developed and the method is described. Different operation modes of the T-15 device are calculated using the developed code.
Two-chamber model for divertors with plasma recycling
Langer, W.D.; Singer, C.E.
1985-06-01
To model particle and heat-loss terms at the edge of a tokamak with a divertor or pumped limiter, a simple two-chamber formuluation of the scrapeoff has been constructed by integrating the fluid equations, including sources, along open field lines. The model is then solved for a wide range of density and temperature conditions in the scrapeoff, using geometrical parameters typical of the poloidal divertor in the poloidal divertor experiment (PDX). The solutions characterize four divertor operating conditions for beam-heated plasmas: plugged, unplugged, blowthrough, and blowback.
Two-chamber model for divertors with plasma recycling
Langer, W.D.; Singer, C.E.
1984-11-01
To model particle and heat loss terms at the edge of a tokamak with a divertor or pumped limiter, a simple two-chamber formulation of the scrapeoff has been constructed by integrating the fluid equations, including sources, along open field lines. The model is then solved for a wide range of density and temperature conditions in the scrapeoff, using geometrical parameters typical of the PDX poloidal divertor. The solutions characterize four divertor operating conditions for beam-heated plasmas: plugged, unplugged, blowthrough, and blowback.
Modeling of stimulated Brillouin scattering in expanding plasmas
NASA Astrophysics Data System (ADS)
Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Labaune, C.; Bandulet, H.
2008-05-01
Numerical simulations of mm-size expanding plasmas have been performed in comparison with recent experiments at the LULI facility. The features of Stimulated Brillouin Scattering (SBS) are studied for an intense mono-speckle laser beam in continuation of previous work on optically smoothed laser beams. Very good agreement between the theoretical-numerical modeling and the experimental results is found, in particular concerning the SBS activity in the plasma and the backscatter level. The results underline the importance of nonlocal transport effects affecting the onset of self-focusing for temperatures below 1keV. The simulations with the monospeckle beam allow to identify the resonant filament instability [1] and the subsequent loss of coherence of the laser beam as the reason of the observed low-level backscatter levels measured in the experiments. To achieve reliable numerical modeling, a good characterisation of the plasma profiles and the timing with respect to the laser pulse shape, prior to simulations, proves to be extremely important.
Model of the Dynamics of Plasma-Wave Channels in Magnetized Plasmas
NASA Astrophysics Data System (ADS)
Shirokov, E. A.; Chugunov, Yu. V.
2016-06-01
We analyze the dynamics of the plasma-wave channels excited in magnetized plasmas in the whistler frequency range. A linear theory of excitation of a plasma waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and plasma density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in plasmas are found on the basis of the linear theory.
NASA Astrophysics Data System (ADS)
Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.
2016-02-01
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.
Model of magnetic reconnection in space and astrophysical plasmas
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
2013-03-01
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Model of magnetic reconnection in space and astrophysical plasmas
Boozer, Allen H.
2013-03-15
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Collision Models for Plasma Simulation of Thermonuclear Burn: Comparison of Models and Applications
NASA Astrophysics Data System (ADS)
Winske, Dan; Albright, Brian; Bowers, Kevin; Lemons, Don
2007-11-01
There is renewed interest in examining plasma physics issues related to thermonuclear burn in inertial confinement fusion (ICF) and fast ignition (FI): e.g., the rate of temperature equilibration of electrons and ions, the formation and/or depletion of high energy tails of ion velocity distributions of ions, the slowing of energetic ions in dense plasmas, etc. To address these types of questions, we have developed a new particle-in-cell (PIC) plasma simulation capability, embodied in the code VPIC. To model TN-burn problems in dense plasmas, we have developed a new Coulomb collision model, based on the use of stochastic differential equations and well-known Spitzer rates to describe the collision process, which was presented at last year's meeting. Here we extend the model to included arbitrary weighting of individual simulation particles, rather than just separate weights for each plasma species, which is a feature intrinsic to VPIC. We compare test cases for plasma relaxation and slowing of fast beams using the new collision model with results obtained from an extension of standard particle-pairing collision models to weighted particles for parameter regimes of interest to ICF and FI.
NASA Astrophysics Data System (ADS)
Fu, Haiyang
Plasma turbulence associated with the creation of an artificial dust layer in the earth's ionosphere is investigated. The Charged Aerosol Release Experiment (CARE) aims to understand the mechanisms for enhanced radar scatter from plasma irregularities embedded in dusty plasmas in space. Plasma irregularities embedded in a artificial dusty plasma in space may shed light on understanding the mechanism for enhanced radar scatter in Noctilucent Clouds (NLCs) and Polar Mesospheric Summer Echoes (PMSEs) in the earth's mesosphere. Artificially created, charged-particulate layers also have strong impact on radar scatter as well as radio signal propagation in communication and surveillance systems. The sounding rocket experiment was designed to develop theories of radar scatter from artificially created plasma turbulence in charged dust particle environment. Understanding plasma irregularities embedded in a artificial dusty plasma in space will also contribute to addressing possible effects of combustion products in rocket/space shuttle exhaust in the ionosphere. In dusty space plasmas, plasma irregularities and instabilities can be generated during active dust aerosol release experiments. Small scale irregularities (several tens of centimeter to meters) and low frequency waves (in the ion/dust scale time in the order of second) are studied in this work, which can be measured by High Frequency (HF), Very High Frequency (VHF) and Ultra High Frequency (UHF) radars. The existence of dust aerosol particles makes computational modeling of plasma irregularities extremely challenging not only because of multiple spatial and temporal scale issue but also due to complexity of dust aerosol particles. This work will provide theoretical and computational models to study plasma irregularities driven by dust aerosol release for the purpose of designing future experiments with combined ground radar, optical and in-situ measurement. In accordance with linear analysis, feasible hybrid
Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Khazanov, G. V.
1997-01-01
A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.
Constraints on fluid modeling of magnetized collisionless plasmas
NASA Astrophysics Data System (ADS)
Sulem, Pierre-Louis; Passot, Thierry; Laveder, Dimitri; Hunana, Peter; Henri, Pierre
2013-04-01
It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that, at scales significantly larger than the proton gyroscale, MHD or bifluid models with isotropic pressures provide a satisfactory description. We demonstrate that in order to accurately capture, even at large scales, the low-frequency dynamics of a collisionless plasma, a fluid model should actually include kinetic effects such as Landau damping and finite Larmor radius corrections. Indeed, the usual polytropic bi-fluid models strongly overestimate the magnetic compressibility of oblique Alfvén waves. Retaining pressure anisotropy and Landau damping partially corrects this deficiency, but an accurate description of the Alfvén wave polarization and of the mirror instability growth rate actually requires to take into account the finite-Larmor corrections to all the retained moments. These remarks lead us to use the so-called FLR Landau fluid model (Phys. Plasmas, 19, 082113, 2012), for which a three-dimensional parallel code has been developed. Preliminary simulations in the turbulent regime will be presented, showing the reduction of the fluid compressibility and the inhibition of the parallel energy transfer. We will also report on the development of temperature anisotropy, associated with non-resonant perpendicular ion heating and constrained by the onset of the mirror instability.
NASA Astrophysics Data System (ADS)
Sigeneger, F.; Becker, M. M.; Foest, R.; Loffhagen, D.
2016-09-01
The gas flow and plasma in a miniaturized non-thermal atmospheric pressure plasma jet for plasma enhanced chemical vapour deposition has been investigated by means of hydrodynamic modelling. The investigation focuses on the interplay between the plasma generation in the active zone where the power is supplied by an rf voltage to the filaments, the transport of active plasma particles due to the gas flow into the effluent, their reactions with the thin film precursor molecules and the transport of precursor fragments towards the substrate. The main features of the spatially two-dimensional model used are given. The results of the numerical modelling show that most active particles of the argon plasma are mainly confined within the active volume in the outer capillary of the plasma jet, with the exception of molecular argon ions which are transported remarkably into the effluent together with slow electrons. A simplified model of the precursor kinetics yields radial profiles of precursor fragment fluxes onto the substrate, which agree qualitatively with the measured profiles of thin films obtained by static film deposition experiments.
Modeling and Simulation of Plasma Enhanced Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Smith, Aaron; Bett, Dominic; Cunningham, Monisha; Sen, Sudip
2015-04-01
Plasma Enhanced Chemical Vapor Deposition (PECVD) is a process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Recent study from the X-ray diffraction spectra of SnO2 films deposited as a function of RF power apparently indicates that RF power is playing a stabilizing role and hence in the better deposition. The results show that the RF power results in smoother morphology, improved crystallinity, and lower sheet resistance value in the PECVD process. The PECVD processing allows deposition at lower temperatures, which is often critical in the manufacture of semiconductors. In this talk we will address two aspects of the problem, first to develop a model to study the mechanism of how the PECVD is effected by the RF power, and second to actually simulate the effect of RF power on PECVD. As the PECVD is a very important component of the plasma processing technology with many applications in the semiconductor technology and surface science, the research proposed here has the prospect to revolutionize the plasma processing technology through the stabilizing role of the RF power.
Three-dimensional high-resolution plasma bubble modeling
NASA Astrophysics Data System (ADS)
Yokoyama, Tatsuhiro; Shinagawa, Hiroyuki; Jin, Hidekatsu
Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPB from a space weather point of view. The development of EPB is known as a evolution of the generalized Rayleigh-Taylor instability. Numerical modelings of the instability on the equatorial two-dimensional plane have been conducted since the late 1970's, and the nonlinear evolution of the instability has been clearly presented. Recently, three-dimensional (3D) modelings became popular tools for further understanding of the development of EPB such as 3D structure of EPB, meridional wind effects and gravity wave seeding. One of the biggest advantages of the 3D model is that the off-equatorial E region which is coupled with the equatorial F region can be included in the model. It is known from observations that the conductance of the off-equatorial E region controls the growth rate of the Rayleigh-Taylor instability, that is, sudden decrease of the E-region conductance around the sunset accelerates the evolution of the instability. We have developed a new 3D high-resolution model for EPB, and studied internal structure of EPB and the contribution of the off-equatorial E region. As it is necessary to use high-order numerical schemes to capture sharp plasma density gradient of EPB, we adopted the CIP scheme which can keep the third-order accuracy in time and space. The simulated EPB has asymmetrical density gradients at east and west walls, and the growth rate changes significantly depending on the condition of the off-equatorial E region. In the future, we will integrate the high-resolution model into whole atmosphere-ionosphere coupled model (GAIA) to study the growth of EPB under the realistic background conditions.
Analytical model of plasma-chemical etching in planar reactor
NASA Astrophysics Data System (ADS)
Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.
2016-09-01
The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.
An analytic model for flow reversal in divertor plasmas
Cooke, P.I.H.; Prinja, A.K.
1987-04-01
An analytic model is developed and used to study the phenomenon of flow reversal which is observed in two-dimensional simulations of divertor plasmas. The effect is shown to be caused by the radial spread of neutral particles emitted from the divertor target which can lead to a strong peaking of the ionization source at certain radial locations. The results indicate that flow reversal over a portion of the width of the scrape-off layer is inevitable in high recycling conditions. Implications for impurity transport and particle removal in reactors are discussed.
Predictive Modeling in Plasma Reactor and Process Design
NASA Technical Reports Server (NTRS)
Hash, D. B.; Bose, D.; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)
1997-01-01
Research continues toward the improvement and increased understanding of high-density plasma tools. Such reactor systems are lauded for their independent control of ion flux and energy enabling high etch rates with low ion damage and for their improved ion velocity anisotropy resulting from thin collisionless sheaths and low neutral pressures. Still, with the transition to 300 mm processing, achieving etch uniformity and high etch rates concurrently may be a formidable task for such large diameter wafers for which computational modeling can play an important role in successful reactor and process design. The inductively coupled plasma (ICP) reactor is the focus of the present investigation. The present work attempts to understand the fundamental physical phenomena of such systems through computational modeling. Simulations will be presented using both computational fluid dynamics (CFD) techniques and the direct simulation Monte Carlo (DSMC) method for argon and chlorine discharges. ICP reactors generally operate at pressures on the order of 1 to 10 mTorr. At such low pressures, rarefaction can be significant to the degree that the constitutive relations used in typical CFD techniques become invalid and a particle simulation must be employed. This work will assess the extent to which CFD can be applied and evaluate the degree to which accuracy is lost in prediction of the phenomenon of interest; i.e., etch rate. If the CFD approach is found reasonably accurate and bench-marked with DSMC and experimental results, it has the potential to serve as a design tool due to the rapid time relative to DSMC. The continuum CFD simulation solves the governing equations for plasma flow using a finite difference technique with an implicit Gauss-Seidel Line Relaxation method for time marching toward a converged solution. The equation set consists of mass conservation for each species, separate energy equations for the electrons and heavy species, and momentum equations for the gas
MHD modeling of dense plasma focus electrode shape variation
NASA Astrophysics Data System (ADS)
McLean, Harry; Hartman, Charles; Schmidt, Andrea; Tang, Vincent; Link, Anthony; Ellsworth, Jen; Reisman, David
2013-10-01
The dense plasma focus (DPF) is a very simple device physically, but results to date indicate that very extensive physics is needed to understand the details of operation, especially during the final pinch where kinetic effects become very important. Nevertheless, the overall effects of electrode geometry, electrode size, and drive circuit parameters can be informed efficiently using MHD fluid codes, especially in the run-down phase before the final pinch. These kinds of results can then guide subsequent, more detailed fully kinetic modeling efforts. We report on resistive 2-d MHD modeling results applying the TRAC-II code to the DPF with an emphasis on varying anode and cathode shape. Drive circuit variations are handled in the code using a self-consistent circuit model for the external capacitor bank since the device impedance is strongly coupled to the internal plasma physics. Electrode shape is characterized by the ratio of inner diameter to outer diameter, length to diameter, and various parameterizations for tapering. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Kumar, Haribalan; Roy, Subrata
2005-09-15
A numerical model for two-species plasma involving electrons and ions at pressure of 0.1 torr is presented here. The plasma-wall problem is modeled using one- and two-dimensional hydrodynamic equations coupled with Poisson equation. The model utilizes a finite-element algorithm to overcome the stiffness of the resulting plasma-wall equations. The one-dimensional result gives insight into the discharge characteristics including net charge density, electric field, and temporal space-charge sheath evolution. In two dimensions, the plasma formation over a flat plate is investigated for three different cases. The numerical algorithm is first benchmarked with published literature for plasma formed between symmetric electrodes in nitrogen gas. The characteristics of plasma are then analyzed for an infinitesimally thin electrode under dc and rf potentials in the presence of applied magnetic field using argon as a working gas. The magnetic field distorts the streamwise distribution because of a large y-momentum VxB coupling. Finally, the shape effects of the insulator-conductor edge for an electrode with finite thickness have been compared using a 90 degree sign shoulder and a 45 deg. chamfer. The 90 deg. chamfer displays a stronger body force created due to plasma in the downward and forward directions.
PROBABILISTIC MODEL OF BEAM–PLASMA INTERACTION IN RANDOMLY INHOMOGENEOUS PLASMA
Voshchepynets, A.; Krasnoselskikh, V.; Artemyev, A.; Volokitin, A.
2015-07-01
We propose a new model that describes beam–plasma interaction in the presence of random density fluctuations with a known probability distribution. We use the property that, for the given frequency, the probability distribution of the density fluctuations uniquely determines the probability distribution of the phase velocity of waves. We present the system as discrete and consisting of small, equal spatial intervals with a linear density profile. This approach allows one to estimate variations in wave energy density and particle velocity, depending on the density gradient on any small spatial interval. Because the characteristic time for the evolution of the electron distribution function and the wave energy is much longer than the time required for a single wave–particle resonant interaction over a small interval, we determine the description for the relaxation process in terms of averaged quantities. We derive a system of equations, similar to the quasi-linear approximation, with the conventional velocity diffusion coefficient D and the wave growth rate γ replaced by the average in phase space, by making use of the probability distribution for phase velocities and by assuming that the interaction in each interval is independent of previous interactions. Functions D and γ are completely determined by the distribution function for the amplitudes of the fluctuations. For the Gaussian distribution of the density fluctuations, we show that the relaxation process is determined by the ratio of beam velocity to plasma thermal velocity, the dispersion of the fluctuations, and the width of the beam in the velocity space.
Collective and static properties of model two-component plasmas
Arkhipov, Yu. V.; Askaruly, A.; Davletov, A. E.; Meirkanova, G. M.; Ballester, D.; Tkachenko, I. M.
2007-08-15
Classical MD data on the charge-charge dynamic structure factor of two-component plasmas (TCP) modeled in Phys. Rev. A 23, 2041 (1981) are analyzed using the sum rules and other exact relations. The convergent power moments of the imaginary part of the model system dielectric function are expressed in terms of its partial static structure factors, which are computed by the method of hypernetted chains using the Deutsch effective potential. High-frequency asymptotic behavior of the dielectric function is specified to include the effects of inverse bremsstrahlung. The agreement with the MD data is improved, and important statistical characteristics of the model TCP, such as the probability to find both electron and ion at one point, are determined.
Collective and static properties of model two-component plasmas.
Arkhipov, Yu V; Askaruly, A; Ballester, D; Davletov, A E; Meirkanova, G M; Tkachenko, I M
2007-08-01
Classical MD data on the charge-charge dynamic structure factor of two-component plasmas (TCP) modeled in Phys. Rev. A 23, 2041 (1981) are analyzed using the sum rules and other exact relations. The convergent power moments of the imaginary part of the model system dielectric function are expressed in terms of its partial static structure factors, which are computed by the method of hypernetted chains using the Deutsch effective potential. High-frequency asymptotic behavior of the dielectric function is specified to include the effects of inverse bremsstrahlung. The agreement with the MD data is improved, and important statistical characteristics of the model TCP, such as the probability to find both electron and ion at one point, are determined. PMID:17930158
Modelling Ar II spectral emission from the ASTRAL helicon plasma
NASA Astrophysics Data System (ADS)
Munoz Burgos, Jorge; Boivin, Robert; Loch, Stuart; Kamar, Ola; Ballance, Connor; Pindzola, Mitch
2008-11-01
We describe our spectral modeling of ArII emission from the ASTRAL helicon plasma at Auburn University. Collisional-radiative theory is used to model the emitted spectrum, with account being taken for the density and temperature variation along the line of sight. This study has two main aims. Firstly to test the atomic data used in the model and secondly to identify spectral line ratios in the 200 nm - 1000 nm range that could be used as temperature diagnostics. Using the temperature at which Ar II emission starts to be seen we have been able to test recent ionization and recombination data. Using selected spectral lines we were then able to test the importance of the continuum-coupling effects included in the most recent Ar+ electron impact excitation data. Selected spectral line ratios have been identified that show a strong temperature variation and have potential as a temperature diagnostic.
Modeling and Simulation of Ablation-Controlled Plasmas
NASA Astrophysics Data System (ADS)
Kundrapu, Madhusudhan N.
Ablation and plasma formation in high energy laser target interactions and arc discharges are studied numerically. Each of the two processes is modeled separately due to the type of energy source and the resulting flow eld. Ablation of the target material and plasma formation are coupled to obtain evaporation rate, temperature distribution, velocity eld, and species concentration self-consistently. Laser ablation is studied in the perspective of directed energy applications, where beam size varies from few centimeters to tens of centimeters with energies extending up to 10 kW/cm2. Because of this high energy deposition, the evaporated material expands to supersonic speeds into the free space. Due to the large spot sizes and associated supersonic flow, one dimensional Euler equations are considered to be sufficient for modeling the plume. Instead, more emphasis was given to evaporation model, by introducing Knudsen layer kinetics at the plume target interface, and plasma shielding. The evaporation rate is validated with results from the experiments and simulations are carried out to nd the in fluence of laser beam frequency on evaporation rates. The evaporation model used in this work is found to be more accurate than the widely used model based on sonic speed assumption. The optimum beam wavelength for Al surfaces is found to be 850 nm. Attenuation of telemetry data by plasma is a concern for the testing of directed energy systems. Electrostatic approach for the mitigation of communication attenuation is analyzed to obtain the fluency limits up to which the approach can be implemented. It is found from sheath calculations that uninterrupted telemetry can be achieved through Al plasma for fluences below 4 J/cm2 at a background pressure of 1 atm, using a maximum bias voltage of 10 kV . Arc discharge ablation is modeled for the synthesis of nanoparticles. The electric arc generated between the electrodes, placed inside a Helium chamber, evaporates the catalyst
Modeling Of Low-Z Plasma Spectroscopy Results from NSTX and Compact ``Sparky'' Plasma Facilities
NASA Astrophysics Data System (ADS)
Cox, P.; Safronova, A.; Kantsyrev, V.; Esaulov, A.; Safronova, U.; Williamson, K.; Weller, M.; Lepson, J.; Beiersdorfer, P.
2010-03-01
New non-LTE kinetic models of Li and B as well as previously developed and applied models of C and O, updated now with more high-Rydberg states, have been utilized in the modeling of recent experimental spectra from NSTX and compact laser plasma facility ``Sparky''. Emphasis was placed on the examination of EUV and soft x-ray Oxygen and Carbon spectra from both devices. In addition, Lithium and Boron lines from NSTX spectra were identified and used for benchmarking of corresponding kinetic models. The considered NSTX spectra cover the spectral range from 20 å to 200 å, where OVI and OV are the most dominant Oxygen ionization stages. Also, the most intense lines from He-like ions of C and H-like B ions in the soft X-ray region in first order of reflection have been observed. Prominent carbon and oxygen features from NSTX Tokamak experimental spectra were compared with those from ``Sparky'' and the most diagnostically significant temperature and density sensitive lines identified for use as future diagnostic tools. Research supported by DOE under grant DE-FG02-08ER54951 and by NNSA Coop. Agreements DE-FC52-06NA27588 and DE-FC52-06NA27586.
Modeling Variability of Plasma Conditions in the Io Torus
NASA Technical Reports Server (NTRS)
Delamere, P. A.; Bagenal, F.
2003-01-01
Telescopic observations an in situ measurements of the Io plasma torus show the density, temperature and composition to vary over time, sometimes up to a factor of 2. While previous models of the physical and chemical processes in the Io plasma torus have reasonably modeled the conditions of the Voyager 1 era, their authors have not addressed the observed variability nor explored the sensitivity of torus conditions to input parameters. In this paper we present a homogeneous torus model parameterized by five variables (transport timescale, neutral source strength, ratio of oxygen sulfur to atoms in the source, fraction of superthermal electrons, temperature of these hot electrons). The model incorporates the most recent data for ionization, recombination, charge exchange and radiative energy losses for the major torus species (S, S(sup +), S(sup ++), S(sup +++), O, O(sup +), O(sup ++). We solve equations of conservation of mass and energy to find equilibrium conditions for a set of input parameters. We compare model plasma conditions with those observed by Voyager 1 Voyager 2, and Cassini. Furthermore, we explore the sensitivity of torus conditions to each parameter. We find that (1) torus conditions are distinctly different for the Voyager 1, Voyager 2 and Cassini eras, (2) unique torus input parameters for any given era are poorly constrained given the wide range of solution space that is consistent with the range of observed torus conditions, (3) ion composition is highly sensitive to the specification of a non-thermal electron distribution, (4) neutral O/S source ratio is highly variable with model values ranging between 1.7 for Cassini to 4.0 for Voyager 1 conditions, (5) transport times range between 23 days for Voyager 2 to 50 days for Voyager 1 and Cassini, (6) neutral source strengths range between 7 to 30 x 10(sup -4) cm (sup -3) s(sup -1) which corresponds to a net production of 0.4 to 1.3 tons/s for a torus volume of 1.4 x 10(sup 31) cm(sup 3), or 38 R
Modeling of Localized Neutral Particle Sources in 3D Edge Plasmas
Umansky, M V; Rognlien, T D; Fenstermacher, M E; Borchardt, M; Mutzke, A; Riemann, J; Schneider, R; Owen, L W
2002-05-23
A new edge plasma code BoRiS [1] has a fully 3D fluid plasma model. We supplement BoRiS with a 3D fluid neutral model including equations for parallel momentum and collisional perpendicular diffusion. This makes BoRiS an integrated plasma-neutral model suitable for a variety of applications. We present modeling results for a localized gas source in the geometry of the NCSX stellarator.
Electrical and kinetic model of an atmospheric rf device for plasma aerodynamics applications
Pinheiro, Mario J.; Martins, Alexandre A.
2010-08-15
The asymmetrically mounted flat plasma actuator is investigated using a self-consistent two-dimensional fluid model at atmospheric pressure. The computational model assumes the drift-diffusion approximation and uses a simple plasma kinetic model. It investigated the electrical and kinetic properties of the plasma, calculated the charged species concentrations, surface charge density, electrohydrodynamic forces, and gas speed. The present computational model contributes to understand the main physical mechanisms, and suggests ways to improve its performance.
Simple predictive electron transport models applied to sawtoothing plasmas
NASA Astrophysics Data System (ADS)
Kim, D.; Merle, A.; Sauter, O.; Goodman, T. P.
2016-05-01
In this work, we introduce two simple transport models to evaluate the time evolution of electron temperature and density profiles during sawtooth cycles (i.e. over a sawtooth period time-scale). Since the aim of these simulations is to estimate reliable profiles within a short calculation time, two simplified ad-hoc models have been developed. The goal for these models is to rely on a few easy-to-check free parameters, such as the confinement time scaling factor and the profiles’ averaged scale-lengths. Due to the simplicity and short calculation time of the models, it is expected that these models can also be applied to real-time transport simulations. We show that it works well for Ohmic and EC heated L- and H-mode plasmas. The differences between these models are discussed and we show that their predictive capabilities are similar. Thus only one model is used to reproduce with simulations the results of sawtooth control experiments on the TCV tokamak. For the sawtooth pacing, the calculated time delays between the EC power off and sawtooth crash time agree well with the experimental results. The map of possible locking range is also well reproduced by the simulation.
Relaxation models for single helical reversed field pinch plasmas
NASA Astrophysics Data System (ADS)
Paccagnella, Roberto
2016-09-01
In this paper, a relaxation theory for plasmas where a single dominant mode is present [Bhattacharjee et al., Phys. Rev. Lett. 45, 347 (1980)], is revisited. The solutions of a related eigenvalue problem are numerically calculated and discussed. Although these solutions can reproduce well, the magnetic fields measured in experiments, there is no way within the theory to determine the dominant mode, whose pitch is a free parameter in the model. To find the preferred helical perturbation, a procedure is proposed that minimizes the "distance" of the relaxed state from a state which is constructed as a two region generalization of the Taylor's relaxation model [Taylor, Phys. Rev. Lett. 33, 1139 (1974); Rev. Mod. Phys. 58, 751 (1986)] and that allows current discontinuities. It is found that this comparison is able to predict the observed scaling with the aspect ratio and reversal parameter for the dominant mode in the Single Helical states. The aspect ratio scaling alone is discussed in a previous paper [Paccagnella, Nucl. Fusion 56, 046010 (2016)] in terms of the efficient response of a toroidal shell to specific modes (leaving a sign undetermined), showing that the ideal wall boundary condition, a key ingredient in relaxation theories, is particularly well matched for them. Therefore, the present paper altogether [Paccagnella, Nucl. Fusion 56, 046010 (2016)] can give a new and satisfactory explanation of some robust and reproducible experimental facts observed in the Single Helical Reversed Field Pinch plasmas and never explained before.
Modeling a planar sheath in dust-containing plasmas
Chung, T. H.
2014-01-15
One-dimensional fluid model is utilized to describe the sheath at a dust-containing plasma-wall boundary. The model equations are solved on the scale of the electron Debye length. The spatial distributions of electric potential and of the velocities and densities of charged species are calculated in a wide range of control parameters. The dust charge number, electric force, and ion drag force are also investigated. The impacts of Havnes parameter, the electron to ion temperature ratio, the ion collisionality, and the ionization on the spatial distributions of the plasma species and the incident fluxes of the ions to the wall (or to the probe) are investigated. With increase of Havnes parameter, the sheath thickness and the ion flux to the wall are reduced, whereas the ion drift velocity is increased. Enhanced ion thermal motion causes the ion flux to the wall to increase. An increase in ion collisionality with neutrals causes both the sheath thickness and the ion flux to the wall to decrease. With increase of the ionization rate, the sheath thickness is found to decrease and the ion flux collected by a probe increases. The localization of dust particles above the electrode is intensified by the increases in Havnes parameter, the electron to ion temperature ratio, collisionality, and ionization rate.
Microwave N{sub 2}-Ar plasma torch. I. Modeling
Henriques, J.; Tatarova, E.; Ferreira, C. M.
2011-01-15
The spatial structure of a microwave plasma torch driven by an azimuthally symmetric surface wave operating in a N{sub 2}-Ar mixture at atmospheric pressure is investigated. A two-dimensional (2D) self-consistent theoretical model is developed to investigate the entire spatial structure of the source, including the discharge zone, sustained by the field of the surface TM{sub 00} mode, and the postdischarge plasma. Maxwell's equations, the rate balance equations for the most important excited species - vibrationally and electronically excited states, ions and nitrogen atoms N({sup 4}S) - and the Boltzmann equation for electrons are consistently solved. Model calculations of the 2D spatial distributions of species of interest such as charged particles (electrons and positive ions), N{sub 2}({Chi} {sup 1{Sigma}}{sub g}{sup +},v) vibrationally excited molecules, N{sub 2}(A {sup 3{Sigma}}{sub u}{sup +}) metastable molecules, and N({sup 4}S) ground state atoms are presented and discussed.
A weakened cascade model for turbulence in astrophysical plasmas
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
Modeling hydrogen isotope behavior in fusion plasma-facing components
NASA Astrophysics Data System (ADS)
Hu, Alice; Hassanein, Ahmed
2014-03-01
In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices.
Radiophysical methods of modeling the electromagnetic waves propagation through a flat plasma layer
NASA Astrophysics Data System (ADS)
Brovkin, V. G.; Bityurin, V. A.; Balakirev, B. A.; Bocharov, A. N.; Vedenin, P. V.; Korneev, V. N.; Pashchina, A. S.; Pervov, A. Yu; Petrovskiy, V. P.; Ryazanskiy, N. M.; Shkatov, O. Yu
2015-11-01
This paper presents the model variants of plasma layer creating by microwave discharges and plasma jet sources. Methods of creation a model quasi-dynamic plasma antenna on the basis of plasma jet and antenna type plasma structures of microwave range are also considered. Pulsed discharge in a capillary with ablative wall can be used as a method of creating plasma antenna. A microwave discharge is another perspective method for plasma antennas creation in centimeter-decimeter wavelengths range that allows us to apply this approach for modeling different types of plasma antennas (dipole, traveling wave antenna, spiral antenna, and others). Numerical modeling was initiated to analyze the interaction of microwave radiation with plasma layer. It is assumed that 2D consideration will allow investigating the influence of various types of regular spatial plasma structures on the characteristics of the transmission and scattering of EM waves beams. The model allows investigating also the development of MW plasma structures (it is virtually impossible to implement in the framework of 3D modeling).
NASA Astrophysics Data System (ADS)
Saha, Saikat
It has been proposed to extract momentum from the solar wind for spacecraft propulsion in deep space. For this purpose, a magnetic bubble is inflated from the spacecraft. The magnetic bubble inflation is affected by the expansion of a dense warm plasma in the magnetic field created by a solenoid aboard the spacecraft. The interaction between the inflated magnetic field and solar wind is likely to affect the transfer of momentum for the purpose of propulsion. The aim of our research here is to study the feasibility of this propulsion scheme by means of numerical simulations. For this purpose, we developed a 3-D hybrid particle code to model (i) the expansion of plasma in an ambient magnetic field created by a solenoid and (ii) the interaction of a plasma stream with the inflated magnetic field. The code is hybrid in the sense that ions are treated as particles and electrons as an isothermal fluid. We solve the coupled set of Maxwell's equations and the electron momentum equation for the electromagnetic fields using a predictor-corrector method. Using the 3-D simulations, we have demonstrated that when a warm and high-density plasma is injected in solenoidal magnetic fields, the trapping of the plasma in a magnetic mirror creates a dense plasma. When the trapped plasma energy densities (thermal and dynamic) exceed the magnetic energy density, the expanding plasma inflates the magnetic field lines. The extent of field inflation is seen to be greatly dependent on the injection velocity of the thermal plasma. The higher the injection velocity, the larger is the size of the inflated magnetic bubble. It is seen that the original magnetic field, which decreases as R-3, is stretched to the extent where it falls as R-alpha, where R is the distance from the center of the solenoid and alpha is found in the range 1 ≤ alpha ≤ 2. We have also demonstrated that when a plasma stream resembling the solar wind interacts with the expanding magnetic bubble, a magnetopause or bow
Low-pressure hydrogen plasmas explored using a global model
NASA Astrophysics Data System (ADS)
Samuell, Cameron M.; Corr, Cormac S.
2016-02-01
Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.
2D modeling of electromagnetic waves in cold plasmas
Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.
2014-02-12
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
Intermittent transport of nonlinear reduced models in tokomak plasmas turbulence
NASA Astrophysics Data System (ADS)
Belgherras, S.; Benouaz, T.; Bekkouche, S. M. A.; Bekkouche
2012-12-01
Understanding the origin and nature of turbulent transport in tokomak plasmas is one of the major challenges of a successful magnetic confinement fusion. The aim of this work is to study instability associated with the ion-temperature gradient (ITG)-driven turbulence in the core of the plasma, which is the seat of fusion reactions. We used a low degree of freedom model composed of 18 ordinary differential equations. When the system is slightly above the stability threshold of the ITG mode, it is considered to be in the convection regime and convective heat transport of the system is time-independent, or oscillates periodically. As ITG is increased further, the system bifurcates to the turbulent regime. In a strongly turbulent regime, intermittent bursts (the so-called avalanches) are observed. This intermittency is a result of the competition among the following three factors: generation of sheared flows and suppression of ITG turbulence, gradual reduction of the sheared flows due to viscosity, and rapid regrowth of ITG modes due to reduction of sheared flows.
Modeling the chemistry of plasma polymerization using mass spectrometry.
Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver
2003-04-01
The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.
Plasma and Radiation Modelling of EUV Sources for Micro Lithography
NASA Astrophysics Data System (ADS)
Kruecken, Thomas
2007-04-01
Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on Xenon or Tin discharges. After having investigated the limits of a hollow cathode triggered Xenon pinch discharge a Laser triggered Tin vacuum spark discharge is favored by Philips Extreme UV. Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. The optical depths, however, allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundances of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS.
Modeling the chemistry of plasma polymerization using mass spectrometry.
Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver
2003-04-01
The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes. PMID:12707764
Modeling parametric scattering instabilities in large-scale expanding plasmas
NASA Astrophysics Data System (ADS)
Masson-Laborde, P. E.; Hüller, S.; Pesme, D.; Casanova, M.; Loiseau, P.; Labaune, Ch.
2006-06-01
We present results from two-dimensional simulations of long scale-length laser-plasma interaction experiments performed at LULI. With the goal of predictive modeling of such experiments with our code Harmony2D, we take into account realistic plasma density and velocity profiles, the propagation of the laser light beam and the scattered light, as well as the coupling with the ion acoustic waves in order to describe Stimulated Brillouin Scattering (SBS). Laser pulse shaping is taken into account to follow the evolution ofthe SBS reflectivity as close as possible to the experiment. The light reflectivity is analyzed by distinguishing the backscattered light confined in the solid angle defined by the aperture of the incident light beam and the scattered light outside this cone. As in the experiment, it is observed that the aperture of the scattered light tends to increase with the mean intensity of the RPP-smoothed laser beam. A further common feature between simulations and experiments is the observed localization of the SBS-driven ion acoustic waves (IAW) in the front part of the target (with respect to the incoming laser beam).
Plasma and Radiation Modelling of EUV Sources for Micro Lithography
Kruecken, Thomas
2007-04-06
Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on Xenon or Tin discharges. After having investigated the limits of a hollow cathode triggered Xenon pinch discharge a Laser triggered Tin vacuum spark discharge is favored by Philips Extreme UV.Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. The optical depths, however, allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundances of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS.
Transport modeling of the ORNL high intensity linear RF plasma source
NASA Astrophysics Data System (ADS)
Owen, L. W.; Peng, Y. K. M.; Canik, J. M.; Goulding, R. H.; Bonnin, X.
2010-11-01
Recent progress in the electrode-less helicon hydrogenic plasma sourceootnotetextR.H. Goulding, et al., Proc. 18th Conf on RF Power in Plasmas, Gent, Belgium, June, 2009. have motivated the development at ORNL of an RF-plasma source that magnetically links a helicon to a mirror cell in which the plasma is heated by EBW, ICH and whistler waves. The <4m long plasma column further includes a parallel transport region connected to a pumped target plate. Such a source is modeled at three levels using: a two-point model, a 1D-parallel Braginski's fluid model in which the plasma sources/sinks are computed using the kinetic Monte Carlo neutrals code DEGAS, and the 2D SOLPS code. The required source plasma parameters to achieve certain target plasma parameters, particularly at high plasma heat and particle fluxes, are found to be sensitive to the plasma and neutrals parameters in the helicon and RF mirror cells, the effective heating via various RF techniques, the plasma and neutrals boundary conditions at the target plates and around the RF-plasma heating zones, and the pumped reservoirs with partial backflow of thermal molecules. New results of this investigation will be reported.
Modeling and Data Needs of Atmospheric Pressure Gas Plasma and Biomaterial Interaction
NASA Astrophysics Data System (ADS)
Sakiyama, Yukinori; Graves, David B.
2009-05-01
Non-thermal atmospheric pressure plasmas have received considerable attention recently. One promising application of non-thermal plasma devices appears to be biomaterial and biomedical treatment. Various biological and medical effects of non-thermal plasmas have been observed by a variety of investigators, including bacteria sterilization, cell apoptosis, and blood coagulation, among others. The mechanisms of the plasma-biomaterial interaction are however only poorly understood. A central scientific challenge is therefore how to answer the question: "What plasma-generated agents are responsible for the observed biological effects?" Our modeling efforts are motivated by this question. In this paper, we review our modeling results of the plasma needle discharge. Then, we address data needs for further modeling and understanding of plasma-biomaterial interaction
Modeling and Data Needs of Atmospheric Pressure Gas Plasma and Biomaterial Interaction
Sakiyama, Yukinori; Graves, David B.
2009-05-02
Non-thermal atmospheric pressure plasmas have received considerable attention recently. One promising application of non-thermal plasma devices appears to be biomaterial and biomedical treatment. Various biological and medical effects of non-thermal plasmas have been observed by a variety of investigators, including bacteria sterilization, cell apoptosis, and blood coagulation, among others. The mechanisms of the plasma-biomaterial interaction are however only poorly understood. A central scientific challenge is therefore how to answer the question: 'What plasma-generated agents are responsible for the observed biological effects?' Our modeling efforts are motivated by this question. In this paper, we review our modeling results of the plasma needle discharge. Then, we address data needs for further modeling and understanding of plasma-biomaterial interaction.
A General Nonlinear Fluid Model for Reacting Plasma-Neutral Mixtures
Meier, E T; Shumlak, U
2012-04-06
A generalized, computationally tractable fluid model for capturing the effects of neutral particles in plasmas is derived. The model derivation begins with Boltzmann equations for singly charged ions, electrons, and a single neutral species. Electron-impact ionization, radiative recombination, and resonant charge exchange reactions are included. Moments of the reaction collision terms are detailed. Moments of the Boltzmann equations for electron, ion, and neutral species are combined to yield a two-component plasma-neutral fluid model. Separate density, momentum, and energy equations, each including reaction transfer terms, are produced for the plasma and neutral equations. The required closures for the plasma-neutral model are discussed.
Hybrid modeling of plasmas and applications to fusion and space physics
NASA Astrophysics Data System (ADS)
Kazeminejad, Farzad
Since the early days of controlled fusion research, plasma physicists have encountered great challenges in obtaining solutions to the highly nonlinear equations which govern the behavior of fusion plasmas; with the growth of other applications of plasma physics these problems have grown in importance. Obtaining reasonable solutions to the nonlinear equations is crucial to understanding the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models in general require larger memory for the computer due to the massive amounts of data associated with the particles' kinematical variables. Fluid models are better fit to handle large scales and long times. The drawback of fluid models however, is that they miss the physical phenomena taking place at the microscale and these phenomena can influence the properties of the fluids. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models: two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial comet generated by the AMPTE experiment; the second is the production of enhanced noise in fusion plasmas by injected energetic ions or by fusion reaction products. In both cases, the models demonstrate qualitative agreement with the experimental observations.
A simplified strong ion model for acid-base equilibria: application to horse plasma.
Constable, P D
1997-07-01
The Henderson-Hasselbalch equation and Stewart's strong ion model are currently used to describe mammalian acid-base equilibria. Anomalies exist when the Henderson-Hasselbalch equation is applied to plasma, whereas the strong ion model does not provide a practical method for determining the total plasma concentration of nonvolatile weak acids ([Atot]) and the effective dissociation constant for plasma weak acids (Ka). A simplified strong ion model, which was developed from the assumption that plasma ions act as strong ions, volatile buffer ions (HCO-3), or nonvolatile buffer ions, indicates that plasma pH is determined by five independent variables: PCO2, strong ion difference, concentration of individual nonvolatile plasma buffers (albumin, globulin, and phosphate), ionic strength, and temperature. The simplified strong ion model conveys on a fundamental level the mechanism for change in acid-base status, explains many of the anomalies when the Henderson-Hasselbalch equation is applied to plasma, is conceptually and algebraically simpler than Stewart's strong ion model, and provides a practical in vitro method for determining [Atot] and Ka of plasma. Application of the simplified strong ion model to CO2-tonometered horse plasma produced values for [Atot] (15.0 +/- 3.1 meq/l) and Ka (2.22 +/- 0.32 x 10(-7) eq/l) that were significantly different from the values commonly assumed for human plasma ([Atot] = 20.0 meq/l, Ka = 3.0 x 10(-7) eq/l). Moreover, application of the experimentally determined values for [Atot] and Ka to published data for the horse (known PCO2, strong ion difference, and plasma protein concentration) predicted plasma pH more accurately than the values for [Atot] and Ka commonly assumed for human plasma. Species-specific values for [Atot] and Ka should be experimentally determined when the simplified strong ion model (or strong ion model) is used to describe acid-base equilibria.
Continuum kinetic modeling of the tokamak plasma edge
Dorf, M. A.; Dorr, M.; Rognlien, T.; Hittinger, J.; Cohen, R.
2016-03-10
In this study, the first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasmatransport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalousmore » radial transport.« less
Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models
Scott Parker
2009-04-09
We are developing kinetic ion models for the simulation of extended MHD phenomena. The model they have developed uses full Lorentz force ions, and either drift-kinetic or gyro-kinetic electrons. Quasi-neutrality is assumed and the displacement current is neglected. They are also studying alpha particle driven Toroidal Alfven Eigenmodes (TAE) in the GEM gyrokinetic code [Chen 07]. The basic kinetic ion MHD model was recently reported in an invited talk given by Dan Barnes at the 2007 American Physical Society - Division of Plasma Physics (APS-DPP) and it has been published [Jones 04, Barnes 08]. The model uses an Ohm's law that includes the Hall term, pressure term and the electron inertia [Jones 04]. These results focused on the ion physics and assumed an isothermal electron closure. It is found in conventional gyrokinetic turbulence simulations that the timestep cannot be made much greater than the ion cyclotron period. However, the kinetic ion MHD model has the compressional mode, which further limits the timestep. They have developed an implicit scheme to avoid this timestep constraint. They have also added drift kinetic electrons. This model has been benchmarked linearly. Waves investigated where shear and compressional Alfven, whisterl, ion acoustic, and drift waves, including the kinetic damping rates. This work is ongoing and was first reported at the 2008 Sherwood Fusion Theory Conference [Chen 08] and they are working on a publication. They have also formulated an integrated gyrokinetic electron model, which is of interest for studying electron gradient instabilities and weak guide-field magnetic reconnection.
Development of plasma apparatus for plasma irradiation to living cell model
NASA Astrophysics Data System (ADS)
Suda, Yoshiyuki; Kato, Ryo; Tanoue, Hideto; Takikawa, Hirofumi; Tero, Ryugo
2012-10-01
Atmospheric pressure plasma has been studied for the industrial applications of biotechnology and medical care. For the development of these fields, understanding the influence of atmospheric pressure plasma on living cell and the mechanism of cell death is necessary. We focus on a basic structure of cell membrane, called lipid bilayer. Lipid bilayer is composed of lipid molecules with an amphipathic property and can be formed on hydrophilic substrates. In this paper, we report the development of the plasma apparatus for the treatment of lipid bilayer. The plasma apparatus uses a typical dielectric barrier discharge (DBD) system and employs parallel plate electrodes with a gap distance of 1 mm [1]. Each electrode is covered with a quartz plate and the substrate temperature is kept constant by cooling medium. The lower quartz electrode has a dimple, in which the substrate coated with a lipid bilayer and buffer fluid are mounted. [4pt] [1] Y. Sugioka, et al, IEEE Trans. Plasma Sci., in press
Model problems in plasma physics and gas dynamics
Soto, L.A.
1984-01-01
The solution for the distribution function of heavy ions in a background of electrons is studied. It is found that quite broad physical conditions on the distribution function are sufficient to eliminate any ambiguity in the steady state solutions and to determine a discrete spectrum of the Fokker Planck operator for the time dependent case. The more physical case of a Maxwell Boltzman electron distribution function is treated, and under the small mass ratio expansion it is shown to lead to one of the model solutions in zero order. First order mass ratio corrections are calculated. They do not change the discrete nature of the spectrum. A plasma heating application is suggested. A hydrodynamic model is formulated to account for the collision of two compressible flows. This model is applied to the problem of the interaction of the solar wind and the interstellar medium, and for a compressible flow past a sphere as a limit case. Both flows are considered to be steady, polytropic, and potential. The compressible problem is solved by means of two different perturbation schemes (The Janzen-Rayleigh method and the coordinate expansion). For the free-stream Mach number expansion the solution up to the third order is found.
NASA Astrophysics Data System (ADS)
Galli, Federico; Keil, Douglas; Augustyniak, Edward
2011-10-01
PECVD tools employing capacitively coupled plasma (CCP) sources are widely used in the semiconductor industry to deposit low-k dielectric materials. Power coupling in a CCP reactor is dominated by the plasma-sheath-surface dynamics. The properties of the electrode and other plasma-bounding surfaces, as well as the amount and type of material deposited thereon, affect such dynamics by modifying locally the plasma density, the electron temperature, and the DC self bias. Because PECVD tools are depositing tools, changes to the plasma properties due to surface modification are intrinsic of the process and unavoidable. The purpose of this work is to study these interactions between surface properties, secondary electron emission, DC self bias, plasma density and electron temperature by means of a fluid-type plasma model. Furthermore, the correlation between modeling results and some experimental results as a function of process parameters and chamber conditioning are reported and discussed.
Modeling of two-dimensional effects in hot spot relaxation in laser-produced plasmas
Feugeas, J.-L.; Nicolaie, Ph.; Ribeyre, X.; Schurtz, G.; Tikhonchuk, V.; Grech, M.
2008-06-15
Two-dimensional numerical simulations of plasma heating and temperature hot spots relaxation are presented in the domain where the diffusive approximation for heat transport fails. Under relevant conditions for laser plasma interactions, the effects of the nonlocality of heat transport on the plasma response are studied comparing the Spitzer-Haerm model with several frequently used nonlocal models. The importance of using a high-order numerical scheme to correctly model nonlocal effects is discussed. A significant increase of the temperature relaxation time due to nonlocal heat transport is observed, accompanied by enhanced density perturbations. Applications to plasma-induced smoothing of laser beams are considered.
Kinetic modelling of runaway electron avalanches in tokamak plasmas
NASA Astrophysics Data System (ADS)
Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R. S.; Saint-Laurent, F.; Vlainic, M.
2015-09-01
Runaway electrons can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate runaway electrons mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128-202), where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. For this purpose, a bounce-averaged knock-on source term is derived. The generation of runaway electrons from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3D linearized bounce-averaged relativistic electron Fokker-Planck equation (Decker and Peysson 2004 DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, Euratom-CEA), through the calculation of the response of the electron distribution function to a constant parallel electric field. The model, which has been successfully benchmarked against the standard Dreicer runaway theory now describes the runaway generation by knock-on collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355-62). This paper shows that the avalanche effect can be important even in non-disruptive scenarios. Runaway formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons can not contribute to the runaway electron population. Finally, the
Development Of Sputtering Models For Fluids-Based Plasma Simulation Codes
NASA Astrophysics Data System (ADS)
Veitzer, Seth; Beckwith, Kristian; Stoltz, Peter
2015-09-01
Rf-driven plasma devices such as ion sources and plasma processing devices for many industrial and research applications benefit from detailed numerical modeling. Simulation of these devices using explicit PIC codes is difficult due to inherent separations of time and spatial scales. One alternative type of model is fluid-based codes coupled with electromagnetics, that are applicable to modeling higher-density plasmas in the time domain, but can relax time step requirements. To accurately model plasma-surface processes, such as physical sputtering and secondary electron emission, kinetic particle models have been developed, where particles are emitted from a material surface due to plasma ion bombardment. In fluid models plasma properties are defined on a cell-by-cell basis, and distributions for individual particle properties are assumed. This adds a complexity to surface process modeling, which we describe here. We describe the implementation of sputtering models into the hydrodynamic plasma simulation code USim, as well as methods to improve the accuracy of fluids-based simulation of plasmas-surface interactions by better modeling of heat fluxes. This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.
Photon kinetic modeling of laser pulse propagation in underdense plasma
Reitsma, A. J. W.; Trines, R. M. G. M.; Bingham, R.; Cairns, R. A.; Mendonca, J. T.; Jaroszynski, D. A.
2006-11-15
This paper discusses photon kinetic theory, which is a description of the electromagnetic field in terms of classical particles in coordinate and wave number phase space. Photon kinetic theory is applied to the interaction of laser pulses with underdense plasma and the transfer of energy and momentum between the laser pulse and the plasma is described in photon kinetic terms. A comparison is made between a one-dimensional full wave and a photon kinetic code for the same laser and plasma parameters. This shows that the photon kinetic simulations accurately reproduce the pulse envelope evolution for photon frequencies down to the plasma frequency.
CHEMEOS: a new chemical-picture-based model for plasma equation-of-state calculations
Hakel, P.; Kilcrease, D. P.
2004-01-01
We present the results of a new plasma equation-of-state (EOS) model currently under development at the Atomic and Optical Theory Group (T-4) in Los Alamos. This model is based on the chemical picture of the plasma and uses the free-energy-minimization technique and the occupation-probability formalism. The model is constructed as a combination of ideal and non-ideal contributions to the total Helmholtz free energy of the plasma including the effects of plasma microfields, strong coupling, and the hard-sphere description of the finite sizes of atomic species with bound electrons. These types of models have been recognized as a convenient and computationally inexpensive tool for modeling of local-thermal-equilibrium (LIE) plasmas for a broad range of temperatures and densities. We calculate the thermodynamic characteristics of the plasma (such as pressure and internal energy), and populations and occupation probabilities of atomic bound states. In addition to a smooth truncation of partition functions necessary for extracting ion populations from the system of Saha-type equations, the occupation probabilities can also be used for the merging of Rydberg line series into their associated bound-free edges. In the low-density, high-temperature regimes the plasma effects are adequately described by the Debye-Huckel model and its corresponding contribution to the total Helmholtz free energy of the plasma. In strongly-coupled plasmas, however, the Debye-Huckel approximation is no longer appropriate. In order to extend the validity of our EOS model to strongly-coupled plasmas while maintaining the analytic nature of our model, we adopt fits to the plasma free energy based on hypernetted-chain and Monte Carlo simulations. Our results for hydrogen are compared to other theoretical models. Hydrogen has been selected as a test-case on which improvements in EOS physics are benchmarked before analogous upgrades are included for any element in the EOS part of the new Los Alamos
Global model of an iodine gridded plasma thruster
NASA Astrophysics Data System (ADS)
Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.
2016-03-01
Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.
Tail Lobe Revisited: Magnetic Field Modeling Based on Plasma Data
NASA Technical Reports Server (NTRS)
Karlsson, S. B. P.; Tsyganenko, N. A.
1999-01-01
Plasma data from the ISEE-1 and -2 spacecraft during 1977-1980 have been used to determine the distribution of data points in the magnetotail in the range of distances -20 < XGSM < --15, i.e. which of the records that were located in the current sheet, in the tail lobe, in the magnetosheath and in the boundary layers respectively. The ISEE-1 and -2 magnetic field data for the records in the tail lobe were then used to model the tail lobe magnetic field dependence on the solar wind dynamic pressure, on the Interplanetary Magnetic Field (IMF) and on the Dst index. The tail lobe magnetic field was assumed to be dependent on the square root of the dynamic pressure based on the balance between the total magnetic pressure in the tail lobes and the dynamic pressure of the solar wind. The IMF dependent terms, added to the pressure term, were sought in many different forms while the Dst dependence of the tail lobe magnetic field was assumed to be linear. The field shows a strong dependence on the square root of the dynamic pressure and the different IMF dependent terms all constitute a significant contribution to the total field. However, the dependence on the Dst index turned out to be very weak at those down-tail distances. The results of this study are intended to be used for parameterizing future versions of the data-based models of the global magnetospheric magnetic field.
NASA Astrophysics Data System (ADS)
Esmond, M. J.; Winfrey, A. L.
2016-06-01
Electrothermal (ET) plasma launchers have a wide array of applications as mass acceleration devices. An ET plasma launcher utilizes an ET plasma discharge to accelerate a projectile. ET plasma discharges are arc-driven capillary discharges that ablate liner materials and form partially ionized plasmas. ET plasma discharges are generated by driving current pulses through a capillary source. Current pulses typically have peak currents on the order of tens of kA with pulse lengths on the order of hundreds of μs. These types of plasma discharges have been explored for their application to military ballistics, electric thrusters, and nuclear fusion power. ET plasma discharges have been studied using 0D, 1D, and semi-2D fluid models. In this work, a three-fluid, fully two-dimensional model of ET plasma discharges is presented. First approximations used in the newly developed model and code are discussed and simulation results are compared with experiment. Simulation results indicate the development of back flow inside ET plasma discharges due to collisional drag forces between individual plasma species. This back flow is observed for simulations of ET plasma discharges receiving current pulses with peak currents of 10, 20, 30, and 40 kA. Simulation results also reveal the development of fluid perturbations near the breech of the plasma source. These perturbations cause variations in the plasma electrical conductivity and ultimately cause changes in the local ablation rate of the source liner. At higher current pulses, these perturbations are more localized in the region of the source closest to the breech. This effect causes a decrease in the ablated mass in this region relative to the region of the source experiencing the highest ablation.
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Röpcke, J.
2015-09-01
In a reactor used for active screen plasma nitriding (ASPN) the interplay of two plasma types, (i) the plasma of the cylindrical active screen driven in a pulsed dc mode (f = 1 kHz, 60% duty cycle) and (ii) the plasma at an internal model probe driven in a cw dc mode, ignited in a low pressure H2-N2 gas mixture (p = 3 mbar) containing small amounts of CH4 and CO2 have been studied by tunable diode laser infrared absorption (TDLAS) and optical emission spectroscopy (OES) techniques. Applying in situ TDLAS the evolution of the carbon containing precursors, CH4 and CO2, and of the reaction products, NH3, HCN, CO and H2O, has been monitored. The degree of dissociation of the carbon containing precursor molecules varied between 70% and 92%. The concentrations of the reaction products were found to be in the range 1012…1015 molecules cm-3. By analyzing the development of the molecular concentrations at changes of gas mixtures and plasma power values, it was found that (i) HCN and NH3 are the main products of plasma conversion in the case of methane admixture and (ii) CO, HCN and NH3 in the carbon dioxide case. The fragmentation efficiencies of methane and carbon dioxide (RF(CH4) ≈ 1…2 × 1015 molecules J-1, RF(CO2) ≈ 0.5…1.0 × 1016 molecules J-1) and the respective conversion efficiencies to the product molecules (R C(product) ≈ 1013-1015 molecules J-1) have been determined for different gas mixtures and plasma power values, while the influence of probe and screen plasmas, i.e. the phenomena caused by the interplay of both plasma sources, was analyzed. The additional usage of the plasma at the model probe has a sensitive influence on the generation of the reaction products, in particular that of NH3 and HCN. With the help of OES the rotational temperature of the screen plasma could be determined, which increases with power from 770 K to 950 K. Also with power the ionic component of nitrogen molecules, i
Hybrid Modeling of Plasmas and Applications to Fusion and Space Physics.
NASA Astrophysics Data System (ADS)
Kazeminejad, Farzad
Since the early days of controlled fusion research, plasma physicists have encountered great challenges in obtaining solutions to the highly nonlinear equations which govern the behavior of fusion plasmas; with the growth of other applications of plasma physics (space plasmas, plasma accelerators, ... etc.) these problems have grown in importance. Obtaining reasonable solutions to the nonlinear equations is crucial to our understanding of the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models try to emulate nature by following the motion of a large number of charged particles in their self consistent electromagnetic fields. Fluid models on the other hand use macroscopic fluid equations to model the plasma. MHD models are typical of this type. Particle models in general require larger memory for the computer due to the massive amounts of data associated with the particles' kinematical variables. Particle models are generally limited to studying small regions of plasma for relatively short time intervals. Fluid models are better fit to handle large scales and long times; i.e., quite often the complete plasma involved in an experiment. The drawback of the fluid models however is that, they miss the physical phenomenon taking place at the microscale and these phenomenon can influence the properties of fluid; i.e., its resistivity, viscosity, heat transport, etc. One can attempt to put these effects in as phenomenological coefficients, but such approaches are always somewhat ad hoc. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models. In this thesis, two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial
NASA Astrophysics Data System (ADS)
Pohjola, Valter; Kallio, Esa; Jarvinen, Riku
We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC) model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new model enables us to (1) study the stability of various planetary plasma regions in three dimensional space, (2) analyze the propa-gation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform(e.g. ion-neutral collisions, chemical processes, particle loss and production processes) are also automatically included in HYB-em model. In this presentation we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1) expan-sion of a spherical wave generated from a point source and (2) propagation of a plane wave in plasma. We demonstrate that the HYB-em model is capable of describing these space plasma situations successfully. The analysis suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.
NASA Astrophysics Data System (ADS)
Pohjola, Valter; Kallio, Esa
2010-05-01
We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC) model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new model enables us to (1) study the stability of various planetary plasma regions in three dimensional space, (2) analyze the propagation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform (e.g. ion-neutral-collisions, chemical processes, particle loss and production processes) are also automatically included in HYB-em model. In this presentation we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1) expansion of a spherical wave generated from a point source and (2) propagation of a plane wave in plasma. We demonstrate that the HYB-em model is capable of describing these space plasma situations successfully. The analysis suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.
Divol, L.; Berger, R. L.; Meezan, N. B.; Froula, D. H.; Dixit, S.; Michel, P.; London, R.; Strozzi, D.; Ross, J.; Williams, E. A.; Still, B.; Suter, L. J.; Glenzer, S. H.
2008-05-15
New experimental capabilities [Froula et al., Phys. Rev. Lett. 98, 085001 (2007)] have been developed to study laser-plasma interaction (LPI) in ignition-relevant condition at the Omega laser facility (LLE/Rochester). By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV was created. Extensive Thomson scattering measurements allowed to benchmark hydrodynamic simulations performed with HYDRA [Meezan et al., Phys. Plasmas 14, 056304 (2007)]. As a result of this effort, these simulations can be used with much confidence as input parameters for the LPI simulation code PF3D [Berger et al., Phys. Plasmas 5, 4337 (1998)]. In this paper, it is shown that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, whole beam three-dimensional linear kinetic modeling of stimulated Brillouin scattering (SBS) reproduces quantitatively the experimental measurements (SBS thresholds, reflectivity values, and the absence of measurable stimulated Raman scattering). This good agreement was made possible by the recent increase in computing power routinely available for such simulations. These simulations accurately predicted the strong reduction of SBS measured when polarization smoothing is used.
Three-dimensional modeling of the plasma arc in arc welding
Xu, G.; Tsai, H. L.; Hu, J.
2008-11-15
Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.
Hassanein, A.; Konkashbaev, I.
1999-11-08
Surface and structural damage to plasma-facing components (PFCs) due to the frequent loss of plasma confinement remains a serious problem for the tokamak reactor concept. The deposited plasma energy causes significant surface erosion, possible structural failure, and frequent plasma contamination. Surface damage consists of vaporization, spallation, and liquid splatter of metallic materials. Structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. To evaluate the lifetimes of plasma-facing materials and nearby components and to predict the various forms of damage that they experience, comprehensive models (contained in the HEIGHTS computer simulation package) are developed, integrated self-consistently, and enhanced. Splashing mechanisms such as bubble boiling and various liquid magnetohydrodynamic instabilities and brittle destruction mechanisms of nonmelting materials are being examined. The design requirements and implications of plasma-facing and nearby components are discussed, along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.
The modeling and simulation of plasma sheath effect on GNSS system
NASA Astrophysics Data System (ADS)
Song, Zhongguo; Liu, Jiangfan; Du, Yongxing; Xi, Xiaoli
2015-11-01
Plasma sheath can potentially degrade global navigation satellite system (GNSS) through signal attenuation as well as phase noise when a hypersonic vehicle reenters the Earth's atmosphere. Modeling and simulation method of GNSS system disturbed by plasma sheath is introduced in this paper by means of electromagnetic wave propagation theory combined with the satellite signal simulation technique. The transmission function of the plasma sheath with stratified model is derived utilizing scattering matrix method. The effects of the plasma sheath on GPS signal reception and positioning performance are examined. Experimental results are presented and discussed, partly supporting the validity of the analytical method proposed.
NASA Astrophysics Data System (ADS)
Pohjola, V.; Kallio, E.
2010-03-01
We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC) model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new stand-alone fully kinetic model enables us to (1) study the stability of various planetary plasma regions in three-dimensional space, (2) analyze the propagation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform (e.g. ion-neutral-collisions, chemical processes, particle loss and production processes) are also automatically included in HYB-em model. In this brief report we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1) expansion of a spherical wave generated from a point source and (2) propagation of a plane wave in plasma. The analysis shows that the HYB-em model is capable of describing these space plasma situations successfully. The analysis also suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.
Modeling the plasma chemistry of stratospheric Blue Jet streamers
NASA Astrophysics Data System (ADS)
Winkler, Holger; Notholt, Justus
2014-05-01
Stratospheric Blue Jets (SBJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. The currently most accepted theory associates SBJs to the development of the streamer zone of a leader. The streamers emitted from the leader can travel for a few tens of kilometers predominantly in the vertical direction (Raizer et al., 2007). The strong electric fields at the streamer tips cause ionisation, dissociation, and excitation, and give rise to chemical perturbations. While in recent years the effects of electric discharges occurring in the mesosphere (sprites) have been investigated in a number of model studies, there are only a few studies on the impact of SBJs. However, chemical perturbations due to SBJs are of interest as they might influence the stratospheric ozone layer. We present results of detailed plasma chemistry simulations of SBJ streamers for both day-time and night-time conditions. Any effects of the subsequent leader are not considered. The model accounts for more than 500 reactions and calculates the evolution of the 88 species under the influence of the breakdown electric fields at the streamer tip. As the SBJ dynamics is outside the scope of this study, the streamer parameters are prescribed. For this purpose, electric field parameters based on Raizer et al. (2007) are used. The model is applied to the typical SBJ altitude range 15-40 km. The simulations indicate that SBJ streamers cause significant chemical perturbations. In particular, the liberation of atomic oxygen during the discharge leads to a formation of ozone. At the same time, reactive nitrogen and hydrogen radicals are produced which will cause catalytic ozone destruction. Reference: Raizer et al. (2007), J. Atmos. Solar-Terr. Phys., 69 (8), 925-938.
IMAGE EUV and RPI Derived Distributions of Plasmaspheric Plasma and Plasmaspheric Modeling
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Adrian, M. L.; Ober, D.; Six, N. Frank (Technical Monitor)
2002-01-01
The global modeling of plasmaspheric plasma has remained fairly rudimentary over the last 30-years, owing to our limited ability to validate model results experimentally. The realization that voids and filamentary structures covering a range of scales sizes are formed in the distribution of thermal plasma has only been possible with global imaging and enables entirely new advances in modeling the near Earth space environment. Advances in modeling in the context of these new observations will be presented and discussed.
Equivalent circuit of radio frequency-plasma with the transformer model.
Nishida, K; Mochizuki, S; Ohta, M; Yasumoto, M; Lettry, J; Mattei, S; Hatayama, A
2014-02-01
LINAC4 H(-) source is radio frequency (RF) driven type source. In the RF system, it is required to match the load impedance, which includes H(-) source, to that of final amplifier. We model RF plasma inside the H(-) source as circuit elements using transformer model so that characteristics of the load impedance become calculable. It has been shown that the modeling based on the transformer model works well to predict the resistance and inductance of the plasma.
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
Discrete Variational Approach for Modeling Laser-Plasma Interactions
NASA Astrophysics Data System (ADS)
Reyes, J. Paxon; Shadwick, B. A.
2014-10-01
The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.
PLASMAKIN: A chemical kinetics library for plasma physics modeling
NASA Astrophysics Data System (ADS)
Pinhao, Nuno
2007-10-01
PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute kinetics data from the reactions taking place in the gas or at the surfaces: particle production and loss rates, photon spectra and energy exchange rates. It has no limits on the number of species and reactions that can be handled, is independent of problem dimensions and can be used in both steady-state and time-dependent problems. A broad range of species properties and reaction types are supported: gas or electron temperature dependent rate coefficients, vibrational and cascade levels, branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Non-standard rate coefficient functions can be handled by a user-supplied shared library. Reaction data is supplied in text files and is independent of the user's program. Recent additions include the simulation of emission spectra taking line broadening into account; reactions with excited ionic species; 3-body reactions with species with different efficiencies as 3rd body; a species properties database and a Python interface for rapid scripting and debugging.
Computer Model for Electrode Plasma Generation by Electron and Ion Flows
NASA Astrophysics Data System (ADS)
Ryzhov, Victor V.; Bespalov, Valeri I.; Kirikov, Alexander V.; Turchanovskii, Igor. Yu.; Tarakanov, Vladimir P.
2002-12-01
A model is proposed for computer simulation of the electrode plasma generation by electron and ion flows. The distribution of the absorbed energy of particles in the electrode material is calculated by the Monte-Carlo codes. This provides a possibility to control the electrode temperature by solving the heat conductivity equation for specified distributions of thermal sources and to calculate the rate of plasma generation. The behavior of the plasma in the gap can be modeled based on simple model where the velocity, the density, and the temperature of the plasma can be given by some dependence. Within the framework of the model proposed, numerical study is performed on the effect of the plasma flows in Rod Pinch Diodes and in the Insulator Stack of the Z-accelerator.
Nishikawa, Takeshi
2014-07-15
Most conventional atomic models in a plasma do not treat the effect of the plasma on the free-electron state density. Using a nearest neighbor approximation, the state densities in hydrogenic plasmas for both bound and free electrons were evaluated and the effect of the plasma on the atomic model (especially for the state density of the free electron) was studied. The model evaluates the electron-state densities using the potential distribution formed by the superposition of the Coulomb potentials of two ions. The potential from one ion perturbs the electronic state density on the other. Using this new model, one can evaluate the free-state density without making any ad-hoc assumptions. The resulting contours of the average ionization degree, given as a function of the plasma temperature and density, are shifted slightly to lower temperatures because of the effect of the increasing free-state density.
Three dimensional space charge model for large high voltage satellites. [plasma sheath
NASA Technical Reports Server (NTRS)
Cooks, D.; Parker, L. W.; Mccoy, J. E.
1980-01-01
High power solar arrays for satellite power systems with dimensions of kilometers, and with tens of kilovolts distributed over their surface face many plasma interaction problems that must be properly anticipated. In most cases, the effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Two computer programs were developed to provide fully self consistent plasma sheath models in three dimensions as a result of efforts to model the experimental plasma sheath studies at NASA/JSC. Preliminary results indicate that for the conditions considered, the Child-Langmuir diode theory can provide a useful estimate of the plasma sheath thickness. The limitations of this conclusion are discussed. Some of the models presented exhibit the strong ion focusing observed in the JSC experiments.
NASA Astrophysics Data System (ADS)
Bilato, R.; Maj, O.; Angioni, C.
2014-07-01
A consistent set of equations is derived to model poloidal density asymmetries induced by temperature anisotropies in tokamak rotating plasmas. The model can be applied to compute poloidal density asymmetry of highly charged impurities due to additional plasma heating.
Analysis of Power Model for Linear Plasma Device
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun
2016-08-01
A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α-2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)
Analysis of Power Model for Linear Plasma Device
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun
2016-08-01
A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α‑2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.
Hamann, S. Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.
Hamann, S; Börner, K; Burlacov, I; Spies, H-J; Strämke, M; Strämke, S; Röpcke, J
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined. PMID:26724023
Pateau, Amand; Rhallabi, Ahmed Fernandez, Marie-Claude; Boufnichel, Mohamed; Roqueta, Fabrice
2014-03-15
A global model has been developed for low-pressure, inductively coupled plasma (ICP) SF{sub 6}/O{sub 2}/Ar mixtures. This model is based on a set of mass balance equations for all the considered species, coupled with the discharge power balance equation and the charge neutrality condition. The present study is an extension of the kinetic global model previously developed for SF{sub 6}/Ar ICP plasma discharges [Lallement et al., Plasma Sources Sci. Technol. 18, 025001 (2009)]. It is focused on the study of the impact of the O{sub 2} addition to the SF{sub 6}/Ar gas mixture on the plasma kinetic properties. The simulation results show that the electron density increases with the %O{sub 2}, which is due to the decrease of the plasma electronegativity, while the electron temperature is almost constant in our pressure range. The density evolutions of atomic fluorine and oxygen versus %O{sub 2} have been analyzed. Those atomic radicals play an important role in the silicon etching process. The atomic fluorine density increases from 0 up to 40% O{sub 2} where it reaches a maximum. This is due to the enhancement of the SF{sub 6} dissociation processes and the production of fluorine through the reactions between SF{sub x} and O. This trend is experimentally confirmed. On the other hand, the simulation results show that O(3p) is the preponderant atomic oxygen. Its density increases with %O{sub 2} until reaching a maximum at almost 40% O{sub 2}. Over this value, its diminution with O{sub 2}% can be justified by the high increase in the loss frequency of O(3p) by electronic impact in comparison to its production frequency by electronic impact with O{sub 2}.
NASA Technical Reports Server (NTRS)
Leung, Wing C.; Singh, Nagendra; Moore, Thomas E.; Craven, Paul D.
2000-01-01
The plasma sheath generated by the operation of the Plasma Source Instrument (PSI) aboard the POLAR satellite is studied by using a 3-dimensional Particle-In-Cell (PIC) code. When the satellite passes through the region of low density plasma, the satellite charges to positive potentials as high as 4050Volts due to the photoelectrons emission. In such a case, ambient core ions cannot accurately be measured or detected. The goal of the onboard PSI is to reduce the floating potential of the satellite to a sufficiently low value so that the ions in the polar wind become detectable. When the PSI is operated, an ion-rich Xenon plasma is ejected from the satellite, such that the floating potential of the satellite is reduced and is maintained at about 2Volts. Accordingly, in our 3-dimensional PIC simulation, we considered that the potential of the satellite is 2Volts as a fixed bias. Considering the relatively high density of the Xenon plasma in the sheath (approx. 10 - 10(exp 3)/cc), the ambient plasma of low density (less than 1/cc) is neglected. In the simulations, the electric fields and plasma dynamics are calculated self-consistently. We found that an "Apple" shape positive potential sheath forms surrounding the satellite. In the region near the PSI emission, a high positive potential hill develops. Near the Thermal Ion Detection Experiment (TIDE) detector away from the PSI, the potentials are sufficiently low for the ambient polar wind ions to reach it. In the simulations, it takes about a hundred electron gyroperiods for the sheath to reach a quasi-steady state. This time is approximately the time taken by the heavy Xe(+) ions to expand up to about one average Larmor radius of electrons from the satellite surface. Using the steady state sheath, we performed trajectory calculations to characterize the detector response to a highly supersonic polar wind flow. The detected ions' velocity distribution shows significant deviations from a shifted Maxwellian in the
NASA Technical Reports Server (NTRS)
Singh, N.; Leung, W. C.; Moore, T. E.; Craven, P. D.
2001-01-01
The plasma sheath generated by the operation of the Plasma Source Instrument (PSI) aboard the Polar satellite is studied by using a three-dimensional particle-in-cell (PIC) code. When the satellite passes through the region of low-density plasma, the satellite charges to positive potentials as high as 40-50 V, owing to the photoelectron emission. In such a case, ambient core ions cannot accurately be measured or detected. The goal of the onboard PSI is to reduce the floating potential of the satellite to a sufficiently low value so that the ions in the polar wind become detectable. When the PSI is operated, ion-rich xenon plasma is ejected from the satellite, such that the floating potential of the satellite is reduced and is maintained at approximately 2 V. Accordingly, in our three-dimensional PIC simulation we considered that the potential of the satellite is 2 V as a fixed bias. Considering the relatively high density of the xenon plasma in the sheath (10-10(exp 3)/cc), the ambient plasma of low density (<1/cc) is neglected. In the simulations the electric fields and plasma dynamics are calculated self-consistently. We found that an 'apple'-shape positive potential sheath forms surrounding the satellite. In the region near the PSI emission a high positive potential hill develops. Near the Thermal Ion Dynamics Experiment detector away from the PSI, the potentials are sufficiently low for the ambient polar wind ions to reach it. In the simulations it takes only about a couple of tens of electron gyroperiods for the sheath to reach a quasi steady state. This time is approximately the time taken by the heavy Xe(+) ions to expand up to about one average Larmor radius of electrons from the satellite surface. After this time the expansion of the sheath in directions transverse to the ambient magnetic field slows down because the electrons are magnetized. Using the quasi steady sheath, we performed trajectory calculations to characterize the detector response to a
Scrape-off layer plasma modeling for the DIII-D tokamak
Porter, G.D.; Rognlien, T.D.; Allen, S.L.
1994-09-01
The behavior of the scrape-off layer (SOL) region in tokamaks is believed to play an important role determining the overall device performance. In addition, control of the exhaust power has become one of the most important issues in the design of future devices such as ITER and TPX. This paper presents the results of application of 2-D fluid models to the DII-D tokamak, and research into the importance of processes which are inadequately treated in the fluid models. Comparison of measured and simulated profiles of SOL plasma parameters suggest the physics model contained in the UEDGE code is sufficient to simulate plasmas which are attached to the divertor plates. Experimental evidence suggests the presence of enhanced plasma recombination and momentum removal leading to the existence of detached plasma states. UEDGE simulation of these plasmas obtains a bifurcation to a low temperature plasma at the divertor, but the plasma remains attached. Understanding the physics of this detachment is important for the design of future devices. Analytic studies of the behavior of SOL plasmas enhance our understanding beyond that achieved with fluid modeling. Analysis of the effect of drifts on sheath structure suggest these drifts may play a role in the detachment process. Analysis of the turbulent-transport equations indicate a bifurcation which is qualitatively similar to the experimentally different behavior of the L- and H-mode SOL. Electrostatic simulations of conducting wall modes suggest possible control of the SOL width by biasing.
Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism
Lee, Amanda; Lin, Abraham; Shah, Kajol; Singh, Harpreet; Miller, Vandana; Gururaja Rao, Shubha
2016-01-01
Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application. PMID:27505063
Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling
Torell, Frida; Bennett, Kate; Cereghini, Silvia; Rännar, Stefan; Lundstedt-Enkel, Katrin; Moritz, Thomas; Haumaitre, Cecile; Trygg, Johan; Lundstedt, Torbjörn
2015-01-01
Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma. PMID:26086868
Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects
Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe
2008-09-07
The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.
Fluid modeling of low-temperature plasma transport across a magnetic field
NASA Astrophysics Data System (ADS)
Futtersack, R.; Hagelaar, G. J. M.; Tamain, P.; Simonin, A.
2013-09-01
While various low-temperature plasma sources operating with a steady magnetic field are widely used in industrial and research applications, the knowledge of magnetized transport in these plasmas is still incomplete. As the transport of charges and currents in such plasma sources may show a complex and ill-understood behavior, we investigate the issue of magnetized transport as such. A new 2D fluid model has been developed, combining the usual methods of low-temperature plasma modeling with techniques drawn from fusion plasmas research, and therefore allowing to explore a large range of magnetic field strengths and topologies. We then analyze simulations related to representative experiments with various magnetic field configurations in order to characterize the transport in these low-temperature plasmas, and compare the results with experimental data and application-oriented models. For two different negative ion sources, the main behavior of the plasma is recovered, with the emergence of asymmetries due to the drifts induced by the magnetic field. The model is also able to capture the transient dynamics of the plasma such as certain types of instabilities. This work is supported by the French National Research Agency (project METRIS ANR-11-JS09-008) and by EFDA, CEA, and the Federation de Recherche sur la Fusion Magnetique.
Radio-frequency plasmas in CF4: Self-consistent modeling of the plasma physics and chemistry
NASA Astrophysics Data System (ADS)
Mantzaris, Nikolaos V.; Boudouvis, Andreas; Gogolides, Evangelos
1995-06-01
A self-consistent, one-dimensional simulator for the physics and chemistry of radio frequency plasmas is developed and applied for CF4. The simulator consists of a fluid model for the discharge, a commercial Boltzmann code for calculations of electron energy distribution function (EEDF), a generalized plasma chemistry code, and an interface among the three models. Chemistry calculations are fed back into the physics model and the procedure is repeated until a self-consistent solution is obtained. The CF4 discharge shows an electronegative behavior with ten times more negative ions than electrons even at low pressures of 100 mTorr. The EEDF high energy tail lies between the Maxwell and Druyvensteyn distribution. The chemistry model predicts densities of 3.5×1012 cm-3 for CF3, 3×1012 cm-3 for CF2, 2.5×1013 cm-3 for F, and 0.7×1012 cm-3 for CF, in agreement with experimental data from a Japanese group. CF and to a lesser extent CF2, are consumed at the surface, and CF, CF2, and F densities and profiles are sensitive to the sticking coefficient and residence time. CF2 and CF are produced mainly from the parent gas CF4 and not its fragments. Finally, the chemistry results are fed back into the physics model and influence the discharge structure, mainly by changing electron densities and the width of the inner core of the positive-negative ion plasma. Thus, the importance of self-consistent plasma calculations is demonstrated and justified.
Chanson, Romain; Rhallabi, Ahmed; Fernandez, Marie Claude; Cardinaud, Christophe; Landesman, Jean Pierre
2013-01-15
A global kinetic model of Cl{sub 2}/Ar/N{sub 2} plasma discharge has been developed, which allows calculation of the densities and fluxes of all neutral and charged species considered in the reaction scheme, as well as the electron temperature, as a function of the operating conditions. In this work, the results from the global model are first compared to the calculations given by other models. Our simulation results are focused on the effect of nitrogen adding to the Cl{sub 2}/Ar plasma mixture, which impacts both neutral and charged species transport phenomena. The N{sub 2} percentage is varied to the detriment of Cl{sub 2} by keeping the total flow rates of Cl{sub 2} and N{sub 2} constant. In order to better understand the impact of N{sub 2} addition to the Cl{sub 2}/Ar gas mixture, the authors analyzed the output plasma parameters calculated from the model for different N{sub 2} flow rate percentages. Indeed, the simulation results show a decrease in electron density and an increase in electron temperature with increasing percentage of N{sub 2}. Particular attention is paid to the analysis of electronegativity, Cl{sub 2} and N{sub 2} dissociation, and positive ion to neutral flux ratio evolution by varying percentage of N{sub 2}. Such parameters have a direct effect on the etching anisotropy of the materials during the etching process.
Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling
NASA Astrophysics Data System (ADS)
DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.
2008-02-01
Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.
Large Scale Modelling of Glow Discharges or Non - Plasmas
NASA Astrophysics Data System (ADS)
Shankar, Sadasivan
The Electron Velocity Distribution Function (EVDF) in the cathode fall of a DC helium glow discharge was evaluated from a numerical solution of the Boltzmann Transport Equation(BTE). The numerical technique was based on a Petrov-Galerkin technique and a unique combination of streamline upwinding with self -consistent feedback-based shock-capturing. EVDF for the cathode fall was solved at 1 Torr, as a function of position x, axial velocity v_{rm x}, radial velocity v_{rm r}, and time t. The electron-neutral collisions consisted of elastic, excitation, and ionization processes. The algorithm was optimized and vectorized to speed execution by more than a factor of 10 on CRAY-XMP. Efficient storage schemes were used to save the memory allocation required by the algorithm. The analysis of the solution of BTE was done in terms of the 8-moments that were evaluated. Higher moments were found necessary to study the momentum and energy fluxes. The time and length scales were estimated and used as a basis for the characterization of DC glow discharges. Based on an exhaustive study of Knudsen numbers, it was observed that the electrons in the cathode fall were in the transition or Boltzmann regime. The shortest relaxation time was the momentum relaxation and the longest times were the ionization and energy relaxation times. The other times in the processes were that for plasma reaction, diffusion, convection, transit, entropy relaxation, and that for mean free flight between the collisions. Different models were classified based on the moments, time scales, and length scales in their applicability to glow discharges. These consisted of BTE with different number af phase and configuration dimensions, Bhatnagar-Gross-Krook equation, moment equations (e.g. Drift-Diffusion, Drift-Diffusion-Inertia), and spherical harmonic expansions.
Unified models of E-layer plasma turbulence from density gradients and Hall currents
NASA Astrophysics Data System (ADS)
Hassan, Ehab; Litt, Sandeep; Horton, Wendell; Smolyakov, Andrei; Skiff, Fred
2013-10-01
The Earth's ionosphere is rich with plasma irregularities of scale-lengths extend from few centimeters to hundreds of kilometers. The combination of small-scale turbulence with large coherent structures is at the forefront of basic plasma turbulence theory. A new unified model for the small-scale plasma turbulence called Type-I and Type-II in the E-region ionosphere is presented. Simulations and a proposed laboratory experiment for these plasma waves in a weakly ionized plasma are reported. The ions [Argon in the lab and NO+ in the ionosphere] are collisional and the electrons ExB drifts produce Hall currents. The dispersion relations are analyzed for both density gradient and electron current driven instabilities. A basic understanding of the turbulence is important for forecasting disruptions in GNSS communication signals from RF signal scattering produced by the E-layer plasma turbulence on the 10cm to 10m scales lengths. NSF:AGS-0964692.
Bacterial Inactivation of Wound Infection in a Human Skin Model by Liquid-Phase Discharge Plasma
Kim, Paul Y.; Kim, Yoon-Sun; Koo, Il Gyo; Jung, Jae Chul; Kim, Gon Jun; Choi, Myeong Yeol; Yu, Zengqi; Collins, George J.
2011-01-01
Background We investigate disinfection of a reconstructed human skin model contaminated with biofilm-formative Staphylococcus aureus employing plasma discharge in liquid. Principal Findings We observed statistically significant 3.83-log10 (p<0.001) and 1.59-log10 (p<0.05) decreases in colony forming units of adherent S. aureus bacteria and 24 h S. aureus biofilm culture with plasma treatment. Plasma treatment was associated with minimal changes in histological morphology and tissue viability determined by means of MTT assay. Spectral analysis of the plasma discharge indicated the presence of highly reactive atomic oxygen radicals (777 nm and 844 nm) and OH bands in the UV region. The contribution of these and other plasma-generated agents and physical conditions to the reduction in bacterial load are discussed. Conclusions These findings demonstrate the potential of liquid plasma treatment as a potential adjunct therapy for chronic wounds. PMID:21897870
Hollow cathodes as electron emitting plasma contactors Theory and computer modeling
NASA Technical Reports Server (NTRS)
Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.
1987-01-01
Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.
NASA Astrophysics Data System (ADS)
Mouchtouris, S.; Kokkoris, G.
2016-04-01
A hybrid plasma model is utilized for the simulation of inductively coupled plasmas (ICPs). It consists of a plasma fluid model coupling fluid with Maxwell’s equations and a Monte Carlo (MC) particle tracing model utilized for the calculation of the ion mobility in high electrostatic fields (sheaths). The model is applied to low pressure Argon plasma in the gaseous electronics conference (GEC) reference cell. Following measurements of electron energy distribution function (EEDF) in low pressure ICPs, a three-temperature EEDF is considered; it is formulated with a generalized equation and depends on the local plasma potential. The use of a predefined formula for the EEDF entails a low computational cost: All parameters affected by the EEDF are calculated as functions of the plasma potential and the mean electron energy once and before the solution of the model. The model results are validated by a comparison with spatially resolved (on axial and radial distance) measurements of electron density, electron temperature, and plasma potential. Both the calculation of the ion mobility by the MC model and the consideration of the three-temperature EEDF are critical for the accuracy of the model results. The very good agreement of the model results with the measurements and the low computational cost in combination with the flexibility of the code utilized for the numerical solution manifest the potential of the hybrid plasma model for the simulation of low pressure ICPs.
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Chen, Sheng-Hsien; Buzulukova, Natalia; Glocer, Alex
2010-01-01
Distinctive sources of ions reside in the plasmasphere, plasmasheet, and ring current regions at discrete energies constitute the major plasma populations in the inner/middle magnetosphere. They contribute to the electrodynamics of the ionosphere-magnetosphere system as important carriers of the global current system, in triggering; geomagnetic storm and substorms, as well as critical components of plasma instabilities such as reconnection and Kelvin-Helmholtz instability at the magnetospheric boundaries. Our preliminary analysis of in-situ measurements shoves the complexity of the plasmas pitch angle distributions at particularly the cold and warm plasmas, vary dramatically at different local times and radial distances from the Earth in response to changes in solar wind condition and Dst index. Using an MHD-ring current coupled code, we model the convection and interaction of cold, warm and energetic ions of plasmaspheric, plasmasheet, and ring current origins in the inner magnetosphere. We compare our simulation results with in-situ and remotely sensed measurements from recent instrumentation on Geotail, Cluster, THEMIS, and TWINS spacecraft.
Modelling of plasma-edge and plasma-wall interaction physics at JET with the metallic first-wall
NASA Astrophysics Data System (ADS)
Wiesen, S.; Groth, M.; Brezinsek, S.; Wischmeier, M.; contributors, JET
2016-02-01
An overview is given on the recent progress on edge modelling activities for the JET ITER-like wall using the computational tools like the SOLPS or EDGE2D-EIRENE code. The validation process of these codes on JET with its metallic plasma-facing components is an important step towards predictive studies for ITER and DEMO in relevant divertor operational conditions, i.e., for detached, radiating divertors. With increased quantitative credibility in such codes more reliable input to plasma-wall and plasma-material codes can be warranted, which in turn results in more realistic and physically sound estimates of the life-time expectations and performance of a Be first-wall and a W-divertor, the same materials configuration foreseen for ITER. A brief review is given on the recent achievements in the plasma-wall interaction and material migration studies. Finally, a short summary is given on the availability and development of integrated codes to assess the performance of an JET-ILW baseline scenario also in view of the preparation for a JET DT-campaign.
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
Chang, L.; Hole, M. J.; Corr, C. S.
2011-04-15
A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature, and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetized plasma [WOMBAT (waves on magnetized beams and turbulence)], with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalized rotation frequency, lower temperature, and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These results consolidate earlier claims that the density and floating potential oscillations are a resistive drift mode, driven by the density gradient. To our knowledge, this is the first detailed physics model of flowing plasmas in the diffusion region away from the RF source. Possible extensions to the model, including temperature nonuniformity and magnetic field oscillations, are also discussed.
Validity of "sputtering and re-condensation" model in active screen cage plasma nitriding process
NASA Astrophysics Data System (ADS)
Saeed, A.; Khan, A. W.; Jan, F.; Abrar, M.; Khalid, M.; Zakaullah, M.
2013-05-01
The validity of "sputtering and re-condensation" model in active screen plasma nitriding for nitrogen mass transfer mechanism is investigated. The dominant species including NH, Fe-I, N2+, N-I and N2 along with Hα and Hβ lines are observed in the optical emission spectroscopy (OES) analysis. Active screen cage and dc plasma nitriding of AISI 316 stainless steel as function of treatment time is also investigated. The structure and phases composition of the nitrided layer is studied by X-ray diffraction (XRD). Surface morphology is studied by scanning electron microscopy (SEM) and hardness profile is obtained by Vicker's microhardness tester. Increasing trend in microhardness is observed in both cases but the increase in active screen plasma nitriding is about 3 times greater than that achieved by dc plasma nitriding. On the basis of metallurgical and OES observations the use of "sputtering and re-condensation" model in active screen plasma nitriding is tested.
NASA Astrophysics Data System (ADS)
Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian
2016-08-01
A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.
A hydrodynamical model for relativistic spin quantum plasmas
Asenjo, Felipe A.; Munoz, Victor; Valdivia, J. Alejandro; Mahajan, Swadesh M.
2011-01-15
Based on the one-body particle-antiparticle Dirac theory of electrons, a set of relativistic quantum fluid equations for a spin half plasma is derived. The particle-antiparticle nature of the relativistic particles is explicit in this fluid theory, which also includes quantum effects such as spin. The nonrelativistic limit is shown to be in agreement with previous attempts to develop a spin plasma theory derived from the Pauli Hamiltonian. Harnessing the formalism to the study of electromagnetic mode propagation, conceptually new phenomena are revealed; the particle-antiparticle effects increase the fluid opacity to these waves, while the spin effects tend to make the fluid more transparent.
Theory and modelling of helium enrichment in plasma experiments with pump limiters
Prinja, A.K.; Conn, R.W.
1984-01-01
Helium enrichment in the exhaust gas stream flowing from a hydrogen-helium plasma is studied using an analytical theory and Monte Carlo simulations. To provide a sensitive experimental test in a tokamak, an unusual configuration, inverted from traditional designs, is proposed for a pump limiter. The principle can be tested in other plasma devices as well. The theory suggests that for typical plasma edge conditions in a confinement device, namely, n = 10/sup 13/cm/sup -3/ and T/sub i/ = T/sub e/ approx. = 5-30eV, helium enrichment in the neutral gas exhaust stream can be very high, in the range 5 to 7, relative to the helium-hydrogen ratio in the plasma. Such high enrichment factors are achieved by exploiting the difference between the ionization rates of hydrogen and helium and the negligible helium charge exchange rate at these plasma conditions. A limiter arrangement is proposed in which the natural curvature of the toroidal magnetic field is used to isolate, using the plasma itself, the point of plasma neutralization from the location of the gas exhaust. The plasma region then acts to preferentially screen the recycling hydrogen by the processes of ionization and of charge-exchange-induced losses at open boundaries. The theory and analysis suggests that an experiment can provide a sensitive test of modules used to describe the plasma edge and of atomic and surface physics data used in these models.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Life modeling of atmospheric and low pressure plasma-sprayed thermal-barrier coating
NASA Technical Reports Server (NTRS)
Miller, R. A.; Argarwal, P.; Duderstadt, E. C.
1984-01-01
The cycles-to-failure vs cycle duration data for three different thermal barrier coating systems, which consist of atmospheric pressure plasma-sprayed ZrO2-8 percent Y2O3 over similarly deposited or low pressure plasma sprayed Ni-base alloys, are presently analyzed by means of the Miller (1980) oxidation-based life model. Specimens were tested at 1100 C for heating cycle lengths of 1, 6, and 20 h, yielding results supporting the model's value.
Modelling Of Generation And Growth Of Nanoparticles In Low-Pressure Plasmas
Gordiets, B. F.
2008-09-07
Theoretical kinetic models of generation and growth of clusters and nanoparticles in low-pressure plasma are briefly rewired. The relatively simple kinetic model is discussed more detail. Simple formulas and equations are given for monomer density; cluster dimension distribution; critical cluster dimension; rate of particle production; particle density and average dimension as well as plasma characteristics. The analytical formula is also obtained for the time delay of the measured LIPEE signal in the 'Laser Induced Particle Explosive Evaporation' experimental method.
Modelling erosion damage from low-energy plasma gun simulations of disruptions
Ehst, D.A.; Hassanein, A.
1993-10-01
Energy transfer to material surfaces is dominated by photon radiation through low temperature plasma vapors if tokamak disruptions are due to low kinetic energy particles ({approx_lt} 100 eV). Simple models of radiation transport are derived and incorporated into a fast-running computer routine to model this process. The results of simulations are in good agreement with plasma gun erosion tests on several metal targets.
Modelling multi-ion plasma gun simulations of Tokamak disruptions
Ehst, D.A.
1995-08-01
The effect of impurity ions in plasma gun ablation tests of various targets is considered. Inclusion of reasonable amounts of impurity ({approximately}10%) is adequate to explain observed energy transmission and erosion measurements. The gun tests and the computer code calculations are relevant to the parameter range expected for major disruptions on large tokamaks.
Pair production in thermal plasmas - A computer model
NASA Astrophysics Data System (ADS)
Stepney, S.
1983-07-01
A computer code has been developed to follow the processes of electron-positron pair production, annihilation, bremsstrahlung and Comptonization in a slab of mildly relativistic thermal plasma. The resulting equilibrium solutions are compared with the semi-analytic calculations of Svensson.
Modeling of negative ion transport in a plasma source (invited)
NASA Astrophysics Data System (ADS)
Riz, David; Paméla, Jérôme
1998-02-01
A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.
Modeling of negative ion transport in a plasma source
NASA Astrophysics Data System (ADS)
Riz, David; Paméla, Jérôme
1998-08-01
A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.
Allowing for Slow Evolution of Background Plasma in the 3D FDTD Plasma, Sheath, and Antenna Model
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas; King, Jake
2015-11-01
We are working to include a slow-time evolution capability for what has previously been the static background plasma parameters, in the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas. A key aspect of this is SOL-density time-evolution driven by ponderomotive rarefaction from the strong fields in the vicinity of the antenna. We demonstrate and benchmark a Scalar Ponderomotive Potential method, based on local field amplitudes, which is included in the 3D simulation. And present a more advanced Tensor Ponderomotive Potential approach, which we hope to employ in the future, which should improve the physical fidelity in the highly anisotropic environment of the SOL. Finally, we demonstrate and benchmark slow time (non-linear) evolution of the RF sheath, and include realistic collisional effects from the neutral gas. Support from US DOE Grants DE-FC02-08ER54953, DE-FG02-09ER55006.
A physical model of radiated enhancement of plasma-surrounded antenna
Gao, Xiaotian; Wang, Chunsheng Jiang, Binhao; Zhang, Zhonglin
2014-09-15
A phenomenon that the radiated power may be enhanced when an antenna is surrounded by a finite plasma shell has been found in numerical and experimental studies. In this paper, a physical model was built to express the mechanism of the radiated enhancement. In this model, the plasma shell is treated as a parallel connection of a capacitance and a conductance whose parameters change with the system parameters (plasma density, collision frequency, and antenna frequency). So, the radiated enhancement can be explained by the resonance between the plasma shell and the infinite free space. Furthermore, the effects of system parameters on the radiated power are given and effects corresponding to mechanisms are performed based on the physical model.
Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances
Ahedo, Eduardo; Navarro-Cavalle, Jaume
2013-04-15
An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ions and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.
Bailey, J. E.; Rochau, G. A.; Mancini, R. C.; Iglesias, C. A.; MacFarlane, J. J.; Golovkin, I. E.; Blancard, C.; Cosse, Ph.; Faussurier, G.
2009-05-15
Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156{+-}6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.
Modeling of evaporation and oxidation phenomena in plasma spraying of metal powders
NASA Astrophysics Data System (ADS)
Zhang, Hanwei
Plasma spraying of metals in air is usually accompanied by evaporation and oxidation of the sprayed material. Optimization of the spraying process must ensure that the particles are fully molten during their short residence time in the plasma jet and prior to hitting the substrate, but not overheated to minimize evaporation losses. In atmospheric plasma spraying (ASP), it is also clearly desirable to be able to control the extent of oxide formation. The objective of this work to develop an overall mathematical model of the oxidization and volatilization phenomena involved in the plasma-spraying of metallic particles in air atmosphere. Four models were developed to simulate the following aspects of the atmospheric plasma spraying (APS) process: (a) the particle trajectories and the velocity and temperature profiles in an Ar-H 2 plasma jet, (b) the heat and mass transfer between particles and plasma jet, (c) the interaction between the evaporation and oxidation phenomena, and (d) the oxidation of liquid metal droplets. The resulting overall model was generated by adapting the computational fluid dynamics code FIDAP and was validated by experimental measurements carried out at the collaborating plasma laboratory of the University of Limoges. The thesis also examined the environmental implications of the oxidization and volatilization phenomena in the plasma spraying of metals. The modeling results showed that the combination of the standard k-s model of turbulence and the Boussinesq eddy-viscosity model provided a more accurate prediction of plasma gas behavior. The estimated NOx generation levels from APS were lower than the U.S.E.P.A. emission standard. Either enhanced evaporation or oxidation can occur on the surface of the metal particles and the relative extent is determined by the process parameters. Comparatively, the particle size has the greatest impact on both evaporation and oxidation. The extent of particle oxidation depends principally on gas
In-bore diagnostic and modeling of an electrothermal plasma launcher
Hurley, J.D.
1993-01-01
A diagnostic method has been developed to measure the high heat flux produced in the electrothermal plasma launcher SIRENS. The method involves attaching a thermocouple to the back surface of a target to obtain the temperature history of the back surface, which is a direct indication of the heat flux incident on the front surface. The measured temperature history is an input to a developed one dimensional (1-D), time dependent heat conduction code which uses the temperature history of the back surface to determine the incident heat flux on the front surface of the target. A one dimensional time dependent code, ODIN, was developed to model the plasma formation and flow in electrothermal launchers. ODIN models the plasma formation and flow into the source section and the plasma expansion into and through the barrel section. ODIN models the energy transport, particle transport, plasma resistivity, plasma viscosity, and equation-of-state. The source and barrel sections were broken into a specific number of cells and each cell was considered to be in local thermodynamic equilibrium (LTE), with the plasma modeled as a viscous fluid. The primary objective of the numerical simulation was to predict the time and axial variation of the plasma flow and to predict the magnitude of the drag forces acting on the plasma. SIRENS has been operated at atmospheric conditions using a fuse placed between the two electrodes in the source section to initiate the discharge. Three different types of fuses were tested, with the best results obtaining using a thin triangular shaped aluminum fuse. SIRENS has also be used to launch projectiles, with projectile masses ranging from 400 mg to 1500 mg. The maximum velocity obtained was 1.74 km/sec at an input energy of 2.5 kJ, using a 540 mg Lexan projectile with an efficiency of 33%.
A multi-species 13-moment model for moderately collisional plasmas
NASA Astrophysics Data System (ADS)
Miller, S. T.; Shumlak, U.
2016-08-01
Fluid-based models of collisional transport in multi-species plasmas have typically been applied to parameter regimes where a local thermal equilibrium is assumed. While this parameter regime is valid for low temperature and/or high density applications, it begins to fail as plasmas enter the collisionless regime and kinetic effects dominate the physics. A plasma model is presented that lays the foundation for extending the validity of the collisional fluid regime using an anisotropic 13-moment fluid model derived from the Pearson type-IV probability distribution. The model explicitly evolves the pressure tensor and heat flux vector along with the density and flow velocity to capture dynamics usually restricted to kinetic models. Each particle species is modeled individually and collectively coupled through electromagnetic and collisional interactions.
Gd plasma source modeling at 6.7 nm for future lithography
Li Bowen; Dunne, Padraig; O'Sullivan, Gerry; Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang, Weihua; Endo, Akira
2011-12-05
Plasmas containing gadolinium have been proposed as sources for next generation lithography at 6.x nm. To determine the optimum plasma conditions, atomic structure calculations have been performed for Gd{sup 11+} to Gd{sup 27+} ions which showed that n = 4 - n = 4 resonance transitions overlap in the 6.5-7.0 nm region. Plasma modeling calculations, assuming collisional-radiative equilibrium, predict that the optimum temperature for an optically thin plasma is close to 110 eV and that maximum intensity occurs at 6.76 nm under these conditions. The close agreement between simulated and experimental spectra from laser and discharge produced plasmas indicates the validity of our approach.
Inductive Pulsed Plasma Thruster Model with Time-Evolution of Energy and State Properties
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sankaran, Kamesh
2012-01-01
A model for pulsed inductive plasma acceleration is presented that consists of a set of circuit equations coupled to both a one-dimensional equation of motion and an equation governing the partitioning of energy. The latter two equations are obtained for the plasma current sheet by treating it as a single element of finite volume and integrating the governing equations over that volume. The integrated terms are replaced where necessary by physically-equivalent quantities that are calculated through the solution of other parts of the governing equation set. The model improves upon previous one-dimensional performance models by permitting the time-evolution of the energy and state properties of the plasma, the latter allowing for the tailoring of the model to different gases that may be chosen as propellants. The time evolution of the various energy modes in the system and the associated plasma properties, calculated for argon propellant, are presented to demonstrate the efficacy of the model. The model produces a result where efficiency is maximized at a given value of the electrodynamic scaling term known as the dynamic impedance parameter. Qualitatively and quantitatively, the model compares favorably with performance measured for two separate inductive pulsed plasma thrusters, with disagreements attributable to simplifying assumptions employed in the generation of the model solution.
Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers
Maingi, R.
1992-08-01
The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.
Li, Jiaxu; Kuang, Yang
2009-01-01
Type 1 diabetics must inject exogenous insulin or insulin analogues one or more times daily. The timing and dosage of insulin administration have been a critical research area since the invention of insulin analogues. Several pharmacokinetical models have been proposed, and some are applied clinically in modeling various insulin therapies. However, their plasma insulin concentration must be computed separately from the models' output. Furthermore, minimal analytical study was performed in these existing models. We propose two systemic and simplified ordinary differential equation models to model the subcutaneous injection of rapid-acting insulin analogues and long-acting insulin analogues, respectively. Our models explicitly model the plasma insulin and hence have the advantage of computing the plasma insulin directly. The profiles of plasma insulin concentrations obtained from these two models are in good agreement with the experimental data. We also study the dynamics of insulin analogues, plasma insulin concentrations, and, in particular, the shape of the dynamics of plasma insulin concentrations. PMID:19292507
Statistical Models of Power-law Distributions in Homogeneous Plasmas
Roth, Ilan
2011-01-04
A variety of in-situ measurements in space plasmas point out to an intermittent formation of distribution functions with elongated tails and power-law at high energies. Power-laws form ubiquitous signature of many complex systems, plasma being a good example of a non-Boltzmann behavior for distribution functions of energetic particles. Particles, which either undergo mutual collisions or are scattered in phase space by electromagnetic fluctuations, exhibit statistical properties, which are determined by the transition probability density function of a single interaction, while their non-asymptotic evolution may determine the observed high-energy populations. It is shown that relaxation of the Brownian motion assumptions leads to non-analytical characteristic functions and to generalization of the Fokker-Planck equation with fractional derivatives that result in power law solutions parameterized by the probability density function.
Modeling of Spherical Torus Plasmas for Liquid Lithium Wall Experiments
R. Kaita; S. Jardin; B. Jones; C. Kessel; R. Majeski; J. Spaleta; R. Woolley; L. Zakharo; B. Nelson; M. Ulrickson
2002-01-29
Liquid metal walls have the potential to solve first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.
Divol, L; Berger, R; Meezan, N; Froula, D H; Dixit, S; Suter, L; Glenzer, S H
2007-11-08
We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA[2]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d[3]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, whole beam three-dimensional linear kinetic modeling of stimulated Brillouin scattering reproduces quantitatively the experimental measurements(SBS thresholds, reflectivity values and the absence of measurable SRS). This good agreement was made possible by the recent increase in computing power routinely available for such simulations. These simulations accurately predicted the strong reduction of SBS measured when polarization smoothing is used.
Empirical probability model of cold plasma environment in the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Futaana, Yoshifumi; Wang, Xiao-Dong; Barabash, Stas; Roussos, Elias; Truscott, Pete
2015-04-01
We analyzed the Galileo PLS dataset to produce a new cold plasma environment model for the Jovian magneto- sphere. Although there exist many sophisticated radiation models, treating energetic plasma (e.g. JOSE, GIRE, or Salammbo), only a limited number of simple models has been utilized for cold plasma environment. By extend- ing the existing cold plasma models toward the probability domain, we can predict the extreme periods of Jovian environment by specifying the percentile of the environmental parameters. The new model was produced in the following procedure. We first referred to the existing cold plasma models of Divine and Garrett, 1983 (DG83) or Bagenal and Delamere 2011 (BD11). These models are scaled to fit the statistical median of the parameters obtained from Galileo PLS data. The scaled model (also called as "mean model") indicates the median environment of Jovian magnetosphere. Then, assuming that the deviations in the Galileo PLS parameters are purely due to variations in the environment, we extended the mean model toward the percentile domain. The input parameter of the model is simply the position of the spacecraft (distance, magnetic longitude and lati- tude) and the specific percentile (e.g. 0.5 for the mean model). All the parameters in the model are described in mathematical forms; therefore the needed computational resources are quite low. The new model can be used for assessing the JUICE mission profile. The spatial extent of the model covers the main phase of the JUICE mission; namely from the Europa orbit to 40 Rj (where Rj is the radius of Jupiter). In addition, theoretical extensions toward the latitudinal direction are also included in the model to support the high latitude orbit of the JUICE spacecraft.
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Winglee, R. M.; Dulk, G. A.
1990-01-01
A one-dimensional, electrostatic, particle-in-cell simulation is used here to model the expansion of a heated electron population in a coronal loop during a solar flare and the characteristics of the associated X-ray emissions. The hot electrons expand outward from the localized region, creating an ambipolar electric field which accelerates a return current of cooler, ambient electrons. Ion-acoustic waves are generated by the return currents as proposed by Brown et al. (1979), but they play little or no role in containing energetic electrons and the conduction front proposed by Brown et al. does not form. The X-ray emission efficiency of the electrons is too low in the corona for them to be the source of hard X-ray bursts. The particle dynamics changes dramatically if the heated plasma is at low altitudes and expands upward into the more tenuous plasma at higher altitudes. Two important applications of this finding are the radio-frequency heating of the corona and the collisional heating of the chromosphere by precipitating energetic electrons. In both cases, the overlying plasma has a density that is too low to supply a balancing return current to the expanding hot electrons. As a result, an ambipolar electric field develops that tends to confine the energetic electrons behind a front that propagate outward at about the speed of sound.
Modeling of the plasma generated in a rarefied hypersonic shock layer
Farbar, Erin D.; Boyd, Iain D.
2010-10-15
In this study, a rigorous numerical model is developed to simulate the plasma generated in a rarefied, hypersonic shock layer. The model uses the direct simulation Monte Carlo (DSMC) method to treat the particle collisions and the particle-in-cell (PIC) method to simulate the plasma dynamics in a self-consistent manner. The model is applied to compute the flow along the stagnation streamline in front of a blunt body reentering the Earth's atmosphere at very high velocity. Results from the rigorous DSMC-PIC model are compared directly to the standard DSMC modeling approach that uses the ambipolar diffusion approximation to simulate the plasma dynamics. It is demonstrated that the self-consistent computation of the plasma dynamics using the rigorous DSMC-PIC model captures many physical phenomena not accurately predicted by the standard modeling approach. These computations represent the first assessment of the validity of the ambipolar diffusion approximation when predicting the rarefied plasma generated in a hypersonic shock layer.
Partial ionization in dense plasmas: comparisons among average-atom density functional models.
Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C
2013-06-01
Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.
A volume averaged global model for inductively coupled HBr/Ar plasma discharge
NASA Astrophysics Data System (ADS)
Chung, Sang-Young; Kwon, Deuk-Chul; Choi, Heechol; Song, Mi-Young
2015-09-01
A global model for inductively coupled HBr/Ar plasma was developed. The model was based on a self-consistent global model had been developed by Kwon et al., and a set of chemical reactions in the HBr/Ar plasma was compiled by surveying theoretical, experimental and evaluative researches. In this model vibrational excitations of bi-atomic molecules and electronic excitations of hydrogen atom were taken into account. Neutralizations by collisions between positive and negative ions were considered with Hakman's approximate formula achieved by fitting of theoretical result. For some reactions that were not supplied from literatures the reaction parameters of Cl2 and HCl were adopted as them Br2 and HBr, respectively. For validation calculation results using this model were compared with experimental results from literatures for various plasma discharge parameters and it showed overall good agreement.
Electromagnetic thin-wall model for simulations of plasma wall-touching kink and vertical modes
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.; Atanasiu, Calin V.; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika
2015-12-01
> The understanding of plasma disruptions in tokamaks and predictions of their effects require realistic simulations of electric current excitation in three-dimensional vessel structures by the plasma touching the walls. As discovered at JET in 1996 (Litunovski JET Internal Report contract no. JQ5/11961, 1995; Noll et al., Proceedings of the 19th Symposium on Fusion Technology, Lisbon (ed. C. Varandas & F. Serra), vol. 1, 1996, p. 751. Elsevier) the wall-touching kink modes are frequently excited during vertical displacement events and cause large sideways forces on the vacuum vessel which are difficult to withstand in large tokamaks. In disruptions, the sharing of electric current between the plasma and the wall plays an important role in plasma dynamics and determines the amplitude and localization of the sideways force (Riccardo et al., Nucl. Fusion, vol. 40, 2000, p. 1805; Riccardo & Walker, Plasma Phys. Control. Fusion, vol. 42, 2000, p. 29; Zakharov, Phys. Plasmas, vol. 15, 2008, 062507; Riccardo et al., Nucl. Fusion, vol. 49, 2009, 055012; Bachmann et al., Fusion Engng Des., vol. 86, 2011, pp. 1915-1919). This paper describes a flat triangle representation of the electric circuits of a thin conducting wall of arbitrary three-dimensional geometry. Implemented into the shell simulation code (SHL) and the source sink current code (SSC), this model is suitable for modelling the electric currents excited in the wall inductively and through current sharing with the plasma.
Modeling plasma-assisted growth of graphene-carbon nanotube hybrid
NASA Astrophysics Data System (ADS)
Tewari, Aarti
2016-08-01
A theoretical model describing the growth of graphene-CNT hybrid in a plasma medium is presented. Using the model, the growth of carbon nanotube (CNT) on a catalyst particle and thereafter the growth of the graphene on the CNT is studied under the purview of plasma sheath and number density kinetics of different plasma species. It is found that the plasma parameter such as ion density; gas ratios and process parameter such as source power affect the CNT and graphene dimensions. The variation in growth rates of graphene and CNT under different plasma power, gas ratios, and ion densities is analyzed. Based on the results obtained, it can be concluded that higher hydrocarbon ion densities and gas ratios of hydrocarbon to hydrogen favor the growth of taller CNTs and graphene, respectively. In addition, the CNT tip radius reduces with hydrogen ion density and higher plasma power favors graphene with lesser thickness. The present study can help in better understanding of the graphene-CNT hybrid growth in a plasma medium.
Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Turner, W.C.
1982-08-10
Several types of radiation measurements were performed on the Beta II compact forms experiment. Among these are time integrated spectra ranging in wavelength from the vuv to the uv, time resolved bolometer measurements of radiation from the x-ray to the infrared, and time and wavelength resolved measurements of certain spectral lines. It is difficult to relate any one of these measurements to plasma parameters of interest such as temperature, density, or impurity content. In this report we compare the results of these, and other measurements with two simple models of the power balance in the plasma in order to estimate the effect of carbon and oxygen impurities on plasma lifetime.
Modelling of OH production in cold atmospheric-pressure He-H2O plasma jets
NASA Astrophysics Data System (ADS)
Naidis, G. V.
2013-06-01
Results of the modelling of OH production in the plasma bullet mode of cold atmospheric-pressure He-H2O plasma jets are presented. It is shown that the dominant source of OH molecules is related to the Penning and charge transfer reactions of H2O molecules with excited and charged helium species produced by guided streamers (plasma bullets), in contrast to the case of He-H2O glow discharges where OH production is mainly due to the dissociation of H2O molecules by electron impact.
Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling
Cressault, Y.
2015-05-15
This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.
Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.
2014-04-14
Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of
Spectroscopic modeling and characterization of a collisionally confined laser-ablated plasma plume.
Sherrill, M E; Mancini, R C; Bailey, J; Filuk, A; Clark, B; Lake, P; Abdallah, J
2007-11-01
Plasma plumes produced by laser ablation are an established method for manufacturing the high quality stoichiometrically complex thin films used for a variety of optical, photoelectric, and superconducting applications. The state and reproducibility of the plasma close to the surface of the irradiated target plays a critical role in producing high quality thin films. Unfortunately, this dense plasma has historically eluded quantifiable characterization. The difficulty in modeling the plume formation arises in the accounting for the small amount of energy deposited into the target when physical properties of these exotic target materials are not known. In this work we obtain the high density state of the plasma plume through the use of an experimental spectroscopic technique and a custom spectroscopic model. In addition to obtaining detailed temperature and density profiles, issues regarding line broadening and opacity for spectroscopic characterization will be addressed for this unique environment.
Unified model of the rf plasma sheath: Part 2, Asymptotic connection formulae
Riley, M.E.
1996-08-01
A previously-developed approximation to the first integral of the Poisson equation enables one to obtain solutions for the voltage- current characteristics of a radio-frequency (rf) plasma sheath that are valid over the whole range of inertial response of the ions to an imposed rf voltage or current-specified conditions. The theory reproduced the time-dependent voltage-current characteristics of the two extreme cases corresponding to the Lieberman rf sheath theory and the Metze-Ernie-Oskam theory. In this paper the sheath model is connected to the plasma bulk description, and a prescription is given for the ion relaxation time constant, which determines the time-dependent ion impact energy on the electrode surface. It appears that this connected model should be applicable to those high density, low pressure plasmas in which the Debye length is a small fraction of the ion mean free path, which itself is a small fraction of the plasma dimension.
Modeling the Compression of Merged Compact Toroids by Multiple Plasma Jets
NASA Astrophysics Data System (ADS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ron
2000-10-01
A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner. The gaseous liner is used to implode a magnetized target to produce the fusion reaction in a standoff manner. In this paper, the merging of the plasma jets to form the gaseous liner is investigated numerically. The Los Alamos SPHINX code, based on the smoothed particle hydrodynamics method is used to model the interaction of the jets. 2-D and 3-D simulations have been performed to study the characterisitcs of the resulting flow when these jets collide. The results show that the jets merge to form a plasma liner that converge radially which may be used to compress the central plasma to fusion conditions. Details of the computational model and the SPH numerical methods will be presented together with the numerical results.
Modeling the Compression of Merged Compact Toroids by Multiple Plasma Jets
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ron; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner. The gaseous liner is used to implode a magnetized target to produce the fusion reaction in a standoff manner. In this paper, the merging of the plasma jets to form the gaseous liner is investigated numerically. The Los Alamos SPHINX code, based on the smoothed particle hydrodynamics method is used to model the interaction of the jets. 2-D and 3-D simulations have been performed to study the characteristics of the resulting flow when these jets collide. The results show that the jets merge to form a plasma liner that converge radially which may be used to compress the central plasma to fusion conditions. Details of the computational model and the SPH numerical methods will be presented together with the numerical results.
Delay time embedding of mass loss avalanches in a fusion plasma-oriented sandpile model
NASA Astrophysics Data System (ADS)
Bowie, C. A.; Dendy, R. O.; Hole, M. J.
2016-10-01
The sandpile paradigm is widely used to model aspects of the phenomenology of magnetically confined fusion (MCF) plasmas, including enhanced confinement, edge pedestals and, potentially, the impulsive energy and particle release process known as ELMing. Here we identify new points of contact between ELMing and the systemwide avalanches in a sandpile. We compare the quantified response [Calderon et al., Phys. Plasmas 20, 042306 (2014)] to increased fuelling of the time sequence of edge localised mode events in a series of similar Joint European Torus plasmas with the response to increased fuelling of the time sequence of systemwide avalanches in a sandpile model [Chapman et al., Phys. Rev. Lett. 86, 2814 (2001)] that has well established links to MCF plasma phenomenology. Both the probability density functions of inter-event time intervals, and delay time embeddings of event time sequences, at different fuelling rates, show common features and point to shared underlying physics.
Numerical Modelling of Ar-N2 Plasma Jet Impinging on a Flat Substrate
NASA Astrophysics Data System (ADS)
Selvan, B.; Ramachandran, K.; Pillai, B. C.; Subhakar, D.
2011-03-01
Substrate heating in the plasma spray process is one of the important parameters, which affects the microstructure of coatings and bonding between coating and substrate. In this study, a three-dimensional numerical model is developed to study the thermal exchange between the plasma jet and the substrate. The plasma jet temperature and velocity distributions and thermal flux to the substrate surface are predicted. The effects of arc current, gas flow rate, and stand-off distance on the temperature and velocity fields of the impinging plasma jet and thermal flux to the substrate are clarified. Results indicate that the three-dimensional effect has a very weak influence on the substrate heating. The air entrainment is compared for different cases. The present model is validated by comparing the present results with previous predictions and measurements. The temperature distributions in the substrate for different stand-off distances are predicted.
Integrated model for transport and large scale instabilities in tokamak plasmas
NASA Astrophysics Data System (ADS)
Halpern, Federico David
Improved models for neoclassical tearing modes and anomalous transport are developed and validated within integrated modeling codes to predict toroidal rotation, temperature and current density profiles in tokamak plasmas. Neoclassical tearing modes produce helical filaments of plasma, called magnetic islands, which have the effect of degrading tokamak plasma confinement or terminating the discharge. An improved code is developed in order to compute the widths of multiple simultaneous magnetic islands whose shapes are distorted by the radial variation in the magnetic perturbation [F. D. Halpern, et al., J. Plasma Physics 72 (2006) 1153]. It is found in simulations of DIII-D and JET tokamak discharges that multiple simultaneous magnetic islands produce a 10% to 20% reduction in plasma thermal confinement. If magnetic islands are allowed to grow to their full width in ITER fusion reactor simulations, fusion power production is reduced by a factor of four [F. D. Halpern, et al., Phys. Plasmas 13 (2006) 062510]. In addition to improving the prediction of neoclassical tearing modes, a new Multi-Mode transport model, MMM08, was developed to predict temperature and toroidal angular frequency profiles in simulations of tokamak discharges. The capability for predicting toroidal rotation is motivated by ITER simulation results that indicate that the effects of toroidal rotation can increase ITER fusion power production [F. D. Halpern et al., Phys. Plasmas 15 (2008), 062505]. The MMM08 model consists of an improved model for transport driven by ion drift modes [F. D. Halpern et al., Phys. Plasmas 15 (2008) 012304] together with a model for transport driven by short wavelength electron drift modes combined with models for transport driven by classical processes. The new MMM08 transport model was validated by comparing predictive simulation results with experimental data for 32 discharges in the DIII-D and JET tokamaks. It was found that the prediction of intrinsic plasma
Bulk plasma fragmentation in a C{sub 4}F{sub 8} inductively coupled plasma: A hybrid modeling study
Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie
2015-06-28
A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
Svennebring, Andreas Mats
2016-01-01
1. New equations have been developed from an updated version of Øie-Tozer's model expressing how the free concentration and volume of distribution change in relation to changes in the concentration of drug binding plasma proteins. This updated model accommodates more than one drug binding plasma protein to contribute to the plasma protein binding. 2. Demonstrations of the model show that variability in the concentration of one plasma protein has considerably less impact on the free drug concentration and volume of distribution if other plasma proteins contribute to binding, than if they don't.
A control-oriented self-consistent model of an inductively-coupled plasma
NASA Astrophysics Data System (ADS)
Keville, Bernard; Turner, Miles
2009-10-01
An essential first step in the design of real time control algorithms for plasma processes is to determine dynamical relationships between actuator quantities such as gas flow rate set points and plasma states such electron density. An ideal first principles-based, control-oriented model should exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This presentation describes a control-oriented model of a cylindrical low pressure planar inductive discharge with a stove top antenna. The model consists of equivalent circuit coupled to a global model of the plasma chemistry to produce a self-consistent zero-dimensional model of the discharge. The non-local plasma conductivity and the fields in the plasma are determined from the wave equation and the two-term solution of the Boltzmann equation. Expressions for the antenna impedance and the parameters of the transformer equivalent circuit in terms of the isotropic electron distribution and the geometry of the chamber are presented.
A model of force balance in Jupiter's magnetodisc including hot plasma pressure anisotropy
NASA Astrophysics Data System (ADS)
Nichols, J. D.; Achilleos, N.; Cowley, S. W. H.
2015-12-01
We present an iterative vector potential model of force balance in Jupiter's magnetodisc that includes the effects of hot plasma pressure anisotropy. The fiducial model produces results that are consistent with Galileo magnetic field and plasma data over the whole radial range of the model. The hot plasma pressure gradient and centrifugal forces dominate in the regions inward of ˜20 RJ and outward of ˜50 RJ, respectively, while for realistic values of the pressure anisotropy, the anisotropy current is either the dominant component or at least comparable with the hot plasma pressure gradient current in the region in between. With the inclusion of hot plasma pressure anisotropy, the ˜1.2 and ˜2.7° shifts in the latitudes of the main oval and Ganymede footprint, respectively, associated with variations over the observed range of the hot plasma parameter Kh, which is the product of hot pressure and unit flux tube volume, are comparable to the shifts observed in auroral images. However, the middle magnetosphere is susceptible to the firehose instability, with peak equatorial values of βh∥e-βh⊥e≃1 - 2, for Kh=2.0 - 2.5 × 107 Pa m T-1. For larger values of Kh,βh∥e-βh⊥e exceeds 2 near ˜25 RJ and the model does not converge. This suggests that small-scale plasmoid release or "drizzle" of iogenic plasma may often occur in the middle magnetosphere, thus forming a significant mode of plasma mass loss, alongside plasmoids, at Jupiter.
Empirical Modeling of Plasma Clouds Produced by the Metal Oxide Space Clouds (MOSC) Experiment
NASA Astrophysics Data System (ADS)
Pedersen, T.; Caton, R. G.; Miller, D.; Holmes, J. M.; Groves, K. M.
2015-12-01
The Metal Oxide Space Clouds (MOSC) chemical release experiments employed the ALTAIR radar as a primary measurement of plasma density in the clouds. However, the radar provides only the local plasma density along the beam line of sight, and the measurements are of limited value without context to determine the location of the radar beam relative to the larger plasma cloud. We have constructed an empirical model of the cloud locations, shapes, and sizes as a function of time for both MOSC launches using fits to all-sky images recorded from near the launch site. When combined with ALTAIR radar measurements of local plasma density at the sampled point and ionosonde measurements of the peak plasma density, a robust 4-D representation of the plasma density can be derived and used to estimate ionization yields and to study impacts on the background ionosphere and RF propagation. Optical image data was fit to a 2-D Gaussian model to derive peak intensity, background, rotation of the cloud in the horizontal plane, and half-widths in the N-S and E-W directions. The optical images show a closely linear increase in half-width after the first minute or two. Very good agreement between the model and radar integrated total electron content (TEC) measurements are obtained with a simple exponential envelope to the peak TEC within the cloud, indicating that the optical distribution closely tracks the plasma density. Comparison of TEC with peak plasma density and the observed spatial dimensions of the cloud are used to estimate the rate of change in total electron number during the period of observation and to compare with predictions of prior theoretical and numerical models.
PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O{sub 2} Plasma
Bera, Kallol; Rauf, Shahid; Collins, Ken
2011-05-20
Low pressure capacitively coupled plasmas are extensively used for advanced microelectronic device fabrication. Due to long electron mean free path and large bias voltages in this regime, kinetic effects play an important role in the dynamics of low pressure discharges. To take account of the kinetic effects, a one-dimensional hybrid plasma model has been developed that couples the Particle-In-Cell (PIC) technique for charged species and a fluid method for neutral species. The PIC model uses the Monte Carlo Collision (MCC) method to account for collision processes. The fluid model for neutral species takes into account species transport in the plasma, chemical reactions, and surface processes. An electronegative O{sub 2} plasma is simulated for a range of pressures (10-300 mTorr) and rf voltages (200-600 V) at 60 MHz. Our model for the O{sub 2} plasma considers electrons, O{sub 2}{sup +}, O{sup -}, O, and O*. The reaction mechanism includes electron impact dissociation, ionization, dissociative attachment and ion-ion recombination. Computational results are compared to our previous simulations for an electropositive Ar discharge. The electrons primarily absorb power from the external power supply at the sheath edge during sheath expansion. Energetic beam electrons are generated at the sheath edge during electron heating, which are responsible for plasma production and sustenance through collisions. The negative ions are found to be confined in the bulk plasma due to the potential well. The ratio of negative ions to electrons increases with increase in pressure and decrease in rf voltage. The spatial profiles of charged and neutral species in the plasma are found to primarily depend on species sources due to collisional processes.
Modeling of Stark-Zeeman Lines in Magnetized Hydrogen Plasmas
NASA Astrophysics Data System (ADS)
Rosato, J.; Bufferand, H.; Capes, H.; Koubiti, M.; Godbert-Mouret, L.; Marandet, Y.; Stamm, R.
2015-12-01
The action of electric and magnetic fields on atomic species results in a perturbation of the energy level structure, which alters the shape of spectral lines. In this work, we present the Zeeman-Stark line shape simulation method and perform new calculations of hydrogen Lyman and Balmer lines, in the framework of magnetic fusion research. The role of the Zeeman effect, fine structure and the plasma's non-homogeneity along the line-of-sight are investigated. Under specific conditions, our results are applicable to DA white dwarf atmospheres.
NASA Astrophysics Data System (ADS)
Brcka, Jozef
2016-07-01
A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of
Modeling the heating and atomic kinetics of a photoionized neon plasma experiment
NASA Astrophysics Data System (ADS)
Lockard, Tom E.
Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found
NASA Astrophysics Data System (ADS)
Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.
2016-09-01
Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.
Modeling of Micro- and Nanoparticle Characteristics in DC Suspension Plasma Spray
NASA Astrophysics Data System (ADS)
Shao, Xue-ming; Zhang, Kai; Xiong, Hong-bing
2015-02-01
Suspension plasma spray is a promising technology for surface coatings. In this work, a comprehensive numerical model was developed to investigate the multiphase flow of suspension droplets and nanoparticles in direct-current (DC) plasma spraying. A three-dimensional computational model was developed to describe the plasma jet flow fields coupled with the axial injection of suspension droplets in which the zirconia micro- and nanoparticles were dispersed. The suspension droplets were tracked using Lagrangian coordinates, considering particle heating, melting, and evaporation. After evaporation of the solvent surrounding the particle, the nanoparticles were discharged into the plasma flow. In addition to the viscous force exerted by the flow on the micrometer-sized particles, the Brownian force and the Saffman lift force were taken into account. The effects of the noncontinuum on particle momentum transfer and evaporation on heat transfer were also considered. The numerical predictions of gas flow temperature were compared with experimental data and numerical data obtained with a different computational fluid dynamics code. The agreement was reasonable. The trajectories, velocity, and temperature of nanoparticles were calculated, and compared with those of microparticles. The results showed that the Brownian force plays a major role in acceleration and heating of nanoparticles. Compared with the conventional plasma spray process with micrometer-sized feedstock, the nanoparticles in suspension plasma spraying were found to have a wider spatial distribution and higher temperature. The effects of operating parameters, such as the power input to the plasma gas and plasma gas composition, on the gas velocity and temperature were investigated. The parameters that have a significant effect on the heat and momentum transfer to the particles injected in the plasma jet were identified.
A unified model of coupled arc plasma and weld pool for double electrodes TIG welding
NASA Astrophysics Data System (ADS)
Wang, Xinxin; Fan, Ding; Huang, Jiankang; Huang, Yong
2014-07-01
A three-dimensional model containing tungsten electrodes, arc plasma and a weld pool is presented for double electrodes tungsten inert gas welding. The model is validated by available experimental data. The distributions of temperature, velocity and pressure of the coupled arc plasma are investigated. The current density, heat flux and shear stress over the weld pool are highlighted. The weld pool dynamic is described by taking into account buoyance, Lorentz force, surface tension and plasma drag force. The turbulent effect in the weld pool is also considered. It is found that the temperature and velocity distributions of the coupled arc are not rotationally symmetrical. A similar property is also shown by the arc pressure, current density and heat flux at the anode surface. The surface tension gradient is much larger than the plasma drag force and dominates the convective pattern in the weld pool, thus determining the weld penetration. The anodic heat flux and plasma drag force, as well as the surface tension gradient over the weld pool, determine the weld shape and size. In addition, provided the welding current through one electrode increases and that through the other decreases, keeping the total current unchanged, the coupled arc behaviour and weld pool dynamic change significantly, while the weld shape and size show little change. The results demonstrate the necessity of a unified model in the study of the arc plasma and weld pool.
Efficient Modeling of Laser-Plasma Accelerators with INF&RNO
Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.
2010-06-01
The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.
NASA Technical Reports Server (NTRS)
Adrian, M. L.; Gallagher, D. L.; Khazanov, G. V.; Chsang, S. W.; Liemohn, M. W.; Perez, J. D.; Green, J. L.; Sandel, B. R.; Mitchell, D. G.; Mende, S. B.; Six, N. Frank (Technical Monitor)
2002-01-01
During a geomagnetic storm on 24 May 2000, the IMAGE Extreme Ultraviolet (EUV) camera observed a plasmaspheric density trough in the evening sector at L-values inside the plasmapause. Forward modeling of this feature has indicated that plasmaspheric densities beyond the outer wall of the trough are well below model expectations. This diminished plasma condition suggests the presence of an erosion process due to the interaction of the plasmasphere with ring current plasmas. We present an overview of EUV, energetic neutral atom (ENA), and Far Ultraviolet (FUV) camera observations associated with the plasmaspheric density trough of 24 May 2000, as well as forward modeling evidence of the lie existence of a plasmaspheric erosion process during this period. FUV proton aurora image analysis, convolution of ENA observations, and ring current modeling are then presented in an effort to associate the observed erosion with coupling between the plasmasphere and ring-current plasmas.
Validated model of arc-filament plasma actuators for control of wall-bounded flows
NASA Astrophysics Data System (ADS)
Bodony, Daniel; Natarajan, Mahesh
2011-11-01
Plasma actuators based on the electrical arcs between two electrodes have shown promise in controlling high-subsonic and low-supersonic flows. Simulation-based predictions of these flows have often used heuristic models for the effect the plasma has on the flow to be controlled. In this talk we present a two-parameter model of the actuator which combines the unsteady Joule heating induced by the plasma with a thermally perfect model of air. PIV and spectroscopy data are used, in conjunction with simulations, to understand the two parameters and demonstrate how their values are to be determined. The importance of the cavity in which the electrodes are mounted is discussed, as is the role of diffusion. We demonstrate the use of the actuator model by controlling a high-subsonic, separating boundary layer in an S-duct geometry. Supported by the Rolls-Royce Corporation.
A Black-box Modelling Engine for Discharge Produced Plasma Radiation Sources
NASA Astrophysics Data System (ADS)
Zakharov, S. V.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Zakharov, V. S.; Zhang, Q.
2006-01-01
A Blackbox Modelling Engine (BME), is an instrument based on the adaptation of the RMHD code Z*, integrated into a specific computation environment to provide a turn key simulation instrument and to enable routine plasma modelling without specialist knowledge in numerical computation. Two different operating modes are provided: Detailed Physics mode & Fast Numerics mode. In the Detailed Physics mode, non-stationary, non-equilibrium radiation physics have been introduced to allow the modelling of transient plasmas in experimental geometry. In the Fast Numerics mode, the system architecture and the radiation transport is simplified to significantly accelerate the computation rate. The Fast Numerics mode allows the BME to be used realistically in parametric scanning to explore complex physical set up, before using the Detailed Physics mode. As an example of the results from the BME modelling, the EUV source plasma dynamics in the pulsed capillary discharge are presented.
Probabilistic model of beam-plasma interaction and electromagnetic radioemission
NASA Astrophysics Data System (ADS)
Krasnoselskikh, Vladimir; Volokitin, Alexander; Krafft, Catherine; Voshchepynets, Andrii
2016-07-01
In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams accelerated in the bow shock front. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. Generated Langmuir waves are transformed into electromagnetic waves in the vicinity of the reflection points when the level of density fluctuations is large enough. We evaluate the level of the radiowaves intensity, and the emissivity diagram of radiowaves emission around plasma frequency and its harmonics.
Modelling of the internal dynamics and density in a tens of joules plasma focus device
Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Clausse, Alejandro
2012-01-15
Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.
Modeling of plasma-based CO2 conversion: lumping of the vibrational levels
NASA Astrophysics Data System (ADS)
Berthelot, Antonin; Bogaerts, Annemie
2016-08-01
Although CO2 conversion by plasma technology is gaining increasing interest, the underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.
TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS
López Fuentes, Marcelo; Klimchuk, James A.
2015-02-01
We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of –2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.
Self-consistent modeling of the tokamak RF antennas, edge plasma, and sheath voltages
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Tom; Austin, Travis; Loverich, John; Stoltz, Peter
2012-10-01
We model the 24-strap ITER RF antenna with a time-domain electromagnetic simulation package [1] that faithfully represents the 3D complexity of the launcher geometry. The simulations include a cold-plasma fluid model of the edge plasma [2], with an RF sheath sub-grid model which allows for realistic behavior of plasma in contact with metallic structures, such as Faraday shields [3]. Interestingly, localized short wavelength modes, likely slow waves, have been observed in the vicinity of the launcher, and are very sensitive to density. We investigate the effect on these waves for varying density, density profile, and magnetic shear. We further investigate the contribution to high sheath potentials such waves might have. We also present status and additional highlights of the continuing evolution of the overall model. This includes studies to benchmark the nonlinear sheath width and loss parameters, and more diagnostics aimed towards better characterizing energy balance. It also includes application of the analysis on larger problem domain size, with scaling-study results. Finally, we review recent work to improve the model for warm plasma, and nonlinear effects. Work supported by US. DOE Grants DE-FG02-09ER55006 and DE-FC02-08ER54953.[4pt] [1] Nieter, C. and Cary, J. R., JCP 196 (2004) 448-473.[0pt] [2] Smithe, D., Physics of Plasmas 14, 056104 (2007).[0pt] [3] Myra and D'Ippolito, PRL 101, 195004 (2008).
Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth
NASA Astrophysics Data System (ADS)
Girshick, Steven; Agarwal, Pulkit
2012-10-01
We have developed a 1-D numerical model of an RF argon-silane plasma in which dust particles nucleate and grow. This model self-consistently couples a plasma module, a chemistry module and an aerosol module. The plasma module solves population balance equations for electrons and ions, the electron energy equation under the assumption of a Maxwellian velocity distribution, and Poisson's equation for the electric field. The chemistry module treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The aerosol module uses a sectional method to model particle size and charge distributions. The nucleation rate is equated to the rates of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Aerosol effects considered include particle charging, coagulation, and particle transport by neutral drag, ion drag, electric force, gravity and Brownian diffusion. Simulation results are shown for the case of a 13.56 MHz plasma at a pressure of 13 Pa and applied RF voltage of 100 V (amplitude), with flow through a showerhead electrode. These results show the strong coupling between the plasma and the spatiotemporal evolution of the nanoparticle cloud.
Arc-Cathode Coupling in the Modeling of a Conventional DC Plasma Spray Torch
NASA Astrophysics Data System (ADS)
Alaya, M.; Chazelas, C.; Mariaux, G.; Vardelle, A.
2015-01-01
The plasma torch is the basis of the plasma spray process and understanding of the electric arc dynamics within the plasma torch is necessary for better control of torch and process instabilities. Numerical simulation is a useful tool for investigating the effect of the torch geometry and operating parameters on the electric arc characteristics provided that the model of arc dynamics is reliable and the boundary conditions of the computational domain are well founded. However, such a model should also address the intricate transient and 3D interactions between the electrically conducting fluid and electromagnetic, thermal, and acoustics phenomena. Especially, the description of the electrode regions where the electric arc connects with solid material is an important part of a realistic model of the plasma torch operation as the properties of electric arcs at atmospheric pressure depend not only on the arc plasma medium, but also on the electrodes. This paper describes the 3D and time-dependent numerical simulation of a plasma arc and is focused on the cathode boundary conditions. This model was used to investigate the differences in arc characteristics when the cathode is included into the numerical domain and coupled with the arc. The magnetic and thermal coupling between the cathode and arc made it possible to get rid of the current density boundary condition at the cathode tip that is delicate to predetermine. It also allowed a better prediction of the cathode flow jet generated by the pumping action induced by the interaction of the self-magnetic field with the electric current and so it allowed a better description of the dynamics of arc. It should be a necessary step in the development of a fully predictive model of DC plasma torch operation.
Multi-Megawatt MPD Plasma Source Operation and Modeling for Fusion Propulsion Simulations
NASA Astrophysics Data System (ADS)
Gilland, James; Williams, Craig; Mikellides, Ioannis; Mikellides, Pavlos; Marriott, Darin
2004-02-01
The expansion of a high temperature fusion plasma through an expanding magnetic field is a process common to most fusion propulsion concepts. The efficiency of this process has a strong bearing on the overall performance of fusion propulsion. In order to simulate the expansion of a fusion plasma, a concept has been developed in which a high velocity plasma is first stagnated in a converging magnetic field to high (100's of eV) temperatures, then expanded though a converging/diverging magnetic nozzle. A Magnetoplasmadynamic (MPD) plasma accelerator has been constructed to generate the initial high velocity plasma and is currently undergoing characterization at the Ohio State University. The device has been operated with currents up to 300 kA and power levels up to 200 MWe. The source is powered by a 1.6 MJ, 1.6 ms pulse-forming-network. In addition to experimental tests of the accelerator, computational and theoretical modeling of both the accelerator and the plasma stagnation have been performed using the MACH2 MHD code. Insights into plasma compression and attachment to magnetic field lines have led to recommended design improvements in the facility and to preliminary predictions of nozzle performance.
A penalization technique to model plasma facing components in a tokamak with temperature variations
NASA Astrophysics Data System (ADS)
Paredes, A.; Bufferand, H.; Ciraolo, G.; Schwander, F.; Serre, E.; Ghendrih, P.; Tamain, P.
2014-10-01
To properly address turbulent transport in the edge plasma region of a tokamak, it is mandatory to describe the particle and heat outflow on wall components, using an accurate representation of the wall geometry. This is challenging for many plasma transport codes, which use a structured mesh with one coordinate aligned with magnetic surfaces. We propose here a penalization technique that allows modeling of particle and heat transport using such structured mesh, while also accounting for geometrically complex plasma-facing components. Solid obstacles are considered as particle and momentum sinks whereas ionic and electronic temperature gradients are imposed on both sides of the obstacles along the magnetic field direction using delta functions (Dirac). Solutions exhibit plasma velocities (M=1) and temperatures fluxes at the plasma-wall boundaries that match with boundary conditions usually implemented in fluid codes. Grid convergence and error estimates are found to be in agreement with theoretical results obtained for neutral fluid conservation equations. The capability of the penalization technique is illustrated by introducing the non-collisional plasma region expected by the kinetic theory in the immediate vicinity of the interface, that is impossible when considering fluid boundary conditions. Axisymmetric numerical simulations show the efficiency of the method to investigate the large-scale transport at the plasma edge including the separatrix and in realistic complex geometries while keeping a simple structured grid.
Modeling Plasmas with Strong Anisotropy, Neutral Fluid Effects, and Open Boundaries
NASA Astrophysics Data System (ADS)
Meier, Eric T.
Three computational plasma science topics are addressed in this research: the challenge of modeling strongly anisotropic thermal conduction, capturing neutral fluid effects in collisional plasmas, and modeling open boundaries in dissipative plasmas. The research efforts on these three topics contribute to a common objective: the improvement and extension of existing magnetohydrodynamic modeling capability. Modeling magnetically confined fusion-related plasmas is the focus of the research, but broader relevance is recognized and discussed. Code development is central to this work, and has been carried out within the flexible physics framework of the highly parallel HiFi implicit spectral element code. In magnetic plasma confinement, heat conduction perpendicular to the magnetic field is extremely slow compared to conduction parallel to the field. The anisotropy in heat conduction can be many orders of magnitude, and the inaccuracy of low-order representations can allow parallel heat transport to "leak" into the perpendicular direction, resulting in numerical perpendicular transport. If the computational grid is aligned to the magnetic field, this numerical error can be eliminated, even for low-order representations. However, grid alignment is possible only in idealized problems. In realistic applications, magnetic topology is chaotic. A general approach for accurately modeling the extreme anisotropy of fusion plasmas is to use high-order representations which do not require grid alignment for sufficient resolution. This research provides a comprehensive assessment of spectral element representation of anisotropy, in terms of dependence of accuracy on grid alignment, polynomial degree, and grid cell size, and gives results for two- and three-dimensional cases. Truncating large physical domains to concentrate computational resources is often necessary or desirable in simulating natural and man-made plasmas. A novel open boundary condition (BC) treatment for such
A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method
Qian, Cheng; Ding, Dazhi Fan, Zhenhong; Chen, Rushan
2015-03-15
A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gas chamber.
A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method
NASA Astrophysics Data System (ADS)
Qian, Cheng; Ding, Dazhi; Fan, Zhenhong; Chen, Rushan
2015-03-01
A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gas chamber.
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.
2015-09-29
In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of N_{e} ~10^{17} cm^{-3}. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.
2015-09-29
In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less
NASA Astrophysics Data System (ADS)
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield, J. E., II; Wiens, R. C.; Clegg, S. M.
2014-11-01
Electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree-Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ˜ 1 eV and electron densities of Ne ˜ 1017 cm-3. We evaluate the D K-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D K-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D K-inspired model.
UAH mathematical model of the variable polarity plasma ARC welding system calculation
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
Significant advantages of Variable Polarity Plasma Arc (VPPA) welding process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. A mathematical model is presented to analyze the VPPA welding process. Results of the mathematical model were compared with the experimental observation accomplished by the GDI team.
Two-fluid model compared to the quantum two-component plasma model for fully ionized hydrogen
NASA Astrophysics Data System (ADS)
Chabrier, G.
1989-01-01
We compare the thermodynamic functions calculated with the two-fluid model and with the quantum two-component plasma model for a dense, fully ionized hydrogen plasma. We find that a two-fluid model including a local field correction in the dielectric function and a proper free energy for the electron gas gives surprisingly good results, even in the region of low electron degeneracy. On leave from Ecole Normale Supérieure de Lyon, Lyon, France (Equipe associée au CNRS).
Modelling of plasma response to 3D external magnetic field perturbations in EAST
NASA Astrophysics Data System (ADS)
Yang, Xu; Sun, Youwen; Liu, Yueqiang; Gu, Shuai; Liu, Yue; Wang, Huihui; Zhou, Lina; Guo, Wenfeng
2016-11-01
Sustained mitigation and/or suppression of type-I edge localized modes (ELMs) has been achieved in EAST high-confinement plasmas, utilizing the resonant magnetic perturbation (RMP) fields produced by two rows of magnetic coils located just inside the vacuum vessel. Systematic toroidal modelling of the plasma response to these RMP fields with various coil configurations (with dominant toroidal mode number n = 1, 2, 3, 4) in EAST is, for the first time, carried out by using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), with results reported here. In particular, the plasma response is computed with varying coil phasing (the toroidal phase difference of the coil currents) between the upper and lower rows of coils, from 0 to 360°. Four figures of merit, constructed based on the MARS-F computations, are used to determine the optimal coil phasing. The modelled results, taking into account the plasma response, agree well with the experimental observations in terms of the coil phasing for both the mitigated and the suppressed ELM cases in EAST experiments. This study provides a crucial confirmation of the role of the plasma edge peeling response in ELM control, complementing similar studies carried out for other tokamak devices.
Generation of a novel, multi-stage, progressive, and transplantable model of plasma cell neoplasms
Asai, Takashi; Hatlen, Megan A.; Lossos, Chen; Ndiaye-Lobry, Delphine; Deblasio, Anthony; Murata, Kazunori; Fleisher, Martin; Cortizas, Elena M.; Verdun, Ramiro E.; Petrini, John; Nimer, Stephen D.
2016-01-01
Multiple myeloma is a plasma cell neoplasm with an extremely variable clinical course. Animal models are needed to better understand its pathophysiology and for preclinical testing of potential therapeutic agents. Hematopoietic cells expressing the hypermorphic Rad50s allele show hematopoietic failure, which can be mitigated by the lack of a transcription factor, Mef/Elf4. However, we find that 70% of Mef−/−Rad50s/s mice die from multiple myeloma or other plasma cell neoplasms. These mice initially show an abnormal plasma cell proliferation and monoclonal protein production, and then develop anemia and a decreased bone mineral density. Tumor cells can be serially transplanted and according to array CGH and whole exome sequencing, the pathogenesis of plasma cell neoplasms in these mice is not linked to activation of a specific oncogene, or inactivation of a specific tumor suppressor. This model recapitulates the systemic manifestations of human plasma cell neoplasms, and implicates cooperativity between the Rad50s and Mef/Elf4 pathways in initiating myelomagenic mutations that promote plasma cell transformation. PMID:26961797
Modeling the Enceladus Plasma and Neutral Torus in Saturn's Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Jia, Yingdong; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.
2010-10-01
Saturn's moon Enceladus, produces hundreds of kilograms of water vapor every second. These water molecules form a neutral torus which is comparable to the Io torus in the Jovian system. These molecules become ionized producing a plasma disk in the inner magnetosphere of Saturn which exchanges momentum with the "corotating” magnetospheric plasma. To balance the centripetal force of this plasma disk, Saturn's magnetic field is stretched in the radial direction and to accelerate the azimuthal speed to corotational values, the field is stretched in the azimuthal direction. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance, causing plasma flows in the radial direction. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we develop a global model of the inner magnetosphere of Saturn in an attempt to reproduce such processes.
NASA Technical Reports Server (NTRS)
Englert, G. W.; Patch, R. W.; Reinmann, J. J.
1978-01-01
A plasma model, previously developed to interpret neutral-particle analyzer measurements on E x B heating devices, is adapted to analyze Doppler broadened charge-exchange-neutral lines measured by an optical monochromator. Comparison of theoretical with experimental results indicates that azimuthal drift as well as cyclotron motion are quite influential in determining line shapes and widths, and thus important in temperature determination, even when the monochromator line of sight is intersecting the plasma axis of symmetry. At this central sighting position, however, results are quite insensitive to radial ion density distribution when time lag between the charge-exchange-excitation events and emission is neglected. Line shapes and widths obtained by sighting across chords of plasma at various distances from the plasma axis of symmetry indicate a strong dependence on time lag.
ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma
NASA Astrophysics Data System (ADS)
Smirnov, Boris M.
2009-06-01
The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.
Laser induced plasma on copper target, a non-equilibrium model
Oumeziane, Amina Ait Liani, Bachir; Parisse, Jean-Denis
2014-02-15
The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355 nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.
Using In Situ and Remote Sensing Data to Model the Plasma Flow throughout the Heliosphere
NASA Astrophysics Data System (ADS)
Kim, T. K.; Pogorelov, N. V.; Arge, C. N.; Jackson, B. V.; Kryukov, I.; Manoharan, P. K.; Tropf, D.; Yu, H. S.; Zank, G. P.
2015-12-01
The solar wind is a turbulent medium with physical properties fluctuating on multiple scales. We model three-dimensional solar wind plasma flow using our own software, Multi-Scale Fluid-Kinetic Simulation Suite, which, in addition to the thermal solar wind plasma, takes into account charge exchange of solar wind protons with interstellar neutral atoms and treats nonthermal ions (pickup ions, PUIs) born during this process as a separate fluid. Additionally, our model includes a description of turbulence generated by PUIs. For this investigation, we run our model using plasma and turbulence parameters from OMNI data as time-dependent boundary conditions at 1 AU for the Reynolds-averaged MHD equations and investigate the evolution of plasma and turbulent fluctuations along the trajectory of the New Horizons spacecraft, which recently passed by Pluto nearly ten years after launch. We also present solar wind simulations starting at 0.1 AU outwards using interplanetary scintillation data as boundary conditions. Simulations are compared with OMNI and STEREO data. The purpose of this study is to create a time-dependent solar wind model capable of reproducing the plasma flow, magnetic field, and turbulence along the trajectories of Solar Probe Plus and Solar Orbiter.
Active and passive Brownian motion of charged particles in two-dimensional plasma models
Dunkel, Joern; Ebeling, Werner; Trigger, Sergey A.
2004-10-01
The dynamics of charged Coulomb grains in a plasma is numerically and analytically investigated. Analogous to recent experiments, it is assumed that the grains are trapped in an external parabolic field. Our simulations are based on a Langevin model, where the grain-plasma interaction is realized by a velocity-dependent friction coefficient and a velocity-independent diffusion coefficient. In addition to the ordinary case of positive (passive) friction between grains and plasma, we also discuss the effects of negative (active) friction. The latter case seems particularly interesting, since recent analytical calculations have shown that friction coefficients with negative parts may appear in some models of ion absorption by grains as well as in models of ion-grain scattering. Such negative friction may cause active Brownian motions of the grains. As our computer simulations show, the influence of negative friction leads to the formation of various stationary modes (rotations, oscillations), which, to some extent, can also be estimated analytically.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
NASA Astrophysics Data System (ADS)
Hamlin, Nathaniel D.; Seyler, Charles E.
2014-12-01
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Callisto plasma interactions: Hybrid modeling including induction by a subsurface ocean
NASA Astrophysics Data System (ADS)
Lindkvist, Jesper; Holmström, Mats; Khurana, Krishan K.; Fatemi, Shahab; Barabash, Stas
2015-06-01
By using a hybrid plasma solver (ions as particles and electrons as a fluid), we have modeled the interaction between Callisto and Jupiter's magnetosphere for variable ambient plasma parameters. We compared the results with the magnetometer data from flybys (C3, C9, and C10) by the Galileo spacecraft. Modeling the interaction between Callisto and Jupiter's magnetosphere is important to establish the origin of the magnetic field perturbations observed by Galileo and thought to be related to a subsurface ocean. Using typical upstream magnetospheric plasma parameters and a magnetic dipole corresponding to the inductive response inside the moon, we show that the model results agree well with observations for the C3 and C9 flybys, but agrees poorly with the C10 flyby close to Callisto. The study does support the existence of a subsurface ocean at Callisto.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D.; Seyler, Charles E.
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas
NASA Astrophysics Data System (ADS)
Chernyshov, A. A.; Karelsky, K. V.; Petrosyan, A. S.
2014-05-01
A state-of-the-art review is given of research by computing physics methods on compressible magnetohydrodynamic turbulence in space plasmas. The presence of magnetic fields and compressibility in this case makes space plasma turbulence much less amenable to direct numerical simulations than a neutral incompressible fluid. The large eddy simulation method is discussed, which was developed as an alternative to direct modeling and which filters the initial magnetohydrodynamic equations and uses the subgrid-scale modeling of universal small-scale turbulence. A detailed analysis is made of both the method itself and different subgrid-scale parametrizations for compressible magnetohydrodynamic turbulent flows in polytropic and heat-conducting plasmas. The application of subgrid-scale modeling to study turbulence in the local interstellar medium and the scale-invariant spectra of magnetohydrodynamic turbulence are discussed.
Nash, Sarah H; Kristal, Alan R; Hopkins, Scarlett E; Boyer, Bert B; O'Brien, Diane M
2014-01-01
Objectively measured biomarkers will help to resolve the controversial role of sugar intake in the etiology of obesity and related chronic diseases. We recently validated a dual-isotope model based on RBC carbon (δ(13)C) and nitrogen (δ(15)N) isotope ratios that explained a large percentage of the variation in self-reported sugar intake in a Yup'ik study population. Stable isotope ratios can easily be measured from many tissues, including RBCs, plasma, and hair; however, it is not known how isotopic models of sugar intake compare among these tissues. Here, we compared self-reported sugar intake with models based on RBCs, plasma, and hair δ(13)C and δ(15)N in Yup'ik people. We also evaluated associations of sugar intake with fasting plasma glucose δ(13)C. Finally, we evaluated relations between δ(13)C and δ(15)N values in hair, plasma, RBCs, and fasting plasma glucose to allow comparison of isotope ratios across tissue types. Models using RBCs, plasma, or hair isotope ratios explained similar amounts of variance in total sugar, added sugar, and sugar-sweetened beverage intake (∼53%, 48%, and 34%, respectively); however, the association with δ(13)C was strongest for models based on RBCs and hair. There were no associations with fasting plasma glucose δ(13)C (R(2) = 0.03). The δ(13)C and δ(15)N values of RBCs, plasma, and hair showed strong, positive correlations; the slopes of these relations did not differ from 1. This study demonstrates that RBC, plasma, and hair isotope ratios predict sugar intake and provides data that will allow comparison of studies using different sample types.
Inductive pulsed plasma thruster model with time-evolution of energy and state properties
NASA Astrophysics Data System (ADS)
Polzin, K. A.; Sankaran, K.; Ritchie, A. G.; Reneau, J. P.
2013-11-01
A model for pulsed inductive plasma acceleration is presented that consists of a set of circuit equations coupled to both a one-dimensional (1D) equation of motion and an equation governing the partitioning of energy. The latter two equations are obtained for the plasma current sheet by treating it as a single element of finite volume and integrating the governing equations over that volume. The integrated terms are replaced where necessary by physically equivalent approximations that are calculated through the solution of other parts of the governing equation set. The model improves upon previous 1D performance models by permitting the time-evolution of the temperature consistent with the time-varying energy flux into the plasma. The plasma state properties are also more realistically modelled and evolved in time, allowing for the tailoring of the model to different gases that may be chosen as propellants. Computational results for argon propellant are presented to demonstrate the efficacy of the model. The model produces a result where efficiency is maximized at a given value of the electrodynamic scaling term known as the dynamic impedance parameter. The scaling of different energy sinks as a function of the dynamic impedance parameter provides insight into the global energy partitioning in these types of accelerators. Results from the present model deviate from the previous version where temperature is selected as an input without regard for the energy that would be deposited to heat the gas to that temperature. Qualitatively and quantitatively, the model predicts specific impulse values that compare favourably with those measured for two separate inductive pulsed plasma thrusters. Efficiency is underpredicted in the regime where data are available, but the trends in the data and simulations follow similar trajectories that appear to be converging towards a predicted peak efficiency as the dynamic impedance parameter is increased.
Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids
Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai
2006-09-26
We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes.
Model of the Plasma Potential Distribution in the Plume of a Hollow Cathode
NASA Technical Reports Server (NTRS)
Katz, Ira; Mikellides, Ioannis G.; Goebel, Dan M.
2004-01-01
In this paper we present results from a new model of the plasma potentials in the plume just downstream of the hollow cathode keeper. We examine the electron drift velocity as the hollow cathode plasma and neutral gas expand downstream of the keeper. If the drift velocity exceeds the thermal velocity a double layer potential structure develops that is the source of hot electrons. Ions are accelerated upstream through the double layer. The locations of the double layers are calculated using a simple model. It is shown that as the cathode gas flow increases, the location of the double layer moves farther downstream.
MHD Model Results of Solar Wind Plasma Interaction with Mars and Comparison with MAVEN Observations
NASA Technical Reports Server (NTRS)
Ma, Y. J.; Russell, C. T.; Nagy, A. F.; Toth, G.; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.
2015-01-01
The crustal remnant field on Mars rotates constantly with the planet, varying the magnetic field configuration interacting with the solar wind. It has been found that ion loss rates slowly vary with the subsolar longitude, anticorrelating with the intensity of the dayside crustal field source, with some time delay, using a time-dependent multispecies MHD model. In this study, we investigate in detail how plasma properties are influenced locally by the crustal field and its rotation. Model results will be compared in detail with plasma observations from MAVEN.
Quasiclassical approach to partition functions of ions in a chemical plasma model
Shpatakovskaya, G. V.
2008-03-15
The partition functions of ions that are used in a chemical plasma model are estimated by the Thomas-Fermi free ion model without reference to empirical data. Different form factors limiting the number of the excitation levels taken into account are considered, namely, those corresponding to the average atomic radius criterion, the temperature criterion, and the Planck-Brillouin-Larkin approximation. Expressions are presented for the average excitation energy and for the temperature and volume derivatives of the partition function. A comparison with the results of the empirical approach is made for the aluminum and iron plasmas.
A simplified, numerically verified model for the global plasma reaction on a local cooling
Tokar, M. Z.; Koltunov, M.
2013-10-15
An analytical model for heat losses along a magnetic surface to its small region cooled down abruptly to a very low temperature is deduced by applying a principle of minimum entropy production and verified by comparing with the results obtained by solving non-stationary two-dimensional heat conduction equation numerically. The model is elaborated further by taking into account heat flux limit and the plasma density modification due to the particle convection along the magnetic surface, triggered by the plasma pressure imbalance arising by the local cooling.
Quantitative modeling of ICRF antennas with integrated time domain RF sheath and plasma physics
Smithe, David N.; D'Ippolito, Daniel A.; Myra, James R.
2014-02-12
Significant efforts have been made to quantitatively benchmark the sheath sub-grid model used in our time-domain simulations of plasma-immersed antenna near fields, which includes highly detailed three-dimensional geometry, the presence of the slow wave, and the non-linear evolution of the sheath potential. We present both our quantitative benchmarking strategy, and results for the ITER antenna configuration, including detailed maps of electric field, and sheath potential along the entire antenna structure. Our method is based upon a time-domain linear plasma model, using the finite-difference electromagnetic Vorpal/Vsim software. This model has been augmented with a non-linear rf-sheath sub-grid model, which provides a self-consistent boundary condition for plasma current where it exists in proximity to metallic surfaces. Very early, this algorithm was designed and demonstrated to work on very complicated three-dimensional geometry, derived from CAD or other complex description of actual hardware, including ITER antennas. Initial work with the simulation model has also provided a confirmation of the existence of propagating slow waves in the low density edge region, which can significantly impact the strength of the rf-sheath potential, which is thought to contribute to impurity generation. Our sheath algorithm is based upon per-point lumped-circuit parameters for which we have estimates and general understanding, but which allow for some tuning and fitting. We are now engaged in a careful benchmarking of the algorithm against known analytic models and existing computational techniques to insure that the predictions of rf-sheath voltage are quantitatively consistent and believable, especially where slow waves share in the field with the fast wave. Currently in progress, an addition to the plasma force response accounting for the sheath potential, should enable the modeling of sheath plasma waves, a predicted additional root to the dispersion, existing at the
A Coupled Plasma Dynamics and Gas Flow Model for Semiconductor Processing
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)
1998-01-01
A continuum modeling approach by self-consistently coupling plasma dynamics and gas flow will be presented for the analysis of high density plasma reactors. Experimental data shows that gas flow distribution affects the etch rate uniformity even at low pressures (6-20 mTorr) and flow rates (20-70 sccm). This study will investigate the effects of gas flow and gas energy on bulk plasma densities and temperatures using a continuum model. The model solves multidimensional equations of mass balance for neutrals and ions, gas momentum, separate energy equations for electrons and neutrals and Maxwell's equations for power coupling. A test case of N2 plasma in a 300mm TCP etch reactor, for which hybrid model and Langmuir probe data are available, is chosen for this analysis. Our preliminary results show that modeling gas flow and energy improves the predictions of electron density and its spatial variation in the reactor when compared with the experimental data. The aim of this study is to identify the operating conditions for the TCP reactor when a self-consistent modeling of gas flow is important.
A Nanoflare-based Cellular Automaton Model and the Observed Properties of the Coronal Plasma
NASA Astrophysics Data System (ADS)
López Fuentes, Marcelo; Klimchuk, James A.
2016-09-01
We use the cellular automaton model described in López Fuentes & Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode/XRT and SDO/AIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have amplitudes of 10%–15% both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values.
A Nanoflare-based Cellular Automaton Model and the Observed Properties of the Coronal Plasma
NASA Astrophysics Data System (ADS)
López Fuentes, Marcelo; Klimchuk, James A.
2016-09-01
We use the cellular automaton model described in López Fuentes & Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode/XRT and SDO/AIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have amplitudes of 10%-15% both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values.
NASA Astrophysics Data System (ADS)
Petrović, Z. Lj; Dujko, S.; Marić, D.; Malović, G.; Nikitović, Ž.; Šašić, O.; Jovanović, J.; Stojanović, V.; Radmilović-Rađenović, M.
2009-10-01
In this review paper, we discuss the current status of the physics of charged particle swarms, mainly electrons, having plasma modelling in mind. The measurements of the swarm coefficients and the availability of the data are briefly discussed. We try to give a summary of the past ten years and cite the main reviews and databases, which store the majority of the earlier work. The need for reinitiating the swarm experiments and where and how those would be useful is pointed out. We also add some guidance on how to find information on ions and fast neutrals. Most space is devoted to interpretation of transport data, analysis of kinetic phenomena, and accuracy of calculation and proper use of transport data in plasma models. We have tried to show which aspects of kinetic theory developed for swarm physics and which segments of data would be important for further improvement of plasma models. Finally, several examples are given where actual models are mostly based on the physics of swarms and those include Townsend discharges, afterglows, breakdown and some atmospheric phenomena. Finally we stress that, while complex, some of the results from the kinetic theory of swarms and the related phenomenology must be used either to test the plasma models or even to bring in new physics or higher accuracy and reliability to the models.
Divol, L; Froula, D H; Meezan, N; Berger, R; London, R A; Michel, P; Glenzer, S H
2007-09-27
We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA [1]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d [2]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, fluid LPI theory reproduces the SBS thresholds and absolute reflectivity values and the absence of measurable SRS. This good agreement was made possible by the recent increase in computing power routinely available for such simulations.
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations
Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Huijsmans, G.; Pamela, S.; Chapman, I.; Kirk, A.; Thornton, A.; Cahyna, P.
2013-10-15
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.
State-of-Art Empirical Modeling of Ring Current Plasma Pressure
NASA Astrophysics Data System (ADS)
Yue, C.; Ma, Q.; Wang, C. P.; Bortnik, J.; Thorne, R. M.
2015-12-01
The plasma pressure in the inner magnetosphere plays a key role in plasma dynamics by changing magnetic field configurations and generating the ring current. In this study, we present our preliminary results of empirically constructing 2D equatorial ring current pressure and pressure anisotropy spatial distributions controlled by Dst based on measurements from two particle instruments (HOPE and RBSPICE) onboard Van Allen Probes. We first obtain the equatorial plasma perpendicular and parallel pressures for different species including H+, He+, O+ and e- from 20 eV to ~1 MeV, and investigate their relative contributions to the total plasma pressure and pressure anisotropy. We then establish empirical equatorial pressure models within ~ 6 RE using a state-of-art machine learning technique, Support Vector Regression Machine (SVRM). The pressure models predict equatorial perpendicular and parallel plasma thermal pressures (for each species and for total pressures) and pressure anisotropy at any given r, MLT, Bz/Br (equivalent Z distance), and Dst within applicable ranges. We are currently validating our model predictions and investigating how the ring current pressure distributions and the associated pressure gradients vary with Dst index.
Modeling of gas dynamics for a laser-generated plasma: propagation into low-pressure gases
Le; Zeitoun; Parisse; Sentis; Marine
2000-09-01
The physical phenomena involved during three-dimensional axisymmetric laser-induced plasma expansion into background gas are numerically studied. For this purpose, a multispecies hydrodynamic model is developed which considers the effects of mass and ambipolar diffusions, thermal conduction, viscosity, and nonequilibrium conditions for ionization. This model is applied to describe quantitatively the Si plasma plume expansion into Ar or He gases. It is shown that the mechanism of plasma expansion depends critically on both the pressure and mass of the background gas. The shock front expansion is found to be strongly correlated with ion dynamics. A pronounced difference between heavy-particle and electron temperatures indicates a persistent lack of equilibrium between the heavy particle and the electron in the plasma plume expansion. The Si atoms of the rarefied plume are essentially driven by the backward-moving background gas as a result of a mass diffusion process. It is also noted that the diffusion processes are only important in the last expansion stage, and are less significant in the first stage. Therefore, it is shown that a computation which does not include diffusion effects (Euler equations) can adequately describe only the earliest stage of plasma expansion into background gas. The ability of the Navier-Stokes hydrodynamic multispecies model to predict the key role of the background gas type (Ar, He) and pressure is demonstrated.
NASA Astrophysics Data System (ADS)
Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris
2015-11-01
A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.
Parametric Study of Plasma Torch Operation Using a MHD Model Coupling the Arc and Electrodes
NASA Astrophysics Data System (ADS)
Alaya, M.; Chazelas, C.; Vardelle, A.
2016-01-01
Coupling of the electromagnetic and heat transfer phenomena in a non-transferred arc plasma torch is generally based on a current density profile and a temperature imposed on the cathode surface. However, it is not possible to observe the current density profile experimentally and so the computations are grounded on an estimation of current distribution at cathode tip. To eliminate this boundary condition and be able to predict the arc dynamics in the plasma torch, the cathode was included in the computational domain, the arc current was imposed on the rear surface of the cathode, and the electromagnetism and energy conservation equations for the fluid and the electrode were coupled and solved. The solution of this system of equations was implemented in a CFD computer code to model various plasma torch operating conditions. The model predictions for various arc currents were consistent and indicated that such a model could be applied with confidence to plasma torches of different geometries, such as cascaded-anode plasma torches.
NASA Astrophysics Data System (ADS)
Cenian, Adam; Chernukho, Andrey; Rachubiński, Hubert; Dudeck, Michel
2014-05-01
Hall effect thrusters (HETs) are efficient propulsion devices for the station-keeping of geostationary satellites. However, a further efficiency increase requires better knowledge of plasma and plasma-wall interactions. Electric probes are often used for diagnosing HET plasmas but the existing semi-analytical theories, used for the interpretation of probe characteristics, could only be applied with caution. Therefore, in this work a particle-in-cell model of the Langmuir probe immersed in plasma under conditions corresponding to those of HET plasma is developed. It was found that materials with a predominant elastic contribution to secondary electron emission (SEE) will generally lead to lower power deposition on a surface. In the case of inelastic and true SEE processes, the power deposited on a wall depends on the ratio of the sum of secondary electron energies to the electron impact energy. The axial magnetic field also leads to substantial reduction of power deposition on the probe.
Modeling ultrafast shadowgraphy in laser-plasma interaction experiments
NASA Astrophysics Data System (ADS)
Siminos, E.; Skupin, S.; Sävert, A.; Cole, J. M.; Mangles, S. P. D.; Kaluza, M. C.
2016-06-01
Ultrafast shadowgraphy is a new experimental technique that uses few-cycle laser pulses to image density gradients in a rapidly evolving plasma. It enables structures that move at speeds close to the speed of light, such as laser driven wakes, to be visualized. Here we study the process of shadowgraphic image formation during the propagation of a few cycle probe pulse transversely through a laser-driven wake using three-dimensional particle-in-cell simulations. In order to construct synthetic shadowgrams a near-field snapshot of the ultrashort probe pulse is analyzed by means of Fourier optics, taking into account the effect of a typical imaging setup. By comparing synthetic and experimental shadowgrams we show that the generation of synthetic data is crucial for the correct interpretation of experiments. Moreover, we study the dependence of synthetic shadowgrams on various parameters such as the imaging system aperture, the position of the object plane and the probe pulse delay, duration and wavelength. Finally, we show that time-dependent information from the interaction can be recovered from a single shot by using a broadband, chirped probe pulse and subsequent spectral filtering.
The development of a Krook model for nonlocal transport in laser produced plasmas I. Basic theory
NASA Astrophysics Data System (ADS)
Manheimer, Wallace; Colombant, Denis; Goncharov, Valeri
2008-11-01
We examine the Krook model as a means of quantifying the problem of nonlocal transport of electron energy in laser produced plasmas. The result is an expression for the nonlocal electron energy flux q. The roles of both flux limitation and preheat are clearly delineated. Furthermore, it develops a test for the validity of this model. This is a physics based ``first principles'' model that can be economically incorporated into a fluid simulation.
The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory
NASA Astrophysics Data System (ADS)
Manheimer, Wallace; Colombant, Denis; Goncharov, Valeri
2008-08-01
This paper examines the Krook model as a means of quantifying the problem of nonlocal transport of electron energy in laser produced plasmas. The result is an expression for the nonlocal electron energy flux q. The roles of both flux limitation and preheat are clearly delineated. Furthermore, it develops a test for the validity of this model. This is a physics based, "first principles" model that can be economically incorporated into a fluid simulation.
Reassessment of the body forces in a He atmospheric-pressure plasma jet: a modelling study
NASA Astrophysics Data System (ADS)
Hasan, M. I.; Bradley, J. W.
2016-02-01
Using a fully self-consistent fluid model, the impact of the plasma on the background gas flow in an atmospheric-pressure helium plasma jet (He-APPJ) impinging ambient air is investigated through determination of the electrohydrodynamic forces (EHD forces) and gas heating effects. Three gas flow compositions have been considered: a pure helium flow, a helium flow with 2% O2 admixture, and a helium flow with 2% N2 admixture. In all cases, results show that the plasma mainly affects background flow through localized heating, which creates a pressure gradient force acting to increase the flow velocity at the exit of the capillary by approximately 1 to 3 ms-1. The EHD forces on the other hand disturb the flow only slightly. Discharges with O2 and N2 admixtures exhibit increased gas heating and EHD forces. This is attributed to the extra rotational and vibrational excitation states available, coupling electron energy to the background gas. The findings here indicate that a significant increase in the Reynold number as a result of the presence of the plasma is an unlikely explanation for plasma-induced turbulence, observed in atmospheric plasma jet discharges.
A penalization technique to model plasma facing components in a tokamak with temperature variations
Paredes, A.; Bufferand, H.; Ciraolo, G.; Schwander, F.; Serre, E.; Ghendrih, P.; Tamain, P.
2014-10-01
To properly address turbulent transport in the edge plasma region of a tokamak, it is mandatory to describe the particle and heat outflow on wall components, using an accurate representation of the wall geometry. This is challenging for many plasma transport codes, which use a structured mesh with one coordinate aligned with magnetic surfaces. We propose here a penalization technique that allows modeling of particle and heat transport using such structured mesh, while also accounting for geometrically complex plasma-facing components. Solid obstacles are considered as particle and momentum sinks whereas ionic and electronic temperature gradients are imposed on both sides of the obstacles along the magnetic field direction using delta functions (Dirac). Solutions exhibit plasma velocities (M=1) and temperatures fluxes at the plasma–wall boundaries that match with boundary conditions usually implemented in fluid codes. Grid convergence and error estimates are found to be in agreement with theoretical results obtained for neutral fluid conservation equations. The capability of the penalization technique is illustrated by introducing the non-collisional plasma region expected by the kinetic theory in the immediate vicinity of the interface, that is impossible when considering fluid boundary conditions. Axisymmetric numerical simulations show the efficiency of the method to investigate the large-scale transport at the plasma edge including the separatrix and in realistic complex geometries while keeping a simple structured grid.
Globus-M plasma edge modeling with B2SOLPS5.2 code
NASA Astrophysics Data System (ADS)
Vekshina, E.; Senichenkov, I.; Rozhansky, V.; Kaveeva, E.; Khromov, N.; Kurskiev, G.; Patrov, M.; Globus-M team
2016-08-01
The edge plasma of five Globus-M discharges was modeled by the B2SOLPS5.2 code. Plasma current varied in 114–198 kA range, and all discharges were in the H-mode. The modeled scrape-off layer (SOL) width appeared to be inversely proportional to the plasma current. Such a relation is observed in many other tokamaks. Heat flux to the outer divertor target and radiation power was examined for these discharges. Radiation was found to be responsible for 40% of the energy loss. Energy flux to the low outer divertor target was about 1/3 of the energy loss in the single-null low X-point discharges.
Influence of atomic modeling on integrated simulations of laser-produced Au plasmas.
Frank, Yechiel; Raicher, Erez; Ehrlich, Yosi; Hurvitz, Gilad; Shpilman, Zeev; Fraenkel, Moshe; Zigler, Arie; Henis, Zohar
2015-11-01
Time-integrated x-ray emission spectra of laser-irradiated Au disks were recorded using transmission grating spectrometry, at laser intensities of 10(13) to 10(14) W/cm(2). Radiation-hydrodynamics and atomic physics calculations were used to simulate the emitted spectra. Three major plasma regions can be recognized: the heat wave, the corona, and an intermediate region connecting them. An analysis of the spectral contribution of these three plasma regions to the integrated recorded spectrum is presented. The importance of accurate atomic modeling of the intermediate plasma region, between the corona and the heat wave, is highlighted. The influence of several aspects of the atomic modeling is demonstrated, in particular multiply-excited atomic configurations and departure from local thermal equilibrium.
NASA Astrophysics Data System (ADS)
Underwood, Thomas; Loebner, Keith; Cappelli, Mark
2015-11-01
Detailed measurements of the thermodynamic and electrodynamic plasma state variables within the plume of a pulsed plasma accelerator are presented. A quadruple Langmuir probe operating in current-saturation mode is used to obtain time resolved measurements of the plasma density, temperature, potential, and velocity along the central axis of the accelerator. This data is used in conjunction with a fast-framing, intensified CCD camera to develop and validate a model predicting the existence of two distinct types of ionization waves corresponding to the upper and lower solution branches of the Hugoniot curve. A deviation of less than 8% is observed between the quasi-steady, one-dimensional theoretical model and the experimentally measured plume velocity. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.
NASA Technical Reports Server (NTRS)
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Modelling the transport of deuterium and tritium neutral particles in a divertor plasma
NASA Astrophysics Data System (ADS)
Tokar, M. Z.; Kotov, V.
2012-10-01
A fluid model for transport of deuterium and tritium atoms in two-dimensional geometry of a poloidal divertor is elaborated by taking into account the coupling of both isotopes through the processes of cross-charge-exchange. Calculations are performed for the plasma parameters predicted with the code package B2-EIRENE (SOLPS4.3) for the divertor region in ITER. The results demonstrate that the transparency of the scrape-off layer for neutral particles generated by recycling on target plates and recombination of electrons and ions in the plasma volume can be significantly different for deuterium and tritium atoms. This difference has to be taken into account by considering the global particle balances in a reactor. The numerical approach applied for calculations is verified by comparing with an analytical model elaborated for the case of plasma parameters homogeneous in the divertor domain.
Globus-M plasma edge modeling with B2SOLPS5.2 code
NASA Astrophysics Data System (ADS)
Vekshina, E.; Senichenkov, I.; Rozhansky, V.; Kaveeva, E.; Khromov, N.; Kurskiev, G.; Patrov, M.; Globus-M Team
2016-08-01
The edge plasma of five Globus-M discharges was modeled by the B2SOLPS5.2 code. Plasma current varied in 114-198 kA range, and all discharges were in the H-mode. The modeled scrape-off layer (SOL) width appeared to be inversely proportional to the plasma current. Such a relation is observed in many other tokamaks. Heat flux to the outer divertor target and radiation power was examined for these discharges. Radiation was found to be responsible for 40% of the energy loss. Energy flux to the low outer divertor target was about 1/3 of the energy loss in the single-null low X-point discharges.
Modeling carbon nanotube growth on the catalyst-substrate surface subjected to reactive plasma [
Tewari, Aarti; Sharma, Suresh C.
2014-06-15
The paper presents a theoretical model to study the growth of the carbon nanotube (CNT) on the catalyst substrate surface subjected to reactive plasma. The charging rate of the CNT, kinetics of electron, ions and neutral atoms, the growth rate of the CNT because of diffusion and accretion of ions on the catalyst nanoparticle inclusion of the issue of the plasma sheath is undertaken in the present model. Numerical calculations on the effect of ion density and temperature and the substrate bias on the growth of the CNT have been carried out for typical glow discharge plasma parameters. It is found that the height of CNT increases with the ion density of carbon ions and radius of CNT decreases with hydrogen ion density. The substrate bias also affects the growth rate of the CNT. The field emission characteristics from the CNTs can be analyzed from the results obtained.
A superconfiguration model for broadband spectroscopy of non-LTE plasmas
NASA Astrophysics Data System (ADS)
Peyrusse, O.
2000-10-01
We present an atomic physics package called AVERROÈS/TRANSPEC for studying plasma spectroscopy of complex L-, M-shell emitters or even core-excited multielectron K-shell emitters. The model, which is also intended to give some insights on ionization properties of M-shell ionized plasmas, is divided into two parts. The first part (AVERROÈS) is based on the superconfiguration concept and on the supertransition array method. It generates superconfiguration average-energies, collisional and radiative rates needed for a calculation of population kinetics. It also calculates the statistical shift and width associated with each possible radiative electron jump between selected superconfigurations. All the previously mentioned quantities are stored on files readable by a multicell time-dependent collisional-radiative model (TRANSPEC) that calculates population kinetics and synthetic emission spectra. This last code can be employed with a hydrodynamics code to provide simulated x-ray ouputs of non-steady-state inhomogeneous plasmas.
Fluid modelling of a packed bed dielectric barrier discharge plasma reactor
NASA Astrophysics Data System (ADS)
Van Laer, Koen; Bogaerts, Annemie
2016-02-01
A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.
A Model for Plasma Transport in a Corotation-Dominated Magnetosphere.
NASA Astrophysics Data System (ADS)
Pontius, Duane Henry, Jr.
1988-06-01
The gross structures of the magnetospheres of the outer planets are decided by processes quite different from those predominant in that of the earth. The terrestrial plasmapause, the boundary beyond which plasma motion is principally determined by magnetospheric interaction with the solar wind, is typically inside geosynchronous orbit. Within the plasmasphere, rotational effects are present, but gravity exceeds the centrifugal force of corotation. In contrast, the Jovian plasmasphere extends to a distance at least twenty times farther than synchronous orbit, affording a large region where rotational effects are expected to he clearly manifest (Brice and Ioannidis, 1970). The goal of this thesis is to develop an appropriate theoretical model for treating the problem of plasma transport in a corotation dominated plasmasphere. The model presented here is intended to describe the radial transport of relatively cold plasma having an azimuthally uniform distribution in a dipolar magnetic field. The approach is conceptually similar to that of the radial diffusion model in that small scale motions are examined to infer global consequences, but the physical understanding of those small scale motions is quite different. In particular, discrete flux tubes of small cross section are assumed to move over distances large compared to their widths. The present model also differs from the corotating convection model by introducing a mechanism whereby the conservation of flux tube content along flowlines is violated. However, it is quite possible that a global convection pattern co -exists with the motions described here, leading to longitudinal asymmetries in the plasma distribution.
Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor
NASA Astrophysics Data System (ADS)
Deng, Hao; Li, Z.; Levin, D.; Gochberg, L.
2011-05-01
Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Optical and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation. The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar
Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor
Deng Hao; Li, Z.; Levin, D.; Gochberg, L.
2011-05-20
Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Optical and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar
NASA Astrophysics Data System (ADS)
Gunár, S.; Mackay, D. H.
2016-07-01
Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.
Kinetic extensions of magnetohydrodynamic models for axisymmetric toroidal plasmas
Cheng, C.Z.
1989-04-01
A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /Psi/ direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab.
Eck, H. J. N. van; Koppers, W. R.; Rooij, G. J. van; Goedheer, W. J.; Cardozo, N. J. Lopes; Kleyn, A. W.; Engeln, R.; Schram, D. C.
2009-03-15
The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial magnetic field. In this way, the neutrals are prevented to reach the target region. The neutral flux to the target must be lower than the plasma flux to enable ITER relevant plasma-surface interaction (PSI) studies. It is therefore essential to control the neutral gas dynamics. The DSMC method was used to model the expansion of a hot gas in a low pressure vessel where a small discrepancy in shock position was found between the simulations and a well-established empirical formula. Two stage differential pumping was modeled and applied in the linear plasma devices Pilot-PSI and PLEXIS. In Pilot-PSI a factor of 4.5 pressure reduction for H{sub 2} has been demonstrated. Both simulations and experiments showed that the optimum skimmer position depends on the position of the shock and therefore shifts for different gas parameters. The shape of the skimmer has to be designed such that it has a minimum impact on the shock structure. A too large angle between the skimmer and the forward direction of the gas flow leads to an influence on the expansion structure. A pressure increase in front of the skimmer is formed and the flow of the plasma beam becomes obstructed. It has been shown that a skimmer with an angle around 53 deg. gives the best performance. The use of skimmers is implemented in the design of the large linear plasma generator Magnum-PSI. Here, a three stage differentially pumped vacuum system is used to reach low enough neutral pressures near the target, opening a door to PSI research in the ITER relevant regime.
Mariano, R N; Turino, L N; Cabrera, M I; Scándolo, D E; Maciel, M G; Grau, R J A
2010-10-01
On the basis of pharmacokinetic modeling, this study provides some insights into predicting in vivo plasma progesterone concentrations when using bovine intravaginal inserts for systemic progesterone delivery. More significantly, this contribution is the first attempt to build a simple pharmacokinetic model that links plasma progesterone concentrations with the hormone released from bovine intravaginal inserts. After evaluating three rival pharmacokinetic models and considering some phenomena involved in the intravaginal administration of progesterone, a primary pharmacokinetic model having a good data fitting capability with only two adjustable parameters is proposed to the above mentioned task. Kinetic parameters are given for lactating Holstein dairy cows with two levels of daily milk yields; and non-pregnant, non-lactating Holstein-Friesian cattle. Model predictions indicate the occurrence of a preferential distribution of the intravaginally administered progesterone dose through a first uterine pass effect.
Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2001-01-01
Etching of semiconductor materials is reliant on plasma properties. Quantities such as ion and neutral fluxes, both in magnitude and in direction, are often determined by reactor geometry (height, radius, position of the coils, etc.) In order to obtain accurate etching profiles, one must also model the plasma as a whole to obtain local fluxes and distributions. We have developed a set of three models that simulates C12 plasmas for etching of silicon, ion and neutral trajectories in the plasma, and feature profile evolution. We have found that the location of the peak in the ion densities in the reactor plays a major role in determining etching uniformity across the wafer. For a stove top coil inductively coupled plasma (ICP), the ion density is peaked at the top of the reactor. This leads to nearly uniform neutral and ion fluxes across the wafer. A side coil configuration causes the ion density to peak near the sidewalls. Ion fluxes are thus greater toward the wall's and decrease toward the center. In addition, the ions bombard the wafer at a slight angle. This angle is sufficient to cause slanted profiles, which is highly undesirable.
Three species one-dimensional kinetic model for weakly ionized plasmas
NASA Astrophysics Data System (ADS)
Gonzalez, J.; Donoso, J. M.; Tierno, S. P.
2016-06-01
A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi-analytical method feasibility accounts for non-linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.
Comparison between modeled and experimental emission rates in ASTRAL argon plasmas.
NASA Astrophysics Data System (ADS)
Munoz, J.; Boivin, R.; Gardner, A.; Kamar, O.; Loch, S.; Ballance, C.
2007-11-01
Argon emission rate coefficients are measured in the ASTRAL helicon plasma source using a 0.33 m scanning monochromator and a CCD camera. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 - 10^13 cm-3 and Te = 2 - 10 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A rf compensated Langmuir probe is used to measure Te and ne. In this experiment Ar I, Ar II and Ar III transitions are monitored as a function of Te while ne is kept constant. Thus, experimental emission rates are obtained as a function of Te and compared to theoretical predictions. Using the ADAS suite of codes, we present spectral modeling of Ar plasmas produced in the ASTRAL helicon plasma source. Recent R-matrix electron-impact excitation data are combined with a new R-matrix calculation that includes pseudo-states contributions. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. Good to excellent agreement has been obtained by including Te and ne profiles in the modeling. The experiment-theory comparison confirms that Te is the dominant parameters in determining the emission rate coefficients in these plasmas.
The effect of plasma actuator on the depreciation of the aerodynamic drag on box model
NASA Astrophysics Data System (ADS)
Harinaldi, Budiarso, Julian, James; Rabbani M., N.
2016-06-01
Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.
NASA Astrophysics Data System (ADS)
Barton, Joseph; Wang, Yongquang; Doerner, Russell; Tynan, George
2014-10-01
A simple model for H isotope retention depth profiles in W is developed, which can easily be extended to other plasma facing components (PFCs). This retention model is subsequently used to model how the depth profile changes after H isotope exchange. We calculate how trapping defects in W trap D (or H) inventory as W is being exposed to plasma. The model characterizes each trapping site by a trapping rate and a release rate, where the only free parameters are the distribution of these trapping sites in the material. The filled trap concentrations for each trap type are modeled as a diffusion process because post-mortem D depth profiles indicate that traps are filled well beyond the ion implantation zone (3--4 nm with 100 eV ions). Using this retention model, an isotope exchange rate is formulated. The retention model and isotope exchange rate are compared to low temperature (100 °C) isotope exchange experiments in W with good agreement. Experimental retention profiles were measured using the D(3He,p) α nuclear reaction after plasma treatment. We additionally discuss how a uniform damage profile up to 1 micron in W induced by Cu ions using incident energies of 0.5, 2, and 5 MeV affect retention in W and the retention model.
NASA Astrophysics Data System (ADS)
Mehrling, T. J.; Robson, R. E.; Erbe, J.-H.; Osterhoff, J.
2016-09-01
This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.
Suppression of scar formation in a murine burn wound model by the application of non-thermal plasma
NASA Astrophysics Data System (ADS)
Hoon Lee, Dae; Lee, Jae-Ok; Jeon, Wonju; Choi, Ihn-Geun; Kim, Jun-Sub; Hoon Jeong, Je; Kang, Tae-Cheon; Hoon Seo, Cheong
2011-11-01
Suppression of hypertrophic scar generation in an animal model by treatment with plasma is reported. Contact burn following mechanical stretching was used to induce scar formation in mice. Exposure to the plasma tended to reduce the scar area more rapidly without affecting vitality. The treatment resulted in decreased vascularization in the scar tissue. Plasma-treated scars showed mild decrease in the thickness of hypertrophic tissues as shown by histological assessment. Finally, we showed that plasma treatment induced cell death and reactive oxygen species generation in hypertrophic scar fibroblast. All of the results support that plasma treatment can control scar generation.
Srinivasan, B.; Shumlak, U.
2011-09-15
The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron fluids and Maxwell's equations to describe the electric and magnetic fields. Two-fluid physics becomes significant when the characteristic spatial scales are on the order of the ion skin depth and characteristic time scales are on the order of the ion cyclotron period. The full two-fluid plasma model has disparate characteristic speeds ranging from the ion and electron speeds of sound to the speed of light. Two asymptotic approximations are applied to the full two-fluid plasma to arrive at the Hall-MHD model, namely negligible electron inertia and infinite speed of light. The full two-fluid plasma model and the Hall-MHD model are studied for applications to an electromagnetic plasma shock, geospace environmental modeling (GEM challenge) magnetic reconnection, an axisymmetric Z-pinch, and an axisymmetric field reversed configuration (FRC).
Linear Response Screening Models for Dense, Strongly-Coupled Plasmas
NASA Astrophysics Data System (ADS)
Stanton, Liam; Murillo, Michael; Benage, John; Graziani, Frank
2011-10-01
Needs for accurate EOS and transport models of warm/hot dense matter have increased with the advent of new experiments that are able to more accurately probe these areas of phase-space. Molecular dynamics (MD) methods are often used for this, as they are apt for strongly-coupled systems. Unfortunately, the traditional Coulomb and Yukawa pair-potentials begin to fail at lower temperatures as degeneracy effects of the electron gas arise, and a more sophisticated treatment is required. We present a class of effective ion-ion interactions derived within the framework of linear response, which go beyond screening in the long-wavelength limit. These new potentials not only improve the accuracy of screening effects without contributing to the computational complexity of the model, but they also add physics entirely missing from Yukawa models (such as the onset of Friedel oscillations). Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-490713.
NASA Astrophysics Data System (ADS)
Reddell, Noah
Advances are reported in the three pillars of computational science achieving a new capability for understanding dynamic plasma phenomena outside of local thermodynamic equilibrium. A continuum kinetic model for plasma based on the Vlasov-Maxwell system for multiple particle species is developed. Consideration is added for boundary conditions in a truncated velocity domain and supporting wall interactions. A scheme to scale the velocity domain for multiple particle species with different temperatures and particle mass while sharing one computational mesh is described. A method for assessing the degree to which the kinetic solution differs from a Maxwell-Boltzmann distribution is introduced and tested on a thoroughly studied test case. The discontinuous Galerkin numerical method is extended for efficient solution of hyperbolic conservation laws in five or more particle phase-space dimensions using tensor-product hypercube elements with arbitrary polynomial order. A scheme for velocity moment integration is integrated as required for coupling between the plasma species and electromagnetic waves. A new high performance simulation code WARPM is developed to efficiently implement the model and numerical method on emerging many-core supercomputing architectures. WARPM uses the OpenCL programming model for computational kernels and task parallelism to overlap computation with communication. WARPM single-node performance and parallel scaling efficiency are analyzed with bottlenecks identified guiding future directions for the implementation. The plasma modeling capability is validated against physical problems with analytic solutions and well established benchmark problems.
A hybrid model for computing nonthermal ion distributions in a long mean-free-path plasma
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; McDevitt, Chris; Guo, Zehua; Berk, Herb
2014-10-01
Non-thermal ions, especially the suprathermal ones, are known to make a dominant contribution to a number of important physics such as the fusion reactivity in controlled fusion, the ion heat flux, and in the case of a tokamak, the ion bootstrap current. Evaluating the deviation from a local Maxwellian distribution of these non-thermal ions can be a challenging task in the context of a global plasma fluid model that evolves the plasma density, flow, and temperature. Here we describe a hybrid model for coupling such constrained kinetic calculation to global plasma fluid models. The key ingredient is a non-perturbative treatment of the tail ions where the ion Knudsen number approaches or surpasses order unity. This can be sharply constrasted with the standard Chapman-Enskog approach which relies on a perturbative treatment that is frequently invalidated. The accuracy of our coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space. Although our specific application examples will be drawn from laboratory controlled fusion experiments, the general approach is applicable to space and astrophysical plasmas as well. Work supported by DOE.
Numerical modeling of Large Plasma Device Alfvén wave experiments using AstroGK
NASA Astrophysics Data System (ADS)
Nielson, Kevin D.; Howes, Gregory G.; Tatsuno, Tomoya; Numata, Ryusuke; Dorland, William
2010-02-01
Collisions between counterpropagating Alfvén waves represent the fundamental building block of plasma turbulence, a phenomenon of great importance to a wide variety of fields, from space physics and astrophysics to controlled magnetic fusion. Proposed experiments to study Alfvén wave collisions on the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles, will benefit significantly from numerical modeling capable of reproducing not only the linear dispersive effects of kinetic and inertial Alfvén waves, but also the nonlinear evolution of the Alfvénic turbulence. This paper presents a comparison of linear simulation results using the astrophysical gyrokinetics code, AstroGK, to the measured linear properties of kinetic and inertial Alfvén waves in the LAPD plasma. Results demonstrate that: (1) finite frequency effects due to the ion cyclotron resonance do not prevent satisfactory modeling of the LAPD plasma using gyrokinetic theory; and (2) an advanced collision operator, recently implemented in AstroGK, enables the code to successfully reproduce the collisionally enhanced damping rates of linear waves measured in recent LAPD experiments. These tests justify the use of AstroGK in the modeling of LAPD Alfvén wave experiments and suggest that AstroGK will be a valuable tool in modeling the nonlinear evolution of proposed Alfvén wave collision experiments.
PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL
Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...
Modeling Vertical Plasma Flows in Solar Filament Barbs
NASA Astrophysics Data System (ADS)
Litvinenko, Y.
2003-12-01
Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.
NASA Astrophysics Data System (ADS)
Bailey, James
2008-11-01
Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires a uniform plasma at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x-rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlighter source must be bright enough to overwhelm the plasma self emission. These problems were overcome using the dynamic hohlraum x-ray source at Sandia's Z facility to measure the transmission of a mixed Mg-Fe plasma heated above 150 eV. This capability will also advance opacity science for other high energy density plasmas. This tutorial describes opacity experiment challenges including accurate transmission measurements, plasma diagnostics, and quantitative model comparisons. The solar interior serves as a focal problem and Z facility experiments are used to illustrate the techniques. **In collaboration with C. Iglesias (LLNL), R. Mancini (U. Nevada), J.MacFarlane, I. Golovkin and P. Wang (Prism), C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J.C. Pain (CEA), J. Abdallah Jr. (LANL), and G.A. Rochau and P.W. Lake (Sandia). ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Nitrogen mass transfer models for plasma-based low-energy ion implantation
Zheng, Bocong; Wang, Kesheng; Zhang, Zhipeng; Che, Honglong; Lei, Mingkai
2015-03-15
The nitrogen mass transfer process in plasma-based low-energy ion implantation (PBLEII) is theoretically and experimentally studied in order to explore the process mechanism of PBLEII and therefore to optimize the apparatus design and the process conditions. An electron cyclotron resonance (ECR) microwave discharge generates the nitrogen plasma with a high density of 10{sup 11}–10{sup 12} ions/cm{sup 3}, which diffuses downstream to the process chamber along the divergent magnetic field. The nitrogen ions in the plasma implant into the surface and transport to the matrix of an austenitic stainless steel under the low negative pulsed bias of −2 kV at a process temperature of 400 °C. A global plasma model is used to simulate the ECR microwave plasma discharge for a range of working pressures and microwave powers. The fluid models are adopted to calculate the plasma downstream diffusion, the sheath expansion and the low-energy ion implantation on the surface. A nonlinear kinetic discrete model is established to describe the nitrogen transport in the austenitic stainless steel and the results are compared with the experimental measurements. Under an average implantation current density of 0.3–0.6 mA/cm{sup 2}, the surface nitrogen concentration in the range from 18.5 to 29 at. % is a critical factor for the nitrogen transport in the AISI 304 austenitic stainless steel by PBLEII, which accelerates the implanted nitrogen diffusion inward up to 6–12 μm during a nitriding time of 4 h.
Modeling of laser induced plasma expansion in the presence of non-Maxwellian electrons
Bennaceur-Doumaz, D.; Djebli, M.
2010-07-15
The one-dimensional expansion into vacuum of ion-electron plasma produced by laser ablation is investigated. The ions considered as an ideal fluid are governed by a fluid model where charge quasineutrality is assumed to prevail, while electron density follows a non-Maxwellian distribution. Showing that the expansion can be described by a self-similar solution, the resulting nonlinear Euler equations are solved numerically. It is found that the deviation of the electrons from Maxwellian distribution gives rise to new asymptotic solutions of physical interest affecting the density and velocity of plasma expansion.
Statistical Modeling Studies of Iron Recovery from Red Mud Using Thermal Plasma
NASA Astrophysics Data System (ADS)
Swagat, S. Rath; Archana, Pany; Jayasankar, K.; Ajit, K. Mitra; C. Satish, Kumar; Partha, S. Mukherjee; Barada, K. Mishra
2013-05-01
Optimization studies of plasma smelting of red mud were carried out. Reduction of the dried red mud fines was done in an extended arc plasma reactor to recover the pig iron. Lime grit and low ash metallurgical (LAM) coke were used as the flux and reductant, respectively. 2-level factorial design was used to study the influence of all parameters on the responses. Response surface modeling was done with the data obtained from statistically designed experiments. Metal recovery at optimum parameters was found to be 79.52%.
Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane
2015-08-15
This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence.
The ionospheric source of magnetospheric plasma is not a black box input for global models
NASA Astrophysics Data System (ADS)
Welling, D. T.; Liemohn, M. W.
2016-06-01
Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step toward understanding the role of this plasma source in the magnetosphere. Of the existing approaches, however, few tie the outflowing particle fluxes to magnetospheric conditions in a self-consistent manner. Doing so opens the magnetosphere-ionosphere system to nonlinear mass-energy feedback loops, profoundly changing the behavior of the magnetosphere-ionosphere system. Based on these new results, it is time for the community eschew treating ionospheric outflow as a simple black box source of magnetospheric plasma.
Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX Experiments
Friedman, A; Cohen, R H; Grote, D P; Vay, J
2007-12-14
This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.
Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas
NASA Astrophysics Data System (ADS)
Revel, A.; Minea, T.; Tsikata, S.
2016-10-01
A pseudo-3D modeling approach, based on a particle-in-cell (PIC)-Monte Carlo collisions algorithm, has been developed for the study of large- and short-scale organization of the plasma in a planar magnetron. This extension of conventional PIC modeling permits the observation of spontaneous organization of the magnetron plasma, under the influence of crossed electric and magnetic fields, into the well-known, large-scale regions of enhanced ionization and density known as spokes. The nature of complex three-dimensional electron trajectories around such structures, and non-uniform ionization within them, is revealed. This modeling provides direct numerical evidence for the existence of high-amplitude internal spoke electric fields, proposed in earlier works. A 3D phenomenological model, consistent with numerical results, is proposed. Electron density fluctuations in the megahertz range, with characteristics similar to the electron cyclotron drift instability experimentally identified in a recent Letter, are also found.
A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics
NASA Astrophysics Data System (ADS)
Told, D.; Cookmeyer, J.; Astfalk, P.; Jenko, F.
2016-07-01
A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm’s law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.
Gravier, E.; Klein, R.; Morel, P.; Besse, N.; Bertrand, P.
2008-12-15
A new model is presented, named collisional-gyro-water-bag (CGWB), which describes the collisional drift waves and ion-temperature-gradient (ITG) instabilities in a plasma column. This model is based on the kinetic gyro-water-bag approach recently developed [P. Morel et al., Phys. Plasmas 14, 112109 (2007)] to investigate ion-temperature-gradient modes. In CGWB electron-neutral collisions have been introduced and are now taken into account. The model has been validated by comparing CGWB linear analysis with other models previously proposed and experimental results as well. Kinetic effects on collisional drift waves are investigated, resulting in a less effective growth rate, and the transition from collisional drift waves to ITG instability depending on the ion temperature gradient is studied.
A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma
NASA Technical Reports Server (NTRS)
Scott, Carl D.
1993-01-01
This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.
Physics of the Inner Heliosphere 1-10 Rs: Plasma Diagnostics and Models
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.
1998-01-01
While the mechanisms responsible for the solar corona and the high-speed solar wind streams are still unknown, model computations offer means of predicting the properties of such mechanisms in light of the empirical constraints currently available. Modeling and data analysis efforts were aimed at understanding the plasma properties of the acceleration of the solar wind, its filamentary nature, and the conditions needed to account for a rapidly accelerating solar wind, reaching its terminal speed within 10 R(sub s). A sequence of models ranging from steady one-fluid descriptions of the solar wind to multi-fluid time-dependent models were developed. Plasma diagnostics evolved from the analysis of data acquired from Skylab to SOHO, and complemented by ground-based observations.
Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel
2016-01-01
Objective So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks. PMID:27584003
Modeling nitrogen plasmas produced by intense electron beams
NASA Astrophysics Data System (ADS)
Angus, J. R.; Mosher, D.; Swanekamp, S. B.; Ottinger, P. F.; Schumer, J. W.; Hinshelwood, D. D.
2016-05-01
A new gas-chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm2 and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D-circuit model using the rigid-beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are in good agreement with experimental measurements of the line-integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.
Jovian's plasma torus interaction with Europa. E12 pass: 3D hybrid kinetic modeling
NASA Astrophysics Data System (ADS)
Lipatov, A. S.; Cooper, J. F.; Sittler, E. C., Jr.; Paterson, W. R.; Hartle, R. E.
2012-09-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moonmagnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flybymeasurements from Galileo orbital mission and for planning flyby and orbital measurements for future missions. The simulations are based on recent models of the atmosphere of Europa [1, 2, 3]. The upstream parameters have been chosen from the plasma and magnetic field Galileo E12 observations, [4, 5]. In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ions velocity distribution and the fluxes along themagnetic field [6]. Photoionization, electron-impact ionization and charge exchange are included in our model. The temperature of the background electrons and pickup electrons was also included into the generalized Ohm's law. The background plasma contains heavy (Mi/Qi = 16) and light (Mi/Qi = 1) ions [4]. In our modeling we take into account only O+ ions for magnetospheric plasma. The pickup ions were created from the atmosphere. The majority of O2 atmosphere is thermal with an extended non-thermal population [1]. The moon is modeled in this initial work as a weakly conducting body. The critical point of E12 pass is the extremely high density in upstream plasma, e.g. n0 = 70-571 cm-3 for ions with Mi/Qi ratio equals 16. This density results in to the superAlfvénic flow and it will change the physics of the interaction between Jovianmagnetosphere and Europa. The modeling show the formation of the Mach cone instead of the Alfv'en wing which was observed in hybrid modeling of E4 pass [6]. The modeling shows that the effective size of the
Fractal hydrodynamic model of high-fluence laser ablation plasma expansion
Agop, M.; Nica, P.; Gurlui, S.; Focsa, C.
2010-10-08
Optical/electrical characterization of transient plasmas generated by high-fluence (up to 1 kJ/cm{sup 2}) laser ablation of various targets revealed as a general feature the splitting of the plume in two structures. In order to account for this behavior, a new fractal hydrodynamic model has been developed in a non-differentiable space-time. The model successfully retrieves the kinetics of the two structures.
QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas
Huang, C. . E-mail: huangck@ee.ucla.edu; Decyk, V.K.; Ren, C.; Zhou, M.; Lu, W.; Mori, W.B.; Cooley, J.H.; Antonsen, T.M.; Katsouleas, T.
2006-09-20
A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static or frozen field approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computational time by 2-3 orders of magnitude. Comparison between the new algorithm and conventional fully explicit models (OSIRIS) is presented. The agreement is excellent for problems of interest. Direction for future work is also presented.
Alvarez, R.; Alves, L. L.
2007-05-15
This paper presents a two-dimensional electromagnetic model for a microwave (2.45 GHz) plasma reactor operated by an axial injection torch. The model solves Maxwell's equations, adopting a harmonic time description and considering the collision dispersion features of the plasma. Perfect-conductor boundary conditions are satisfied at the reactor walls, and absorbing boundary conditions are used at the open end of the coaxial waveguide powering the system. Simulations yield the distribution of the electromagnetic fields and the average power absorbed by the system for a given spatial profile of the plasma density (tailored from previous experimental measurements), with maximum values in the range 10{sup 14}-10{sup 15} cm{sup -3}. Model results reveal that the system exhibits features similar to those of an air-filled, one-end-shorted circular metal waveguide, supporting evanescent or oscillatory solutions for radial dimensions below or above a critical radius, respectively. Results also show that the fractional average power absorbed by the plasma is strongly influenced by the system dimensions, which play a major role in defining the geometry pattern of the electromagnetic field distribution. Simulations are used to provide general guidelines for device optimization.
Modeling Plasma Surface Interactions in Tungsten through High-Performance Computing
NASA Astrophysics Data System (ADS)
Wirth, Brian D.
2013-10-01
The plasma facing components of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Fortunately, recent innovations in computational modeling, increasingly powerful high performance computing platforms and improved experimental characterization tools provide the opportunity to develop self-consistent, experimentally validated models of materials performance in the fusion energy environment. This presentation will describe the challenges of modeling plasma facing components in a fusion materials environment, opportunities to utilize high performance computing and then focus on recent progress to investigate the surface evolution of tungsten exposed to low-energy He/H plasmas. These results identify the mechanisms of tungsten surface morphology changes during 100 eV He plasma exposure as a function of temperature and initial tungsten microstructure. The results demonstrate that He clusters create self-interstitial defect clusters in W by a trap mutation process, followed by the migration of these defects to the surface that forms adatom layers on the tungsten surface. As the helium clusters grow into nanometer bubbles, their proximity to the surface and extremely high gas pressures leads to rupture the surface. Helium bubble bursting induces additional surface damage and tungsten mass loss. on behalf of the SciDAC-PSI team.
Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams
NASA Technical Reports Server (NTRS)
Lipatov, Alexander S.
2011-01-01
We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.
Modeling of the Plasma Electrode Bias in the Negative Ion Sources with 1D PIC Method
Matsushita, D.; Kuppel, S.; Hatayama, A.; Fukano, A.; Bacal, M.
2009-03-12
The effect of the plasma electrode bias voltage in the negative ion sources is modeled and investigated with one-dimensional plasma simulation. A particle-in-cell (PIC) method is applied to simulate the motion of charged particles in their self-consistent electric field. In the simulation, the electron current density is fixed to produce the bias voltage. The tendency of current-voltage characteristics obtained in the simulation show agreement with the one obtained from a simple probe theory. In addition, the H{sup -} ion density peak appears at the bias voltage close to the plasma potential as observed in the experiment. The physical mechanism of this peak H{sup -} ion density is discussed.
A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma
NASA Technical Reports Server (NTRS)
Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex
2011-01-01
A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.
Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster
Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.
2011-08-15
It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.
Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.
Behery, E E; Haas, F; Kourakis, I
2016-02-01
The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included. PMID:26986431
NASA Astrophysics Data System (ADS)
Jian, Xiaoxia; Wu, ChuanSong; Zhang, Guokai; Chen, Ji
2015-11-01
A 3D model is developed to perform numerical investigation on the coupled interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding. By considering the traveling of the plasma arc along the welding direction, unified governing equations are solved in the whole domain including the torch, plasma arc, keyhole, weld pool and workpiece, which involves different physical mechanisms in different zones. The local thermodynamic equilibrium-diffusion approximation is used to treat the interface between the plasma arc and weld pool, and the volume-of-fluid method is used to track the evolution of the keyhole wall. The interaction effects between the plasma arc, keyhole and weld pool as well as the heat, mass and pressure transport phenomena in the whole welding domain are quantitatively simulated. It is found that when the torch is moving along the joint line, the axis of the keyhole channel tilts backward, and the envelope of molten metal surrounding the keyhole wall inside the weld pool is unsymmetrical relative to the keyhole channel. The plasma arc welding tests are conducted, and the predicted keyhole dimensions and the fusion zone shape are in agreement with the experimentally measured results.
A new dynamic fluid-kinetic model for plasma transport within the plasmaspheric plume
NASA Astrophysics Data System (ADS)
Wang, Y.; Tu, J.; Song, P.
2011-12-01
A new dynamic fluid-kinetic (DyFk) model is proposed and developed for investigating the plasma transport from the plasmasphere to the dayside magnetopause through the plasmaspheric plume. This model treats a closed flux tube in a local sense, in contrast to the global sense. The flux tube is allowed to move both radially from near the Earth to the magnetopause, which may result in expansion in its volume, and azimuthally around the Earth. Plasma may flow along the flux tube. The numerical simulation model couples a truncated version of the field line interhemispheric plasma (FLIP) model at altitudes below 800 km and a generalized semi-kinetic (GSK) model above it with an overlapped boundary region in each of the hemispheres. A self-consistently treatment of the ionospheric losses and production with possible heat sinks couples to a kinetic treatment of the multiple ion species (O+/ H+/ He+) and electrons in the plasmasphere. This model includes the effects of the convection of the plasmaspheric flux tube, parallel electric field, magnetic mirror force, centrifugal force, changing ionospheric conditions, Coulomb and ion-neutral collisions, and anisotropic temperatures, as well as the wave-particle interaction. The preliminary simulation results of the multi-species ion transport within a plasmaspheric plume will be presented.
A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid
NASA Astrophysics Data System (ADS)
Borah, B.; Haloi, A.; Karmakar, P. K.
2016-05-01
In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.
Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators
Lepikhin, N. D.; Pustovitov, V. D.
2013-08-15
Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p{sub ‖} and p{sub ⊥} (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p{sub ‖} and p{sub ⊥} are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p{sub ‖}/p{sub ⊥} or p{sub ⊥}/p{sub ‖}. A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p{sub ⊥} with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p{sub ⊥} on a magnetic surface. This does not happen in the other more complex case.
A numerical model of non-equilibrium thermal plasmas. II. Governing equations
Li HePing; Zhang XiaoNing; Xia Weidong
2013-03-15
Governing equations and the corresponding physical properties of the plasmas are both prerequisites for studying the fundamental processes in a non-equilibrium thermal plasma system numerically. In this paper, a kinetic derivation of the governing equations used for describing the complicated thermo-electro-magneto-hydrodynamic-chemical coupling effects in non-equilibrium thermal plasmas is presented. This derivation, which is achieved using the Chapman-Enskog method, is completely consistent with the theory of the transport properties reported in the previous paper by the same authors. It is shown, based on this self-consistent theory, that the definitions of the specific heat at constant pressure and the reactive thermal conductivity of two-temperature plasmas are not necessary. The governing equations can be reduced to their counterparts under local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE) conditions. The general method for the determination of the boundary conditions of the solved variables is also discussed briefly. The two papers establish a self-consistent physical-mathematical model that describes the complicated physical and chemical processes in a thermal plasma system for the cases both in LTE or LCE conditions and under non-equilibrium conditions.
Modeling weakly-ionized plasmas in magnetic field: A new computationally-efficient approach
NASA Astrophysics Data System (ADS)
Parent, Bernard; Macheret, Sergey O.; Shneider, Mikhail N.
2015-11-01
Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant. This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.
Laser-plasma interaction in the context of inertial fusion: experiments and modeling
NASA Astrophysics Data System (ADS)
Labaune, C.; Lewis, K.; Bandulet, H.; Depierreux, S.; Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Loiseau, P.
2007-08-01
Many nonlinear processes may affect the laser beam propagation and the laser energy deposition in the underdense plasma surrounding the pellet. These processes, associated with anomalous and nonlinear absorption mechanisms, are fundamental issues in the context of Inertial Confinement Fusion. The work presented in this article refers to laser-plasma interaction experiments which were conducted under well-controlled conditions, and to their theoretical and numerical modeling. Thanks to important diagnostics improvements, the plasma and laser parameters were sufficiently characterized in these experiments to make it possible to carry out numerical simulations modeling the laser plasma interaction in which the hydrodynamics conditions were very close to the experimental ones. Two sets of experiments were carried out with the LULI 2000 and the six beam LULI laser facilities. In the first series of experiments, the interaction between two single hot spots was studied as a function of their distance, intensity and light polarization. In the second series, the intensity distribution of stimulated Brillouin scattering (SBS) inside the plasma was studied by means of a new temporally resolved imaging system. Two-dimensional (2D) simulations were carried out with our code Harmony2D in order to model these experiments. For both series of experiments, the numerical results show a very good agreement with the experimental ones for what concerns the main SBS features, namely the spatial and temporal behavior of the SBS-driven acoustic waves, as well as the average SBS reflectivities. Thus, these well diagnosed experiments, carried out with well defined conditions, make it possible to benchmark our theoretical and numerical modelings and, hence, to improve our predictive capabilities for future experiments.
View factor modeling of sputter-deposition on micron-scale-architectured surfaces exposed to plasma
NASA Astrophysics Data System (ADS)
Huerta, C. E.; Matlock, T. S.; Wirz, R. E.
2016-03-01
The sputter-deposition on surfaces exposed to plasma plays an important role in the erosion behavior and overall performance of a wide range of plasma devices. Plasma models in the low density, low energy plasma regime typically neglect micron-scale surface feature effects on the net sputter yield and erosion rate. The model discussed in this paper captures such surface architecture effects via a computationally efficient view factor model. The model compares well with experimental measurements of argon ion sputter yield from a nickel surface with a triangle wave geometry with peak heights in the hundreds of microns range. Further analysis with the model shows that increasing the surface pitch angle beyond about 45° can lead to significant decreases in the normalized net sputter yield for all simulated ion incident energies (i.e., 75, 100, 200, and 400 eV) for both smooth and roughened surfaces. At higher incident energies, smooth triangular surfaces exhibit a nonmonotonic trend in the normalized net sputter yield with surface pitch angle with a maximum yield above unity over a range of intermediate angles. The resulting increased erosion rate occurs because increased sputter yield due to the local ion incidence angle outweighs increased deposition due to the sputterant angular distribution. The model also compares well with experimentally observed radial expansion of protuberances (measuring tens of microns) in a nano-rod field exposed to an argon beam. The model captures the coalescence of sputterants at the protuberance sites and accurately illustrates the structure's expansion due to deposition from surrounding sputtering surfaces; these capabilities will be used for future studies into more complex surface architectures.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Carruth, M. R., Jr.
1979-01-01
The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2015-10-01
The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.
A Hall Thruster Performance Model Incorporating the Effects of a Multiply-Charged Plasma
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Jankovsky, Robert S.
2002-01-01
A Hall thruster performance model that predicts anode specific impulse, anode efficiency, and thrust is discussed. The model is derived as a function of a voltage loss parameter, an electron loss parameter, and the charge state of the plasma. Experimental data from SPT and TAL type thrusters up to discharge powers of 21.6 kW are used to determine the best fit for model parameters. General values for the model parameters are found, applicable to high power thrusters and irrespective of thruster type. Performance of a 50 kW thruster is calculated for an anode specific impulse of 2500 seconds or a discharge current of 100 A.
Piecewise-homogeneous model for electron side injection into linear plasma waves
NASA Astrophysics Data System (ADS)
Golovanov, A. A.; Kostyukov, I. Yu.
2016-09-01
An analytical piecewise-homogeneous model for electron side injection into linear plasma waves is developed. The dynamics of transverse betatron oscillations are studied. Based on the characteristics of the transversal motion the longitudinal motion of electrons is described. The electron parameters for which the electron trapping and subsequent acceleration are possible are estimated. The analytical results are verified by numerical simulations in the scope of the piecewise-homogeneous model. The results predicted by this model are also compared to the results given by a more realistic inhomogeneous model.
Modeling of an atmospheric-pressure HE/CF[sub 4]/O[sub 2]plasma used for surface decontamination
Teslow, H. L.; Rosocha, L. A.; Kim, Y.
2004-01-01
Atmospheric-pressure plasmas have been shown to be useful in many different applications, including surface decontamination. We will describe a useful plasma source, a non-thermal Atmospheric-Pressure Plasma Jet (APPJ), for such applications. In recent APPJ experiments, a plasma consisting of helium mixed with small percentages of carbon tetrafluoride and molecular oxygen was used to etch tantalum foils as well as plutonium on the surface of a sample metal coupon. Understanding the plasma, chemical, and surface kinetics of this plasma is crucial to the widespread application of this procedure to various contaminants, such as chemical and biological warfare agents (CBW). A complete, detailed model of the plasma, post-plasma gas chemistry, and surface chemistry is needed to determine the reactive species and exact surface reactions occurring in each of the experiments. Using commercial software (KINEMA and ELENDIF), we have created a post-plasma gas chemistry model which utilizes over 180 chemical reactions and initial conditions determined by gaseous electronics modeling. Multiple reaction reduction techniques were used to ascertain the most important reactions and relevant species. This model indicates that although fluorine may be a reactive species, other oxyfluorides such as OF, F{sub 2}O, and FCOO most likely contribute significantly to the etching process. Comparison with experimental data suggests that fluorine is not the sole etchant.
Modeling of plasma and thermo-fluid transport in hybrid welding
NASA Astrophysics Data System (ADS)
Ribic, Brandon D.
Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of
ELM control with RMP: plasma response models and the role of edge peeling response
NASA Astrophysics Data System (ADS)
Liu, Yueqiang; Ham, C. J.; Kirk, A.; Li, Li; Loarte, A.; Ryan, D. A.; Sun, Youwen; Suttrop, W.; Yang, Xu; Zhou, Lina
2016-11-01
Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.
NASA Technical Reports Server (NTRS)
Liemohn, M.; Ridley, A. J.; Kozyra, J. U.; Gallagher, D. L.; Brandt, P. C.; Henderson, M. G.; Denton, M. H.; Jahn, J. M.; Roelof, E. C.; DeMajistre, R. M.
2004-01-01
Modeling results of the inner magnetosphere showing the influence of the ionospheric conductance on the inner magnetospheric electric fields during the April 17, 2002 magnetic storm are presented. Kinetic plasma transport code results are analyzed in combination with observations of the inner magnetospheric plasma populations, in particular those from the IMAGE satellite. Qualitative and quantitative comparisons are made with the observations from EW, MENA, and HENA, covering the entire energy range simulated by the model (0 to 300 keV). The electric field description, and in particular the ionospheric conductance, is the only variable between the simulations. Results from the data-model comparisons are discussed, detailing the strengths and weaknesses of each conductance choice for each energy channel.
Model of a microwave beam coupling to CO 2 laser plasma
NASA Astrophysics Data System (ADS)
Caraway, E. L.; Sokol, M.; Grossman, B. G.
2002-04-01
We have designed a transmission line model of the microwave coupling mechanism for a microwave pumped CO 2 laser. The model is a total loss ridge waveguide transmission line having nonuniform impedance. The laser plasma is modeled as a frequency-dependent lossy dielectric and acts as a distributed resistance in the length of the microwave cavity. The coupling structure of the microwaves is designed not to be resonant at the microwave source frequency of 2.45 GHz at 1 kW and propagating the total microwave field energy to be absorbed without internal reflection. An exact solution to this general transmission line propagation constant for a shunt resistance along length of the guide is found. The measurements and predictions of the parameters of the plasma conductivity as a function of the attenuation constant agree closely.
Dynamics of low dimensional model for weakly relativistic Zakharov equations for plasmas
Sahu, Biswajit; Pal, Barnali; Poria, Swarup; Roychoudhury, Rajkumar
2013-05-15
In the present paper, the nonlinear interaction between Langmuir waves and ion acoustic waves described by the one-dimensional Zakharov equations (ZEs) for relativistic plasmas are investigated formulating a low dimensional model. Equilibrium points of the model are found and it is shown that the existence and stability conditions of the equilibrium point depend on the relativistic parameter. Computational investigations are carried out to examine the effects of relativistic parameter and other plasma parameters on the dynamics of the model. Power spectrum analysis using fast fourier transform and also construction of first return map confirm that periodic, quasi-periodic, and chaotic type solution exist for both relativistic as well as in non-relativistic case. Existence of supercritical Hopf bifurcation is noted in the system for two critical plasmon numbers.
Hybrid Model for Plasma Thruster Plume Simulation Including PIC-MCC Electrons Treatment
Alexandrov, A. L.; Bondar, Ye. A.; Schweigert, I. V.
2008-12-31
The simulation of stationary plasma thruster plume is important for spacecraft design due to possible interaction plume with spacecraft surface. Such simulations are successfully performed using the particle-in-cell technique for describing the motion of charged particles, namely the propellant ions. In conventional plume models the electrons are treated using various fluid approaches. In this work, we suggest an alternative approach, where the electron kinetics is considered 'ab initio', using the particle-in-cell--Monte Carlo collision method. To avoid the large computational expenses due to small time steps, the relaxation of simulated plume plasma is split into the fast relaxation of the electrons distribution function and the slow one of the ions. The model is self-consistent but hybrid, since the simultaneous electron and ion motion is not really modeled. The obtained electron temperature profile is in good agreement with experiment.
The isolated head model of the plasma bullet/streamer propagation: electric field-velocity relation
NASA Astrophysics Data System (ADS)
Sretenović, Goran B.; Krstić, Ivan B.; Kovačević, Vesna V.; Obradović, Bratislav M.; Kuraica, Milorad M.
2014-09-01
A model of the isolated streamer head based on Meek's criterion of the avalanche to streamer transition is applied for description of the plasma bullet propagation in a helium/air admixture. According to the model previously proposed by Kulikovsky for streamers in air, along with the knowledge of one of three parameters: electric field, ionization integral or the width of the space charge layer, the other two parameters could be determined. Furthermore, using the streamer current or radius, it is possible to determine the electric field-streamer velocity functional dependence. Obtained results showed satisfactory agreement with both the results of the fluid model from the literature and the experimental results of plasma jet studies. Finally, for the sake of comparison, streamer velocity dependence on the electric field strength range of 10-250 kV cm-1 is determined for helium, argon and air.
Laux, Christophe O.
2007-04-06
State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 {mu}m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed.
Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V.
2015-08-15
Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.
Plasma modeling of beam-electron cloud instabilities in circular accelerators
NASA Astrophysics Data System (ADS)
Ghalam, Ali
2005-10-01
A 3D Particle-In-Cell model for continuous modeling of beam and electron cloud interaction in a circular accelerator is presented. A simple model for lattice structure, mainly the Quadruple and dipole magnets and chromaticity have been added to a plasma PIC code, QuickPIC, used extensively to model plasma wakefield acceleration concept. The code utilizes parallel processing techniques with domain decomposition in both longitudinal and transverse domains to overcome the massive computational costs of continuously modeling the beam-cloud interaction. Through parallel modeling, we have been able to simulate long-term beam propagation in the presence of electron cloud in many existing and future circular machines around the world. The exact dipole lattice structure has been added to the code and the simulation results for CERN-SPS and LHC with the new lattice structure have been studied. The code is also used to model electron cloud effects in PEP-II storage ring at SLAC. The pipe geometry in this ring is much bigger than the beam cross section that the boundary conditions turned out to be inconsequential on beam dynamics, therefore smaller pipe cross section is used in the modeling to reduce the computational costs. Also the simulation results are compared to the results from the two macro-particle modeling for strong head-tail instability. It is shown that the simple two macro-particle model can capture some of the physics involved in the beam- electron cloud interaction qualitatively.
Charging effect simulation model used in simulations of plasma etching of silicon
Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W.; Cooke, Mike
2012-10-15
Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.
Application of multivariate Maxwellian mixture model to plasma velocity distribution function
NASA Astrophysics Data System (ADS)
Ueno, Genta; Nakamura, Nagatomo; Higuchi, Tomoyuki; Tsuchiya, Takashi; Machida, Shinobu; Araki, Tohru; Saito, Yoshifumi; Mukai, Toshifumi
2001-11-01
Recent space plasma observations have provided us with three-dimensional velocity distributions having multiple peaks. We propose a method for analyzing such velocity distributions via a multivariate Maxwellian mixture model where each component of the model represents each of the multiple peaks. The parameters of the model are determined through an iterative nonlinear optimization technique, specifically the expectation-maximization (EM) algorithm. For the automatic judgment of the preferable number of components in the mixture model, we introduce a method of examining the number of extrema of a resulting mixture model. We show applications of our method to ion observations in the plasma sheet boundary layer (PSBL) and in the central plasma sheet (CPS) of the Earth's magnetotail. From an analysis of the PSBL and CPS, low-energy ions that have properties similar to those of lobe ions were detected also in the PSBL and CPS. In the PSBL, middle-energy ion component which is flowing dawnward and directed the neutral sheet was extracted. We suggested that magnetic field fluctuations in the PSBL can be explained only when the two ion components were properly treated.
Application of multivariate Maxwellian mixture model to plasma velocity distribution function
NASA Astrophysics Data System (ADS)
Ueno, G.; Nakamura, N.; Higuchi, T.; Tsuchiya, T.; Machida, S.; Araki, T.; Saito, Y.; Mukai, T.
2001-12-01
Recent space plasma observations have provided us with three-di\\-men\\-sion\\-al velocity distributions having multiple peaks. We propose a method for analyzing such velocity distributions via a multivariate Max\\-wellian mixture model where each component of the model represents each of the multiple peaks. The parameters of the model are determined through an iterative nonlinear optimization technique, specifically the expectation-maximization (EM) algorithm. For the automatic judgment of the preferable number of components in the mixture model, we introduce a method of examining the number of extrema of a resulting mixture model. We show applications of our method to ion observations in the plasma sheet boundary layer (PSBL) and in the central plasma sheet (CPS) of the Earth's magnetotail. From an analysis of the PSBL and CPS, low-energy ions that have properties similar to those of lobe ions were detected also in the PSBL and CPS. In the PSBL, middle-energy ion component which is flowing dawnward and directed the neutral sheet was extracted. We suggested that magnetic field fluctuations in the PSBL can be explained only when the two ion components were properly treated.
NASA Astrophysics Data System (ADS)
Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.
2005-10-01
In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.
Modeling asymmetric cavity collapse with plasma equations of state.
Tully, Brett; Hawker, Nicholas; Ventikos, Yiannis
2016-05-01
We explore the effect that equation of state (EOS) thermodynamics has on shock-driven cavity-collapse processes. We account for full, multidimensional, unsteady hydrodynamics and incorporate a range of relevant EOSs (polytropic, QEOS-type, and SESAME). In doing so, we show that simplified analytic EOSs, like ideal gas, capture certain critical parameters of the collapse such as velocity of the main transverse jet and pressure at jet strike, while also providing a good representation of overall trends. However, more sophisticated EOSs yield different and more relevant estimates of temperature and density, especially for higher incident shock strengths. We model incident shocks ranging from 0.1 to 1000 GPa, the latter being of interest in investigating the warm dense matter regime for which experimental and theoretical EOS data are difficult to obtain. At certain shock strengths, there is a factor of two difference in predicted density between QEOS-type and SESAME EOS, indicating cavity collapse as an experimental method for exploring EOS in this range. PMID:27300976
Monte Carlo model of neutral-particle transport in diverted plasmas
Heifetz, D.; Post, D.; Petravic, M.; Weisheit, J.; Bateman, G.
1981-11-01
The transport of neutral atoms and molecules in the edge and divertor regions of fusion experiments has been calculated using Monte-Carlo techniques. The deuterium, tritium, and helium atoms are produced by recombination in the plasma and at the walls. The relevant collision processes of charge exchange, ionization, and dissociation between the neutrals and the flowing plasma electrons and ions are included, along with wall reflection models. General two-dimensional wall and plasma geometries are treated in a flexible manner so that varied configurations can be easily studied. The algorithm uses a pseudo-collision method. Splitting with Russian roulette, suppression of absorption, and efficient scoring techniques are used to reduce the variance. The resulting code is sufficiently fast and compact to be incorporated into iterative treatments of plasma dynamics requiring numerous neutral profiles. The calculation yields the neutral gas densities, pressures, fluxes, ionization rates, momentum transfer rates, energy transfer rates, and wall sputtering rates. Applications have included modeling of proposed INTOR/FED poloidal divertor designs and other experimental devices.
Self-consistent Equilibrium Model of Low-aspect-ratio Toroidal Plasma with Energetic Beam Ions
E.V. Belova; N.N. Gorelenkov; C.Z. Cheng
2003-04-09
A theoretical model is developed which allows the self-consistent inclusion of the effects of energetic beam ions in equilibrium calculations of low-aspect-ratio toroidal devices. A two-component plasma is considered, where the energetic ions are treated using a kinetic Vlasov description, while a one-fluid magnetohydrodynamic description is used to represent the thermal plasma. The model allows for an anisotropic distribution function and a large Larmor radius of the beam ions. Numerical results are obtained for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Self-consistent equilibria with an anisotropic fast-ion distribution have been calculated for NSTX. It is shown for typical experimental parameters that the contribution of the energetic neutral-beam ions to the total current can be comparable to that of the background plasma, and that the kinetic modifications of the equilibrium can be significant. The range of validity of the finite-Larmor-radius expansion and of the reduced kinetic descriptions for the beam ions in NSTX is discussed. The calculated kinetic equilibria can be used for self-consistent numerical studies of beam-ion-driven instabilities in NSTX.
NASA Astrophysics Data System (ADS)
Heyn, Martin F.; Ivanov, Ivan B.; Kasilov, Sergei V.; Kernbichler, Winfried
2006-04-01
The interaction of rotating magnetic fields (RMFs) with a plasma is modelled in the linear approximation. A kinetic Hamiltonian model for the rf plasma conductivity is used. A radially inhomogeneous periodic cylindrical plasma with a rotational transform of the magnetic field is studied with parameters relevant to the dynamic ergodic divertor (DED) of TEXTOR. For the case of a finite electron diamagnetic velocity it is shown that the torque resulting from the RMF tends to bring the electron fluid approximately to the rest frame of this field. This result is in qualitative agreement with long mean-free path drift MHD theory. In contrast to that theory where a resonant behaviour is found at electron and ion diamagnetic frequencies, in the present kinetic analysis, the RMF frequency where the torque passes through zero is smaller than the electron diamagnetic frequency if there is an electron temperature gradient present. The relation of these results with recent experimental measurements of the DED-induced plasma rotation in TEXTOR is discussed.
ADI-FDTD modeling of microwave plasma discharges in air towards fully three-dimensional simulations
NASA Astrophysics Data System (ADS)
Kourtzanidis, Konstantinos; Rogier, François; Boeuf, Jean-Pierre
2015-10-01
Plasma formation and propagation during microwave breakdown has been extensively studied during the last decades. Numerical modeling of the strong coupling between the high frequency electromagnetic waves and the plasma is still a challenging topic due to the different time and space scales involved. In this article, an Alternative Direction Implicit (ADI) formulation of the Finite Difference Time Domain method for solving Maxwell's equations coupled with a simplified plasma model via the electric current is being proposed, leading to a significant reduction of the computational cost as the CFL criterion for stability of the FDTD method is being removed. An energy estimate has been used to prove the unconditional stability of the ADI-FDTD leapfrog scheme as well as its coupled formulation. The computational efficiency and accuracy of this approach has been studied in a simplified case. The proposed method is applied and validated in two dimensional microwave breakdown in air while its computational efficiency allows for fully three dimensional simulations, an important step for understanding the complex nature and evolution of a microwave plasma discharge and its possible applicability as an aerodynamic flow control method.
Physics of the Advanced Plasma Source: a review of recent experimental and modeling approaches
NASA Astrophysics Data System (ADS)
Brinkmann, R. P.; Harhausen, J.; Schröder, B.; Lapke, M.; Storch, R.; Styrnoll, T.; Awakowicz, P.; Foest, R.; Hannemann, M.; Loffhagen, D.; Ohl, A.
2016-01-01
The Advanced Plasma Source (APS), a gridless hot cathode glow discharge capable of generating an ion beam with an energy of up to 150 eV and a flux of 1019s-1, is a standard industrial tool for the process of plasma ion-assisted deposition (PIAD). This manuscript details the results of recent experimental and modeling work aimed at a physical understanding of the APS. A three-zone model is proposed which consists of (i) the ionization zone (the source itself) where the plasma is very dense, hot, and has a high ionization rate, (ii) the acceleration zone (of ˜20 cm extension) where a strong outward-directed electric field accelerates the primary ions to a high kinetic energy, and (iii) a drift zone (the rest of the process chamber) where the emerging plasma beam is further modified by resonant charge exchange collisions that neutralize some of the energetic ions and generate, at the same time, a flux of slow ions.
Numerical Modeling and Analysis of Space-Based Electric Antennas via Plasma Particle Simulation
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.
2009-12-01
Better understanding of electric antenna properties (e.g., impedance) in space plasma environment is necessitated, because calibration of electric field data obtained by scientific spacecraft should be done with precise knowledge about the properties. Particularly, a strong demand arises regarding a sophisticated method for evaluating modern electric field instrument properties toward future magnetospheric missions. However, due to complex behavior of surrounding plasmas, it is often difficult to apply theoretical approaches to the antenna analysis including the plasma kinetic effects and the complex structure of such instruments. For the self-consistent antenna analysis, we have developed a new electromagnetic (EM) particle simulation code named EMSES. The code is based on the particle-in-cell technique and also supports a treatment of inner boundaries describing spacecraft conductive surfaces. This enables us to naturally include the effects of the inhomogeneous plasma environment such as a plasma and photoelectron sheaths created around the antenna. The support of the full EM treatment is also important to apply our tool to antenna properties for not only electrostatic (ES) but also EM plasma waves. In the current study, we particularly focus on an electric field instrument MEFISTO, which is designed for BepiColombo/MMO to the Mercury orbit. For the practical analysis of MEFISTO electric properties, it is important to consider an ES environment affected by the instrument body potential and the photoelectron distribution. We present numerical simulations on an ES structure around MEFISTO as well as current-voltage characteristic of the instrument. We have also started numerical modeling of a photoelectron guard electrode, which is one of key technologies for producing an optimal condition of plasma environment around the instrument. We have modeled a pre-amplifier housing called “puck”, the surface of which functions as the electrode. The photoelectron guard
A SIMPLE METHOD FOR MODELING COLLISION PROCESSES IN PLASMAS WITH A KAPPA ENERGY DISTRIBUTION
Hahn, M.; Savin, D. W.
2015-08-20
We demonstrate that a nonthermal distribution of particles described by a kappa distribution can be accurately approximated by a weighted sum of Maxwell–Boltzmann distributions. We apply this method to modeling collision processes in kappa-distribution plasmas, with a particular focus on atomic processes important for solar physics. The relevant collision process rate coefficients are generated by summing appropriately weighted Maxwellian rate coefficients. This method reproduces the rate coefficients for a kappa distribution to an estimated accuracy of better than 3%. This is equal to or better than the accuracy of rate coefficients generated using “reverse-engineering” methods, which attempt to extract the needed cross sections from the published Maxwellian rate coefficient data and then reconvolve the extracted cross sections with the desired kappa distribution. Our approach of summing Maxwellian rate coefficients is easy to implement using existing spectral analysis software. Moreover, the weights in the sum of the Maxwell–Boltzmann distribution rate coefficients can be found for any value of the parameter κ, thereby enabling one to model plasmas with a time-varying κ. Tabulated Maxwellian fitting parameters are given for specific values of κ from 1.7 to 100. We also provide polynomial fits to these parameters over this entire range. Several applications of our technique are presented, including the plasma equilibrium charge state distribution (CSD), predicting line ratios, modeling the influence of electron impact multiple ionization on the equilibrium CSD of kappa-distribution plasmas, and calculating the time-varying CSD of plasmas during a solar flare.
Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC
Zhou, M.; Clayton, C.E.; Decyk, V.K.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Tsung, F.S.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; Decker, F.-J.; Iverson, R.; O'Connel, C.; Walz, D.; /SLAC
2006-01-25
For the parameters envisaged in possible afterburner stages[1] of a plasma wakefield accelerator (PWFA), the self-fields of the particle beam can be intense enough to tunnel ionize some neutral gases. Tunnel ionization has been investigated as a way for the beam itself to create the plasma, and the wakes generated may differ from those generated in pre-ionized plasmas[2],[3]. However, it is not practical to model the whole stage of PWFA with afterburner parameters using the models described in [2] and [3]. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. Comparison between results from OSIRIS (a full PIC code with ionization) and from QuickPIC with the ionization package shows good agreement. Preliminary results using parameters relevant to the E164X experiment and the upcoming E167 experiment at SLAC are shown.
Continuum kinetic plasma modeling by the Vlasov-Maxwell system in multiple dimensions
NASA Astrophysics Data System (ADS)
Reddell, Noah; Shumlak, Uri
2014-10-01
A kinetic plasma model for multiple particle species described by the Vlasov equation and coupled to fully dynamic electromagnetic forces is presented. The model is implemented as evolving continuous PDFs (probability density functions) in particle phase space (position-velocity) as opposed to particle-in-cell (PIC) methods which discretely sample the PDF. The hyperbolic model is evolved using a high-order finite element method (discontinuous Galerkin), with excellent conservation of system mass, momentum, and energy - an advantage compared to PIC. Simulations of two- to six-dimensional phase space while resolving the plasma frequency and cyclotron frequency are computationally expensive. To maximize performance and scaling to large simulations, a new framework, WARPM, has been developed for many-core (e.g. GPU) computing architectures. WARPM supports both multi-fluid and continuum kinetic plasma models as coupled hyperbolic systems with nearest neighbor predictable communication. Simulation results are compared to existing benchmark problems and newly achievable studies of wave-particle interactions are presented. This research was supported by a grant from the United States Air Force Office of Scientific Research and Dept. of Energy Computational Science Graduate Fellowship.
Modeling physical chemistry of the Io plasma torus in two dimensions
NASA Astrophysics Data System (ADS)
Copper, M.; Delamere, P. A.; Overcast-Howe, K.
2016-07-01
Periodicities in the Io plasma illustrate the rich complexity of magnetosphere-ionosphere coupling in space plasmas. The confounding System IV period (slower than the rotation of Jupiter's magnetic field ≡ System III) remains a mystery of the torus. Common to both System III and IV are modulations of the superthermal electron population. The small fraction (<1%) of hot electrons plays a vital role in torus physical and chemical properties, modulating the abundance and temperature of ion species. Building on previous models of torus physical chemistry, we have developed a two-dimensional model that includes azimuthal and radial transport (diffusion equation) while averaging chemical processes in latitude. This paper presents initial results of the model, demonstrating the role of hot electrons in forming a single-peaked torus structure. The effect of azimuthal shear is investigated as plasma is transported radially outward, showing how the torus properties evolve during transport from a chemically dominated regime (inner torus) to a transport dominated regime (outer torus). Surprisingly, we find that hot electron populations influence torus properties at all radial distances. While many of our results are preliminary, suggestions for future modeling experiments are suggested to provide additional insight into the origin of the ubiquitous superthermal electrons.
NASA Technical Reports Server (NTRS)
Schindler, K.; Birn, J.; Hesse, M.
2012-01-01
Localized plasma structures, such as thin current sheets, generally are associated with localized magnetic and electric fields. In space plasmas localized electric fields not only play an important role for particle dynamics and acceleration but may also have significant consequences on larger scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this context, we present a two-dimensional model based on Vlasov theory that provides the electric potential for a large class of given magnetic field profiles. The model uses an expansion for small deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the same number of particles with their generalized gyrocenter on any given magnetic field line. Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes (such as "U" or "S" shapes) associated with magnetic dips, bumps, and steps. Then, it is investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model proves useful in the interpretation of the electric potentials taken from two existing particle simulations.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Plasma etching of Hf-based high-k thin films. Part III. Modeling the reaction mechanisms
Martin, Ryan M.; Chang, Jane P.
2009-03-15
A generalized etch rate model was formulated to describe metal oxide etching in complex plasma chemistries, based on the understanding gained from detailed plasma characterization and experimental investigation into the metal oxide etching mechanisms. Using a surface site balance-based approach, the correct etch rate dependencies on neutral-to-ion flux ratio, ion energy, competing deposition and etching reaction pathways, and film properties were successfully incorporated into the model. The applicability of the model was assessed by fitting to experimental etch rate data in both Cl{sub 2} and BCl{sub 3} chemistries. Plasma gas phase analysis as well as etch and deposition rate measurements were used to calculate initial values and appropriate ranges for model parameter variation. Physically meaningful parameter values were extracted from the modeling fitting to the experimental data, thereby demonstrating the applicability of this model in assessing the plasma etching of other complex materials systems.
Izacard, O.; Chandre, C.; Tassi, E.; Ciraolo, G.
2011-06-15
We consider a plasma described by means of a two-dimensional fluid model across a constant but non-uniform magnetic field B=B(x,y)z. The dynamical evolution of the density and the vorticity takes into account the interchange instability and magnetic field inhomogeneities. First, in order to describe the finite Larmor radius effects, we apply the gyromap to build a Hamiltonian model with ion temperature from a cold-ion model. Second, we show that the gyromap is justified using Braginskii's closure for the stress tensor as well as an apt ordering on the fluctuating quantities.
NASA Astrophysics Data System (ADS)
Tian, Bo; Gao, Yi-Tian
2004-06-01
Computerized symbolic computation is a new branch of artificial intelligence, with its remarkable feature as the permeation of computer sciences among various fields of science and engineering. Although nonintegrable, Ostrovsky's model is able to describe a variety of mechanical and physical problems, such as the internal or surface waves in the ocean, magnetic sound in plasma, or a certain type of dispersion in an electromagnetic transmission line. In the oceanic environment, for example, this model applies when Coriolis forces are significant. In this paper, with symbolic computation, we present some similarity solutions to Ostrovsky's model, and discuss the structures and properties of the resulting coupled nonlinear ordinary differential equations.
Numerical Modeling and Testing of an Inductively-Driven and High-Energy Pulsed Plasma Thrusters
NASA Technical Reports Server (NTRS)
Parma, Brian
2004-01-01
Pulsed Plasma Thrusters (PPTs) are advanced electric space propulsion devices that are characterized by simplicity and robustness. They suffer, however, from low thrust efficiencies. This summer, two approaches to improve the thrust efficiency of PPTs will be investigated through both numerical modeling and experimental testing. The first approach, an inductively-driven PPT, uses a double-ignition circuit to fire two PPTs in succession. This effectively changes the PPTs configuration from an LRC circuit to an LR circuit. The LR circuit is expected to provide better impedance matching and improving the efficiency of the energy transfer to the plasma. An added benefit of the LR circuit is an exponential decay of the current, whereas a traditional PPT s under damped LRC circuit experiences the characteristic "ringing" of its current. The exponential decay may provide improved lifetime and sustained electromagnetic acceleration. The second approach, a high-energy PPT, is a traditional PPT with a variable size capacitor bank. This PPT will be simulated and tested at energy levels between 100 and 450 joules in order to investigate the relationship between efficiency and energy level. Arbitrary Coordinate Hydromagnetic (MACH2) code is used. The MACH2 code, designed by the Center for Plasma Theory and Computation at the Air Force Research Laboratory, has been used to gain insight into a variety of plasma problems, including electric plasma thrusters. The goals for this summer include numerical predictions of performance for both the inductively-driven PPT and high-energy PFT, experimental validation of the numerical models, and numerical optimization of the designs. These goals will be met through numerical and experimental investigation of the PPTs current waveforms, mass loss (or ablation), and impulse bit characteristics.
Model of a laser heated plasma interacting with walls arising in laser keyhole welding
NASA Astrophysics Data System (ADS)
Tix, C.; Simon, G.
1994-07-01
In laser welding with laser intensities of approximately 1011 W/m2, a hole, called a keyhole, is formed in the material. In this keyhole a plasma is detected, which is characterized by high pressure as well as being influenced by the boundary of the keyhole. Experimental data on plasma parameters are rare and difficult to obtain [W. Sokolowski, G. Herziger, and E. Beyer, in High Power Lasers and Laser Machining Technology, edited by A. Quenzer, SPIE Proc. Vol. 1132 (SPIE, Bellingham, WA, 1989), pp. 288-295]. In a previous paper [C. Tix and G. Simon, J. Phys. D 26, 2066 (1993)] we considered just a simple plasma model without excited states and with constant ion-neutral-atom temperature. Therefore we neglected radiative transport of excitations and underestimated the ion-neutral-atom temperature and the ionization rate. Here we extend our previous model for a continuous CO2 laser and iron and take into account radiative transfer of excitations and a variable ion-neutral-atom temperature. We consider singly charged ions, electrons, and three excitation states of neutral atoms. The plasma is divided in plasma bulk, presheath, and sheath. The transport equations are solved with boundary conditions mainly determined through the appearance of walls. Some effort is made to clarify the energy transport mechanism from the laser beam into the material. Dependent on the incident laser power, the mean electron temperature and density are obtained to be 1.0-1.3 eV and 2.5×1023-3×1023 m-3. Radiative transport of excitations does not contribute significantly to the energy transport.
Interactive network analysis of the plasma amino acids profile in a mouse model of hyperglycemia.
Tanaka, Takayuki; Mochida, Taiga; Maki, Yukihiro; Shiraki, Yasuko; Mori, Hiroko; Matsumoto, Shirou; Shimbo, Kazutaka; Ando, Toshihiko; Nakamura, Kimitoshi; Endo, Fumio; Okamoto, Masahiro
2013-12-01
Amino acids are a group of metabolites that are important substrates for protein synthesis, are important as signaling molecules and play central roles as highly connected metabolic hubs, and therefore, there are many reports that describe disease-specific abnormalities in plasma amino acids profile. However, the causes of progression from a healthy control to a manifestation of the plasma amino acid changes remain obscure. Here, we extended the plasma amino acids profile to relationships that have interactive properties, and found remarkable differences in the longitudinal transition of hyperglycemia as a diabetes emergency. What is especially important is to understand pathogenesis for better treatment and early diagnosis of diabetes. In this study, we performed interactive analysis using time course data of the plasma samples of AKITA mice, which develop hyperglycemia. Primarily, we decided to analyze the interactive property of amino acids which had highly significant association with hyperglycemia, namely alanine, glycine, leucine, isoleucine and valine. Next, we inferred the interactive network structure, which reproduces the actual time course within an error allowance of 10% using an S-system model (a conceptual mathematical model for analyzing and simulating networks). The emphasis of this study was altered interactions of plasma amino acids that show stabilizing and destabilizing features in a variety of clinical settings. By performing sensitivity analysis, the most dominant relations in this network were selected; the control paths from glycine to isoleucine in healthy control and from alanine to glycine in hyperglycemia. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from alanine to glycine.
An EMHD soliton model for small-scale magnetic holes in magnetospheric plasmas
NASA Astrophysics Data System (ADS)
Li, Ze-Yu; Sun, Wei-Jie; Wang, Xiao-Gang; Shi, Quan-Qi; Xiao, Chi-Jie; Pu, Zu-Yin; Ji, Xiao-Fei; Yao, Shu-Tao; Fu, Sui-Yan
2016-05-01
Small-scale magnetic holes (SSMHs) in the magnetosphere plasma sheet are investigated in this paper. A developed electron magnetohydrodynamics (EMHD) soliton model is proposed as a new approach to SSMHs formation. The Biermann battery effect is taken into account in resolving the magnetic evolution equation with a slow-mode solution in the weak nonlinear regime. Statistical investigation of SSMH observation data in the plasma sheet by Cluster is carried out in comparison with the theory. We apply multispacecraft data for distinguishing sheet-like or cylindrical SSMHs observed and clarified by the solitary wave in the EMHD model. Furthermore, the major parameters, such as amplitude, width, maximum magnetic field perturbation, and perpendicular temperature variation of the SSMHs, are found consistent with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Cusentino, Mary Alice; Hammond, Karl D.; Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.
2015-08-01
We compare the hydrogen and helium clustering characteristics of three interatomic potential energy models intended for simulation of plasma-facing materials for fusion applications. Our simulations compare a Finnis-Sinclair potential and two different Tersoff-style bond order potentials created by Juslin et al. (2005) and Li et al. (2011), respectively, with respect to both helium and hydrogen clustering behavior in tungsten. We find significant differences between the Juslin and Li potentials in terms of both hydrogen and helium clustering behavior as well as the spatial distribution of hydrogen below the surface. These simulations are an important test on the road to more accurate models of gas clustering and surface evolution of tungsten divertors in ITER and other plasma devices.
Modeling of inelastic collisions in a multifluid plasma: Ionization and recombination
NASA Astrophysics Data System (ADS)
Le, Hai P.; Cambier, Jean-Luc
2016-06-01
A model for ionization and recombination collisions in a multifluid plasma is formulated using the framework introduced in previous work [H. P. Le and J.-L. Cambier, Phys. Plasmas 22, 093512 (2015)]. The exchange source terms for density, momentum, and energy are detailed for the case of electron induced ionization and three body recombination collisions with isotropic scattering. The principle of detailed balance is enforced at the microscopic level. We describe how to incorporate the standard collisional-radiative model into the multifluid equations using the current formulation. Numerical solutions of the collisional-radiative rate equations for atomic hydrogen are presented to highlight the impact of the multifluid effect on the kinetics.
A model of gravity-induced distribution of material in plasma polymerized aerosols and films.
Zyn, V I
2008-01-01
A mathematical model of the volumetric part of plasma polymerization influenced by gravity is presented. Plasma-activated adhesion of monomer molecules to a surface of a germinal particle is assumed as a basic mechanism of particulate growth. The continuity equation for the flow of matter through the discharge has been formulated and solved in two extreme asymptotic approximations--for small and major duration of the process. Several non-equilibrium distribution functions of the polymer were obtained, for instance, an amount of the particles as a function of their size or time of fall. Within the adopted model this function demonstrates a sharp downward increase inside a discharge. In addition it contains such parameters as the free fall acceleration or reaction rate coefficients, variations of which enable control of the discharge and properties of the disperse medium.
Scrape-off layer modeling using coupled plasma and neutral transport codes
Stotler, D.P.; Coster, D.P.; Ehrdardt, A.B.; Karney, C.F.F.; Petravic, M.; Braams, B.J.
1992-05-01
An effort is made to refine the neutral transport model used in the B2 edge plasma code by coupling it to the DEGAS Monte Carlo code. Results are discussed for a simulation of a high recycling divertor. It appears that on the order of 100 iterations between the two codes are required to achieve a converged solution. However, the amount of computer time used in the DEGAS simulations is large, making complete runs impractical for design purposes. On the other hand, the differences in the resulting plasma parameters when compared to the B2 analytic neutrals model indicate that it would be worthwhile to explore techniques for speeding up the control system of codes.
NASA Astrophysics Data System (ADS)
Hurlbatt, A.; O'Connell, D.; Gans, T.
2016-08-01
Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.
A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings
Nair, B. G.; Singh, J. P.; Grimsditch, M.
2000-02-28
Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.
NASA Technical Reports Server (NTRS)
Hash, David B.; Govindan, T. R.; Meyyappan, M.
2004-01-01
In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.
Modeling of laser produced plasma and z-pinch x-ray lasers
Dunn, J; Frati, M; Gonzales, J J; Kalashnikov, M P; Marconi, M C; Moreno, C H; Nickels, P V; Osterheld, A L; Rocca, J J; Sandner, W; Shlyaptsev, V N
1999-02-07
In this work we describe our theoretical activities in two directions of interest. First, we discuss progress in modeling laser produced plasmas mostly related to transient collisional excitation scheme experiments with Ne- and recently with Ni-like ions. Calculations related to the delay between laser pulses, transient gain duration and hybrid laser/capillary approach are described in more detail. Second, the capillary discharge plasma research, extended to wider range of currents and rise-times has been outlined. We have systematically evaluated the major plasma and atomic kinetic properties by comparing near- and far-field X-ray laser output with that for the capillary Argon X-ray laser operating under typical current values. Consistent with the experiment insight was obtained for the 469{angstrom} X-ray laser shadowgraphy experiments with very small kiloamp currents. At higher currents, as much as {approximately}200 kA we evaluated plasma temperature, density and compared x-ray source size and emitted spectra.
Storm time plasma transport in a unified and inter-coupled global magnetosphere model
NASA Astrophysics Data System (ADS)
Ilie, R.; Liemohn, M. W.; Toth, G.
2014-12-01
We present results from the two-way self-consistent coupling between the kinetic Hot Electron and Ion Drift Integrator (HEIDI) model and the Space Weather Modeling Framework (SWMF). HEIDI solves the time dependent, gyration and bounced averaged kinetic equation for the phase space density of different ring current species and computes full pitch angle distributions for all local times and radial distances. During geomagnetic times the dipole approximation becomes unsuitable even in the inner magnetosphere. Therefore the HEIDI model was generalized to accommodate an arbitrary magnetic field and through the coupling with SWMF it obtains a magnetic field description throughout the HEIDI domain along with a plasma distribution at the model outer boundary from the Block Adaptive Tree Solar Wind Roe Upwind Scheme (BATS-R-US) magnetohydrodynamics (MHD) model within SWMF. Electric field self-consistency is assured by the passing of convection potentials from the Ridley Ionosphere Model (RIM) within SWMF. In this study we test the various levels of coupling between the 3 physics based models, highlighting the role that the magnetic field, plasma sheet conditions and the cross polar cap potential play in the formation and evolution of the ring current. We show that the dynamically changing geospace environment itself plays a key role in determining the geoeffectiveness of the driver. The results of the self-consistent coupling between HEIDI, BATS-R-US and RIM during disturbed conditions emphasize the importance of a kinetic self-consistent approach to the description of geospace.
NASA Astrophysics Data System (ADS)
Konakov, S. A.; Krzhizhanovskaya, V. V.
2015-01-01
We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.
NASA Astrophysics Data System (ADS)
Naggary, Schabnam; Brinkmann, Ralf Peter
2015-09-01
The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.