Sample records for models present bounds

  1. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  2. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  3. Validation of the SURE Program, phase 1

    NASA Technical Reports Server (NTRS)

    Dotson, Kelly J.

    1987-01-01

    Presented are the results of the first phase in the validation of the SURE (Semi-Markov Unreliability Range Evaluator) program. The SURE program gives lower and upper bounds on the death-state probabilities of a semi-Markov model. With these bounds, the reliability of a semi-Markov model of a fault-tolerant computer system can be analyzed. For the first phase in the validation, fifteen semi-Markov models were solved analytically for the exact death-state probabilities and these solutions compared to the corresponding bounds given by SURE. In every case, the SURE bounds covered the exact solution. The bounds, however, had a tendency to separate in cases where the recovery rate was slow or the fault arrival rate was fast.

  4. Numerical Implementation of the Cohesive Soil Bounding Surface Plasticity Model. Volume I.

    DTIC Science & Technology

    1983-02-01

    AD-R24 866 NUMERICAL IMPLEMENTATION OF THE COHESIVE SOIL BOUNDING 1/2 SURFACE PLASTICITY ..(U) CALIFORNIA UNIV DAVIS DEPT OF CIVIL ENGINEERING L R...a study of various numerical means for implementing the bounding surface plasticity model for cohesive soils is presented. A comparison is made of... Plasticity Models 17 3.4 Selection Of Methods For Comparison 17 3.5 Theory 20 3.5.1 Solution Methods 20 3.5.2 Reduction Of The Number Of Equation

  5. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  6. Exploring L1 model space in search of conductivity bounds for the MT problem

    NASA Astrophysics Data System (ADS)

    Wheelock, B. D.; Parker, R. L.

    2013-12-01

    Geophysical inverse problems of the type encountered in electromagnetic techniques are highly non-unique. As a result, any single inverted model, though feasible, is at best inconclusive and at worst misleading. In this paper, we use modified inversion methods to establish bounds on electrical conductivity within a model of the earth. Our method consists of two steps, each making use of the 1-norm in model regularization. Both 1-norm minimization problems are framed without approximation as non-negative least-squares (NNLS) problems. First, we must identify a parsimonious set of regions within the model for which upper and lower bounds on average conductivity will be sought. This is accomplished by minimizing the 1-norm of spatial variation, which produces a model with a limited number of homogeneous regions; in fact, the number of homogeneous regions will never be greater than the number of data, regardless of the number of free parameters supplied. The second step establishes bounds for each of these regions with pairs of inversions. The new suite of inversions also uses a 1-norm penalty, but applied to the conductivity values themselves, rather than the spatial variation thereof. In the bounding step we use the 1-norm of our model parameters because it is proportional to average conductivity. For a lower bound on average conductivity, the 1-norm within a bounding region is minimized. For an upper bound on average conductivity, the 1-norm everywhere outside a bounding region is minimized. The latter minimization has the effect of concentrating conductance into the bounding region. Taken together, these bounds are a measure of the uncertainty in the associated region of our model. Starting with a blocky inverse solution is key in the selection of the bounding regions. Of course, there is a tradeoff between resolution and uncertainty: an increase in resolution (smaller bounding regions), results in greater uncertainty (wider bounds). Minimization of the 1-norm of spatial variation delivers the fewest possible regions defined by a mean conductivity, the quantity we wish to bound. Thus, these regions present a natural set for which the most narrow and discriminating bounds can be found. For illustration, we apply these techniques to synthetic magnetotelluric (MT) data sets resulting from one-dimensional (1D) earth models. In each case we find that with realistic data coverage, any single inverted model can often stray from the truth, while the computed bounds on an encompassing region contain both the inverted and the true conductivities, indicating that our measure of model uncertainty is robust. Such estimates of uncertainty for conductivity can then be translated to bounds on important petrological parameters such as mineralogy, porosity, saturation, and fluid type.

  7. The metamorphosis of 'culture-bound' syndromes.

    PubMed

    Jilek, W G; Jilek-Aall, L

    1985-01-01

    Starting from a critical review of the concept of 'culture-bound' disorders and its development in comparative psychiatry, the authors present the changing aspects of two so-called culture-bound syndromes as paradigms of transcultural metamorphosis (koro) and intra-cultural metamorphosis (Salish Indian spirit sickness), respectively. The authors present recent data on epidemics of koro, which is supposedly bound to Chinese culture, in Thailand and India among non-Chinese populations. Neither the model of Oedipal castration anxiety nor the model of culture-specific pathogenicity, commonly adduced in psychiatric and ethnological literature, explain these phenomena. The authors' data on Salish Indian spirit sickness describes the contemporary condition as anomic depression, which is significantly different from its traditional namesake. The traditional concept was redefined by Salish ritual specialists in response to current needs imposed by social changes. The stresses involved in creating the contemporary phenomena of koro and spirit sickness are neither culture-specific nor culture-inherent, as postulated for 'culture-bound' syndromes, rather they are generated by a feeling of powerlessness caused by perceived threats to ethnic survival.

  8. Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, A.; Boselli, M.

    2016-05-01

    Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.

  9. Continuous Opinion Dynamics Under Bounded Confidence:. a Survey

    NASA Astrophysics Data System (ADS)

    Lorenz, Jan

    Models of continuous opinion dynamics under bounded confidence have been presented independently by Krause and Hegselmann and by Deffuant et al. in 2000. They have raised a fair amount of attention in the communities of social simulation, sociophysics and complexity science. The researchers working on it come from disciplines such as physics, mathematics, computer science, social psychology and philosophy. In these models agents hold continuous opinions which they can gradually adjust if they hear the opinions of others. The idea of bounded confidence is that agents only interact if they are close in opinion to each other. Usually, the models are analyzed with agent-based simulations in a Monte Carlo style, but they can also be reformulated on the agent's density in the opinion space in a master equation style. The contribution of this survey is fourfold. First, it will present the agent-based and density-based modeling frameworks including the cases of multidimensional opinions and heterogeneous bounds of confidence. Second, it will give the bifurcation diagrams of cluster configuration in the homogeneous model with uniformly distributed initial opinions. Third, it will review the several extensions and the evolving phenomena which have been studied so far, and fourth it will state some open questions.

  10. Bounded Parametric Model Checking for Elementary Net Systems

    NASA Astrophysics Data System (ADS)

    Knapik, Michał; Szreter, Maciej; Penczek, Wojciech

    Bounded Model Checking (BMC) is an efficient verification method for reactive systems. BMC has been applied so far to verification of properties expressed in (timed) modal logics, but never to their parametric extensions. In this paper we show, for the first time that BMC can be extended to PRTECTL - a parametric extension of the existential version of CTL. To this aim we define a bounded semantics and a translation from PRTECTL to SAT. The implementation of the algorithm for Elementary Net Systems is presented, together with some experimental results.

  11. Modeling of Wall-Bounded Complex Flows and Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope was the first to introduce this kind of constitutive relation to turbulence modeling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k-E eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown an encouraging success in modeling complex turbulent flows.

  12. The dynamics of aloof baby Skyrmions

    DOE PAGES

    Salmi, Petja; Sutcliffe, Paul

    2016-01-25

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)- dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper wemore » present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.« less

  13. The dynamics of aloof baby Skyrmions

    NASA Astrophysics Data System (ADS)

    Salmi, Petja; Sutcliffe, Paul

    2016-01-01

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)-dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper we present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmi, Petja; Sutcliffe, Paul

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)- dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper wemore » present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.« less

  15. Approximate Model Checking of PCTL Involving Unbounded Path Properties

    NASA Astrophysics Data System (ADS)

    Basu, Samik; Ghosh, Arka P.; He, Ru

    We study the problem of applying statistical methods for approximate model checking of probabilistic systems against properties encoded as PCTL formulas. Such approximate methods have been proposed primarily to deal with state-space explosion that makes the exact model checking by numerical methods practically infeasible for large systems. However, the existing statistical methods either consider a restricted subset of PCTL, specifically, the subset that can only express bounded until properties; or rely on user-specified finite bound on the sample path length. We propose a new method that does not have such restrictions and can be effectively used to reason about unbounded until properties. We approximate probabilistic characteristics of an unbounded until property by that of a bounded until property for a suitably chosen value of the bound. In essence, our method is a two-phase process: (a) the first phase is concerned with identifying the bound k 0; (b) the second phase computes the probability of satisfying the k 0-bounded until property as an estimate for the probability of satisfying the corresponding unbounded until property. In both phases, it is sufficient to verify bounded until properties which can be effectively done using existing statistical techniques. We prove the correctness of our technique and present its prototype implementations. We empirically show the practical applicability of our method by considering different case studies including a simple infinite-state model, and large finite-state models such as IPv4 zeroconf protocol and dining philosopher protocol modeled as Discrete Time Markov chains.

  16. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  17. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  18. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  19. iGen: An automated generator of simplified models with provable error bounds.

    NASA Astrophysics Data System (ADS)

    Tang, D.; Dobbie, S.

    2009-04-01

    Climate models employ various simplifying assumptions and parameterisations in order to increase execution speed. However, in order to draw conclusions about the Earths climate from the results of a climate simulation it is necessary to have information about the error that these assumptions and parameterisations introduce. A novel computer program, called iGen, is being developed which automatically generates fast, simplified models by analysing the source code of a slower, high resolution model. The resulting simplified models have provable bounds on error compared to the high resolution model and execute at speeds that are typically orders of magnitude faster. iGen's input is a definition of the prognostic variables of the simplified model, a set of bounds on acceptable error and the source code of a model that captures the behaviour of interest. In the case of an atmospheric model, for example, this would be a global cloud resolving model with very high resolution. Although such a model would execute far too slowly to be used directly in a climate model, iGen never executes it. Instead, it converts the code of the resolving model into a mathematical expression which is then symbolically manipulated and approximated to form a simplified expression. This expression is then converted back into a computer program and output as a simplified model. iGen also derives and reports formal bounds on the error of the simplified model compared to the resolving model. These error bounds are always maintained below the user-specified acceptable error. Results will be presented illustrating the success of iGen's analysis of a number of example models. These extremely encouraging results have lead on to work which is currently underway to analyse a cloud resolving model and so produce an efficient parameterisation of moist convection with formally bounded error.

  20. Divergences and estimating tight bounds on Bayes error with applications to multivariate Gaussian copula and latent Gaussian copula

    NASA Astrophysics Data System (ADS)

    Thelen, Brian J.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.

    2017-04-01

    In Bayesian decision theory, there has been a great amount of research into theoretical frameworks and information- theoretic quantities that can be used to provide lower and upper bounds for the Bayes error. These include well-known bounds such as Chernoff, Battacharrya, and J-divergence. Part of the challenge of utilizing these various metrics in practice is (i) whether they are "loose" or "tight" bounds, (ii) how they might be estimated via either parametric or non-parametric methods, and (iii) how accurate the estimates are for limited amounts of data. In general what is desired is a methodology for generating relatively tight lower and upper bounds, and then an approach to estimate these bounds efficiently from data. In this paper, we explore the so-called triangle divergence which has been around for a while, but was recently made more prominent in some recent research on non-parametric estimation of information metrics. Part of this work is motivated by applications for quantifying fundamental information content in SAR/LIDAR data, and to help in this, we have developed a flexible multivariate modeling framework based on multivariate Gaussian copula models which can be combined with the triangle divergence framework to quantify this information, and provide approximate bounds on Bayes error. In this paper we present an overview of the bounds, including those based on triangle divergence and verify that under a number of multivariate models, the upper and lower bounds derived from triangle divergence are significantly tighter than the other common bounds, and often times, dramatically so. We also propose some simple but effective means for computing the triangle divergence using Monte Carlo methods, and then discuss estimation of the triangle divergence from empirical data based on Gaussian Copula models.

  1. Rotational relaxation of molecular hydrogen at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.

    1994-01-01

    Using a coupled rotation-vibration-dissociation model the rotational relaxation times for molecular hydrogen as a function of final temperature (500-5000 K), in a hypothetical scenario of sudden compression, are computed. The theoretical model is based on a master equation solver. The bound-bound and bound-free transition rates have been computed using a quasiclassical trajectory method. A review of the available experimental data on the rotational relaxation of hydrogen is presented, with a critical overview of the method of measurements and data reduction, including the sources of errors. These experimental data are then compared with the computed results.

  2. Error analysis of analytic solutions for self-excited near-symmetric rigid bodies - A numerical study

    NASA Technical Reports Server (NTRS)

    Kia, T.; Longuski, J. M.

    1984-01-01

    Analytic error bounds are presented for the solutions of approximate models for self-excited near-symmetric rigid bodies. The error bounds are developed for analytic solutions to Euler's equations of motion. The results are applied to obtain a simplified analytic solution for Eulerian rates and angles. The results of a sample application of the range and error bound expressions for the case of the Galileo spacecraft experiencing transverse torques demonstrate the use of the bounds in analyses of rigid body spin change maneuvers.

  3. Upper bounds on superpartner masses from upper bounds on the Higgs boson mass.

    PubMed

    Cabrera, M E; Casas, J A; Delgado, A

    2012-01-13

    The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11)  GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.

  4. Model reduction by trimming for a class of semi-Markov reliability models and the corresponding error bound

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Palumbo, Daniel L.

    1991-01-01

    Semi-Markov processes have proved to be an effective and convenient tool to construct models of systems that achieve reliability by redundancy and reconfiguration. These models are able to depict complex system architectures and to capture the dynamics of fault arrival and system recovery. A disadvantage of this approach is that the models can be extremely large, which poses both a model and a computational problem. Techniques are needed to reduce the model size. Because these systems are used in critical applications where failure can be expensive, there must be an analytically derived bound for the error produced by the model reduction technique. A model reduction technique called trimming is presented that can be applied to a popular class of systems. Automatic model generation programs were written to help the reliability analyst produce models of complex systems. This method, trimming, is easy to implement and the error bound easy to compute. Hence, the method lends itself to inclusion in an automatic model generator.

  5. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  6. Book Selection, Collection Development, and Bounded Rationality.

    ERIC Educational Resources Information Center

    Schwartz, Charles A.

    1989-01-01

    Reviews previously proposed schemes of classical rationality in book selection, describes new approaches to rational choice behavior, and presents a model of book selection based on bounded rationality in a garbage can decision process. The role of tacit knowledge and symbolic content in the selection process are also discussed. (102 references)…

  7. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melintescu, A.; Galeriu, D.; Diabate, S.

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  8. LHC phenomenology of SO(10) models with Yukawa unification

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Bryant, B. Charles; Raby, Stuart; Wingerter, Akın

    2013-10-01

    In this paper we study an SO(10) SUSY GUT with Yukawa unification for the third generation. We perform a global χ2 analysis given to obtain the GUT boundary conditions consistent with 11 low-energy observables, including the top, bottom and tau masses. We assume a universal mass, m16, for squarks and sleptons and a universal gaugino mass, M1/2. We then analyze the phenomenological consequences for the LHC for 15 benchmark models with fixed m16=20TeV and with varying values of the gluino mass. The goal of the present work is to (i) evaluate the lower bound on the gluino mass in our model coming from the most recent published data of CMS and (ii) to compare this bound with similar bounds obtained by CMS using simplified models. The bottom line is that the bounds coming from the same-sign dilepton analysis are comparable for our model and the simplified model studied assuming B(g˜→tt¯χ˜10)=100%. However the bounds coming from the purely hadronic analyses for our model are 10%-20% lower than obtained for the simplified models. This is due to the fact that for our models the branching ratio for the decay g˜→gχ˜1,20 is significant. Thus there are significantly fewer b-jets. We find a lower bound on the gluino mass in our models with Mg˜≳1000GeV. Finally, there is a theoretical upper bound on the gluino mass which increases with the value of m16. For m16≤30TeV, the gluino mass satisfies Mg˜≤2.8TeV at 90% C.L. Thus, unless we further increase the amount of fine-tuning, we expect gluinos to be discovered at LHC 14.

  9. Are stock prices too volatile to be justified by the dividend discount model?

    NASA Astrophysics Data System (ADS)

    Akdeniz, Levent; Salih, Aslıhan Altay; Ok, Süleyman Tuluğ

    2007-03-01

    This study investigates excess stock price volatility using the variance bound framework of LeRoy and Porter [The present-value relation: tests based on implied variance bounds, Econometrica 49 (1981) 555-574] and of Shiller [Do stock prices move too much to be justified by subsequent changes in dividends? Am. Econ. Rev. 71 (1981) 421-436.]. The conditional variance bound relationship is examined using cross-sectional data simulated from the general equilibrium asset pricing model of Brock [Asset prices in a production economy, in: J.J. McCall (Ed.), The Economics of Information and Uncertainty, University of Chicago Press, Chicago (for N.B.E.R.), 1982]. Results show that the conditional variance bounds hold, hence, our hypothesis of the validity of the dividend discount model cannot be rejected. Moreover, in our setting, markets are efficient and stock prices are neither affected by herd psychology nor by the outcome of noise trading by naive investors; thus, we are able to control for market efficiency. Consequently, we show that one cannot infer any conclusions about market efficiency from the unconditional variance bounds tests.

  10. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    NASA Astrophysics Data System (ADS)

    Goosen, Maikel; Kokkelmans, Servaas

    2008-05-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the magnetic fields of intersection of these bound states with the scattering threshold. This model was very successful to assign measured Feshbach resonances in an ultra cold mixture of ^6Li and ^40K atomsootnotetextE. Wille, F.M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T.G. Tiecke, J.T.M. Walraven, S.J.J.M.F. Kokkelmans, E. Tiesinga, P.S. Julienne, arXiv:0711.2916. For this system, the accuracy of the determined scattering lengths is comparable to full coupled channels results. However, it was not possible to predict the width of the resonances. We discuss how an incorporation of threshold effects will improve the model, and we apply it to a mixture of ^87Rb and ^133Cs atoms, where recently Feshbach resonances have been measured.

  11. Investigating Actuation Force Fight with Asynchronous and Synchronous Redundancy Management Techniques

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin; Schweiker, Kevin; Dutertre, Bruno

    2013-01-01

    Within distributed fault-tolerant systems the term force-fight is colloquially used to describe the level of command disagreement present at redundant actuation interfaces. This report details an investigation of force-fight using three distributed system case-study architectures. Each case study architecture is abstracted and formally modeled using the Symbolic Analysis Laboratory (SAL) tool chain from the Stanford Research Institute (SRI). We use the formal SAL models to produce k-induction based proofs of a bounded actuation agreement property. We also present a mathematically derived bound of redundant actuation agreement for sine-wave stimulus. The report documents our experiences and lessons learned developing the formal models and the associated proofs.

  12. The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1991-01-01

    The present study proposes a mathematical model utilizing the internal state variable concept for predicting the upper bounds of the reduced axial and shear stiffnesses in cross-ply laminates with matrix cracks. The displacement components at the matrix crack surfaces are explicitly expressed in terms of the observable axial and shear strains and the undamaged material properties. The reduced axial and shear stiffnesses are predicted for glass/epoxy and graphite/epoxy laminates. Comparison of the model with other theoretical and experimental studies is also presented to confirm direct applicability of the model to angle-ply laminates with matrix cracks subjected to general in-plane loading.

  13. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  14. Algorithm for the stabilization of motion a bounding vehicle in the flight phase

    NASA Technical Reports Server (NTRS)

    Lapshin, V. V.

    1980-01-01

    The unsupported phase of motion of a multileg bounding vehicle is examined. An algorithm for stabilization of the angular motion of the vehicle housing by change of the motion of the legs during flight is constructed. The results of mathematical modelling of the stabilization process by computer are presented.

  15. High frequency poroelastic waves in hydrogels.

    PubMed

    Chiarelli, Piero; Lanatà, Antonio; Carbone, Marina; Domenici, Claudio

    2010-03-01

    In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is presented. A viscoelastic force describing the interaction between the polymer network and the bounded water present in such materials is introduced. The model is tested by means of ultrasound wave speed and attenuation measurements in polyvinylalcohol hydrogel samples. The theory and experiments show that ultrasound attenuation decreases linearly with the increase in the water volume fraction beta of the hydrogel. The introduction of the viscoelastic force between the bounded water and the polymer network leads to a bi-phasic theory, showing an ultrasonic fast wave attenuation that can vary as a function of the frequency with a non-integer exponent in agreement with the experimental data in literature. When beta tends to 1 (100% of interstitial water) due to the presence of bounded water in the hydrogel, the ultrasound phase velocity acquires higher value than that of pure water. The ultrasound speed gap at beta=1 is confirmed by the experimental results, showing that it increases in less cross-linked gel samples which own a higher concentration of bounded water.

  16. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  17. STATIC QUARK ANTI-QUARK FREE AND INTERNAL ENERGY IN 2-FLAVOR QCD AND BOUND STATES IN THE QGP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZANTOW, F.; KACZMAREK, O.

    2005-07-25

    We present results on heavy quark free energies in 2-flavour QCD. The temperature dependence of the interaction between static quark anti-quark pairs will be analyzed in terms of temperature dependent screening radii, which give a first estimate on the medium modification of (heavy quark) bound states in the quark gluon plasma. Comparing those radii to the (zero temperature) mean squared charge radii of chasmonium states indicates that the J/{Psi} may survive the phase transition as a bound state, while {chi}{sub c} and {Psi}{prime} are expected to show significant thermal modifications at temperatures close to the transition. Furthermore we will analyzemore » the relation between heavy quark free energies, entropy contributions and internal energy and discuss their relation to potential models used to analyze the melting of heavy quark bound states above the deconfinement temperature. Results of different groups and various potential models for bound states in the deconfined phase of QCD are compared.« less

  18. Froissart bound and self-similarity based models of proton structure functions

    NASA Astrophysics Data System (ADS)

    Choudhury, D. K.; Saikia, Baishali

    2018-03-01

    Froissart bound implies that the total proton-proton cross-section (or equivalently proton structure function) cannot rise faster than log2s ˜log2 1 x. Compatibility of such behavior with the notion of self-similarity in proton structure function was suggested by us sometime back. In the present work, we generalize and improve it further by considering more recent self-similarity based models of proton structure functions and compare with recent data as well as with the model of Block, Durand, Ha and McKay.

  19. The Problem of Limited Inter-rater Agreement in Modelling Music Similarity

    PubMed Central

    Flexer, Arthur; Grill, Thomas

    2016-01-01

    One of the central goals of Music Information Retrieval (MIR) is the quantification of similarity between or within pieces of music. These quantitative relations should mirror the human perception of music similarity, which is however highly subjective with low inter-rater agreement. Unfortunately this principal problem has been given little attention in MIR so far. Since it is not meaningful to have computational models that go beyond the level of human agreement, these levels of inter-rater agreement present a natural upper bound for any algorithmic approach. We will illustrate this fundamental problem in the evaluation of MIR systems using results from two typical application scenarios: (i) modelling of music similarity between pieces of music; (ii) music structure analysis within pieces of music. For both applications, we derive upper bounds of performance which are due to the limited inter-rater agreement. We compare these upper bounds to the performance of state-of-the-art MIR systems and show how the upper bounds prevent further progress in developing better MIR systems. PMID:28190932

  20. Data Needs for Stellar Atmosphere and Spectrum Modeling

    NASA Technical Reports Server (NTRS)

    Short, C. I.

    2006-01-01

    The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.

  1. Optimization in modeling the ribs-bounded contour from computer tomography scan

    NASA Astrophysics Data System (ADS)

    Bilinskas, M. J.; Dzemyda, G.

    2016-10-01

    In this paper a method for analyzing transversal plane images from computer tomography scans is presented. A mathematical model that describes the ribs-bounded contour was created and the problem of approximation is solved by finding out the optimal parameters of the model in the least-squares sense. Such model would be useful in registration of images independently on the patient position on the bed and on the radio-contrast agent injection. We consider the slices, where ribs are visible, because many important internal organs are located here: liver, heart, stomach, pancreas, lung, etc.

  2. A Feasibility Study of Nonlinear Spectroscopic Measurement of Magnetic Nanoparticles Targeted to Cancer Cells.

    PubMed

    Ficko, Bradley W; NDong, Christian; Giacometti, Paolo; Griswold, Karl E; Diamond, Solomon G

    2017-05-01

    Magnetic nanoparticles (MNPs) are an emerging platform for targeted diagnostics in cancer. An important component needed for translation of MNPs is the detection and quantification of targeted MNPs bound to tumor cells. This study explores the feasibility of a multifrequency nonlinear magnetic spectroscopic method that uses excitation and pickup coils and is capable of discriminating between quantities of bound and unbound MNPs in 0.5 ml samples of KB and Igrov human cancer cell lines. The method is tested over a range of five concentrations of MNPs from 0 to 80 μg/ml and five concentrations of cells from 50 to 400 000 count per ml. A linear model applied to the magnetic spectroscopy data was able to simultaneously measure bound and unbound MNPs with agreement between the model-fit and lab assay measurements (p < 0.001). The detectable iron of the presented method to bound and unbound MNPs was < 2 μg in a 0.5 ml sample. The linear model parameters used to determine the quantities of bound and unbound nanoparticles in KB cells were also used to measure the bound and unbound MNP in the Igrov cell line and vice versa. Nonlinear spectroscopic measurement of MNPs may be a useful method for studying targeted MNPs in oncology. Determining the quantity of bound and unbound MNP in an unknown sample using a linear model represents an exciting opportunity to translate multifrequency nonlinear spectroscopy methods to in vivo applications where MNPs could be targeted to cancer cells.

  3. Achieving Agreement in Three Rounds with Bounded-Byzantine Faults

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar, R.

    2017-01-01

    A three-round algorithm is presented that guarantees agreement in a system of K greater than or equal to 3F+1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport, Shostak, and Pease and is scalable with respect to the number of nodes in the system and applies equally to traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.

  4. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    PubMed

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.

  5. Improved bounds on the energy-minimizing strains in martensitic polycrystals

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël

    2016-07-01

    This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable) strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at finite strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The simplest form of the bounds presented is obtained by combining recent results for single crystals with a homogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the development of a more detailed analysis, leading to improved polycrystalline bounds that are notably consistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and the results are compared with lower bounds obtained by considering laminate textures.

  6. Cryptography in the Bounded-Quantum-Storage Model

    NASA Astrophysics Data System (ADS)

    Schaffner, Christian

    2007-09-01

    This thesis initiates the study of cryptographic protocols in the bounded-quantum-storage model. On the practical side, simple protocols for Rabin Oblivious Transfer, 1-2 Oblivious Transfer and Bit Commitment are presented. No quantum memory is required for honest players, whereas the protocols can only be broken by an adversary controlling a large amount of quantum memory. The protocols are efficient, non-interactive and can be implemented with today's technology. On the theoretical side, new entropic uncertainty relations involving min-entropy are established and used to prove the security of protocols according to new strong security definitions. For instance, in the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers, the uncertainty relation allows to prove the security of QKD protocols while tolerating considerably higher error rates compared to the standard model with unbounded adversaries.

  7. The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1981-01-01

    Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation.

  8. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  9. Achieving Agreement in Three Rounds With Bounded-Byzantine Faults

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2015-01-01

    A three-round algorithm is presented that guarantees agreement in a system of K (nodes) greater than or equal to 3F (faults) +1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport et al. and is scalable with respect to the number of nodes in the system and applies equally to the traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.

  10. Variational Gaussian approximation for Poisson data

    NASA Astrophysics Data System (ADS)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  11. Robust inference in the negative binomial regression model with an application to falls data.

    PubMed

    Aeberhard, William H; Cantoni, Eva; Heritier, Stephane

    2014-12-01

    A popular way to model overdispersed count data, such as the number of falls reported during intervention studies, is by means of the negative binomial (NB) distribution. Classical estimating methods are well-known to be sensitive to model misspecifications, taking the form of patients falling much more than expected in such intervention studies where the NB regression model is used. We extend in this article two approaches for building robust M-estimators of the regression parameters in the class of generalized linear models to the NB distribution. The first approach achieves robustness in the response by applying a bounded function on the Pearson residuals arising in the maximum likelihood estimating equations, while the second approach achieves robustness by bounding the unscaled deviance components. For both approaches, we explore different choices for the bounding functions. Through a unified notation, we show how close these approaches may actually be as long as the bounding functions are chosen and tuned appropriately, and provide the asymptotic distributions of the resulting estimators. Moreover, we introduce a robust weighted maximum likelihood estimator for the overdispersion parameter, specific to the NB distribution. Simulations under various settings show that redescending bounding functions yield estimates with smaller biases under contamination while keeping high efficiency at the assumed model, and this for both approaches. We present an application to a recent randomized controlled trial measuring the effectiveness of an exercise program at reducing the number of falls among people suffering from Parkinsons disease to illustrate the diagnostic use of such robust procedures and their need for reliable inference. © 2014, The International Biometric Society.

  12. Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics

    NASA Astrophysics Data System (ADS)

    Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo

    2017-12-01

    This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.

  13. Workload capacity spaces: a unified methodology for response time measures of efficiency as workload is varied.

    PubMed

    Townsend, James T; Eidels, Ami

    2011-08-01

    Increasing the number of available sources of information may impair or facilitate performance, depending on the capacity of the processing system. Tests performed on response time distributions are proving to be useful tools in determining the workload capacity (as well as other properties) of cognitive systems. In this article, we develop a framework and relevant mathematical formulae that represent different capacity assays (Miller's race model bound, Grice's bound, and Townsend's capacity coefficient) in the same space. The new space allows a direct comparison between the distinct bounds and the capacity coefficient values and helps explicate the relationships among the different measures. An analogous common space is proposed for the AND paradigm, relating the capacity index to the Colonius-Vorberg bounds. We illustrate the effectiveness of the unified spaces by presenting data from two simulated models (standard parallel, coactive) and a prototypical visual detection experiment. A conversion table for the unified spaces is provided.

  14. Certified dual-corrected radiation patterns of phased antenna arrays by offline–online order reduction of finite-element models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de

    2015-10-15

    This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.

  15. Tests of chameleon gravity

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Sakstein, Jeremy

    2018-03-01

    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

  16. Hard and Soft Constraints in Reliability-Based Design Optimization

    NASA Technical Reports Server (NTRS)

    Crespo, L.uis G.; Giesy, Daniel P.; Kenny, Sean P.

    2006-01-01

    This paper proposes a framework for the analysis and design optimization of models subject to parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasis is given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and by sets of componentwise bounded uncertain variables. These models, which often arise in engineering problems, allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constraints must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constraints can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodology allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structure, (ii) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparisons of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading to constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilistic uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which closed form expressions are derived, along with conditional sampling. In addition, an l(sub infinity) formulation for the efficient manipulation of hyper-rectangular sets is also proposed.

  17. Beyond Bounded Solutions

    ERIC Educational Resources Information Center

    Enzer, Selwyn

    1977-01-01

    Futures research offers new tools for forecasting and for designing alternative intervention strategies. Interactive cross-impact modeling is presented as a useful method for identifying future events. (Author/MV)

  18. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  19. Leading Twist TMDs in a Light-Front Quark-Diquark Model for Proton

    NASA Astrophysics Data System (ADS)

    Maji, Tanmay; Chakrabarti, Dipankar

    2018-05-01

    We present p_{\\perp } variation (fixed x) of the leading-twist T-even transverse momentum dependent parton distributions (TMDs) of a proton in a light-front quark-diquark model at μ ^2=2.4 and 20 GeV^2. The quark densities for unpolarized and transversely polarized proton are also presented. We observe a Soffer bound for TMDs in this model.

  20. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  1. Empirical Bayes Approaches to Multivariate Fuzzy Partitions.

    ERIC Educational Resources Information Center

    Woodbury, Max A.; Manton, Kenneth G.

    1991-01-01

    An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)

  2. An efficient approach to ARMA modeling of biological systems with multiple inputs and delays

    NASA Technical Reports Server (NTRS)

    Perrott, M. H.; Cohen, R. J.

    1996-01-01

    This paper presents a new approach to AutoRegressive Moving Average (ARMA or ARX) modeling which automatically seeks the best model order to represent investigated linear, time invariant systems using their input/output data. The algorithm seeks the ARMA parameterization which accounts for variability in the output of the system due to input activity and contains the fewest number of parameters required to do so. The unique characteristics of the proposed system identification algorithm are its simplicity and efficiency in handling systems with delays and multiple inputs. We present results of applying the algorithm to simulated data and experimental biological data In addition, a technique for assessing the error associated with the impulse responses calculated from estimated ARMA parameterizations is presented. The mapping from ARMA coefficients to impulse response estimates is nonlinear, which complicates any effort to construct confidence bounds for the obtained impulse responses. Here a method for obtaining a linearization of this mapping is derived, which leads to a simple procedure to approximate the confidence bounds.

  3. Sampling Based Influence Maximization on Linear Threshold Model

    NASA Astrophysics Data System (ADS)

    Jia, Su; Chen, Ling

    2018-04-01

    A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.

  4. Studies in turbulence

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B. (Editor); Sarkar, Sutanu (Editor); Speziale, Charles G. (Editor)

    1992-01-01

    Various papers on turbulence are presented. Individual topics addressed include: modeling the dissipation rate in rotating turbulent flows, mapping closures for turbulent mixing and reaction, understanding turbulence in vortex dynamics, models for the structure and dynamics of near-wall turbulence, complexity of turbulence near a wall, proper orthogonal decomposition, propagating structures in wall-bounded turbulence flows. Also discussed are: constitutive relation in compressible turbulence, compressible turbulence and shock waves, direct simulation of compressible turbulence in a shear flow, structural genesis in wall-bounded turbulence flows, vortex lattice structure of turbulent shear slows, etiology of shear layer vortices, trilinear coordinates in fluid mechanics.

  5. Dynamic Analysis of the Melanoma Model: From Cancer Persistence to Its Eradication

    NASA Astrophysics Data System (ADS)

    Starkov, Konstantin E.; Jimenez Beristain, Laura

    In this paper, we study the global dynamics of the five-dimensional melanoma model developed by Kronik et al. This model describes interactions of tumor cells with cytotoxic T cells and respective cytokines under cellular immunotherapy. We get the ultimate upper and lower bounds for variables of this model, provide formulas for equilibrium points and present local asymptotic stability/hyperbolic instability conditions. Next, we prove the existence of the attracting set. Based on these results we come to global asymptotic melanoma eradication conditions via global stability analysis. Finally, we provide bounds for a locus of the melanoma persistence equilibrium point, study the case of melanoma persistence and describe conditions under which we observe global attractivity to the unique melanoma persistence equilibrium point.

  6. Studies of Real Roughness Effects for Improved Modeling and Control of Practical Wall-Bounded Turbulent Flows

    DTIC Science & Technology

    2008-04-22

    SUPPLEMENTARY NOTES 14. ABSTRACT The present effort investigates the effects of practical roughness replicated from a turbine blade damaged by deposition of...Motivation Most practical wall-bounded turbulent flows of interest, like flows over turbine blades , through heat exchangers, and over aircraft and ship...significantly roughened over time due to harsh operating conditions. Examples of such conditions include cumulative damage to turbine blades (Bons, 2002

  7. The tightly bound nuclei in the liquid drop model

    NASA Astrophysics Data System (ADS)

    Sree Harsha, N. R.

    2018-05-01

    In this paper, we shall maximise the binding energy per nucleon function in the semi-empirical mass formula of the liquid drop model of the atomic nuclei to analytically prove that the mean binding energy per nucleon curve has local extrema at A ≈ 58.6960, Z ≈ 26.3908 and at A ≈ 62.0178, Z ≈ 27.7506. The Lagrange method of multipliers is used to arrive at these results, while we have let the values of A and Z take continuous fractional values. The shell model that shows why 62Ni is the most tightly bound nucleus is outlined. A brief account on stellar nucleosynthesis is presented to show why 56Fe is more abundant than 62Ni and 58Fe. We believe that the analytical proof presented in this paper can be a useful tool to the instructors to introduce the nucleus with the highest mean binding energy per nucleon.

  8. Comparison of calculated and measured model rotor loading and wake geometry

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The calculated blade bound circulation and wake geometry are compared with measured results for a model helicopter rotor in hover and forward flight. Hover results are presented for rectangular tip and ogee tip planform blades. The correlation is quite good when the measured wake geometry characteristics are used in the analysis. Available prescribed wake geometry models are found to give fair predictions of the loading, but they do not produce a reasonable prediction of the induced power. Forward flight results are presented for twisted and untwisted blades. Fair correlation between measurements and calculations is found for the bound circulation distribution on the advancing side. The tip vortex geometry in the vicinity of the advancing blade in forward flight was predicted well by the free wake calculation used, although the wake geometry did not have a significant influence on the calculated loading and performance for the cases considered.

  9. Lattice QCD evidence that the Λ(1405) resonance is an antikaon-nucleon molecule.

    PubMed

    Hall, Jonathan M M; Kamleh, Waseem; Leinweber, Derek B; Menadue, Benjamin J; Owen, Benjamin J; Thomas, Anthony W; Young, Ross D

    2015-04-03

    For almost 50 years the structure of the Λ(1405) resonance has been a mystery. Even though it contains a heavy strange quark and has odd parity, its mass is lower than any other excited spin-1/2 baryon. Dalitz and co-workers speculated that it might be a molecular state of an antikaon bound to a nucleon. However, a standard quark-model structure is also admissible. Although the intervening years have seen considerable effort, there has been no convincing resolution. Here we present a new lattice QCD simulation showing that the strange magnetic form factor of the Λ(1405) vanishes, signaling the formation of an antikaon-nucleon molecule. Together with a Hamiltonian effective-field-theory model analysis of the lattice QCD energy levels, this strongly suggests that the structure is dominated by a bound antikaon-nucleon component. This result clarifies that not all states occurring in nature can be described within a simple quark model framework and points to the existence of exotic molecular meson-nucleon bound states.

  10. Kumaraswamy autoregressive moving average models for double bounded environmental data

    NASA Astrophysics Data System (ADS)

    Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme

    2017-12-01

    In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.

  11. Finding viable models in SUSY parameter spaces with signal specific discovery potential

    NASA Astrophysics Data System (ADS)

    Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi

    2013-08-01

    Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.

  12. A Computational Framework to Control Verification and Robustness Analysis

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2010-01-01

    This paper presents a methodology for evaluating the robustness of a controller based on its ability to satisfy the design requirements. The framework proposed is generic since it allows for high-fidelity models, arbitrary control structures and arbitrary functional dependencies between the requirements and the uncertain parameters. The cornerstone of this contribution is the ability to bound the region of the uncertain parameter space where the degradation in closed-loop performance remains acceptable. The size of this bounding set, whose geometry can be prescribed according to deterministic or probabilistic uncertainty models, is a measure of robustness. The robustness metrics proposed herein are the parametric safety margin, the reliability index, the failure probability and upper bounds to this probability. The performance observed at the control verification setting, where the assumptions and approximations used for control design may no longer hold, will fully determine the proposed control assessment.

  13. A methodology for computing uncertainty bounds of multivariable systems based on sector stability theory concepts

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1992-01-01

    The application of a sector-based stability theory approach to the formulation of useful uncertainty descriptions for linear, time-invariant, multivariable systems is explored. A review of basic sector properties and sector-based approach are presented first. The sector-based approach is then applied to several general forms of parameter uncertainty to investigate its advantages and limitations. The results indicate that the sector uncertainty bound can be used effectively to evaluate the impact of parameter uncertainties on the frequency response of the design model. Inherent conservatism is a potential limitation of the sector-based approach, especially for highly dependent uncertain parameters. In addition, the representation of the system dynamics can affect the amount of conservatism reflected in the sector bound. Careful application of the model can help to reduce this conservatism, however, and the solution approach has some degrees of freedom that may be further exploited to reduce the conservatism.

  14. Uncertainty quantification for constitutive model calibration of brain tissue.

    PubMed

    Brewick, Patrick T; Teferra, Kirubel

    2018-05-31

    The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.

  15. Physical Uncertainty Bounds (PUB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switchingmore » out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.« less

  16. Single-particle trajectories reveal two-state diffusion-kinetics of hOGG1 proteins on DNA.

    PubMed

    Vestergaard, Christian L; Blainey, Paul C; Flyvbjerg, Henrik

    2018-03-16

    We reanalyze trajectories of hOGG1 repair proteins diffusing on DNA. A previous analysis of these trajectories with the popular mean-squared-displacement approach revealed only simple diffusion. Here, a new optimal estimator of diffusion coefficients reveals two-state kinetics of the protein. A simple, solvable model, in which the protein randomly switches between a loosely bound, highly mobile state and a tightly bound, less mobile state is the simplest possible dynamic model consistent with the data. It yields accurate estimates of hOGG1's (i) diffusivity in each state, uncorrupted by experimental errors arising from shot noise, motion blur and thermal fluctuations of the DNA; (ii) rates of switching between states and (iii) rate of detachment from the DNA. The protein spends roughly equal time in each state. It detaches only from the loosely bound state, with a rate that depends on pH and the salt concentration in solution, while its rates for switching between states are insensitive to both. The diffusivity in the loosely bound state depends primarily on pH and is three to ten times higher than in the tightly bound state. We propose and discuss some new experiments that take full advantage of the new tools of analysis presented here.

  17. Quantum-enhanced metrology for multiple phase estimation with noise

    PubMed Central

    Yue, Jie-Dong; Zhang, Yu-Ran; Fan, Heng

    2014-01-01

    We present a general quantum metrology framework to study the simultaneous estimation of multiple phases in the presence of noise as a discretized model for phase imaging. This approach can lead to nontrivial bounds of the precision for multiphase estimation. Our results show that simultaneous estimation (SE) of multiple phases is always better than individual estimation (IE) of each phase even in noisy environment. The utility of the bounds of multiple phase estimation for photon loss channels is exemplified explicitly. When noise is low, those bounds possess the Heisenberg scale showing quantum-enhanced precision with the O(d) advantage for SE, where d is the number of phases. However, this O(d) advantage of SE scheme in the variance of the estimation may disappear asymptotically when photon loss becomes significant and then only a constant advantage over that of IE scheme demonstrates. Potential application of those results is presented. PMID:25090445

  18. Simplified phenomenology for colored dark sectors

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose

    2017-04-01

    We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.

  19. Truncated Gaussians as tolerance sets

    NASA Technical Reports Server (NTRS)

    Cozman, Fabio; Krotkov, Eric

    1994-01-01

    This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.

  20. Robust Bounded Influence Tests in Linear Models

    DTIC Science & Technology

    1988-11-01

    sensitivity analysis and bounded influence estimation. In: Evaluation of Econometric Models, J. Kmenta and J.B. Ramsey (eds.) Academic Press, New York...1R’OBUST bOUNDED INFLUENCE TESTS IN LINEA’ MODELS and( I’homas P. [lettmansperger* Tim [PennsylvanLa State UJniversity A M i0d fix pu111 rsos.p JJ 1 0...November 1988 ROBUST BOUNDED INFLUENCE TESTS IN LINEAR MODELS Marianthi Markatou The University of Iowa and Thomas P. Hettmansperger* The Pennsylvania

  1. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  2. Twisted sigma-model solitons on the quantum projective line

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni

    2018-04-01

    On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.

  3. Theoretical and computational studies of excitons in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Barford, William; Bursill, Robert J.; Smith, Richard W.

    2002-09-01

    We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-binding model of π-conjugated electrons, with 1/r interactions for large r. In both the weak-coupling limit (defined by W>>U) and the strong-coupling limit (defined by W<

  4. Benchmarking hydrological model predictive capability for UK River flows and flood peaks.

    NASA Astrophysics Data System (ADS)

    Lane, Rosanna; Coxon, Gemma; Freer, Jim; Wagener, Thorsten

    2017-04-01

    Data and hydrological models are now available for national hydrological analyses. However, hydrological model performance varies between catchments, and lumped, conceptual models are not able to produce adequate simulations everywhere. This study aims to benchmark hydrological model performance for catchments across the United Kingdom within an uncertainty analysis framework. We have applied four hydrological models from the FUSE framework to 1128 catchments across the UK. These models are all lumped models and run at a daily timestep, but differ in the model structural architecture and process parameterisations, therefore producing different but equally plausible simulations. We apply FUSE over a 20 year period from 1988-2008, within a GLUE Monte Carlo uncertainty analyses framework. Model performance was evaluated for each catchment, model structure and parameter set using standard performance metrics. These were calculated both for the whole time series and to assess seasonal differences in model performance. The GLUE uncertainty analysis framework was then applied to produce simulated 5th and 95th percentile uncertainty bounds for the daily flow time-series and additionally the annual maximum prediction bounds for each catchment. The results show that the model performance varies significantly in space and time depending on catchment characteristics including climate, geology and human impact. We identify regions where models are systematically failing to produce good results, and present reasons why this could be the case. We also identify regions or catchment characteristics where one model performs better than others, and have explored what structural component or parameterisation enables certain models to produce better simulations in these catchments. Model predictive capability was assessed for each catchment, through looking at the ability of the models to produce discharge prediction bounds which successfully bound the observed discharge. These results improve our understanding of the predictive capability of simple conceptual hydrological models across the UK and help us to identify where further effort is needed to develop modelling approaches to better represent different catchment and climate typologies.

  5. Model reduction of dynamical systems by proper orthogonal decomposition: Error bounds and comparison of methods using snapshots from the solution and the time derivatives [Proper orthogonal decomposition model reduction of dynamical systems: error bounds and comparison of methods using snapshots from the solution and the time derivatives

    DOE PAGES

    Kostova-Vassilevska, Tanya; Oxberry, Geoffrey M.

    2017-09-17

    In this study, we consider two proper orthogonal decomposition (POD) methods for dimension reduction of dynamical systems. The first method (M1) uses only time snapshots of the solution, while the second method (M2) augments the snapshot set with time-derivative snapshots. The goal of the paper is to analyze and compare the approximation errors resulting from the two methods by using error bounds. We derive several new bounds of the error from POD model reduction by each of the two methods. The new error bounds involve a multiplicative factor depending on the time steps between the snapshots. For method M1 themore » factor depends on the second power of the time step, while for method 2 the dependence is on the fourth power of the time step, suggesting that method M2 can be more accurate for small between-snapshot intervals. However, three other factors also affect the size of the error bounds. These include (i) the norm of the second (for M1) and fourth derivatives (M2); (ii) the first neglected singular value and (iii) the spectral properties of the projection of the system’s Jacobian in the reduced space. Because of the interplay of these factors neither method is more accurate than the other in all cases. Finally, we present numerical examples demonstrating that when the number of collected snapshots is small and the first neglected singular value has a value of zero, method M2 results in a better approximation.« less

  6. Model reduction of dynamical systems by proper orthogonal decomposition: Error bounds and comparison of methods using snapshots from the solution and the time derivatives [Proper orthogonal decomposition model reduction of dynamical systems: error bounds and comparison of methods using snapshots from the solution and the time derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova-Vassilevska, Tanya; Oxberry, Geoffrey M.

    In this study, we consider two proper orthogonal decomposition (POD) methods for dimension reduction of dynamical systems. The first method (M1) uses only time snapshots of the solution, while the second method (M2) augments the snapshot set with time-derivative snapshots. The goal of the paper is to analyze and compare the approximation errors resulting from the two methods by using error bounds. We derive several new bounds of the error from POD model reduction by each of the two methods. The new error bounds involve a multiplicative factor depending on the time steps between the snapshots. For method M1 themore » factor depends on the second power of the time step, while for method 2 the dependence is on the fourth power of the time step, suggesting that method M2 can be more accurate for small between-snapshot intervals. However, three other factors also affect the size of the error bounds. These include (i) the norm of the second (for M1) and fourth derivatives (M2); (ii) the first neglected singular value and (iii) the spectral properties of the projection of the system’s Jacobian in the reduced space. Because of the interplay of these factors neither method is more accurate than the other in all cases. Finally, we present numerical examples demonstrating that when the number of collected snapshots is small and the first neglected singular value has a value of zero, method M2 results in a better approximation.« less

  7. On the melting temperature measurements of metals under shock compression by pyrometry

    NASA Astrophysics Data System (ADS)

    Dai, Chengda; Hu, Jianbo; Tan, Hua

    2009-06-01

    The high-pressure melting temperatures are of interest in validating equation of state and modeling constitutive equation. The determination of melting temperatures for metals at megabars by pyrometry experiments is principally associated with the one-dimensional models for heat flow through dissimilar media: Grover-Urtiew model (J. App. Phys. 1974, 45: 146-152) and Tan-Ahrens model (High Press. Res. 1990, 2: 159-182). In the present work, we analyzed the insufficiency of Grover-Urtiew model in determining melting temperatures from observed interface temperatures. Based on the Tan-Ahrens model, we extracted the upper and lower bound on melting temperature at interface pressure, and proposed that the median of the both bounds was a good approximation to the melting temperatures at interface pressure. Pyrometry experiments were performed on tantalum, and the high-pressure melting temperatures were evaluated by application of the proposed approximation. The obtained results were compared with available theoretical calculations.

  8. Uncertainty Considerations for Ballistic Limit Equations

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.; Evans, H. J.; Williamsen, J. E.; Boyer, R. L.; Nakayama, G. S.

    2005-01-01

    The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA attempts to determine the overall risk associated with a particular mission by factoring in all known risks (and their corresponding uncertainties, if known) to the spacecraft during its mission. The threat to mission and human life posed by the mircro-meteoroid & orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the International Space Station. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. With so many uncertainties believed to be present in the models used within BUMPER II, providing uncertainty bounds with BUMPER II results would appear to be essential to properly evaluating its predictions of MMOD risk. The uncertainties in BUMPER II come primarily from three areas: damage prediction/ballistic limit equations, environment models, and failure criteria definitions. In order to quantify the overall uncertainty bounds on MMOD risk predictions, the uncertainties in these three areas must be identified. In this paper, possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the shuttle and station versions of BUMPER II are presented and discussed. We begin the paper with a review of the current approaches used by NASA to perform a PRA for the Space Shuttle and the International Space Station, followed by a review of the results of a recent sensitivity analysis performed by NASA using the shuttle version of the BUMPER II code. Following a discussion of the various equations that are encoded in BUMPER II, we propose several possible approaches for establishing uncertainty bounds for the equations within BUMPER II. We conclude with an evaluation of these approaches and present a recommendation regarding which of them would be the most appropriate to follow.

  9. Impacts of the driver's bounded rationality on the traffic running cost under the car-following model

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Luo, Xiao-Feng; Liu, Kai

    2016-09-01

    The driver's bounded rationality has significant influences on the micro driving behavior and researchers proposed some traffic flow models with the driver's bounded rationality. However, little effort has been made to explore the effects of the driver's bounded rationality on the trip cost. In this paper, we use our recently proposed car-following model to study the effects of the driver's bounded rationality on his running cost and the system's total cost under three traffic running costs. The numerical results show that considering the driver's bounded rationality will enhance his each running cost and the system's total cost under the three traffic running costs.

  10. Limits on Log Cross-Product Ratios for Item Response Models. Research Report. ETS RR-06-10

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Holland, Paul W.; Sinharay, Sandip

    2006-01-01

    Bounds are established for log cross-product ratios (log odds ratios) involving pairs of items for item response models. First, expressions for bounds on log cross-product ratios are provided for unidimensional item response models in general. Then, explicit bounds are obtained for the Rasch model and the two-parameter logistic (2PL) model.…

  11. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    NASA Astrophysics Data System (ADS)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  12. Search for weakly decaying Λn ‾ and ΛΛ exotic bound states in central Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-01-01

    We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn ‾ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at √{sNN} = 2.76 TeV, by invariant mass analysis in the decay modes Λn ‾ → d ‾π+ and H-dibaryon → Λpπ-. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  13. Search for weakly decaying Λ n - and ΛΛ exotic bound states in central Pb–Pb collisions at s NN = 2.76  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    Here, we present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possiblemore » $$\\overline{Λn}$$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV, by invariant mass analysis in the decay modes $$\\overline{Λn}$$ → $$\\bar{d}$$π + and H-dibaryon →Λpπ -. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.« less

  14. Search for weakly decaying Λ n - and ΛΛ exotic bound states in central Pb–Pb collisions at s NN = 2.76  TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-11-28

    Here, we present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possiblemore » $$\\overline{Λn}$$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV, by invariant mass analysis in the decay modes $$\\overline{Λn}$$ → $$\\bar{d}$$π + and H-dibaryon →Λpπ -. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.« less

  15. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  16. Model Checking A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2012-01-01

    This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV) for a subset of digraphs. Modeling challenges of the protocol and the system are addressed. The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period.

  17. Bounds on low scale gravity from RICE data and cosmogenic neutrino flux models

    NASA Astrophysics Data System (ADS)

    Hussain, Shahid; McKay, Douglas W.

    2006-03-01

    We explore limits on low scale gravity models set by results from the Radio Ice Cherenkov Experiment's (RICE) ongoing search for cosmic ray neutrinos in the cosmogenic, or GZK, energy range. The bound on M, the fundamental scale of gravity, depends upon cosmogenic flux model, black hole formation and decay treatments, inclusion of graviton mediated elastic neutrino processes, and the number of large extra dimensions, d. Assuming proton-based cosmogenic flux models that cover a broad range of flux possibilities, we find bounds in the interval 0.9 TeV

  18. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

    DOE PAGES

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...

    2017-04-19

    Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less

  19. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    PubMed

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  20. Heat Transfer Issues in Finite Element Analysis of Bounding Accidents in PPCS Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampin, R.; Karditsas, P.J.

    2005-05-15

    Modelling of temperature excursions in structures of conceptual power plants during hypothetical worst-case accidents has been performed within the European Power Plant Conceptual Study (PPCS). A new, 3D finite elements (FE) based tool, coupling the different calculations to the same tokamak geometry, has been extensively used to conduct the neutron transport, activation and thermal analyses for all PPCS plant models. During a total loss of cooling, the usual assumption for the bounding accident, passive removal of the decay heat from activated materials depends on conduction and radiation heat exchange between components. This paper presents and discusses results obtained during themore » PPCS bounding accident thermal analyses, examining the following issues: (a) radiation heat exchange between the inner surfaces of the tokamak, (b) the presence of air within the cryostat volume, and the heat flow arising from the circulation pattern provided by temperature differences between various parts, and (c) the thermal conductivity of pebble beds, and its degradation due to exposure to neutron irradiation, affecting the heat transfer capability and thermal response of a blanket based on these components.« less

  1. CPMIP: measurements of real computational performance of Earth system models in CMIP6

    NASA Astrophysics Data System (ADS)

    Balaji, Venkatramani; Maisonnave, Eric; Zadeh, Niki; Lawrence, Bryan N.; Biercamp, Joachim; Fladrich, Uwe; Aloisio, Giovanni; Benson, Rusty; Caubel, Arnaud; Durachta, Jeffrey; Foujols, Marie-Alice; Lister, Grenville; Mocavero, Silvia; Underwood, Seth; Wright, Garrett

    2017-01-01

    A climate model represents a multitude of processes on a variety of timescales and space scales: a canonical example of multi-physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Algorithms generally possess weak scaling and can be I/O and/or memory-bound. Such weak-scaling, I/O, and memory-bound multi-physics codes present particular challenges to computational performance. Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for comparative information across models. codes present particular challenges to computational performance. We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth system) models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone. They are independent of platform and underlying parallel programming models. We show how these metrics can be used to measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of research and development for performance engineering. codes present particular challenges to computational performance. We present results for these measures for a diverse suite of models from several modeling centers, and propose to use these measures as a basis for a CPMIP, a computational performance model intercomparison project (MIP).

  2. Comparisons of non-Gaussian statistical models in DNA methylation analysis.

    PubMed

    Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-06-16

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  3. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    PubMed Central

    Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-01-01

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687

  4. An error bound for a discrete reduced order model of a linear multivariable system

    NASA Technical Reports Server (NTRS)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  5. Modified Finch and Skea stellar model compatible with observational data

    NASA Astrophysics Data System (ADS)

    Pandya, D. M.; Thomas, V. O.; Sharma, R.

    2015-04-01

    We present a new class of solutions to the Einstein's field equations corresponding to a static spherically symmetric anisotropic system by generalizing the ansatz of Finch and Skea [Class. Quantum Grav. 6:467, 1989] for the gravitational potential g rr . The anisotropic stellar model previously studied by Sharma and Ratanpal [Int. J. Mod. Phys. D 13:1350074, 2013] is a sub-class of the solutions provided here. Based on physical requirements, regularity conditions and stability, we prescribe bounds on the model parameters. By systematically fixing values of the model parameters within the prescribed bound, we demonstrate that our model is compatible with the observed masses and radii of a wide variety of compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SAX J1808.4-3658 and Her X-1.

  6. A biochemo-mechano coupled, computational model combining membrane transport and pericellular proteolysis in tissue mechanics

    PubMed Central

    Vuong, A.-T.; Rauch, A. D.

    2017-01-01

    We present a computational model for the interaction of surface- and volume-bound scalar transport and reaction processes with a deformable porous medium. The application in mind is pericellular proteolysis, i.e. the dissolution of the solid phase of the extracellular matrix (ECM) as a response to the activation of certain chemical species at the cell membrane and in the vicinity of the cell. A poroelastic medium model represents the extra cellular scaffold and the interstitial fluid flow, while a surface-bound transport model accounts for the diffusion and reaction of membrane-bound chemical species. By further modelling the volume-bound transport, we consider the advection, diffusion and reaction of sequestered chemical species within the extracellular scaffold. The chemo-mechanical coupling is established by introducing a continuum formulation for the interplay of reaction rates and the mechanical state of the ECM. It is based on known experimental insights and theoretical work on the thermodynamics of porous media and degradation kinetics of collagen fibres on the one hand and a damage-like effect of the fibre dissolution on the mechanical integrity of the ECM on the other hand. The resulting system of partial differential equations is solved via the finite-element method. To the best of our knowledge, it is the first computational model including contemporaneously the coupling between (i) advection–diffusion–reaction processes, (ii) interstitial flow and deformation of a porous medium, and (iii) the chemo-mechanical interaction impelled by the dissolution of the ECM. Our numerical examples show good agreement with experimental data. Furthermore, we outline the capability of the methodology to extend existing numerical approaches towards a more comprehensive model for cellular biochemo-mechanics. PMID:28413347

  7. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints.

    PubMed

    Liang, X B; Wang, J

    2000-01-01

    This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

  8. Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations

    PubMed Central

    Seeliger, Daniel; de Groot, Bert L.

    2010-01-01

    Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034

  9. Bionic Control of Cheetah Bounding with a Segmented Spine.

    PubMed

    Wang, Chunlei; Wang, Shigang

    2016-01-01

    A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.

  10. A massive early atmosphere on Triton

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Nolan, Michael C.

    1992-01-01

    The idea of an early greenhouse atmosphere for Triton is presented and the conditions under which it may have been sustained are quantified. The volatile content of primordial Triton is modeled, and tidal heating rates are assessed to set bounds on the available energy. The atmospheric model formalism is presented, and it is shown how a massive atmosphere could have been raised by modest tidal heating fluxes. The implications of the model atmospheres for the atmospheric escape rates, the chemical evolution, and the cratering record are addressed.

  11. Multi-fidelity stochastic collocation method for computation of statistical moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu; Linebarger, Erin M., E-mail: aerinline@sci.utah.edu; Xiu, Dongbin, E-mail: xiu.16@osu.edu

    We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.

  12. Bound and continuum energy distributions of nuclear fragments resulting from tunneling ionization of molecules

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2018-03-01

    We present the theory of tunneling ionization of molecules with both electronic and nuclear motion treated quantum mechanically. The theory provides partial rates for ionization into the different final states of the molecular ion, including both bound vibrational and dissociative channels. The exact results obtained for a one-dimensional model of H2 and D2 are compared with two approximate approaches, the weak-field asymptotic theory and the Born-Oppenheimer approximation. The validity ranges and compatibility of the approaches are identified formally and illustrated by the calculations. The results quantify that at typical field strengths considered in strong-field physics, it is several orders of magnitude more likely to ionize into bound vibrational ionic channels than into the dissociative channel.

  13. Properties of Coulomb crystals: rigorous results.

    PubMed

    Cioslowski, Jerzy

    2008-04-28

    Rigorous equalities and bounds for several properties of Coulomb crystals are presented. The energy e(N) per particle pair is shown to be a nondecreasing function of the particle number N for all clusters described by double-power-law pairwise-additive potentials epsilon(r) that are unbound at both r-->0 and r-->infinity. A lower bound for the ratio of the mean reciprocal crystal radius and e(N) is derived. The leading term in the asymptotic expression for the shell capacity that appears in the recently introduced approximate model of Coulomb crystals is obtained, providing in turn explicit large-N asymptotics for e(N) and the mean crystal radius. In addition, properties of the harmonic vibrational spectra are investigated, producing an upper bound for the zero-point energy.

  14. A frequency-domain estimator for use in adaptive control systems

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter

    1991-01-01

    This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.

  15. Software reliability: Additional investigations into modeling with replicated experiments

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.; Schotz, F. M.; Skirvan, J. A.

    1984-01-01

    The effects of programmer experience level, different program usage distributions, and programming languages are explored. All these factors affect performance, and some tentative relational hypotheses are presented. An analytic framework for replicated and non-replicated (traditional) software experiments is presented. A method of obtaining an upper bound on the error rate of the next error is proposed. The method was validated empirically by comparing forecasts with actual data. In all 14 cases the bound exceeded the observed parameter, albeit somewhat conservatively. Two other forecasting methods are proposed and compared to observed results. Although demonstrated relative to this framework that stages are neither independent nor exponentially distributed, empirical estimates show that the exponential assumption is nearly valid for all but the extreme tails of the distribution. Except for the dependence in the stage probabilities, Cox's model approximates to a degree what is being observed.

  16. Tight-Binding Description of Impurity States in Semiconductors

    ERIC Educational Resources Information Center

    Dominguez-Adame, F.

    2012-01-01

    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  17. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structuremore » that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.« less

  18. Modeling and optimum time performance for concurrent processing

    NASA Technical Reports Server (NTRS)

    Mielke, Roland R.; Stoughton, John W.; Som, Sukhamoy

    1988-01-01

    The development of a new graph theoretic model for describing the relation between a decomposed algorithm and its execution in a data flow environment is presented. Called ATAMM, the model consists of a set of Petri net marked graphs useful for representing decision-free algorithms having large-grained, computationally complex primitive operations. Performance time measures which determine computing speed and throughput capacity are defined, and the ATAMM model is used to develop lower bounds for these times. A concurrent processing operating strategy for achieving optimum time performance is presented and illustrated by example.

  19. Assessment and application of Reynolds stress closure models to high-speed compressible flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Sarkar, S.; Speziale, C. G.; Balakrishnan, L.; Abid, R.; Anderson, E. C.

    1990-01-01

    The paper presents results from the development of higher order closure models for the phenomological modeling of high-speed compressible flows. The work presented includes the introduction of an improved pressure-strain correlationi model applicable in both the low- and high-speed regime as well as modifications to the isotropic dissipation rate to account for dilatational effects. Finally, the question of stiffness commonly associated with the solution of two-equation and Reynolds stress transport equations in wall-bounded flows is examined and ways of relaxing these restrictions are discussed.

  20. Outward Bound Outcome Model Validation and Multilevel Modeling

    ERIC Educational Resources Information Center

    Luo, Yuan-Chun

    2011-01-01

    This study was intended to measure construct validity for the Outward Bound Outcomes Instrument (OBOI) and to predict outcome achievement from individual characteristics and course attributes using multilevel modeling. A sample of 2,340 participants was collected by Outward Bound USA between May and September 2009 using the OBOI. Two phases of…

  1. A simplified analysis of the multigrid V-cycle as a fast elliptic solver

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Taasan, Shlomo

    1988-01-01

    For special model problems, Fourier analysis gives exact convergence rates for the two-grid multigrid cycle and, for more general problems, provides estimates of the two-grid convergence rates via local mode analysis. A method is presented for obtaining mutigrid convergence rate estimates for cycles involving more than two grids (using essentially the same analysis as for the two-grid cycle). For the simple cast of the V-cycle used as a fast Laplace solver on the unit square, the k-grid convergence rate bounds obtained by this method are sharper than the bounds predicted by the variational theory. Both theoretical justification and experimental evidence are presented.

  2. Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferson, Scott; Nelsen, Roger B.; Hajagos, Janos

    2015-05-01

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  3. Modeling interface shear behavior of granular materials using micro-polar continuum approach

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.

    2018-01-01

    Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

  4. Fundamental limits in 3D landmark localization.

    PubMed

    Rohr, Karl

    2005-01-01

    This work analyses the accuracy of estimating the location of 3D landmarks and characteristic image structures. Based on nonlinear estimation theory we study the minimal stochastic errors of the position estimate caused by noisy data. Given analytic models of the image intensities we derive closed-form expressions for the Cramér-Rao bound for different 3D structures such as 3D edges, 3D ridges, 3D lines, and 3D blobs. It turns out, that the precision of localization depends on the noise level, the size of the region-of-interest, the width of the intensity transitions, as well as on other parameters describing the considered image structure. The derived lower bounds can serve as benchmarks and the performance of existing algorithms can be compared with them. To give an impression of the achievable accuracy numeric examples are presented. Moreover, by experimental investigations we demonstrate that the derived lower bounds can be achieved by fitting parametric intensity models directly to the image data.

  5. Structural Dynamics of the Magnesium-bound Conformation of CorA in a lipid bilayer

    PubMed Central

    Dalmas, Olivier; Cuello, Luis G.; Jogini, Vishwanath; Cortes, D. Marien; Roux, Benoit; Perozo, Eduardo

    2010-01-01

    Summary The transmembrane conformation of Thermotoga maritima CorA, a Magnesium transport system, has been studied in it’s Mg2+-bound form by site-directed spin labeling and electron paramagnetic resonance spectroscopy. Probe mobility together with accessibility data were used to evaluate the overall dynamics and relative arrangement of individual transmembrane segments TM1 and TM2. TM1 extends toward the cytoplasmic side creating a water filled cavity, while TM2 is located in the periphery of the oligomer, contacting the lipid bilayer. A structural model for the conserved extracellular loop was generated based on EPR data and MD simulations, in which residue E316 is located towards the fivefold symmetry axis in position to electrostatically influence divalent ion translocation. Electrostatic analyses of our model suggest that, in agreement with the crystal structure, Mg2+ -bound CorA is in a close conformation. The present results suggest that long-range structural rearrangements are necessary to allow Mg2+ translocation. PMID:20637423

  6. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-02-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  7. Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; L'Esperance, A.

    2017-01-01

    A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.

  8. Integrated flight/propulsion control - Subsystem specifications for performance

    NASA Technical Reports Server (NTRS)

    Neighbors, W. K.; Rock, Stephen M.

    1993-01-01

    A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.

  9. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Almonacid, Hannia

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of theirmore » critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.« less

  10. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding shells."

  11. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  12. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  13. Axion gauge field inflation and gravitational leptogenesis: A lower bound on B modes from the matter-antimatter asymmetry of the Universe

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.

    2018-01-01

    We present a toy model of an axion gauge field inflation scenario that yields viable density and gravitational wave spectra. The scenario consists of an axionic inflaton in a steep potential that is effectively flattened by a coupling to a collection of non-Abelian gauge fields. The model predicts a blue-tilted gravitational wave spectrum that is dominated by one circular polarization, resulting in unique observational targets for cosmic microwave background and gravitational wave experiments. The handedness of the gravitational wave spectrum is incorporated in a model of leptogenesis through the axial-gravitational anomaly; assuming electroweak sphaeleron processes convert the lepton asymmetry into baryons, we predict an approximate lower bound on the tensor-to-scalar ratio r ˜3 - 4 ×10-2 for models that also explain the matter-antimatter asymmetry of the Universe.

  14. Lieb-Robinson bounds for spin-boson lattice models and trapped ions.

    PubMed

    Jünemann, J; Cadarso, A; Pérez-García, D; Bermudez, A; García-Ripoll, J J

    2013-12-06

    We derive a Lieb-Robinson bound for the propagation of spin correlations in a model of spins interacting through a bosonic lattice field, which satisfies a Lieb-Robinson bound in the absence of spin-boson couplings. We apply these bounds to a system of trapped ions and find that the propagation of spin correlations, as mediated by the phonons of the ion crystal, can be faster than the regimes currently explored in experiments. We propose a scheme to test the bounds by measuring retarded correlation functions via the crystal fluorescence.

  15. Scalability of Semi-Implicit Time Integrators for Nonhydrostatic Galerkin-based Atmospheric Models on Large Scale Cluster

    DTIC Science & Technology

    2011-01-01

    present performance statistics to explain the scalability behavior. Keywords-atmospheric models, time intergrators , MPI, scal- ability, performance; I...across inter-element bound- aries. Basis functions are constructed as tensor products of Lagrange polynomials ψi (x) = hα(ξ) ⊗ hβ(η) ⊗ hγ(ζ)., where hα

  16. Theft of information in the take-grant protection model

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1989-01-01

    Using the information transfer extensions to the Take-Grant Protection Model, the concept of theft of information is defined and necessary and sufficient conditions for such theft to occur are presented, as well as bounds on the number of actors involved in such theft. Finally, the application of these results to reference monitors are explored.

  17. Macroscopic modeling and simulations of supercoiled DNA with bound proteins

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Schlick, Tamar

    2002-11-01

    General methods are presented for modeling and simulating DNA molecules with bound proteins on the macromolecular level. These new approaches are motivated by the need for accurate and affordable methods to simulate slow processes (on the millisecond time scale) in DNA/protein systems, such as the large-scale motions involved in the Hin-mediated inversion process. Our approaches, based on the wormlike chain model of long DNA molecules, introduce inhomogeneous potentials for DNA/protein complexes based on available atomic-level structures. Electrostatically, treat those DNA/protein complexes as sets of effective charges, optimized by our discrete surface charge optimization package, in which the charges are distributed on an excluded-volume surface that represents the macromolecular complex. We also introduce directional bending potentials as well as non-identical bead hydrodynamics algorithm to further mimic the inhomogeneous effects caused by protein binding. These models thus account for basic elements of protein binding effects on DNA local structure but remain computational tractable. To validate these models and methods, we reproduce various properties measured by both Monte Carlo methods and experiments. We then apply the developed models to study the Hin-mediated inversion system in long DNA. By simulating supercoiled, circular DNA with or without bound proteins, we observe significant effects of protein binding on global conformations and long-time dynamics of the DNA on the kilo basepair length.

  18. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  19. On the more accurate channel model and positioning based on time-of-arrival for visible light localization

    NASA Astrophysics Data System (ADS)

    Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed

    2017-01-01

    This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.

  20. Effects of general relativity on glitch amplitudes and pulsar mass upper bounds

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Montoli, A.; Pizzochero, P. M.

    2018-04-01

    Pinning of vortex lines in the inner crust of a spinning neutron star may be the mechanism that enhances the differential rotation of the internal neutron superfluid, making it possible to freeze some amount of angular momentum which eventually can be released, thus causing a pulsar glitch. We investigate the general relativistic corrections to pulsar glitch amplitudes in the slow-rotation approximation, consistently with the stratified structure of the star. We thus provide a relativistic generalization of a previous Newtonian model that was recently used to estimate upper bounds on the masses of glitching pulsars. We find that the effect of general relativity on the glitch amplitudes obtained by emptying the whole angular momentum reservoir is less than 30 per cent. Moreover, we show that the Newtonian upper bounds on the masses of large glitchers obtained from observations of their maximum recorded event differ by less than a few percent from those calculated within the relativistic framework. This work can also serve as a basis to construct more sophisticated models of angular momentum reservoir in a relativistic context: in particular, we present two alternative scenarios for macroscopically rigid and slack pinned vortex lines, and we generalize the Feynman-Onsager relation to the case when both entrainment coupling between the fluids and a strong axisymmetric gravitational field are present.

  1. On the mass and thermodynamics of the Higgs boson

    NASA Astrophysics Data System (ADS)

    Fokas, A. S.; Vayenas, C. G.; Grigoriou, D. P.

    2018-02-01

    In two recent works we have shown that the masses of the W± and Zo bosons can be computed from first principles by modeling these bosons as bound relativistic gravitationally confined rotational states consisting of e±-νe pairs in the case of W± bosons and of a e+-νe-e- triplet in the case of the Zo boson. Here, we present similar calculations for the Higgs boson which we model as a bound rotational state consisting of a positron, an electron, a neutrino and an antineutrino. The model contains no adjustable parameters and the computed boson mass of 125.7 GeV/c2, is in very good agreement with the experimental value of 125.1 ± 1 GeV/c2. The thermodynamics and potential connection of this particle with the Higgs field are also briefly addressed.

  2. Finite state projection based bounds to compare chemical master equation models using single-cell data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Zachary; Neuert, Gregor; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort.more » In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.« less

  3. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  4. Dynamics of 17F + 58Ni reaction via complete and incomplete fusion processes at above barrier energies

    NASA Astrophysics Data System (ADS)

    Grover, Neha; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-06-01

    The dynamics of 17F + 58Ni reaction induced via a loosely bound projectile (17F) is examined using the collective clusterization approach of the dynamical cluster decay model (DCM) with respect to the recent experimental data available at beam energies Ebeam = 54.1 and 58.5 MeV. The calculations are done for quadrupole deformations of fragments using the optimum orientation approach. In view of the loosely bound nature of 17F, the main focus of the present work is on the comparison of complete and incomplete fusion. It is studied using various components such as fragmentation potential, mass distribution, and barrier modification. Different decay modes (ER, IMF, HMF, and fission) are also compared to determine the complete fusion and incomplete fusion paths. Additionally, the decay paths of the nucleus formed from loosely bound (17F) and tightly bound (16O) projectiles are compared. Furthermore, the role of temperature-dependent pairing strength is analyzed in terms of the binary fragmentation of the compound system formed.

  5. Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Zhichun; Liu, Wei

    2018-04-01

    The coefficient of performance (COP) for general refrigerators at finite cooling power have been systematically researched through the minimally nonlinear irreversible model, and its lower and upper bounds in different operating regions have been proposed. Under the tight coupling conditions, we have calculated the universal COP bounds under the χ figure of merit in different operating regions. When the refrigerator operates in the region with lower external flux, we obtained the general bounds (0 < ε <(√{ 9 + 8εC } - 3) / 2) under the χ figure of merit. We have also calculated the universal bounds for maximum gain in COP under different operating regions to give a further insight into the COP gain with the cooling power away from the maximum one. When the refrigerator operates in the region located between maximum cooling power and maximum COP with lower external flux, the upper bound for COP and the lower bound for relative gain in COP present large values, compared to a relative small loss from the maximum cooling power. If the cooling power is the main objective, it is desirable to operate the refrigerator at a slightly lower cooling power than at the maximum one, where a small loss in the cooling power induces a much larger COP enhancement.

  6. Low energy theorems and the unitarity bounds in the extra U(1) superstring inspired E{sub 6} models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, N.K.; Saxena, Pranav; Nagawat, Ashok K.

    2005-11-01

    The conventional method using low energy theorems derived by Chanowitz et al. [Phys. Rev. Lett. 57, 2344 (1986);] does not seem to lead to an explicit unitarity limit in the scattering processes of longitudinally polarized gauge bosons for the high energy case in the extra U(1) superstring inspired models, commonly known as {eta} model, emanating from E{sub 6} group of superstring theory. We have made use of an alternative procedure given by Durand and Lopez [Phys. Lett. B 217, 463 (1989);], which is applicable to supersymmetric grand unified theories. Explicit unitarity bounds on the superpotential couplings (identified as Yukawa couplings)more » are obtained from both using unitarity constraints as well as using renormalization group equations (RGE) analysis at one-loop level utilizing critical couplings concepts implying divergence of scalar coupling at M{sub G}. These are found to be consistent with finiteness over the entire range M{sub Z}{<=}{radical}(s){<=}M{sub G} i.e. from grand unification scale to weak scale. For completeness, the similar approach has been made use of in other models i.e., {chi}, {psi}, and {nu} models emanating from E{sub 6} and it has been noticed that at weak scale, the unitarity bounds on Yukawa couplings do not differ among E{sub 6} extra U(1) models significantly except for the case of {chi} model in 16 representations. For the case of the E{sub 6}-{eta} model ({beta}{sub E} congruent with 9.64), the analysis using the unitarity constraints leads to the following bounds on various parameters: {lambda}{sub t(max.)}(M{sub Z})=1.294, {lambda}{sub b(max.)}(M{sub Z})=1.278, {lambda}{sub H(max.)}(M{sub Z})=0.955, {lambda}{sub D(max.)}(M{sub Z})=1.312. The analytical analysis of RGE at the one-loop level provides the following critical bounds on superpotential couplings: {lambda}{sub t,c}(M{sub Z}) congruent with 1.295, {lambda}{sub b,c}(M{sub Z}) congruent with 1.279, {lambda}{sub H,c}(M{sub Z}) congruent with 0.968, {lambda}{sub D,c}(M{sub Z}) congruent with 1.315. Thus superpotential coupling values obtained by both the approaches are in good agreement. Theoretically we have obtained bounds on physical mass parameters using the unitarity constrained superpotential couplings. The bounds are as follows: (i) Absolute upper bound on top quark mass m{sub t}{<=}225 GeV (ii) the upper bound on the lightest neutral Higgs boson mass at the tree level is m{sub H{sub 2}{sup 0}}{sup tree}{<=}169 GeV, and after the inclusion of the one-loop radiative correction it is m{sub H{sub 2}{sup 0}}{<=}229 GeV when {lambda}{sub t}{ne}{lambda}{sub b} at the grand unified theory scale. On the other hand, these are m{sub H{sub 2}{sup 0}}{sup tree}{<=}159 GeV, m{sub H{sub 2}{sup 0}}{<=}222 GeV, respectively, when {lambda}{sub t}={lambda}{sub b} at the grand unified theory scale. A plausible range on D-quark mass as a function of mass scale M{sub Z{sub 2}} is m{sub D}{approx_equal}O(3 TeV) for M{sub Z{sub 2}}{approx_equal}O(1 TeV) for the favored values of tan{beta}{<=}1. The bounds on aforesaid physical parameters in the case of {chi}, {psi}, and {nu} models in the 27 representation are almost identical with those of {eta} model and are consistent with the present day experimental precision measurements.« less

  7. A generalized Lyapunov theory for robust root clustering of linear state space models with real parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.

  8. NASA Astrophysics Data System (ADS)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Pires, K. C. C.; Lubian, J.; Mendes Junior, D. R.; de Faria, P. N.; Kolata, J. J.; Becchetti, F. D.; Jiang, H.; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2017-01-01

    We present 8B 27Al elastic scattering angular distributions for the proton-halo nucleus 8B at two energies above the Coulomb barrier, namely Elab=15.3 and 21.7 MeV. The experiments were performed in the Radioactive Ion Beams in Brasil facility (RIBRAS) in São Paulo, and in the TwinSol facility at the University of Notre Dame, USA. The angular distributions were measured in the angular range of 15-80 degrees. Optical model and continuum discretized coupled channels calculations were performed, and the total reaction cross sections were derived. A comparison of the 8B+27Al total reaction cross sections with similar systems including exotic, weakly bound, and tightly bound projectiles impinging on the same target is presented.

  9. Near field interaction of microwave signals with a bounded plasma plume

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Hallock, Gary A.; Kim, Hyeongdong; Birkner, Bjorn

    1991-01-01

    The objective was to study the effect of the arcjet thruster plume on the performance of an onboard satellite reflector antenna. A project summary is presented along with sections on plasma and electromagnetic modeling. The plasma modeling section includes the following topics: wave propagation; plasma analysis; plume electron density model; and the proposed experimental program. The section on electromagnetic modeling includes new developments in ray modeling and the validation of three dimensional ray results.

  10. A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.

    2018-02-01

    Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.

  11. General bounds in Hybrid Natural Inflation

    NASA Astrophysics Data System (ADS)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Hidalgo, Juan Carlos; Sussman, Roberto A.; Tapia, José

    2017-12-01

    Recently we have studied in great detail a model of Hybrid Natural Inflation (HNI) by constructing two simple effective field theories. These two versions of the model allow inflationary energy scales as small as the electroweak scale in one of them or as large as the Grand Unification scale in the other, therefore covering the whole range of possible energy scales. In any case the inflationary sector of the model is of the form V(phi)=V0 (1+a cos(phi/f)) where 0<= a<1 and the end of inflation is triggered by an independent waterfall field. One interesting characteristic of this model is that the slow-roll parameter epsilon(phi) is a non-monotonic function of phi presenting a maximum close to the inflection point of the potential. Because the scalar spectrum Script Ps(k) of density fluctuations when written in terms of the potential is inversely proportional to epsilon(phi) we find that Script Ps(k) presents a minimum at phimin. The origin of the HNI potential can be traced to a symmetry breaking phenomenon occurring at some energy scale f which gives rise to a (massless) Goldstone boson. Non-perturbative physics at some temperature T

  12. The amazing evolutionary dynamics of non-linear optical systems with feedback

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Leonid

    2013-09-01

    Optical systems with feedback are, generally, non-linear dynamic systems. As such, they exhibit evolutionary behavior. In the paper we present results of experimental investigation of evolutionary dynamics of several models of such systems. The models are modifications of the famous mathematical "Game of Life". The modifications are two-fold: "Game of Life" rules are made stochastic and mutual influence of cells is made spatially non-uniform. A number of new phenomena in the evolutionary dynamics of the models are revealed: - "Ordering of chaos". Formation, from seed patterns, of stable maze-like patterns with chaotic "dislocations" that resemble natural patterns, such as skin patterns of some animals and fishes, see shell, fingerprints, magnetic domain patterns and alike, which one can frequently find in the nature. These patterns and their fragments exhibit a remarkable capability of unlimited growth. - "Self-controlled growth" of chaotic "live" formations into "communities" bounded, depending on the model, by a square, hexagon or octagon, until they reach a certain critical size, after which the growth stops. - "Eternal life in a bounded space" of "communities" after reaching a certain size and shape. - "Coherent shrinkage" of "mature", after reaching a certain size, "communities" into one of stable or oscillating patterns preserving in this process isomorphism of their bounding shapes until the very end.

  13. Innovative Adolescent Chemical Dependency Treatment and Its Outcome: A Model Based on Outward Bound Programming.

    ERIC Educational Resources Information Center

    McPeake, John D.; And Others

    1991-01-01

    Describes adolescent chemical dependency treatment model developed at Beech Hill Hospital (New Hampshire) which integrated Twelve Step-oriented alcohol and drug rehabilitation program with experiential education school, Hurricane Island Outward Bound School. Describes Beech Hill Hurricane Island Outward Bound School Adolescent Chemical Dependency…

  14. Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Hsuan; Lin, De-Hone

    2014-01-01

    Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.

  15. LISA pathfinder appreciably constrains collapse models

    NASA Astrophysics Data System (ADS)

    Helou, Bassam; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei

    2017-04-01

    Spontaneous collapse models are phenomological theories formulated to address major difficulties in macroscopic quantum mechanics. We place significant bounds on the parameters of the leading collapse models, the continuous spontaneous localization (CSL) model, and the Diosi-Penrose (DP) model, by using LISA Pathfinder's measurement, at a record accuracy, of the relative acceleration noise between two free-falling macroscopic test masses. In particular, we bound the CSL collapse rate to be at most (2.96 ±0.12 ) ×10-8 s-1 . This competitive bound explores a new frequency regime, 0.7 to 20 mHz, and overlaps with the lower bound 10-8 ±2 s-1 proposed by Adler in order for the CSL collapse noise to be substantial enough to explain the phenomenology of quantum measurement. Moreover, we bound the regularization cutoff scale used in the DP model to prevent divergences to be at least 40.1 ±0.5 fm , which is larger than the size of any nucleus. Thus, we rule out the DP model if the cutoff is the size of a fundamental particle.

  16. Momentum distributions for H 2 ( e , e ' p )

    DOE PAGES

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-29

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less

  17. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence to epithelial cells.

    PubMed

    Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram

    2002-03-01

    Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.

  18. Theoretical and material studies on thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.

  19. Twisting, supercoiling and stretching in protein bound DNA

    NASA Astrophysics Data System (ADS)

    Lam, Pui-Man; Zhen, Yi

    2018-04-01

    We have calculated theoretical results for the torque and slope of the twisted DNA, with various proteins bound on it, using the Neukirch-Marko model, in the regime where plectonemes exist. We found that the torque in the protein bound DNA decreases compared to that in the bare DNA. This is caused by the decrease in the free energy g(f) , and hence the smaller persistence lengths, in the case of protein bound DNA. We hope our results will encourage experimental investigations of supercoiling in protein bound DNA, which can provide further tests of the Neukirch-Marko model.

  20. Grey fuzzy optimization model for water quality management of a river system

    NASA Astrophysics Data System (ADS)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  1. Solution of the spatial neutral model yields new bounds on the Amazonian species richness

    NASA Astrophysics Data System (ADS)

    Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.

    2017-02-01

    Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).

  2. Boosting invisible searches via Z H : From the Higgs boson to dark matter simplified models

    NASA Astrophysics Data System (ADS)

    Gonçalves, Dorival; Krauss, Frank; Kuttimalai, Silvan; Maierhöfer, Philipp

    2016-09-01

    Higgs boson production in association with a Z boson at the LHC is analyzed, both in the Standard Model and in simplified model extensions for dark matter. We focus on H →invisibles searches and show that loop-induced components for both the signal and background present phenomenologically relevant contributions to the B R (H →inv) limits. We also show how multijet merging improves the description of key distributions to this analysis. In addition, the constraining power of this channel to simplified models for dark matter with scalar and pseudoscalar mediators ϕ and A is discussed and compared with noncollider constraints. We find that with 100 fb-1 of LHC data, this channel provides competitive constraints to the noncollider bounds, for most of the parameter space we consider, bounding the universal Standard Model fermion-mediator strength at gv<1 for moderate masses in the range of 100 GeV

  3. Quantifying the impact of material-model error on macroscale quantities-of-interest using multiscale a posteriori error-estimation techniques

    DOE PAGES

    Brown, Judith A.; Bishop, Joseph E.

    2016-07-20

    An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less

  4. Capture zone of a multi-well system in bounded peninsula-shaped aquifers.

    PubMed

    Zarei-Doudeji, Somayeh; Samani, Nozar

    2014-08-01

    In this paper we present the equation of capture zone for multi-well system in peninsula-shaped confined and unconfined aquifers. The aquifer is rectangular in plan view, bounded along three sides, and extends to infinity at the fourth side. The bounding boundaries are either no-flow (impervious) or in-flow (constant head) so that aquifers with six possible boundary configurations are formed. The well system is consisted of any number of extraction or injection wells or combination of both with any flow rates. The complex velocity potential equations for such a well-aquifer system are derived to delineate the capture envelop. Solutions are provided for the aquifers with and without a uniform regional flow of any directions. The presented equations are of general character and have no limitations in terms of well numbers, positions and types, extraction/injection rate, and regional flow rate and direction. These solutions are presented in form of capture type curves which are useful tools in hands of practitioners to design in-situ groundwater remediation systems, to contain contaminant plumes, to evaluate the surface-subsurface water interaction and to verify numerical models. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  6. Modelling of the batch biosorption system: study on exchange of protons with cell wall-bound mineral ions.

    PubMed

    Mishra, Vishal

    2015-01-01

    The interchange of the protons with the cell wall-bound calcium and magnesium ions at the interface of solution/bacterial cell surface in the biosorption system at various concentrations of protons has been studied in the present work. A mathematical model for establishing the correlation between concentration of protons and active sites was developed and optimized. The sporadic limited residence time reactor was used to titrate the calcium and magnesium ions at the individual data point. The accuracy of the proposed mathematical model was estimated using error functions such as nonlinear regression, adjusted nonlinear regression coefficient, the chi-square test, P-test and F-test. The values of the chi-square test (0.042-0.017), P-test (<0.001-0.04), sum of square errors (0.061-0.016), root mean square error (0.01-0.04) and F-test (2.22-19.92) reported in the present research indicated the suitability of the model over a wide range of proton concentrations. The zeta potential of the bacterium surface at various concentrations of protons was observed to validate the denaturation of active sites.

  7. Collisional-radiative nonequilibrium in partially ionized atomic nitrogen

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.; Soon, W. H.

    1989-01-01

    A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.

  8. Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution

    ERIC Educational Resources Information Center

    Verkuilen, Jay; Smithson, Michael

    2012-01-01

    Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…

  9. Bounded rationality alters the dynamics of paediatric immunization acceptance.

    PubMed

    Oraby, Tamer; Bauch, Chris T

    2015-06-02

    Interactions between disease dynamics and vaccinating behavior have been explored in many coupled behavior-disease models. Cognitive effects such as risk perception, framing, and subjective probabilities of adverse events can be important determinants of the vaccinating behaviour, and represent departures from the pure "rational" decision model that are often described as "bounded rationality". However, the impact of such cognitive effects in the context of paediatric infectious disease vaccines has received relatively little attention. Here, we develop a disease-behavior model that accounts for bounded rationality through prospect theory. We analyze the model and compare its predictions to a reduced model that lacks bounded rationality. We find that, in general, introducing bounded rationality increases the dynamical richness of the model and makes it harder to eliminate a paediatric infectious disease. In contrast, in other cases, a low cost, highly efficacious vaccine can be refused, even when the rational decision model predicts acceptance. Injunctive social norms can prevent vaccine refusal, if vaccine acceptance is sufficiently high in the beginning of the vaccination campaign. Cognitive processes can have major impacts on the predictions of behaviour-disease models, and further study of such processes in the context of vaccination is thus warranted.

  10. Bounded rationality alters the dynamics of paediatric immunization acceptance

    PubMed Central

    Oraby, Tamer; Bauch, Chris T.

    2015-01-01

    Interactions between disease dynamics and vaccinating behavior have been explored in many coupled behavior-disease models. Cognitive effects such as risk perception, framing, and subjective probabilities of adverse events can be important determinants of the vaccinating behaviour, and represent departures from the pure “rational” decision model that are often described as “bounded rationality”. However, the impact of such cognitive effects in the context of paediatric infectious disease vaccines has received relatively little attention. Here, we develop a disease-behavior model that accounts for bounded rationality through prospect theory. We analyze the model and compare its predictions to a reduced model that lacks bounded rationality. We find that, in general, introducing bounded rationality increases the dynamical richness of the model and makes it harder to eliminate a paediatric infectious disease. In contrast, in other cases, a low cost, highly efficacious vaccine can be refused, even when the rational decision model predicts acceptance. Injunctive social norms can prevent vaccine refusal, if vaccine acceptance is sufficiently high in the beginning of the vaccination campaign. Cognitive processes can have major impacts on the predictions of behaviour-disease models, and further study of such processes in the context of vaccination is thus warranted. PMID:26035413

  11. Planck limits on non-canonical generalizations of large-field inflation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Nina K.; Kinney, William H., E-mail: ninastei@buffalo.edu, E-mail: whkinney@buffalo.edu

    2017-04-01

    In this paper, we consider two case examples of Dirac-Born-Infeld (DBI) generalizations of canonical large-field inflation models, characterized by a reduced sound speed, c {sub S} < 1. The reduced speed of sound lowers the tensor-scalar ratio, improving the fit of the models to the data, but increases the equilateral-mode non-Gaussianity, f {sup equil.}{sub NL}, which the latest results from the Planck satellite constrain by a new upper bound. We examine constraints on these models in light of the most recent Planck and BICEP/Keck results, and find that they have a greatly decreased window of viability. The upper bound onmore » f {sup equil.}{sub NL} corresponds to a lower bound on the sound speed and a corresponding lower bound on the tensor-scalar ratio of r ∼ 0.01, so that near-future Cosmic Microwave Background observations may be capable of ruling out entire classes of DBI inflation models. The result is, however, not universal: infrared-type DBI inflation models, where the speed of sound increases with time, are not subject to the bound.« less

  12. A three-site gauge model for flavor hierarchies and flavor anomalies

    NASA Astrophysics Data System (ADS)

    Bordone, Marzia; Cornella, Claudia; Fuentes-Martín, Javier; Isidori, Gino

    2018-04-01

    We present a three-site Pati-Salam gauge model able to explain the Standard Model flavor hierarchies while, at the same time, accommodating the recent experimental hints of lepton-flavor non-universality in B decays. The model is consistent with low- and high-energy bounds, and predicts a rich spectrum of new states at the TeV scale that could be probed in the near future by the high-pT experiments at the LHC.

  13. Modeling Density Variation in the Thermosphere

    DTIC Science & Technology

    2011-04-29

    static electromagnetic fields as follows: when a volume of the ionosphere is bounded on the sides by an equipotential surface and on the bottom by the...generation of electromagnetic energy along that geomagnetic-field line. An Equipotential -Boundary Poynting-Flux (EBPF) theorem was presented for quasi

  14. a Bounded Finite-Difference Discretization of a Two-Dimensional Diffusion Equation with Logistic Nonlinear Reaction

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    In the present manuscript, we introduce a finite-difference scheme to approximate solutions of the two-dimensional version of Fisher's equation from population dynamics, which is a model for which the existence of traveling-wave fronts bounded within (0,1) is a well-known fact. The method presented here is a nonstandard technique which, in the linear regime, approximates the solutions of the original model with a consistency of second order in space and first order in time. The theory of M-matrices is employed here in order to elucidate conditions under which the method is able to preserve the positivity and the boundedness of solutions. In fact, our main result establishes relatively flexible conditions under which the preservation of the positivity and the boundedness of new approximations is guaranteed. Some simulations of the propagation of a traveling-wave solution confirm the analytical results derived in this work; moreover, the experiments evince a good agreement between the numerical result and the analytical solutions.

  15. Computing Strongly Connected Components in the Streaming Model

    NASA Astrophysics Data System (ADS)

    Laura, Luigi; Santaroni, Federico

    In this paper we present the first algorithm to compute the Strongly Connected Components of a graph in the datastream model (W-Stream), where the graph is represented by a stream of edges and we are allowed to produce intermediate output streams. The algorithm is simple, effective, and can be implemented with few lines of code: it looks at each edge in the stream, and selects the appropriate action with respect to a tree T, representing the graph connectivity seen so far. We analyze the theoretical properties of the algorithm: correctness, memory occupation (O(n logn)), per item processing time (bounded by the current height of T), and number of passes (bounded by the maximal height of T). We conclude by presenting a brief experimental evaluation of the algorithm against massive synthetic and real graphs that confirms its effectiveness: with graphs with up to 100M nodes and 4G edges, only few passes are needed, and millions of edges per second are processed.

  16. Direct detection of light “Ge-phobic” exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelmini, Graciela B.; Georgescu, Andreea; Huh, Ji-Haeng

    2014-07-15

    We present comparisons of direct dark matter (DM) detection data for light WIMPs with exothermic scattering with nuclei (exoDM), both assuming the Standard Halo Model (SHM) and in a halo model — independent manner. Exothermic interactions favor light targets, thus reducing the importance of upper limits derived from xenon targets, the most restrictive of which is at present the LUX limit. In our SHM analysis the CDMS-II-Si and CoGeNT regions become allowed by these bounds, however the recent SuperCDMS limit rejects both regions for exoDM with isospin-conserving couplings. An isospin-violating coupling of the exoDM, in particular one with a neutronmore » to proton coupling ratio of −0.8 (which we call “Ge-phobic”), maximally reduces the DM coupling to germanium and allows the CDMS-II-Si region to become compatible with all bounds. This is also clearly shown in our halo-independent analysis.« less

  17. Theoretical limits of localizing 3-D landmarks and features.

    PubMed

    Rohr, Karl

    2007-09-01

    In this paper, we analyze the accuracy of estimating the location of 3-D landmarks and characteristic image structures. Based on nonlinear estimation theory, we study the minimal stochastic errors of the position estimate caused by noisy data. Given analytic models of the image intensities, we derive closed-form expressions of the Cramér-Rao bound for different 3-D structures such as 3-D edges, 3-D ridges, 3-D lines, 3-D boxes, and 3-D blobs. It turns out that the precision of localization depends on the noise level, the size of the region-of-interest, the image contrast, the width of the intensity transitions, as well as on other parameters describing the considered image structure. The derived lower bounds can serve as benchmarks and the performance of existing algorithms can be compared with them. To give an impression of the achievable accuracy, numeric examples are presented. Moreover, by experimental investigations, we demonstrate that the derived lower bounds can be achieved by fitting parametric intensity models directly to the image data.

  18. Weakly Bound Free Radicals in Combustion: "Prompt" Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Nicole J.; Sivaramakrishnan, Raghu; Goldsmith, C. Franklin

    2016-01-07

    Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, timescales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain branching reactions.more » Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations« less

  19. A generalized Uhlenbeck and Beth formula for the third cluster coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Sigurd Yves; Lassaut, Monique; Amaya-Tapia, Alejandro, E-mail: jano@icf.unam.mx

    2016-11-15

    Relatively recently (Amaya-Tapia et al., 2011), we presented a formula for the evaluation of the third Bose fugacity coefficient–leading to the third virial coefficient–in terms of three-body eigenphase shifts, for particles subject to repulsive forces. An analytical calculation for a 1-dim. model, for which the result is known, confirmed the validity of this approach. We now extend the formalism to particles with attractive forces, and therefore must allow for the possibility that the particles have bound states. We thus obtain a true generalization of the famous formula of Uhlenbeck and Beth (Uhlenbeck and Beth, 1936; Beth and Uhlenbeck, 1937) and ofmore » Gropper (Gropper, 1936, 1937) for the second virial. We illustrate our formalism by a calculation, in an adiabatic approximation, of the third cluster in one dimension, using McGuire’s model as in our previous paper, but with attractive forces. The inclusion of three-body bound states is trivial; taking into account states having asymptotically two particles bound, and one free, is not.« less

  20. Optimal trajectories for an aerospace plane. Part 2: Data, tables, and graphs

    NASA Technical Reports Server (NTRS)

    Miele, Angelo; Lee, W. Y.; Wu, G. D.

    1990-01-01

    Data, tables, and graphs relative to the optimal trajectories for an aerospace plane are presented. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied for a single aerodynamic model (GHAME) and three engine models. Four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (1) minimization of the weight of fuel consumed; (2) minimization of the peak dynamic pressure; (3) minimization of the peak heating rate; and (4) minimization of the peak tangential acceleration. The above optimization studies are carried out for different combinations of constraints, specifically: initial path inclination that is either free or given; dynamic pressure that is either free or bounded; and tangential acceleration that is either free or bounded.

  1. Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids

    NASA Astrophysics Data System (ADS)

    Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl

    2016-11-01

    A newly developed software package to calculate the magnetic field in a spherical coordinate system near the Earth's surface and on satellite height is shown to produce reliable modeling results for global and regional applications. The discretization cells of the model are uniformly magnetized spherical prisms, so called tesseroids. The presented algorithm extends an existing code for gravity calculations by applying Poisson's relation to identify the magnetic potential with the sum over pseudogravity fields of tesseroids. By testing different lithosphere discretization grids it is possible to determine the optimal size of tesseroids for field calculations on satellite altitude within realistic measurement error bounds. Also the influence of the Earth's ellipticity upon the modeling result is estimated and global examples are studied. The new software calculates induced and remanent magnetic fields for models at global and regional scale. For regional models far-field effects are evaluated and discussed. This provides bounds for the minimal size of a regional model that is necessary to predict meaningful satellite total field anomalies over the corresponding area.

  2. Modeling confirmation bias and polarization

    NASA Astrophysics Data System (ADS)

    Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter

    2017-01-01

    Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models.

  3. Updated RICE Bounds on Ultrahigh Energy Neutrino fluxes and interactions

    NASA Astrophysics Data System (ADS)

    Hussain, Shahid; McKay, Douglas

    2006-04-01

    We explore limits on low scale gravity models set by results from the Radio Ice Cherenkov Experiment's (RICE) ongoing search for cosmic ray neutrinos in the cosmogenic, or GZK, energy range. The bound on, MD, the fundamental scale of gravity, depends upon cosmogenic flux model, black hole formation and decay treatments, inclusion of graviton mediated elastic neutrino processes, and the number of large extra dimensions, d. We find bounds in the interval 0.9 TeV < MD < 10 TeV. Values d = 5, 6 and 7, for which laboratory and astrophysical bounds on LSG models are less restrictive, lead to essentially the same limits on MD.

  4. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Jun, E-mail: junsuzuki@uec.ac.jp

    The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results ofmore » this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.« less

  5. Probing Models of Dark Matter and the Early Universe

    NASA Astrophysics Data System (ADS)

    Orlofsky, Nicholas David

    This thesis discusses models for dark matter (DM) and their behavior in the early universe. An important question is how phenomenological probes can directly search for signals of DM today. Another topic of investigation is how the DM and other processes in the early universe must evolve. Then, astrophysical bounds on early universe dynamics can constrain DM. We will consider these questions in the context of three classes of DM models--weakly interacting massive particles (WIMPs), axions, and primordial black holes (PBHs). Starting with WIMPs, we consider models where the DM is charged under the electroweak gauge group of the Standard Model. Such WIMPs, if generated by a thermal cosmological history, are constrained by direct detection experiments. To avoid present or near-future bounds, the WIMP model or cosmological history must be altered in some way. This may be accomplished by the inclusion of new states that coannihilate with the WIMP or a period of non-thermal evolution in the early universe. Future experiments are likely to probe some of these altered scenarios, and a non-observation would require a high degree of tuning in some of the model parameters in these scenarios. Next, axions, as light pseudo-Nambu-Goldstone bosons, are susceptible to quantum fluctuations in the early universe that lead to isocurvature perturbations, which are constrained by observations of the cosmic microwave background (CMB). We ask what it would take to allow axion models in the face of these strong CMB bounds. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed, elucidating the difficulties in these constructions. Avoiding disruption of inflationary dynamics provides important limits on the parameter space. Finally, PBHs have received interest in part due to observations by LIGO of merging black hole binaries. We ask how these PBHs could arise through inflationary models and investigate the opportunity for corroboration through experimental probes of gravitational waves at pulsar timing arrays. We provide examples of theories that are already ruled out, theories that will soon be probed, and theories that will not be tested in the foreseeable future. The models that are most strongly constrained are those with relatively broad primordial power spectra.

  6. Family of fuzzy J-K flip-flops based on bounded product, bounded sum and complementation.

    PubMed

    Gniewek, L; Kluska, J

    1998-01-01

    This paper presents a concept of new fuzzy J-K flip-flops based on bounded product, bounded sum and fuzzy complementation operations. Relationships between various types of the J-K flip-flops are given and characteristics of them are graphically shown by computer simulation. Two examples of circuits able to memorize and fuzzy information processing using the proposed fuzzy J-K flip-flops are presented.

  7. Numerical modelling of transient heat and moisture transport in protective clothing

    NASA Astrophysics Data System (ADS)

    Łapka, P.; Furmański, P.; Wisniewski, T. S.

    2016-01-01

    The paper presents a complex model of heat and mass transfer in a multi-layer protective clothing exposed to a flash fire and interacting with the human skin. The clothing was made of porous fabric layers separated by air gaps. The fabrics contained bound water in the fibres and moist air in the pores. The moist air was also present in the gaps between fabric layers or internal fabric layer and the skin. Three skin sublayers were considered. The model accounted for coupled heat transfer by conduction, thermal radiation and associated with diffusion of water vapour in the clothing layers and air gaps. Heat exchange due to phase transition of the bound water were also included in the model. Complex thermal and mass transfer conditions at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were assumed. Special attention was paid to modelling of thermal radiation which was coming from the fire, penetrated through protective clothing and absorbed by the skin. For the first time non-grey properties as well as optical phenomena at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were accounted for. A series of numerical simulations were carried out and the risk of heat injures was estimated.

  8. Radiosity diffusion model in 3D

    NASA Astrophysics Data System (ADS)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  9. Automatic Generation of CFD-Ready Surface Triangulations from CAD Geometry

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Delanaye, M.; Haimes, R.; Nixon, David (Technical Monitor)

    1998-01-01

    This paper presents an approach for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, without translation, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique which was developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space, The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. Sites are inserted using a variety of priority queues to ensure that new insertions will address the worst triangles first, As a result of this strategy, the algorithm will return its 'best' mesh for a given (prespecified) number of sites. Alternatively, the algorithm may be allowed to terminate naturally after achieving a prespecified measure of mesh quality. The resulting triangulations are 'CFD-ready' in that: (1) Edges match the underlying part model to within a specified tolerance. (2) Triangles on disjoint surfaces in close proximity have matching length-scales. (3) The algorithm produces a triangulation such that no angle is less than a given angle bound, alpha, or greater than Pi - 2alpha This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to tile output triangulations for a variety of CAD parts, tile discussion presents related theoretical results which assert the existence of such all angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.

  10. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity.

    PubMed

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2010-06-09

    Soluble and insoluble-bound phenolic extracts of several varieties of millet (kodo, finger, foxtail, proso, pearl, and little millets) whole grains were evaluated for their phenolic contents and antioxidative efficacy using trolox equivalent antioxidant capacity (TEAC), reducing power (RP), and beta-carotene-linoleate model system as well as ferrous chelating activity. In addition, ferulic and p-coumaric acids were present in soluble and bound phenolic fractions of millets, and their contents were determined using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). Kodo millet had the highest total phenolic content, whereas proso millet possessed the least. All millet varieties showed high antioxidant activities, although the order of their efficacy was assay dependent. HPLC analysis of millet phenolic extracts demonstrated that the bound fractions contained more ferulic and p-coumaric acids compared to their soluble counterparts. The results of this study showed that soluble as well as bound fractions of millet grains are rich sources of phenolic compounds with antioxidant, metal chelating, and reducing power. The potential of whole millets as natural sources of antioxidants depends on the variety used. The importance of the insoluble bound fraction of millet as a source of ferulic acid and p-coumaric acid was established, and their contribution to the total phenolic content must be taken into account in the assessment of the antioxidant activity of millets.

  11. Multiscale Modelling for investigating single molecule effects on the mechanics of actin filaments

    NASA Astrophysics Data System (ADS)

    A, Deriu Marco; C, Bidone Tamara; Laura, Carbone; Cristina, Bignardi; M, Montevecchi Franco; Umberto, Morbiducci

    2011-12-01

    This work presents a preliminary multiscale computational investigation of the effects of nucleotides and cations on the mechanics of actin filaments (F-actin). At the molecular level, Molecular Dynamics (MD) simulations are employed to characterize the rearrangements of the actin monomers (G-actin) in terms of secondary structures evolution in physiological conditions. At the mesoscale level, a coarse grain (CG) procedure is adopted where each monomer is represented by means of Elastic Network Modeling (ENM) technique. At the macroscale level, actin filaments up to hundreds of nanometers are assumed as isotropic and elastic beams and characterized via Rotation Translation Block (RTB) analysis. F-actin bound to adenosine triphosphate (ATP) shows a persistence length around 5 μm, while actin filaments bound to adenosine diphosphate (ADP) have a persistence length of about 3 μm. With magnesium bound to the high affinity binding site of G-actin, the persistence length of F-actin decreases to about 2 μm only in the ADP-bound form of the filament, while the same ion has no effects, in terms of stiffness variation, on the ATP-bound form of F-actin. The molecular mechanisms behind these changes in flexibility are herein elucidated. Thus, this study allows to analyze how the local binding of cations and nucleotides on G-actin induce molecular rearrangements that transmit to the overall F-actin, characterizing shifts of mechanical properties, that can be related with physiological and pathological cellular phenomena, as cell migration and spreading. Further, this study provides the basis for upcoming investigating of network and cellular remodelling at higher length scales.

  12. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberkampf, William Louis; Tucker, W. Troy; Zhang, Jianzhong

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  14. Multi-shell model of ion-induced nucleic acid condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derivedmore » from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.”.« less

  15. Multi-shell model of ion-induced nucleic acid condensation

    PubMed Central

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Onufriev, Alexey V.

    2016-01-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.” PMID:27389241

  16. Quantitative in vivo receptor binding. III. Tracer kinetic modeling of muscarinic cholinergic receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.

    1985-10-01

    A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less

  17. Anomalous triple gauge couplings in the effective field theory approach at the LHC

    NASA Astrophysics Data System (ADS)

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David; Son, Minho

    2017-02-01

    We discuss how to perform consistent extractions of anomalous triple gauge couplings (aTGC) from electroweak boson pair production at the LHC in the Standard Model Effective Field Theory (SMEFT). After recasting recent ATLAS and CMS searches in pp → W Z( W W ) → ℓ'νℓ+ℓ-(νℓ) channels, we find that: (a) working consistently at order Λ-2 in the SMEFT expansion the existing aTGC bounds from Higgs and LEP-2 data are not improved, (b) the strong limits quoted by the experimental collaborations are due to the partial Λ-4 corrections (dimension-6 squared contributions). Using helicity selection rule arguments we are able to explain the suppression in some of the interference terms, and discuss conditions on New Physics (NP) models that can benefit from such LHC analyses. Furthermore, standard analyses assume implicitly a quite large NP scale, an assumption that can be relaxed by imposing cuts on the underlying scale of the process ( √{widehat{s}} ). In practice, we find almost no correlation between √{widehat{s}} and the experimentally accessible quantities, which complicates the SMEFT interpretation. Nevertheless, we provide a method to set (conservative) aTGC bounds in this situation, and recast the present searches accordingly. Finally, we introduce a simple NP model for aTGC to compare the bounds obtained directly in the model with those from the SMEFT analysis.

  18. Micromechanical Modeling of Anisotropic Damage-Induced Permeability Variation in Crystalline Rocks

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Hu, Shaohua; Zhou, Chuangbing; Jing, Lanru

    2014-09-01

    This paper presents a study on the initiation and progress of anisotropic damage and its impact on the permeability variation of crystalline rocks of low porosity. This work was based on an existing micromechanical model considering the frictional sliding and dilatancy behaviors of microcracks and the recovery of degraded stiffness when the microcracks are closed. By virtue of an analytical ellipsoidal inclusion solution, lower bound estimates were formulated through a rigorous homogenization procedure for the damage-induced effective permeability of the microcracks-matrix system, and their predictive limitations were discussed with superconducting penny-shaped microcracks, in which the greatest lower bounds were obtained for each homogenization scheme. On this basis, an empirical upper bound estimation model was suggested to account for the influences of anisotropic damage growth, connectivity, frictional sliding, dilatancy, and normal stiffness recovery of closed microcracks, as well as tensile stress-induced microcrack opening on the permeability variation, with a small number of material parameters. The developed model was calibrated and validated by a series of existing laboratory triaxial compression tests with permeability measurements on crystalline rocks, and applied for characterizing the excavation-induced damage zone and permeability variation in the surrounding granitic rock of the TSX tunnel at the Atomic Energy of Canada Limited's (AECL) Underground Research Laboratory (URL) in Canada, with an acceptable agreement between the predicted and measured data.

  19. Stimuli Reduce the Dimensionality of Cortical Activity

    PubMed Central

    Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo

    2016-01-01

    The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models. PMID:26924968

  20. Stimuli Reduce the Dimensionality of Cortical Activity.

    PubMed

    Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo

    2016-01-01

    The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models.

  1. The bound states of ultracold KRb molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul; Hanna, Thomas

    2009-03-01

    Recently ultracold vibrational ground state ^40K^87Rb polar molecules have been made using magnetoassociation of two cold atoms to a weakly bound Feshbach molecule, followed by a two-color optical STIRAP process to transfer molecules to the molecular ground state [1]. We have used accurate potential energy curves for the singlet and triplet states of the KRb molecule [2] with coupled channels calculations to calculate all of the bound states of the ^40K^87Rb molecule as a function of magnetic field from the cold atom collision threshold to the v=0 ground state. We have also developed approximate models for understanding the changing properties of the molecular bound states as binding energy increases. Some overall conclusions from these calculations will be presented. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science, 2008, 322, 231--235. [2] A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Kn"ockel, and E. Tiemann, Phys. Rev. A, 2007, 76, 022511.

  2. Decaying spectral oscillations in a Majorana wire with finite coherence length

    NASA Astrophysics Data System (ADS)

    Fleckenstein, C.; Domínguez, F.; Traverso Ziani, N.; Trauzettel, B.

    2018-04-01

    Motivated by recent experiments, we investigate the excitation energy of a proximitized Rashba wire in the presence of a position dependent pairing. In particular, we focus on the spectroscopic pattern produced by the overlap between two Majorana bound states that appear for values of the Zeeman field smaller than the value necessary for reaching the bulk topological superconducting phase. The two Majorana bound states can arise because locally the wire is in the topological regime. We find three parameter ranges with different spectral properties: crossings, anticrossings, and asymptotic reduction of the energy as a function of the applied Zeeman field. Interestingly, all these cases have already been observed experimentally. Moreover, since an increment of the magnetic field implies the increase of the distance between the Majorana bound states, the amplitude of the energy oscillations, when present, gets reduced. The existence of the different Majorana scenarios crucially relies on the fact that the two Majorana bound states have distinct k -space structures. We develop analytical models that clearly explain the microscopic origin of the predicted behavior.

  3. Multiclass classification of microarray data samples with a reduced number of genes

    PubMed Central

    2011-01-01

    Background Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained. Results A novel bound on the maximum number of genes that can be handled by binary classifiers in binary mediated multiclass classification algorithms of microarray data samples is presented. The bound suggests that high-dimensional binary output domains might favor the existence of accurate and sparse binary mediated multiclass classifiers for microarray data samples. Conclusions A comprehensive experimental work shows that the bound is indeed useful to induce accurate and sparse multiclass classifiers for microarray data samples. PMID:21342522

  4. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality

    PubMed Central

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-01-01

    Socio–ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback–-Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio–ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems. PMID:26065713

  5. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.

    PubMed

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-06-11

    Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.

  6. A tool for simulating parallel branch-and-bound methods

    NASA Astrophysics Data System (ADS)

    Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail

    2016-01-01

    The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.

  7. Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bley, Gonzalo A.; Thomas, Lawrence E.

    2017-01-01

    We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.

  8. Global stability and tumor clearance conditions for a cancer chemotherapy system

    NASA Astrophysics Data System (ADS)

    Valle, Paul A.; Starkov, Konstantin E.; Coria, Luis N.

    2016-11-01

    In this paper we study the global dynamics of a cancer chemotherapy system presented by de Pillis et al. (2007). This mathematical model describes the interaction between tumor cells, effector-immune cells, circulating lymphocytes and chemotherapy treatment. By applying the localization method of compact invariant sets, we find lower and upper bounds for these three cells populations. Further, we define a bounded domain in R+,04 where all compact invariant sets of the system are located and provide conditions under which this domain is positively invariant. We apply LaSalle's invariance principle and one result concerning two-dimensional competitive systems in order to derive sufficient conditions for tumor clearance and global asymptotic stability of the tumor-free equilibrium point. These conditions are computed by using bounds of the localization domain and they are given in terms of the chemotherapy treatment. Finally, we perform numerical simulations in order to illustrate our results.

  9. Comparision of Incidental Reflection From Containerized Maintenance/Housekeeping Solutions and One Inch of Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell

    This document addresses the incidental reflector reactivity worth of containerized maintenance/housekeeping fluids for use in PF-4 at Los Alamos National Laboratory (LANL). The intent of the document is to analyze containerized maintenance/housekeeping fluids which will be analyzed as water that may be present under normal conditions of an operation. The reactivity worth is compared to the reactivity worth due to I-inch of close-fitting 4n water reflection and I-inch of close-fitting radial water reflection. Both have been used to bound incidental reflection by 2-liter bottles in criticality safety evaluations. The conclusion is that, when the maintenance/housekeeping fluids are containerized the reactivitymore » increase from a configuration which is bounding of normal conditions (up to eight bottles modeled with 2-liters of solution at varying diameter) is bound by I-inch of close fitting 4n water relection.« less

  10. Time-response shaping using output to input saturation transformation

    NASA Astrophysics Data System (ADS)

    Chambon, E.; Burlion, L.; Apkarian, P.

    2018-03-01

    For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.

  11. Synchronization Control of Neural Networks With State-Dependent Coefficient Matrices.

    PubMed

    Zhang, Junfeng; Zhao, Xudong; Huang, Jun

    2016-11-01

    This brief is concerned with synchronization control of a class of neural networks with state-dependent coefficient matrices. Being different from the existing drive-response neural networks in the literature, a novel model of drive-response neural networks is established. The concepts of uniformly ultimately bounded (UUB) synchronization and convex hull Lyapunov function are introduced. Then, by using the convex hull Lyapunov function approach, the UUB synchronization design of the drive-response neural networks is proposed, and a delay-independent control law guaranteeing the bounded synchronization of the neural networks is constructed. All present conditions are formulated in terms of bilinear matrix inequalities. By comparison, it is shown that the neural networks obtained in this brief are less conservative than those ones in the literature, and the bounded synchronization is suitable for the novel drive-response neural networks. Finally, an illustrative example is given to verify the validity of the obtained results.

  12. Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems

    NASA Astrophysics Data System (ADS)

    Khan, Ayub; Tyagi, Arti

    2018-05-01

    In this paper, we have studied the hybrid projective synchronisation for incommensurate, integer and commensurate fractional-order financial systems with unknown disturbance. To tackle the problem of unknown bounded disturbance, fractional-order disturbance observer is designed to approximate the unknown disturbance. Further, we have introduced simple sliding mode surface and designed adaptive sliding mode controllers incorporating with the designed fractional-order disturbance observer to achieve a bounded hybrid projective synchronisation between two identical fractional-order financial model with different initial conditions. It is shown that the slave system with disturbance can be synchronised with the projection of the master system generated through state transformation. Simulation results are presented to ensure the validity and effectiveness of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance. Also, synchronisation error for commensurate, integer and incommensurate fractional-order financial systems is studied in numerical simulation.

  13. Creativity--A Dynamic Approach to Industrial Education

    ERIC Educational Resources Information Center

    Markowitz, John, Jr.

    1974-01-01

    The author presents a number of unique programs and projects which have proved successful in one high school's woodworking and graphic arts classes in terms of motivating high student interest, growth in skills, good community relations--and a financial profit. The chief objective is self-discovery, the model is Outward Bound. (AJ)

  14. Meson-nucleus potentials and the search for meson-nucleus bound states

    NASA Astrophysics Data System (ADS)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  15. Testing and selection of cosmological models with (1+z){sup 6} corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szydlowski, Marek; Marc Kac Complex Systems Research Centre, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow; Godlowski, Wlodzimierz

    2008-02-15

    In the paper we check whether the contribution of (-)(1+z){sup 6} type in the Friedmann equation can be tested. We consider some astronomical tests to constrain the density parameters in such models. We describe different interpretations of such an additional term: geometric effects of loop quantum cosmology, effects of braneworld cosmological models, nonstandard cosmological models in metric-affine gravity, and models with spinning fluid. Kinematical (or geometrical) tests based on null geodesics are insufficient to separate individual matter components when they behave like perfect fluid and scale in the same way. Still, it is possible to measure their overall effect. Wemore » use recent measurements of the coordinate distances from the Fanaroff-Riley type IIb radio galaxy data, supernovae type Ia data, baryon oscillation peak and cosmic microwave background radiation observations to obtain stronger bounds for the contribution of the type considered. We demonstrate that, while {rho}{sup 2} corrections are very small, they can be tested by astronomical observations--at least in principle. Bayesian criteria of model selection (the Bayesian factor, AIC, and BIC) are used to check if additional parameters are detectable in the present epoch. As it turns out, the {lambda}CDM model is favored over the bouncing model driven by loop quantum effects. Or, in other words, the bounds obtained from cosmography are very weak, and from the point of view of the present data this model is indistinguishable from the {lambda}CDM one.« less

  16. Two approximations of the present value distribution of a disability annuity

    NASA Astrophysics Data System (ADS)

    Spreeuw, Jaap

    2006-02-01

    The distribution function of the present value of a cash flow can be approximated by means of a distribution function of a random variable, which is also the present value of a sequence of payments, but with a simpler structure. The corresponding random variable has the same expectation as the random variable corresponding to the original distribution function and is a stochastic upper bound of convex order. A sharper upper bound can be obtained if more information about the risk is available. In this paper, it will be shown that such an approach can be adopted for disability annuities (also known as income protection policies) in a three state model under Markov assumptions. Benefits are payable during any spell of disability whilst premiums are only due whenever the insured is healthy. The quality of the two approximations is investigated by comparing the distributions obtained with the one derived from the algorithm presented in the paper by Hesselager and Norberg [Insurance Math. Econom. 18 (1996) 35-42].

  17. Investigation of matter-antimatter interaction for possible propulsion applications

    NASA Technical Reports Server (NTRS)

    Morgan, D. L., Jr.

    1974-01-01

    Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.

  18. Model-independent constraints on dark matter annihilation in dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-05-01

    We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics. As an illustration, we analyze gamma-ray data from the Fermi Large Area Telescope to constrain a variety of nonstandard dark matter models, several of which have not previously been studied in the context of dwarf galaxy searches.

  19. Bounds of memory strength for power-law series.

    PubMed

    Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao

    2017-05-01

    Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α. By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α, which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1<α≤3, as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α>3, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.

  20. Bounds of memory strength for power-law series

    NASA Astrophysics Data System (ADS)

    Guo, Fangjian; Yang, Dan; Yang, Zimo; Zhao, Zhi-Dan; Zhou, Tao

    2017-05-01

    Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents α . By permuting the independently drawn samples from a power-law distribution, we present nontrivial bounds on the memory strength (first-order autocorrelation) as a function of α , which are markedly different from the ordinary ±1 bounds for Gaussian or uniform distributions. When 1 <α ≤3 , as α grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when α >3 , the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and the browsing behavior of Taobao, we find that empirical power-law-distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks and challenge the validity of measures such as autocorrelation and assortativity coefficient in heterogeneous systems.

  1. Bounds on internal state variables in viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1993-01-01

    A typical viscoplastic model will introduce up to three types of internal state variables in order to properly describe transient material behavior; they are as follows: the back stress, the yield stress, and the drag strength. Different models employ different combinations of these internal variables--their selection and description of evolution being largely dependent on application and material selection. Under steady-state conditions, the internal variables cease to evolve and therefore become related to the external variables (stress and temperature) through simple functional relationships. A physically motivated hypothesis is presented that links the kinetic equation of viscoplasticity with that of creep under steady-state conditions. From this hypothesis one determines how the internal variables relate to one another at steady state, but most importantly, one obtains bounds on the magnitudes of stress and back stress, and on the yield stress and drag strength.

  2. The generalized truncated exponential distribution as a model for earthquake magnitudes

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-04-01

    The random distribution of small, medium and large earthquake magnitudes follows an exponential distribution (ED) according to the Gutenberg-Richter relation. But a magnitude distribution is truncated in the range of very large magnitudes because the earthquake energy is finite and the upper tail of the exponential distribution does not fit well observations. Hence the truncated exponential distribution (TED) is frequently applied for the modelling of the magnitude distributions in the seismic hazard and risk analysis. The TED has a weak point: when two TEDs with equal parameters, except the upper bound magnitude, are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters, except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. It also applies to alternative distribution models. The presented generalized truncated exponential distribution (GTED) overcomes this weakness. The ED and the TED are special cases of the GTED. Different issues of the statistical inference are also discussed and an example of empirical data is presented in the current contribution.

  3. Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Skryabin, Dmitry V.; Malomed, Boris A.

    2018-06-01

    We consider the model of fiber-laser cavities near the zero-dispersion point, based on the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, including the third-order dispersion (TOD) term. It is well known that this model supports stable dissipative solitons. We demonstrate that the same model gives rise to several families of robust bound states of the solitons, which exists only in the presence of the TOD. There are both stationary and dynamical bound states, with oscillating separation between the bound solitons. Stationary states are multistable, corresponding to different values of the separation. With the increase of the TOD coefficient, the bound state with the smallest separation gives rise the oscillatory state through the Hopf bifurcation. Further growth of TOD leads to a bifurcation transforming the oscillatory limit cycle into a strange attractor, which represents a chaotically oscillating dynamical bound state. Families of multistable three- and four-soliton complexes are found too, the ones with the smallest separation between the solitons again ending by a transition to oscillatory states through the Hopf bifurcation.

  4. Bose-Einstein condensate haloes embedded in dark energy

    NASA Astrophysics Data System (ADS)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ < 10-8). However, dark halo masses smaller than 107 M⊙ (ξ > 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 < ξ ≤ ξc dark haloes would contain stars up to 8-15 kpc with luminosities 9-4 ×103 L⊙. Then, their observation would be complicated. The comparison of our lower bound for dark halo masses with other bounds based on different arguments, leads us to think that the cosmological constant is actually the responsible of limiting the halo mass.

  5. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, Kyle A.; Butler, Samuel L.; Hill, Richard J. A.

    2015-01-01

    Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or `dumb-bell' shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax `artificial tektites' show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation.

  6. A two particle hidden sector and the oscillations with photons

    NASA Astrophysics Data System (ADS)

    Alvarez, Pedro D.; Arias, Paola; Maldonado, Carlos

    2018-01-01

    We present a detailed study of the oscillations and optical properties for vacuum, in a model for the dark sector that contains axion-like particles and hidden photons. We provide bounds for the couplings versus the mass, using current results from ALPS-I and PVLAS. We also discuss the challenges for the detection of models with more than one hidden particle in light shining trough wall-like experiments.

  7. A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2014-01-01

    In this report we present a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. Our solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. Our solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. We also present a mechanical verification of a proposed protocol. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period. We believe that our proposed solution solves the general case of the clock synchronization problem.

  8. Deciphering the nonlocal entanglement entropy of fracton topological orders

    NASA Astrophysics Data System (ADS)

    Shi, Bowen; Lu, Yuan-Ming

    2018-04-01

    The ground states of topological orders condense extended objects and support topological excitations. This nontrivial property leads to nonzero topological entanglement entropy Stopo for conventional topological orders. Fracton topological order is an exotic class of models which is beyond the description of TQFT. With some assumptions about the condensates and the topological excitations, we derive a lower bound of the nonlocal entanglement entropy Snonlocal (a generalization of Stopo). The lower bound applies to Abelian stabilizer models including conventional topological orders as well as type-I and type-II fracton models, and it could be used to distinguish them. For fracton models, the lower bound shows that Snonlocal could obtain geometry-dependent values, and Snonlocal is extensive for certain choices of subsystems, including some choices which always give zero for TQFT. The stability of the lower bound under local perturbations is discussed.

  9. Rapid Non-Gaussian Uncertainty Quantification of Seismic Velocity Models and Images

    NASA Astrophysics Data System (ADS)

    Ely, G.; Malcolm, A. E.; Poliannikov, O. V.

    2017-12-01

    Conventional seismic imaging typically provides a single estimate of the subsurface without any error bounds. Noise in the observed raw traces as well as the uncertainty of the velocity model directly impact the uncertainty of the final seismic image and its resulting interpretation. We present a Bayesian inference framework to quantify uncertainty in both the velocity model and seismic images, given noise statistics of the observed data.To estimate velocity model uncertainty, we combine the field expansion method, a fast frequency domain wave equation solver, with the adaptive Metropolis-Hastings algorithm. The speed of the field expansion method and its reduced parameterization allows us to perform the tens or hundreds of thousands of forward solves needed for non-parametric posterior estimations. We then migrate the observed data with the distribution of velocity models to generate uncertainty estimates of the resulting subsurface image. This procedure allows us to create both qualitative descriptions of seismic image uncertainty and put error bounds on quantities of interest such as the dip angle of a subduction slab or thickness of a stratigraphic layer.

  10. Sigma model Q-balls and Q-stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbin, Y.

    2007-10-15

    A new kind of Q-balls is found: Q-balls in a nonlinear sigma model. Their main properties are presented together with those of their self-gravitating generalization, sigma model Q-stars. A simple special limit of solutions which are bound by gravity alone ('sigma stars') is also discussed briefly. The analysis is based on calculating the mass, global U(1) charge and binding energy for families of solutions parametrized by the central value of the scalar field. Two kinds (differing by the potential term) of the new sigma model Q-balls and Q-stars are analyzed. They are found to share some characteristics while differing inmore » other respects like their properties for weak central scalar fields which depend strongly on the form of the potential term. They are also compared with their ordinary counterparts and although similar in some respects, significant differences are found like the existence of an upper bound on the central scalar field. A special subset of the sigma model Q-stars contains those which do not possess a flat space limit. Their relation with sigma star solutions is discussed.« less

  11. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  12. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE PAGES

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan; ...

    2016-01-04

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  13. The quantitation of buffering action I. A formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-15

    Although "buffering" as a homeostatic mechanism is a universal phenomenon, the quantitation of buffering action remains controversial and problematic. Major shortcomings are: lack of a buffering strength unit for some buffering phenomena, multiple and mutually incommensurable units for others, and lack of a genuine ratio scale for buffering strength. Here, I present a concept of buffering that overcomes these shortcomings. Briefly, when, for instance, some "free" H+ ions are added to a solution (e.g. in the form of strong acid), buffering is said to be present when not all H+ ions remain "free" (i.e., bound to H2O), but some become "bound" (i.e., bound to molecules other than H2O). The greater the number of H+ ions that become "bound" in this process, the greater the buffering action. This number can be expressed in two ways: 1) With respect to the number of total free ions added as "buffering coefficient b", defined in differential form as b = d(bound)/d(total). This measure expresses buffering action from nil to complete by a dimensionless number between 0 and 1, analogous to probabilites. 2) With respect to the complementary number of added ions that remain free as "buffering ratio B", defined as the differential B = d(bound)/d(free). The buffering ratio B provides an absolute ratio scale, where buffering action from nil to perfect corresponds to dimensionless numbers between 0 and infinity, and where equal differences of buffering action result in equal intervals on the scale. Formulated in purely mathematical, axiomatic form, the concept reveals striking overlap with the mathematical concept of probability. However, the concept also allows one to devise simple physical models capable of visualizing buffered systems and their behavior in an exact yet intuitive way. These two measures of buffering action can be generalized easily to any arbitrary quantity that partitions into two compartments or states, and are thus suited to serve as standard units for buffering action. Some exemplary treatments of classical and non-classical buffering phenomena are presented in the accompanying paper.

  14. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes.

    PubMed

    Badyda, Artur J; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Jureczko, Izabela

    2018-01-01

    The present study seeks to define the possible cancer risk arising from the inhalation exposure to particle (PM)-bound polycyclic aromatic hydrocarbons (PAHs) present in barbecue emission gases and to compare the risk depending on the type of fuel used for grill powering. Three types of fuel were compared: liquid propane gas, lump charcoal, and charcoal briquettes. PM 2.5 and PM 2.5-100 were collected during grilling. Subsequently, 16 PAHs congeners were extracted from the PM samples and measured quantitatively using gas chromatography. The content of PM-bound PAHs was used to calculate PAHs deposition in the respiratory tract using the multiple path particle dosimetry model. Finally, a probabilistic risk model was developed to assess the incremental lifetime cancer risk (ILCR) faced by people exposed to PAHs. We found a distinctly greater PAHs formation in case of grills powered by charcoal briquettes. The summary concentration of PAHs (Σ16PAH) ranged from <0.002 μg/m 3 (gas grill) to 21.52 μg/m 3 (grill powered by briquettes). Daily exposure of a grill operator, while grilling meat, to PM 2.5 -bound PAHs, adjusted to benzo[a]pyrene toxicity equivalent (BaP eq ), was 326.9, 401.6, and 0.04 ng/d for lump charcoal, charcoal briquettes, and gas powered grill, respectively. Exposure to PAHs emitted from charcoal briquettes was four orders of magnitude greater than that for gas grill. The ILCR followed a log-normal distribution, with a geometric mean of 8.38 × 10 -5 for exposure to PM 2.5 -bound PAHs emitted from gas grills unloaded with food and as high as 8.68 × 10 -1 for the grills loaded with food over charcoal briquettes. The estimated cancer risk for people who would inhale barbecue particles for 5 h a day, 40 days a year exceeds the acceptable level set by the U.S. Environmental Protection Agency. We conclude that the type of heat source used for grilling influences the PM-bound PAHs formation. The greatest concentration of PAHs is generated when grilling over charcoal briquettes. Loading grills with food generates conspicuously more PAHs emissions. Traditional grilling poses cancer risk much above the acceptable limit, as opposed to much less risk involving gas powered grills.

  15. The linearized multistage model and the future of quantitative risk assessment.

    PubMed

    Crump, K S

    1996-10-01

    The linearized multistage (LMS) model has for over 15 years been the default dose-response model used by the U.S. Environmental Protection Agency (USEPA) and other federal and state regulatory agencies in the United States for calculating quantitative estimates of low-dose carcinogenic risks from animal data. The LMS model is in essence a flexible statistical model that can describe both linear and non-linear dose-response patterns, and that produces an upper confidence bound on the linear low-dose slope of the dose-response curve. Unlike its namesake, the Armitage-Doll multistage model, the parameters of the LMS do not correspond to actual physiological phenomena. Thus the LMS is 'biological' only to the extent that the true biological dose response is linear at low dose and that low-dose slope is reflected in the experimental data. If the true dose response is non-linear the LMS upper bound may overestimate the true risk by many orders of magnitude. However, competing low-dose extrapolation models, including those derived from 'biologically-based models' that are capable of incorporating additional biological information, have not shown evidence to date of being able to produce quantitative estimates of low-dose risks that are any more accurate than those obtained from the LMS model. Further, even if these attempts were successful, the extent to which more accurate estimates of low-dose risks in a test animal species would translate into improved estimates of human risk is questionable. Thus, it does not appear possible at present to develop a quantitative approach that would be generally applicable and that would offer significant improvements upon the crude bounding estimates of the type provided by the LMS model. Draft USEPA guidelines for cancer risk assessment incorporate an approach similar to the LMS for carcinogens having a linear mode of action. However, under these guidelines quantitative estimates of low-dose risks would not be developed for carcinogens having a non-linear mode of action; instead dose-response modelling would be used in the experimental range to calculate an LED10* (a statistical lower bound on the dose corresponding to a 10% increase in risk), and safety factors would be applied to the LED10* to determine acceptable exposure levels for humans. This approach is very similar to the one presently used by USEPA for non-carcinogens. Rather than using one approach for carcinogens believed to have a linear mode of action and a different approach for all other health effects, it is suggested herein that it would be more appropriate to use an approach conceptually similar to the 'LED10*-safety factor' approach for all health effects, and not to routinely develop quantitative risk estimates from animal data.

  16. A Performance Prediction Model for a Fault-Tolerant Computer During Recovery and Restoration. Ph.D. Thesis Report, 1 Jan. - 31 Dec. 1992

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Obando, Rodrigo A.

    1993-01-01

    The modeling and design of a fault-tolerant multiprocessor system is addressed. In particular, the behavior of the system during recovery and restoration after a fault has occurred is investigated. Given that a multicomputer system is designed using the Algorithm to Architecture to Mapping Model (ATAMM), and that a fault (death of a computing resource) occurs during its normal steady-state operation, a model is presented as a viable research tool for predicting the performance bounds of the system during its recovery and restoration phases. Furthermore, the bounds of the performance behavior of the system during this transient mode can be assessed. These bounds include: time to recover from the fault (t(sub rec)), time to restore the system (t(sub rec)) and whether there is a permanent delay in the system's Time Between Input and Output (TBIO) after the system has reached a steady state. An implementation of an ATAMM based computer was developed with the Generic VHSIC Spaceborne Computer (GVSC) as the target system. A simulation of the GVSC was also written based on the code used in ATAMM Multicomputer Operating System (AMOS). The simulation is in turn used to validate the new model in the usefulness and accuracy in tracking the propagation of the delay through the system and predicting the behavior in the transient state of recovery and restoration. The model is validated as an accurate method to predict the transient behavior of an ATAMM based multicomputer during recovery and restoration.

  17. Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data.

    PubMed

    Bao, Yanchun; Vinciotti, Veronica; Wit, Ernst; 't Hoen, Peter A C

    2013-05-30

    ImmunoPrecipitation (IP) efficiencies may vary largely between different antibodies and between repeated experiments with the same antibody. These differences have a large impact on the quality of ChIP-seq data: a more efficient experiment will necessarily lead to a higher signal to background ratio, and therefore to an apparent larger number of enriched regions, compared to a less efficient experiment. In this paper, we show how IP efficiencies can be explicitly accounted for in the joint statistical modelling of ChIP-seq data. We fit a latent mixture model to eight experiments on two proteins, from two laboratories where different antibodies are used for the two proteins. We use the model parameters to estimate the efficiencies of individual experiments, and find that these are clearly different for the different laboratories, and amongst technical replicates from the same lab. When we account for ChIP efficiency, we find more regions bound in the more efficient experiments than in the less efficient ones, at the same false discovery rate. A priori knowledge of the same number of binding sites across experiments can also be included in the model for a more robust detection of differentially bound regions among two different proteins. We propose a statistical model for the detection of enriched and differentially bound regions from multiple ChIP-seq data sets. The framework that we present accounts explicitly for IP efficiencies in ChIP-seq data, and allows to model jointly, rather than individually, replicates and experiments from different proteins, leading to more robust biological conclusions.

  18. Wave propagation model of heat conduction and group speed

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  19. An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure.

    PubMed

    Galeriu, D; Melintescu, A; Strack, S; Atarashi-Andoh, M; Kim, S B

    2013-04-01

    The need for a less conservative, but reliable risk assessment of accidental tritium releases is emphasized in the present debate on the nuclear energy future. The development of a standard conceptual model for accidental tritium releases must be based on the process level analysis and the appropriate experimental database. Tritium transfer from atmosphere to plants and the subsequent conversion into organically bound tritium (OBT) strongly depends on the plant characteristics, seasons, and meteorological conditions, which have a large variability. The present study presents an overview of the relevant experimental data for the short term exposure, including the unpublished information, also. Plenty of experimental data is provided for wheat, rice, and soybean and some for potato, bean, cherry tomato, radish, cabbage, and tangerine as well. Tritiated water (HTO) uptake by plants during the daytime and nighttime has an important role in further OBT synthesis. OBT formation in crops depends on the development stage, length, and condition of exposure. OBT translocation to the edible plant parts differs between the crops analyzed. OBT formation during the nighttime is comparable with that during the daytime. The present study is a preliminary step for the development of a robust model of crop contamination after an HTO accidental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Complexity Bounds for Quantum Computation

    DTIC Science & Technology

    2007-06-22

    Programs Trustees of Boston University Boston, MA 02215 - Complexity Bounds for Quantum Computation REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION...Complexity Bounds for Quantum Comp[utation Report Title ABSTRACT This project focused on upper and lower bounds for quantum computability using constant...classical computation models, particularly emphasizing new examples of where quantum circuits are more powerful than their classical counterparts. A second

  1. Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)

    NASA Astrophysics Data System (ADS)

    Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand

    2018-03-01

    Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.

  2. Set membership experimental design for biological systems.

    PubMed

    Marvel, Skylar W; Williams, Cranos M

    2012-03-21

    Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. The practicability of our approach is illustrated with a case study. This study shows that our approach is able to 1) identify candidate measurement time points that maximize information corresponding to biologically relevant metrics and 2) determine the number at which additional measurements begin to provide insignificant information. This framework can be used to balance the availability of resources with the addition of one or more measurement time points to improve the predictability of resulting models.

  3. Set membership experimental design for biological systems

    PubMed Central

    2012-01-01

    Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This study shows that our approach is able to 1) identify candidate measurement time points that maximize information corresponding to biologically relevant metrics and 2) determine the number at which additional measurements begin to provide insignificant information. This framework can be used to balance the availability of resources with the addition of one or more measurement time points to improve the predictability of resulting models. PMID:22436240

  4. Effective conductivity of suspensions of overlapping spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.C.; Torquato, S.

    1992-03-15

    An accurate first-passage simulation technique formulated by the authors (J. Appl. Phys. {bold 68}, 3892 (1990)) is employed to compute the effective conductivity {sigma}{sub {ital e}} of distributions of penetrable (or overlapping) spheres of conductivity {sigma}{sub 2} in a matrix of conductivity {sigma}{sub 1}. Clustering of particles in this model results in a generally intricate topology for virtually the entire range of sphere volume fractions {phi}{sub 2} (i.e., 0{le}{phi}{sub 2}{le}1). Results for the effective conductivity {sigma}{sub {ital e}} are presented for several values of the conductivity ratio {alpha}={sigma}{sub 2}/{sigma}{sub 1}, including superconducting spheres ({alpha}={infinity}) and perfectly insulating spheres ({alpha}=0), andmore » for a wide range of volume fractions. The data are shown to lie between rigorous three-point bounds on {sigma}{sub {ital e}} for the same model. Consistent with the general observations of Torquato (J. Appl. Phys. {bold 58}, 3790 (1985)) regarding the utility of rigorous bounds, one of the bounds provides a good estimate of the effective conductivity, even in the extreme contrast cases ({alpha}{much gt}1 or {alpha}{congruent}0), depending upon whether the system is below or above the percolation threshold.« less

  5. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  6. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  7. Scenarios of physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Fok, Ricky

    This dissertation discusses three topics on scenarios beyond the Standard Model. Topic one is the effects from a fourth generation of quarks and leptons on electroweak baryogenesis in the early universe. The Standard Model is incapable of electroweak baryogenesis due to an insufficiently strong enough electroweak phase transition (EWPT) as well as insufficient CP violation. We show that the presence of heavy fourth generation fermions solves the first problem but requires additional bosons to be included to stabilize the electroweak vacuum. Introducing supersymmetric partners of the heavy fermions, we find that the EWPT can be made strong enough and new sources of CP violation are present. Topic two relates to the lepton avor problem in supersymmetry. In the Minimal Supersymmetric Standard Model (MSSM), the off-diagonal elements in the slepton mass matrix must be suppressed at the 10-3 level to avoid experimental bounds from lepton avor changing processes. This dissertation shows that an enlarged R-parity can alleviate the lepton avor problem. An analysis of all sensitive parameters was performed in the mass range below 1 TeV, and we find that slepton maximal mixing is possible without violating bounds from the lepton avor changing processes: mu → egamma; mu → e conversion, and mu → 3e. Topic three is the collider phenomenology of quirky dark matter. In this model, quirks are particles that are gauged under the electroweak group, as well as a dark" color SU(2) group. The hadronization scale of this color group is well below the quirk masses. As a result, the dark color strings never break. Quirk and anti-quirk pairs can be produced at the LHC. Once produced, they immediately form a bound state of high angular momentum. The quirk pair rapidly shed angular momentum by emitting soft radiation before they annihilate into observable signals. This dissertation presents the decay branching ratios of quirkonia where quirks obtain their masses through electroweak symmetry breaking. This dissertation includes previously published and unpublished co-authored material.

  8. Spread of entanglement and causality

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Liu, Hong; Mezei, Márk

    2016-07-01

    We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.

  9. Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2016-06-01

    A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.

  10. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries

    USGS Publications Warehouse

    Watt, J.P.; Peselnick, L.

    1980-01-01

    Bounds on the effective elastic moduli of randomly oriented aggregates of hexagonal, trigonal, and tetragonal crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt-Reuss-Hill average lies within the Hashin-Shtrikman bounds in nearly all cases. Previous bounds of Peselnick and Meister are shown to be special cases of the present results.

  11. Goal Engagement during the School-Work Transition: Beneficial for All, Particularly for Girls

    ERIC Educational Resources Information Center

    Haase, Claudia M.; Heckhausen, Jutta; Koller, Olaf

    2008-01-01

    The school-to-work transition presents a substantial regulatory challenge for youth in modern societies. Based on the action-phase model of developmental regulation, we investigated the effects of goal engagement on transition outcomes in a high-density longitudinal study of noncollege-bound German adolescents (N = 362). Career-related goal…

  12. Let's Have Some Capatence Here

    ERIC Educational Resources Information Center

    Brown, Reva Berman; McCartney, Sean

    2003-01-01

    Defines two competitive ideas--competence and capability--and argues that neither deals adequately with the central issue of the present. Provides a model, to place these ideas in conceptual space--the vertical axis of which is bounded by the extremes of narrow and broad focus, and the horizontal axis by the past and the future. Suggests that…

  13. Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1975-01-01

    Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.

  14. The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.

  15. Upper bounds on sequential decoding performance parameters

    NASA Technical Reports Server (NTRS)

    Jelinek, F.

    1974-01-01

    This paper presents the best obtainable random coding and expurgated upper bounds on the probabilities of undetectable error, of t-order failure (advance to depth t into an incorrect subset), and of likelihood rise in the incorrect subset, applicable to sequential decoding when the metric bias G is arbitrary. Upper bounds on the Pareto exponent are also presented. The G-values optimizing each of the parameters of interest are determined, and are shown to lie in intervals that in general have nonzero widths. The G-optimal expurgated bound on undetectable error is shown to agree with that for maximum likelihood decoding of convolutional codes, and that on failure agrees with the block code expurgated bound. Included are curves evaluating the bounds for interesting choices of G and SNR for a binary-input quantized-output Gaussian additive noise channel.

  16. Constraints on primordial magnetic fields from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less

  17. Estimating the Inertia Matrix of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Keim, Jason; Shields, Joel

    2007-01-01

    A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.

  18. Nearly Supersymmetric Dark Atoms

    DOE PAGES

    Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; ...

    2011-01-01

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models, supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed, and several benchmarkmore » models are described. General features of nonrelativistic supersymmetric bound states are emphasized.« less

  19. Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Landsberg, Peter T.

    1995-08-01

    The general theory developed in part I was applied to build up two models of photovoltaic conversion. To this end two different systems were analyzed. The first system consists of the whole absorber (converter), for which the balance equations for energy and entropy are written and then used to derive an upper bound for solar energy conversion. The second system covers a part of the absorber (converter), namely the valence and conduction electronic bands. The balance of energy is used in this case to derive, under additional assumptions, another upper limit for the conversion efficiency. This second system deals with the real location where the power is generated. Both models take into consideration the radiation polarization and reflection, and the effects of concentration. The second model yields a more accurate upper bound for the conversion efficiency. A generalized solar cell equation is derived. It is proved that other previous theories are particular cases of the present more general formalism.

  20. A Self-Stabilizing Hybrid Fault-Tolerant Synchronization Protocol

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2015-01-01

    This paper presents a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. The strategy consists of two parts: first, converting Byzantine faults into symmetric faults, and second, using a proven symmetric-fault tolerant algorithm to solve the general case of the problem. A protocol (algorithm) is also present that tolerates symmetric faults, provided that there are more good nodes than faulty ones. The solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. The solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. A mechanical verification of a proposed protocol is also present. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period.

  1. On the likelihood of single-peaked preferences.

    PubMed

    Lackner, Marie-Louise; Lackner, Martin

    2017-01-01

    This paper contains an extensive combinatorial analysis of the single-peaked domain restriction and investigates the likelihood that an election is single-peaked. We provide a very general upper bound result for domain restrictions that can be defined by certain forbidden configurations. This upper bound implies that many domain restrictions (including the single-peaked restriction) are very unlikely to appear in a random election chosen according to the Impartial Culture assumption. For single-peaked elections, this upper bound can be refined and complemented by a lower bound that is asymptotically tight. In addition, we provide exact results for elections with few voters or candidates. Moreover, we consider the Pólya urn model and the Mallows model and obtain lower bounds showing that single-peakedness is considerably more likely to appear for certain parameterizations.

  2. Cell-bound lipases from Burkholderia sp. ZYB002: gene sequence analysis, expression, enzymatic characterization, and 3D structural model.

    PubMed

    Shu, Zhengyu; Lin, Hong; Shi, Shaolei; Mu, Xiangduo; Liu, Yanru; Huang, Jianzhong

    2016-05-03

    The whole-cell lipase from Burkholderia cepacia has been used as a biocatalyst in organic synthesis. However, there is no report in the literature on the component or the gene sequence of the cell-bound lipase from this species. Qualitative analysis of the cell-bound lipase would help to illuminate the regulation mechanism of gene expression and further improve the yield of the cell-bound lipase by gene engineering. Three predictive cell-bound lipases, lipA, lipC21 and lipC24, from Burkholderia sp. ZYB002 were cloned and expressed in E. coli. Both LipA and LipC24 displayed the lipase activity. LipC24 was a novel mesophilic enzyme and displayed preference for medium-chain-length acyl groups (C10-C14). The 3D structural model of LipC24 revealed the open Y-type active site. LipA displayed 96 % amino acid sequence identity with the known extracellular lipase. lipA-inactivation and lipC24-inactivation decreased the total cell-bound lipase activity of Burkholderia sp. ZYB002 by 42 % and 14 %, respectively. The cell-bound lipase activity from Burkholderia sp. ZYB002 originated from a multi-enzyme mixture with LipA as the main component. LipC24 was a novel lipase and displayed different enzymatic characteristics and structural model with LipA. Besides LipA and LipC24, other type of the cell-bound lipases (or esterases) should exist.

  3. Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches

    ERIC Educational Resources Information Center

    Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.

    2010-01-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…

  4. Temporal slow-growth formulation for direct numerical simulation of compressible wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Topalian, Victor; Oliver, Todd A.; Ulerich, Rhys; Moser, Robert D.

    2017-08-01

    A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows with complex physics. As in previous slow-growth approaches, the formulation assumes scale separation between the fast scales of turbulence and the slow evolution of statistics such as the mean flow. This separation enables the development of approaches where the fast scales of turbulence are directly simulated while the forcing provided by the slow evolution is modeled. The resulting model admits periodic boundary conditions in the streamwise direction, which avoids the need for extremely long domains and complex inflow conditions that typically accompany spatially developing simulations. Further, it enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser, Shariff, and Wray, J. Fluid Mech. 414, 1 (2000), 10.1017/S0022112000008466; Maeder, Adams, and Kleiser, J. Fluid Mech. 429, 187 (2001), 10.1017/S0022112000002718; Spalart, J. Fluid Mech. 187, 61 (1988), 10.1017/S0022112088000345], the present approach is based on a temporally evolving boundary layer and is specifically tailored to give results for calibration and validation of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The use of a temporal homogenization simplifies the modeling, enabling straightforward extension to flows with complicating features, including cold and blowing walls. To generate data useful for calibration and validation of RANS models, special care is taken to ensure that the mean slow-growth forcing is closed in terms of the mean and other quantities that appear in standard RANS models, ensuring that there is no confounding between typical RANS closures and additional closures required for the slow-growth problem. The performance of the method is demonstrated on two problems: an essentially incompressible, zero-pressure-gradient boundary layer and a transonic boundary layer over a cooled, transpiring wall. The results show that the approach produces flows that are qualitatively similar to other slow-growth methods as well as spatially developing simulations and that the method can be a useful tool in investigating wall-bounded flows with complex physics.

  5. Study of clusters and hypernuclei production within PHSD+FRIGA model

    NASA Astrophysics Data System (ADS)

    Kireyeu, Viktar; Le Fèvre, Arnaud; Bratkovskaya, Elena

    2017-03-01

    We report on the results on the dynamical modelling of cluster formation with the new combined PHSD+FRIGA model at Nuclotron and NICA energies. The FRIGA clusterization algorithm, which can be applied to the transport models, is based on the simulated annealing technique to obtain the most bound configuration of fragments and nucleons. The PHSD+FRIGA model is able to predict isotope yields as well as hypernucleus production. Based on present predictions of the combined model we study the possibility to detect such clusters and hypernuclei in the BM@N and MPD/NICA detectors.

  6. Study of Clusters and Hypernuclei production within PHSD+FRIGA model

    NASA Astrophysics Data System (ADS)

    Kireyeu, V.; Le Fèvre, A.; Bratkovskaya, E.

    2017-01-01

    We report on the results on the dynamical modelling of cluster formation with the new combined PHSD+FRIGA model at Nuclotron and NICA energies. The FRIGA clusterisation algorithm, which can be applied to the transport models, is based on the simulated annealing technique to obtain the most bound configuration of fragments and nucleons. The PHSD+FRIGA model is able to predict isotope yields as well as hyper-nucleus production. Based on present predictions of the combined model we study the possibility to detect such clusters and hypernuclei in the BM@N and MPD/NICA detectors.

  7. Applications of holographic spacetime

    NASA Astrophysics Data System (ADS)

    Torres, Terrence J.

    Here we present an overview of the theory of holographic spacetime (HST), originally devised and primarily developed by Tom Banks and Willy Fischler, as well as its various applications and predictions for cosmology and particle phenomenology. First we cover the basic theory and motivation for holographic spacetime and move on to present the latest developments therein as of the time of this writing. Then we indicate the origin of the quantum degrees of freedom in the theory and then present a correspondence with low energy effective field theory. Further, we proceed to show the general origins of inflation and the cosmic microwave background (CMB) within the theory of HST as well as predict the functional forms of two and three point correlation functions for scalar and tensor curvature fluctuations in the early universe. Next, we constrain the theory parameters by insisting on agreement with observational bounds on the scalar spectral index of CMB fluctuations from the Planck experiment as well as theoretical bounds on the number of e-folds of inflation. Finally, we argue that HST predicts specific gauge structures for the low-energy effective field theory at the present era and proceed to construct a viable supersymmetric model extension. Constraints on model parameters and couplings are then calculated by numerically minimizing the theory's scalar potential and comparing the resultant model mass spectra to current observational limits from the LHC SUSY searches. In the end we find that the low-energy theory, while presenting a little hierarchy problem, is fully compatible with current observational limits. Additionally, the high-energy underlying theory is generically compatible with observational constraints stemming from inflation, and predictions on favored model parameters are given.

  8. Antigen localization controls T cell-mediated tumor immunity.

    PubMed

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  9. Eikonal solutions to optical model coupled-channel equations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.

    1988-01-01

    Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.

  10. Estimating the number of terrestrial organisms on the moon.

    NASA Technical Reports Server (NTRS)

    Dillon, R. T.; Gavin, W. R.; Roark, A. L.; Trauth, C. A., Jr.

    1973-01-01

    Methods used to obtain estimates for the biological loadings on moon bound spacecraft prior to launch are reviewed, along with the mathematical models used to calculate the microorganism density on the lunar surface (such as it results from contamination deposited by manned and unmanned flights) and the probability of lunar soil sample contamination. Some of the results obtained by the use of a lunar inventory system based on these models are presented.

  11. Finite Inflation, Holography, and Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Scacco, Andrew Joseph

    This thesis covers work on theoretical cosmology relating to inflation, de Sitter space, dark matter annihilation, and holography. A unifying feature of all these topics is that all of them occur in de Sitter space or focus on epochs of the Universe when the spacetime was close to de Sitter and that all of them have some connection to holography. Chapter 1 provides a pedagogical introduction to the fundamentals of cosmology, inflation, de Sitter space, dark matter annihilation and entanglement entropy. Chapter 2 covers the impact on the causal entropic principle of dark matter annihilation that we find to have the greatest relevance at late times in the future when the dark energy has driven the universe to be asymptotically de Sitter. In this chapter we estimate holographically preferred dark matter properties for a range of assumptions. Chapter 3 covers holographic bounds in models of finite inflation, specifically the Banks-Fischler bound and de Sitter equilibrium. The assumptions in each of these models are explored in detail and some interesting new connections are presented. Chapter 4 tests models of inflation with a fast-roll start that happen to satisfy the holographic bounds in Chapter 3 against cosmic microwave background data from Planck. We find a slight preference for a feature at the scale predicted by the Banks-Fischler bound though this preference is not found to be statistically significant. Chapter 5 contains a numerical computation of the holographic mutual information for an annular configuration of regions on a conformal field theory in de Sitter space using the AdS/CFT correspondence. This computation shows that the de Sitter space CFT entanglement entropy matches what would be expected from a Minkowski CFT and shows that the HRT conjecture works for this case.

  12. A statistical model of the wave field in a bounded domain

    NASA Astrophysics Data System (ADS)

    Hellsten, T.

    2017-02-01

    Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.

  13. Sulphur-bound steroid and phytane carbon skeletons in geomacromolecules: Implications for the mechanism of incorporation of sulphur into organic matter

    NASA Astrophysics Data System (ADS)

    Kohnen, Math E. L.; Sinninghe Damsté, Jaap S.; Baas, Marianne; Dalen, A. C. Kock-van; de Leeuw, Jan W.

    1993-06-01

    Sulphur-bound steroid and phytane moieties in macromolecules present in the polar fractions of six immature samples (both crude oils and sediment extracts) have been analyzed using S-selective chemolysis methods and analytical pyrolysis. The identifications of the methylthioethers released from the macromolecule-containing fractions after MeLi/MeI treatment are based on comparison of mass spectral data and chromatographic data with those for synthesized methylthioethers. Evidence is presented that di- or polysulphide linkages are present in geomacromolecules in both sediments and oils and that the location of di- or polysulphide linkages in macromolecularly S-bound moieties is the same as that of monosulphide linkages. Macromolecularly S-bound phytanyl moieties are chiefly bound with S linkages located at the tertiary positions of their carbon skeletons, which indicates that the S incorporation mechanism(s) involve(s) intermediate carbocations. The macromolecularly S-bound steroids are bound with S linkages located mainly at C-2, C-3, C-4, or C-5 of their carbon skeletons, which indicates that the S incorporation took place into sterenes or steradienes - the dehydration products of stanols and stenols, respectively. However, it remains possible that the macromolecularly S-bound steroids with an axial S linkage at C-3 are, in part, resulting from a S N2 reaction of inorganic S species with steryl esters or stanols.

  14. Thermal Destruction Of CB Contaminants Bound On Building ...

    EPA Pesticide Factsheets

    Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.

  15. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  16. Quantum dynamics modeled by interacting trajectories

    NASA Astrophysics Data System (ADS)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  17. Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.

  18. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  19. Lanthanide/Actinide Opacities

    NASA Astrophysics Data System (ADS)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  20. Density Bounded H II Regions: Ionization of the Diffuse Interstellar and Intergalactic Media

    NASA Astrophysics Data System (ADS)

    Zurita, A.; Rozas, M.; Beckman, J. E.

    2000-05-01

    We present a study of the diffuse ionized gas (DIG) for a sample of nearby spiral galaxies using Hα images, after constructing their H II region catalogues. The integrated Hα emission of the DIG accounts for between 25% to 60% of the total Hα of the galaxy and a high ionizing photon flux is necessary to keep this gas ionized. We suggest that Lyman photons leaking from the most luminous H II regions are the prime source of the ionization of the DIG; they are more than enough to ionize the measured DIG in the model in which H II regions with luminosity in Hα greater than LStr=1038.6 erg sme are density bounded. We go on to show that this model can quantify the ionization observed in the skins of the high velocity clouds well above the plane of our Galaxy and predicts the ionization of the intergalactic medium.

  1. Toward agile control of a flexible-spine model for quadruped bounding

    NASA Astrophysics Data System (ADS)

    Byl, Katie; Satzinger, Brian; Strizic, Tom; Terry, Pat; Pusey, Jason

    2015-05-01

    Legged systems should exploit non-steady gaits both for improved recovery from unexpected perturbations and also to enlarge the set of reachable states toward negotiating a range of known upcoming terrain obstacles. We present a 4-link planar, bounding, quadruped model with compliance in its legs and spine and describe design of an intuitive and effective low-level gait controller. We extend our previous work on meshing hybrid dynamic systems and demonstrate that our control strategy results in stable gaits with meshable, low-dimension step- to-step variability. This meshability is a first step toward enabling switching control, to increase stability after perturbations compared with any single gait control, and we describe how this framework can also be used to find the set of n-step reachable states. Finally, we propose new guidelines for quantifying "agility" for legged robots, providing a preliminary framework for quantifying and improving performance of legged systems.

  2. Redox Proteomics of Protein-bound Methionine Oxidation*

    PubMed Central

    Ghesquière, Bart; Jonckheere, Veronique; Colaert, Niklaas; Van Durme, Joost; Timmerman, Evy; Goethals, Marc; Schymkowitz, Joost; Rousseau, Frederic; Vandekerckhove, Joël; Gevaert, Kris

    2011-01-01

    We here present a new method to measure the degree of protein-bound methionine sulfoxide formation at a proteome-wide scale. In human Jurkat cells that were stressed with hydrogen peroxide, over 2000 oxidation-sensitive methionines in more than 1600 different proteins were mapped and their extent of oxidation was quantified. Meta-analysis of the sequences surrounding the oxidized methionine residues revealed a high preference for neighboring polar residues. Using synthetic methionine sulfoxide containing peptides designed according to the observed sequence preferences in the oxidized Jurkat proteome, we discovered that the substrate specificity of the cellular methionine sulfoxide reductases is a major determinant for the steady-state of methionine oxidation. This was supported by a structural modeling of the MsrA catalytic center. Finally, we applied our method onto a serum proteome from a mouse sepsis model and identified 35 in vivo methionine oxidation events in 27 different proteins. PMID:21406390

  3. Localized modelling and feedback control of linear instabilities in 2-D wall bounded shear flows

    NASA Astrophysics Data System (ADS)

    Tol, Henry; Kotsonis, Marios; de Visser, Coen

    2016-11-01

    A new approach is presented for control of instabilities in 2-D wall bounded shear flows described by the linearized Navier-Stokes equations (LNSE). The control design accounts both for spatially localized actuators/sensors and the dominant perturbation dynamics in an optimal control framework. An inflow disturbance model is proposed for streamwise instabilities that drive laminar-turbulent transition. The perturbation modes that contribute to the transition process can be selected and are included in the control design. A reduced order model is derived from the LNSE that captures the input-output behavior and the dominant perturbation dynamics. This model is used to design an optimal controller for suppressing the instability growth. A 2-D channel flow and a 2-D boundary layer flow over a flat plate are considered as application cases. Disturbances are generated upstream of the control domain and the resulting flow perturbations are estimated/controlled using wall shear measurements and localized unsteady blowing and suction at the wall. It will be shown that the controller is able to cancel the perturbations and is robust to unmodelled disturbances.

  4. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Samtaney, R.

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  5. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    PubMed Central

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  6. Beating Landauer's Bound: Tradeoff between Accuracy and Heat Dissipation

    NASA Astrophysics Data System (ADS)

    Talukdar, Saurav; Bhaban, Shreyas; Salapaka, Murti

    The Landauer's Principle states that erasing of one bit of stored information is necessarily accompanied by heat dissipation of at least kb Tln 2 per bit. However, this is true only if the erasure process is always successful. We demonstrate that if the erasure process has a success probability p, the minimum heat dissipation per bit is given by kb T(plnp + (1 - p) ln (1 - p) + ln 2), referred to as the Generalized Landauer Bound, which is kb Tln 2 if the erasure process is always successful and decreases to zero as p reduces to 0.5. We present a model for a one-bit memory based on a Brownian particle in a double well potential motivated from optical tweezers and achieve erasure by manipulation of the optical fields. The method uniquely provides with a handle on the success proportion of the erasure. The thermodynamics framework for Langevin dynamics developed by Sekimoto is used for computation of heat dissipation in each realization of the erasure process. Using extensive Monte Carlo simulations, we demonstrate that the Landauer Bound of kb Tln 2 is violated by compromising on the success of the erasure process, while validating the existence of the Generalized Landauer Bound.

  7. Position-based coding and convex splitting for private communication over quantum channels

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.

    2017-10-01

    The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The ɛ -one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than ɛ \\in (0,1). The present paper provides a lower bound on the ɛ -one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the "alternate" smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.

  8. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  9. Two-polariton bound states in the Jaynes-Cummings-Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Max T. C.; Law, C. K.

    2011-05-15

    We examine the eigenstates of the one-dimensional Jaynes-Cummings-Hubbard model in the two-excitation subspace. We discover that two-excitation bound states emerge when the ratio of vacuum Rabi frequency to the tunneling rate between cavities exceeds a critical value. We determine the critical value as a function of the quasimomentum quantum number, and indicate that the bound states carry a strong correlation in which the two polaritons appear to be spatially confined together.

  10. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles

    NASA Astrophysics Data System (ADS)

    Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren

    2017-08-01

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  11. An evolutionary model of bounded rationality and intelligence.

    PubMed

    Brennan, Thomas J; Lo, Andrew W

    2012-01-01

    Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia-it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of behavior are more likely to survive is how behavior affects reproductive success in a given population's environment. From this perspective, intelligence is naturally defined as behavior that increases the probability of reproductive success, and bounds on rationality are determined by physiological and environmental constraints.

  12. An Evolutionary Model of Bounded Rationality and Intelligence

    PubMed Central

    Brennan, Thomas J.; Lo, Andrew W.

    2012-01-01

    Background Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia–it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. Methods and Findings Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. Conclusions Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of behavior are more likely to survive is how behavior affects reproductive success in a given population’s environment. From this perspective, intelligence is naturally defined as behavior that increases the probability of reproductive success, and bounds on rationality are determined by physiological and environmental constraints. PMID:23185602

  13. Randomness in the network inhibits cooperation based on the bounded rational collective altruistic decision

    NASA Astrophysics Data System (ADS)

    Ohdaira, Tetsushi

    2014-07-01

    Previous studies discussing cooperation employ the best decision that every player knows all information regarding the payoff matrix and selects the strategy of the highest payoff. Therefore, they do not discuss cooperation based on the altruistic decision with limited information (bounded rational altruistic decision). In addition, they do not cover the case where every player can submit his/her strategy several times in a match of the game. This paper is based on Ohdaira's reconsideration of the bounded rational altruistic decision, and also employs the framework of the prisoner's dilemma game (PDG) with sequential strategy. The distinction between this study and the Ohdaira's reconsideration is that the former covers the model of multiple groups, but the latter deals with the model of only two groups. Ohdaira's reconsideration shows that the bounded rational altruistic decision facilitates much more cooperation in the PDG with sequential strategy than Ohdaira and Terano's bounded rational second-best decision does. However, the detail of cooperation of multiple groups based on the bounded rational altruistic decision has not been resolved yet. This study, therefore, shows how randomness in the network composed of multiple groups affects the increase of the average frequency of mutual cooperation (cooperation between groups) based on the bounded rational altruistic decision of multiple groups. We also discuss the results of the model in comparison with related studies which employ the best decision.

  14. Direct detection of light ''Ge-phobic'' exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelmini, Graciela B.; Georgescu, Andreea; Huh, Ji-Haeng, E-mail: gelmini@physics.ucla.edu, E-mail: a.georgescu@physics.ucla.edu, E-mail: jhhuh@physics.ucla.edu

    2014-07-01

    We present comparisons of direct dark matter (DM) detection data for light WIMPs with exothermic scattering with nuclei (exoDM), both assuming the Standard Halo Model (SHM) and in a halo model–independent manner. Exothermic interactions favor light targets, thus reducing the importance of upper limits derived from xenon targets, the most restrictive of which is at present the LUX limit. In our SHM analysis the CDMS-II-Si and CoGeNT regions become allowed by these bounds, however the recent SuperCDMS limit rejects both regions for exoDM with isospin-conserving couplings. An isospin-violating coupling of the exoDM, in particular one with a neutron to protonmore » coupling ratio of -0.8 (which we call ''Ge-phobic''), maximally reduces the DM coupling to germanium and allows the CDMS-II-Si region to become compatible with all bounds. This is also clearly shown in our halo-independent analysis.« less

  15. Determining relative error bounds for the CVBEM

    USGS Publications Warehouse

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Methods provides a measure of relative error which can be utilized to subsequently reduce the error or provide information for further modeling analysis. By maximizing the relative error norm on each boundary element, a bound on the total relative error for each boundary element can be evaluated. This bound can be utilized to test CVBEM convergence, to analyze the effects of additional boundary nodal points in reducing the modeling error, and to evaluate the sensitivity of resulting modeling error within a boundary element from the error produced in another boundary element as a function of geometric distance. ?? 1985.

  16. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  17. Direct model reference adaptive control with application to flexible robots

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory W.

    1992-01-01

    A modification to a direct command generator tracker-based model reference adaptive control (MRAC) system is suggested in this paper. This modification incorporates a feedforward into the reference model's output as well as the plant's output. Its purpose is to eliminate the bounded model following error present in steady state when previous MRAC systems were used. The algorithm was evaluated using the dynamics for a single-link flexible-joint arm. The results of these simulations show a response with zero steady state model following error. These results encourage further use of MRAC for various types of nonlinear plants.

  18. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules

    PubMed Central

    Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.

    2014-01-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059

  19. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    PubMed

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.

  20. Assigning uncertainties in the inversion of NMR relaxation data.

    PubMed

    Parker, Robert L; Song, Yi-Qaio

    2005-06-01

    Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace transform based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solutions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory. Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T(2) log-mean, and bound fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density models. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and elsewhere.

  1. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.

    PubMed

    Wang, Wei; Tong, Shaocheng

    2018-02-01

    This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.

  2. Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.

    PubMed

    Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong

    2017-10-01

    This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.

  3. Branch-and-Bound algorithm applied to uncertainty quantification of a Boiling Water Reactor Station Blackout

    DOE PAGES

    Nielsen, Joseph; Tokuhiro, Akira; Hiromoto, Robert; ...

    2015-11-13

    Evaluation of the impacts of uncertainty and sensitivity in modeling presents a significant set of challenges in particular to high fidelity modeling. Computational costs and validation of models creates a need for cost effective decision making with regards to experiment design. Experiments designed to validate computation models can be used to reduce uncertainty in the physical model. In some cases, large uncertainty in a particular aspect of the model may or may not have a large impact on the final results. For example, modeling of a relief valve may result in large uncertainty, however, the actual effects on final peakmore » clad temperature in a reactor transient may be small and the large uncertainty with respect to valve modeling may be considered acceptable. Additionally, the ability to determine the adequacy of a model and the validation supporting it should be considered within a risk informed framework. Low fidelity modeling with large uncertainty may be considered adequate if the uncertainty is considered acceptable with respect to risk. In other words, models that are used to evaluate the probability of failure should be evaluated more rigorously with the intent of increasing safety margin. Probabilistic risk assessment (PRA) techniques have traditionally been used to identify accident conditions and transients. Traditional classical event tree methods utilize analysts’ knowledge and experience to identify the important timing of events in coordination with thermal-hydraulic modeling. These methods lack the capability to evaluate complex dynamic systems. In these systems, time and energy scales associated with transient events may vary as a function of transition times and energies to arrive at a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. This study presents a methodology to address combinatorial explosion using a Branch-and-Bound algorithm applied to Dynamic Event Trees (DET), which utilize LENDIT (L – Length, E – Energy, N – Number, D – Distribution, I – Information, and T – Time) as well as a set theory to describe system, state, resource, and response (S2R2) sets to create bounding functions for the DET. The optimization of the DET in identifying high probability failure branches is extended to create a Phenomenological Identification and Ranking Table (PIRT) methodology to evaluate modeling parameters important to safety of those failure branches that have a high probability of failure. The PIRT can then be used as a tool to identify and evaluate the need for experimental validation of models that have the potential to reduce risk. Finally, in order to demonstrate this methodology, a Boiling Water Reactor (BWR) Station Blackout (SBO) case study is presented.« less

  4. Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit

    NASA Astrophysics Data System (ADS)

    Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid

    2018-01-01

    Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest achievable mean liver BED. The results indicate that spatiotemporal treatments can achieve substantial reductions in normal tissue dose and BED, and that local optimization techniques provide high-quality plans that are close to realizing the maximum potential normal tissue dose reduction.

  5. Pricing end-of-life components

    NASA Astrophysics Data System (ADS)

    Vadde, Srikanth; Kamarthi, Sagar V.; Gupta, Surendra M.

    2005-11-01

    The main objective of a product recovery facility (PRF) is to disassemble end-of-life (EOL) products and sell the reclaimed components for reuse and recovered materials in second-hand markets. Variability in the inflow of EOL products and fluctuation in demand for reusable components contribute to the volatility in inventory levels. To stay profitable the PRFs ought to manage their inventory by regulating the price appropriately to minimize holding costs. This work presents two deterministic pricing models for a PRF bounded by environmental regulations. In the first model, the demand is price dependent and in the second, the demand is both price and time dependent. The models are valid for single component with no inventory replenishment sale during the selling horizon . Numerical examples are presented to illustrate the models.

  6. Bounds on quantum collapse models from matter-wave interferometry: calculational details

    NASA Astrophysics Data System (ADS)

    Toroš, Marko; Bassi, Angelo

    2018-03-01

    We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.

  7. RICE bounds on cosmogenic neutrino fluxes and interactions

    NASA Astrophysics Data System (ADS)

    Hussain, Shahid

    2005-04-01

    Assuming standard model interactions we calculate shower rates induced by cosmogenic neutrinos in ice, and we bound the cosmogenic neutrino fluxes using RICE 2000-2004 results. Next we assume new interactions due to extra- dimensional, low-scale gravity (i.e. black hole production and decay; graviton mediated deep inelastic scattering) and calculate enhanced shower rates induced by cosmogenic neutrinos in ice. With the help of RICE 2000-2004 results, we survey bounds on low scale gravity parameters for a range of cosmogenic neutrino flux models.

  8. On bound-states of the Gross Neveu model with massive fundamental fermions

    NASA Astrophysics Data System (ADS)

    Frishman, Yitzhak; Sonnenschein, Jacob

    2018-01-01

    In the search for QFT's that admit boundstates, we reinvestigate the two dimensional Gross-Neveu model, but with massive fermions. By computing the self-energy for the auxiliary boundstate field and the effective potential, we show that there are no bound states around the lowest minimum, but there is a meta-stable bound state around the other minimum, a local one. The latter decays by tunneling. We determine the dependence of its lifetime on the fermion mass and coupling constant.

  9. Bounds on quantum confinement effects in metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Blackman, G. Neal; Genov, Dentcho A.

    2018-03-01

    Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.

  10. Tri-critical behavior of the Blume-Emery-Griffiths model on a Kagomé lattice: Effective-field theory and Rigorous bounds

    NASA Astrophysics Data System (ADS)

    Santos, Jander P.; Sá Barreto, F. C.

    2016-01-01

    Spin correlation identities for the Blume-Emery-Griffiths model on Kagomé lattice are derived and combined with rigorous correlation inequalities lead to upper bounds on the critical temperature. From the spin correlation identities the mean field approximation and the effective field approximation results for the magnetization, the critical frontiers and the tricritical points are obtained. The rigorous upper bounds on the critical temperature improve over those effective-field type theories results.

  11. Upper and lower bounds of ground-motion variabilities: implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino

    2017-04-01

    One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).

  12. Quantile-based bias correction and uncertainty quantification of extreme event attribution statements

    DOE PAGES

    Jeon, Soyoung; Paciorek, Christopher J.; Wehner, Michael F.

    2016-02-16

    Extreme event attribution characterizes how anthropogenic climate change may have influenced the probability and magnitude of selected individual extreme weather and climate events. Attribution statements often involve quantification of the fraction of attributable risk (FAR) or the risk ratio (RR) and associated confidence intervals. Many such analyses use climate model output to characterize extreme event behavior with and without anthropogenic influence. However, such climate models may have biases in their representation of extreme events. To account for discrepancies in the probabilities of extreme events between observational datasets and model datasets, we demonstrate an appropriate rescaling of the model output basedmore » on the quantiles of the datasets to estimate an adjusted risk ratio. Our methodology accounts for various components of uncertainty in estimation of the risk ratio. In particular, we present an approach to construct a one-sided confidence interval on the lower bound of the risk ratio when the estimated risk ratio is infinity. We demonstrate the methodology using the summer 2011 central US heatwave and output from the Community Earth System Model. In this example, we find that the lower bound of the risk ratio is relatively insensitive to the magnitude and probability of the actual event.« less

  13. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    NASA Astrophysics Data System (ADS)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  14. Ambient air particulates and particulate-bound mercury Hg(p) concentrations: dry deposition study over a Traffic, Airport, Park (T.A.P.) areas during years of 2011-2012.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng

    2016-02-01

    The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.

  15. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3--4, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.; Doughty, C.; Geller, J.

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to developmore » a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report.« less

  16. Uncoordinated MAC for Adaptive Multi-Beam Directional Networks: Analysis and Evaluation

    DTIC Science & Technology

    2016-04-10

    transmission times, hence traditional CSMA approaches are not appropriate. We first present our model of these multi-beamforming capa- bilities and the...resulting wireless interference. We then derive an upper bound on multi-access performance for an idealized version of this physical layer. We then present... transmissions and receptions in a mobile ad-hoc network has in practice led to very constrained topologies. As mentioned, one approach for system design is to de

  17. Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: an improvement over existing models.

    PubMed

    Abbas, Ash Mohammad

    2012-01-01

    In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them. We verify the theorems using citation data for five Price Medalists. We observe that the lower bound for h-index given by Theorem 2, [formula: see text], g ≥ 1, comes out to be more accurate as compared to Schubert-Glanzel relation h is proportional to C(2/3)P(-1/3) for a proportionality constant of 1, where C is the number of citations and P is the number of papers referenced. Also, the values of h-index obtained using Theorem 2 outperform those obtained using Egghe-Liang-Rousseau power law model for the given citation data of Price Medalists. Further, we computed the values of upper bound on g-index given by Theorem 3, g ≤ (h + e), where e denotes the value of e-index. We observe that the upper bound on g-index given by Theorem 3 is reasonably tight for the given citation record of Price Medalists.

  18. The Priority Inversion Problem and Real-Time Symbolic Model Checking

    DTIC Science & Technology

    1993-04-23

    real time systems unpredictable in subtle ways. This makes it more difficult to implement and debug such systems. Our work discusses this problem and presents one possible solution. The solution is formalized and verified using temporal logic model checking techniques. In order to perform the verification, the BDD-based symbolic model checking algorithm given in previous works was extended to handle real-time properties using the bounded until operator. We believe that this algorithm, which is based on discrete time, is able to handle many real-time properties

  19. Absolute Lower Bound on the Bounce Action

    NASA Astrophysics Data System (ADS)

    Sato, Ryosuke; Takimoto, Masahiro

    2018-03-01

    The decay rate of a false vacuum is determined by the minimal action solution of the tunneling field: bounce. In this Letter, we focus on models with scalar fields which have a canonical kinetic term in N (>2 ) dimensional Euclidean space, and derive an absolute lower bound on the bounce action. In the case of four-dimensional space, we show the bounce action is generically larger than 24 /λcr, where λcr≡max [-4 V (ϕ )/|ϕ |4] with the false vacuum being at ϕ =0 and V (0 )=0 . We derive this bound on the bounce action without solving the equation of motion explicitly. Our bound is derived by a quite simple discussion, and it provides useful information even if it is difficult to obtain the explicit form of the bounce solution. Our bound offers a sufficient condition for the stability of a false vacuum, and it is useful as a quick check on the vacuum stability for given models. Our bound can be applied to a broad class of scalar potential with any number of scalar fields. We also discuss a necessary condition for the bounce action taking a value close to this lower bound.

  20. A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-03-31

    The energy in turbulent flow can be amplied by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound givenmore » here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some models of compressing astrophysical turbulence are too dissipative. As a result, the technique used highlights the relationship between compressed turbulence and decaying turbulence.« less

  1. Do Reuss and Voigt Bounds Really Bound in High-Pressure Rheology Experiments?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,J.; Li, L.; Yu, T.

    2006-01-01

    Energy dispersive synchrotron x-ray diffraction is carried out to measure differential lattice strains in polycrystalline Fe{sub 2}SiO{sub 4} (fayalite) and MgO samples using a multi-element solid state detector during high-pressure deformation. The theory of elastic modeling with Reuss (iso-stress) and Voigt (iso-strain) bounds is used to evaluate the aggregate stress and weight parameter, {alpha} (0{le}{alpha}{le}1), of the two bounds. Results under the elastic assumption quantitatively demonstrate that a highly stressed sample in high-pressure experiments reasonably approximates to an iso-stress state. However, when the sample is plastically deformed, the Reuss and Voigt bounds are no longer valid ({alpha} becomes beyond 1).more » Instead, if plastic slip systems of the sample are known (e.g. in the case of MgO), the aggregate property can be modeled using a visco-plastic self-consistent theory.« less

  2. Using Time-Varying Evidence to Test Models of Decision Dynamics: Bounded Diffusion vs. the Leaky Competing Accumulator Model

    PubMed Central

    Tsetsos, Konstantinos; Gao, Juan; McClelland, James L.; Usher, Marius

    2012-01-01

    When people make decisions, do they give equal weight to evidence arriving at different times? A recent study (Kiani et al., 2008) using brief motion pulses (superimposed on a random moving dot display) reported a primacy effect: pulses presented early in a motion observation period had a stronger impact than pulses presented later. This observation was interpreted as supporting the bounded diffusion (BD) model and ruling out models in which evidence accumulation is subject to leakage or decay of early-arriving information. We use motion pulses and other manipulations of the timing of the perceptual evidence in new experiments and simulations that support the leaky competing accumulator (LCA) model as an alternative to the BD model. While the LCA does include leakage, we show that it can exhibit primacy as a result of competition between alternatives (implemented via mutual inhibition), when the inhibition is strong relative to the leak. Our experiments replicate the primacy effect when participants must be prepared to respond quickly at the end of a motion observation period. With less time pressure, however, the primacy effect is much weaker. For 2 (out of 10) participants, a primacy bias observed in trials where the motion observation period is short becomes weaker or reverses (becoming a recency effect) as the observation period lengthens. Our simulation studies show that primacy is equally consistent with the LCA or with BD. The transition from primacy-to-recency can also be captured by the LCA but not by BD. Individual differences and relations between the LCA and other models are discussed. PMID:22701399

  3. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  4. Minimizers with Bounded Action for the High-Dimensional Frenkel-Kontorova Model

    NASA Astrophysics Data System (ADS)

    Miao, Xue-Qing; Wang, Ya-Nan; Qin, Wen-Xin

    In Aubry-Mather theory for monotone twist maps or for one-dimensional Frenkel-Kontorova (FK) model with nearest neighbor interactions, each global minimizer (minimal energy configuration) is naturally Birkhoff. However, this is not true for the one-dimensional FK model with non-nearest neighbor interactions or for the high-dimensional FK model. In this paper, we study the Birkhoff property of minimizers with bounded action for the high-dimensional FK model.

  5. Efficiency and its bounds for a quantum Einstein engine at maximum power.

    PubMed

    Yan, H; Guo, Hao

    2012-11-01

    We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.

  6. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.

    PubMed

    Yan, H; Guo, Hao

    2012-01-01

    We study a thermal engine model for which Newton's cooling law is obeyed during heat transfer processes. The thermal efficiency and its bounds at maximum output power are derived and discussed. This model, though quite simple, can be applied not only to Carnot engines but also to four other types of engines. For the long thermal contact time limit, new bounds, tighter than what were known before, are obtained. In this case, this model can simulate Otto, Joule-Brayton, Diesel, and Atkinson engines. While in the short contact time limit, which corresponds to the Carnot cycle, the same efficiency bounds as that from Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] are derived. In both cases, the thermal efficiency decreases as the ratio between the heat capacities of the working medium during heating and cooling stages increases. This might provide instructions for designing real engines. © 2012 American Physical Society

  7. Information models of software productivity - Limits on productivity growth

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1992-01-01

    Research into generalized information-metric models of software process productivity establishes quantifiable behavior and theoretical bounds. The models establish a fundamental mathematical relationship between software productivity and the human capacity for information traffic, the software product yield (system size), information efficiency, and tool and process efficiencies. An upper bound is derived that quantifies average software productivity and the maximum rate at which it may grow. This bound reveals that ultimately, when tools, methodologies, and automated assistants have reached their maximum effective state, further improvement in productivity can only be achieved through increasing software reuse. The reuse advantage is shown not to increase faster than logarithmically in the number of reusable features available. The reuse bound is further shown to be somewhat dependent on the reuse policy: a general 'reuse everything' policy can lead to a somewhat slower productivity growth than a specialized reuse policy.

  8. Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere.

    PubMed

    Kawanaka, Youhei; Matsumoto, Emiko; Sakamoto, Kazuhiko; Yun, Sun-Ja

    2011-02-15

    The present study was performed to estimate the contributions of fine and ultrafine particles to the lung deposition of particle-bound mutagens in the atmosphere. This is the first estimation of the respiratory deposition of atmospheric particle-bound mutagens. Direct and S9-mediated mutagenicity of size-fractionated particulate matter (PM) collected at roadside and suburban sites was determined by the Ames test using Salmonella typhimurium strain TA98. Regional deposition efficiencies in the human respiratory tract of direct and S9-mediated mutagens in each size fraction were calculated using the LUDEP computer-based model. The model calculations showed that about 95% of the lung deposition of inhaled mutagens is caused by fine particles for both roadside and suburban atmospheres. Importantly, ultrafine particles were shown to contribute to the deposition of mutagens in the alveolar region of the lung by as much as 29% (+S9) and 26% (-S9) for the roadside atmosphere and 11% (+S9) and 13% (-S9) for the suburban atmosphere, although ultrafine particles contribute very little to the PM mass concentration. These results indicated that ultrafine particles play an important role as carriers of mutagens into the lung. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Spectrally resolved opacities and Rosseland and Planck mean opacities of lowly ionized gold plasmas: a detailed level-accounting investigation.

    PubMed

    Zeng, Jiaolong; Yuan, Jianmin

    2007-08-01

    Calculation details of radiative opacity for lowly ionized gold plasmas by using our developed fully relativistic detailed level-accounting approach are presented to show the importance of accurate atomic data for a quantitative reproduction of the experimental observations. Even though a huge number of transition lines are involved in the radiative absorption of high- Z plasmas so that one believes that statistical models can often give a reasonable description of their opacities, we first show in detail that an adequate treatment of physical effects, in particular the configuration interaction (including the core-valence electron correlation), is essential to produce atomic data of bound-bound and bound-free processes for gold plasmas, which are accurate enough to correctly explain the relative intensity of two strong absorption peaks experimentally observed located near photon energy of 70 and 80 eV. A detailed study is also carried out for gold plasmas of an average ionization degree sequence of 10, for both spectrally resolved opacities and Rosseland and Planck means. For comparison, results obtained by using an average atom model are also given to show that even for a relatively higher density of matter, correlation effects are also important to predict the correct positions of absorption peaks of transition arrays.

  10. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradforth, Stephen Edmund

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN -, NCO - and NCS -. Transition state photoelectron spectra are presented for the following systems Br + HI, Clmore » + HI, F + HI, F + CH 30H,F + C 2H 5OH,F + OH and F + H 2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3P, 1D) + HF and F + H 2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made.« less

  11. Emotion-affected decision making in human simulation.

    PubMed

    Zhao, Y; Kang, J; Wright, D K

    2006-01-01

    Human modelling is an interdisciplinary research field. The topic, emotion-affected decision making, was originally a cognitive psychology issue, but is now recognized as an important research direction for both computer science and biomedical modelling. The main aim of this paper is to attempt to bridge the gap between psychology and bioengineering in emotion-affected decision making. The work is based on Ortony's theory of emotions and bounded rationality theory, and attempts to connect the emotion process with decision making. A computational emotion model is proposed, and the initial framework of this model in virtual human simulation within the platform of Virtools is presented.

  12. Constrained reduced-order models based on proper orthogonal decomposition

    DOE PAGES

    Reddy, Sohail R.; Freno, Brian Andrew; Cizmas, Paul G. A.; ...

    2017-04-09

    A novel approach is presented to constrain reduced-order models (ROM) based on proper orthogonal decomposition (POD). The Karush–Kuhn–Tucker (KKT) conditions were applied to the traditional reduced-order model to constrain the solution to user-defined bounds. The constrained reduced-order model (C-ROM) was applied and validated against the analytical solution to the first-order wave equation. C-ROM was also applied to the analysis of fluidized beds. Lastly, it was shown that the ROM and C-ROM produced accurate results and that C-ROM was less sensitive to error propagation through time than the ROM.

  13. Assessment of Higher-Order RANS Closures in a Decelerated Planar Wall-Bounded Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Jeyapaul, Elbert; Coleman, Gary N.; Rumsey, Christopher L.

    2014-01-01

    A reference DNS database is presented, which includes third- and fourth-order moment budgets for unstrained and strained planar channel flow. Existing RANS closure models for third- and fourth-order terms are surveyed, and new model ideas are introduced. The various models are then compared with the DNS data term by term using a priori testing of the higher-order budgets of turbulence transport, velocity-pressure-gradient, and dissipation for both the unstrained and strained databases. Generally, the models for the velocity-pressure-gradient terms are most in need of improvement.

  14. Calculation of Crystallographic Texture of BCC Steels During Cold Rolling

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-05-01

    BCC alloys commonly tend to develop strong fibre textures and often represent as isointensity diagrams in φ 1 sections or by fibre diagrams. Alpha fibre in bcc steels is generally characterised by <110> crystallographic axis parallel to the rolling direction. The objective of present research is to correlate carbon content, carbide dispersion, rolling reduction, Euler angles (ϕ) (when φ 1 = 0° and φ 2 = 45° along alpha fibre) and the resulting alpha fibre texture orientation intensity. In the present research, Bayesian neural computation has been employed to correlate these and compare with the existing feed-forward neural network model comprehensively. Excellent match to the measured texture data within the bounding box of texture training data set has been already predicted through the feed-forward neural network model by other researchers. Feed-forward neural network prediction outside the bounds of training texture data showed deviations from the expected values. Currently, Bayesian computation has been similarly applied to confirm that the predictions are reasonable in the context of basic metallurgical principles, and matched better outside the bounds of training texture data set than the reported feed-forward neural network. Bayesian computation puts error bars on predicted values and allows significance of each individual parameters to be estimated. Additionally, it is also possible by Bayesian computation to estimate the isolated influence of particular variable such as carbon concentration, which exactly cannot in practice be varied independently. This shows the ability of the Bayesian neural network to examine the new phenomenon in situations where the data cannot be accessed through experiments.

  15. Turning Around along the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Lee, Jounghun; Yepes, Gustavo

    2016-12-01

    A bound violation designates a case in which the turnaround radius of a bound object exceeds the upper limit imposed by the spherical collapse model based on the standard ΛCDM paradigm. Given that the turnaround radius of a bound object is a stochastic quantity and that the spherical model overly simplifies the true gravitational collapse, which actually proceeds anisotropically along the cosmic web, the rarity of the occurrence of a bound violation may depend on the web environment. Assuming a Planck cosmology, we numerically construct the bound-zone peculiar velocity profiles along the cosmic web (filaments and sheets) around the isolated groups with virial mass {M}{{v}}≥slant 3× {10}13 {h}-1 {M}⊙ identified in the Small MultiDark Planck simulations and determine the radial distances at which their peculiar velocities equal the Hubble expansion speed as the turnaround radii of the groups. It is found that although the average turnaround radii of the isolated groups are well below the spherical bound limit on all mass scales, the bound violations are not forbidden for individual groups, and the cosmic web has an effect of reducing the rarity of the occurrence of a bound violation. Explaining that the spherical bound limit on the turnaround radius in fact represents the threshold distance up to which the intervention of the external gravitational field in the bound-zone peculiar velocity profiles around the nonisolated groups stays negligible, we discuss the possibility of using the threshold distance scale to constrain locally the equation of state of dark energy.

  16. Infrared image enhancement using H(infinity) bounds for surveillance applications.

    PubMed

    Qidwai, Uvais

    2008-08-01

    In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.

  17. Some peculiarities of interactions of weakly bound lithium nuclei at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. M.; Kuterbekov, K. A.; Sobolev, Yu G.; Penionzhkevich, Yu E.; Kubenova, M. M.; Azhibekov, A. K.; Mukhambetzhan, A. M.; Lukyanov, S. M.; Maslov, V. A.; Kabdrakhimova, G. D.

    2018-02-01

    This paper presents new experimental data on the total cross sections of 9Li + 28Si reactions at low energies as well as the analysis of previously obtained data for 6,7Li. Based on a large collection of data (authors’ and literature data) we carried out a comparative analysis of the two main experimental interaction cross sections (angular distributions of the differential cross sections and total reaction cross sections) for weakly bound lithium (6-9Li, 11Li) nuclei in the framework of Kox parameterization and the macroscopic optical model. We identified specific features of these interactions and predicted the experimental trend in the total reaction cross sections for Li isotopes at energies close to the Coulomb barrier.

  18. Quantum State Tomography via Linear Regression Estimation

    PubMed Central

    Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan

    2013-01-01

    A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519

  19. Event-based recursive filtering for a class of nonlinear stochastic parameter systems over fading channels

    NASA Astrophysics Data System (ADS)

    Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2018-07-01

    In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.

  20. Localization of massless Dirac particles via spatial modulations of the Fermi velocity

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2017-08-01

    The electrons found in Dirac materials are notorious for being difficult to manipulate due to the Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of the Fermi velocity in two-dimensional Dirac materials can give rise to localization effects, with either full (zero-dimensional) confinement or partial (one-dimensional) confinement possible depending on the geometry of the velocity modulation. We present several exactly solvable models illustrating the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is crucial for determining fundamental properties of the bound states such as the zero-point energy. We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi velocity modulation.

  1. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins.

    PubMed

    Miles-Barrett, Daniel M; Neal, Andrew R; Hand, Calum; Montgomery, James R D; Panovic, Isabella; Ojo, O Stephen; Lancefield, Christopher S; Cordes, David B; Slawin, Alexandra M Z; Lebl, Tomas; Westwood, Nicholas J

    2016-10-25

    Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction.

  2. The Incidence of Sixteenth Century Cosmic Models in Modern Texts

    NASA Astrophysics Data System (ADS)

    Maene, S. A.; Best, J. S.; Usher, P. D.

    1999-12-01

    In the sixteenth century, the bounded cosmological models of Copernicus (1543) and Tycho Brahe (1588), and the unbounded model of Thomas Digges (1576), vied with the bounded geocentric model of Ptolemy (c. 140 AD). The work of the philosopher Giordano Bruno in 1584 lent further support to the Digges model. Despite the eventual acceptance of the unbounded universe, analysis of over 100 modern introductory astronomy texts reveals that these early unbounded models are mentioned infrequently. The ratio of mentions of Digges' model to Copernicus' model has the surprisingly low value of R = 0.08. The philosophical speculation of Bruno receives mention more than twice as often (R = 0.17). The expectation that these early unbounded models warrant inclusion in astronomy texts is supported both by modern hindsight and by the literature of the time. In Shakespeare's "Hamlet" of c. 1601, Prince Hamlet suffers from two transformations. According to the cosmic allegorical model, one transformation changes the bounded geocentricism of Ptolemy to the bounded heliocentricism of Copernicus, while the other completes the change to Digges' model of the infinite universe of suns. This interpretation and the modern world view suggest that both transformations should receive equal mention and thus that the ratio R in introductory texts should be close to unity. This work was supported in part by the NASA West Virginia Space Grant Consortium.

  3. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    PubMed

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  4. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems

    PubMed Central

    Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-01-01

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results. PMID:29503722

  5. A Posteriori Finite Element Bounds for Sensitivity Derivatives of Partial-Differential-Equation Outputs. Revised

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Patera, Anthony T.; Peraire, Jaume

    1998-01-01

    We present a Neumann-subproblem a posteriori finite element procedure for the efficient and accurate calculation of rigorous, 'constant-free' upper and lower bounds for sensitivity derivatives of functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding properties and computational complexity of the method are summarized; and illustrative numerical results are presented.

  6. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    PubMed

    Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2013-01-01

    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  7. Bayesian Estimation of Panel Data Fractional Response Models with Endogeneity: An Application to Standardized Test Rates

    ERIC Educational Resources Information Center

    Kessler, Lawrence M.

    2013-01-01

    In this paper I propose Bayesian estimation of a nonlinear panel data model with a fractional dependent variable (bounded between 0 and 1). Specifically, I estimate a panel data fractional probit model which takes into account the bounded nature of the fractional response variable. I outline estimation under the assumption of strict exogeneity as…

  8. Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds.

    PubMed

    Calderone, V; Fragai, M; Gallo, G; Luchinat, C

    2017-06-01

    The X-ray structure of human apo-S100Z has been solved and compared with that of the zebrafish calcium-bound S100Z, which is the closest in sequence. Human apo-S100A12, which shows only 43% sequence identity to human S100Z, has been used as template model to solve the crystallographic phase problem. Although a significant buried surface area between the two physiological dimers is present in the asymmetric unit of human apo-S100Z, the protein does not form the superhelical arrangement in the crystal as observed for the zebrafish calcium-bound S100Z and human calcium-bound S100A4. These findings further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation in several S100s. Solving the X-ray structure of human apo-S100Z by standard molecular replacement procedures turned out to be a challenge and required trying different models and different software tools among which only one was successful. The model that allowed structure solution was that with one of the lowest sequence identity with the target protein among the S100 family in the apo state. Based on the previously solved zebrafish holo-S100Z, a putative human holo-S100Z structure has been then calculated through homology modeling; the differences between the experimental human apo and calculated holo structure have been compared to those existing for other members of the family.

  9. Dynamical differences of hemoglobin and the ionotropic glutamate receptor in different states revealed by a new dynamics alignment method.

    PubMed

    Tobi, Dror

    2017-08-01

    A new algorithm for comparison of protein dynamics is presented. Compared protein structures are superposed and their modes of motions are calculated using the anisotropic network model. The obtained modes are aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. Dynamical comparison of hemoglobin in the T and R2 states reveals that the dynamics of the allosteric effector 2,3-bisphosphoglycerate binding site is different in the two states. These differences can contribute to the selectivity of the effector to the T state. Similar comparison of the ionotropic glutamate receptor in the kainate+(R,R)-2b and ZK bound states reveals that the kainate+(R,R)-2b bound states slow modes describe upward motions of ligand binding domain and the transmembrane domain regions. Such motions may lead to the opening of the receptor. The upper lobes of the LBDs of the ZK bound state have a smaller interface with the amino terminal domains above them and have a better ability to move together. The present study exemplifies the use of dynamics comparison as a tool to study protein function. Proteins 2017; 85:1507-1517. © 2014 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Structured Uncertainty Bound Determination From Data for Control and Performance Validation

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.

    2003-01-01

    This report attempts to document the broad scope of issues that must be satisfactorily resolved before one can expect to methodically obtain, with a reasonable confidence, a near-optimal robust closed loop performance in physical applications. These include elements of signal processing, noise identification, system identification, model validation, and uncertainty modeling. Based on a recently developed methodology involving a parameterization of all model validating uncertainty sets for a given linear fractional transformation (LFT) structure and noise allowance, a new software, Uncertainty Bound Identification (UBID) toolbox, which conveniently executes model validation tests and determine uncertainty bounds from data, has been designed and is currently available. This toolbox also serves to benchmark the current state-of-the-art in uncertainty bound determination and in turn facilitate benchmarking of robust control technology. To help clarify the methodology and use of the new software, two tutorial examples are provided. The first involves the uncertainty characterization of a flexible structure dynamics, and the second example involves a closed loop performance validation of a ducted fan based on an uncertainty bound from data. These examples, along with other simulation and experimental results, also help describe the many factors and assumptions that determine the degree of success in applying robust control theory to practical problems.

  11. Equivalence principle and bound kinetic energy.

    PubMed

    Hohensee, Michael A; Müller, Holger; Wiringa, R B

    2013-10-11

    We consider the role of the internal kinetic energy of bound systems of matter in tests of the Einstein equivalence principle. Using the gravitational sector of the standard model extension, we show that stringent limits on equivalence principle violations in antimatter can be indirectly obtained from tests using bound systems of normal matter. We estimate the bound kinetic energy of nucleons in a range of light atomic species using Green's function Monte Carlo calculations, and for heavier species using a Woods-Saxon model. We survey the sensitivities of existing and planned experimental tests of the equivalence principle, and report new constraints at the level of between a few parts in 10(6) and parts in 10(8) on violations of the equivalence principle for matter and antimatter.

  12. 77 FR 24539 - Virginia Electric and Power Company; Surry Power Station Units 1 and 2; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... bounding thermal analysis using ANSYS finite element software to evaluate the misloading events. The ANSYS analysis consists of a half-symmetric, three-dimensional model of a 32PTH DSC with a number of conservative... the maximum fuel cladding temperature presented in the UFSAR analysis dated October 2, 2009, with the...

  13. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    ERIC Educational Resources Information Center

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  14. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    PubMed

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Quantifying Behavior Driven Energy Savings for Hotels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bing; Wang, Na; Hooks, Edward

    2016-08-12

    Hotel facilities present abundant opportunities for energy savings. In the United States, there are around 25,000 hotels that spend on an average of $2,196 on energy costs per room each year. This amounts to about 6% of the total annual hotel operating cost. However, unlike offices, there are limited studies on establishing appropriate baselines and quantifying hotel energy savings given the variety of services and amenities, unpredictable customer behaviors, and the around-the-clock operation hours. In this study, we investigate behavior driven energy savings for three medium-size (around 90,000 sf2) hotels that offer similar services in different climate zones. We firstmore » used Department of Energy Asset Scoring Tool to establish baseline models. We then conducted energy saving analysis in EnergyPlus based on a behavior model that defines the upper bound and lower bound of customer and hotel staff behavior. Lastly, we presented a probabilistic energy savings outlook for each hotel. The analysis shows behavior driven energy savings up to 25%. We believe this is the first study to incorporate behavioral factors into energy analysis for hotels. It also demonstrates a procedure to quickly create tailored baselines and identify improvement opportunities for hotels.« less

  16. Robustness of reduced-order multivariable state-space self-tuning controller

    NASA Technical Reports Server (NTRS)

    Yuan, Zhuzhi; Chen, Zengqiang

    1994-01-01

    In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.

  17. A performability solution method for degradable nonrepairable systems

    NASA Technical Reports Server (NTRS)

    Furchtgott, D. G.; Meyer, J. F.

    1984-01-01

    The present performability model-solving algorithm identifies performance with 'reward', representing the state behavior of a system S by a finite-state stochastic process and determining reward by means of reward rates that are associated with the states of the base model. A general method is obtained for determining the probability distribution function of the performance (reward) variable, and therefore the performability, of the corresponding system. This is done for bounded utilization periods, and the result is an integral expression which is either analytically or numerically solvable.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azunre, P.

    Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R.; Brooks, Dusty Marie

    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions andmore » experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.« less

  20. a Method for the Positioning and Orientation of Rail-Bound Vehicles in Gnss-Free Environments

    NASA Astrophysics Data System (ADS)

    Hung, R.; King, B. A.; Chen, W.

    2016-06-01

    Mobile Mapping System (MMS) are increasingly applied for spatial data collection to support different fields because of their efficiencies and the levels of detail they can provide. The Position and Orientation System (POS), which is conventionally employed for locating and orienting MMS, allows direct georeferencing of spatial data in real-time. Since the performance of a POS depends on both the Inertial Navigation System (INS) and the Global Navigation Satellite System (GNSS), poor GNSS conditions, such as in long tunnels and underground, introduce the necessity for post-processing. In above-ground railways, mobile mapping technology is employed with high performance sensors for finite usage, which has considerable potential for enhancing railway safety and management in real-time. In contrast, underground railways present a challenge for a conventional POS thus alternative configurations are necessary to maintain data accuracy and alleviate the need for post-processing. This paper introduces a method of rail-bound navigation to replace the role of GNSS for railway applications. The proposed method integrates INS and track alignment data for environment-independent navigation and reduces the demand of post-processing. The principle of rail-bound navigation is presented and its performance is verified by an experiment using a consumer-grade Inertial Measurement Unit (IMU) and a small-scale railway model. The method produced a substantial improvement in position and orientation for a poorly initialised system in centimetre positional accuracy. The potential improvements indicated by, and limitations of rail-bound navigation are also considered for further development in existing railway systems.

  1. Interaction of melanin with proteins--the importance of an acidic intramelanosomal pH.

    PubMed

    Mani, I; Sharma, V; Tamboli, I; Raman, G

    2001-06-01

    Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein-bound form. We also present evidence to show that soluble protein-bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano-protein complex. The interaction between melanin and proteins appears to be largely charge-dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein-bound.

  2. A Model-Free No-arbitrage Price Bound for Variance Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnans, J. Frederic, E-mail: frederic.bonnans@inria.fr; Tan Xiaolu, E-mail: xiaolu.tan@polytechnique.edu

    2013-08-01

    We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.

  3. Coexistence of bounded and unbounded motions in a bouncing ball model

    NASA Astrophysics Data System (ADS)

    Marò, Stefano

    2013-05-01

    We consider the model describing the vertical motion of a ball falling with constant acceleration on a wall and elastically reflected. The wall is supposed to move in the vertical direction according to a given periodic function f. We apply the Aubry-Mather theory to the generating function in order to prove the existence of bounded motions with prescribed mean time between the bounces. As the existence of unbounded motions is known, it is possible to find a class of functions f that allow both bounded and unbounded motions.

  4. Re-derived overclosure bound for the inert doublet model

    NASA Astrophysics Data System (ADS)

    Biondini, S.; Laine, M.

    2017-08-01

    We apply a formalism accounting for thermal effects (such as modified Sommerfeld effect; Salpeter correction; decohering scatterings; dissociation of bound states), to one of the simplest WIMP-like dark matter models, associated with an "inert" Higgs doublet. A broad temperature range T ˜ M/20 . . . M/104 is considered, stressing the importance and less-understood nature of late annihilation stages. Even though only weak interactions play a role, we find that resummed real and virtual corrections increase the tree-level overclosure bound by 1 . . . 18%, depending on quartic couplings and mass splittings.

  5. Upper and lower bounds for semi-Markov reliability models of reconfigurable systems

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.

  6. Flight control application of new stability robustness bounds for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, Rama K.

    1993-01-01

    This paper addresses the issue of obtaining bounds on the real parameter perturbations of a linear state-space model for robust stability. Based on Kronecker algebra, new, easily computable sufficient bounds are derived that are much less conservative than the existing bounds since the technique is meant for only real parameter perturbations (in contrast to specializing complex variation case to real parameter case). The proposed theory is illustrated with application to several flight control examples.

  7. Curvature bound from gravitational catalysis

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Martini, Riccardo

    2018-04-01

    We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.

  8. Modeling of magnitude distributions by the generalized truncated exponential distribution

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-01-01

    The probability distribution of the magnitude can be modeled by an exponential distribution according to the Gutenberg-Richter relation. Two alternatives are the truncated exponential distribution (TED) and the cutoff exponential distribution (CED). The TED is frequently used in seismic hazard analysis although it has a weak point: when two TEDs with equal parameters except the upper bound magnitude are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. We overcome it by the generalization of the abovementioned exponential distributions: the generalized truncated exponential distribution (GTED). Therein, identical exponential distributions are mixed by the probability distribution of the correct cutoff points. This distribution model is flexible in the vicinity of the upper bound magnitude and is equal to the exponential distribution for smaller magnitudes. Additionally, the exponential distributions TED and CED are special cases of the GTED. We discuss the possible ways of estimating its parameters and introduce the normalized spacing for this purpose. Furthermore, we present methods for geographic aggregation and differentiation of the GTED and demonstrate the potential and universality of our simple approach by applying it to empirical data. The considerable improvement by the GTED in contrast to the TED is indicated by a large difference between the corresponding values of the Akaike information criterion.

  9. Simplest little Higgs model revisited: Hidden mass relation, unitarity, and naturalness

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; He, Shi-Ping; Mao, Ying-nan; Zhang, Chen; Zhou, Yang

    2018-06-01

    We analyze the scalar potential of the simplest little Higgs (SLH) model in an approach consistent with the spirit of continuum effective field theory (CEFT). By requiring correct electroweak symmetry breaking (EWSB) with the 125 GeV Higgs boson, we are able to derive a relation between the pseudoaxion mass mη and the heavy top mass mT, which serves as a crucial test of the SLH mechanism. By requiring mη2>0 an upper bound on mT can be obtained for any fixed SLH global symmetry breaking scale f . We also point out that an absolute upper bound on f can be obtained by imposing partial wave unitarity constraint, which in turn leads to absolute upper bounds of mT≲19 TeV , mη≲1.5 TeV , and mZ'≲48 TeV . We present the allowed region in the three-dimensional parameter space characterized by f ,tβ,mT, taking into account the requirement of valid EWSB and the constraint from perturbative unitarity. We also propose a strategy of analyzing the fine-tuning problem consistent with the spirit of CEFT and apply it to the SLH. We suggest that the scalar potential and fine-tuning analysis strategies adopted here should also be applicable to a wide class of little Higgs and twin Higgs models, which may reveal interesting relations as crucial tests of the related EWSB mechanism and provide a new perspective on assessing their degree of fine-tuning.

  10. New leads in speculative behavior

    NASA Astrophysics Data System (ADS)

    Kindler, A.; Bourgeois-Gironde, S.; Lefebvre, G.; Solomon, S.

    2017-02-01

    The Kiyotaki and Wright (1989) (henceforth KW) model of money emergence as a medium of exchange has been studied from various perspectives in recent papers. In the present work we propose a minimalistic model for the behavior of agents in the KW framework, which may either reproduce the theoretical predictions of Kiyotaki and Wright (1989) on the emerging Nash equilibria, or (less closely) the empirical results of Brown (1996), Duffy and Ochs (1999) and our own, introduced in a first part of the present paper. The main import is the systematic computer scanning of speculative monetary equilibria under drastic bounded rationality of agents, based on behavior previously observed in the lab.

  11. Dynamic pricing of network goods with boundedly rational consumers.

    PubMed

    Radner, Roy; Radunskaya, Ami; Sundararajan, Arun

    2014-01-07

    We present a model of dynamic monopoly pricing for a good that displays network effects. In contrast with the standard notion of a rational-expectations equilibrium, we model consumers as boundedly rational and unable either to pay immediate attention to each price change or to make accurate forecasts of the adoption of the network good. Our analysis shows that the seller's optimal price trajectory has the following structure: The price is low when the user base is below a target level, is high when the user base is above the target, and is set to keep the user base stationary once the target level has been attained. We show that this pricing policy is robust to a number of extensions, which include the product's user base evolving over time and consumers basing their choices on a mixture of a myopic and a "stubborn" expectation of adoption. Our results differ significantly from those that would be predicted by a model based on rational-expectations equilibrium and are more consistent with the pricing of network goods observed in practice.

  12. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  13. Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-03-01

    We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.

  14. Dynamic pricing of network goods with boundedly rational consumers

    PubMed Central

    Radner, Roy; Radunskaya, Ami; Sundararajan, Arun

    2014-01-01

    We present a model of dynamic monopoly pricing for a good that displays network effects. In contrast with the standard notion of a rational-expectations equilibrium, we model consumers as boundedly rational and unable either to pay immediate attention to each price change or to make accurate forecasts of the adoption of the network good. Our analysis shows that the seller’s optimal price trajectory has the following structure: The price is low when the user base is below a target level, is high when the user base is above the target, and is set to keep the user base stationary once the target level has been attained. We show that this pricing policy is robust to a number of extensions, which include the product’s user base evolving over time and consumers basing their choices on a mixture of a myopic and a “stubborn” expectation of adoption. Our results differ significantly from those that would be predicted by a model based on rational-expectations equilibrium and are more consistent with the pricing of network goods observed in practice. PMID:24367101

  15. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  16. Local projection stabilization for linearized Brinkman-Forchheimer-Darcy equation

    NASA Astrophysics Data System (ADS)

    Skrzypacz, Piotr

    2017-09-01

    The Local Projection Stabilization (LPS) is presented for the linearized Brinkman-Forchheimer-Darcy equation with high Reynolds numbers. The considered equation can be used to model porous medium flows in chemical reactors of packed bed type. The detailed finite element analysis is presented for the case of nonconstant porosity. The enriched variant of LPS is based on the equal order interpolation for the velocity and pressure. The optimal error bounds for the velocity and pressure errors are justified numerically.

  17. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    NASA Astrophysics Data System (ADS)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to the stream-bank.

  18. Restricted DCJ-indel model: sorting linear genomes with DCJ and indels

    PubMed Central

    2012-01-01

    Background The double-cut-and-join (DCJ) is a model that is able to efficiently sort a genome into another, generalizing the typical mutations (inversions, fusions, fissions, translocations) to which genomes are subject, but allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels, which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels. Results In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation and the reincorporation of a circular chromosome). We then develop a sorting algorithm and give a tight upper bound for the restricted DCJ-indel distance. Conclusions We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open. PMID:23281630

  19. Interactive collision detection for deformable models using streaming AABBs.

    PubMed

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  20. Current Status of Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-12-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in pursuing a career in nuclear physics.

  1. A Time-Regularized, Multiple Gravity-Assist Low-Thrust, Bounded-Impulse Model for Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.

    2017-01-01

    The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Keplers equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Keplers equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.

  2. A Time-Regularized Multiple Gravity-Assist Low-Thrust Bounded-Impulse Model for Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.

    2017-01-01

    The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Kepler's equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight-suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Kepler's equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.

  3. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  4. Bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations

    DOE PAGES

    Azunre, P.

    2016-09-21

    Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less

  5. A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..

  6. Measures and limits of models of fixation selection.

    PubMed

    Wilming, Niklas; Betz, Torsten; Kietzmann, Tim C; König, Peter

    2011-01-01

    Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information. Using this tool in the evaluation of competing claims often requires comparing different models' relative performance in predicting eye movements. However, studies use a wide variety of performance measures with markedly different properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable properties. However the area under the ROC curve (a classification measure) and the KL-divergence (a distance measure of probability distributions) combine many desirable properties and allow a meaningful comparison of critical model performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible to give a reference frame to judge the predictive power of a model of fixation selection. We provide open-source python code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for models that predict averages of subject populations. Departing from this we show that incorporating subject-specific viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the required information that allow a well-founded judgment of the quality of any model of fixation selection and should therefore be reported when a new model is introduced.

  7. Populations of High-Luminosity Density-Bounded HII Regions in Spiral Galaxies? Evidence and Implications

    NASA Technical Reports Server (NTRS)

    Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.

    2000-01-01

    In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to ionize the diffuse medium, but to cause a typical spiral to emit significant ionizing flux into the intergalactic medium. The low scatter observed in Lstr, less than 0.1 mag rms in the still quite small sample measured to date, is an invitation to widen the data base, and to calibrate against primary standards, with the aim of obtaining a precise, approx. 10(exp 5) solar luminosity widely distributed standard candle.

  8. On the Berry-Esséen bound of frequency polygons for ϕ-mixing samples.

    PubMed

    Huang, Gan-Ji; Xing, Guodong

    2017-01-01

    Under some mild assumptions, the Berry-Esséen bound of frequency polygons for ϕ -mixing samples is presented. By the bound derived, we obtain the corresponding convergence rate of uniformly asymptotic normality, which is nearly [Formula: see text] under the given conditions.

  9. Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.

    PubMed

    Sarkar, Ranja

    2018-01-01

    SUMO (small ubiquitin-like modifier) proteins interact with a large number of target proteins via a key regulatory event called sumoylation that encompasses activation, conjugation and ligation of SUMO proteins through specific E1, E2, and E3-type enzymes respectively. Single-molecule atomic force microscopic (AFM) experiments performed to unravel bound SUMO1 along its NC termini direction reveal that E3-ligases (in the form of small peptides) increase mechanical stability (along the axis) of the flexible protein upon binding. The experimental results are expected to correlate with the intrinsic flexibility of bound SUMO1 protein in the native state i.e., the bound conformation of SUMO1 without the binding peptide. The native protein flexibility/stiffness can be measured as a spring constant by normal mode analysis. In the present study, protein normal modes are computed from the protein structural data (as input from protein databank) via a simple anisotropic network model (ANM). ANM is computationally inexpensive and hence, can be explored to investigate and compare the native conformational dynamics of unbound and bound (without the binding partner) structures, if the corresponding structural data (NMR/X-ray) are available. The paper illustrates that SUMO1 stiffens (native flexibility decreases) along the NC termini (end-to-end) direction of the protein upon binding to small peptides; however, the degree of stiffening is peptide sequence-specific. The theoretical results are demonstrated for NMR structures of unbound SUMO1 and that bound to two peptides having short amino acid motifs and of similar size, one being an M-IR2 peptide derived from RanBP2 protein and the other one derived from PIASX protein. The peptide derived from PIASX stiffens SUMO1 remarkably which is evident from an atomic-level normal mode analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  11. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less

  12. A simple method for assessing occupational exposure via the one-way random effects model.

    PubMed

    Krishnamoorthy, K; Mathew, Thomas; Peng, Jie

    2016-11-01

    A one-way random effects model is postulated for the log-transformed shift-long personal exposure measurements, where the random effect in the model represents an effect due to the worker. Simple closed-form confidence intervals are proposed for the relevant parameters of interest using the method of variance estimates recovery (MOVER). The performance of the confidence bounds is evaluated and compared with those based on the generalized confidence interval approach. Comparison studies indicate that the proposed MOVER confidence bounds are better than the generalized confidence bounds for the overall mean exposure and an upper percentile of the exposure distribution. The proposed methods are illustrated using a few examples involving industrial hygiene data.

  13. W-Z-top-quark bags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crichigno, Marcos P.; Shuryak, Edward; Flambaum, Victor V.

    2010-10-01

    We discuss a new family of multiquanta-bound states in the standard model which exist due to the mutual Higgs-based attraction of the heaviest members of the standard model, namely, gauge quanta W, Z, and (anti)top quarks, t, t. We use a self-consistent mean-field approximation, up to a rather large particle number N. In this paper we do not focus on weakly bound, nonrelativistic bound states, but rather on 'bags' in which the Higgs vacuum expectation value is significantly modified or depleted. The minimal number N above which such states appear strongly depends on the ratio of the Higgs mass tomore » the masses of W, Z, t, t: For a light Higgs mass, m{sub H{approx}}50 GeV, bound states start from N{approx}O(10), but for a ''realistic'' Higgs mass, m{sub H{approx}}100 GeV, one finds metastable/bound W, Z bags only for N{approx}O(1000). We also found that in the latter case pure top bags disappear for all N, although top quarks can still be well bound to the W bags. Anticipating the cosmological applications (discussed in the following Article [Phys. Rev. D 82, 073019]) of these bags as 'doorway states' for baryosynthesis, we also consider here the existence of such metastable bags at finite temperatures, when standard-model parameters such as Higgs, gauge, and top masses are significantly modified.« less

  14. Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    PubMed Central

    Melo, Manuel N.; Ferre, Rafael; Feliu, Lídia; Bardají, Eduard; Planas, Marta; Castanho, Miguel A. R. B.

    2011-01-01

    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations. PMID:22194847

  15. The Kalman-Tran-D'Souza model and the semileptonic decay rates of heavy baryons

    NASA Astrophysics Data System (ADS)

    D'Souza, I.; Kalman, C. S.; Kulikov, P. Yu.; Narodetskii, I. M.

    2001-03-01

    We present an investigation of the inclusive semileptonic decay widths of the heavy baryons Λ Q, Σ Q and Ξ Q, ( q = b, c) performed within a relativistic constituent quark model, formulated on the light-front. In a way conceptually similar to the deep-inelastic scattering case, the H Q-baryon inclusive width is expressed as the integral of the free Q-quark partial width multiplied by a bound-state factor related to the Q-quark distribution function in the H Q. The non-perturbative meson structure is described through the quark-model wave functions, constructed via the Hamiltonian light-front formalism using as input the Kalman-Tran-D'Souza equal time wave functions. A link between spectroscopic quark models and the H Q decay physics is obtained in this way. It is shown that the bound-state effects and the Fermi motion of the b-quark remarkably reduce the decay rate with respect to the free-quark result. Our predictions for the BR(Λ c → X sl ν e) and BR(Λ b → X cl ν e) decays are in good agreement with existing data.

  16. Right-handed neutrino dark matter in left-right symmetric models

    NASA Astrophysics Data System (ADS)

    Bhupal Dev, P. S.; Mohapatra, Rabindra N.; Zhang, Yongchao

    2017-07-01

    We show that in a class of non-supersymmetric left-right extensions of the Standard Model (SM), the lightest right-handed neutrino (RHN) is naturally stable and can therefore play the role of thermal Dark Matter (DM) in the Universe for a wide mass range from TeV to PeV. Our model is based on the gauge group SU(3) c × SU(2) L × SU(2) R × U(1) YL × U(1) YR in which a heavy copy of the SM fermions are introduced and the stability of the RHN DM is guaranteed by an automatic Z 2 symmetry present in the leptonic sector. The active neutrino masses in the model arise from the type-II seesaw mechanism. We find a lower bound on the RHN DM mass of order TeV from relic density constraints, as well as an unitarity upper bound in the multi-TeV to PeV scale, depending on the entropy dilution factor. The RHN DM could be made long-lived by soft-breaking of the Z 2 symmetry and provides a concrete example of decaying DM interpretation of the PeV neutrinos observed at IceCube.

  17. Position Extrema in Keplerian Relative Motion: A Gröbner Basis Approach

    NASA Astrophysics Data System (ADS)

    Allgeier, Shawn E.; Fitz-Coy, Norman G.; Erwin, R. Scott

    2012-12-01

    This paper analyzes the relative motion between two spacecraft in orbit. Specifically, the paper provides bounds for relative spacecraft position-based measures which impact spacecraft formation-flight mission design and analysis. Previous efforts have provided bounds for the separation distance between two spacecraft. This paper presents a methodology for bounding the local vertical, horizontal, and cross track components of the relative position vector in a spacecraft centered, rotating reference frame. Three metrics are derived and a methodology for bounding them is presented. The solution of the extremal equations for the metrics is formulated as an affine variety and obtained using a Gröbner basis reduction. No approximations are utilized and the only assumption is that the two spacecraft are in bound Keplerian orbits. Numerical examples are included to demonstrate the efficacy of the method. The metrics have utility to the mission designer of formation flight architectures, with relevance to Earth observation constellations.

  18. Vacuum stability in the U(1)χ extended model with vanishing scalar potential at the Planck scale

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Yamaguchi, Yuya

    2015-09-01

    We investigate the vacuum stability in a scale invariant local {U}(1)_χ model with vanishing scalar potential at the Planck scale. We find that it is impossible to realize the Higgs mass of 125 GeV while keeping the Higgs quartic coupling λ _H positive in all energy scales, that is, the same as the standard model. Once one allows λ _H<0, the lower bounds of the Z' boson mass ares obtained through the positive definiteness of the scalar mass squared eigenvalues, while the bounds are smaller than the LHC bounds. On the other hand, the upper bounds strongly depend on the number of relevant Majorana Yukawa couplings of the right-handed neutrinos N_ν . Considering decoupling effects of the Z' boson and the right-handed neutrinos, the condition of the singlet scalar quartic coupling λ _φ >0 gives the upper bound in the N_ν =1 case, while it does not constrain the N_ν =2 and 3 cases. In particular, we find that the Z' boson mass is tightly restricted for the N_ν =1 case as M_{Z'} &lsim 3.7 TeV.

  19. Local Rademacher Complexity: sharper risk bounds with and without unlabeled samples.

    PubMed

    Oneto, Luca; Ghio, Alessandro; Ridella, Sandro; Anguita, Davide

    2015-05-01

    We derive in this paper a new Local Rademacher Complexity risk bound on the generalization ability of a model, which is able to take advantage of the availability of unlabeled samples. Moreover, this new bound improves state-of-the-art results even when no unlabeled samples are available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Unification with vector-like fermions and signals at LHC

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Biplob; Byakti, Pritibhajan; Kushwaha, Ashwani; Vempati, Sudhir K.

    2018-05-01

    We look for minimal extensions of Standard Model with vector like fermions leading to precision unification of gauge couplings. Constraints from proton decay, Higgs stability and perturbativity are considered. The simplest models contain several copies of vector fermions in two different (incomplete) representations. Some of these models encompass Type III seesaw mechanism for neutrino masses whereas some others have a dark matter candidate. In all the models, at least one of the candidates has non-trivial representation under SU(3)color. In the limit of vanishing Yukawa couplings, new QCD bound states are formed, which can be probed at LHC. The present limits based on results from 13 TeV already probe these particles for masses around a TeV. Similar models can be constructed with three or four vector representations, examples of which are presented.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alani, Ivo; Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruencemore » emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.« less

  2. Resolvent-based modeling of passive scalar dynamics in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Dawson, Scott; Saxton-Fox, Theresa; McKeon, Beverley

    2017-11-01

    The resolvent formulation of the Navier-Stokes equations expresses the system state as the output of a linear (resolvent) operator acting upon a nonlinear forcing. Previous studies have demonstrated that a low-rank approximation of this linear operator predicts many known features of incompressible wall-bounded turbulence. In this work, this resolvent model for wall-bounded turbulence is extended to include a passive scalar field. This formulation allows for a number of additional simplifications that reduce model complexity. Firstly, it is shown that the effect of changing scalar diffusivity can be approximated through a transformation of spatial wavenumbers and temporal frequencies. Secondly, passive scalar dynamics may be studied through the low-rank approximation of a passive scalar resolvent operator, which is decoupled from velocity response modes. Thirdly, this passive scalar resolvent operator is amenable to approximation by semi-analytic methods. We investigate the extent to which this resulting hierarchy of models can describe and predict passive scalar dynamics and statistics in wall-bounded turbulence. The support of AFOSR under Grant Numbers FA9550-16-1-0232 and FA9550-16-1-0361 is gratefully acknowledged.

  3. Lower Bounds to the Reliabilities of Factor Score Estimators.

    PubMed

    Hessen, David J

    2016-10-06

    Under the general common factor model, the reliabilities of factor score estimators might be of more interest than the reliability of the total score (the unweighted sum of item scores). In this paper, lower bounds to the reliabilities of Thurstone's factor score estimators, Bartlett's factor score estimators, and McDonald's factor score estimators are derived and conditions are given under which these lower bounds are equal. The relative performance of the derived lower bounds is studied using classic example data sets. The results show that estimates of the lower bounds to the reliabilities of Thurstone's factor score estimators are greater than or equal to the estimates of the lower bounds to the reliabilities of Bartlett's and McDonald's factor score estimators.

  4. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A =20

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi; Qi, Chong; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-04-01

    The properties of loosely bound proton-rich nuclei around A =20 are investigated within the framework of the nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1/2 orbit is significantly reduced in comparison with that of those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-based-universal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A =20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  5. Skew information in the XY model with staggered Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Qiu, Liang; Quan, Dongxiao; Pan, Fei; Liu, Zhi

    2017-06-01

    We study the performance of the lower bound of skew information in the vicinity of transition point for the anisotropic spin-1/2 XY chain with staggered Dzyaloshinskii-Moriya interaction by use of quantum renormalization-group method. For a fixed value of the Dzyaloshinskii-Moriya interaction, there are two saturated values for the lower bound of skew information corresponding to the spin-fluid and Néel phases, respectively. The scaling exponent of the lower bound of skew information closely relates to the correlation length of the model and the Dzyaloshinskii-Moriya interaction shifts the factorization point. Our results show that the lower bound of skew information can be a good candidate to detect the critical point of XY spin chain with staggered Dzyaloshinskii-Moriya interaction.

  6. A cyclic universe approach to fine tuning

    DOE PAGES

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    2016-04-05

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  7. A cyclic universe approach to fine tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  8. Search for invisible decays of a Higgs boson using vector-boson fusion in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    2016-01-28

    A search for a Higgs boson produced via vector-boson fusion and decaying into invisible particles is presented, using 20.3 fb -1 of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC. For a Higgs boson with a mass of 125 GeV, assuming the Standard Model production cross section, an upper bound of 0.28 is set on the branching fraction of H → invisible at 95% confidence level, where the expected upper limit is 0.31. Furthermore, the results are interpreted in models of Higgs-portal dark matter where the branching fraction limit ismore » converted into upper bounds on the dark-matter-nucleon scattering cross section as a function of the dark-matter particle mass, and compared to results from the direct dark-matter detection experiments.« less

  9. Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD.

    PubMed

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram

    2015-11-20

    We present lattice QCD results on the neutron tensor charges including, for the first time, a simultaneous extrapolation in the lattice spacing, volume, and light quark masses to the physical point in the continuum limit. We find that the "disconnected" contribution is smaller than the statistical error in the "connected" contribution. Our estimates in the modified minimal subtraction scheme at 2 GeV, including all systematics, are g_{T}^{d-u}=1.020(76), g_{T}^{d}=0.774(66), g_{T}^{u}=-0.233(28), and g_{T}^{s}=0.008(9). The flavor diagonal charges determine the size of the neutron electric dipole moment (EDM) induced by quark EDMs that are generated in many new scenarios of CP violation beyond the standard model. We use our results to derive model-independent bounds on the EDMs of light quarks and update the EDM phenomenology in split supersymmetry with gaugino mass unification, finding a stringent upper bound of d_{n}<4×10^{-28} e cm for the neutron EDM in this scenario.

  10. A Comparison of the Bounded Derivative and the Normal Mode Initialization Methods Using Real Data

    NASA Technical Reports Server (NTRS)

    Semazzi, F. H. M.; Navon, I. M.

    1985-01-01

    Browning et al. (1980) proposed an initialization method called the bounded derivative method (BDI). They used analytical data to test the new method. Kasahara (1982) theoretically demonstrated the equivalence between BDI and the well known nonlinear normal mode initialization method (NMI). The purposes of this study are the extension of the application of BDI to real data and comparison with NMI. The unbalanced initial state (UBD) is data of January, 1979 OOZ which were interpolated from the adjacent sigma levels of the GLAS GCM to the 300 mb surface. The global barotropic model described by Takacs and Balgovind (1983) is used. Orographic forcing is explicitly included in the model. Many comparisons are performed between various quantities. However, we only present a comparison of the time evolution at two grid points A(50 S, 90 E) and B(10 S, 20 E) which represent low and middle latitude locations. To facilitate a more complete comparison an initialization experiment based on the classical balance equation (CBE) was also included.

  11. Coefficient of performance and its bounds with the figure of merit for a general refrigerator

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-02-01

    A general refrigerator model with non-isothermal processes is studied. The coefficient of performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed. This model accounts for different heat capacities during the heat transfer processes. So, different kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the upper bound of the COP is the Curzon-Ahlborn (CA) coefficient of performance and is independent of the time durations of the heat exchanging processes. With the maximum χ criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in the heat absorbing process is not less than that in the heat releasing process, their COPs are bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the general refined upper and lower bounds have been proposed.

  12. ``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis

    NASA Astrophysics Data System (ADS)

    Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin

    Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.

  13. Classical Physics and the Bounds of Quantum Correlations.

    PubMed

    Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán

    2016-06-24

    A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.

  14. Release of bound procyanidins from cranberry pomace by alkaline hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Procyanidins in plant products are present as extractable or unextractable/bound forms. We optimized alkaline hydrolysis conditions to liberate bound procyanidins from dried cranberry pomace. Five mL of sodium hydroxide (2, 4, or 6N) was added to 0.5 g of cranberry pomace in screw top glass tubes,...

  15. Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins

    PubMed Central

    de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin

    2016-01-01

    Abstract Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381

  16. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1990-01-01

    An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.

  17. Recent results and perspectives on cosmology and fundamental physics from microwave surveys

    NASA Astrophysics Data System (ADS)

    Burigana, Carlo; Battistelli, Elia Stefano; Benetti, Micol; Cabass, Giovanni; de Bernardis, Paolo; di Serego Alighieri, Sperello; di Valentino, Eleonora; Gerbino, Martina; Giusarma, Elena; Gruppuso, Alessandro; Liguori, Michele; Masi, Silvia; Norgaard-Nielsen, Hans Ulrik; Rosati, Piero; Salvati, Laura; Trombetti, Tiziana; Vielva, Patricio

    2016-04-01

    Recent cosmic microwave background (CMB) data in temperature and polarization have reached high precision in estimating all the parameters that describe the current so-called standard cosmological model. Recent results about the integrated Sachs-Wolfe (ISW) effect from CMB anisotropies, galaxy surveys, and their cross-correlations are presented. Looking at fine signatures in the CMB, such as the lack of power at low multipoles, the primordial power spectrum (PPS) and the bounds on non-Gaussianities, complemented by galaxy surveys, we discuss inflationary physics and the generation of primordial perturbations in the early universe. Three important topics in particle physics, the bounds on neutrinos masses and parameters, on thermal axion mass and on the neutron lifetime derived from cosmological data are reviewed, with attention to the comparison with laboratory experiment results. Recent results from cosmic polarization rotation (CPR) analyses aimed at testing the Einstein equivalence principle (EEP) are presented. Finally, we discuss the perspectives of next radio facilities for the improvement of the analysis of future CMB spectral distortion experiments.

  18. Chaotic orbits obeying one isolating integral in a four-dimensional map

    NASA Astrophysics Data System (ADS)

    Muzzio, J. C.

    2018-02-01

    We have recently presented strong evidence that chaotic orbits that obey one isolating integral besides energy exist in a toy Hamiltonian model with three degrees of freedom and are bounded by regular orbits that isolate them from the Arnold web. The interval covered by those numerical experiments was equivalent to about one million Hubble times in a galactic context. Here, we use a four-dimensional map to confirm our previous results and to extend that interval 50 times. We show that, at least within that interval, features found in lower dimension Hamiltonian systems and maps are also present in our study, e.g. within the phase space occupied by a chaotic orbit that obeys one integral there are subspaces where that orbit does not enter and are, instead, occupied by regular orbits that, if tori, bound other chaotic orbits obeying one integral and, if cantori, produce stickiness. We argue that the validity of our results might exceed the time intervals covered by the numerical experiments.

  19. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  20. Thomson scattering in the average-atom approximation.

    PubMed

    Johnson, W R; Nilsen, J; Cheng, K T

    2012-09-01

    The average-atom model is applied to study Thomson scattering of x-rays from warm dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.

  1. Robust stability bounds for multi-delay networked control systems

    NASA Astrophysics Data System (ADS)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  2. Minimal model linking two great mysteries: Neutrino mass and dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2009-10-01

    We present an economic model that establishes a link between neutrino masses and properties of the dark matter candidate. The particle content of the model can be divided into two groups: light particles with masses lighter than the electroweak scale and heavy particles. The light particles, which also include the dark matter candidate, are predicted to show up in the low energy experiments such as (K{yields}l+missing energy), making the model testable. The heavy sector can show up at the LHC and may give rise to Br(l{sub i}{yields}l{sub j}{gamma}) close to the present bounds. In principle, the new couplings of themore » model can independently be derived from the data from the LHC and from the information on neutrino masses and lepton flavor violating rare decays, providing the possibility of an intensive cross-check of the model.« less

  3. Population kinetics on K alpha lines of partially ionized Cl atoms.

    PubMed

    Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki

    2002-07-01

    A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.

  4. Minimax confidence intervals in geomagnetism

    NASA Technical Reports Server (NTRS)

    Stark, Philip B.

    1992-01-01

    The present paper uses theory of Donoho (1989) to find lower bounds on the lengths of optimally short fixed-length confidence intervals (minimax confidence intervals) for Gauss coefficients of the field of degree 1-12 using the heat flow constraint. The bounds on optimal minimax intervals are about 40 percent shorter than Backus' intervals: no procedure for producing fixed-length confidence intervals, linear or nonlinear, can give intervals shorter than about 60 percent the length of Backus' in this problem. While both methods rigorously account for the fact that core field models are infinite-dimensional, the application of the techniques to the geomagnetic problem involves approximations and counterfactual assumptions about the data errors, and so these results are likely to be extremely optimistic estimates of the actual uncertainty in Gauss coefficients.

  5. The dynamics of superclusters - Initial determination of the mass density of the universe at large scales

    NASA Technical Reports Server (NTRS)

    Ford, H. C.; Ciardullo, R.; Harms, R. J.; Bartko, F.

    1981-01-01

    The radial velocities of cluster members of two rich, large superclusters have been measured in order to probe the supercluster mass densities, and simple evolutionary models have been computed to place limits upon the mass density within each supercluster. These superclusters represent true physical associations of size of about 100 Mpc seen presently at an early stage of evolution. One supercluster is weakly bound, the other probably barely bound, but possibly marginally unbound. Gravity has noticeably slowed the Hubble expansion of both superclusters. Galaxy surface-density counts and the density enhancement of Abell clusters within each supercluster were used to derive the ratio of mass densities of the superclusters to the mean field mass density. The results strongly exclude a closed universe.

  6. Precision bounds for gradient magnetometry with atomic ensembles

    NASA Astrophysics Data System (ADS)

    Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza

    2018-05-01

    We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.

  7. Three-Dimensional Geometric Modeling of Membrane-bound Organelles in Ventricular Myocytes: Bridging the Gap between Microscopic Imaging and Mathematical Simulation

    PubMed Central

    Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko

    2009-01-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449

  8. Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: bridging the gap between microscopic imaging and mathematical simulation.

    PubMed

    Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko

    2008-12-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.

  9. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [applied to STOL autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    In connection with difficulties concerning an accurate mathematical representation of a linear quadratic state feedback (LQSF) system, it is often necessary to investigate the robustness (stability) of an LQSF design in the presence of system uncertainty and obtain some quantitative measure of the perturbations which such a design can tolerate. A study is conducted concerning the problem of expressing the robustness property of an LQSF design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices. Bounds are obtained for the general case of nonlinear, time-varying perturbations. It is pointed out that most of the presented results are readily applicable to practical situations for which a designer has estimates of the bounds on the system parameter perturbations. Relations are provided which help the designer to select appropriate weighting matrices in the quadratic performance index to attain a robust design. The developed results are employed in the design of an autopilot logic for the flare maneuver of the Augmentor Wing Jet STOL Research Aircraft.

  10. Probability bounds analysis for nonlinear population ecology models.

    PubMed

    Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals. Copyright © 2015. Published by Elsevier Inc.

  11. Unified Computational Methods for Regression Analysis of Zero-Inflated and Bound-Inflated Data

    PubMed Central

    Yang, Yan; Simpson, Douglas

    2010-01-01

    Bounded data with excess observations at the boundary are common in many areas of application. Various individual cases of inflated mixture models have been studied in the literature for bound-inflated data, yet the computational methods have been developed separately for each type of model. In this article we use a common framework for computing these models, and expand the range of models for both discrete and semi-continuous data with point inflation at the lower boundary. The quasi-Newton and EM algorithms are adapted and compared for estimation of model parameters. The numerical Hessian and generalized Louis method are investigated as means for computing standard errors after optimization. Correlated data are included in this framework via generalized estimating equations. The estimation of parameters and effectiveness of standard errors are demonstrated through simulation and in the analysis of data from an ultrasound bioeffect study. The unified approach enables reliable computation for a wide class of inflated mixture models and comparison of competing models. PMID:20228950

  12. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  13. Gauged BPS baby Skyrmions with quantized magnetic flux

    NASA Astrophysics Data System (ADS)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  14. Large-eddy simulations of the restricted nonlinear system

    NASA Astrophysics Data System (ADS)

    Bretheim, Joel; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    Wall-bounded shear flows often exhibit elongated flow structures with streamwise coherence (e.g. rolls/streaks), prompting the exploration of a streamwise-constant modeling framework to investigate wall-turbulence. Simulations of a streamwise-constant (2D/3C) model have been shown to produce the roll/streak structures and accurately reproduce the blunted turbulent mean velocity profile in plane Couette flow. The related restricted nonlinear (RNL) model captures these same features but also exhibits self-sustaining turbulent behavior. Direct numerical simulation (DNS) of the RNL system results in similar statistics for a number of flow quantities and a flow field that is consistent with DNS of the Navier-Stokes equations. Aiming to develop reduced-order models of wall-bounded turbulence at very high Reynolds numbers in which viscous near-wall dynamics cannot be resolved, this work presents the development of an RNL formulation of the filtered Navier-Stokes equations solved for in large-eddy simulations (LES). The proposed LES-RNL system is a computationally affordable reduced-order modeling tool that is of interest for studying the underlying dynamics of high-Reynolds wall-turbulence and for engineering applications where the flow field is dominated by streamwise-coherent motions. This work is supported by NSF (IGERT, SEP-1230788 and IIA-1243482).

  15. Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s -wave dark matter annihilation from Planck results

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Recent measurements of the cosmic microwave background (CMB) anisotropies by Planck provide a sensitive probe of dark matter annihilation during the cosmic dark ages, and specifically constrain the annihilation parameter feff⟨σ v ⟩/mχ. Using new results (paper II) for the ionization produced by particles injected at arbitrary energies, we calculate and provide feff values for photons and e+e- pairs injected at keV-TeV energies; the feff value for any dark matter model can be obtained straightforwardly by weighting these results by the spectrum of annihilation products. This result allows the sensitive and robust constraints on dark matter annihilation presented by the Planck collaboration to be applied to arbitrary dark matter models with s -wave annihilation. We demonstrate the validity of this approach using principal component analysis. As an example, we integrate over the spectrum of annihilation products for a range of Standard Model final states to determine the CMB bounds on these models as a function of dark matter mass, and demonstrate that the new limits generically exclude models proposed to explain the observed high-energy rise in the cosmic ray positron fraction. We make our results publicly available at http://nebel.rc.fas.harvard.edu/epsilon.

  16. An internal reference model-based PRF temperature mapping method with Cramer-Rao lower bound noise performance analysis.

    PubMed

    Li, Cheng; Pan, Xinyi; Ying, Kui; Zhang, Qiang; An, Jing; Weng, Dehe; Qin, Wen; Li, Kuncheng

    2009-11-01

    The conventional phase difference method for MR thermometry suffers from disturbances caused by the presence of lipid protons, motion-induced error, and field drift. A signal model is presented with multi-echo gradient echo (GRE) sequence using a fat signal as an internal reference to overcome these problems. The internal reference signal model is fit to the water and fat signals by the extended Prony algorithm and the Levenberg-Marquardt algorithm to estimate the chemical shifts between water and fat which contain temperature information. A noise analysis of the signal model was conducted using the Cramer-Rao lower bound to evaluate the noise performance of various algorithms, the effects of imaging parameters, and the influence of the water:fat signal ratio in a sample on the temperature estimate. Comparison of the calculated temperature map and thermocouple temperature measurements shows that the maximum temperature estimation error is 0.614 degrees C, with a standard deviation of 0.06 degrees C, confirming the feasibility of this model-based temperature mapping method. The influence of sample water:fat signal ratio on the accuracy of the temperature estimate is evaluated in a water-fat mixed phantom experiment with an optimal ratio of approximately 0.66:1. (c) 2009 Wiley-Liss, Inc.

  17. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors.

    PubMed

    Raveh, Barak; London, Nir; Zimmerman, Lior; Schueler-Furman, Ora

    2011-04-29

    Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions. © 2011 Raveh et al.

  18. Rosetta FlexPepDock ab-initio: Simultaneous Folding, Docking and Refinement of Peptides onto Their Receptors

    PubMed Central

    Raveh, Barak; London, Nir; Zimmerman, Lior; Schueler-Furman, Ora

    2011-01-01

    Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions. PMID:21572516

  19. Multi-Level Reduced Order Modeling Equipped with Probabilistic Error Bounds

    NASA Astrophysics Data System (ADS)

    Abdo, Mohammad Gamal Mohammad Mostafa

    This thesis develops robust reduced order modeling (ROM) techniques to achieve the needed efficiency to render feasible the use of high fidelity tools for routine engineering analyses. Markedly different from the state-of-the-art ROM techniques, our work focuses only on techniques which can quantify the credibility of the reduction which can be measured with the reduction errors upper-bounded for the envisaged range of ROM model application. Our objective is two-fold. First, further developments of ROM techniques are proposed when conventional ROM techniques are too taxing to be computationally practical. This is achieved via a multi-level ROM methodology designed to take advantage of the multi-scale modeling strategy typically employed for computationally taxing models such as those associated with the modeling of nuclear reactor behavior. Second, the discrepancies between the original model and ROM model predictions over the full range of model application conditions are upper-bounded in a probabilistic sense with high probability. ROM techniques may be classified into two broad categories: surrogate construction techniques and dimensionality reduction techniques, with the latter being the primary focus of this work. We focus on dimensionality reduction, because it offers a rigorous approach by which reduction errors can be quantified via upper-bounds that are met in a probabilistic sense. Surrogate techniques typically rely on fitting a parametric model form to the original model at a number of training points, with the residual of the fit taken as a measure of the prediction accuracy of the surrogate. This approach, however, does not generally guarantee that the surrogate model predictions at points not included in the training process will be bound by the error estimated from the fitting residual. Dimensionality reduction techniques however employ a different philosophy to render the reduction, wherein randomized snapshots of the model variables, such as the model parameters, responses, or state variables, are projected onto lower dimensional subspaces, referred to as the "active subspaces", which are selected to capture a user-defined portion of the snapshots variations. Once determined, the ROM model application involves constraining the variables to the active subspaces. In doing so, the contribution from the variables discarded components can be estimated using a fundamental theorem from random matrix theory which has its roots in Dixon's theory, developed in 1983. This theory was initially presented for linear matrix operators. The thesis extends this theorem's results to allow reduction of general smooth nonlinear operators. The result is an approach by which the adequacy of a given active subspace determined using a given set of snapshots, generated either using the full high fidelity model, or other models with lower fidelity, can be assessed, which provides insight to the analyst on the type of snapshots required to reach a reduction that can satisfy user-defined preset tolerance limits on the reduction errors. Reactor physics calculations are employed as a test bed for the proposed developments. The focus will be on reducing the effective dimensionality of the various data streams such as the cross-section data and the neutron flux. The developed methods will be applied to representative assembly level calculations, where the size of the cross-section and flux spaces are typically large, as required by downstream core calculations, in order to capture the broad range of conditions expected during reactor operation. (Abstract shortened by ProQuest.).

  20. Gender-Specific Models of Work-Bound Korean Adolescents' Social Supports and Career Adaptability on Subsequent Job Satisfaction

    ERIC Educational Resources Information Center

    Han, Hyojung; Rojewski, Jay W.

    2015-01-01

    A Korean national database, the High School Graduates Occupational Mobility Survey, was used to examine the influence of perceived social supports (family and school) and career adaptability on the subsequent job satisfaction of work-bound adolescents 4 months after their transition from high school to work. Structural equation modeling analysis…

  1. Integrability and chemical potential in the (3 + 1)-dimensional Skyrme model

    NASA Astrophysics Data System (ADS)

    Alvarez, P. D.; Canfora, F.; Dimakis, N.; Paliathanasis, A.

    2017-10-01

    Using a remarkable mapping from the original (3 + 1)dimensional Skyrme model to the Sine-Gordon model, we construct the first analytic examples of Skyrmions as well as of Skyrmions-anti-Skyrmions bound states within a finite box in 3 + 1 dimensional flat space-time. An analytic upper bound on the number of these Skyrmions-anti-Skyrmions bound states is derived. We compute the critical isospin chemical potential beyond which these Skyrmions cease to exist. With these tools, we also construct topologically protected time-crystals: time-periodic configurations whose time-dependence is protected by their non-trivial winding number. These are striking realizations of the ideas of Shapere and Wilczek. The critical isospin chemical potential for these time-crystals is determined.

  2. Neutrinos, DUNE and the world best bound on CPT invariance

    NASA Astrophysics Data System (ADS)

    Barenboim, G.; Ternes, C. A.; Tórtola, M.

    2018-05-01

    CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3σ. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Δ (Δ m312) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.

  3. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  4. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE PAGES

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    2017-10-28

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  5. Improved continuum lowering calculations in screened hydrogenic model with l-splitting for high energy density systems

    NASA Astrophysics Data System (ADS)

    Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.

    2018-03-01

    The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.

  6. Floquet resonant states and validity of the Floquet-Magnus expansion in the periodically driven Friedrichs models

    NASA Astrophysics Data System (ADS)

    Mori, Takashi

    2015-02-01

    The Floquet eigenvalue problem is analyzed for periodically driven Friedrichs models on discrete and continuous space. In the high-frequency regime, there exists a Floquet bound state consistent with the Floquet-Magnus expansion in the discrete Friedrichs model, while it is not the case in the continuous model. In the latter case, however, the bound state predicted by the Floquet-Magnus expansion appears as a metastable state whose lifetime diverges in the limit of large frequencies. We obtain the lifetime by evaluating the imaginary part of the quasienergy of the Floquet resonant state. In the low-frequency regime, there is no Floquet bound state and instead the Floquet resonant state with exponentially small imaginary part of the quasienergy appears, which is understood as the quantum tunneling in the energy space.

  7. Stability of the lepton bag model based on the Kerr–Newman solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burinskii, A., E-mail: bur@ibrae.ac.ru

    2015-11-15

    We show that the lepton bag model considered in our previous paper [10], generating the external gravitational and electromagnetic fields of the Kerr–Newman (KN) solution, is supersymmetric and represents a BPS-saturated soliton interpolating between the internal vacuum state and the external KN solution. We obtain Bogomolnyi equations for this phase transition and show that the Bogomolnyi bound determines all important features of this bag model, including its stable shape. In particular, for the stationary KN solution, the BPS bound provides stability of the ellipsoidal form of the bag and the formation of the ring–string structure at its border, while formore » the periodic electromagnetic excitations of the KN solution, the BPS bound controls the deformation of the surface of the bag, reproducing the known flexibility of bag models.« less

  8. Simulating fail-stop in asynchronous distributed systems

    NASA Technical Reports Server (NTRS)

    Sabel, Laura; Marzullo, Keith

    1994-01-01

    The fail-stop failure model appears frequently in the distributed systems literature. However, in an asynchronous distributed system, the fail-stop model cannot be implemented. In particular, it is impossible to reliably detect crash failures in an asynchronous system. In this paper, we show that it is possible to specify and implement a failure model that is indistinguishable from the fail-stop model from the point of view of any process within an asynchronous system. We give necessary conditions for a failure model to be indistinguishable from the fail-stop model, and derive lower bounds on the amount of process replication needed to implement such a failure model. We present a simple one-round protocol for implementing one such failure model, which we call simulated fail-stop.

  9. Kinematic development of the Tibetan Plateau's northern margin: A traverse across the Qilian Shan-Nan Shan thrust belt

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Levy, D. A.; Wang, Z.; Xiong, X.; Chen, X.

    2017-12-01

    The active Cenozoic Qilian Shan-Nan Shan thrust belt defines the northern margin of the Tibetan Plateau. The kinematic development of this thrust belt has implications models of plateau growth and Himalayan-Tibetan orogen strain accommodation. We present new field observations and analytical data from a traverse across the 350-km-wide doubly vergent Qilian Shan, which is bound by the south-dipping North Qilian thrust system in the north and the north-dipping range-bounding Qinghai Nanshan-Dulan Shan thrust system in the south. These faults, and several other major thrusts within the thrust-belt interior, disrupt relatively thick Oligocene-Miocene basin deposits. Of note, many of the thrust faults across the width of the Qilian Shan have Quaternary fault scarps, indicating that active deformation is distributed and not only concentrated along the northern frontal faults. By integrating our detailed structural traverse with new geophysical observations and thermochronology data across the northern plateau margin, we construct a kinematic model for the development of the Tibetan Plateau's northern margin. Deformation initiated in the Eocene-Oligocene along the north-dipping Qinghai Nanshan-Dulan Shan and south-dipping Tuolai Nan Shan thrusts, the latter of which then defined the northern boundary of the Tibetan Plateau. This early deformation was focused along preexisting early Paleozoic structures. A 200-km-wide basin formed between these ranges, and from the Miocene to present, new thrust- and strike-slip-fault-bounded ranges developed, including the north-directed North Qilian and the south-directed Tuolai Nan thrusts. Thus, our observations do not support northward propagating thrust-belt expansion. Instead, we envision that the initial thrust-belt development generated a wide Oligocene-Miocene north-plateau basin that was subsequently disintegrated by later Miocene to present thrusting and strike-slip faulting. Ultimately, the Qilian Shan-Nan Shan thrust belt differs from a typical orogenic thrust wedge, and active deformation is distributed across the range.

  10. Looking for the WIMP next door

    NASA Astrophysics Data System (ADS)

    Evans, Jared A.; Gori, Stefania; Shelton, Jessie

    2018-02-01

    We comprehensively study experimental constraints and prospects for a class of minimal hidden sector dark matter (DM) models, highlighting how the cosmological history of these models informs the experimental signals. We study simple `secluded' models, where the DM freezes out into unstable dark mediator states, and consider the minimal cosmic history of this dark sector, where coupling of the dark mediator to the SM was sufficient to keep the two sectors in thermal equilibrium at early times. In the well-motivated case where the dark mediators couple to the Standard Model (SM) via renormalizable interactions, the requirement of thermal equilibrium provides a minimal, UV-insensitive, and predictive cosmology for hidden sector dark matter. We call DM that freezes out of a dark radiation bath in thermal equilibrium with the SM a WIMP next door, and demonstrate that the parameter space for such WIMPs next door is sharply defined, bounded, and in large part potentially accessible. This parameter space, and the corresponding signals, depend on the leading interaction between the SM and the dark mediator; we establish it for both Higgs and vector portal interactions. In particular, there is a cosmological lower bound on the portal coupling strength necessary to thermalize the two sectors in the early universe. We determine this thermalization floor as a function of equilibration temperature for the first time. We demonstrate that direct detection experiments are currently probing this cosmological lower bound in some regions of parameter space, while indirect detection signals and terrestrial searches for the mediator cut further into the viable parameter space. We present regions of interest for both direct detection and dark mediator searches, including motivated parameter space for the direct detection of sub-GeV DM.

  11. Rapidly assessing the probability of exceptionally high natural hazard losses

    NASA Astrophysics Data System (ADS)

    Gollini, Isabella; Rougier, Jonathan

    2014-05-01

    One of the objectives in catastrophe modeling is to assess the probability distribution of losses for a specified period, such as a year. From the point of view of an insurance company, the whole of the loss distribution is interesting, and valuable in determining insurance premiums. But the shape of the righthand tail is critical, because it impinges on the solvency of the company. A simple measure of the risk of insolvency is the probability that the annual loss will exceed the company's current operating capital. Imposing an upper limit on this probability is one of the objectives of the EU Solvency II directive. If a probabilistic model is supplied for the loss process, then this tail probability can be computed, either directly, or by simulation. This can be a lengthy calculation for complex losses. Given the inevitably subjective nature of quantifying loss distributions, computational resources might be better used in a sensitivity analysis. This requires either a quick approximation to the tail probability or an upper bound on the probability, ideally a tight one. We present several different bounds, all of which can be computed nearly instantly from a very general event loss table. We provide a numerical illustration, and discuss the conditions under which the bound is tight. Although we consider the perspective of insurance and reinsurance companies, exactly the same issues concern the risk manager, who is typically very sensitive to large losses.

  12. Hardening Effect Analysis by Modular Upper Bound and Finite Element Methods in Indentation of Aluminum, Steel, Titanium and Superalloys

    PubMed Central

    Bermudo, Carolina; Sevilla, Lorenzo; Martín, Francisco; Trujillo, Francisco Javier

    2017-01-01

    The application of incremental processes in the manufacturing industry is having a great development in recent years. The first stage of an Incremental Forming Process can be defined as an indentation. Because of this, the indentation process is starting to be widely studied, not only as a hardening test but also as a forming process. Thus, in this work, an analysis of the indentation process under the new Modular Upper Bound perspective has been performed. The modular implementation has several advantages, including the possibility of the introduction of different parameters to extend the study, such as the friction effect, the temperature or the hardening effect studied in this paper. The main objective of the present work is to analyze the three hardening models developed depending on the material characteristics. In order to support the validation of the hardening models, finite element analyses of diverse materials under an indentation are carried out. Results obtained from the Modular Upper Bound are in concordance with the results obtained from the numerical analyses. In addition, the numerical and analytical methods are in concordance with the results previously obtained in the experimental indentation of annealed aluminum A92030. Due to the introduction of the hardening factor, the new modular distribution is a suitable option for the analysis of indentation process. PMID:28772914

  13. Mechanism of the Exchange Reaction in HRAS from Multiscale Modeling

    PubMed Central

    Kapoor, Abhijeet; Travesset, Alex

    2014-01-01

    HRAS regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Understanding the transition mechanism is central for the design of small molecules to inhibit the formation of RAS-driven tumors. Using a multiscale approach involving coarse-grained (CG) simulations, all-atom classical molecular dynamics (CMD; total of 3.02 µs), and steered molecular dynamics (SMD) in combination with Principal Component Analysis (PCA), we identified the structural features that determine the nucleotide (GDP) exchange reaction. We show that weakening the coupling between the SwitchI (residues 25–40) and SwitchII (residues 59–75) accelerates the opening of SwitchI; however, an open conformation of SwitchI is unstable in the absence of guanine nucleotide exchange factors (GEFs) and rises up towards the bound nucleotide to close the nucleotide pocket. Both I21 and Y32, play a crucial role in SwitchI transition. We show that an open SwitchI conformation is not necessary for GDP destabilization but is required for GDP/Mg escape from the HRAS. Further, we present the first simulation study showing displacement of GDP/Mg away from the nucleotide pocket. Both SwitchI and SwitchII, delays the escape of displaced GDP/Mg in the absence of GEF. Based on these results, a model for the mechanism of GEF in accelerating the exchange process is hypothesized. PMID:25272152

  14. H II Regions in the Disks of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rozas, M.

    1997-06-01

    The objective of the research presented in the thesis is to use photometrically calibrated high quality images in \\ha\\ of the disks of spiral galaxies to study their global star forming properties. In the first part of the study we catalog and study statistically the \\hii\\ regions in a set of spirals, imaged in \\ha\\ . The observed parameters of each region are its fluxes and diameters, from which we can also derive the mean surface brightness and its internal radial gradient (the latter for the largest most luminous regions). Plotting the luminosity function (LF) for a given galaxy (the number of regions versus \\ha\\ flux) we find a characteristic discontinuity: a peak accompanied by a change in gradient of the function, at a luminosity of 10$^{38.6}$ erg s$^{-1}$ per region. We attribute this to the change from ionization-bounded \\hii\\ regions, at luminosities below the transition, to density-bounded regions above the transition, and explain with a quantitative model based on this assumption why the transition takes place at a well-defined luminosity, and one which varies very little from galaxy to galaxy. In the six galaxies observed and analyzed in this way, the variance is 0.07 mag., making the transition a good prima facie candidate to be a powerful standard candle for accurate extragalactic distance measurements. Confirmation of the nature of the transition is provided by measurements of the internal brightness gradients, which show a jump from a constant value (predicted for ionization bounded regions) below the transition to a larger and increasing value above the transition. The theoretical model which can account for the transition was used to show how the gradients of the LF in the ionization bounded and the density bounded regimes can be used to derive the mass function of the ionizing stars in regions close to the transition luminosity, yielding a mean value for the slope of the MF in the galaxies observed of -2.4; the brightest stars in these regions are characteristically early O-types. Further evidence that the most luminous regions are density-bounded is provided by measuring the internal velocity dispersions of \\hii\\ regions across a galaxy, using the TAURUS Fabry-Perot spectral line imager. A plot of velocity dispersion v. luminosity in \\ha\\ is a scatter diagram in the log-log plane with a linear upper envelope having a slope of +2.6, on which lies the brightest regions: those above the transition. We explain these findings by assuming that a typical region does not show gas in virial equilibrium, since sporadic stellar events: winds and explosions, provide a non-negligible fraction of the \\ha\\ luminosity. However the locus of the upper envelope should correspond to a virial relation; the more massive regions show more rapid damping of impulsive energy input. The slope of the envelope is that predicted for regions whose mass rather than total luminosity is being sampled, i.e. density-bounded regions. The thesis is completed with a different application of our \\ha\\ observations: a technique to test the relation between the presence or absence of twofold symmetries in the star formation patterns of grand design spirals, and the strength of any bar which is present. We find that a strong bar inhibits the second degree of symmetry, implying more mixing in the disk. Finally we apply a dynamical model, using numerical simulations, to the spiral galaxy NGC 157, in order to determine its principal resonance. (SECTION: Dissertation Summaries)

  15. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions.

    PubMed

    Yan, Mingquan; Dryer, Deborah; Korshin, Gregory V; Benedetti, Marc F

    2013-02-01

    This study examined the binding of copper(II) by Suwannee River fulvic acid (SRFA) using the method of differential absorbance that was used at environmentally-relevant concentrations of copper and SRFA. The pH- and metal-differential spectra were processed via numeric deconvolution to establish commonalities seen in the changes of absorbance caused by deprotonation of SRFA and its interactions with copper(II) ions. Six Gaussian bands were determined to be present in both the pH- and Cu-differential spectra. Their maxima were located, in the order of increasing wavelengths at 208 nm, 242 nm, 276 nm, 314 nm, 378 nm and 551 nm. The bands with these maxima were denoted as A0, A1, A2, A3, A4 and A5, respectively. Properties of these bands were compared with those existing in the spectra of model compounds such as sulfosalicylic acid (SSA), tannic acid (TA), and polystyrenesulfonic acid-co-maleic acid (PSMA). While none of the features observed in differential spectra of the model compound were identical to those present in the case of SRFA, Gaussian bands A1, A3 and possibly A2 were concluded to be largely attributable to a combination of responses of salicylic- and polyhydroxyphenolic groups. In contrast, bands A4 and A5 were detected in the differential spectra of SRFA only. Their nature remains to be elucidated. To examine correlations between the amount of copper(II) bound by SRFA and changes of its absorbance, differential absorbances measured at indicative wavelengths 250 nm and 400 nm were compared with the total amount of SRFA-bound copper estimated based on Visual MINTEQ calculations. This examination showed that the differential absorbances of SRFA in a wide range of pH values and copper concentrations were strongly correlated with the concentration of SRFA-bound copper. The approach presented in this study can be used to generate in situ information concerning the nature of functional groups in humic substances engaged in interactions with metals ions. This information can be useful for further elaboration and development of detailed theoretic models that describe the complexation of metals in the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.

    PubMed

    Gao, Hui; Song, Yongduan; Wen, Changyun

    In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.

  17. Comonotonic bounds on the survival probabilities in the Lee-Carter model for mortality projection

    NASA Astrophysics Data System (ADS)

    Denuit, Michel; Dhaene, Jan

    2007-06-01

    In the Lee-Carter framework, future survival probabilities are random variables with an intricate distribution function. In large homogeneous portfolios of life annuities, value-at-risk or conditional tail expectation of the total yearly payout of the company are approximately equal to the corresponding quantities involving random survival probabilities. This paper aims to derive some bounds in the increasing convex (or stop-loss) sense on these random survival probabilities. These bounds are obtained with the help of comonotonic upper and lower bounds on sums of correlated random variables.

  18. Graph Embedding Techniques for Bounding Condition Numbers of Incomplete Factor Preconditioning

    NASA Technical Reports Server (NTRS)

    Guattery, Stephen

    1997-01-01

    We extend graph embedding techniques for bounding the spectral condition number of preconditioned systems involving symmetric, irreducibly diagonally dominant M-matrices to systems where the preconditioner is not diagonally dominant. In particular, this allows us to bound the spectral condition number when the preconditioner is based on an incomplete factorization. We provide a review of previous techniques, describe our extension, and give examples both of a bound for a model problem, and of ways in which our techniques give intuitive way of looking at incomplete factor preconditioners.

  19. Stability of proton-bound clusters of alkyl alcohols, aldehydes and ketones in Ion Mobility Spectrometry.

    PubMed

    Jurado-Campos, Natividad; Garrido-Delgado, Rocío; Martínez-Haya, Bruno; Eiceman, Gary A; Arce, Lourdes

    2018-08-01

    Significant substances in emerging applications of ion mobility spectrometry such as breath analysis for clinical diagnostics and headspace analysis for food purity include low molar mass alcohols, ketones, aldehydes and esters which produce mobility spectra containing protonated monomers and proton-bound dimers. Spectra for all n- alcohols, aldehydes and ketones from carbon number three to eight exhibited protonated monomers and proton-bound dimers with ion drift times of 6.5-13.3 ms at ambient pressure and from 35° to 80 °C in nitrogen. Only n-alcohols from 1-pentanol to 1-octanol produced proton-bound trimers which were sufficiently stable to be observed at these temperatures and drift times of 12.8-16.3 ms. Polar functional groups were protected in compact structures in ab initio models for proton-bound dimers of alcohols, ketones and aldehydes. Only alcohols formed a V-shaped arrangement for proton-bound trimers strengthening ion stability and lifetime. In contrast, models for proton-bound trimers of aldehydes and ketones showed association of the third neutral through weak, non-specific, long-range interactions consistent with ion dissociation in the ion mobility drift tube before arriving at the detector. Collision cross sections derived from reduced mobility coefficients in nitrogen gas atmosphere support the predicted ion structures and approximate degrees of hydration. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. College-Bound Digest. Valuable Information from Prominent Educators for All College-Bound Students.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    Information for students, counselors, and parents to help in the evaluation of options and opportunities available for most college-bound students is presented in 17 articles. Titles and authors include the following: "Getting the Most from Your High School Counselor" (James Warfield); "The Use of the SAT at Selective Colleges"…

  1. Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology

    NASA Astrophysics Data System (ADS)

    Rivera, Diego; Rivas, Yessica; Godoy, Alex

    2015-02-01

    Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an agricultural watershed in central Chile under strong interannual variability (coefficient of variability of 25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January 1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to improve the identification of relevant hydrological processes. The water balance model for Chillan River exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model) in agreement with observational and soft data (calculation of areal precipitation over the watershed using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for the simulation period decreased from 50 to 20 m3s-1 after fixing the parameter controlling the areal precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification of critical parameters.

  2. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  3. Search for charged lepton flavor violation of vector mesons in the BLMSSM model

    NASA Astrophysics Data System (ADS)

    Dong, Xing-Xing; Zhao, Shu-Min; Feng, Jing-Jing; Ning, Guo-Zhu; Chen, Jian-Bin; Zhang, Hai-Bin; Feng, Tai-Fu

    2018-03-01

    We analyze the charged lepton flavor violating (CLFV) decays of vector mesons V →li±lj∓ with V ∈{ϕ ,J /Ψ ,ϒ ,ρ0,ω } in the BLMSSM model. This new model is introduced as a supersymmetric extension of the Standard Model (SM), where local gauged baryon number B and lepton number L are considered. The numerical results indicate the BLMSSM model can produce significant contributions to such two-body CLFV decays, and the branching ratios to these CLFV processes can easily reach the present experimental upper bounds. Therefore, searching for CLFV processes of vector mesons may be an effective channel to study new physics.

  4. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.

  5. Key management and encryption under the bounded storage model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draelos, Timothy John; Neumann, William Douglas; Lanzone, Andrew J.

    2005-11-01

    There are several engineering obstacles that need to be solved before key management and encryption under the bounded storage model can be realized. One of the critical obstacles hindering its adoption is the construction of a scheme that achieves reliable communication in the event that timing synchronization errors occur. One of the main accomplishments of this project was the development of a new scheme that solves this problem. We show in general that there exist message encoding techniques under the bounded storage model that provide an arbitrarily small probability of transmission error. We compute the maximum capacity of this channelmore » using the unsynchronized key-expansion as side-channel information at the decoder and provide tight lower bounds for a particular class of key-expansion functions that are pseudo-invariant to timing errors. Using our results in combination with Dziembowski et al. [11] encryption scheme we can construct a scheme that solves the timing synchronization error problem. In addition to this work we conducted a detailed case study of current and future storage technologies. We analyzed the cost, capacity, and storage data rate of various technologies, so that precise security parameters can be developed for bounded storage encryption schemes. This will provide an invaluable tool for developing these schemes in practice.« less

  6. Perturbative unitarity constraints on gauge portals

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-12-01

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. We briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.

  7. Ensembles vs. information theory: supporting science under uncertainty

    NASA Astrophysics Data System (ADS)

    Nearing, Grey S.; Gupta, Hoshin V.

    2018-05-01

    Multi-model ensembles are one of the most common ways to deal with epistemic uncertainty in hydrology. This is a problem because there is no known way to sample models such that the resulting ensemble admits a measure that has any systematic (i.e., asymptotic, bounded, or consistent) relationship with uncertainty. Multi-model ensembles are effectively sensitivity analyses and cannot - even partially - quantify uncertainty. One consequence of this is that multi-model approaches cannot support a consistent scientific method - in particular, multi-model approaches yield unbounded errors in inference. In contrast, information theory supports a coherent hypothesis test that is robust to (i.e., bounded under) arbitrary epistemic uncertainty. This paper may be understood as advocating a procedure for hypothesis testing that does not require quantifying uncertainty, but is coherent and reliable (i.e., bounded) in the presence of arbitrary (unknown and unknowable) uncertainty. We conclude by offering some suggestions about how this proposed philosophy of science suggests new ways to conceptualize and construct simulation models of complex, dynamical systems.

  8. A study of wind effects on collector performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onur, N.; Hewitt, J.C. Jr.

    1980-08-01

    Convective heat transfer experiments have been run on flat-plate collectors for tilt angles ranging from the horizontal to the vertical and for five different flow velocities. Experimental data are used to evaluate the currently used models, namely, those of Jurges (1924), Drake (1948), and Sparrow et al (1970-79), and it is shown that although none of these models provides an exact fit, they do represent bounds for the present data. It is also shown that the effect of flow from the northern quadrants provides an additional heat loss reduction of 10 to 20%.

  9. Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting

    NASA Astrophysics Data System (ADS)

    Tankam, Israel; Tchinda Mouofo, Plaire; Mendy, Abdoulaye; Lam, Mountaga; Tewa, Jean Jules; Bowong, Samuel

    2015-06-01

    We investigate the effects of time delay and piecewise-linear threshold policy harvesting for a delayed predator-prey model. It is the first time that Holling response function of type III and the present threshold policy harvesting are associated with time delay. The trajectories of our delayed system are bounded; the stability of each equilibrium is analyzed with and without delay; there are local bifurcations as saddle-node bifurcation and Hopf bifurcation; optimal harvesting is also investigated. Numerical simulations are provided in order to illustrate each result.

  10. Tunnelling in Dante's Inferno

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuuchi, Kazuyuki; Sperling, Marcus, E-mail: kazuyuki.furuuchi@manipal.edu, E-mail: marcus.sperling@univie.ac.at

    2017-05-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  11. Monte Carlo simulation of a dynamical fermion problem: The light q sup 2 q sup 2 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grondin, G.

    1991-01-01

    We present results from a Guided Random Walk Monte Carlo simulation of the light q{sup 2}{bar q}{sup 2} system in a Coulomb-plus-linear quark potential model using an Intel iPSC/860 hypercube. A solvable model problem is first considered, after which we study the full q{sup 2}{bar q}{sup 2} system in (J,I) = (2,2) and (2,0) sectors. We find evidence for no bound states below the vector-vector threshold in these systems. 17 refs., 6 figs.

  12. Distributed deformation and block rotation in 3D

    NASA Technical Reports Server (NTRS)

    Scotti, Oona; Nur, Amos; Estevez, Raul

    1990-01-01

    The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.

  13. A Bayesian approach to modeling 2D gravity data using polygon states

    NASA Astrophysics Data System (ADS)

    Titus, W. J.; Titus, S.; Davis, J. R.

    2015-12-01

    We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.

  14. Plate Motions, Regional Deformation, and Time-Variation of Plate Motions

    NASA Technical Reports Server (NTRS)

    Gordon, R. G.

    1998-01-01

    The significant results obtained with support of this grant include the following: (1) Using VLBI data in combination with other geodetical, geophysical, and geological data to bound the present rotation of the Colorado Plateau, and to evaluate to its implications for the kinematics and seismogenic potential of the western half of the conterminous U.S. (2) Determining realistic estimates of uncertainties for VLBI data and then applying the data and uncertainties to obtain an upper bound on the integral of deformation within the "stable interior" of the North American and other plates and thus to place an upper bound on the seismogenic potential within these regions. (3) Combining VLBI data with other geodetic, geophysical, and geologic data to estimate the motion of coastal California in a frame of reference attached to the Sierra Nevada-Great Valley microplate. This analysis has provided new insights into the kinematic boundary conditions that may control or at least strongly influence the locations of asperities that rupture in great earthquakes along the San Andreas transform system. (4) Determining a global tectonic model from VLBI geodetic data that combines the estimation of plate angular velocities with individual site linear velocities where tectonically appropriate. and (5) Investigation of the some of the outstanding problems defined by the work leading to global plate motion model NUVEL-1. These problems, such as the motion between the Pacific and North American plates and between west Africa and east Africa, are focused on regions where the seismogenic potential may be greater than implied by published plate tectonic models.

  15. BOUNDS ON LEPTON FLAVOR CHANGING CURRENTS AND THE SOLAR NEUTRINO PUZZLE:. Bounds on Lepton Flavor Changing Currents

    NASA Astrophysics Data System (ADS)

    degl'Innocenti, Scilla; Ricci, Barbara

    We present a phenomenological analysis of a lepton flavor changing current, considering the case of interactions among leptons which change the neutrino flavor and are diagonal in the charged lepton sector. In the case of νe↔νµ transition, we derive a bound on the vector coupling constant GV≤0.16 GF from experimental data on νµ-e scattering. For a transition νe↔νx, from (anti) νe-e scattering experiments and from the analysis of advanced stellar evolutionary phases, we find GV≤0.55 GF. We discuss the compatibility of these data with a possible explanation of the solar neutrino puzzle. We also analyze how the present bounds can be improved in future long baseline neutrino experiments and atmospheric neutrino detectors.

  16. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGES

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  17. Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions

    NASA Astrophysics Data System (ADS)

    Chibisov, Alexander K.; Görner, Helmut

    2002-05-01

    The photophysical properties of 3,3 '-diethyl-9-methylthiacarbocyanine (DTC) were studied in the presence of polystyrene sulfonate (PSS), polyacrylic acid (PAA) and polymethacrylic acid (PMA). The absorption spectra reflect a monomer/dimer equilibrium in neat aqueous solution and a shift towards bound H-aggregates, bound dimers and bound monomers on increasing the ratio of polyanion residue to dye concentrations ( r). These equilibria also determine the photodeactivation modes of DTC. The fluorescence intensity is reduced, when dimers and aggregates are present and strongly enhanced for low dye loading ( r=10 4). In contrast, the quantum yield of intersystem crossing is enhanced for bound dimers ( r=10 3).

  18. What Information Theory Says about Bounded Rational Best Response

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability Collectives (PC) provides the information-theoretic extension of conventional full-rationality game theory to bounded rational games. Here an explicit solution to the equations giving the bounded rationality equilibrium of a game is presented. Then PC is used to investigate games in which the players use bounded rational best-response strategies. Next it is shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. It is then shown that for team (shared-payoff) games, this variant of replicator dynamics is identical to Newton-Raphson iterative optimization of the shared utility function.

  19. Kodiak: An Implementation Framework for Branch and Bound Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Andrew P.; Munoz, Cesar A.; Narkawicz, Anthony J.; Markevicius, Mantas

    2015-01-01

    Recursive branch and bound algorithms are often used to refine and isolate solutions to several classes of global optimization problems. A rigorous computation framework for the solution of systems of equations and inequalities involving nonlinear real arithmetic over hyper-rectangular variable and parameter domains is presented. It is derived from a generic branch and bound algorithm that has been formally verified, and utilizes self-validating enclosure methods, namely interval arithmetic and, for polynomials and rational functions, Bernstein expansion. Since bounds computed by these enclosure methods are sound, this approach may be used reliably in software verification tools. Advantage is taken of the partial derivatives of the constraint functions involved in the system, firstly to reduce the branching factor by the use of bisection heuristics and secondly to permit the computation of bifurcation sets for systems of ordinary differential equations. The associated software development, Kodiak, is presented, along with examples of three different branch and bound problem types it implements.

  20. Does Private Tutoring Work? The Effectiveness of Private Tutoring: A Nonparametric Bounds Analysis

    ERIC Educational Resources Information Center

    Hof, Stefanie

    2014-01-01

    Private tutoring has become popular throughout the world. However, evidence for the effect of private tutoring on students' academic outcome is inconclusive; therefore, this paper presents an alternative framework: a nonparametric bounds method. The present examination uses, for the first time, a large representative data-set in a European setting…

  1. A shock spectra and impedance method to determine a bound for spacecraft structural loads

    NASA Technical Reports Server (NTRS)

    Bamford, R.; Trubert, M.

    1974-01-01

    A method to determine a bound of structural loads for a spacecraft mounted on a launch vehicle is developed. The method utilizes the interface shock spectra and the relative impedance of the spacecraft and launch vehicle. The method is developed for single-degree-of-freedom models and then generalized to multidegree-of-freedom models.

  2. Statistical Modeling for Radiation Hardness Assurance: Toward Bigger Data

    NASA Technical Reports Server (NTRS)

    Ladbury, R.; Campola, M. J.

    2015-01-01

    New approaches to statistical modeling in radiation hardness assurance are discussed. These approaches yield quantitative bounds on flight-part radiation performance even in the absence of conventional data sources. This allows the analyst to bound radiation risk at all stages and for all decisions in the RHA process. It also allows optimization of RHA procedures for the project's risk tolerance.

  3. Education as Literacy for Freedom: Implications for Latin America and the Caribbean from an Upward Bound Project.

    ERIC Educational Resources Information Center

    Dottin, Erskine S.

    The Upward Bound Project for low income youth in Florida emphasizes humanistic education rather than education based on the capitalistic model of production, consumption, and competition. The project, which can serve as a model for education in developing countries, focuses on creating self-concepts and values to counteract those of an acquisitive…

  4. Quantum speed limit for arbitrary initial states

    PubMed Central

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Cao, Jun-Peng; Fan, Heng

    2014-01-01

    The minimal time a system needs to evolve from an initial state to its one orthogonal state is defined as the quantum speed limit time, which can be used to characterize the maximal speed of evolution of a quantum system. This is a fundamental question of quantum physics. We investigate the generic bound on the minimal evolution time of the open dynamical quantum system. This quantum speed limit time is applicable to both mixed and pure initial states. We then apply this result to the damped Jaynes-Cummings model and the Ohimc-like dephasing model starting from a general time-evolution state. The bound of this time-dependent state at any point in time can be found. For the damped Jaynes-Cummings model, when the system starts from the excited state, the corresponding bound first decreases and then increases in the Markovian dynamics. While in the non-Markovian regime, the speed limit time shows an interesting periodic oscillatory behavior. For the case of Ohimc-like dephasing model, this bound would be gradually trapped to a fixed value. In addition, the roles of the relativistic effects on the speed limit time for the observer in non-inertial frames are discussed. PMID:24809395

  5. An expanded set of brown dwarf and very low mass star models

    NASA Technical Reports Server (NTRS)

    Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.

    1993-01-01

    We present in this paper updated and improved theoretical models of brown dwarfs and late M dwarfs. The evolution and characteristics of objects between 0.01 and 0.2 solar mass are exhaustively investigated and special emphasis is placed on their properties at early ages. The dependence on the helium fraction, deuterium fraction, and metallicity of the masses, effective temperature and luminosities at the edge of the hydrogen main sequence are calculated. We derive luminosity functions for representative mass functions and compare our predictions to recent cluster data. We show that there are distinctive features in the theoretical luminosity functions that can serve as diagnostics of brown dwarf physics. A zero-metallicity model is presented as a bound to or approximation of a putative extreme halo population.

  6. An investigation of the use of temporal decomposition in space mission scheduling

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley E.; Narayanan, Venkat

    1994-01-01

    This research involves an examination of techniques for solving scheduling problems in long-duration space missions. The mission timeline is broken up into several time segments, which are then scheduled incrementally. Three methods are presented for identifying the activities that are to be attempted within these segments. The first method is a mathematical model, which is presented primarily to illustrate the structure of the temporal decomposition problem. Since the mathematical model is bound to be computationally prohibitive for realistic problems, two heuristic assignment procedures are also presented. The first heuristic method is based on dispatching rules for activity selection, and the second heuristic assigns performances of a model evenly over timeline segments. These heuristics are tested using a sample Space Station mission and a Spacelab mission. The results are compared with those obtained by scheduling the missions without any problem decomposition. The applicability of this approach to large-scale mission scheduling problems is also discussed.

  7. LES-based filter-matrix lattice Boltzmann model for simulating fully developed turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhuo, Congshan; Zhong, Chengwen

    2016-11-01

    In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB-LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB-LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB-D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.

  8. Bounding filter - A simple solution to lack of exact a priori statistics.

    NASA Technical Reports Server (NTRS)

    Nahi, N. E.; Weiss, I. M.

    1972-01-01

    Wiener and Kalman-Bucy estimation problems assume that models describing the signal and noise stochastic processes are exactly known. When this modeling information, i.e., the signal and noise spectral densities for Wiener filter and the signal and noise dynamic system and disturbing noise representations for Kalman-Bucy filtering, is inexactly known, then the filter's performance is suboptimal and may even exhibit apparent divergence. In this paper a system is designed whereby the actual estimation error covariance is bounded by the covariance calculated by the estimator. Therefore, the estimator obtains a bound on the actual error covariance which is not available, and also prevents its apparent divergence.

  9. Exploring the Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Volya, Alexander

    In this presentation the Continuum Shell Model (CSM) approach is advertised as a powerful theoretical tool for studying physics of unstable nuclei. The approach is illustrated using 17O as an example, which is followed by a brief presentation of the general CSM formalism. The successes of the CSM are highlighted and references are provided throughout the text. As an example, the CSM is applied perturbatively to 20O allowing one to explore the effects of continuum on positions of weakly bound states and low-lying resonances, as well as to discern some effects of threshold discontinuity.

  10. The Cramér-Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations.

    PubMed

    Wang, Zhiguo; Shen, Xiaojing; Wang, Ping; Zhu, Yunmin

    2018-04-05

    This paper considers the problems of the posterior Cramér-Rao bound and sensor selection for multi-sensor nonlinear systems with uncertain observations. In order to effectively overcome the difficulties caused by uncertainty, we investigate two methods to derive the posterior Cramér-Rao bound. The first method is based on the recursive formula of the Cramér-Rao bound and the Gaussian mixture model. Nevertheless, it needs to compute a complex integral based on the joint probability density function of the sensor measurements and the target state. The computation burden of this method is relatively high, especially in large sensor networks. Inspired by the idea of the expectation maximization algorithm, the second method is to introduce some 0-1 latent variables to deal with the Gaussian mixture model. Since the regular condition of the posterior Cramér-Rao bound is unsatisfied for the discrete uncertain system, we use some continuous variables to approximate the discrete latent variables. Then, a new Cramér-Rao bound can be achieved by a limiting process of the Cramér-Rao bound of the continuous system. It avoids the complex integral, which can reduce the computation burden. Based on the new posterior Cramér-Rao bound, the optimal solution of the sensor selection problem can be derived analytically. Thus, it can be used to deal with the sensor selection of a large-scale sensor networks. Two typical numerical examples verify the effectiveness of the proposed methods.

  11. [Rural depopulation: 1954-1990].

    PubMed

    Chauvel, L

    1994-10-01

    "The purpose of this paper is to present evidence for a long term link between employment and population [in rural France]. A model is built in order to describe the interaction between employment, migration and natural population increase over 1962-1990. This shows how declining departments are bound within a vicious mechanism: while the decline of local employment leads to population outflow, the population decline contributes to a further employment fall." (SUMMARY IN ENG) excerpt

  12. When Information Improves Information Security

    NASA Astrophysics Data System (ADS)

    Grossklags, Jens; Johnson, Benjamin; Christin, Nicolas

    This paper presents a formal, quantitative evaluation of the impact of bounded-rational security decision-making subject to limited information and externalities. We investigate a mixed economy of an individual rational expert and several naïve near-sighted agents. We further model three canonical types of negative externalities (weakest-link, best shot and total effort), and study the impact of two information regimes on the threat level agents are facing.

  13. Basic aminopeptidase activity is an emerging biomarker in collagen-induced rheumatoid arthritis.

    PubMed

    Mendes, Mariana Trivilin; Murari-do-Nascimento, Stephanie; Torrigo, Isis Rossetti; Alponti, Rafaela Fadoni; Yamasaki, Simone Cristina; Silveira, Paulo Flavio

    2011-04-11

    The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and its association with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen (CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occur in part of CII-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematous CII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in soluble form and with higher activity in edematous than in non-edematous CII-treated or control. Synovial fluid and blood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral blood mononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membrane-bound form in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII, undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membrane-bound fraction of PBMCs. Data suggest that APB and CIA are strongly related. 2011 Elsevier B.V. All rights reserved.

  14. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of themore » Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.« less

  15. Velocity Resolved---Scalar Modeled Simulations of High Schmidt Number Turbulent Transport

    NASA Astrophysics Data System (ADS)

    Verma, Siddhartha

    The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc " 1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc . Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor-diffusivity model as a good representation of the subfilter flux. Velocity resolved - scalar modeled simulations of homogeneous isotropic turbulence are conducted to confirm the behavior theorized in these a priori analyses, and suggest that the tensor-diffusivity model is ideal for use in the viscous-convective subrange. Simulations of a turbulent mixing layer are also discussed, with the partial objective of analyzing Schmidt number dependence of a variety of scalar statistics. Large-scale statistics are confirmed to be relatively independent of the Schmidt number for Sc " 1, which is explained by the dominance of subfilter dissipation over resolved molecular dissipation in the simulations. Overall, the VR-SM framework presented is quite effective in predicting large-scale transport characteristics of high Schmidt number scalars, however, it is determined that prediction of subfilter quantities would entail additional modeling intended specifically for this purpose. The VR-SM simulations presented in this thesis provide us with the opportunity to overlap with experimental studies, while at the same time creating an assortment of baseline datasets for future validation of LES models, thereby satisfying the objectives outlined for this work.

  16. Silica-coated gold nanorods as saturable absorber for bound-state pulse generation in a fiber laser with near-zero dispersion

    NASA Astrophysics Data System (ADS)

    Wang, Xude; Luo, Aiping; Luo, Zhichao; Liu, Meng; Zou, Feng; Zhu, Yanfang; Xue, Jianping; Xu, Wencheng

    2017-11-01

    We presented a bound-state operation in a fiber laser with near-zero anomalous dispersion based on a silica-coated gold nanorods (GNRs@SiO2) saturable absorber (SA). Using a balanced twin detector measurement technique, the modulation depth and nonsaturable loss of the GNRs@SiO2 SA were measured to be approximately 3.5% and 39.3%, respectively. By virtue of the highly nonlinear effect of the GNRs@SiO2 SA, the bound-state pulses could be easily observed. Besides the lower-order bound-state pulses with two, three, and four solitons, the higher-order bound states with up to 12 solitons were also obtained in the laser cavity. The pulse profiles of the higher-order bound states were further reconstructed theoretically. The experimental results would give further insight towards understanding the complex nonlinear dynamics of bound-state pulses in fiber lasers.

  17. Breakpoint-forced and bound long waves in the nearshore: A model comparison

    USGS Publications Warehouse

    List, Jeffrey H.; ,

    1993-01-01

    A finite-difference model is used to compare long wave amplitudes arising from two-group forced generation mechanisms in the nearshore: long waves generated at a time-varying breakpoint and the shallow-water extension of the bound long wave. Plane beach results demonstrate that the strong frequency selection in the outgoing wave predicted by the breakpoint-forcing mechanism may not be observable in field data due to this wave's relatively small size and its predicted phase relation with the bound wave. Over a bar/trough nearshore, it is shown that a strong frequency selection in shoreline amplitudes is not a unique result of the time-varying breakpoint model, but a general result of the interaction between topography and any broad-banded forcing of nearshore long waves.

  18. Tidal disruption of Periodic Comet Shoemaker-Levy 9 and a constraint on its mean density

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1994-01-01

    The apparent tidal disruption of Periodic Comet Shoemaker-Levy 9 (1993e) during a close encounter within approximately 1.62 planetary radii of Jupiter can be used along with theoretical models of tidal disruption to place an upper bound on the density of the predisruption body. Depending on the theoretical model used, these upper bounds range from rho(sub c) less than 0.702 +/- 0.080 g/cu cm for a simple analytical model calibrated by numerical smoothed particle hydrodynamics (SPH) simulations to rho(sub c) less than 1.50 +/- 0.17 g/cu cm for a detailed semianalytical model. The quoted uncertainties stem from an assumed uncertainty in the perijove radius. However, the uncertainty introduced by the different theoretical models is the major source of error; this uncertainty could be eliminated by future SPH simulations specialized to cometary disruptions, including the effects of initially prolate, spinning comets. If the SPH-based upper bound turns out to be most appropriate, it would be consistent with the predisruption body being a comet with a relatively low density and porous structure, as has been asserted previously based on observations of cometary outgassing. Regardless of which upper bound is preferable, the models all agree that the predisruption body could not have been a relatively high-density body, such as an asteroid with rho approximately = 2 g/cu cm.

  19. The role of endocytic pathways in cellular uptake of plasma non-transferrin iron

    PubMed Central

    Sohn, Yang-Sung; Ghoti, Hussam; Breuer, William; Rachmilewitz, Eliezer; Attar, Samah; Weiss, Guenter; Cabantchik, Z. Ioav

    2012-01-01

    Background In transfusional siderosis, the iron binding capacity of plasma transferrin is often surpassed, with concomitant generation of non-transferrin-bound iron. Although implicated in tissue siderosis, non-transferrin-bound iron modes of cell ingress remain undefined, largely because of its variable composition and association with macromolecules. Using fluorescent tracing of labile iron in endosomal vesicles and cytosol, we examined the hypothesis that non-transferrin-bound iron fractions detected in iron overloaded patients enter cells via bulk endocytosis. Design and Methods Fluorescence microscopy and flow cytometry served as analytical tools for tracing non-transferrin-bound iron entry into endosomes with the redox-reactive macromolecular probe Oxyburst-Green and into the cytosol with cell-laden calcein green and calcein blue. Non-transferrin-bound iron-containing media were from sera of polytransfused thalassemia major patients and model iron substances detected in thalassemia major sera; cell models were cultured macrophages, and cardiac myoblasts and myocytes. Results Exposure of cells to ferric citrate together with albumin, or to non-transferrin-bound iron-containing sera from thalassemia major patients caused an increase in labile iron content of endosomes and cytosol in macrophages and cardiac cells. This increase was more striking in macrophages, but in both cell types was largely reduced by co-exposure to non-transferrin-bound iron-containing media with non-penetrating iron chelators or apo-transferrin, or by treatment with inhibitors of endocytosis. Endosomal iron accumulation traced with calcein-green was proportional to input non-transferrin-bound iron levels (r2=0.61) and also preventable by pre-chelation. Conclusions Our studies indicate that macromolecule-associated non-transferrin-bound iron can initially gain access into various cells via endocytic pathways, followed by iron translocation to the cytosol. Endocytic uptake of plasma non-transferrin-bound iron is a possible mechanism that can contribute to iron loading of cell types engaged in bulk/adsorptive endocytosis, highlighting the importance of its prevention by iron chelation. PMID:22180428

  20. College-Bound Digest. Valuable Information from Prominent Educators for all College-Bound Students. Revised Edition.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    Information for students, counselors, and parents to help in the evaluation of options and opportunities available for most college-bound students is presented in 20 articles. Titles and authors are as follows: "Getting the Most from Your High School Counselor" (James Warfield); "The Use of the SAT at Selective Colleges" (Judith Gatlin); "Tips on…

Top