Sample records for models provide estimates

  1. Estimating abundance

    USGS Publications Warehouse

    Sutherland, Chris; Royle, Andy

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  2. Estimating abundance: Chapter 27

    USGS Publications Warehouse

    Royle, J. Andrew

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  3. Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.

    PubMed

    Weaver, Bruce; Black, Ryan A

    2015-06-01

    Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.

  4. Estimation of rates-across-sites distributions in phylogenetic substitution models.

    PubMed

    Susko, Edward; Field, Chris; Blouin, Christian; Roger, Andrew J

    2003-10-01

    Previous work has shown that it is often essential to account for the variation in rates at different sites in phylogenetic models in order to avoid phylogenetic artifacts such as long branch attraction. In most current models, the gamma distribution is used for the rates-across-sites distributions and is implemented as an equal-probability discrete gamma. In this article, we introduce discrete distribution estimates with large numbers of equally spaced rate categories allowing us to investigate the appropriateness of the gamma model. With large numbers of rate categories, these discrete estimates are flexible enough to approximate the shape of almost any distribution. Likelihood ratio statistical tests and a nonparametric bootstrap confidence-bound estimation procedure based on the discrete estimates are presented that can be used to test the fit of a parametric family. We applied the methodology to several different protein data sets, and found that although the gamma model often provides a good parametric model for this type of data, rate estimates from an equal-probability discrete gamma model with a small number of categories will tend to underestimate the largest rates. In cases when the gamma model assumption is in doubt, rate estimates coming from the discrete rate distribution estimate with a large number of rate categories provide a robust alternative to gamma estimates. An alternative implementation of the gamma distribution is proposed that, for equal numbers of rate categories, is computationally more efficient during optimization than the standard gamma implementation and can provide more accurate estimates of site rates.

  5. Dual-Process Theory and Signal-Detection Theory of Recognition Memory

    ERIC Educational Resources Information Center

    Wixted, John T.

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know…

  6. AMEM-ADL Polymer Migration Estimation Model User's Guide

    EPA Pesticide Factsheets

    The user's guide of the Arthur D. Little Polymer Migration Estimation Model (AMEM) provides the information on how the model estimates the fraction of a chemical additive that diffuses through polymeric matrices.

  7. Comparison of techniques for estimating annual lake evaporation using climatological data

    USGS Publications Warehouse

    Andersen, M.E.; Jobson, H.E.

    1982-01-01

    Mean annual evaporation estimates were determined for 30 lakes by use of a numerical model (Morton, 1979) and by use of an evaporation map prepared by the U.S. Weather Service (Kohler et al., 1959). These estimates were compared to the reported value of evaporation determined from measurements on each lake. Various lengths of observation and methods of measurement were used among the 30 lakes. The evaporation map provides annual evaporation estimates which are more consistent with observations than those determined by use of the numerical model. The map cannot provide monthly estimates, however, and is only available for the contiguous United States. The numerical model can provide monthly estimates for shallow lakes and is based on monthly observations of temperature, humidity, and sunshine duration.

  8. Estimation and identification study for flexible vehicles

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Englar, T. S., Jr.

    1973-01-01

    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.

  9. Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software.

    PubMed

    Lancsar, Emily; Fiebig, Denzil G; Hole, Arne Risa

    2017-07-01

    We provide a user guide on the analysis of data (including best-worst and best-best data) generated from discrete-choice experiments (DCEs), comprising a theoretical review of the main choice models followed by practical advice on estimation and post-estimation. We also provide a review of standard software. In providing this guide, we endeavour to not only provide guidance on choice modelling but to do so in a way that provides a 'way in' for researchers to the practicalities of data analysis. We argue that choice of modelling approach depends on the research questions, study design and constraints in terms of quality/quantity of data and that decisions made in relation to analysis of choice data are often interdependent rather than sequential. Given the core theory and estimation of choice models is common across settings, we expect the theoretical and practical content of this paper to be useful to researchers not only within but also beyond health economics.

  10. Using SAS PROC MCMC for Item Response Theory Models

    PubMed Central

    Samonte, Kelli

    2014-01-01

    Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian methods in the context of item response theory to serve as a useful guide for practitioners in estimating and interpreting item response theory (IRT) models. Included is a description of the estimation procedure used by SAS PROC MCMC. Syntax is provided for estimation of both dichotomous and polytomous IRT models, as well as a discussion on how to extend the syntax to accommodate more complex IRT models. PMID:29795834

  11. Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach

    USGS Publications Warehouse

    Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy

    2013-01-01

    Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.

  12. Application of Bayesian Maximum Entropy Filter in parameter calibration of groundwater flow model in PingTung Plain

    NASA Astrophysics Data System (ADS)

    Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung

    2017-04-01

    Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.

  13. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission

    NASA Astrophysics Data System (ADS)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.

    2017-12-01

    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the mechanistic differences between the model and observation. These outcomes will contribute to the WSWM for providing robust products.

  14. Marginal and Random Intercepts Models for Longitudinal Binary Data With Examples From Criminology.

    PubMed

    Long, Jeffrey D; Loeber, Rolf; Farrington, David P

    2009-01-01

    Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides individual-level information including information about heterogeneity of growth. It is shown how a type of numerical averaging can be used with the random intercepts model to obtain group-level information, thus approximating individual and marginal aspects of the LMM. The types of inferences associated with each model are illustrated with longitudinal criminal offending data based on N = 506 males followed over a 22-year period. Violent offending indexed by official records and self-report were analyzed, with the marginal model estimated using generalized estimating equations and the random intercepts model estimated using maximum likelihood. The results show that the numerical averaging based on the random intercepts can produce prediction curves almost identical to those obtained directly from the marginal model parameter estimates. The results provide a basis for contrasting the models and the estimation procedures and key features are discussed to aid in selecting a method for empirical analysis.

  15. Selected Tether Applications Cost Model

    NASA Technical Reports Server (NTRS)

    Keeley, Michael G.

    1988-01-01

    Diverse cost-estimating techniques and data combined into single program. Selected Tether Applications Cost Model (STACOM 1.0) is interactive accounting software tool providing means for combining several independent cost-estimating programs into fully-integrated mathematical model capable of assessing costs, analyzing benefits, providing file-handling utilities, and putting out information in text and graphical forms to screen, printer, or plotter. Program based on Lotus 1-2-3, version 2.0. Developed to provide clear, concise traceability and visibility into methodology and rationale for estimating costs and benefits of operations of Space Station tether deployer system.

  16. Modeling Methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    Simulation models are widely used in all types of hydrologic studies, and many of these models can be used to estimate recharge. Models can provide important insight into the functioning of hydrologic systems by identifying factors that influence recharge. The predictive capability of models can be used to evaluate how changes in climate, water use, land use, and other factors may affect recharge rates. Most hydrological simulation models, including watershed models and groundwater-flow models, are based on some form of water-budget equation, so the material in this chapter is closely linked to that in Chapter 2. Empirical models that are not based on a water-budget equation have also been used for estimating recharge; these models generally take the form of simple estimation equations that define annual recharge as a function of precipitation and possibly other climatic data or watershed characteristics.Model complexity varies greatly. Some models are simple accounting models; others attempt to accurately represent the physics of water movement through each compartment of the hydrologic system. Some models provide estimates of recharge explicitly; for example, a model based on the Richards equation can simulate water movement from the soil surface through the unsaturated zone to the water table. Recharge estimates can be obtained indirectly from other models. For example, recharge is a parameter in groundwater-flow models that solve for hydraulic head (i.e. groundwater level). Recharge estimates can be obtained through a model calibration process in which recharge and other model parameter values are adjusted so that simulated water levels agree with measured water levels. The simulation that provides the closest agreement is called the best fit, and the recharge value used in that simulation is the model-generated estimate of recharge.

  17. A function space approach to smoothing with applications to model error estimation for flexible spacecraft control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1981-01-01

    A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.

  18. Linking Air Quality and Watershed Models for Environmental Assessments: Analysis of the Effects of Model-Specific Precipitation Estimates on Calculated Water Flux

    EPA Science Inventory

    Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each mod...

  19. Instantaneous and time-averaged dispersion and measurement models for estimation theory applications with elevated point source plumes

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1977-01-01

    Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.

  20. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears.

    PubMed

    Molnár, Péter K; Klanjscek, Tin; Derocher, Andrew E; Obbard, Martyn E; Lewis, Mark A

    2009-08-01

    Many species experience large fluctuations in food availability and depend on energy from fat and protein stores for survival, reproduction and growth. Body condition and, more specifically, energy stores thus constitute key variables in the life history of many species. Several indices exist to quantify body condition but none can provide the amount of stored energy. To estimate energy stores in mammals, we propose a body composition model that differentiates between structure and storage of an animal. We develop and parameterize the model specifically for polar bears (Ursus maritimus Phipps) but all concepts are general and the model could be easily adapted to other mammals. The model provides predictive equations to estimate structural mass, storage mass and storage energy from an appropriately chosen measure of body length and total body mass. The model also provides a means to estimate basal metabolic rates from body length and consecutive measurements of total body mass. Model estimates of body composition, structural mass, storage mass and energy density of 970 polar bears from Hudson Bay were consistent with the life history and physiology of polar bears. Metabolic rate estimates of fasting adult males derived from the body composition model corresponded closely to theoretically expected and experimentally measured metabolic rates. Our method is simple, non-invasive and provides considerably more information on the energetic status of individuals than currently available methods.

  1. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    PubMed

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  2. Estimation and model selection of semiparametric multivariate survival functions under general censorship

    PubMed Central

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2013-01-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286

  3. Maximum likelihood estimation of finite mixture model for economic data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  4. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  5. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  6. Estimating abundance in the presence of species uncertainty

    USGS Publications Warehouse

    Chambert, Thierry A.; Hossack, Blake R.; Fishback, LeeAnn; Davenport, Jon M.

    2016-01-01

    1.N-mixture models have become a popular method for estimating abundance of free-ranging animals that are not marked or identified individually. These models have been used on count data for single species that can be identified with certainty. However, co-occurring species often look similar during one or more life stages, making it difficult to assign species for all recorded captures. This uncertainty creates problems for estimating species-specific abundance and it can often limit life stages to which we can make inference. 2.We present a new extension of N-mixture models that accounts for species uncertainty. In addition to estimating site-specific abundances and detection probabilities, this model allows estimating probability of correct assignment of species identity. We implement this hierarchical model in a Bayesian framework and provide all code for running the model in BUGS-language programs. 3.We present an application of the model on count data from two sympatric freshwater fishes, the brook stickleback (Culaea inconstans) and the ninespine stickleback (Pungitius pungitius), ad illustrate implementation of covariate effects (habitat characteristics). In addition, we used a simulation study to validate the model and illustrate potential sample size issues. We also compared, for both real and simulated data, estimates provided by our model to those obtained by a simple N-mixture model when captures of unknown species identification were discarded. In the latter case, abundance estimates appeared highly biased and very imprecise, while our new model provided unbiased estimates with higher precision. 4.This extension of the N-mixture model should be useful for a wide variety of studies and taxa, as species uncertainty is a common issue. It should notably help improve investigation of abundance and vital rate characteristics of organisms’ early life stages, which are sometimes more difficult to identify than adults.

  7. Estimating parameters of hidden Markov models based on marked individuals: use of robust design data

    USGS Publications Warehouse

    Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun

    2012-01-01

    Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).

  8. Army College Fund Cost-Effectiveness Study

    DTIC Science & Technology

    1990-11-01

    Section A.2 presents a theory of enlistment supply to provide a basis for specifying the regression model , The model Is specified in Section A.3, which...Supplementary materials are included in the final four sections. Section A.6 provides annual trends in the regression model variables. Estimates of the model ...millions, A.S. ESTIMATION OF A YOUTH EARNINGS FORECASTING MODEL Civilian pay is an important explanatory variable in the regression model . Previous

  9. Hidden Markov model for dependent mark loss and survival estimation

    USGS Publications Warehouse

    Laake, Jeffrey L.; Johnson, Devin S.; Diefenbach, Duane R.; Ternent, Mark A.

    2014-01-01

    Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animals as long as a sub-sample of animals has a permanent mark. Double-marking provides an estimate of mark loss assuming independence but dependence can be modeled with a permanently marked sub-sample. We use a log-linear approach to include covariates for mark loss and dependence which is more flexible than existing published methods for integrated models. The HMM approach is demonstrated with a dataset of black bears (Ursus americanus) with two ear tags and a subset of which were permanently marked with tattoos. The data were analyzed with and without the tattoo. Dropping the tattoos resulted in estimates of survival that were reduced by 0.005–0.035 due to tag loss dependence that could not be modeled. We also analyzed the data with and without the tattoo using a single tag. By not using.

  10. Model error estimation for distributed systems described by elliptic equations

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1983-01-01

    A function space approach is used to develop a theory for estimation of the errors inherent in an elliptic partial differential equation model for a distributed parameter system. By establishing knowledge of the inevitable deficiencies in the model, the error estimates provide a foundation for updating the model. The function space solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for static shape determination of large flexible systems.

  11. Multilevel Modeling with Correlated Effects

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Frees, Edward W.

    2007-01-01

    When there exist omitted effects, measurement error, and/or simultaneity in multilevel models, explanatory variables may be correlated with random components, and standard estimation methods do not provide consistent estimates of model parameters. This paper introduces estimators that are consistent under such conditions. By employing generalized…

  12. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  13. Research in the application of spectral data to crop identification and assessment, volume 2

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T. (Principal Investigator); Hixson, M. M.; Bauer, M. E.

    1980-01-01

    The development of spectrometry crop development stage models is discussed with emphasis on models for corn and soybeans. One photothermal and four thermal meteorological models are evaluated. Spectral data were investigated as a source of information for crop yield models. Intercepted solar radiation and soil productivity are identified as factors related to yield which can be estimated from spectral data. Several techniques for machine classification of remotely sensed data for crop inventory were evaluated. Early season estimation, training procedures, the relationship of scene characteristics to classification performance, and full frame classification methods were studied. The optimal level for combining area and yield estimates of corn and soybeans is assessed utilizing current technology: digital analysis of LANDSAT MSS data on sample segments to provide area estimates and regression models to provide yield estimates.

  14. Monitoring gray wolf populations using multiple survey methods

    USGS Publications Warehouse

    Ausband, David E.; Rich, Lindsey N.; Glenn, Elizabeth M.; Mitchell, Michael S.; Zager, Pete; Miller, David A.W.; Waits, Lisette P.; Ackerman, Bruce B.; Mack, Curt M.

    2013-01-01

    The behavioral patterns and large territories of large carnivores make them challenging to monitor. Occupancy modeling provides a framework for monitoring population dynamics and distribution of territorial carnivores. We combined data from hunter surveys, howling and sign surveys conducted at predicted wolf rendezvous sites, and locations of radiocollared wolves to model occupancy and estimate the number of gray wolf (Canis lupus) packs and individuals in Idaho during 2009 and 2010. We explicitly accounted for potential misidentification of occupied cells (i.e., false positives) using an extension of the multi-state occupancy framework. We found agreement between model predictions and distribution and estimates of number of wolf packs and individual wolves reported by Idaho Department of Fish and Game and Nez Perce Tribe from intensive radiotelemetry-based monitoring. Estimates of individual wolves from occupancy models that excluded data from radiocollared wolves were within an average of 12.0% (SD = 6.0) of existing statewide minimum counts. Models using only hunter survey data generally estimated the lowest abundance, whereas models using all data generally provided the highest estimates of abundance, although only marginally higher. Precision across approaches ranged from 14% to 28% of mean estimates and models that used all data streams generally provided the most precise estimates. We demonstrated that an occupancy model based on different survey methods can yield estimates of the number and distribution of wolf packs and individual wolf abundance with reasonable measures of precision. Assumptions of the approach including that average territory size is known, average pack size is known, and territories do not overlap, must be evaluated periodically using independent field data to ensure occupancy estimates remain reliable. Use of multiple survey methods helps to ensure that occupancy estimates are robust to weaknesses or changes in any 1 survey method. Occupancy modeling may be useful for standardizing estimates across large landscapes, even if survey methods differ across regions, allowing for inferences about broad-scale population dynamics of wolves.

  15. State of charge estimation in Ni-MH rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Milocco, R. H.; Castro, B. E.

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance.

  16. Void Growth and Coalescence Simulations

    DTIC Science & Technology

    2013-08-01

    distortion and damage, minimum time step, and appropriate material model parameters. Further, a temporal and spatial convergence study was used to...estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we use a Gurson model with Johnson-Cook...spatial convergence study was used to estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we

  17. A model for the cost of doing a cost estimate

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Buchanan, H. R.

    1992-01-01

    A model for estimating the cost required to do a cost estimate for Deep Space Network (DSN) projects that range from $0.1 to $100 million is presented. The cost of the cost estimate in thousands of dollars, C(sub E), is found to be approximately given by C(sub E) = K((C(sub p))(sup 0.35)) where C(sub p) is the cost of the project being estimated in millions of dollars and K is a constant depending on the accuracy of the estimate. For an order-of-magnitude estimate, K = 24; for a budget estimate, K = 60; and for a definitive estimate, K = 115. That is, for a specific project, the cost of doing a budget estimate is about 2.5 times as much as that for an order-of-magnitude estimate, and a definitive estimate costs about twice as much as a budget estimate. Use of this model should help provide the level of resources required for doing cost estimates and, as a result, provide insights towards more accurate estimates with less potential for cost overruns.

  18. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  19. High dimensional linear regression models under long memory dependence and measurement error

    NASA Astrophysics Data System (ADS)

    Kaul, Abhishek

    This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.

  20. MIXOR: a computer program for mixed-effects ordinal regression analysis.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-03-01

    MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.

  1. Kalman filter data assimilation: targeting observations and parameter estimation.

    PubMed

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  2. Kalman filter data assimilation: Targeting observations and parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex

    2014-06-15

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly locatedmore » observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.« less

  3. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models*

    PubMed Central

    Kirby, James B.; Bollen, Kenneth A.

    2009-01-01

    Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054

  4. Parameter estimation using weighted total least squares in the two-compartment exchange model.

    PubMed

    Garpebring, Anders; Löfstedt, Tommy

    2018-01-01

    The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. SMALL AREA ESTIMATION OF INDICATORS OF STREAM CONDITION FOR MAIA USING HIERARCHICAL BAYES PREDICTION MODELS

    EPA Science Inventory

    Probability surveys of stream and river resources (hereafter referred to as streams) provide reliable estimates of stream condition when the areas for the estimates have sufficient number of sample sites. Monitoring programs are frequently asked to provide estimates for areas th...

  6. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning.

    PubMed

    Liu, Zhijian; Li, Hao; Cao, Guoqing

    2017-07-30

    Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM 2.5 and PM 10 ), temperature, relative humidity, and CO₂ concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.

  7. A Bayes linear Bayes method for estimation of correlated event rates.

    PubMed

    Quigley, John; Wilson, Kevin J; Walls, Lesley; Bedford, Tim

    2013-12-01

    Typically, full Bayesian estimation of correlated event rates can be computationally challenging since estimators are intractable. When estimation of event rates represents one activity within a larger modeling process, there is an incentive to develop more efficient inference than provided by a full Bayesian model. We develop a new subjective inference method for correlated event rates based on a Bayes linear Bayes model under the assumption that events are generated from a homogeneous Poisson process. To reduce the elicitation burden we introduce homogenization factors to the model and, as an alternative to a subjective prior, an empirical method using the method of moments is developed. Inference under the new method is compared against estimates obtained under a full Bayesian model, which takes a multivariate gamma prior, where the predictive and posterior distributions are derived in terms of well-known functions. The mathematical properties of both models are presented. A simulation study shows that the Bayes linear Bayes inference method and the full Bayesian model provide equally reliable estimates. An illustrative example, motivated by a problem of estimating correlated event rates across different users in a simple supply chain, shows how ignoring the correlation leads to biased estimation of event rates. © 2013 Society for Risk Analysis.

  8. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  9. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  10. Spatial Distribution of Hydrologic Ecosystem Service Estimates: Comparing Two Models

    NASA Astrophysics Data System (ADS)

    Dennedy-Frank, P. J.; Ghile, Y.; Gorelick, S.; Logsdon, R. A.; Chaubey, I.; Ziv, G.

    2014-12-01

    We compare estimates of the spatial distribution of water quantity provided (annual water yield) from two ecohydrologic models: the widely-used Soil and Water Assessment Tool (SWAT) and the much simpler water models from the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) toolbox. These two models differ significantly in terms of complexity, timescale of operation, effort, and data required for calibration, and so are often used in different management contexts. We compare two study sites in the US: the Wildcat Creek Watershed (2083 km2) in Indiana, a largely agricultural watershed in a cold aseasonal climate, and the Upper Upatoi Creek Watershed (876 km2) in Georgia, a mostly forested watershed in a temperate aseasonal climate. We evaluate (1) quantitative estimates of water yield to explore how well each model represents this process, and (2) ranked estimates of water yield to indicate how useful the models are for management purposes where other social and financial factors may play significant roles. The SWAT and InVEST models provide very similar estimates of the water yield of individual subbasins in the Wildcat Creek Watershed (Pearson r = 0.92, slope = 0.89), and a similar ranking of the relative water yield of those subbasins (Spearman r = 0.86). However, the two models provide relatively different estimates of the water yield of individual subbasins in the Upper Upatoi Watershed (Pearson r = 0.25, slope = 0.14), and very different ranking of the relative water yield of those subbasins (Spearman r = -0.10). The Upper Upatoi watershed has a significant baseflow contribution due to its sandy, well-drained soils. InVEST's simple seasonality terms, which assume no change in storage over the time of the model run, may not accurately estimate water yield processes when baseflow provides such a strong contribution. Our results suggest that InVEST users take care in situations where storage changes are significant.

  11. Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy.

    PubMed

    Pillai, Nikhil; Craig, Morgan; Dokoumetzidis, Aristeidis; Schwartz, Sorell L; Bies, Robert; Freedman, Immanuel

    2018-06-19

    In mathematical pharmacology, models are constructed to confer a robust method for optimizing treatment. The predictive capability of pharmacological models depends heavily on the ability to track the system and to accurately determine parameters with reference to the sensitivity in projected outcomes. To closely track chaotic systems, one may choose to apply chaos synchronization. An advantageous byproduct of this methodology is the ability to quantify model parameters. In this paper, we illustrate the use of chaos synchronization combined with Nelder-Mead search to estimate parameters of the well-known Kirschner-Panetta model of IL-2 immunotherapy from noisy data. Chaos synchronization with Nelder-Mead search is shown to provide more accurate and reliable estimates than Nelder-Mead search based on an extended least squares (ELS) objective function. Our results underline the strength of this approach to parameter estimation and provide a broader framework of parameter identification for nonlinear models in pharmacology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Mixture Rasch Models with Joint Maximum Likelihood Estimation

    ERIC Educational Resources Information Center

    Willse, John T.

    2011-01-01

    This research provides a demonstration of the utility of mixture Rasch models. Specifically, a model capable of estimating a mixture partial credit model using joint maximum likelihood is presented. Like the partial credit model, the mixture partial credit model has the beneficial feature of being appropriate for analysis of assessment data…

  13. Connections between survey calibration estimators and semiparametric models for incomplete data

    PubMed Central

    Lumley, Thomas; Shaw, Pamela A.; Dai, James Y.

    2012-01-01

    Survey calibration (or generalized raking) estimators are a standard approach to the use of auxiliary information in survey sampling, improving on the simple Horvitz–Thompson estimator. In this paper we relate the survey calibration estimators to the semiparametric incomplete-data estimators of Robins and coworkers, and to adjustment for baseline variables in a randomized trial. The development based on calibration estimators explains the ‘estimated weights’ paradox and provides useful heuristics for constructing practical estimators. We present some examples of using calibration to gain precision without making additional modelling assumptions in a variety of regression models. PMID:23833390

  14. Improved gap size estimation for scaffolding algorithms.

    PubMed

    Sahlin, Kristoffer; Street, Nathaniel; Lundeberg, Joakim; Arvestad, Lars

    2012-09-01

    One of the important steps of genome assembly is scaffolding, in which contigs are linked using information from read-pairs. Scaffolding provides estimates about the order, relative orientation and distance between contigs. We have found that contig distance estimates are generally strongly biased and based on false assumptions. Since erroneous distance estimates can mislead in subsequent analysis, it is important to provide unbiased estimation of contig distance. In this article, we show that state-of-the-art programs for scaffolding are using an incorrect model of gap size estimation. We discuss why current maximum likelihood estimators are biased and describe what different cases of bias we are facing. Furthermore, we provide a model for the distribution of reads that span a gap and derive the maximum likelihood equation for the gap length. We motivate why this estimate is sound and show empirically that it outperforms gap estimators in popular scaffolding programs. Our results have consequences both for scaffolding software, structural variation detection and for library insert-size estimation as is commonly performed by read aligners. A reference implementation is provided at https://github.com/SciLifeLab/gapest. Supplementary data are availible at Bioinformatics online.

  15. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE PAGES

    Butler, Troy; Wildey, Timothy

    2018-01-01

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  16. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Troy; Wildey, Timothy

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  17. Software for the grouped optimal aggregation technique

    NASA Technical Reports Server (NTRS)

    Brown, P. M.; Shaw, G. W. (Principal Investigator)

    1982-01-01

    The grouped optimal aggregation technique produces minimum variance, unbiased estimates of acreage and production for countries, zones (states), or any designated collection of acreage strata. It uses yield predictions, historical acreage information, and direct acreage estimate from satellite data. The acreage strata are grouped in such a way that the ratio model over historical acreage provides a smaller variance than if the model were applied to each individual stratum. An optimal weighting matrix based on historical acreages, provides the link between incomplete direct acreage estimates and the total, current acreage estimate.

  18. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.

    PubMed

    Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D

    2013-09-30

    Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Estimating liver cancer deaths in Thailand based on verbal autopsy study.

    PubMed

    Waeto, Salwa; Pipatjaturon, Nattakit; Tongkumchum, Phattrawan; Choonpradub, Chamnein; Saelim, Rattikan; Makaje, Nifatamah

    2014-01-01

    Liver cancer mortality is high in Thailand but utility of related vital statistics is limited due to national vital registration (VR) data being under reported for specific causes of deaths. Accurate methodologies and reliable supplementary data are needed to provide worthy national vital statistics. This study aimed to model liver cancer deaths based on verbal autopsy (VA) study in 2005 to provide more accurate estimates of liver cancer deaths than those reported. The results were used to estimate number of liver cancer deaths during 2000-2009. A verbal autopsy (VA) was carried out in 2005 based on a sample of 9,644 deaths from nine provinces and it provided reliable information on causes of deaths by gender, age group, location of deaths in or outside hospital, and causes of deaths of the VR database. Logistic regression was used to model liver cancer deaths and other variables. The estimated probabilities from the model were applied to liver cancer deaths in the VR database, 2000-2009. Thus, the more accurately VA-estimated numbers of liver cancer deaths were obtained. The model fits the data quite well with sensitivity 0.64. The confidence intervals from statistical model provide the estimates and their precisions. The VA-estimated numbers of liver cancer deaths were higher than the corresponding VR database with inflation factors 1.56 for males and 1.64 for females. The statistical methods used in this study can be applied to available mortality data in developing countries where their national vital registration data are of low quality and supplementary reliable data are available.

  20. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of themore » transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.« less

  1. Using LANDSAT to provide potato production estimates to Columbia Basin farmers and processors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The estimation of potato yields in the Columbia basin is described. The fundamental objective is to provide CROPIX with working models of potato production. A two-pronged approach was used to yield estimation: (1) using simulation models, and (2) using purely empirical models. The simulation modeling approach used satellite observations to determine certain key dates in the development of the crop for each field identified as potatoes. In particular, these include planting dates, emergence dates, and harvest dates. These critical dates are fed into simulation models of crop growth and development to derive yield forecasts. Purely empirical models were developed to relate yield to some spectrally derived measure of crop development. Two empirical approaches are presented: one relates tuber yield to estimates of cumulative intercepted solar radiation, the other relates tuber yield to the integral under GVI (Global Vegetation Index) curve.

  2. Rank-preserving regression: a more robust rank regression model against outliers.

    PubMed

    Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M

    2016-08-30

    Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning

    PubMed Central

    Liu, Zhijian; Li, Hao; Cao, Guoqing

    2017-01-01

    Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM2.5 and PM10), temperature, relative humidity, and CO2 concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups. PMID:28758941

  4. [Human resources requirements for diabetic patients healthcare in primary care clinics of the Mexican Institute of Social Security].

    PubMed

    Doubova, Svetlana V; Ramírez-Sánchez, Claudine; Figueroa-Lara, Alejandro; Pérez-Cuevas, Ricardo

    2013-12-01

    To estimate the requirements of human resources (HR) of two models of care for diabetes patients: conventional and specific, also called DiabetIMSS, which are provided in primary care clinics of the Mexican Institute of Social Security (IMSS). An evaluative research was conducted. An expert group identified the HR activities and time required to provide healthcare consistent with the best clinical practices for diabetic patients. HR were estimated by using the evidence-based adjusted service target approach for health workforce planning; then, comparisons between existing and estimated HRs were made. To provide healthcare in accordance with the patients' metabolic control, the conventional model required increasing the number of family doctors (1.2 times) nutritionists (4.2 times) and social workers (4.1 times). The DiabetIMSS model requires greater increase than the conventional model. Increasing HR is required to provide evidence-based healthcare to diabetes patients.

  5. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Dickinson, Robert E.

    2012-06-01

    This review surveys the basic theories, observational methods, satellite algorithms, and land surface models for terrestrial evapotranspiration, E (or λE, i.e., latent heat flux), including a long-term variability and trends perspective. The basic theories used to estimate E are the Monin-Obukhov similarity theory (MOST), the Bowen ratio method, and the Penman-Monteith equation. The latter two theoretical expressions combine MOST with surface energy balance. Estimates of E can differ substantially between these three approaches because of their use of different input data. Surface and satellite-based measurement systems can provide accurate estimates of diurnal, daily, and annual variability of E. But their estimation of longer time variability is largely not established. A reasonable estimate of E as a global mean can be obtained from a surface water budget method, but its regional distribution is still rather uncertain. Current land surface models provide widely different ratios of the transpiration by vegetation to total E. This source of uncertainty therefore limits the capability of models to provide the sensitivities of E to precipitation deficits and land cover change.

  6. Basin Scale Estimates of Evapotranspiration Using GRACE and other Observations

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Famiglietti, J. S.; Chen, J.; Seneviratne, S. I.; Viterbo, P.; Holl, S.; Wilson, C. R.

    2004-01-01

    Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.

  7. Spatial-temporal models for improved county-level annual estimates

    Treesearch

    Francis Roesch

    2009-01-01

    The consumers of data derived from extensive forest inventories often seek annual estimates at a finer spatial scale than that which the inventory was designed to provide. This paper discusses a few model-based and model-assisted estimators to consider for county level attributes that can be applied when the sample would otherwise be inadequate for producing low-...

  8. Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.

    PubMed

    Leung, Denis H Y; Wang, You-Gan; Zhu, Min

    2009-07-01

    The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

  9. Software Cost-Estimation Model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    Software Cost Estimation Model SOFTCOST provides automated resource and schedule model for software development. Combines several cost models found in open literature into one comprehensive set of algorithms. Compensates for nearly fifty implementation factors relative to size of task, inherited baseline, organizational and system environment and difficulty of task.

  10. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...

  11. Fuel Burn Estimation Using Real Track Data

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    2011-01-01

    A procedure for estimating fuel burned based on actual flight track data, and drag and fuel-flow models is described. The procedure consists of estimating aircraft and wind states, lift, drag and thrust. Fuel-flow for jet aircraft is determined in terms of thrust, true airspeed and altitude as prescribed by the Base of Aircraft Data fuel-flow model. This paper provides a theoretical foundation for computing fuel-flow with most of the information derived from actual flight data. The procedure does not require an explicit model of thrust and calibrated airspeed/Mach profile which are typically needed for trajectory synthesis. To validate the fuel computation method, flight test data provided by the Federal Aviation Administration were processed. Results from this method show that fuel consumed can be estimated within 1% of the actual fuel consumed in the flight test. Next, fuel consumption was estimated with simplified lift and thrust models. Results show negligible difference with respect to the full model without simplifications. An iterative takeoff weight estimation procedure is described for estimating fuel consumption, when takeoff weight is unavailable, and for establishing fuel consumption uncertainty bounds. Finally, the suitability of using radar-based position information for fuel estimation is examined. It is shown that fuel usage could be estimated within 5.4% of the actual value using positions reported in the Airline Situation Display to Industry data with simplified models and iterative takeoff weight computation.

  12. Estimation of Distributed Groundwater Pumping Rates in Yolo County,CA—Intercomparison of Two Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Harter, T.

    2015-12-01

    Accurate estimation of groundwater (GW) budgets and effective management of agricultural GW pumping remains a challenge in much of California's Central Valley (CV) due to a lack of irrigation well metering. CVHM and C2VSim are two regional-scale integrated hydrologic models that provide estimates of historical and current CV distributed pumping rates. However, both models estimate GW pumping using conceptually different agricultural water models with uncertainties that have not been adequately investigated. Here, we evaluate differences in distributed agricultural GW pumping and recharge estimates related to important differences in the conceptual framework and model assumptions used to simulate surface water (SW) and GW interaction across the root zone. Differences in the magnitude and timing of GW pumping and recharge were evaluated for a subregion (~1000 mi2) coincident with Yolo County, CA, to provide similar initial and boundary conditions for both models. Synthetic, multi-year datasets of land-use, precipitation, evapotranspiration (ET), and SW deliveries were prescribed for each model to provide realistic end-member scenarios for GW-pumping demand and recharge. Results show differences in the magnitude and timing of GW-pumping demand, deep percolation, and recharge. Discrepancies are related, in large part, to model differences in the estimation of ET requirements and representation of soil-moisture conditions. CVHM partitions ET demand, while C2VSim uses a bulk ET rate, resulting in differences in both crop-water and GW-pumping demand. Additionally, CVHM assumes steady-state soil-moisture conditions, and simulates deep percolation as a function of irrigation inefficiencies, while C2VSim simulates deep percolation as a function of transient soil-moisture storage conditions. These findings show that estimates of GW-pumping demand are sensitive to these important conceptual differences, which can impact conjunctive-use water management decisions in the CV.

  13. An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 1. Theory

    USGS Publications Warehouse

    Yen, Chung-Cheng; Guymon, Gary L.

    1990-01-01

    An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.

  14. An Efficient Deterministic-Probabilistic Approach to Modeling Regional Groundwater Flow: 1. Theory

    NASA Astrophysics Data System (ADS)

    Yen, Chung-Cheng; Guymon, Gary L.

    1990-07-01

    An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.

  15. Bayesian inference for psychology, part IV: parameter estimation and Bayes factors.

    PubMed

    Rouder, Jeffrey N; Haaf, Julia M; Vandekerckhove, Joachim

    2018-02-01

    In the psychological literature, there are two seemingly different approaches to inference: that from estimation of posterior intervals and that from Bayes factors. We provide an overview of each method and show that a salient difference is the choice of models. The two approaches as commonly practiced can be unified with a certain model specification, now popular in the statistics literature, called spike-and-slab priors. A spike-and-slab prior is a mixture of a null model, the spike, with an effect model, the slab. The estimate of the effect size here is a function of the Bayes factor, showing that estimation and model comparison can be unified. The salient difference is that common Bayes factor approaches provide for privileged consideration of theoretically useful parameter values, such as the value corresponding to the null hypothesis, while estimation approaches do not. Both approaches, either privileging the null or not, are useful depending on the goals of the analyst.

  16. Estimation of Missing Water-Level Data for the Everglades Depth Estimation Network (EDEN)

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.

    2009-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface elevation models designed to provide scientists, engineers, and water-resource managers with current (2000-2009) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN and their goal of providing quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the daily water-surface elevation model, water-level estimation equations were developed to fill missing data. To minimize the occurrences of no estimation of data due to missing data for an input station, a minimum of three linear regression equations were developed for each station using different input stations. Of the 726 water-level estimation equations developed to fill missing data at 239 stations, more than 60 percent of the equations have coefficients of determination greater than 0.90, and 92 percent have an coefficient of determination greater than 0.70.

  17. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ron

    2017-01-01

    The Natural Environments Branch of the Engineering Directorate at Marshall Space Flight Center (MSFC) provides solar cycle forecasts for NASA space flight programs and the aerospace community. These forecasts provide future statistical estimates of sunspot number, solar radio 10.7 cm flux (F10.7), and the geomagnetic planetary index, Ap, for input to various space environment models. For example, many thermosphere density computer models used in spacecraft operations, orbital lifetime analysis, and the planning of future spacecraft missions require as inputs the F10.7 and Ap. The solar forecast is updated each month by executing MSAFE using historical and the latest month's observed solar indices to provide estimates for the balance of the current solar cycle. The forecasted solar indices represent the 13-month smoothed values consisting of a best estimate value stated as a 50 percentile value along with approximate +/- 2 sigma values stated as 95 and 5 percentile statistical values. This presentation will give an overview of the MSAFE model and the forecast for the current solar cycle.

  18. Quantification of effective plant rooting depth: advancing global hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  19. Functional Risk Modeling for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Thomson, Fraser; Mathias, Donovan; Go, Susie; Nejad, Hamed

    2010-01-01

    We introduce an approach to risk modeling that we call functional modeling , which we have developed to estimate the capabilities of a lunar base. The functional model tracks the availability of functions provided by systems, in addition to the operational state of those systems constituent strings. By tracking functions, we are able to identify cases where identical functions are provided by elements (rovers, habitats, etc.) that are connected together on the lunar surface. We credit functional diversity in those cases, and in doing so compute more realistic estimates of operational mode availabilities. The functional modeling approach yields more realistic estimates of the availability of the various operational modes provided to astronauts by the ensemble of surface elements included in a lunar base architecture. By tracking functional availability the effects of diverse backup, which often exists when two or more independent elements are connected together, is properly accounted for.

  20. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation: Part 2, Scientific bases for health effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, S.; Bender, M.; Book, S.

    1989-05-01

    This report provides dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Two-parameter Weibull hazard functions are recommended for estimating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary and gastrointestinal syndromes -- are considered. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid and ''other''. Themore » category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also provided. For most cancers, both incidence and mortality are addressed. Linear and linear-quadratic models are also recommended for assessing genetic risks. Five classes of genetic disease -- dominant, x-linked, aneuploidy, unbalanced translocation and multifactorial diseases --are considered. In addition, the impact of radiation-induced genetic damage on the incidence of peri-implantation embryo losses is discussed. The uncertainty in modeling radiological health risks is addressed by providing central, upper, and lower estimates of all model parameters. Data are provided which should enable analysts to consider the timing and severity of each type of health risk. 22 refs., 14 figs., 51 tabs.« less

  1. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter.

    The aerosol optical depth (AOD) - a derived estimate from the satellite-measured radiance, can be compared against model estimates to provide an evaluation of the columnar ae...

  2. Exploring the Effects of Rater Linking Designs and Rater Fit on Achievement Estimates within the Context of Music Performance Assessments

    ERIC Educational Resources Information Center

    Wind, Stefanie A.; Engelhard, George, Jr.; Wesolowski, Brian

    2016-01-01

    When good model-data fit is observed, the Many-Facet Rasch (MFR) model acts as a linking and equating model that can be used to estimate student achievement, item difficulties, and rater severity on the same linear continuum. Given sufficient connectivity among the facets, the MFR model provides estimates of student achievement that are equated to…

  3. Producing HIV estimates: from global advocacy to country planning and impact measurement

    PubMed Central

    Mahy, Mary; Brown, Tim; Stover, John; Walker, Neff; Stanecki, Karen; Kirungi, Wilford; Garcia-Calleja, Txema; Ghys, Peter D.

    2017-01-01

    ABSTRACT Background: The development of global HIV estimates has been critical for understanding, advocating for and funding the HIV response. The process of generating HIV estimates has been cited as the gold standard for public health estimates. Objective: This paper provides important lessons from an international scientific collaboration and provides a useful model for those producing public health estimates in other fields. Design: Through the compilation and review of published journal articles, United Nations reports, other documents and personal experience we compiled historical information about the estimates and identified potential lessons for other public health estimation efforts. Results: Through the development of core partnerships with country teams, implementers, demographers, mathematicians, epidemiologists and international organizations, UNAIDS has led a process to develop the capacity of country teams to produce internationally comparable HIV estimates. The guidance provided by these experts has led to refinements in the estimated numbers of people living with HIV, new HIV infections and AIDS-related deaths over the past 20 years. A number of important updates to the methods since 1997 resulted in fluctuations in the estimated levels, trends and impact of HIV. The largest correction occurred between the 2005 and 2007 rounds with the additions of household survey data into the models. In 2001 the UNAIDS models at that time estimated there were 40 million people living with HIV. In 2016, improved models estimate there were 30 million (27.6–32.7 million) people living with HIV in 2001. Conclusions: Country ownership of the estimation tools has allowed for additional uses of the results than had the results been produced by researchers or a team in Geneva. Guidance from a reference group and input from country teams have led to critical improvements in the models over time. Those changes have improved countries’ and stakeholders’ understanding of the HIV epidemic. PMID:28532304

  4. Search algorithm complexity modeling with application to image alignment and matching

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2014-05-01

    Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.

  5. Bayes factors for the linear ballistic accumulator model of decision-making.

    PubMed

    Evans, Nathan J; Brown, Scott D

    2018-04-01

    Evidence accumulation models of decision-making have led to advances in several different areas of psychology. These models provide a way to integrate response time and accuracy data, and to describe performance in terms of latent cognitive processes. Testing important psychological hypotheses using cognitive models requires a method to make inferences about different versions of the models which assume different parameters to cause observed effects. The task of model-based inference using noisy data is difficult, and has proven especially problematic with current model selection methods based on parameter estimation. We provide a method for computing Bayes factors through Monte-Carlo integration for the linear ballistic accumulator (LBA; Brown and Heathcote, 2008), a widely used evidence accumulation model. Bayes factors are used frequently for inference with simpler statistical models, and they do not require parameter estimation. In order to overcome the computational burden of estimating Bayes factors via brute force integration, we exploit general purpose graphical processing units; we provide free code for this. This approach allows estimation of Bayes factors via Monte-Carlo integration within a practical time frame. We demonstrate the method using both simulated and real data. We investigate the stability of the Monte-Carlo approximation, and the LBA's inferential properties, in simulation studies.

  6. Occupancy Estimation and Modeling : Inferring Patterns and Dynamics of Species Occurrence

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Royle, J. Andrew; Pollock, K.H.; Bailey, L.L.; Hines, J.E.

    2006-01-01

    This is the first book to examine the latest methods in analyzing presence/absence data surveys. Using four classes of models (single-species, single-season; single-species, multiple season; multiple-species, single-season; and multiple-species, multiple-season), the authors discuss the practical sampling situation, present a likelihood-based model enabling direct estimation of the occupancy-related parameters while allowing for imperfect detectability, and make recommendations for designing studies using these models. It provides authoritative insights into the latest in estimation modeling; discusses multiple models which lay the groundwork for future study designs; addresses critical issues of imperfect detectibility and its effects on estimation; and explores the role of probability in estimating in detail.

  7. Temporal rainfall estimation using input data reduction and model inversion

    NASA Astrophysics Data System (ADS)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a demonstration of equifinality. The use of a likelihood function that considers both rainfall and streamflow error combined with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  8. Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling

    NASA Astrophysics Data System (ADS)

    Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.

    2017-04-01

    Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with respect to other commonly used approaches in the literature.

  9. Valuing improved wetland quality using choice modeling

    NASA Astrophysics Data System (ADS)

    Morrison, Mark; Bennett, Jeff; Blamey, Russell

    1999-09-01

    The main stated preference technique used for estimating environmental values is the contingent valuation method. In this paper the results of an application of an alternative technique, choice modeling, are reported. Choice modeling has been developed in the marketing and transport applications but has only been used in a handful of environmental applications, most of which have focused on use values. The case study presented here involves the estimation of the nonuse environmental values provided by the Macquarie Marshes, a major wetland in New South Wales, Australia. Estimates of the nonuse value the community places on preventing job losses are also presented. The reported models are robust, having high explanatory power and variables that are statistically significant and consistent with expectations. These results provide support for the hypothesis that choice modeling can be used to estimate nonuse values for both environmental and social consequences of resource use changes.

  10. Analysis of multinomial models with unknown index using data augmentation

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.; Link, W.A.

    2007-01-01

    Multinomial models with unknown index ('sample size') arise in many practical settings. In practice, Bayesian analysis of such models has proved difficult because the dimension of the parameter space is not fixed, being in some cases a function of the unknown index. We describe a data augmentation approach to the analysis of this class of models that provides for a generic and efficient Bayesian implementation. Under this approach, the data are augmented with all-zero detection histories. The resulting augmented dataset is modeled as a zero-inflated version of the complete-data model where an estimable zero-inflation parameter takes the place of the unknown multinomial index. Interestingly, data augmentation can be justified as being equivalent to imposing a discrete uniform prior on the multinomial index. We provide three examples involving estimating the size of an animal population, estimating the number of diabetes cases in a population using the Rasch model, and the motivating example of estimating the number of species in an animal community with latent probabilities of species occurrence and detection.

  11. Accounting for Age Uncertainty in Growth Modeling, the Case Study of Yellowfin Tuna (Thunnus albacares) of the Indian Ocean

    PubMed Central

    Dortel, Emmanuelle; Massiot-Granier, Félix; Rivot, Etienne; Million, Julien; Hallier, Jean-Pierre; Morize, Eric; Munaron, Jean-Marie; Bousquet, Nicolas; Chassot, Emmanuel

    2013-01-01

    Age estimates, typically determined by counting periodic growth increments in calcified structures of vertebrates, are the basis of population dynamics models used for managing exploited or threatened species. In fisheries research, the use of otolith growth rings as an indicator of fish age has increased considerably in recent decades. However, otolith readings include various sources of uncertainty. Current ageing methods, which converts an average count of rings into age, only provide periodic age estimates in which the range of uncertainty is fully ignored. In this study, we describe a hierarchical model for estimating individual ages from repeated otolith readings. The model was developed within a Bayesian framework to explicitly represent the sources of uncertainty associated with age estimation, to allow for individual variations and to include knowledge on parameters from expertise. The performance of the proposed model was examined through simulations, and then it was coupled to a two-stanza somatic growth model to evaluate the impact of the age estimation method on the age composition of commercial fisheries catches. We illustrate our approach using the saggital otoliths of yellowfin tuna of the Indian Ocean collected through large-scale mark-recapture experiments. The simulation performance suggested that the ageing error model was able to estimate the ageing biases and provide accurate age estimates, regardless of the age of the fish. Coupled with the growth model, this approach appeared suitable for modeling the growth of Indian Ocean yellowfin and is consistent with findings of previous studies. The simulations showed that the choice of the ageing method can strongly affect growth estimates with subsequent implications for age-structured data used as inputs for population models. Finally, our modeling approach revealed particularly useful to reflect uncertainty around age estimates into the process of growth estimation and it can be applied to any study relying on age estimation. PMID:23637773

  12. Estimating rainfall time series and model parameter distributions using model data reduction and inversion techniques

    NASA Astrophysics Data System (ADS)

    Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.

    2017-08-01

    Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  13. Development and Implementation of an Empirical Ionosphere Variability Model

    NASA Technical Reports Server (NTRS)

    Minow, Joesph I.; Almond, Deborah (Technical Monitor)

    2002-01-01

    Spacecraft designers and operations support personnel involved in space environment analysis for low Earth orbit missions require ionospheric specification and forecast models that provide not only average ionospheric plasma parameters for a given set of geophysical conditions but the statistical variations about the mean as well. This presentation describes the development of a prototype empirical model intended for use with the International Reference Ionosphere (IRI) to provide ionospheric Ne and Te variability. We first describe the database of on-orbit observations from a variety of spacecraft and ground based radars over a wide range of latitudes and altitudes used to obtain estimates of the environment variability. Next, comparison of the observations with the IRI model provide estimates of the deviations from the average model as well as the range of possible values that may correspond to a given IRI output. Options for implementation of the statistical variations in software that can be run with the IRI model are described. Finally, we provide example applications including thrust estimates for tethered satellites and specification of sunrise Ne, Te conditions required to support spacecraft charging issues for satellites with high voltage solar arrays.

  14. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  15. A Simple Method for Deriving the Confidence Regions for the Penalized Cox’s Model via the Minimand Perturbation†

    PubMed Central

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496

  16. A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation.

    PubMed

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.

  17. REVIEW OF INDOOR EMISSION SOURCE MODELS: PART 2. PARAMETER ESTIMATION

    EPA Science Inventory

    This review consists of two sections. Part I provides an overview of 46 indoor emission source models. Part 2 (this paper) focuses on parameter estimation, a topic that is critical to modelers but has never been systematically discussed. A perfectly valid model may not be a usefu...

  18. Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...

  19. Specifying and Refining a Complex Measurement Model.

    ERIC Educational Resources Information Center

    Levy, Roy; Mislevy, Robert J.

    This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…

  20. Hierarchical Bayesian Model (HBM)-Derived Estimates of Air Quality for 2004 - Annual Report

    EPA Science Inventory

    This report describes EPA's Hierarchical Bayesian model-generated (HBM) estimates of O3 and PM2.5 concentrations throughout the continental United States during the 2004 calendar year. HBM estimates provide the spatial and temporal variance of O3 ...

  1. EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) A PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC ( PBPK/PD ) MODEL FOR ASSESSING HUMAN EXPOSURE AND RISK

    EPA Science Inventory

    The Exposure Related Dose Estimating Model (ERDEM) is a PBPK/PD modeling system that was developed by EPA's National Exposure Research Laboratory (NERL). The ERDEM framework provides the flexibility either to use existing models and to build new PBPK and PBPK/PD models to address...

  2. Estimation of group means when adjusting for covariates in generalized linear models.

    PubMed

    Qu, Yongming; Luo, Junxiang

    2015-01-01

    Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Mars Rover/Sample Return - Phase A cost estimation

    NASA Technical Reports Server (NTRS)

    Stancati, Michael L.; Spadoni, Daniel J.

    1990-01-01

    This paper presents a preliminary cost estimate for the design and development of the Mars Rover/Sample Return (MRSR) mission. The estimate was generated using a modeling tool specifically built to provide useful cost estimates from design parameters of the type and fidelity usually available during early phases of mission design. The model approach and its application to MRSR are described.

  4. Restoration of Monotonicity Respecting in Dynamic Regression

    PubMed Central

    Huang, Yijian

    2017-01-01

    Dynamic regression models, including the quantile regression model and Aalen’s additive hazards model, are widely adopted to investigate evolving covariate effects. Yet lack of monotonicity respecting with standard estimation procedures remains an outstanding issue. Advances have recently been made, but none provides a complete resolution. In this article, we propose a novel adaptive interpolation method to restore monotonicity respecting, by successively identifying and then interpolating nearest monotonicity-respecting points of an original estimator. Under mild regularity conditions, the resulting regression coefficient estimator is shown to be asymptotically equivalent to the original. Our numerical studies have demonstrated that the proposed estimator is much more smooth and may have better finite-sample efficiency than the original as well as, when available as only in special cases, other competing monotonicity-respecting estimators. Illustration with a clinical study is provided. PMID:29430068

  5. Muscle parameters estimation based on biplanar radiography.

    PubMed

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

  6. Streamflow and Nutrient Fluxes of the Mississippi-Atchafalaya River Basin and Subbasins for the Period of Record Through 2005

    USGS Publications Warehouse

    Aulenbach, Brent T.; Buxton, Herbert T.; Battaglin, William A.; Coupe, Richard H.

    2007-01-01

    U.S. Geological Survey has monitored streamflow and water quality systematically in the Mississippi-Atchafalaya River Basin (MARB) for more than five decades. This report provides streamflow and estimates of nutrient delivery (flux) to the Gulf of Mexico from both the Atchafalaya River and the main stem of the Mississippi River. This report provides streamflow and nutrient flux estimates for nine major subbasins of the Mississippi River. This report also provides streamflow and flux estimates for 21 selected subbasins of various sizes, hydrology, land use, and geographic location within the Basin. The information is provided at each station for the period for which sufficient water-quality data are available to make statistically based flux estimates (starting as early as water year1 1960 and going through water year 2005). Nutrient fluxes are estimated using the adjusted maximum likelihood estimate, a type of regression-model method; nutrient fluxes to the Gulf of Mexico also are estimated using the composite method. Regression models were calibrated using a 5-year moving calibration period; the model was used to estimate the last year of the calibration period. Nutrient flux estimates are provided for six water-quality constituents: dissolved nitrite plus nitrate, total organic nitrogen plus ammonia nitrogen (total Kjeldahl nitrogen), dissolved ammonia, total phosphorous, dissolved orthophosphate, and dissolved silica. Additionally, the contribution of streamflow and net nutrient flux for five large subbasins comprising the MARB were determined from streamflow and nutrient fluxes from seven of the aforementioned major subbasins. These five large subbasins are: 1. Lower Mississippi, 2. Upper Mississippi, 3. Ohio/Tennessee, 4. Missouri, and 5. Arkansas/Red.

  7. Testing Software Development Project Productivity Model

    NASA Astrophysics Data System (ADS)

    Lipkin, Ilya

    Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control, Simulation and etc... This research validates findings from previous work concerning software project productivity and leverages said results in this study. The hypothesized project productivity model provides statistical support and validation of expert opinions used by practitioners in the field of software project estimation.

  8. Applying a particle filtering technique for canola crop growth stage estimation in Canada

    NASA Astrophysics Data System (ADS)

    Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi

    2017-10-01

    Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.

  9. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  10. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.

    PubMed

    Jonsen, Ian

    2016-02-08

    State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.

  11. On the internal target model in a tracking task

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Baron, S.

    1981-01-01

    An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.

  12. Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation

    NASA Astrophysics Data System (ADS)

    Lim, Tae W.

    2015-06-01

    A modeling process to simulate point cloud range data that a lidar (light detection and ranging) sensor produces is presented in this paper in order to support the development of non-cooperative pose (relative attitude and position) estimation approaches which will help improve proximity operation capabilities between two adjacent vehicles. The algorithms in the modeling process were based on the homogeneous transformation, which has been employed extensively in robotics and computer graphics, as well as in recently developed pose estimation algorithms. Using a flash lidar in a laboratory testing environment, point cloud data of a test article was simulated and compared against the measured point cloud data. The simulated and measured data sets match closely, validating the modeling process. The modeling capability enables close examination of the characteristics of point cloud images of an object as it undergoes various translational and rotational motions. Relevant characteristics that will be crucial in non-cooperative pose estimation were identified such as shift, shadowing, perspective projection, jagged edges, and differential point cloud density. These characteristics will have to be considered in developing effective non-cooperative pose estimation algorithms. The modeling capability will allow extensive non-cooperative pose estimation performance simulations prior to field testing, saving development cost and providing performance metrics of the pose estimation concepts and algorithms under evaluation. The modeling process also provides "truth" pose of the test objects with respect to the sensor frame so that the pose estimation error can be quantified.

  13. Scale effects on the evapotranspiration estimation over a water-controlled Mediterranean ecosystem and its influence on hydrological modelling

    NASA Astrophysics Data System (ADS)

    Carpintero, Elisabet; González-Dugo, María P.; José Polo, María; Hain, Christopher; Nieto, Héctor; Gao, Feng; Andreu, Ana; Kustas, William; Anderson, Martha

    2017-04-01

    The integration of currently available satellite data into surface energy balance models can provide estimates of evapotranspiration (ET) with spatial and temporal resolutions determined by sensor characteristics. The use of data fusion techniques may increase the temporal resolution of these estimates using multiple satellites, providing a more frequent ET monitoring for hydrological purposes. The objective of this work is to analyze the effects of pixel resolution on the estimation of evapotranspiration using different remote sensing platforms, and to provide continuous monitoring of ET over a water-controlled ecosystem, the Holm oak savanna woodland known as dehesa. It is an agroforestry system with a complex canopy structure characterized by widely-spaced oak trees combined with crops, pasture and shrubs. The study was carried out during two years, 2013 and 2014, combining ET estimates at different spatial and temporal resolutions and applying data fusion techniques for a frequent monitoring of water use at fine spatial resolution. A global and daily ET product at 5 km resolution, developed with the ALEXI model using MODIS day-night temperature difference (Anderson et al., 2015a) was used as a starting point. The associated flux disaggregation scheme, DisALEXI (Norman et al., 2003), was later applied to constrain higher resolution ET from both MODIS and Landsat 7/8 images. The Climate Forecast System Reanalysis (CFSR) provided the meteorological data. Finally, a data fusion technique, the STARFM model (Gao et al., 2006), was applied to fuse MODIS and Landsat ET maps in order to obtain daily ET at 30 m resolution. These estimates were validated and analyzed at two different scales: at local scale over a dehesa experimental site and at watershed scale with a predominant Mediterranean oak savanna landscape, both located in Southern Spain. Local ET estimates from the modeling system were validated with measurements provided by an eddy covariance tower installed in the dehesa (38 ° 12 'N, 4 ° 17' W, 736 m a.s.l.). The results supported the ability of ALEXI/DisALEXI model to accurately estimate turbulent and radiative fluxes over this complex landscape, both at 1 Km and at 30 m spatial resolution. The application of the STARFM model gave significant improvement in capturing the spatio-temporal heterogeneity of ET over the different seasons, compared with traditional interpolation methods using MODIS and Landsat ET data. At basin scale, the physically-based distributed hydrological model WiMMed has been applied to evaluate ET estimates. This model focuses on the spatial interpolation of the meteorological variables and the physical modelling of the daily water balance at the cell and watershed scale, using daily streamflow rates measured at the watershed outlet for final comparison.

  14. Building occupancy simulation and data assimilation using a graph-based agent-oriented model

    NASA Astrophysics Data System (ADS)

    Rai, Sanish; Hu, Xiaolin

    2018-07-01

    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodkin, J.L.; Udevitz, M.S.

    The authors developed an analytical model (intersection model) to estimate the exposure of sea otters (Enhydra lutris), to oil from the Exxon Valdez oil spill. The authors applied estimated and assumed exposure dependent mortality rates to the Kenai Peninsula sea otter population to provide examples of the application of the model in estimating sea otter mortality. The intersection model requires three distinct types of data: (1) distribution, abundance, and movements of oil, (2) abundance and distribution of sea otters, and (3) sea otter mortality rates relative to oil exposure. Initial output of the model is an estimate of exposure ofmore » otters to oil. Exposure is measured in amount and duration of oil near an otter`s observed location (intersections). The authors provide two examples of the model using different assumptions about the relation between exposure and mortality. Because of an apparent non-linear relation between the degree of oiling and survival of otters from rehabilitation, output from the authors` examples are likely biased.« less

  16. Astrometric and Photometric Data Fusion for Mass and Surface Material Estimation using Refined Bidirectional Reflectance Distribution Functions-Solar Radiation Pressure Model

    DTIC Science & Technology

    2013-09-01

    model and the BRDF in the SRP model are not consistent with each other, then the resulting estimated albedo-areas and mass are inaccurate and biased...This work studies the use of physically consistent BRDF -SRP models for mass estimation. Simulation studies are used to provide an indication of the...benefits of using these new models . An unscented Kalman filter approach that includes BRDF and mass parameters in the state vector is used. The

  17. Using airborne laser altimetry to determine fuel models for estimating fire behavior

    Treesearch

    Carl A. Seielstad; Lloyd P. Queen

    2003-01-01

    Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...

  18. Estimating Contraceptive Prevalence Using Logistics Data for Short-Acting Methods: Analysis Across 30 Countries.

    PubMed

    Cunningham, Marc; Bock, Ariella; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana

    2015-09-01

    Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. © Cunningham et al.

  19. Estimating Contraceptive Prevalence Using Logistics Data for Short-Acting Methods: Analysis Across 30 Countries

    PubMed Central

    Cunningham, Marc; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana

    2015-01-01

    Background: Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Methods: Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. Results: For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Conclusions: Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. PMID:26374805

  20. Software Development Cost Estimation Executive Summary

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus M.; Menzies, Tim

    2006-01-01

    Identify simple fully validated cost models that provide estimation uncertainty with cost estimate. Based on COCOMO variable set. Use machine learning techniques to determine: a) Minimum number of cost drivers required for NASA domain based cost models; b) Minimum number of data records required and c) Estimation Uncertainty. Build a repository of software cost estimation information. Coordinating tool development and data collection with: a) Tasks funded by PA&E Cost Analysis; b) IV&V Effort Estimation Task and c) NASA SEPG activities.

  1. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  2. Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.

  3. Exploring the Impact of Different Input Data Types on Soil Variable Estimation Using the ICRAF-ISRIC Global Soil Spectral Database.

    PubMed

    Aitkenhead, Matt J; Black, Helaina I J

    2018-02-01

    Using the International Centre for Research in Agroforestry-International Soil Reference and Information Centre (ICRAF-ISRIC) global soil spectroscopy database, models were developed to estimate a number of soil variables using different input data types. These input types included: (1) site data only; (2) visible-near-infrared (Vis-NIR) diffuse reflectance spectroscopy only; (3) combined site and Vis-NIR data; (4) red-green-blue (RGB) color data only; and (5) combined site and RGB color data. The models produced variable estimation accuracy, with RGB only being generally worst and spectroscopy plus site being best. However, we showed that for certain variables, estimation accuracy levels achieved with the "site plus RGB input data" were sufficiently good to provide useful estimates (r 2  > 0.7). These included major elements (Ca, Si, Al, Fe), organic carbon, and cation exchange capacity. Estimates for bulk density, contrast-to-noise (C/N), and P were moderately good, but K was not well estimated using this model type. For the "spectra plus site" model, many more variables were well estimated, including many that are important indicators for agricultural productivity and soil health. Sum of cation, electrical conductivity, Si, Ca, and Al oxides, and C/N ratio were estimated using this approach with r 2 values > 0.9. This work provides a mechanism for identifying the cost-effectiveness of using different model input data, with associated costs, for estimating soil variables to required levels of accuracy.

  4. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation

    NASA Astrophysics Data System (ADS)

    Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.

    2018-05-01

    Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.

  5. Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.

  6. A hierarchical model for estimating change in American Woodcock populations

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Kendall, W.L.; Kelley, J.R.; Niven, D.K.

    2008-01-01

    The Singing-Ground Survey (SGS) is a primary source of information on population change for American woodcock (Scolopax minor). We analyzed the SGS using a hierarchical log-linear model and compared the estimates of change and annual indices of abundance to a route regression analysis of SGS data. We also grouped SGS routes into Bird Conservation Regions (BCRs) and estimated population change and annual indices using BCRs within states and provinces as strata. Based on the hierarchical model?based estimates, we concluded that woodcock populations were declining in North America between 1968 and 2006 (trend = -0.9%/yr, 95% credible interval: -1.2, -0.5). Singing-Ground Survey results are generally similar between analytical approaches, but the hierarchical model has several important advantages over the route regression. Hierarchical models better accommodate changes in survey efficiency over time and space by treating strata, years, and observers as random effects in the context of a log-linear model, providing trend estimates that are derived directly from the annual indices. We also conducted a hierarchical model analysis of woodcock data from the Christmas Bird Count and the North American Breeding Bird Survey. All surveys showed general consistency in patterns of population change, but the SGS had the shortest credible intervals. We suggest that population management and conservation planning for woodcock involving interpretation of the SGS use estimates provided by the hierarchical model.

  7. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-05-01

    MIXREG is a program that provides estimates for a mixed-effects regression model (MRM) for normally-distributed response data including autocorrelated errors. This model can be used for analysis of unbalanced longitudinal data, where individuals may be measured at a different number of timepoints, or even at different timepoints. Autocorrelated errors of a general form or following an AR(1), MA(1), or ARMA(1,1) form are allowable. This model can also be used for analysis of clustered data, where the mixed-effects model assumes data within clusters are dependent. The degree of dependency is estimated jointly with estimates of the usual model parameters, thus adjusting for clustering. MIXREG uses maximum marginal likelihood estimation, utilizing both the EM algorithm and a Fisher-scoring solution. For the scoring solution, the covariance matrix of the random effects is expressed in its Gaussian decomposition, and the diagonal matrix reparameterized using the exponential transformation. Estimation of the individual random effects is accomplished using an empirical Bayes approach. Examples illustrating usage and features of MIXREG are provided.

  8. Local Spatial Obesity Analysis and Estimation Using Online Social Network Sensors.

    PubMed

    Sun, Qindong; Wang, Nan; Li, Shancang; Zhou, Hongyi

    2018-03-15

    Recently, the online social networks (OSNs) have received considerable attentions as a revolutionary platform to offer users massive social interaction among users that enables users to be more involved in their own healthcare. The OSNs have also promoted increasing interests in the generation of analytical, data models in health informatics. This paper aims at developing an obesity identification, analysis, and estimation model, in which each individual user is regarded as an online social network 'sensor' that can provide valuable health information. The OSN-based obesity analytic model requires each sensor node in an OSN to provide associated features, including dietary habit, physical activity, integral/incidental emotions, and self-consciousness. Based on the detailed measurements on the correlation of obesity and proposed features, the OSN obesity analytic model is able to estimate the obesity rate in certain urban areas and the experimental results demonstrate a high success estimation rate. The measurements and estimation experimental findings created by the proposed obesity analytic model show that the online social networks could be used in analyzing the local spatial obesity problems effectively. Copyright © 2018. Published by Elsevier Inc.

  9. The use of a robust capture-recapture design in small mammal population studies: A field example with Microtus pennsylvanicus

    USGS Publications Warehouse

    Nichols, James D.; Pollock, Kenneth H.; Hines, James E.

    1984-01-01

    The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.

  10. Hydrologic Record Extension of Water-Level Data in the Everglades Depth Estimation Network (EDEN) Using Artificial Neural Network Models, 2000-2006

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.

    2007-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface models designed to provide scientists, engineers, and water-resource managers with current (2000-present) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystem Science provides support for EDEN and the goal of providing quality assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the water-surface models, 25 real-time water-level gaging stations were added to the network of 253 established water-level gaging stations. To incorporate the data from the newly added stations to the 7-year EDEN database in the greater Everglades, the short-term water-level records (generally less than 1 year) needed to be simulated back in time (hindcasted) to be concurrent with data from the established gaging stations in the database. A three-step modeling approach using artificial neural network models was used to estimate the water levels at the new stations. The artificial neural network models used static variables that represent the gaging station location and percent vegetation in addition to dynamic variables that represent water-level data from the established EDEN gaging stations. The final step of the modeling approach was to simulate the computed error of the initial estimate to increase the accuracy of the final water-level estimate. The three-step modeling approach for estimating water levels at the new EDEN gaging stations produced satisfactory results. The coefficients of determination (R2) for 21 of the 25 estimates were greater than 0.95, and all of the estimates (25 of 25) were greater than 0.82. The model estimates showed good agreement with the measured data. For some new EDEN stations with limited measured data, the record extension (hindcasts) included periods beyond the range of the data used to train the artificial neural network models. The comparison of the hindcasts with long-term water-level data proximal to the new EDEN gaging stations indicated that the water-level estimates were reasonable. The percent model error (root mean square error divided by the range of the measured data) was less than 6 percent, and for the majority of stations (20 of 25), the percent model error was less than 1 percent.

  11. Carbon footprint estimator, phase II : volume I - GASCAP model.

    DOT National Transportation Integrated Search

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  12. What’s Driving Uncertainty? The Model or the Model Parameters (What’s Driving Uncertainty? The influences of model and model parameters in data analysis)

    DOE PAGES

    Anderson-Cook, Christine Michaela

    2017-03-01

    Here, one of the substantial improvements to the practice of data analysis in recent decades is the change from reporting just a point estimate for a parameter or characteristic, to now including a summary of uncertainty for that estimate. Understanding the precision of the estimate for the quantity of interest provides better understanding of what to expect and how well we are able to predict future behavior from the process. For example, when we report a sample average as an estimate of the population mean, it is good practice to also provide a confidence interval (or credible interval, if youmore » are doing a Bayesian analysis) to accompany that summary. This helps to calibrate what ranges of values are reasonable given the variability observed in the sample and the amount of data that were included in producing the summary.« less

  13. Bayesian averaging over Decision Tree models for trauma severity scoring.

    PubMed

    Schetinin, V; Jakaite, L; Krzanowski, W

    2018-01-01

    Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Gautam, D.K.; Tokar, S.A.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32000km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC-RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC-RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC-RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction. ?? 2011 The Authors. Journal of Flood Risk Management ?? 2011 The Chartered Institution of Water and Environmental Management.

  15. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Artan, Guleid A.; Tokar, S.A.; Gautam, D.K.; Bajracharya, S.R.; Shrestha, M.S.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32 000 km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC_RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC_RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC_RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction.

  16. Classes of Split-Plot Response Surface Designs for Equivalent Estimation

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Kowalski, Scott M.; Vining, G. Geoffrey

    2006-01-01

    When planning an experimental investigation, we are frequently faced with factors that are difficult or time consuming to manipulate, thereby making complete randomization impractical. A split-plot structure differentiates between the experimental units associated with these hard-to-change factors and others that are relatively easy-to-change and provides an efficient strategy that integrates the restrictions imposed by the experimental apparatus. Several industrial and scientific examples are presented to illustrate design considerations encountered in the restricted randomization context. In this paper, we propose classes of split-plot response designs that provide an intuitive and natural extension from the completely randomized context. For these designs, the ordinary least squares estimates of the model are equivalent to the generalized least squares estimates. This property provides best linear unbiased estimators and simplifies model estimation. The design conditions that allow for equivalent estimation are presented enabling design construction strategies to transform completely randomized Box-Behnken, equiradial, and small composite designs into a split-plot structure.

  17. Quality and provider choice: a multinomial logit-least-squares model with selectivity.

    PubMed Central

    Haas-Wilson, D; Savoca, E

    1990-01-01

    A Federal Trade Commission survey of contact lens wearers is used to estimate a multinomial logit-least-squares model of the joint determination of provider choice and quality of care in the contact lens industry. The effect of personal and industry characteristics on a consumer's choice among three types of providers--opticians, ophthalmologists, and optometrists--is estimated via multinomial logit. The regression model of the quality of care has two features that distinguish it from previous work in the area. First, it uses an outcome rather than a structural or process measure of quality. Quality is measured as an index of the presence of seven potentially pathological eye conditions caused by poorly fitted lenses. Second, the model controls for possible selection bias that may arise from the fact that the sample observations on quality are generated by consumers' nonrandom choices of providers. The multinomial logit estimates of provider choice indicate that professional regulations limiting the commercial practices of optometrists shift demand for contact lens services away from optometrists toward ophthalmologists. Further, consumers are more likely to have their lenses fitted by opticians in states that require the licensing of opticians. The regression analysis of variations in quality across provider types shows a strong positive selection bias in the estimate of the quality of care received by consumers of ophthalmologists' services. Failure to control for this selection bias results in an overestimate of the quality of care provided by ophthalmologists. PMID:2312308

  18. Survival curve estimation with dependent left truncated data using Cox's model.

    PubMed

    Mackenzie, Todd

    2012-10-19

    The Kaplan-Meier and closely related Lynden-Bell estimators are used to provide nonparametric estimation of the distribution of a left-truncated random variable. These estimators assume that the left-truncation variable is independent of the time-to-event. This paper proposes a semiparametric method for estimating the marginal distribution of the time-to-event that does not require independence. It models the conditional distribution of the time-to-event given the truncation variable using Cox's model for left truncated data, and uses inverse probability weighting. We report the results of simulations and illustrate the method using a survival study.

  19. Cost-estimating for commercial digital printing

    NASA Astrophysics Data System (ADS)

    Keif, Malcolm G.

    2007-01-01

    The purpose of this study is to document current cost-estimating practices used in commercial digital printing. A research study was conducted to determine the use of cost-estimating in commercial digital printing companies. This study answers the questions: 1) What methods are currently being used to estimate digital printing? 2) What is the relationship between estimating and pricing digital printing? 3) To what extent, if at all, do digital printers use full-absorption, all-inclusive hourly rates for estimating? Three different digital printing models were identified: 1) Traditional print providers, who supplement their offset presswork with digital printing for short-run color and versioned commercial print; 2) "Low-touch" print providers, who leverage the power of the Internet to streamline business transactions with digital storefronts; 3) Marketing solutions providers, who see printing less as a discrete manufacturing process and more as a component of a complete marketing campaign. Each model approaches estimating differently. Understanding and predicting costs can be extremely beneficial. Establishing a reliable system to estimate those costs can be somewhat challenging though. Unquestionably, cost-estimating digital printing will increase in relevance in the years ahead, as margins tighten and cost knowledge becomes increasingly more critical.

  20. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Bourassa, Norm; Rainer, Leo

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  1. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Bourassa, Norm; Rainer, Leo

    2016-04-22

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  2. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    PubMed

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  3. Estimated monthly streamflows for selected locations on the Kabul and Logar Rivers, Aynak copper, cobalt, and chromium area of interest, Afghanistan, 1951-2010

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.

  4. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  5. Multi-scale occupancy estimation and modelling using multiple detection methods

    USGS Publications Warehouse

    Nichols, James D.; Bailey, Larissa L.; O'Connell, Allan F.; Talancy, Neil W.; Grant, Evan H. Campbell; Gilbert, Andrew T.; Annand, Elizabeth M.; Husband, Thomas P.; Hines, James E.

    2008-01-01

    Occupancy estimation and modelling based on detection–nondetection data provide an effective way of exploring change in a species’ distribution across time and space in cases where the species is not always detected with certainty. Today, many monitoring programmes target multiple species, or life stages within a species, requiring the use of multiple detection methods. When multiple methods or devices are used at the same sample sites, animals can be detected by more than one method.We develop occupancy models for multiple detection methods that permit simultaneous use of data from all methods for inference about method-specific detection probabilities. Moreover, the approach permits estimation of occupancy at two spatial scales: the larger scale corresponds to species’ use of a sample unit, whereas the smaller scale corresponds to presence of the species at the local sample station or site.We apply the models to data collected on two different vertebrate species: striped skunks Mephitis mephitis and red salamanders Pseudotriton ruber. For striped skunks, large-scale occupancy estimates were consistent between two sampling seasons. Small-scale occupancy probabilities were slightly lower in the late winter/spring when skunks tend to conserve energy, and movements are limited to males in search of females for breeding. There was strong evidence of method-specific detection probabilities for skunks. As anticipated, large- and small-scale occupancy areas completely overlapped for red salamanders. The analyses provided weak evidence of method-specific detection probabilities for this species.Synthesis and applications. Increasingly, many studies are utilizing multiple detection methods at sampling locations. The modelling approach presented here makes efficient use of detections from multiple methods to estimate occupancy probabilities at two spatial scales and to compare detection probabilities associated with different detection methods. The models can be viewed as another variation of Pollock's robust design and may be applicable to a wide variety of scenarios where species occur in an area but are not always near the sampled locations. The estimation approach is likely to be especially useful in multispecies conservation programmes by providing efficient estimates using multiple detection devices and by providing device-specific detection probability estimates for use in survey design.

  6. Estimation of density of mongooses with capture-recapture and distance sampling

    USGS Publications Warehouse

    Corn, J.L.; Conroy, M.J.

    1998-01-01

    We captured mongooses (Herpestes javanicus) in live traps arranged in trapping webs in Antigua, West Indies, and used capture-recapture and distance sampling to estimate density. Distance estimation and program DISTANCE were used to provide estimates of density from the trapping-web data. Mean density based on trapping webs was 9.5 mongooses/ha (range, 5.9-10.2/ha); estimates had coefficients of variation ranging from 29.82-31.58% (X?? = 30.46%). Mark-recapture models were used to estimate abundance, which was converted to density using estimates of effective trap area. Tests of model assumptions provided by CAPTURE indicated pronounced heterogeneity in capture probabilities and some indication of behavioral response and variation over time. Mean estimated density was 1.80 mongooses/ha (range, 1.37-2.15/ha) with estimated coefficients of variation of 4.68-11.92% (X?? = 7.46%). Estimates of density based on mark-recapture data depended heavily on assumptions about animal home ranges; variances of densities also may be underestimated, leading to unrealistically narrow confidence intervals. Estimates based on trap webs require fewer assumptions, and estimated variances may be a more realistic representation of sampling variation. Because trap webs are established easily and provide adequate data for estimation in a few sample occasions, the method should be efficient and reliable for estimating densities of mongooses.

  7. Population models for passerine birds: structure, parameterization, and analysis

    USGS Publications Warehouse

    Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

  8. A hidden Markov model for reconstructing animal paths from solar geolocation loggers using templates for light intensity.

    PubMed

    Rakhimberdiev, Eldar; Winkler, David W; Bridge, Eli; Seavy, Nathaniel E; Sheldon, Daniel; Piersma, Theunis; Saveliev, Anatoly

    2015-01-01

    Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology.

  9. Methods to assess performance of models estimating risk of death in intensive care patients: a review.

    PubMed

    Cook, D A

    2006-04-01

    Models that estimate the probability of death of intensive care unit patients can be used to stratify patients according to the severity of their condition and to control for casemix and severity of illness. These models have been used for risk adjustment in quality monitoring, administration, management and research and as an aid to clinical decision making. Models such as the Mortality Prediction Model family, SAPS II, APACHE II, APACHE III and the organ system failure models provide estimates of the probability of in-hospital death of ICU patients. This review examines methods to assess the performance of these models. The key attributes of a model are discrimination (the accuracy of the ranking in order of probability of death) and calibration (the extent to which the model's prediction of probability of death reflects the true risk of death). These attributes should be assessed in existing models that predict the probability of patient mortality, and in any subsequent model that is developed for the purposes of estimating these probabilities. The literature contains a range of approaches for assessment which are reviewed and a survey of the methodologies used in studies of intensive care mortality models is presented. The systematic approach used by Standards for Reporting Diagnostic Accuracy provides a framework to incorporate these theoretical considerations of model assessment and recommendations are made for evaluation and presentation of the performance of models that estimate the probability of death of intensive care patients.

  10. Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.; Conroy, M.J.

    2002-01-01

    This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples

  11. Incorporating movement patterns to improve survival estimates for juvenile bull trout

    USGS Publications Warehouse

    Bowerman, Tracy; Budy, Phaedra

    2012-01-01

    Populations of many fish species are sensitive to changes in vital rates during early life stages, but our understanding of the factors affecting growth, survival, and movement patterns is often extremely limited for juvenile fish. These critical information gaps are particularly evident for bull trout Salvelinus confluentus, a threatened Pacific Northwest char. We combined several active and passive mark–recapture and resight techniques to assess migration rates and estimate survival for juvenile bull trout (70–170 mm total length). We evaluated the relative performance of multiple survival estimation techniques by comparing results from a common Cormack–Jolly–Seber (CJS) model, the less widely used Barker model, and a simple return rate (an index of survival). Juvenile bull trout of all sizes emigrated from their natal habitat throughout the year, and thereafter migrated up to 50 km downstream. With the CJS model, high emigration rates led to an extreme underestimate of apparent survival, a combined estimate of site fidelity and survival. In contrast, the Barker model, which allows survival and emigration to be modeled as separate parameters, produced estimates of survival that were much less biased than the return rate. Estimates of age-class-specific annual survival from the Barker model based on all available data were 0.218±0.028 (estimate±SE) for age-1 bull trout and 0.231±0.065 for age-2 bull trout. This research demonstrates the importance of incorporating movement patterns into survival analyses, and we provide one of the first field-based estimates of juvenile bull trout annual survival in relatively pristine rearing conditions. These estimates can provide a baseline for comparison with future studies in more impacted systems and will help managers develop reliable stage-structured population models to evaluate future recovery strategies.

  12. Impact of the time scale of model sensitivity response on coupled model parameter estimation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu

    2017-11-01

    That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.

  13. Urban air quality estimation study, phase 1

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1976-01-01

    Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed.

  14. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution.

    PubMed

    Baele, Guy; Lemey, Philippe; Vansteelandt, Stijn

    2013-03-06

    Accurate model comparison requires extensive computation times, especially for parameter-rich models of sequence evolution. In the Bayesian framework, model selection is typically performed through the evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often, each model's marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from errors associated with each of these independent estimation processes. We here assess the original 'model-switch' path sampling approach for direct Bayes factor estimation in phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing models, thereby eliminating the need to calculate each model's marginal likelihood independently. Further, we provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect more subtle details of the evolutionary process. We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the latter systematically overestimate the performance of high-dimensional models, which we show can lead to erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for high-dimensional models requires much more computational effort than suggested in recent studies on marginal likelihood estimation.

  15. Approaches in highly parameterized inversion - PEST++, a Parameter ESTimation code optimized for large environmental models

    USGS Publications Warehouse

    Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.

    2012-01-01

    An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.

  16. Estimating solar ultraviolet irradiance (290-385 nm) by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    NASA Astrophysics Data System (ADS)

    Foyo-Moreno, I.; Vida, J.; Olmo, F. J.; Alados-Arboledas, L.

    2000-11-01

    Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290-385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.

  17. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  18. Using a multinomial tree model for detecting mixtures in perceptual detection

    PubMed Central

    Chechile, Richard A.

    2014-01-01

    In the area of memory research there have been two rival approaches for memory measurement—signal detection theory (SDT) and multinomial processing trees (MPT). Both approaches provide measures for the quality of the memory representation, and both approaches provide for corrections for response bias. In recent years there has been a strong case advanced for the MPT approach because of the finding of stochastic mixtures on both target-present and target-absent tests. In this paper a case is made that perceptual detection, like memory recognition, involves a mixture of processes that are readily represented as a MPT model. The Chechile (2004) 6P memory measurement model is modified in order to apply to the case of perceptual detection. This new MPT model is called the Perceptual Detection (PD) model. The properties of the PD model are developed, and the model is applied to some existing data of a radiologist examining CT scans. The PD model brings out novel features that were absent from a standard SDT analysis. Also the topic of optimal parameter estimation on an individual-observer basis is explored with Monte Carlo simulations. These simulations reveal that the mean of the Bayesian posterior distribution is a more accurate estimator than the corresponding maximum likelihood estimator (MLE). Monte Carlo simulations also indicate that model estimates based on only the data from an individual observer can be improved upon (in the sense of being more accurate) by an adjustment that takes into account the parameter estimate based on the data pooled across all the observers. The adjustment of the estimate for an individual is discussed as an analogous statistical effect to the improvement over the individual MLE demonstrated by the James–Stein shrinkage estimator in the case of the multiple-group normal model. PMID:25018741

  19. Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model

    NASA Astrophysics Data System (ADS)

    Ahlgren, K.; Li, X.

    2017-12-01

    Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model provides an additional metric to assess the performance of each bias estimation method. The geoid model accuracies are assessed using the two GSVS lines and GPS-leveling data across the United States.

  20. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  1. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change.

    PubMed

    Garrard, Georgia E; McCarthy, Michael A; Vesk, Peter A; Radford, James Q; Bennett, Andrew F

    2012-01-01

    1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  2. Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billman, L.; Keyser, D.

    The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introductionmore » to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.« less

  3. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    NASA Technical Reports Server (NTRS)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  4. Comparative Analyses of MIRT Models and Software (BMIRT and flexMIRT)

    ERIC Educational Resources Information Center

    Yavuz, Guler; Hambleton, Ronald K.

    2017-01-01

    Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…

  5. Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-09-10

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  6. Finite mixture model: A maximum likelihood estimation approach on time series data

    NASA Astrophysics Data System (ADS)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  7. The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands

    NASA Astrophysics Data System (ADS)

    Hernandez, Mariano; Nearing, Mark A.; Al-Hamdan, Osama Z.; Pierson, Frederick B.; Armendariz, Gerardo; Weltz, Mark A.; Spaeth, Kenneth E.; Williams, C. Jason; Nouwakpo, Sayjro K.; Goodrich, David C.; Unkrich, Carl L.; Nichols, Mary H.; Holifield Collins, Chandra D.

    2017-11-01

    In this study, we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed against data collected from 23 runoff and sediment events in a shrub-dominated semiarid watershed in Arizona, USA. To evaluate the model, two sets of primary model parameters were determined using the RHEM V2.3 and RHEM V1.0 parameter estimation equations. Testing of the parameters indicated that RHEM V2.3 parameter estimation equations provided a 76% improvement over RHEM V1.0 parameter estimation equations. Second, the RHEM V2.3 model was calibrated to measurements from the watershed. The parameters estimated by the new equations were within the lowest and highest values of the calibrated parameter set. These results suggest that the new parameter estimation equations can be applied for this environment to predict sediment yield at the hillslope scale. Furthermore, we also applied the RHEM V2.3 to demonstrate the response of the model as a function of foliar cover and ground cover for 124 data points across Arizona and New Mexico. The dependence of average sediment yield on surface ground cover was moderately stronger than that on foliar cover. These results demonstrate that RHEM V2.3 predicts runoff volume, peak runoff, and sediment yield with sufficient accuracy for broad application to assess and manage rangeland systems.

  8. Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information

    Treesearch

    F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz

    2017-01-01

    Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (

  9. Modeling Multiplicative Error Variance: An Example Predicting Tree Diameter from Stump Dimensions in Baldcypress

    Treesearch

    Bernard R. Parresol

    1993-01-01

    In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...

  10. Regionalized rainfall-runoff model to estimate low flow indices

    NASA Astrophysics Data System (ADS)

    Garcia, Florine; Folton, Nathalie; Oudin, Ludovic

    2016-04-01

    Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.

  11. Quantifying the Model-Related Variability of Biomass Stock and Change Estimates in the Norwegian National Forest Inventory

    Treesearch

    Johannes Breidenbach; Clara Antón-Fernández; Hans Petersson; Ronald E. McRoberts; Rasmus Astrup

    2014-01-01

    National Forest Inventories (NFIs) provide estimates of forest parameters for national and regional scales. Many key variables of interest, such as biomass and timber volume, cannot be measured directly in the field. Instead, models are used to predict those variables from measurements of other field variables. Therefore, the uncertainty or variability of NFI estimates...

  12. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  13. Genomic data assimilation for estimating hybrid functional Petri net from time-course gene expression data.

    PubMed

    Nagasaki, Masao; Yamaguchi, Rui; Yoshida, Ryo; Imoto, Seiya; Doi, Atsushi; Tamada, Yoshinori; Matsuno, Hiroshi; Miyano, Satoru; Higuchi, Tomoyuki

    2006-01-01

    We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge. Obviously, this approach has the limitation in the size of network of interest. To extend the capability of the simulation model, we propose the use of data assimilation approach that was originally established in the field of geophysical simulation science. We provide genomic data assimilation framework that establishes a link between our simulation model and observed data like microarray gene expression data by using a nonlinear state space model. A key idea of our genomic data assimilation is that the unknown parameters in simulation model are converted as the parameter of the state space model and the estimates are obtained as the maximum a posteriori estimators. In the parameter estimation process, the simulation model is used to generate the system model in the state space model. Such a formulation enables us to handle both the model construction and the parameter tuning within a framework of the Bayesian statistical inferences. In particular, the Bayesian approach provides us a way of controlling overfitting during the parameter estimations that is essential for constructing a reliable biological pathway. We demonstrate the effectiveness of our approach using synthetic data. As a result, parameter estimation using genomic data assimilation works very well and the network structure is suitably selected.

  14. Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.

    2009-08-01

    The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.

  15. Estimation of metabolic energy expenditure from core temperature using a human thermoregulatory model

    USDA-ARS?s Scientific Manuscript database

    Measuring metabolic energy expenditure in humans may provide a means of monitoring and reducing obesity, estimating nutritional requirements, reducing obesity, maintaining energy balance during athletics, and modeling human thermoregulatory responses. However, measuring metabolic rate (M) is challen...

  16. Railroads and the Environment : Estimation of Fuel Consumption in Rail Transportation : Volume 1. Analytical Model

    DOT National Transportation Integrated Search

    1975-05-01

    The report describes an analytical approach to estimation of fuel consumption in rail transportation, and provides sample computer calculations suggesting the sensitivity of fuel usage to various parameters. The model used is based upon careful delin...

  17. APPLICATION OF BAYESIAN MONTE CARLO ANALYSIS TO A LAGRANGIAN PHOTOCHEMICAL AIR QUALITY MODEL. (R824792)

    EPA Science Inventory

    Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...

  18. Evaluating abundance and trends in a Hawaiian avian community using state-space analysis

    USGS Publications Warehouse

    Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben H.

    2016-01-01

    Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.

  19. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution

    PubMed Central

    2013-01-01

    Background Accurate model comparison requires extensive computation times, especially for parameter-rich models of sequence evolution. In the Bayesian framework, model selection is typically performed through the evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often, each model’s marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from errors associated with each of these independent estimation processes. Results We here assess the original ‘model-switch’ path sampling approach for direct Bayes factor estimation in phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing models, thereby eliminating the need to calculate each model’s marginal likelihood independently. Further, we provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect more subtle details of the evolutionary process. Conclusions We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the latter systematically overestimate the performance of high-dimensional models, which we show can lead to erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for high-dimensional models requires much more computational effort than suggested in recent studies on marginal likelihood estimation. PMID:23497171

  20. Estimating prefledging survival: Allowing for brood mixing and dependence among brood mates

    USGS Publications Warehouse

    Flint, Paul L.; Pollock, Kenneth H.; Thomas, Dana; Sedinger, James S.

    1995-01-01

    Estimates of juvenile survival from hatch to fledging provide important information on waterfowl productivity. We develop a model for estimating survival of young waterfowl from hatch to fledging. Our model enables interchange of individuals among broods and relaxes the assumption that individuals within broods have independent survival probabilities. The model requires repeated observations of individually identifiable adults and their offspring that are not individually identifiable. A modified Kaplan-Meier procedure (Pollock et al. 1989a,b) and a modified Mayfield procedure (Mayfield 1961, 1975; Johnson 1979) can be used under this general modeling framework, and survival rates and corresponding variances of the point estimators can be determined.

  1. Some New Results on Grubbs’ Estimators.

    DTIC Science & Technology

    1983-06-01

    8217 ESTIMATORS DENNIS A. BRINDLEY AND RALPH A. BRADLEY* Consider a two-way classification with n rows and r columns and the usual model of analysis of variance...except that the error components of the model may have heterogeneous variances, by columns. -Grubbs provided unbiased estimators Q. of a . that depend...of observations yij, i = 1, ... , n, j 1, ... , r, and the model , Yij = Ili + ij + Ej, (1) when Vi represents the mean response of row i, . represents

  2. Comparison of prospective risk estimates for postoperative complications: human vs computer model.

    PubMed

    Glasgow, Robert E; Hawn, Mary T; Hosokawa, Patrick W; Henderson, William G; Min, Sung-Joon; Richman, Joshua S; Tomeh, Majed G; Campbell, Darrell; Neumayer, Leigh A

    2014-02-01

    Surgical quality improvement tools such as NSQIP are limited in their ability to prospectively affect individual patient care by the retrospective audit and feedback nature of their design. We hypothesized that statistical models using patient preoperative characteristics could prospectively provide risk estimates of postoperative adverse events comparable to risk estimates provided by experienced surgeons, and could be useful for stratifying preoperative assessment of patient risk. This was a prospective observational cohort. Using previously developed models for 30-day postoperative mortality, overall morbidity, cardiac, thromboembolic, pulmonary, renal, and surgical site infection (SSI) complications, model and surgeon estimates of risk were compared with each other and with actual 30-day outcomes. The study cohort included 1,791 general surgery patients operated on between June 2010 and January 2012. Observed outcomes were mortality (0.2%), overall morbidity (8.2%), and pulmonary (1.3%), cardiac (0.3%), thromboembolism (0.2%), renal (0.4%), and SSI (3.8%) complications. Model and surgeon risk estimates showed significant correlation (p < 0.0001) for each outcome category. When surgeons perceived patient risk for overall morbidity to be low, the model-predicted risk and observed morbidity rates were 2.8% and 4.1%, respectively, compared with 10% and 18% in perceived high risk patients. Patients in the highest quartile of model-predicted risk accounted for 75% of observed mortality and 52% of morbidity. Across a broad range of general surgical operations, we confirmed that the model risk estimates are in fairly good agreement with risk estimates of experienced surgeons. Using these models prospectively can identify patients at high risk for morbidity and mortality, who could then be targeted for intervention to reduce postoperative complications. Published by Elsevier Inc.

  3. Combining Neural Networks with Existing Methods to Estimate 1 in 100-Year Flood Event Magnitudes

    NASA Astrophysics Data System (ADS)

    Newson, A.; See, L.

    2005-12-01

    Over the last fifteen years artificial neural networks (ANN) have been shown to be advantageous for the solution of many hydrological modelling problems. The use of ANNs for flood magnitude estimation in ungauged catchments, however, is a relatively new and under researched area. In this paper ANNs are used to make estimates of the magnitude of the 100-year flood event (Q100) for a number of ungauged catchments. The data used in this study were provided by the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH), which contains information on catchments across the UK. Sixteen catchment descriptors for 719 catchments were used to train an ANN, which was split into a training, validation and test data set. The goodness-of-fit statistics on the test data set indicated good model performance, with an r-squared value of 0.8 and a coefficient of efficiency of 79 percent. Data for twelve ungauged catchments were then put through the trained ANN to produce estimates of Q100. Two other accepted methodologies were also employed: the FEH statistical method and the FSR (Flood Studies Report) design storm technique, both of which are used to produce flood frequency estimates. The advantage of developing an ANN model is that it provides a third figure to aid a hydrologist in making an accurate estimate. For six of the twelve catchments, there was a relatively low spread between estimates. In these instances, an estimate of Q100 could be made with a fair degree of certainty. Of the remaining six catchments, three had areas greater than 1000km2, which means the FSR design storm estimate cannot be used. Armed with the ANN model and the FEH statistical method the hydrologist still has two possible estimates to consider. For these three catchments, the estimates were also fairly similar, providing additional confidence to the estimation. In summary, the findings of this study have shown that an accurate estimation of Q100 can be made using the catchment descriptors of an ungauged catchment as inputs to an ANN. It also demonstrated how the ANN Q100 estimates can be used in conjunction with a number of other estimates in order to provide a more accurate and confident estimate of Q100 at an ungauged catchment. This clearly exploits the strengths of existing methods in combination with the latest soft computing tools.

  4. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Braun, J.

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less

  5. Comparison of Prognostic and Diagnostic Approaches to Modeling Evapotranspiration in the Nile River Basin

    NASA Astrophysics Data System (ADS)

    Yilmaz, M.; Anderson, M. C.; Zaitchik, B. F.; Crow, W. T.; Hain, C.; Ozdogan, M.; Chun, J. A.

    2012-12-01

    Actual evapotranspiration (ET) can be estimated using both prognostic and diagnostic modeling approaches, providing independent yet complementary information for hydrologic applications. Both approaches have advantages and disadvantages. When provided with temporally continuous atmospheric forcing data, prognostic models offer continuous sub-daily ET information together with the full set of water and energy balance fluxes and states (i.e. soil moisture, runoff, sensible and latent heat). On the other hand, the diagnostic modeling approach provides ET estimates over regions where reliable information about available soil water is not known (e.g., due to irrigation practices or shallow ground water levels not included in the prognostic model structure, unknown soil texture or plant rooting depth, etc). Prognostic model-based ET estimates are of great interest whenever consistent and complete water budget information is required or when there is a need to project ET for climate or land use change scenarios. Diagnostic models establish a stronger link to remote sensing observations, can be applied in regions with limited or questionable atmospheric forcing data, and provide valuable observation-derived information about the current land-surface state. Analysis of independently obtained ET estimates is particularly important in data poor regions. Such comparisons can help to reduce the uncertainty in the modeled ET estimates and to exclude outliers based on physical considerations. The Nile river basin is home to tens of millions of people whose daily life depends on water extracted from the river Nile. Yet the complete basin scale water balance of the Nile has been studied only a few times, and the temporal and the spatial distribution of hydrological fluxes (particularly ET) are still a subject of active research. This is due in part to a scarcity of ground-based station data for validation. In such regions, comparison between prognostic and diagnostic model output may be a valuable model evaluation tool. Motivated by the complementary information that exists in prognostic and diagnostic energy balance modeling, as well as the need for evaluation of water consumption estimates over the Nile basin, the purpose of this study is to 1) better describe the conceptual differences between prognostic and diagnostic modeling, 2) present the potential for diagnostic models to capture important hydrologic features that are not explicitly represented in prognostic model, 3) explore the differences in these two approaches over the Nile Basin, where ground data are sparse and transnational data sharing is unreliable. More specifically, we will compare output from the Noah prognostic model and the Atmosphere-Land Exchange Inverse (ALEXI) diagnostic model generated over ground truth data-poor Nile basin. Preliminary results indicate spatially, temporally, and magnitude wise consistent flux estimates for ALEXI and NOAH over irrigated Delta region, while there are differences over river-fed wetlands.

  6. Data Service Provider Cost Estimation Tool

    NASA Technical Reports Server (NTRS)

    Fontaine, Kathy; Hunolt, Greg; Booth, Arthur L.; Banks, Mel

    2011-01-01

    The Data Service Provider Cost Estimation Tool (CET) and Comparables Database (CDB) package provides to NASA s Earth Science Enterprise (ESE) the ability to estimate the full range of year-by-year lifecycle cost estimates for the implementation and operation of data service providers required by ESE to support its science and applications programs. The CET can make estimates dealing with staffing costs, supplies, facility costs, network services, hardware and maintenance, commercial off-the-shelf (COTS) software licenses, software development and sustaining engineering, and the changes in costs that result from changes in workload. Data Service Providers may be stand-alone or embedded in flight projects, field campaigns, research or applications projects, or other activities. The CET and CDB package employs a cost-estimation-by-analogy approach. It is based on a new, general data service provider reference model that provides a framework for construction of a database by describing existing data service providers that are analogs (or comparables) to planned, new ESE data service providers. The CET implements the staff effort and cost estimation algorithms that access the CDB and generates the lifecycle cost estimate for a new data services provider. This data creates a common basis for an ESE proposal evaluator for considering projected data service provider costs.

  7. Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawding, Dan; Hillson, Todd D.

    2003-11-15

    Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The fivemore » assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch marks and lack of secondary studies made it difficult to test Jolly-Seber assumptions, necessary for unbiased estimates. We recommend that individual tags be applied to carcasses to provide a statistical basis for goodness of fit tests and ultimately model selection. Secondary or double marks should be applied to assess tag loss and male and female chum salmon carcasses should be enumerated separately. Carcass tagging population estimates at the two other sites were biased low due to limited sampling. The Area-Under-the-Curve escapement estimates at all three sites were 36% to 76% of Jolly-Seber estimates. Area-Under-the Curve estimates are likely biased low because previous assumptions that observer efficiency is 100% and residence time is 10 days proved incorrect. If managers continue to rely on Area-Under-the-Curve to estimate mainstem Columbia River spawners, a methodology is provided to develop annual estimates of observer efficiency and residence time, and to incorporate uncertainty into the Area-Under-the-Curve escapement estimate.« less

  8. Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel.

    PubMed

    Dansirikul, Chantaratsamon; Choi, Malcolm; Duffull, Stephen B

    2005-06-01

    This study was conducted to develop a method, termed 'back analysis (BA)', for converting non-compartmental variables to compartment model dependent pharmacokinetic parameters for both one- and two-compartment models. A Microsoft Excel spreadsheet was implemented with the use of Solver and visual basic functions. The performance of the BA method in estimating pharmacokinetic parameter values was evaluated by comparing the parameter values obtained to a standard modelling software program, NONMEM, using simulated data. The results show that the BA method was reasonably precise and provided low bias in estimating fixed and random effect parameters for both one- and two-compartment models. The pharmacokinetic parameters estimated from the BA method were similar to those of NONMEM estimation.

  9. Estimating sturgeon abundance in the Carolinas using side-scan sonar

    USGS Publications Warehouse

    Flowers, H. Jared; Hightower, Joseph E.

    2015-01-01

    Sturgeons (Acipenseridae) are one of the most threatened taxa worldwide, including species in North Carolina and South Carolina. Populations of Atlantic Sturgeon Acipenser oxyrinchus in the Carolinas have been significantly reduced from historical levels by a combination of intense fishing and habitat loss. There is a need for estimates of current abundance, to describe status, and for estimates of historical abundance in order to provide realistic recovery goals. In this study we used N-mixture and distance models with data acquired from side-scan sonar surveys to estimate abundance of sturgeon in six major sturgeon rivers in North Carolina and South Carolina. Estimated abundances of sturgeon greater than 1 m TL in the Carolina distinct population segment (DPS) were 2,031 using the count model and 1,912 via the distance model. The Pee Dee River had the highest overall abundance of any river at 1,944 (count model) or 1,823 (distance model). These estimates do not account for sturgeon less than 1 m TL or occurring in riverine reaches not surveyed or in marine waters. Comparing the two models, the N-mixture model produced similar estimates using less data than the distance model with only a slight reduction of estimated precision.

  10. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  11. Aeroservoelastic Uncertainty Model Identification from Flight Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    2001-01-01

    Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.

  12. Parameter identification of material constants in a composite shell structure

    NASA Technical Reports Server (NTRS)

    Martinez, David R.; Carne, Thomas G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  13. FISM 2.0: Improved Spectral Range, Resolution, and Accuracy

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2012-01-01

    The Flare Irradiance Spectral Model (FISM) was first released in 2005 to provide accurate estimates of the solar VUV (0.1-190 nm) irradiance to the Space Weather community. This model was based on TIMED SEE as well as UARS and SORCE SOLSTICE measurements, and was the first model to include a 60 second temporal variation to estimate the variations due to solar flares. Along with flares, FISM also estimates the tradition solar cycle and solar rotational variations over months and decades back to 1947. This model has been highly successful in providing driving inputs to study the affect of solar irradiance variations on the Earth's ionosphere and thermosphere, lunar dust charging, as well as the Martian ionosphere. The second version of FISM, FISM2, is currently being updated to be based on the more accurate SDO/EVE data, which will provide much more accurate estimations in the 0.1-105 nm range, as well as extending the 'daily' model variation up to 300 nm based on the SOLSTICE measurements. with the spectral resolution of SDO/EVE along with SOLSTICE and the TIMED and SORCE XPS 'model' products, the entire range from 0.1-300 nm will also be available at 0.1 nm, allowing FISM2 to be improved a similar 0.1nm spectral bins. FISM also will have a TSI component that will estimate the total radiated energy during flares based on the few TSI flares observed to date. Presented here will be initial results of the FISM2 modeling efforts, as well as some challenges that will need to be overcome in order for FISM2 to accurately model the solar variations on time scales of seconds to decades.

  14. Multiple robustness in factorized likelihood models.

    PubMed

    Molina, J; Rotnitzky, A; Sued, M; Robins, J M

    2017-09-01

    We consider inference under a nonparametric or semiparametric model with likelihood that factorizes as the product of two or more variation-independent factors. We are interested in a finite-dimensional parameter that depends on only one of the likelihood factors and whose estimation requires the auxiliary estimation of one or several nuisance functions. We investigate general structures conducive to the construction of so-called multiply robust estimating functions, whose computation requires postulating several dimension-reducing models but which have mean zero at the true parameter value provided one of these models is correct.

  15. Oceanic Fluxes of Mass, Heat and Freshwater: A Global Estimate and Perspective

    NASA Technical Reports Server (NTRS)

    MacDonald, Alison Marguerite

    1995-01-01

    Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set.

  16. ITC Recommendations for Transporter Kinetic Parameter Estimation and Translational Modeling of Transport-Mediated PK and DDIs in Humans

    PubMed Central

    Zamek-Gliszczynski, MJ; Lee, CA; Poirier, A; Bentz, J; Chu, X; Ellens, H; Ishikawa, T; Jamei, M; Kalvass, JC; Nagar, S; Pang, KS; Korzekwa, K; Swaan, PW; Taub, ME; Zhao, P; Galetin, A

    2013-01-01

    This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug–drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science. PMID:23588311

  17. Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks

    USGS Publications Warehouse

    Sutherland, Christopher; Fuller, Angela K.; Royle, J. Andrew

    2015-01-01

    The ecological distance SCR model uses spatially indexed capture-recapture data to estimate how activity patterns are influenced by landscape structure. As well as reducing bias in estimates of abundance, this approach provides biologically realistic representations of home range geometry, and direct information about species-landscape interactions. The incorporation of both structural (landscape) and functional (movement) components of connectivity provides a direct measure of species-specific landscape connectivity.

  18. Using counts to simultaneously estimate abundance and detection probabilities in a salamander community

    USGS Publications Warehouse

    Dodd, C.K.; Dorazio, R.M.

    2004-01-01

    A critical variable in both ecological and conservation field studies is determining how many individuals of a species are present within a defined sampling area. Labor intensive techniques such as capture-mark-recapture and removal sampling may provide estimates of abundance, but there are many logistical constraints to their widespread application. Many studies on terrestrial and aquatic salamanders use counts as an index of abundance, assuming that detection remains constant while sampling. If this constancy is violated, determination of detection probabilities is critical to the accurate estimation of abundance. Recently, a model was developed that provides a statistical approach that allows abundance and detection to be estimated simultaneously from spatially and temporally replicated counts. We adapted this model to estimate these parameters for salamanders sampled over a six vear period in area-constrained plots in Great Smoky Mountains National Park. Estimates of salamander abundance varied among years, but annual changes in abundance did not vary uniformly among species. Except for one species, abundance estimates were not correlated with site covariates (elevation/soil and water pH, conductivity, air and water temperature). The uncertainty in the estimates was so large as to make correlations ineffectual in predicting which covariates might influence abundance. Detection probabilities also varied among species and sometimes among years for the six species examined. We found such a high degree of variation in our counts and in estimates of detection among species, sites, and years as to cast doubt upon the appropriateness of using count data to monitor population trends using a small number of area-constrained survey plots. Still, the model provided reasonable estimates of abundance that could make it useful in estimating population size from count surveys.

  19. An ensemble approach to predicting the impact of vaccination on rotavirus disease in Niger.

    PubMed

    Park, Jaewoo; Goldstein, Joshua; Haran, Murali; Ferrari, Matthew

    2017-10-13

    Recently developed vaccines provide a new way of controlling rotavirus in sub-Saharan Africa. Models for the transmission dynamics of rotavirus are critical both for estimating current burden from imperfect surveillance and for assessing potential effects of vaccine intervention strategies. We examine rotavirus infection in the Maradi area in southern Niger using hospital surveillance data provided by Epicentre collected over two years. Additionally, a cluster survey of households in the region allows us to estimate the proportion of children with diarrhea who consulted at a health structure. Model fit and future projections are necessarily particular to a given model; thus, where there are competing models for the underlying epidemiology an ensemble approach can account for that uncertainty. We compare our results across several variants of Susceptible-Infectious-Recovered (SIR) compartmental models to quantify the impact of modeling assumptions on our estimates. Model-specific parameters are estimated by Bayesian inference using Markov chain Monte Carlo. We then use Bayesian model averaging to generate ensemble estimates of the current dynamics, including estimates of R 0 , the burden of infection in the region, as well as the impact of vaccination on both the short-term dynamics and the long-term reduction of rotavirus incidence under varying levels of coverage. The ensemble of models predicts that the current burden of severe rotavirus disease is 2.6-3.7% of the population each year and that a 2-dose vaccine schedule achieving 70% coverage could reduce burden by 39-42%. Copyright © 2017. Published by Elsevier Ltd.

  20. Estimating Lake Volume from Limited Data: A Simple GIS Approach

    EPA Science Inventory

    Lake volume provides key information for estimating residence time or modeling pollutants. Methods for calculating lake volume have relied on dated technologies (e.g. planimeters) or used potentially inaccurate assumptions (e.g. volume of a frustum of a cone). Modern GIS provid...

  1. Density estimation in a wolverine population using spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin

    2011-01-01

    Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.

  2. Data-Adaptive Bias-Reduced Doubly Robust Estimation.

    PubMed

    Vermeulen, Karel; Vansteelandt, Stijn

    2016-05-01

    Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.

  3. SURE Estimates for a Heteroscedastic Hierarchical Model

    PubMed Central

    Xie, Xianchao; Kou, S. C.; Brown, Lawrence D.

    2014-01-01

    Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic normal model, it is well known that shrinkage estimators, especially the James-Stein estimator, have good risk properties. The heteroscedastic model, though more appropriate for practical applications, is less well studied, and it is unclear what types of shrinkage estimators are superior in terms of the risk. We propose in this paper a class of shrinkage estimators based on Stein’s unbiased estimate of risk (SURE). We study asymptotic properties of various common estimators as the number of means to be estimated grows (p → ∞). We establish the asymptotic optimality property for the SURE estimators. We then extend our construction to create a class of semi-parametric shrinkage estimators and establish corresponding asymptotic optimality results. We emphasize that though the form of our SURE estimators is partially obtained through a normal model at the sampling level, their optimality properties do not heavily depend on such distributional assumptions. We apply the methods to two real data sets and obtain encouraging results. PMID:25301976

  4. New methods of testing nonlinear hypothesis using iterative NLLS estimator

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.

  5. Accounting for genotype uncertainty in the estimation of allele frequencies in autopolyploids.

    PubMed

    Blischak, Paul D; Kubatko, Laura S; Wolfe, Andrea D

    2016-05-01

    Despite the increasing opportunity to collect large-scale data sets for population genomic analyses, the use of high-throughput sequencing to study populations of polyploids has seen little application. This is due in large part to problems associated with determining allele copy number in the genotypes of polyploid individuals (allelic dosage uncertainty-ADU), which complicates the calculation of important quantities such as allele frequencies. Here, we describe a statistical model to estimate biallelic SNP frequencies in a population of autopolyploids using high-throughput sequencing data in the form of read counts. We bridge the gap from data collection (using restriction enzyme based techniques [e.g. GBS, RADseq]) to allele frequency estimation in a unified inferential framework using a hierarchical Bayesian model to sum over genotype uncertainty. Simulated data sets were generated under various conditions for tetraploid, hexaploid and octoploid populations to evaluate the model's performance and to help guide the collection of empirical data. We also provide an implementation of our model in the R package polyfreqs and demonstrate its use with two example analyses that investigate (i) levels of expected and observed heterozygosity and (ii) model adequacy. Our simulations show that the number of individuals sampled from a population has a greater impact on estimation error than sequencing coverage. The example analyses also show that our model and software can be used to make inferences beyond the estimation of allele frequencies for autopolyploids by providing assessments of model adequacy and estimates of heterozygosity. © 2015 John Wiley & Sons Ltd.

  6. An introduction to multidimensional measurement using Rasch models.

    PubMed

    Briggs, Derek C; Wilson, Mark

    2003-01-01

    The act of constructing a measure requires a number of important assumptions. Principle among these assumptions is that the construct is unidimensional. In practice there are many instances when the assumption of unidimensionality does not hold, and where the application of a multidimensional measurement model is both technically appropriate and substantively advantageous. In this paper we illustrate the usefulness of a multidimensional approach to measurement with the Multidimensional Random Coefficient Multinomial Logit (MRCML) model, an extension of the unidimensional Rasch model. An empirical example is taken from a collection of embedded assessments administered to 541 students enrolled in middle school science classes with a hands-on science curriculum. Student achievement on these assessments are multidimensional in nature, but can also be treated as consecutive unidimensional estimates, or as is most common, as a composite unidimensional estimate. Structural parameters are estimated for each model using ConQuest, and model fit is compared. Student achievement in science is also compared across models. The multidimensional approach has the best fit to the data, and provides more reliable estimates of student achievement than under the consecutive unidimensional approach. Finally, at an interpretational level, the multidimensional approach may well provide richer information to the classroom teacher about the nature of student achievement.

  7. Improving Lidar-based Aboveground Biomass Estimation with Site Productivity for Central Hardwood Forests, USA

    NASA Astrophysics Data System (ADS)

    Shao, G.; Gallion, J.; Fei, S.

    2016-12-01

    Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.

  8. College quality and hourly wages: evidence from the self-revelation model, sibling models and instrumental variables.

    PubMed

    Borgen, Nicolai T

    2014-11-01

    This paper addresses the recent discussion on confounding in the returns to college quality literature using the Norwegian case. The main advantage of studying Norway is the quality of the data. Norwegian administrative data provide information on college applications, family relations and a rich set of control variables for all Norwegian citizens applying to college between 1997 and 2004 (N = 141,319) and their succeeding wages between 2003 and 2010 (676,079 person-year observations). With these data, this paper uses a subset of the models that have rendered mixed findings in the literature in order to investigate to what extent confounding biases the returns to college quality. I compare estimates obtained using standard regression models to estimates obtained using the self-revelation model of Dale and Krueger (2002), a sibling fixed effects model and the instrumental variable model used by Long (2008). Using these methods, I consistently find increasing returns to college quality over the course of students' work careers, with positive returns only later in students' work careers. I conclude that the standard regression estimate provides a reasonable estimate of the returns to college quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  10. An integrated uncertainty analysis and data assimilation approach for improved streamflow predictions

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; He, M.; Franz, K. J.; Margulis, S. A.; Vrugt, J. A.

    2010-12-01

    The current study presents an integrated uncertainty analysis and data assimilation approach to improve streamflow predictions while simultaneously providing meaningful estimates of the associated uncertainty. Study models include the National Weather Service (NWS) operational snow model (SNOW17) and rainfall-runoff model (SAC-SMA). The proposed approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. An ensemble Kalman filter (EnKF) is configured with the DREAM-identified uncertainty structure and applied to assimilating snow water equivalent data into the SNOW17 model for improved snowmelt simulations. Snowmelt estimates then serves as an input to the SAC-SMA model to provide streamflow predictions at the basin outlet. The robustness and usefulness of the approach is evaluated for a snow-dominated watershed in the northern Sierra Mountains. This presentation describes the implementation of DREAM and EnKF into the coupled SNOW17 and SAC-SMA models and summarizes study results and findings.

  11. Spatially explicit dynamic N-mixture models

    USGS Publications Warehouse

    Zhao, Qing; Royle, Andy; Boomer, G. Scott

    2017-01-01

    Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.

  12. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  13. Cost Modeling for low-cost planetary missions

    NASA Technical Reports Server (NTRS)

    Kwan, Eric; Habib-Agahi, Hamid; Rosenberg, Leigh

    2005-01-01

    This presentation will provide an overview of the JPL parametric cost models used to estimate flight science spacecrafts and instruments. This material will emphasize the cost model approaches to estimate low-cost flight hardware, sensors, and instrumentation, and to perform cost-risk assessments. This presentation will also discuss JPL approaches to perform cost modeling and the methodologies and analyses used to capture low-cost vs. key cost drivers.

  14. Pesticide Environmental Accounting: a method for assessing the external costs of individual pesticide applications.

    PubMed

    Leach, A W; Mumford, J D

    2008-01-01

    The Pesticide Environmental Accounting (PEA) tool provides a monetary estimate of environmental and health impacts per hectare-application for any pesticide. The model combines the Environmental Impact Quotient method and a methodology for absolute estimates of external pesticide costs in UK, USA and Germany. For many countries resources are not available for intensive assessments of external pesticide costs. The model converts external costs of a pesticide in the UK, USA and Germany to Mediterranean countries. Economic and policy applications include estimating impacts of pesticide reduction policies or benefits from technologies replacing pesticides, such as sterile insect technique. The system integrates disparate data and approaches into a single logical method. The assumptions in the system provide transparency and consistency but at the cost of some specificity and precision, a reasonable trade-off for a method that provides both comparative estimates of pesticide impacts and area-based assessments of absolute impacts.

  15. Integrating field plots, lidar, and landsat time series to provide temporally consistent annual estimates of biomass from 1990 to present

    Treesearch

    Warren B. Cohen; Hans-Erik Andersen; Sean P. Healey; Gretchen G. Moisen; Todd A. Schroeder; Christopher W. Woodall; Grant M. Domke; Zhiqiang Yang; Robert E. Kennedy; Stephen V. Stehman; Curtis Woodcock; Jim Vogelmann; Zhe Zhu; Chengquan Huang

    2015-01-01

    We are developing a system that provides temporally consistent biomass estimates for national greenhouse gas inventory reporting to the United Nations Framework Convention on Climate Change. Our model-assisted estimation framework relies on remote sensing to scale from plot measurements to lidar strip samples, to Landsat time series-based maps. As a demonstration, new...

  16. Space shuttle propulsion parameter estimation using optional estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A regression analyses on tabular aerodynamic data provided. A representative aerodynamic model for coefficient estimation. It also reduced the storage requirements for the "normal' model used to check out the estimation algorithms. The results of the regression analyses are presented. The computer routines for the filter portion of the estimation algorithm and the :"bringing-up' of the SRB predictive program on the computer was developed. For the filter program, approximately 54 routines were developed. The routines were highly subsegmented to facilitate overlaying program segments within the partitioned storage space on the computer.

  17. Modeling dispersion of traffic-related pollutants in the NEXUS health study

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  18. Regression estimators for generic health-related quality of life and quality-adjusted life years.

    PubMed

    Basu, Anirban; Manca, Andrea

    2012-01-01

    To develop regression models for outcomes with truncated supports, such as health-related quality of life (HRQoL) data, and account for features typical of such data such as a skewed distribution, spikes at 1 or 0, and heteroskedasticity. Regression estimators based on features of the Beta distribution. First, both a single equation and a 2-part model are presented, along with estimation algorithms based on maximum-likelihood, quasi-likelihood, and Bayesian Markov-chain Monte Carlo methods. A novel Bayesian quasi-likelihood estimator is proposed. Second, a simulation exercise is presented to assess the performance of the proposed estimators against ordinary least squares (OLS) regression for a variety of HRQoL distributions that are encountered in practice. Finally, the performance of the proposed estimators is assessed by using them to quantify the treatment effect on QALYs in the EVALUATE hysterectomy trial. Overall model fit is studied using several goodness-of-fit tests such as Pearson's correlation test, link and reset tests, and a modified Hosmer-Lemeshow test. The simulation results indicate that the proposed methods are more robust in estimating covariate effects than OLS, especially when the effects are large or the HRQoL distribution has a large spike at 1. Quasi-likelihood techniques are more robust than maximum likelihood estimators. When applied to the EVALUATE trial, all but the maximum likelihood estimators produce unbiased estimates of the treatment effect. One and 2-part Beta regression models provide flexible approaches to regress the outcomes with truncated supports, such as HRQoL, on covariates, after accounting for many idiosyncratic features of the outcomes distribution. This work will provide applied researchers with a practical set of tools to model outcomes in cost-effectiveness analysis.

  19. Using Landsat data to estimate evapotranspiration of winter wheat

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Heilman, J. L.; Bagley, J. O.; Powers, W. L.

    1977-01-01

    Results obtained from an evapotranspiration model as applied to Kansas winter wheatfields were compared with results determined by a weighing lysimeter, and the standard deviation was found to be less than 0.5 mm/day (however, the 95% confidence interval was between plus and minus 0.2 mm/day). Model inputs are solar radiation, temperature, precipitation, and leaf area index; an equation was developed to estimate the leaf area index from Landsat data. The model provides estimates of transpiration, evaporation, and soil moisture.

  20. Yield estimation of sugarcane based on agrometeorological-spectral models

    NASA Technical Reports Server (NTRS)

    Rudorff, Bernardo Friedrich Theodor; Batista, Getulio Teixeira

    1990-01-01

    This work has the objective to assess the performance of a yield estimation model for sugarcane (Succharum officinarum). The model uses orbital gathered spectral data along with yield estimated from an agrometeorological model. The test site includes the sugarcane plantations of the Barra Grande Plant located in Lencois Paulista municipality in Sao Paulo State. Production data of four crop years were analyzed. Yield data observed in the first crop year (1983/84) were regressed against spectral and agrometeorological data of that same year. This provided the model to predict the yield for the following crop year i.e., 1984/85. The model to predict the yield of subsequent years (up to 1987/88) were developed similarly, incorporating all previous years data. The yield estimations obtained from these models explained 69, 54, and 50 percent of the yield variation in the 1984/85, 1985/86, and 1986/87 crop years, respectively. The accuracy of yield estimations based on spectral data only (vegetation index model) and on agrometeorological data only (agrometeorological model) were also investigated.

  1. Dealing with uncertainty in landscape genetic resistance models: a case of three co-occurring marsupials.

    PubMed

    Dudaniec, Rachael Y; Worthington Wilmer, Jessica; Hanson, Jeffrey O; Warren, Matthew; Bell, Sarah; Rhodes, Jonathan R

    2016-01-01

    Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model-based inference. We illustrate the approach empirically using co-occurring, woodland-preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground-dwelling antechinus (Antechinus flavipes). First, we use maximum-likelihood and a bootstrap procedure to identify the best-supported isolation-by-resistance model out of 56 models defined by linear and non-linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision-making, where dealing with uncertainty is critical. © 2015 John Wiley & Sons Ltd.

  2. Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Schweiger, A.; Maslanik, J.; Key, J.; Haefliger, M.; Weaver, R.

    1991-01-01

    In the past six months, work has continued on energy flux sensitivity studies, ice surface temperature retrievals, corrections to Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies. We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice concentration and type to improve our shorter term energy flux estimates. SSM/I derived parameters may still be applicable in longer term climatological flux characterizations. We hold promise for a system coupling observation to a ice deformation model. Such a model may provide information on ice distribution which can be used in energy flux calculations. Considerable variation was found in modelled energy flux estimates when bulk transfer coefficients are modulated by lead fetch. It is still unclear what the optimum formulation is and this will be the subject of further work. Data sets for ice surface temperature retrievals were assembled and preliminary data analysis was started. Finally, construction of a conceptual framework for further modelling of the Arctic radiation flux climatology was started.

  3. Method and system for detecting a failure or performance degradation in a dynamic system such as a flight vehicle

    NASA Technical Reports Server (NTRS)

    Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)

    2003-01-01

    A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.

  4. A matlab framework for estimation of NLME models using stochastic differential equations: applications for estimation of insulin secretion rates.

    PubMed

    Mortensen, Stig B; Klim, Søren; Dammann, Bernd; Kristensen, Niels R; Madsen, Henrik; Overgaard, Rune V

    2007-10-01

    The non-linear mixed-effects model based on stochastic differential equations (SDEs) provides an attractive residual error model, that is able to handle serially correlated residuals typically arising from structural mis-specification of the true underlying model. The use of SDEs also opens up for new tools for model development and easily allows for tracking of unknown inputs and parameters over time. An algorithm for maximum likelihood estimation of the model has earlier been proposed, and the present paper presents the first general implementation of this algorithm. The implementation is done in Matlab and also demonstrates the use of parallel computing for improved estimation times. The use of the implementation is illustrated by two examples of application which focus on the ability of the model to estimate unknown inputs facilitated by the extension to SDEs. The first application is a deconvolution-type estimation of the insulin secretion rate based on a linear two-compartment model for C-peptide measurements. In the second application the model is extended to also give an estimate of the time varying liver extraction based on both C-peptide and insulin measurements.

  5. Leveraging prognostic baseline variables to gain precision in randomized trials

    PubMed Central

    Colantuoni, Elizabeth; Rosenblum, Michael

    2015-01-01

    We focus on estimating the average treatment effect in a randomized trial. If baseline variables are correlated with the outcome, then appropriately adjusting for these variables can improve precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the outcome is continuous, the quantity of interest is the difference in mean outcomes comparing treatment versus control, and a linear model with only main effects is used. ANCOVA is guaranteed to be at least as precise as the standard unadjusted estimator, asymptotically, under no parametric model assumptions and also is locally semiparametric efficient. Recently, several estimators have been developed that extend these desirable properties to more general settings that allow any real-valued outcome (e.g., binary or count), contrasts other than the difference in mean outcomes (such as the relative risk), and estimators based on a large class of generalized linear models (including logistic regression). To the best of our knowledge, we give the first simulation study in the context of randomized trials that compares these estimators. Furthermore, our simulations are not based on parametric models; instead, our simulations are based on resampling data from completed randomized trials in stroke and HIV in order to assess estimator performance in realistic scenarios. We provide practical guidance on when these estimators are likely to provide substantial precision gains and describe a quick assessment method that allows clinical investigators to determine whether these estimators could be useful in their specific trial contexts. PMID:25872751

  6. Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USGS Publications Warehouse

    Rafique, Rashad; Fienen, Michael N.; Parkin, Timothy B.; Anex, Robert P.

    2013-01-01

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameterized through a traditional “trial and error” approach and has not been calibrated using statistical inverse modelling (i.e. algorithmic parameter estimation). The aim of this study is to establish and demonstrate a procedure for calibration of DayCent to improve estimation of GHG emissions. We coupled DayCent with the parameter estimation (PEST) software for inverse modelling. The PEST software can be used for calibration through regularized inversion as well as model sensitivity and uncertainty analysis. The DayCent model was analysed and calibrated using N2O flux data collected over 2 years at the Iowa State University Agronomy and Agricultural Engineering Research Farms, Boone, IA. Crop year 2003 data were used for model calibration and 2004 data were used for validation. The optimization of DayCent model parameters using PEST significantly reduced model residuals relative to the default DayCent parameter values. Parameter estimation improved the model performance by reducing the sum of weighted squared residual difference between measured and modelled outputs by up to 67 %. For the calibration period, simulation with the default model parameter values underestimated mean daily N2O flux by 98 %. After parameter estimation, the model underestimated the mean daily fluxes by 35 %. During the validation period, the calibrated model reduced sum of weighted squared residuals by 20 % relative to the default simulation. Sensitivity analysis performed provides important insights into the model structure providing guidance for model improvement.

  7. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  8. Quantitative software models for the estimation of cost, size, and defects

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Bright, L.; Decker, B.; Lum, K.; Mikulski, C.; Powell, J.

    2002-01-01

    The presentation will provide a brief overview of the SQI measurement program as well as describe each of these models and how they are currently being used in supporting JPL project, task and software managers to estimate and plan future software systems and subsystems.

  9. Detecting isotopic ratio outliers

    NASA Astrophysics Data System (ADS)

    Bayne, C. K.; Smith, D. H.

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.

  10. Examining Temporal Sample Scale and Model Choice with Spatial Capture-Recapture Models in the Common Leopard Panthera pardus.

    PubMed

    Goldberg, Joshua F; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L Scott; Wangchuk, Tshewang R; Lukacs, Paul

    2015-01-01

    Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010-2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the "true" explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25-15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest.

  11. Examining Temporal Sample Scale and Model Choice with Spatial Capture-Recapture Models in the Common Leopard Panthera pardus

    PubMed Central

    Goldberg, Joshua F.; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L. Scott; Wangchuk, Tshewang R.; Lukacs, Paul

    2015-01-01

    Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010–2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the “true” explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25–15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest. PMID:26536231

  12. Quantifying Uncertainty in Daily Temporal Variations of Atmospheric NH3 Emissions Following Application of Chemical Fertilizers

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2014-12-01

    Improving modeling predictions of atmospheric particulate matter and deposition of reactive nitrogen requires representative emission inventories of precursor species, such as ammonia (NH3). Anthropogenic NH3 is primarily emitted to the atmosphere from agricultural sources (80-90%) with dominant contributions (56%) from chemical fertilizer usage (CFU) in regions like Midwest USA. Local crop management practices vary spatially and temporally, which influence regional air quality. To model the impact of CFU, NH3 emission inputs to chemical transport models are obtained from the National Emission Inventory (NEI). NH3 emissions from CFU are typically estimated by combining annual fertilizer sales data with emission factors. The Sparse Matrix Operator Kernel Emissions (SMOKE) model is used to disaggregate annual emissions to hourly scale using temporal factors. These factors are estimated by apportioning emissions within each crop season in proportion to the nitrogen applied and time-averaged to the hourly scale. Such approach does not reflect influence of CFU for different crops and local weather and soil conditions. This study provides an alternate approach for estimating temporal factors for NH3 emissions. The DeNitrification DeComposition (DNDC) model was used to estimate daily variations in NH3 emissions from CFU at 14 Central Illinois locations for 2002-2011. Weather, crop and soil data were provided as inputs. A method was developed to estimate site level CFU by combining planting and harvesting dates, nitrogen management and fertilizer sales data. DNDC results indicated that annual NH3 emissions were within ±15% of SMOKE estimates. Daily modeled emissions across 10 years followed similar distributions but varied in magnitudes within ±20%. Individual emission peaks on days after CFU were 2.5-8 times greater as compared to existing estimates from SMOKE. By identifying the episodic nature of NH3 emissions from CFU, this study is expected to provide improvements in predicting atmospheric particulate matter concentrations and deposition of reactive nitrogen.

  13. Optimization of seasonal ARIMA models using differential evolution - simulated annealing (DESA) algorithm in forecasting dengue cases in Baguio City

    NASA Astrophysics Data System (ADS)

    Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.

    2016-10-01

    Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.

  14. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  15. Precision Orbit Derived Atmospheric Density: Development and Performance

    NASA Astrophysics Data System (ADS)

    McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.

    2012-09-01

    Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.

  16. Soft sensor for real-time cement fineness estimation.

    PubMed

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Using Landsat to provide potato production estimates to Columbia Basin farmers and processors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A summary of project activities relative to the estimation of potato yields in the Columbia Basin is given. Oregon State University is using a two-pronged approach to yield estimation, one using simulation models and the other using purely empirical models. The simulation modeling approach has used satellite observations to determine key dates in the development of the crop for each field identified as potatoes. In particular, these include planting dates, emergence dates, and harvest dates. These critical dates are fed into simulation models of crop growth and development to derive yield forecasts. Two empirical modeling approaches are illustrated. One relates tuber yield to estimates of cumulative intercepted solar radiation; the other relates tuber yield to the integral under the GVI curve.

  18. Estimating habitat carrying capacity for migrating and wintering waterfowl: Considerations, pitfalls and improvements

    USGS Publications Warehouse

    Williams, Christopher; Dugger, Bruce D.; Brasher, Michael G.; Coluccy, John M.; Cramer, Dane M.; Eadie, John M.; Gray, Matthew J.; Hagy, Heath M.; Livolsi, Mark; McWilliams, Scott R.; Petrie, Matthew; Soulliere, Gregory J.; Tirpak, John M.; Webb, Elisabeth B.

    2014-01-01

    Population-based habitat conservation planning for migrating and wintering waterfowl in North America is carried out by habitat Joint Venture (JV) initiatives and is based on the premise that food can limit demography (i.e. food limitation hypothesis). Consequently, planners use bioenergetic models to estimate food (energy) availability and population-level energy demands at appropriate spatial and temporal scales, and translate these values into regional habitat objectives. While simple in principle, there are both empirical and theoretical challenges associated with calculating energy supply and demand including: 1) estimating food availability, 2) estimating the energy content of specific foods, 3) extrapolating site-specific estimates of food availability to landscapes for focal species, 4) applicability of estimates from a single species to other species, 5) estimating resting metabolic rate, 6) estimating cost of daily behaviours, and 7) estimating costs of thermoregulation or tissue synthesis. Most models being used are daily ration models (DRMs) whose set of simplifying assumptions are well established and whose use is widely accepted and feasible given the empirical data available to populate such models. However, DRMs do not link habitat objectives to metrics of ultimate ecological importance such as individual body condition or survival, and largely only consider food-producing habitats. Agent-based models (ABMs) provide a possible alternative for creating more biologically realistic models under some conditions; however, ABMs require different types of empirical inputs, many of which have yet to be estimated for key North American waterfowl. Decisions about how JVs can best proceed with habitat conservation would benefit from the use of sensitivity analyses that could identify the empirical and theoretical uncertainties that have the greatest influence on efforts to estimate habitat carrying capacity. Development of ABMs at restricted, yet biologically relevant spatial scales, followed by comparisons of their outputs to those generated from more simplistic, deterministic models can provide a means of assessing degrees of dissimilarity in how alternative models describe desired landscape conditions for migrating and wintering waterfowl.

  19. Simulating the Refractive Index Structure Constant ({C}_{n}^{2}) in the Surface Layer at Antarctica with a Mesoscale Model

    NASA Astrophysics Data System (ADS)

    Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Tian, Qiguo; Liu, Dong; Rao, Ruizhong; Zhu, Wenyue

    2018-01-01

    In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (C n 2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate C n 2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate C n 2 using the bulk aerodynamic method. Finally, the corresponding C n 2 values from the micro-thermometer are compared with the C n 2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators—the bias, root mean square error (RMSE), bias-corrected RMSE (σ), and correlation coefficient (R xy )—in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, σ, and R xy . The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.

  20. New Insights to Compare and Choose TKTD Models for Survival Based on an Interlaboratory Study for Lymnaea stagnalis Exposed to Cd.

    PubMed

    Baudrot, Virgile; Preux, Sara; Ducrot, Virginie; Pave, Alain; Charles, Sandrine

    2018-02-06

    Toxicokinetic-toxicodynamic (TKTD) models, as the General Unified Threshold model of Survival (GUTS), provide a consistent process-based framework compared to classical dose-response models to analyze both time and concentration-dependent data sets. However, the extent to which GUTS models (Stochastic Death (SD) and Individual Tolerance (IT)) lead to a better fitting than classical dose-response model at a given target time (TT) has poorly been investigated. Our paper highlights that GUTS estimates are generally more conservative and have a reduced uncertainty through smaller credible intervals for the studied data sets than classical TT approaches. Also, GUTS models enable estimating any x% lethal concentration at any time (LC x,t ), and provide biological information on the internal processes occurring during the experiments. While both GUTS-SD and GUTS-IT models outcompete classical TT approaches, choosing one preferentially to the other is still challenging. Indeed, the estimates of survival rate over time and LC x,t are very close between both models, but our study also points out that the joint posterior distributions of SD model parameters are sometimes bimodal, while two parameters of the IT model seems strongly correlated. Therefore, the selection between these two models has to be supported by the experimental design and the biological objectives, and this paper provides some insights to drive this choice.

  1. Online Cross-Validation-Based Ensemble Learning

    PubMed Central

    Benkeser, David; Ju, Cheng; Lendle, Sam; van der Laan, Mark

    2017-01-01

    Online estimators update a current estimate with a new incoming batch of data without having to revisit past data thereby providing streaming estimates that are scalable to big data. We develop flexible, ensemble-based online estimators of an infinite-dimensional target parameter, such as a regression function, in the setting where data are generated sequentially by a common conditional data distribution given summary measures of the past. This setting encompasses a wide range of time-series models and as special case, models for independent and identically distributed data. Our estimator considers a large library of candidate online estimators and uses online cross-validation to identify the algorithm with the best performance. We show that by basing estimates on the cross-validation-selected algorithm, we are asymptotically guaranteed to perform as well as the true, unknown best-performing algorithm. We provide extensions of this approach including online estimation of the optimal ensemble of candidate online estimators. We illustrate excellent performance of our methods using simulations and a real data example where we make streaming predictions of infectious disease incidence using data from a large database. PMID:28474419

  2. Parameter estimation and order selection for an empirical model of VO2 on-kinetics.

    PubMed

    Alata, O; Bernard, O

    2007-04-27

    In humans, VO2 on-kinetics are noisy numerical signals that reflect the pulmonary oxygen exchange kinetics at the onset of exercise. They are empirically modelled as a sum of an offset and delayed exponentials. The number of delayed exponentials; i.e. the order of the model, is commonly supposed to be 1 for low-intensity exercises and 2 for high-intensity exercises. As no ground truth has ever been provided to validate these postulates, physiologists still need statistical methods to verify their hypothesis about the number of exponentials of the VO2 on-kinetics especially in the case of high-intensity exercises. Our objectives are first to develop accurate methods for estimating the parameters of the model at a fixed order, and then, to propose statistical tests for selecting the appropriate order. In this paper, we provide, on simulated Data, performances of Simulated Annealing for estimating model parameters and performances of Information Criteria for selecting the order. These simulated Data are generated with both single-exponential and double-exponential models, and noised by white and Gaussian noise. The performances are given at various Signal to Noise Ratio (SNR). Considering parameter estimation, results show that the confidences of estimated parameters are improved by increasing the SNR of the response to be fitted. Considering model selection, results show that Information Criteria are adapted statistical criteria to select the number of exponentials.

  3. A Model for the Estimation of Hepatic Insulin Extraction After a Meal.

    PubMed

    Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio

    2016-09-01

    Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.

  4. Spatial Patterns of Geomorphic Surface Features and Fault Morphology Based on Diffusion Equation Modeling of the Kumroch Fault Kamchatka Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Heinlein, S. N.

    2013-12-01

    Remote sensing data sets are widely used for evaluation of surface manifestations of active tectonics. This study utilizes ASTER GDEM and Landsat ETM+ data sets with Google Earth images draped over terrain models. This study evaluates 1) the surrounding surface geomorphology of the study area with these data sets and 2) the morphology of the Kumroch Fault using diffusion modeling to estimate constant diffusivity (κ) and estimate slip rates by means of real ground data measured across fault scarps by Kozhurin et al. (2006). Models of the evolution of fault scarp morphology provide time elapsed since slip initiated on a faults surface and may therefore provide more accurate estimates of slip rate than the rate calculated by dividing scarp offset by the age of the ruptured surface. Profile modeling of scarps collected by Kozhurin et al. (2006) formed by several events distributed through time and were evaluated using a constant slip rate (CSR) solution which yields a value A/κ (1/2 slip rate/diffusivity). Time elapsed since slip initiated on the fault is determined by establishing a value for κ and measuring total scarp offset. CSR nonlinear modeling estimated of κ range from 8m2/ka - 14m2/ka on the Kumroch Fault which indicates a slip rates of 0.6 mm/yr - 1.0 mm/yr since 3.4 ka -3.7 ka. This method provides a quick and inexpensive way to gather data for a regional tectonic study and establish estimated rates of tectonic activity. Analyses of the remote sensing data are providing new insight into the role of active tectonics within the region. Results from fault scarp diffusion models of Mattson and Bruhn (2001) and DuRoss and Bruhn (2004) and Kozhurin et al. (2006), Kozhurin (2007), Kozhurin et al. (2008) and Pinegina et al. 2012 trench profiles of the KF as calibrated age fault scarp diffusion rates were estimated. (-) mean that no data could be determined.

  5. Suppression of Thermal Emission from Exhaust Components Using an Integrated Approach

    DTIC Science & Technology

    2002-08-01

    design model must, as a minimum, include an accurate estimate of space required for the exhaust , backpressure to the engine , system weight, gas species...hot flovw testing. The virtual design model provides an estimate of space required for: tih exhaust , backiressure to the engine ., svsie:. weigar. gas...either be the engine for the exhaust system or is capable of providing more than the required mass flow rate and enough gas temperature margins so that

  6. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    PubMed

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  7. Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo.

    PubMed

    Sharifi, Soroosh; Murthy, Sudhir; Takács, Imre; Massoudieh, Arash

    2014-03-01

    One of the most important challenges in making activated sludge models (ASMs) applicable to design problems is identifying the values of its many stoichiometric and kinetic parameters. When wastewater characteristics data from full-scale biological treatment systems are used for parameter estimation, several sources of uncertainty, including uncertainty in measured data, external forcing (e.g. influent characteristics), and model structural errors influence the value of the estimated parameters. This paper presents a Bayesian hierarchical modeling framework for the probabilistic estimation of activated sludge process parameters. The method provides the joint probability density functions (JPDFs) of stoichiometric and kinetic parameters by updating prior information regarding the parameters obtained from expert knowledge and literature. The method also provides the posterior correlations between the parameters, as well as a measure of sensitivity of the different constituents with respect to the parameters. This information can be used to design experiments to provide higher information content regarding certain parameters. The method is illustrated using the ASM1 model to describe synthetically generated data from a hypothetical biological treatment system. The results indicate that data from full-scale systems can narrow down the ranges of some parameters substantially whereas the amount of information they provide regarding other parameters is small, due to either large correlations between some of the parameters or a lack of sensitivity with respect to the parameters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  9. Contemporary group estimates adjusted for climatic effects provide a finer definition of the unknown environmental challenges experienced by growing pigs.

    PubMed

    Guy, S Z Y; Li, L; Thomson, P C; Hermesch, S

    2017-12-01

    Environmental descriptors derived from mean performances of contemporary groups (CGs) are assumed to capture any known and unknown environmental challenges. The objective of this paper was to obtain a finer definition of the unknown challenges, by adjusting CG estimates for the known climatic effects of monthly maximum air temperature (MaxT), minimum air temperature (MinT) and monthly rainfall (Rain). As the unknown component could include infection challenges, these refined descriptors may help to better model varying responses of sire progeny to environmental infection challenges for the definition of disease resilience. Data were recorded from 1999 to 2013 at a piggery in south-east Queensland, Australia (n = 31,230). Firstly, CG estimates of average daily gain (ADG) and backfat (BF) were adjusted for MaxT, MinT and Rain, which were fitted as splines. In the models used to derive CG estimates for ADG, MaxT and MinT were significant variables. The models that contained these significant climatic variables had CG estimates with a lower variance compared to models without significant climatic variables. Variance component estimates were similar across all models, suggesting that these significant climatic variables accounted for some known environmental variation captured in CG estimates. No climatic variables were significant in the models used to derive the CG estimates for BF. These CG estimates were used to categorize environments. There was no observable sire by environment interaction (Sire×E) for ADG when using the environmental descriptors based on CG estimates on BF. For the environmental descriptors based on CG estimates of ADG, there was significant Sire×E only when MinT was included in the model (p = .01). Therefore, this new definition of the environment, preadjusted by MinT, increased the ability to detect Sire×E. While the unknown challenges captured in refined CG estimates need verification for infection challenges, this may provide a practical approach for the genetic improvement of disease resilience. © 2017 Blackwell Verlag GmbH.

  10. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  11. Population size and stopover duration estimation using mark–resight data and Bayesian analysis of a superpopulation model

    USGS Publications Warehouse

    Lyons, James E.; Kendall, William L.; Royle, J. Andrew; Converse, Sarah J.; Andres, Brad A.; Buchanan, Joseph B.

    2016-01-01

    We present a novel formulation of a mark–recapture–resight model that allows estimation of population size, stopover duration, and arrival and departure schedules at migration areas. Estimation is based on encounter histories of uniquely marked individuals and relative counts of marked and unmarked animals. We use a Bayesian analysis of a state–space formulation of the Jolly–Seber mark–recapture model, integrated with a binomial model for counts of unmarked animals, to derive estimates of population size and arrival and departure probabilities. We also provide a novel estimator for stopover duration that is derived from the latent state variable representing the interim between arrival and departure in the state–space model. We conduct a simulation study of field sampling protocols to understand the impact of superpopulation size, proportion marked, and number of animals sampled on bias and precision of estimates. Simulation results indicate that relative bias of estimates of the proportion of the population with marks was low for all sampling scenarios and never exceeded 2%. Our approach does not require enumeration of all unmarked animals detected or direct knowledge of the number of marked animals in the population at the time of the study. This provides flexibility and potential application in a variety of sampling situations (e.g., migratory birds, breeding seabirds, sea turtles, fish, pinnipeds, etc.). Application of the methods is demonstrated with data from a study of migratory sandpipers.

  12. SAMICS Validation. SAMICS Support Study, Phase 3

    NASA Technical Reports Server (NTRS)

    1979-01-01

    SAMICS provides a consistent basis for estimating array costs and compares production technology costs. A review and a validation of the SAMICS model are reported. The review had the following purposes: (1) to test the computational validity of the computer model by comparison with preliminary hand calculations based on conventional cost estimating techniques; (2) to review and improve the accuracy of the cost relationships being used by the model: and (3) to provide an independent verification to users of the model's value in decision making for allocation of research and developement funds and for investment in manufacturing capacity. It is concluded that the SAMICS model is a flexible, accurate, and useful tool for managerial decision making.

  13. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging

    NASA Astrophysics Data System (ADS)

    Nair, S. P.; Righetti, R.

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  14. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients.

    PubMed

    Smith, Matthew R; Micha, Renata; Golden, Christopher D; Mozaffarian, Dariush; Myers, Samuel S

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model--the Global Expanded Nutrient Supply (GENuS) model--to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent estimates by the USDA for historical US nutrition and find very good agreement for 21 of 23 nutrients, though sodium and dietary fiber will require further improvement.

  15. An employee total health management-based survey of Iowa employers.

    PubMed

    Merchant, James A; Lind, David P; Kelly, Kevin M; Hall, Jennifer L

    2013-12-01

    To implement an Employee Total Health Management (ETHM) model-based questionnaire and provide estimates of model program elements among a statewide sample of Iowa employers. Survey a stratified random sample of Iowa employers, and characterize and estimate employer participation in ETHM program elements. Iowa employers are implementing less than 30% of all 12 components of ETHM, with the exception of occupational safety and health (46.6%) and workers' compensation insurance coverage (89.2%), but intend modest expansion of all components in the coming year. The ETHM questionnaire-based survey provides estimates of progress Iowa employers are making toward implementing components of Total Worker Health programs.

  16. Planning level assessment of greenhouse gas emissions for alternative transportation construction projects : carbon footprint estimator, phase II, volume I - GASCAP model.

    DOT National Transportation Integrated Search

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  17. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  18. Using a physiologically based pharmacokinetic model to link urinary biomarker concentrations to dietary exposure of perchlorate

    EPA Science Inventory

    Exposure to perchlorate is widespread in the United States and many studies have attempted to character the perchlorate exposure by estimating the average daily intakes of perchlorate. These approaches provided population-based estimates, but did not provide individual-level exp...

  19. Estimating the Diets of Animals Using Stable Isotopes and a Comprehensive Bayesian Mixing Model

    PubMed Central

    Hopkins, John B.; Ferguson, Jake M.

    2012-01-01

    Using stable isotope mixing models (SIMMs) as a tool to investigate the foraging ecology of animals is gaining popularity among researchers. As a result, statistical methods are rapidly evolving and numerous models have been produced to estimate the diets of animals—each with their benefits and their limitations. Deciding which SIMM to use is contingent on factors such as the consumer of interest, its food sources, sample size, the familiarity a user has with a particular framework for statistical analysis, or the level of inference the researcher desires to make (e.g., population- or individual-level). In this paper, we provide a review of commonly used SIMM models and describe a comprehensive SIMM that includes all features commonly used in SIMM analysis and two new features. We used data collected in Yosemite National Park to demonstrate IsotopeR's ability to estimate dietary parameters. We then examined the importance of each feature in the model and compared our results to inferences from commonly used SIMMs. IsotopeR's user interface (in R) will provide researchers a user-friendly tool for SIMM analysis. The model is also applicable for use in paleontology, archaeology, and forensic studies as well as estimating pollution inputs. PMID:22235246

  20. Hybrid Air Quality Modeling Approach For Use in the Near ...

    EPA Pesticide Factsheets

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Liu, Z.; Zhang, S.

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  2. Poisson regression models outperform the geometrical model in estimating the peak-to-trough ratio of seasonal variation: a simulation study.

    PubMed

    Christensen, A L; Lundbye-Christensen, S; Dethlefsen, C

    2011-12-01

    Several statistical methods of assessing seasonal variation are available. Brookhart and Rothman [3] proposed a second-order moment-based estimator based on the geometrical model derived by Edwards [1], and reported that this estimator is superior in estimating the peak-to-trough ratio of seasonal variation compared with Edwards' estimator with respect to bias and mean squared error. Alternatively, seasonal variation may be modelled using a Poisson regression model, which provides flexibility in modelling the pattern of seasonal variation and adjustments for covariates. Based on a Monte Carlo simulation study three estimators, one based on the geometrical model, and two based on log-linear Poisson regression models, were evaluated in regards to bias and standard deviation (SD). We evaluated the estimators on data simulated according to schemes varying in seasonal variation and presence of a secular trend. All methods and analyses in this paper are available in the R package Peak2Trough[13]. Applying a Poisson regression model resulted in lower absolute bias and SD for data simulated according to the corresponding model assumptions. Poisson regression models had lower bias and SD for data simulated to deviate from the corresponding model assumptions than the geometrical model. This simulation study encourages the use of Poisson regression models in estimating the peak-to-trough ratio of seasonal variation as opposed to the geometrical model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Estimating Dynamical Systems: Derivative Estimation Hints From Sir Ronald A. Fisher.

    PubMed

    Deboeck, Pascal R

    2010-08-06

    The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common approach for estimating derivatives, Local Linear Approximation (LLA), produces estimates with correlated errors. Depending on the specific differential equation model used, such correlated errors can lead to severely biased estimates of differential equation model parameters. This article shows that the fitting of dynamical systems can be improved by estimating derivatives in a manner similar to that used to fit orthogonal polynomials. Two applications using simulated data compare the proposed method and a generalized form of LLA when used to estimate derivatives and when used to estimate differential equation model parameters. A third application estimates the frequency of oscillation in observations of the monthly deaths from bronchitis, emphysema, and asthma in the United Kingdom. These data are publicly available in the statistical program R, and functions in R for the method presented are provided.

  4. Diagnostic Classification Models: Thoughts and Future Directions

    ERIC Educational Resources Information Center

    Henson, Robert A.

    2009-01-01

    The paper by Drs. Rupp and Templin provides a much needed step toward the general application of diagnostic classification modeling (DCMs). The authors have provided a summary of many of the concepts that one must consider to properly apply a DCM (which ranges from model selection and estimation, to assessing the appropriateness of the model using…

  5. Constellation Program Life-cycle Cost Analysis Model (LCAM)

    NASA Technical Reports Server (NTRS)

    Prince, Andy; Rose, Heidi; Wood, James

    2008-01-01

    The Constellation Program (CxP) is NASA's effort to replace the Space Shuttle, return humans to the moon, and prepare for a human mission to Mars. The major elements of the Constellation Lunar sortie design reference mission architecture are shown. Unlike the Apollo Program of the 1960's, affordability is a major concern of United States policy makers and NASA management. To measure Constellation affordability, a total ownership cost life-cycle parametric cost estimating capability is required. This capability is being developed by the Constellation Systems Engineering and Integration (SE&I) Directorate, and is called the Lifecycle Cost Analysis Model (LCAM). The requirements for LCAM are based on the need to have a parametric estimating capability in order to do top-level program analysis, evaluate design alternatives, and explore options for future systems. By estimating the total cost of ownership within the context of the planned Constellation budget, LCAM can provide Program and NASA management with the cost data necessary to identify the most affordable alternatives. LCAM is also a key component of the Integrated Program Model (IPM), an SE&I developed capability that combines parametric sizing tools with cost, schedule, and risk models to perform program analysis. LCAM is used in the generation of cost estimates for system level trades and analyses. It draws upon the legacy of previous architecture level cost models, such as the Exploration Systems Mission Directorate (ESMD) Architecture Cost Model (ARCOM) developed for Simulation Based Acquisition (SBA), and ATLAS. LCAM is used to support requirements and design trade studies by calculating changes in cost relative to a baseline option cost. Estimated costs are generally low fidelity to accommodate available input data and available cost estimating relationships (CERs). LCAM is capable of interfacing with the Integrated Program Model to provide the cost estimating capability for that suite of tools.

  6. Modeling in Real Time During the Ebola Response.

    PubMed

    Meltzer, Martin I; Santibanez, Scott; Fischer, Leah S; Merlin, Toby L; Adhikari, Bishwa B; Atkins, Charisma Y; Campbell, Caresse; Fung, Isaac Chun-Hai; Gambhir, Manoj; Gift, Thomas; Greening, Bradford; Gu, Weidong; Jacobson, Evin U; Kahn, Emily B; Carias, Cristina; Nerlander, Lina; Rainisch, Gabriel; Shankar, Manjunath; Wong, Karen; Washington, Michael L

    2016-07-08

    To aid decision-making during CDC's response to the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa, CDC activated a Modeling Task Force to generate estimates on various topics related to the response in West Africa and the risk for importation of cases into the United States. Analysis of eight Ebola response modeling projects conducted during August 2014-July 2015 provided insight into the types of questions addressed by modeling, the impact of the estimates generated, and the difficulties encountered during the modeling. This time frame was selected to cover the three phases of the West African epidemic curve. Questions posed to the Modeling Task Force changed as the epidemic progressed. Initially, the task force was asked to estimate the number of cases that might occur if no interventions were implemented compared with cases that might occur if interventions were implemented; however, at the peak of the epidemic, the focus shifted to estimating resource needs for Ebola treatment units. Then, as the epidemic decelerated, requests for modeling changed to generating estimates of the potential number of sexually transmitted Ebola cases. Modeling to provide information for decision-making during the CDC Ebola response involved limited data, a short turnaround time, and difficulty communicating the modeling process, including assumptions and interpretation of results. Despite these challenges, modeling yielded estimates and projections that public health officials used to make key decisions regarding response strategy and resources required. The impact of modeling during the Ebola response demonstrates the usefulness of modeling in future responses, particularly in the early stages and when data are scarce. Future modeling can be enhanced by planning ahead for data needs and data sharing, and by open communication among modelers, scientists, and others to ensure that modeling and its limitations are more clearly understood. The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).

  7. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

    PubMed Central

    Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.

    2015-01-01

    The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218

  8. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  9. Estimating population density and connectivity of American mink using spatial capture-recapture

    USGS Publications Warehouse

    Fuller, Angela K.; Sutherland, Christopher S.; Royle, Andy; Hare, Matthew P.

    2016-01-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture–recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture–recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km2 area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture–recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  10. Information matrix estimation procedures for cognitive diagnostic models.

    PubMed

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  11. Estimating population density and connectivity of American mink using spatial capture-recapture.

    PubMed

    Fuller, Angela K; Sutherland, Chris S; Royle, J Andrew; Hare, Matthew P

    2016-06-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture-recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture-recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km² area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture-recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  12. Interpretable inference on the mixed effect model with the Box-Cox transformation.

    PubMed

    Maruo, K; Yamaguchi, Y; Noma, H; Gosho, M

    2017-07-10

    We derived results for inference on parameters of the marginal model of the mixed effect model with the Box-Cox transformation based on the asymptotic theory approach. We also provided a robust variance estimator of the maximum likelihood estimator of the parameters of this model in consideration of the model misspecifications. Using these results, we developed an inference procedure for the difference of the model median between treatment groups at the specified occasion in the context of mixed effects models for repeated measures analysis for randomized clinical trials, which provided interpretable estimates of the treatment effect. From simulation studies, it was shown that our proposed method controlled type I error of the statistical test for the model median difference in almost all the situations and had moderate or high performance for power compared with the existing methods. We illustrated our method with cluster of differentiation 4 (CD4) data in an AIDS clinical trial, where the interpretability of the analysis results based on our proposed method is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  14. Bias correction by use of errors-in-variables regression models in studies with K-X-ray fluorescence bone lead measurements.

    PubMed

    Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard

    2011-01-01

    In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A unified high-resolution wind and solar dataset from a rapidly updating numerical weather prediction model

    DOE PAGES

    James, Eric P.; Benjamin, Stanley G.; Marquis, Melinda

    2016-10-28

    A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides physically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset shows strong similarity to that previously provided by a Department of Energy-funded study, and it includes estimates in southern Canada and northern Mexico. The solar resource dataset represents anmore » initial step towards application-specific fields such as global horizontal and direct normal irradiance. This combined dataset will continue to be augmented with new forecast data from the advanced HRRR atmospheric/land-surface model.« less

  16. Methodology for the Model-based Small Area Estimates of Cancer-Related Knowledge - Small Area Estimates

    Cancer.gov

    The HINTS is designed to produce reliable estimates at the national and regional levels. GIS maps using HINTS data have been used to provide a visual representation of possible geographic relationships in HINTS cancer-related variables.

  17. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    PubMed

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.

  18. Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae).

    PubMed

    Grummer, Jared A; Bryson, Robert W; Reeder, Tod W

    2014-03-01

    Current molecular methods of species delimitation are limited by the types of species delimitation models and scenarios that can be tested. Bayes factors allow for more flexibility in testing non-nested species delimitation models and hypotheses of individual assignment to alternative lineages. Here, we examined the efficacy of Bayes factors in delimiting species through simulations and empirical data from the Sceloporus scalaris species group. Marginal-likelihood scores of competing species delimitation models, from which Bayes factor values were compared, were estimated with four different methods: harmonic mean estimation (HME), smoothed harmonic mean estimation (sHME), path-sampling/thermodynamic integration (PS), and stepping-stone (SS) analysis. We also performed model selection using a posterior simulation-based analog of the Akaike information criterion through Markov chain Monte Carlo analysis (AICM). Bayes factor species delimitation results from the empirical data were then compared with results from the reversible-jump MCMC (rjMCMC) coalescent-based species delimitation method Bayesian Phylogenetics and Phylogeography (BP&P). Simulation results show that HME and sHME perform poorly compared with PS and SS marginal-likelihood estimators when identifying the true species delimitation model. Furthermore, Bayes factor delimitation (BFD) of species showed improved performance when species limits are tested by reassigning individuals between species, as opposed to either lumping or splitting lineages. In the empirical data, BFD through PS and SS analyses, as well as the rjMCMC method, each provide support for the recognition of all scalaris group taxa as independent evolutionary lineages. Bayes factor species delimitation and BP&P also support the recognition of three previously undescribed lineages. In both simulated and empirical data sets, harmonic and smoothed harmonic mean marginal-likelihood estimators provided much higher marginal-likelihood estimates than PS and SS estimators. The AICM displayed poor repeatability in both simulated and empirical data sets, and produced inconsistent model rankings across replicate runs with the empirical data. Our results suggest that species delimitation through the use of Bayes factors with marginal-likelihood estimates via PS or SS analyses provide a useful and complementary alternative to existing species delimitation methods.

  19. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  20. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys

    PubMed Central

    Jousimo, Jussi; Ovaskainen, Otso

    2016-01-01

    Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683

  1. Small area estimation for estimating the number of infant mortality in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Anggreyani, Arie; Indahwati, Kurnia, Anang

    2016-02-01

    Demographic and Health Survey Indonesia (DHSI) is a national designed survey to provide information regarding birth rate, mortality rate, family planning and health. DHSI was conducted by BPS in cooperation with National Population and Family Planning Institution (BKKBN), Indonesia Ministry of Health (KEMENKES) and USAID. Based on the publication of DHSI 2012, the infant mortality rate for a period of five years before survey conducted is 32 for 1000 birth lives. In this paper, Small Area Estimation (SAE) is used to estimate the number of infant mortality in districts of West Java. SAE is a special model of Generalized Linear Mixed Models (GLMM). In this case, the incidence of infant mortality is a Poisson distribution which has equdispersion assumption. The methods to handle overdispersion are binomial negative and quasi-likelihood model. Based on the results of analysis, quasi-likelihood model is the best model to overcome overdispersion problem. The basic model of the small area estimation used basic area level model. Mean square error (MSE) which based on resampling method is used to measure the accuracy of small area estimates.

  2. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.

  3. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    USGS Publications Warehouse

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  4. Input-output model for MACCS nuclear accident impacts estimation¹

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Outkin, Alexander V.; Bixler, Nathan E.; Vargas, Vanessa N

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domesticmore » product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.« less

  5. Comparison of Dynamic Contrast Enhanced MRI and Quantitative SPECT in a Rat Glioma Model

    PubMed Central

    Skinner, Jack T.; Yankeelov, Thomas E.; Peterson, Todd E.; Does, Mark D.

    2012-01-01

    Pharmacokinetic modeling of dynamic contrast enhanced (DCE)-MRI data provides measures of the extracellular volume fraction (ve) and the volume transfer constant (Ktrans) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of ve in a rat glioma model for comparison to the corresponding estimates obtained using DCE-MRI with a vascular input function (VIF) and reference region model (RR). Both DCE-MRI methods produced consistently larger estimates of ve in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences. PMID:22991315

  6. The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William; Khan, Maudood; Peterson, Harold

    2011-01-01

    Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.

  7. A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada.

    PubMed

    Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas

    2016-09-01

    An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.

  8. Comparison of the near field/far field model and the advanced reach tool (ART) model V1.5: exposure estimates to benzene during parts washing with mineral spirits.

    PubMed

    LeBlanc, Mallory; Allen, Joseph G; Herrick, Robert F; Stewart, James H

    2018-03-01

    The Advanced Reach Tool V1.5 (ART) is a mathematical model for occupational exposures conceptually based on, but implemented differently than, the "classic" Near Field/Far Field (NF/FF) exposure model. The NF/FF model conceptualizes two distinct exposure "zones"; the near field, within approximately 1m of the breathing zone, and the far field, consisting of the rest of the room in which the exposure occurs. ART has been reported to provide "realistic and reasonable worst case" estimates of the exposure distribution. In this study, benzene exposure during the use of a metal parts washer was modeled using ART V1.5, and compared to actual measured workers samples and to NF/FF model results from three previous studies. Next, the exposure concentrations expected to be exceeded 25%, 10% and 5% of the time for the exposure scenario were calculated using ART. Lastly, ART exposure estimates were compared with and without Bayesian adjustment. The modeled parts washing benzene exposure scenario included distinct tasks, e.g. spraying, brushing, rinsing and soaking/drying. Because ART can directly incorporate specific types of tasks that are part of the exposure scenario, the present analysis identified each task's determinants of exposure and performance time, thus extending the work of the previous three studies where the process of parts washing was modeled as one event. The ART 50th percentile exposure estimate for benzene (0.425ppm) more closely approximated the reported measured mean value of 0.50ppm than the NF/FF model estimates of 0.33ppm, 0.070ppm or 0.2ppm obtained from other modeling studies of this exposure scenario. The ART model with the Bayesian analysis provided the closest estimate to the measured value (0.50ppm). ART (with Bayesian adjustment) was then used to assess the 75th, the 90th and 95th percentile exposures, predicting that on randomly selected days during this parts washing exposure scenario, 25% of the benzene exposures would be above 0.70ppm; 10% above 0.95ppm; and 5% above 1.15ppm. These exposure estimates at the three different percentiles of the ART exposure distribution refer to the modeled exposure scenario not a specific workplace or worker. This study provides a detailed comparison of modeling tools currently available to occupational hygienists and other exposure assessors. Possible applications are considered. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Evaluation of a simple, point-scale hydrologic model in simulating soil moisture using the Delaware environmental observing system

    NASA Astrophysics Data System (ADS)

    Legates, David R.; Junghenn, Katherine T.

    2018-04-01

    Many local weather station networks that measure a number of meteorological variables (i.e. , mesonetworks) have recently been established, with soil moisture occasionally being part of the suite of measured variables. These mesonetworks provide data from which detailed estimates of various hydrological parameters, such as precipitation and reference evapotranspiration, can be made which, when coupled with simple surface characteristics available from soil surveys, can be used to obtain estimates of soil moisture. The question is Can meteorological data be used with a simple hydrologic model to estimate accurately daily soil moisture at a mesonetwork site? Using a state-of-the-art mesonetwork that also includes soil moisture measurements across the US State of Delaware, the efficacy of a simple, modified Thornthwaite/Mather-based daily water balance model based on these mesonetwork observations to estimate site-specific soil moisture is determined. Results suggest that the model works reasonably well for most well-drained sites and provides good qualitative estimates of measured soil moisture, often near the accuracy of the soil moisture instrumentation. The model exhibits particular trouble in that it cannot properly simulate the slow drainage that occurs in poorly drained soils after heavy rains and interception loss, resulting from grass not being short cropped as expected also adversely affects the simulation. However, the model could be tuned to accommodate some non-standard siting characteristics.

  10. Man power/cost estimation model: Automated planetary projects

    NASA Technical Reports Server (NTRS)

    Kitchen, L. D.

    1975-01-01

    A manpower/cost estimation model is developed which is based on a detailed level of financial analysis of over 30 million raw data points which are then compacted by more than three orders of magnitude to the level at which the model is applicable. The major parameter of expenditure is manpower (specifically direct labor hours) for all spacecraft subsystem and technical support categories. The resultant model is able to provide a mean absolute error of less than fifteen percent for the eight programs comprising the model data base. The model includes cost saving inheritance factors, broken down in four levels, for estimating follow-on type programs where hardware and design inheritance are evident or expected.

  11. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2010-08-01

    Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed.

  12. Estimating stage-specific daily survival probabilities of nests when nest age is unknown

    USGS Publications Warehouse

    Stanley, T.R.

    2004-01-01

    Estimation of daily survival probabilities of nests is common in studies of avian populations. Since the introduction of Mayfield's (1961, 1975) estimator, numerous models have been developed to relax Mayfield's assumptions and account for biologically important sources of variation. Stanley (2000) presented a model for estimating stage-specific (e.g. incubation stage, nestling stage) daily survival probabilities of nests that conditions on “nest type” and requires that nests be aged when they are found. Because aging nests typically requires handling the eggs, there may be situations where nests can not or should not be aged and the Stanley (2000) model will be inapplicable. Here, I present a model for estimating stage-specific daily survival probabilities that conditions on nest stage for active nests, thereby obviating the need to age nests when they are found. Specifically, I derive the maximum likelihood function for the model, evaluate the model's performance using Monte Carlo simulations, and provide software for estimating parameters (along with an example). For sample sizes as low as 50 nests, bias was small and confidence interval coverage was close to the nominal rate, especially when a reduced-parameter model was used for estimation.

  13. Wetland Hydrology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  14. How to constrain multi-objective calibrations of the SWAT model using water balance components

    USDA-ARS?s Scientific Manuscript database

    Automated procedures are often used to provide adequate fits between hydrologic model estimates and observed data. While the models may provide good fits based upon numeric criteria, they may still not accurately represent the basic hydrologic characteristics of the represented watershed. Here we ...

  15. Sensitivity Analysis of Dispersion Model Results in the NEXUS Health Study Due to Uncertainties in Traffic-Related Emissions Inputs

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  16. The microcomputer scientific software series 2: general linear model--regression.

    Treesearch

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  17. Robust Bayesian linear regression with application to an analysis of the CODATA values for the Planck constant

    NASA Astrophysics Data System (ADS)

    Wübbeler, Gerd; Bodnar, Olha; Elster, Clemens

    2018-02-01

    Weighted least-squares estimation is commonly applied in metrology to fit models to measurements that are accompanied with quoted uncertainties. The weights are chosen in dependence on the quoted uncertainties. However, when data and model are inconsistent in view of the quoted uncertainties, this procedure does not yield adequate results. When it can be assumed that all uncertainties ought to be rescaled by a common factor, weighted least-squares estimation may still be used, provided that a simple correction of the uncertainty obtained for the estimated model is applied. We show that these uncertainties and credible intervals are robust, as they do not rely on the assumption of a Gaussian distribution of the data. Hence, common software for weighted least-squares estimation may still safely be employed in such a case, followed by a simple modification of the uncertainties obtained by that software. We also provide means of checking the assumptions of such an approach. The Bayesian regression procedure is applied to analyze the CODATA values for the Planck constant published over the past decades in terms of three different models: a constant model, a straight line model and a spline model. Our results indicate that the CODATA values may not have yet stabilized.

  18. Estimates of advection and diffusion in the Potomac estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, A.J.

    1976-01-01

    A two-layered dispersion model, suitable for application to partially-mixed estuaries, has been developed to provide hydrological interpretation of the results of biological sampling. The model includes horizontal and vertical advection plus both horizontal and vertical diffusion. A pseudo-geostrophic method, which includes a damping factor to account for internal eddy friction, is used to estimate the horizontal advective fluxes and the results are compared with field observations. A salt balance model is then used to estimate the effective diffusivities in the Potomac estuary during the Spring of 1974.

  19. Spatial capture-recapture models for jointly estimating population density and landscape connectivity

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.

    2013-01-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  20. Spatial capture--recapture models for jointly estimating population density and landscape connectivity.

    PubMed

    Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A

    2013-02-01

    Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.

  1. Development and comparison in uncertainty assessment based Bayesian modularization method in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn

    2013-04-01

    SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.

  2. Consumer product chemical weight fractions from ingredient lists.

    PubMed

    Isaacs, Kristin K; Phillips, Katherine A; Biryol, Derya; Dionisio, Kathie L; Price, Paul S

    2018-05-01

    Assessing human exposures to chemicals in consumer products requires composition information. However, comprehensive composition data for products in commerce are not generally available. Many consumer products have reported ingredient lists that are constructed using specific guidelines. A probabilistic model was developed to estimate quantitative weight fraction (WF) values that are consistent with the rank of an ingredient in the list, the number of reported ingredients, and labeling rules. The model provides the mean, median, and 95% upper and lower confidence limit WFs for ingredients of any rank in lists of any length. WFs predicted by the model compared favorably with those reported on Material Safety Data Sheets. Predictions for chemicals known to provide specific functions in products were also found to reasonably agree with reported WFs. The model was applied to a selection of publicly available ingredient lists, thereby estimating WFs for 1293 unique ingredients in 1123 products in 81 product categories. Predicted WFs, although less precise than reported values, can be estimated for large numbers of product-chemical combinations and thus provide a useful source of data for high-throughput or screening-level exposure assessments.

  3. Data Assimilation to Extract Soil Moisture Information From SMAP Observations

    NASA Technical Reports Server (NTRS)

    Kolassa, J.; Reichle, R. H.; Liu, Q.; Alemohammad, S. H.; Gentine, P.

    2017-01-01

    Statistical techniques permit the retrieval of soil moisture estimates in a model climatology while retaining the spatial and temporal signatures of the satellite observations. As a consequence, they can be used to reduce the need for localized bias correction techniques typically implemented in data assimilation (DA) systems that tend to remove some of the independent information provided by satellite observations. Here, we use a statistical neural network (NN) algorithm to retrieve SMAP (Soil Moisture Active Passive) surface soil moisture estimates in the climatology of the NASA Catchment land surface model. Assimilating these estimates without additional bias correction is found to significantly reduce the model error and increase the temporal correlation against SMAP CalVal in situ observations over the contiguous United States. A comparison with assimilation experiments using traditional bias correction techniques shows that the NN approach better retains the independent information provided by the SMAP observations and thus leads to larger model skill improvements during the assimilation. A comparison with the SMAP Level 4 product shows that the NN approach is able to provide comparable skill improvements and thus represents a viable assimilation approach.

  4. A comparison between a new model and current models for estimating trunk segment inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A

    2009-01-05

    Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.

  5. Behavior, passage, and downstream migration of juvenile Chinook salmon from Detroit Reservoir to Portland, Oregon, 2014–15

    USGS Publications Warehouse

    Kock, Tobias J.; Beeman, John W.; Hansen, Amy C.; Hansel, Hal C.; Hansen, Gabriel S.; Hatton, Tyson W.; Kofoot, Eric E.; Sholtis, Matthew D.; Sprando, Jamie M.

    2015-11-16

    A Cormack-Jolly-Seber mark-recapture model was developed to provide reach-specific survival estimates for juvenile Chinook salmon. A portion of the tagged population overwintered in the Willamette River Basin and outmigrated several months after release. As a result, survival estimates from the model would have been negatively biased by factors such as acoustic tag failure and tag loss. Data from laboratory studies were incorporated into the model to provide survival estimates that accounted for these factors. In the North Santiam River between Minto Dam and the Bennett Dam complex, a distance of 37.2 kilometers, survival was estimated to be 0.844 (95-percent confidence interval 0.795–0.893). The survival estimate for the 203.7 kilometer reach between the Bennett Dam complex and Portland, Oregon, was 0.279 (95-percent confidence interval 0.234–0.324), and included portions of the North Santiam, Santiam, and Willamette Rivers. The cumulative survival estimate in the 240.9 kilometer reach from the Minto Dam tailrace to Portland was 0.236 (95-percent confidence interval 0.197–0.275).

  6. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America.

    PubMed

    Shutt, Deborah P; Manore, Carrie A; Pankavich, Stephen; Porter, Aaron T; Del Valle, Sara Y

    2017-12-01

    As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015/2016 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. The model indicated that a country-level analysis was not appropriate for Colombia. We then estimated the basic reproduction number to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America

    DOE PAGES

    Shutt, Deborah P.; Manore, Carrie A.; Pankavich, Stephen; ...

    2017-07-13

    As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015/2016 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. The model indicated that a country-level analysis was not appropriate formore » Colombia. We then estimated the basic reproduction number to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges.« less

  8. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutt, Deborah P.; Manore, Carrie A.; Pankavich, Stephen

    As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015/2016 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. The model indicated that a country-level analysis was not appropriate formore » Colombia. We then estimated the basic reproduction number to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges.« less

  9. Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution.

    PubMed

    Rigby, Robert A; Stasinopoulos, D Mikis

    2004-10-15

    The Box-Cox power exponential (BCPE) distribution, developed in this paper, provides a model for a dependent variable Y exhibiting both skewness and kurtosis (leptokurtosis or platykurtosis). The distribution is defined by a power transformation Y(nu) having a shifted and scaled (truncated) standard power exponential distribution with parameter tau. The distribution has four parameters and is denoted BCPE (mu,sigma,nu,tau). The parameters, mu, sigma, nu and tau, may be interpreted as relating to location (median), scale (approximate coefficient of variation), skewness (transformation to symmetry) and kurtosis (power exponential parameter), respectively. Smooth centile curves are obtained by modelling each of the four parameters of the distribution as a smooth non-parametric function of an explanatory variable. A Fisher scoring algorithm is used to fit the non-parametric model by maximizing a penalized likelihood. The first and expected second and cross derivatives of the likelihood, with respect to mu, sigma, nu and tau, required for the algorithm, are provided. The centiles of the BCPE distribution are easy to calculate, so it is highly suited to centile estimation. This application of the BCPE distribution to smooth centile estimation provides a generalization of the LMS method of the centile estimation to data exhibiting kurtosis (as well as skewness) different from that of a normal distribution and is named here the LMSP method of centile estimation. The LMSP method of centile estimation is applied to modelling the body mass index of Dutch males against age. 2004 John Wiley & Sons, Ltd.

  10. A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model

    NASA Astrophysics Data System (ADS)

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-04-01

    The paper is about a methodology to combine a noisy satellite-only global gravity field model (GGM) with other noisy datasets to estimate a local quasi-geoid model using weighted least-squares techniques. In this way, we attempt to improve the quality of the estimated quasi-geoid model and to complement it with a full noise covariance matrix for quality control and further data processing. The methodology goes beyond the classical remove-compute-restore approach, which does not account for the noise in the satellite-only GGM. We suggest and analyse three different approaches of data combination. Two of them are based on a local single-scale spherical radial basis function (SRBF) model of the disturbing potential, and one is based on a two-scale SRBF model. Using numerical experiments, we show that a single-scale SRBF model does not fully exploit the information in the satellite-only GGM. We explain this by a lack of flexibility of a single-scale SRBF model to deal with datasets of significantly different bandwidths. The two-scale SRBF model performs well in this respect, provided that the model coefficients representing the two scales are estimated separately. The corresponding methodology is developed in this paper. Using the statistics of the least-squares residuals and the statistics of the errors in the estimated two-scale quasi-geoid model, we demonstrate that the developed methodology provides a two-scale quasi-geoid model, which exploits the information in all datasets.

  11. Control of Distributed Parameter Systems

    DTIC Science & Technology

    1990-08-01

    vari- ant of the general Lotka - Volterra model for interspecific competition. The variant described the emergence of one subpopulation from another as a...distribut ion unlimited. I&. ARSTRACT (MAUMUnw2O1 A unified arioroximation framework for Parameter estimation In general linear POE models has been completed...unified approximation framework for parameter estimation in general linear PDE models. This framework has provided the theoretical basis for a number of

  12. Evaluation of Linking Methods for Placing Three-Parameter Logistic Item Parameter Estimates onto a One-Parameter Scale

    ERIC Educational Resources Information Center

    Karkee, Thakur B.; Wright, Karen R.

    2004-01-01

    Different item response theory (IRT) models may be employed for item calibration. Change of testing vendors, for example, may result in the adoption of a different model than that previously used with a testing program. To provide scale continuity and preserve cut score integrity, item parameter estimates from the new model must be linked to the…

  13. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, J. K.; Pukayastha, A.; Martin, C.

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  14. A preliminary evaluation of an F100 engine parameter estimation process using flight data

    NASA Technical Reports Server (NTRS)

    Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.

    1990-01-01

    The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the compact engine model (CEM). In this step, the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion control law development.

  15. A preliminary evaluation of an F100 engine parameter estimation process using flight data

    NASA Technical Reports Server (NTRS)

    Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.

    1990-01-01

    The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.

  16. SBML-PET-MPI: a parallel parameter estimation tool for Systems Biology Markup Language based models.

    PubMed

    Zi, Zhike

    2011-04-01

    Parameter estimation is crucial for the modeling and dynamic analysis of biological systems. However, implementing parameter estimation is time consuming and computationally demanding. Here, we introduced a parallel parameter estimation tool for Systems Biology Markup Language (SBML)-based models (SBML-PET-MPI). SBML-PET-MPI allows the user to perform parameter estimation and parameter uncertainty analysis by collectively fitting multiple experimental datasets. The tool is developed and parallelized using the message passing interface (MPI) protocol, which provides good scalability with the number of processors. SBML-PET-MPI is freely available for non-commercial use at http://www.bioss.uni-freiburg.de/cms/sbml-pet-mpi.html or http://sites.google.com/site/sbmlpetmpi/.

  17. Simple models for estimating local removals of timber in the northeast

    Treesearch

    David N. Larsen; David A. Gansner

    1975-01-01

    Provides a practical method of estimating subregional removals of timber and demonstrates its application to a typical problem. Stepwise multiple regression analysis is used to develop equations for estimating removals of softwood, hardwood, and all timber from selected characteristics of socioeconomic structure.

  18. Evaluating disease management programme effectiveness: an introduction to instrumental variables.

    PubMed

    Linden, Ariel; Adams, John L

    2006-04-01

    This paper introduces the concept of instrumental variables (IVs) as a means of providing an unbiased estimate of treatment effects in evaluating disease management (DM) programme effectiveness. Model development is described using zip codes as the IV. Three diabetes DM outcomes were evaluated: annual diabetes costs, emergency department (ED) visits and hospital days. Both ordinary least squares (OLS) and IV estimates showed a significant treatment effect for diabetes costs (P = 0.011) but neither model produced a significant treatment effect for ED visits. However, the IV estimate showed a significant treatment effect for hospital days (P = 0.006) whereas the OLS model did not. These results illustrate the utility of IV estimation when the OLS model is sensitive to the confounding effect of hidden bias.

  19. Spatial discretization of large watersheds and its influence on the estimation of hillslope sediment yield

    USDA-ARS?s Scientific Manuscript database

    The combined use of water erosion models and geographic information systems (GIS) has facilitated soil loss estimation at the watershed scale. Tools such as the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially distributed soil loss estimat...

  20. Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution+ (GC+) Property Models and Uncertainty Analysis

    EPA Science Inventory

    The aim of this work is to develop group-contribution+ (GC+) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncert...

  1. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; E Garcia, O.; Rypdal, M.

    2017-05-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.

  2. Tensor-guided fitting of subduction slab depths

    USGS Publications Warehouse

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  3. A tool for the estimation of the distribution of landslide area in R

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.

    2012-04-01

    We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.

  4. Valuation of National Park System Visitation: The Efficient Use of Count Data Models, Meta-Analysis, and Secondary Visitor Survey Data

    NASA Astrophysics Data System (ADS)

    Neher, Christopher; Duffield, John; Patterson, David

    2013-09-01

    The National Park Service (NPS) currently manages a large and diverse system of park units nationwide which received an estimated 279 million recreational visits in 2011. This article uses park visitor data collected by the NPS Visitor Services Project to estimate a consistent set of count data travel cost models of park visitor willingness to pay (WTP). Models were estimated using 58 different park unit survey datasets. WTP estimates for these 58 park surveys were used within a meta-regression analysis model to predict average and total WTP for NPS recreational visitation system-wide. Estimated WTP per NPS visit in 2011 averaged 102 system-wide, and ranged across park units from 67 to 288. Total 2011 visitor WTP for the NPS system is estimated at 28.5 billion with a 95% confidence interval of 19.7-43.1 billion. The estimation of a meta-regression model using consistently collected data and identical specification of visitor WTP models greatly reduces problems common to meta-regression models, including sample selection bias, primary data heterogeneity, and heteroskedasticity, as well as some aspects of panel effects. The article provides the first estimate of total annual NPS visitor WTP within the literature directly based on NPS visitor survey data.

  5. Estimating demographic parameters using a combination of known-fate and open N-mixture models

    USGS Publications Warehouse

    Schmidt, Joshua H.; Johnson, Devin S.; Lindberg, Mark S.; Adams, Layne G.

    2015-01-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark–resight data sets. We provide implementations in both the BUGS language and an R package.

  6. Estimating demographic parameters using a combination of known-fate and open N-mixture models.

    PubMed

    Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G

    2015-10-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.

  7. LWS Proposal to Provide Scientific Guidance and Modeling Support for the Ionospheric Mapping Mission. Part 1

    NASA Technical Reports Server (NTRS)

    Richmond, Arthur D.

    2005-01-01

    A data assimilation system for specifying the thermospheric density has been developed over the last several years. This system ingests GRACE/CHAMP-type in situ as well as SSULI/SSUSI remote sensing observations while making use of a physical model, the Coupled Thermosphere-Ionosphere Model (CTIM) (Fuller-Rowel1 et al., 1996). The Kalman filter was implemented as the backbone to the data assimilation system, which provides a statistically 'best' estimate as well as an estimate of the error in its state. The system was tested using a simulated thermosphere and observations. CHAMP data were then used to provide the system with a real data source. The results of this study are herein.

  8. Abundance models improve spatial and temporal prioritization of conservation resources.

    PubMed

    Johnston, Alison; Fink, Daniel; Reynolds, Mark D; Hochachka, Wesley M; Sullivan, Brian L; Bruns, Nicholas E; Hallstein, Eric; Merrifield, Matt S; Matsumoto, Sandi; Kelling, Steve

    2015-10-01

    Conservation prioritization requires knowledge about organism distribution and density. This information is often inferred from models that estimate the probability of species occurrence rather than from models that estimate species abundance, because abundance data are harder to obtain and model. However, occurrence and abundance may not display similar patterns and therefore development of robust, scalable, abundance models is critical to ensuring that scarce conservation resources are applied where they can have the greatest benefits. Motivated by a dynamic land conservation program, we develop and assess a general method for modeling relative abundance using citizen science monitoring data. Weekly estimates of relative abundance and occurrence were compared for prioritizing times and locations of conservation actions for migratory waterbird species in California, USA. We found that abundance estimates consistently provided better rankings of observed counts than occurrence estimates. Additionally, the relationship between abundance and occurrence was nonlinear and varied by species and season. Across species, locations prioritized by occurrence models had only 10-58% overlap with locations prioritized by abundance models, highlighting that occurrence models will not typically identify the locations of highest abundance that are vital for conservation of populations.

  9. An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies.

    PubMed

    Remontet, L; Bossard, N; Belot, A; Estève, J

    2007-05-10

    Relative survival provides a measure of the proportion of patients dying from the disease under study without requiring the knowledge of the cause of death. We propose an overall strategy based on regression models to estimate the relative survival and model the effects of potential prognostic factors. The baseline hazard was modelled until 10 years follow-up using parametric continuous functions. Six models including cubic regression splines were considered and the Akaike Information Criterion was used to select the final model. This approach yielded smooth and reliable estimates of mortality hazard and allowed us to deal with sparse data taking into account all the available information. Splines were also used to model simultaneously non-linear effects of continuous covariates and time-dependent hazard ratios. This led to a graphical representation of the hazard ratio that can be useful for clinical interpretation. Estimates of these models were obtained by likelihood maximization. We showed that these estimates could be also obtained using standard algorithms for Poisson regression. Copyright 2006 John Wiley & Sons, Ltd.

  10. A novel application of artificial neural network for wind speed estimation

    NASA Astrophysics Data System (ADS)

    Fang, Da; Wang, Jianzhou

    2017-05-01

    Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.

  11. Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-01-01

    We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.

  12. Optimal designs for copula models

    PubMed Central

    Perrone, E.; Müller, W.G.

    2016-01-01

    Copula modelling has in the past decade become a standard tool in many areas of applied statistics. However, a largely neglected aspect concerns the design of related experiments. Particularly the issue of whether the estimation of copula parameters can be enhanced by optimizing experimental conditions and how robust all the parameter estimates for the model are with respect to the type of copula employed. In this paper an equivalence theorem for (bivariate) copula models is provided that allows formulation of efficient design algorithms and quick checks of whether designs are optimal or at least efficient. Some examples illustrate that in practical situations considerable gains in design efficiency can be achieved. A natural comparison between different copula models with respect to design efficiency is provided as well. PMID:27453616

  13. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  14. Functional Linear Model with Zero-value Coefficient Function at Sub-regions.

    PubMed

    Zhou, Jianhui; Wang, Nae-Yuh; Wang, Naisyin

    2013-01-01

    We propose a shrinkage method to estimate the coefficient function in a functional linear regression model when the value of the coefficient function is zero within certain sub-regions. Besides identifying the null region in which the coefficient function is zero, we also aim to perform estimation and inferences for the nonparametrically estimated coefficient function without over-shrinking the values. Our proposal consists of two stages. In stage one, the Dantzig selector is employed to provide initial location of the null region. In stage two, we propose a group SCAD approach to refine the estimated location of the null region and to provide the estimation and inference procedures for the coefficient function. Our considerations have certain advantages in this functional setup. One goal is to reduce the number of parameters employed in the model. With a one-stage procedure, it is needed to use a large number of knots in order to precisely identify the zero-coefficient region; however, the variation and estimation difficulties increase with the number of parameters. Owing to the additional refinement stage, we avoid this necessity and our estimator achieves superior numerical performance in practice. We show that our estimator enjoys the Oracle property; it identifies the null region with probability tending to 1, and it achieves the same asymptotic normality for the estimated coefficient function on the non-null region as the functional linear model estimator when the non-null region is known. Numerically, our refined estimator overcomes the shortcomings of the initial Dantzig estimator which tends to under-estimate the absolute scale of non-zero coefficients. The performance of the proposed method is illustrated in simulation studies. We apply the method in an analysis of data collected by the Johns Hopkins Precursors Study, where the primary interests are in estimating the strength of association between body mass index in midlife and the quality of life in physical functioning at old age, and in identifying the effective age ranges where such associations exist.

  15. Estimating fracture spacing from natural tracers in shale-gas production

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; McKenna, S. A.; Heath, J. E.; Gardner, P.

    2012-12-01

    Resource appraisal and long-term recovery potential of shale gas relies on the characteristics of the fracture networks created within the formation. Both well testing and analysis of micro-seismic data can provide information on fracture characteristics, but approaches that directly utilize observations of gas transport through the fractures are not well-developed. We examine transport of natural tracers and analyze the breakthrough curves (BTC's) of these tracers with a multi-rate mass transfer (MMT) model to elucidate fracture characteristics. The focus here is on numerical simulation studies to determine constraints on the ability to accurately estimate fracture network characteristics as a function of the diffusion coefficients of the natural tracers, the number and timing of observations, the flow rates from the well, and the noise in the observations. Traditional tracer testing approaches for dual-porosity systems analyze the BTC of an injected tracer to obtain fracture spacing considering a single spacing value. An alternative model is the MMT model where diffusive mass transfer occurs simultaneously over a range of matrix block sizes defined by a statistical distribution (e.g., log-normal, gamma, or power-law). The goal of the estimation is defining the parameters of the fracture spacing distribution. The MMT model has not yet been applied to analysis of natural in situ natural tracers. Natural tracers are omnipresent in the subsurface, potentially obviating the needed for introduced tracers, and could be used to improve upon fracture characteristics estimated from pressure transient and decline curve production analysis. Results of this study provide guidance for data collection and analysis of natural tracers in fractured shale formations. Parameter estimation on simulated BTC's will provide guidance on the necessary timing of BTC sampling in field experiments. The MMT model can result in non-unique or nonphysical parameter estimates. We address this with Bayesian estimation approaches that can define uncertainty in estimated parameters as a posterior probability distribution. We will also use Bayesian estimation to examine model identifiability (e.g., selecting between parametric distributions of fracture spacing) from various BTC's. Application of the MMT model to natural tracers and hydraulic fractures in shale will require extension of the model to account for partitioning of the tracers between multiple phases and different mass transfer behavior in mixed gas-liquid (e.g., oil or groundwater rich) systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, Timothy M.; Reimus, Paul William

    2015-10-29

    In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less

  17. A scenario and forecast model for Gulf of Mexico hypoxic area and volume

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne; Obenour, Daniel R.

    2013-01-01

    For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions. Here, we describe an adaptation of our earlier, simple biophysical model, calibrated to revised hypoxic area estimates and new hypoxic volume estimates through Bayesian estimation. This application eliminates the need to cull observations and provides revised hypoxic extent estimates with uncertainties, corresponding to different nutrient loading reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5,000 km2, to that of previous applications. In addition, we describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing system sensitivity to hypoxia formation, but find no strong evidence of such change.

  18. Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths.

    PubMed

    Suderman, Bethany L; Vasavada, Anita N

    2017-08-01

    Musculoskeletal models of the cervical spine commonly represent neck muscles with straight paths. However, straight lines do not best represent the natural curvature of muscle paths in the neck, because the paths are constrained by bone and soft tissue. The purpose of this study was to estimate moment arms of curved and straight neck muscle paths using different moment arm calculation methods: tendon excursion, geometric, and effective torque. Curved and straight muscle paths were defined for two subject-specific cervical spine models derived from in vivo magnetic resonance images (MRI). Modeling neck muscle paths with curvature provides significantly different moment arm estimates than straight paths for 10 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). Moment arm estimates were also found to be significantly different among moment arm calculation methods for 11 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). In particular, using straight lines to model muscle paths can lead to overestimating neck extension moment. However, moment arm methods for curved paths should be investigated further, as different methods of calculating moment arm can provide different estimates.

  19. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  20. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    NASA Astrophysics Data System (ADS)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the phenomenon which shows the relationship between the input and output parameters. This study provided new alternatives for solar radiation estimation based on temperatures.

  1. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  2. A Web-Based System for Bayesian Benchmark Dose Estimation.

    PubMed

    Shao, Kan; Shapiro, Andrew J

    2018-01-11

    Benchmark dose (BMD) modeling is an important step in human health risk assessment and is used as the default approach to identify the point of departure for risk assessment. A probabilistic framework for dose-response assessment has been proposed and advocated by various institutions and organizations; therefore, a reliable tool is needed to provide distributional estimates for BMD and other important quantities in dose-response assessment. We developed an online system for Bayesian BMD (BBMD) estimation and compared results from this software with U.S. Environmental Protection Agency's (EPA's) Benchmark Dose Software (BMDS). The system is built on a Bayesian framework featuring the application of Markov chain Monte Carlo (MCMC) sampling for model parameter estimation and BMD calculation, which makes the BBMD system fundamentally different from the currently prevailing BMD software packages. In addition to estimating the traditional BMDs for dichotomous and continuous data, the developed system is also capable of computing model-averaged BMD estimates. A total of 518 dichotomous and 108 continuous data sets extracted from the U.S. EPA's Integrated Risk Information System (IRIS) database (and similar databases) were used as testing data to compare the estimates from the BBMD and BMDS programs. The results suggest that the BBMD system may outperform the BMDS program in a number of aspects, including fewer failed BMD and BMDL calculations and estimates. The BBMD system is a useful alternative tool for estimating BMD with additional functionalities for BMD analysis based on most recent research. Most importantly, the BBMD has the potential to incorporate prior information to make dose-response modeling more reliable and can provide distributional estimates for important quantities in dose-response assessment, which greatly facilitates the current trend for probabilistic risk assessment. https://doi.org/10.1289/EHP1289.

  3. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)

    PubMed Central

    Xu, Chonggang; Gertner, George

    2013-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037

  4. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).

    PubMed

    Xu, Chonggang; Gertner, George

    2011-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

  5. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andy

    2017-03-16

    Simulations of future climate suggest profiles of temperature and precipitation may differ significantly from those in the past. These changes in climate will likely lead to changes in the hydrologic cycle. As such, natural resource managers are in need of tools that can provide estimates of key components of the hydrologic cycle, uncertainty associated with the estimates, and limitations associated with the climate forcing data used to estimate these components. To help address this need, the U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) provides a user friendly interface to deliver hydrologic and meteorological variables for monthly historic and potential future climatic conditions across the continental United States.

  6. An Employee Total Health Management–Based Survey of Iowa Employers

    PubMed Central

    Merchant, James A.; Lind, David P.; Kelly, Kevin M.; Hall, Jennifer L.

    2015-01-01

    Objective To implement an Employee Total Health Management (ETHM) model-based questionnaire and provide estimates of model program elements among a statewide sample of Iowa employers. Methods Survey a stratified random sample of Iowa employers, characterize and estimate employer participation in ETHM program elements Results Iowa employers are implementing under 30% of all 12 components of ETHM, with the exception of occupational safety and health (46.6%) and worker compensation insurance coverage (89.2%), but intend modest expansion of all components in the coming year. Conclusions The Employee Total Health Management questionnaire-based survey provides estimates of progress Iowa employers are making toward implementing components of total worker health programs. PMID:24284757

  7. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    USGS Publications Warehouse

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  8. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O 2 reduction and denitrification (NO 3 – reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwatermore » age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF 6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO 3 – and dissolved gas data to estimate zero order and first order rates of O 2 reduction and denitrification. Results indicated that O 2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O 2 and NO 3 – reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O 2 reduction rates. Estimated historical NO 3 – trends were similar to historical measurements. Here, results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O 2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.« less

  9. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    DOE PAGES

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong; ...

    2016-05-14

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O 2 reduction and denitrification (NO 3 – reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwatermore » age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF 6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO 3 – and dissolved gas data to estimate zero order and first order rates of O 2 reduction and denitrification. Results indicated that O 2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O 2 and NO 3 – reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O 2 reduction rates. Estimated historical NO 3 – trends were similar to historical measurements. Here, results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O 2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.« less

  10. Accounting for imperfect detection of groups and individuals when estimating abundance.

    PubMed

    Clement, Matthew J; Converse, Sarah J; Royle, J Andrew

    2017-09-01

    If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double-observer models, distance sampling models and combined double-observer and distance sampling models (known as mark-recapture-distance-sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under-counted, but not over-counted. The estimator combines an MRDS model with an N-mixture model to account for imperfect detection of individuals. The new MRDS-Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS-Nmix model to an MRDS model. Abundance estimates generated by the MRDS-Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re-allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data required are a second estimate of group size.

  11. Accounting for imperfect detection of groups and individuals when estimating abundance

    USGS Publications Warehouse

    Clement, Matthew J.; Converse, Sarah J.; Royle, J. Andrew

    2017-01-01

    If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double-observer models, distance sampling models and combined double-observer and distance sampling models (known as mark-recapture-distance-sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under-counted, but not over-counted. The estimator combines an MRDS model with an N-mixture model to account for imperfect detection of individuals. The new MRDS-Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS-Nmix model to an MRDS model. Abundance estimates generated by the MRDS-Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re-allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data required are a second estimate of group size.

  12. NASA Land Information System (LIS) Water Availability to Support Reclamation ET Estimation

    NASA Technical Reports Server (NTRS)

    Toll, David; Arsenault, Kristi; Pinheiro, Ana; Peters-Lidard, Christa; Houser, Paul; Kumar, Sujay; Engman, Ted; Nigro, Joe; Triggs, Jonathan

    2005-01-01

    The U.S. Bureau of Reclamation identified the remote sensing of evapotranspiration (ET) as an important water flux for study and designated a test site in the Lower Colorado River basin. A consortium of groups will work together with the goal to develop more accurate and cost effective techniques using the enhanced spatial and temporal coverage afforded by remote sensing. ET is a critical water loss flux where improved estimation should lead to better management of Reclamation responsibilities. There are several areas where NASA satellite and modeling data may be useful to meet Reclamation's objectives for improved ET estimation. In this paper we outline one possible contribution to use NASA's data integration capability of the Land Information System (LIS) to provide a merger of observational (in situ and satellite) with physical process models to provide estimates of ET and other water availability outputs (e.g., runoff, soil moisture) retrospectively, in near real-time, and also providing short-term predictions.

  13. Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model

    PubMed Central

    Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz

    2014-01-01

    Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915

  14. And the first one now will later be last: Time-reversal in cormack-jolly-seber models

    USGS Publications Warehouse

    Nichols, James D.

    2016-01-01

    The models of Cormack, Jolly and Seber (CJS) are remarkable in providing a rich set of inferences about population survival, recruitment, abundance and even sampling probabilities from a seemingly limited data source: a matrix of 1's and 0's reflecting animal captures and recaptures at multiple sampling occasions. Survival and sampling probabilities are estimated directly in CJS models, whereas estimators for recruitment and abundance were initially obtained as derived quantities. Various investigators have noted that just as standard modeling provides direct inferences about survival, reversing the time order of capture history data permits direct modeling and inference about recruitment. Here we review the development of reverse-time modeling efforts, emphasizing the kinds of inferences and questions to which they seem well suited.

  15. Heterogeneous autoregressive model with structural break using nearest neighbor truncation volatility estimators for DAX.

    PubMed

    Chin, Wen Cheong; Lee, Min Cherng; Yap, Grace Lee Ching

    2016-01-01

    High frequency financial data modelling has become one of the important research areas in the field of financial econometrics. However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. In this study, we propose a structural break heavy-tailed heterogeneous autoregressive (HAR) volatility econometric model with the enhancement of jump-robust estimators. The breakpoints in the volatility are captured by dummy variables after the detection by Bai-Perron sequential multi breakpoints procedure. In order to further deal with possible abrupt jump in the volatility, the jump-robust volatility estimators are composed by using the nearest neighbor truncation approach, namely the minimum and median realized volatility. Under the structural break improvements in both the models and volatility estimators, the empirical findings show that the modified HAR model provides the best performing in-sample and out-of-sample forecast evaluations as compared with the standard HAR models. Accurate volatility forecasts have direct influential to the application of risk management and investment portfolio analysis.

  16. Comparison of prognostic and diagnostic approached to modeling evapotranspiration in the Nile river basin

    USDA-ARS?s Scientific Manuscript database

    Actual evapotranspiration (ET) can be estimated using both prognostic and diagnostic modeling approaches, providing independent yet complementary information for hydrologic applications. Both approaches have advantages and disadvantages. When provided with temporally continuous atmospheric forcing d...

  17. Online cross-validation-based ensemble learning.

    PubMed

    Benkeser, David; Ju, Cheng; Lendle, Sam; van der Laan, Mark

    2018-01-30

    Online estimators update a current estimate with a new incoming batch of data without having to revisit past data thereby providing streaming estimates that are scalable to big data. We develop flexible, ensemble-based online estimators of an infinite-dimensional target parameter, such as a regression function, in the setting where data are generated sequentially by a common conditional data distribution given summary measures of the past. This setting encompasses a wide range of time-series models and, as special case, models for independent and identically distributed data. Our estimator considers a large library of candidate online estimators and uses online cross-validation to identify the algorithm with the best performance. We show that by basing estimates on the cross-validation-selected algorithm, we are asymptotically guaranteed to perform as well as the true, unknown best-performing algorithm. We provide extensions of this approach including online estimation of the optimal ensemble of candidate online estimators. We illustrate excellent performance of our methods using simulations and a real data example where we make streaming predictions of infectious disease incidence using data from a large database. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Perez, Hector Eduardo

    This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.

  19. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  20. Estimating the Cost to do a Cost Estimate

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Buchanan, H. R.

    1998-01-01

    This article provides a model for estimating the cost required to do a cost estimate. Overruns may lead to concellation of a project. In 1991, we completed a study on the cost of doing cost estimates for the class of projects normally encountered in the development and implementation of equipment at the network of tracking stations operated by the Jet Propulsion Laboratory (JPL) for NASA.

  1. Transportation Sector Model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. Themore » current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.« less

  2. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    PubMed

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Aerodynamic roughness length estimation with lidar and imaging spectroscopy in a shrub-dominated dryland

    USGS Publications Warehouse

    Li, Aihua; Zhao, Wenguang; Mitchell, Jessica J; Glenn, Nancy F.; Germino, Matthew; Sankey, Joel B.; Allen, Richard G

    2017-01-01

    The aerodynamic roughness length (Z0 m) serves an important role in the flux exchange between the land surface and atmosphere. In this study, airborne lidar (ALS), terrestrial lidar (TLS), and imaging spectroscopy data were integrated to develop and test two approaches to estimate Z0 m over a shrub dominated dryland study area in south-central Idaho, USA. Sensitivity of the two parameterization methods to estimate Z0 m was analyzed. The comparison of eddy covariance-derived Z0 m and remote sensing-derived Z0 m showed that the accuracy of the estimated Z0 m heavily depends on the estimation model and the representation of shrub (e.g., Artemisia tridentata subsp. wyomingensis) height in the models. The geometrical method (RA1994) led to 9 percent (~0.5 cm) and 25% (~1.1 cm) errors at site 1 and site 2, respectively, which performed better than the height variability-based method (MR1994) with bias error of 20 percent and 48 percent at site 1 and site 2, respectively. The RA1994 model resulted in a larger range of Z0 m than the MR1994 method. We also found that the mean, median and 75th percentiles of heights (H75) from ALS provides the best Z0 m estimates in the MR1994 model, while the mean, median, and MLD (Median Absolute Deviation from Median Height), as well as AAD (Mean Absolute Deviation from Mean Height) heights from ALS provides the best Z0 m estimates in the RA1994 model. In addition, the fractional cover of shrub and grass, distinguished with ALS and imaging spectroscopy data, provided the opportunity to estimate the frontal area index at the pixel-level to assess the influence of grass and shrub on Z0m estimates in the RA1994 method. Results indicate that grass had little effect on Z0 m in the RA1994 method. The Z0 m estimations were tightly coupled with vegetation height and its local variance for the shrubs. Overall, the results demonstrate that the use of height and fractional cover from remote sensing data are promising for estimating Z0 m, and thus refining land surface models at regional scales in semiarid shrublands.

  4. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator

    PubMed Central

    Li, Qiao; Mark, Roger G; Clifford, Gari D

    2009-01-01

    Background Within the intensive care unit (ICU), arterial blood pressure (ABP) is typically recorded at different (and sometimes uneven) sampling frequencies, and from different sensors, and is often corrupted by different artifacts and noise which are often non-Gaussian, nonlinear and nonstationary. Extracting robust parameters from such signals, and providing confidences in the estimates is therefore difficult and requires an adaptive filtering approach which accounts for artifact types. Methods Using a large ICU database, and over 6000 hours of simultaneously acquired electrocardiogram (ECG) and ABP waveforms sampled at 125 Hz from a 437 patient subset, we documented six general types of ABP artifact. We describe a new ABP signal quality index (SQI), based upon the combination of two previously reported signal quality measures weighted together. One index measures morphological normality, and the other degradation due to noise. After extracting a 6084-hour subset of clean data using our SQI, we evaluated a new robust tracking algorithm for estimating blood pressure and heart rate (HR) based upon a Kalman Filter (KF) with an update sequence modified by the KF innovation sequence and the value of the SQI. In order to do this, we have created six novel models of different categories of artifacts that we have identified in our ABP waveform data. These artifact models were then injected into clean ABP waveforms in a controlled manner. Clinical blood pressure (systolic, mean and diastolic) estimates were then made from the ABP waveforms for both clean and corrupted data. The mean absolute error for systolic, mean and diastolic blood pressure was then calculated for different levels of artifact pollution to provide estimates of expected errors given a single value of the SQI. Results Our artifact models demonstrate that artifact types have differing effects on systolic, diastolic and mean ABP estimates. We show that, for most artifact types, diastolic ABP estimates are less noise-sensitive than mean ABP estimates, which in turn are more robust than systolic ABP estimates. We also show that our SQI can provide error bounds for both HR and ABP estimates. Conclusion The KF/SQI-fusion method described in this article was shown to provide an accurate estimate of blood pressure and HR derived from the ABP waveform even in the presence of high levels of persistent noise and artifact, and during extreme bradycardia and tachycardia. Differences in error between artifact types, measurement sensors and the quality of the source signal can be factored into physiological estimation using an unbiased adaptive filter, signal innovation and signal quality measures. PMID:19586547

  5. Coupled carbon-nitrogen land surface modelling for UK agricultural landscapes using JULES and JULES-ECOSSE-FUN (JEF)

    NASA Astrophysics Data System (ADS)

    Comyn-Platt, Edward; Clark, Douglas; Blyth, Eleanor

    2016-04-01

    The UK is required to provide accurate estimates of the UK greenhouse gas (GHG; CO2, CH4 and N2O) emissions for the UNFCCC (United Nations Framework Convention on Climate Change). Process based land surface models (LSMs), such as the Joint UK Land Environment Simulator (JULES), attempt to provide such estimates based on environmental (e.g. land use and soil type) and meteorological conditions. The standard release of JULES focusses on the water and carbon cycles, however, it has long been suggested that a coupled carbon-nitrogen scheme could enhance simulations. This is of particular importance when estimating agricultural emission inventories where the carbon cycle is effectively managed via the human application of nitrogen based fertilizers. JULES-ECOSSE-FUN (JEF) links JULES with the Estimation of Carbon in Organic Soils - Sequestration and Emission (ECOSSE) model and the Fixation and Uptake of Nitrogen (FUN) model as a means of simulating C:N coupling. This work presents simulations from the standard release of JULES and the most recent incarnation of the JEF coupled system at the point and field scale. Various configurations of JULES and JEF were calibrated and fine-tuned based on comparisons with observations from three UK field campaigns (Crichton, Harwood Forest and Brattleby) specifically chosen to represent the managed vegetation types that cover the UK. The campaigns included flux tower and chamber measurements of CO2, CH4 and N2O amongst other meteorological parameters and records of land management such as application of fertilizer and harvest date at the agricultural sites. Based on the results of these comparisons, JULES and/or JEF will be used to provide simulations on the regional and national scales in order to provide improved estimates of the total UK emission inventory.

  6. Parametric regression model for survival data: Weibull regression model as an example

    PubMed Central

    2016-01-01

    Weibull regression model is one of the most popular forms of parametric regression model that it provides estimate of baseline hazard function, as well as coefficients for covariates. Because of technical difficulties, Weibull regression model is seldom used in medical literature as compared to the semi-parametric proportional hazard model. To make clinical investigators familiar with Weibull regression model, this article introduces some basic knowledge on Weibull regression model and then illustrates how to fit the model with R software. The SurvRegCensCov package is useful in converting estimated coefficients to clinical relevant statistics such as hazard ratio (HR) and event time ratio (ETR). Model adequacy can be assessed by inspecting Kaplan-Meier curves stratified by categorical variable. The eha package provides an alternative method to model Weibull regression model. The check.dist() function helps to assess goodness-of-fit of the model. Variable selection is based on the importance of a covariate, which can be tested using anova() function. Alternatively, backward elimination starting from a full model is an efficient way for model development. Visualization of Weibull regression model after model development is interesting that it provides another way to report your findings. PMID:28149846

  7. Experimental Design for Parameter Estimation of Gene Regulatory Networks

    PubMed Central

    Timmer, Jens

    2012-01-01

    Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723

  8. Current recommendations on the estimation of transition probabilities in Markov cohort models for use in health care decision-making: a targeted literature review.

    PubMed

    Olariu, Elena; Cadwell, Kevin K; Hancock, Elizabeth; Trueman, David; Chevrou-Severac, Helene

    2017-01-01

    Although Markov cohort models represent one of the most common forms of decision-analytic models used in health care decision-making, correct implementation of such models requires reliable estimation of transition probabilities. This study sought to identify consensus statements or guidelines that detail how such transition probability matrices should be estimated. A literature review was performed to identify relevant publications in the following databases: Medline, Embase, the Cochrane Library, and PubMed. Electronic searches were supplemented by manual-searches of health technology assessment (HTA) websites in Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and the UK. One reviewer assessed studies for eligibility. Of the 1,931 citations identified in the electronic searches, no studies met the inclusion criteria for full-text review, and no guidelines on transition probabilities in Markov models were identified. Manual-searching of the websites of HTA agencies identified ten guidelines on economic evaluations (Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and UK). All identified guidelines provided general guidance on how to develop economic models, but none provided guidance on the calculation of transition probabilities. One relevant publication was identified following review of the reference lists of HTA agency guidelines: the International Society for Pharmacoeconomics and Outcomes Research taskforce guidance. This provided limited guidance on the use of rates and probabilities. There is limited formal guidance available on the estimation of transition probabilities for use in decision-analytic models. Given the increasing importance of cost-effectiveness analysis in the decision-making processes of HTA bodies and other medical decision-makers, there is a need for additional guidance to inform a more consistent approach to decision-analytic modeling. Further research should be done to develop more detailed guidelines on the estimation of transition probabilities.

  9. Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation.

    PubMed

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  10. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    PubMed Central

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797

  11. A new adaptive estimation method of spacecraft thermal mathematical model with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Akita, T.; Takaki, R.; Shima, E.

    2012-04-01

    An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.

  12. A simple model for DSS-14 outage times

    NASA Technical Reports Server (NTRS)

    Rumsey, H. C.; Stevens, R.; Posner, E. C.

    1989-01-01

    A model is proposed to describe DSS-14 outage times. Discrepancy Reporting System outage data for the period from January 1986 through September 1988 are used to estimate the parameters of the model. The model provides a probability distribution for the duration of outages, which agrees well with observed data. The model depends only on a small number of parameters, and has some heuristic justification. This shows that the Discrepancy Reporting System in the Deep Space Network (DSN) can be used to estimate the probability of extended outages in spite of the discrepancy reports ending when the pass ends. The probability of an outage extending beyond the end of a pass is estimated as around 5 percent.

  13. Unifying error structures in commonly used biotracer mixing models.

    PubMed

    Stock, Brian C; Semmens, Brice X

    2016-10-01

    Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet. © 2016 by the Ecological Society of America.

  14. Three estimates of the association between linear growth failure and cognitive ability.

    PubMed

    Cheung, Y B; Lam, K F

    2009-09-01

    To compare three estimators of association between growth stunting as measured by height-for-age Z-score and cognitive ability in children, and to examine the extent statistical adjustment for covariates is useful for removing confounding due to socio-economic status. Three estimators, namely random-effects, within- and between-cluster estimators, for panel data were used to estimate the association in a survey of 1105 pairs of siblings who were assessed for anthropometry and cognition. Furthermore, a 'combined' model was formulated to simultaneously provide the within- and between-cluster estimates. Random-effects and between-cluster estimators showed strong association between linear growth and cognitive ability, even after adjustment for a range of socio-economic variables. In contrast, the within-cluster estimator showed a much more modest association: For every increase of one Z-score in linear growth, cognitive ability increased by about 0.08 standard deviation (P < 0.001). The combined model verified that the between-cluster estimate was significantly larger than the within-cluster estimate (P = 0.004). Residual confounding by socio-economic situations may explain a substantial proportion of the observed association between linear growth and cognition in studies that attempt to control the confounding by means of multivariable regression analysis. The within-cluster estimator provides more convincing and modest results about the strength of association.

  15. Terrestrial gravity data analysis for interim gravity model improvement

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  16. Graphical Models for Ordinal Data

    PubMed Central

    Guo, Jian; Levina, Elizaveta; Michailidis, George; Zhu, Ji

    2014-01-01

    A graphical model for ordinal variables is considered, where it is assumed that the data are generated by discretizing the marginal distributions of a latent multivariate Gaussian distribution. The relationships between these ordinal variables are then described by the underlying Gaussian graphical model and can be inferred by estimating the corresponding concentration matrix. Direct estimation of the model is computationally expensive, but an approximate EM-like algorithm is developed to provide an accurate estimate of the parameters at a fraction of the computational cost. Numerical evidence based on simulation studies shows the strong performance of the algorithm, which is also illustrated on data sets on movie ratings and an educational survey. PMID:26120267

  17. How social information can improve estimation accuracy in human groups.

    PubMed

    Jayles, Bertrand; Kim, Hye-Rin; Escobedo, Ramón; Cezera, Stéphane; Blanchet, Adrien; Kameda, Tatsuya; Sire, Clément; Theraulaz, Guy

    2017-11-21

    In our digital and connected societies, the development of social networks, online shopping, and reputation systems raises the questions of how individuals use social information and how it affects their decisions. We report experiments performed in France and Japan, in which subjects could update their estimates after having received information from other subjects. We measure and model the impact of this social information at individual and collective scales. We observe and justify that, when individuals have little prior knowledge about a quantity, the distribution of the logarithm of their estimates is close to a Cauchy distribution. We find that social influence helps the group improve its properly defined collective accuracy. We quantify the improvement of the group estimation when additional controlled and reliable information is provided, unbeknownst to the subjects. We show that subjects' sensitivity to social influence permits us to define five robust behavioral traits and increases with the difference between personal and group estimates. We then use our data to build and calibrate a model of collective estimation to analyze the impact on the group performance of the quantity and quality of information received by individuals. The model quantitatively reproduces the distributions of estimates and the improvement of collective performance and accuracy observed in our experiments. Finally, our model predicts that providing a moderate amount of incorrect information to individuals can counterbalance the human cognitive bias to systematically underestimate quantities and thereby improve collective performance. Copyright © 2017 the Author(s). Published by PNAS.

  18. How social information can improve estimation accuracy in human groups

    PubMed Central

    Jayles, Bertrand; Kim, Hye-rin; Cezera, Stéphane; Blanchet, Adrien; Kameda, Tatsuya; Sire, Clément; Theraulaz, Guy

    2017-01-01

    In our digital and connected societies, the development of social networks, online shopping, and reputation systems raises the questions of how individuals use social information and how it affects their decisions. We report experiments performed in France and Japan, in which subjects could update their estimates after having received information from other subjects. We measure and model the impact of this social information at individual and collective scales. We observe and justify that, when individuals have little prior knowledge about a quantity, the distribution of the logarithm of their estimates is close to a Cauchy distribution. We find that social influence helps the group improve its properly defined collective accuracy. We quantify the improvement of the group estimation when additional controlled and reliable information is provided, unbeknownst to the subjects. We show that subjects’ sensitivity to social influence permits us to define five robust behavioral traits and increases with the difference between personal and group estimates. We then use our data to build and calibrate a model of collective estimation to analyze the impact on the group performance of the quantity and quality of information received by individuals. The model quantitatively reproduces the distributions of estimates and the improvement of collective performance and accuracy observed in our experiments. Finally, our model predicts that providing a moderate amount of incorrect information to individuals can counterbalance the human cognitive bias to systematically underestimate quantities and thereby improve collective performance. PMID:29118142

  19. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at differentmore » areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.« less

  20. Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method.

    PubMed

    Jia, Gengjie; Stephanopoulos, Gregory N; Gunawan, Rudiyanto

    2011-07-15

    Time-series measurements of metabolite concentration have become increasingly more common, providing data for building kinetic models of metabolic networks using ordinary differential equations (ODEs). In practice, however, such time-course data are usually incomplete and noisy, and the estimation of kinetic parameters from these data is challenging. Practical limitations due to data and computational aspects, such as solving stiff ODEs and finding global optimal solution to the estimation problem, give motivations to develop a new estimation procedure that can circumvent some of these constraints. In this work, an incremental and iterative parameter estimation method is proposed that combines and iterates between two estimation phases. One phase involves a decoupling method, in which a subset of model parameters that are associated with measured metabolites, are estimated using the minimization of slope errors. Another phase follows, in which the ODE model is solved one equation at a time and the remaining model parameters are obtained by minimizing concentration errors. The performance of this two-phase method was tested on a generic branched metabolic pathway and the glycolytic pathway of Lactococcus lactis. The results showed that the method is efficient in getting accurate parameter estimates, even when some information is missing.

  1. CoCoa: a software tool for estimating the coefficient of coancestry from multilocus genotype data.

    PubMed

    Maenhout, Steven; De Baets, Bernard; Haesaert, Geert

    2009-10-15

    Phenotypic data collected in breeding programs and marker-trait association studies are often analyzed by means of linear mixed models. In these models, the covariance between the genetic background effects of all genotypes under study is modeled by means of pairwise coefficients of coancestry. Several marker-based coancestry estimation procedures allow to estimate this covariance matrix, but generally introduce a certain amount of bias when the examined genotypes are part of a breeding program. CoCoa implements the most commonly used marker-based coancestry estimation procedures and as such, allows to select the best fitting covariance structure for the phenotypic data at hand. This better model fit translates into an increased power and improved type I error control in association studies and an improved accuracy in phenotypic prediction studies. The presented software package also provides an implementation of the new Weighted Alikeness in State (WAIS) estimator for use in hybrid breeding programs. Besides several matrix manipulation tools, CoCoa implements two different bending heuristics, in case the inverse of an ill-conditioned coancestry matrix estimate is needed. The software package CoCoa is freely available at http://webs.hogent.be/cocoa. Source code, manual, binaries for 32 and 64-bit Linux systems and an installer for Microsoft Windows are provided. The core components of CoCoa are written in C++, while the graphical user interface is written in Java.

  2. Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh

    2014-03-01

    Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.

  3. Lysimetric evaluation of the APEX Model to simulate daily ET for irrigated crops in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    The NTT (Nutrient Tracking Tool) was designed to provide an opportunity for all users, including producers, to simulate the complex models, such as APEX (Agricultural Policy Environmental eXtender) and associated required databases. The APEX model currently nested within NTT provides estimates of th...

  4. NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates.

    PubMed

    Zimmermann, Nils E R; Vorselaars, Bart; Espinosa, Jorge R; Quigley, David; Smith, William R; Sanz, Eduardo; Vega, Carlos; Peters, Baron

    2018-06-14

    This work reexamines seeded simulation results for NaCl nucleation from a supersaturated aqueous solution at 298.15 K and 1 bar pressure. We present a linear regression approach for analyzing seeded simulation data that provides both nucleation rates and uncertainty estimates. Our results show that rates obtained from seeded simulations rely critically on a precise driving force for the model system. The driving force vs. solute concentration curve need not exactly reproduce that of the real system, but it should accurately describe the thermodynamic properties of the model system. We also show that rate estimates depend strongly on the nucleus size metric. We show that the rate estimates systematically increase as more stringent local order parameters are used to count members of a cluster and provide tentative suggestions for appropriate clustering criteria.

  5. Estimation of missing water-level data for the Everglades Depth Estimation Network (EDEN), 2013 update

    USGS Publications Warehouse

    Petkewich, Matthew D.; Conrads, Paul

    2013-01-01

    The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.

  6. Ensemble Kalman filters for dynamical systems with unresolved turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grooms, Ian, E-mail: grooms@cims.nyu.edu; Lee, Yoonsang; Majda, Andrew J.

    Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (amore » multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.« less

  7. R programming for parameters estimation of geographically weighted ordinal logistic regression (GWOLR) model based on Newton Raphson

    NASA Astrophysics Data System (ADS)

    Zuhdi, Shaifudin; Saputro, Dewi Retno Sari

    2017-03-01

    GWOLR model used for represent relationship between dependent variable has categories and scale of category is ordinal with independent variable influenced the geographical location of the observation site. Parameters estimation of GWOLR model use maximum likelihood provide system of nonlinear equations and hard to be found the result in analytic resolution. By finishing it, it means determine the maximum completion, this thing associated with optimizing problem. The completion nonlinear system of equations optimize use numerical approximation, which one is Newton Raphson method. The purpose of this research is to make iteration algorithm Newton Raphson and program using R software to estimate GWOLR model. Based on the research obtained that program in R can be used to estimate the parameters of GWOLR model by forming a syntax program with command "while".

  8. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  9. Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter

    PubMed Central

    Reddy, Chinthala P.; Rathi, Yogesh

    2016-01-01

    Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts. PMID:27147956

  10. Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter.

    PubMed

    Reddy, Chinthala P; Rathi, Yogesh

    2016-01-01

    Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.

  11. Reducing errors in aircraft atmospheric inversion estimates of point-source emissions: the Aliso Canyon natural gas leak as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.

    2018-04-01

    Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.

  12. Delineating parameter unidentifiabilities in complex models

    NASA Astrophysics Data System (ADS)

    Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis

    2017-03-01

    Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.

  13. Improvements in prevalence trend fitting and incidence estimation in EPP 2013

    PubMed Central

    Brown, Tim; Bao, Le; Eaton, Jeffrey W.; Hogan, Daniel R.; Mahy, Mary; Marsh, Kimberly; Mathers, Bradley M.; Puckett, Robert

    2014-01-01

    Objective: Describe modifications to the latest version of the Joint United Nations Programme on AIDS (UNAIDS) Estimation and Projection Package component of Spectrum (EPP 2013) to improve prevalence fitting and incidence trend estimation in national epidemics and global estimates of HIV burden. Methods: Key changes made under the guidance of the UNAIDS Reference Group on Estimates, Modelling and Projections include: availability of a range of incidence calculation models and guidance for selecting a model; a shift to reporting the Bayesian median instead of the maximum likelihood estimate; procedures for comparison and validation against reported HIV and AIDS data; incorporation of national surveys as an integral part of the fitting and calibration procedure, allowing survey trends to inform the fit; improved antenatal clinic calibration procedures in countries without surveys; adjustment of national antiretroviral therapy reports used in the fitting to include only those aged 15–49 years; better estimates of mortality among people who inject drugs; and enhancements to speed fitting. Results: The revised models in EPP 2013 allow closer fits to observed prevalence trend data and reflect improving understanding of HIV epidemics and associated data. Conclusion: Spectrum and EPP continue to adapt to make better use of the existing data sources, incorporate new sources of information in their fitting and validation procedures, and correct for quantifiable biases in inputs as they are identified and understood. These adaptations provide countries with better calibrated estimates of incidence and prevalence, which increase epidemic understanding and provide a solid base for program and policy planning. PMID:25406747

  14. Individualized estimation of human core body temperature using noninvasive measurements.

    PubMed

    Laxminarayan, Srinivas; Rakesh, Vineet; Oyama, Tatsuya; Kazman, Josh B; Yanovich, Ran; Ketko, Itay; Epstein, Yoram; Morrison, Shawnda; Reifman, Jaques

    2018-06-01

    A rising core body temperature (T c ) during strenuous physical activity is a leading indicator of heat-injury risk. Hence, a system that can estimate T c in real time and provide early warning of an impending temperature rise may enable proactive interventions to reduce the risk of heat injuries. However, real-time field assessment of T c requires impractical invasive technologies. To address this problem, we developed a mathematical model that describes the relationships between T c and noninvasive measurements of an individual's physical activity, heart rate, and skin temperature, and two environmental variables (ambient temperature and relative humidity). A Kalman filter adapts the model parameters to each individual and provides real-time personalized T c estimates. Using data from three distinct studies, comprising 166 subjects who performed treadmill and cycle ergometer tasks under different experimental conditions, we assessed model performance via the root mean squared error (RMSE). The individualized model yielded an overall average RMSE of 0.33 (SD = 0.18)°C, allowing us to reach the same conclusions in each study as those obtained using the T c measurements. Furthermore, for 22 unique subjects whose T c exceeded 38.5°C, a potential lower T c limit of clinical relevance, the average RMSE decreased to 0.25 (SD = 0.20)°C. Importantly, these results remained robust in the presence of simulated real-world operational conditions, yielding no more than 16% worse RMSEs when measurements were missing (40%) or laden with added noise. Hence, the individualized model provides a practical means to develop an early warning system for reducing heat-injury risk. NEW & NOTEWORTHY A model that uses an individual's noninvasive measurements and environmental variables can continually "learn" the individual's heat-stress response by automatically adapting the model parameters on the fly to provide real-time individualized core body temperature estimates. This individualized model can replace impractical invasive sensors, serving as a practical and effective surrogate for core temperature monitoring.

  15. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.

  16. Impacts of Different Assimilation Methodologies on Crop Yield Estimates Using Active and Passive Microwave Dataset at L-Band

    NASA Astrophysics Data System (ADS)

    Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.

    2013-12-01

    Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield estimates. An Ensemble Kalman Filter-based methodology is implemented to incorporate σ0 and TB from Aquarius and SMOS in the DSSAT-A-P model to improve crop yield for two growing seasons of soybean -a normal and a drought affected season- in the rain-fed region of the Brazilian La Plata Basin, South America. Different scenarios of assimilation, including active only, passive only, and combined AP observations were considered. The elements of the state vector included both model states and parameters related to soil and vegetation. The number of elements included in the state vector changed depending upon different scenarios of assimilation and also upon the growth stages. Crop yield estimates were compared for different scenarios during the two seasons. A synthetic experiment conducted previously showed an improvement of crop estimates in the RMSD by 90 kg/ha using combined AP compared to the openloop and active only assimilation over the region.

  17. Temporal validation for landsat-based volume estimation model

    Treesearch

    Renaldo J. Arroyo; Emily B. Schultz; Thomas G. Matney; David L. Evans; Zhaofei Fan

    2015-01-01

    Satellite imagery can potentially reduce the costs and time associated with ground-based forest inventories; however, for satellite imagery to provide reliable forest inventory data, it must produce consistent results from one time period to the next. The objective of this study was to temporally validate a Landsat-based volume estimation model in a four county study...

  18. Using SAS PROC MCMC for Item Response Theory Models

    ERIC Educational Resources Information Center

    Ames, Allison J.; Samonte, Kelli

    2015-01-01

    Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…

  19. Interval Estimation of Revision Effect on Scale Reliability via Covariance Structure Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2009-01-01

    A didactic discussion of a procedure for interval estimation of change in scale reliability due to revision is provided, which is developed within the framework of covariance structure modeling. The method yields ranges of plausible values for the population gain or loss in reliability of unidimensional composites, which results from deletion or…

  20. The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Kim, Kyung Yong; Lee, Won-Chan

    2017-01-01

    This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…

  1. Geodetic Imaging and Tsunami Modeling of the 2017 Coupled Landslide-Tsunami Event in Karrat Fjord, West Greenland.

    NASA Astrophysics Data System (ADS)

    Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.

    2017-12-01

    We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.

  2. Quantifying the Strength of General Factors in Psychopathology: A Comparison of CFA with Maximum Likelihood Estimation, BSEM, and ESEM/EFA Bifactor Approaches.

    PubMed

    Murray, Aja Louise; Booth, Tom; Eisner, Manuel; Obsuth, Ingrid; Ribeaud, Denis

    2018-05-22

    Whether or not importance should be placed on an all-encompassing general factor of psychopathology (or p factor) in classifying, researching, diagnosing, and treating psychiatric disorders depends (among other issues) on the extent to which comorbidity is symptom-general rather than staying largely within the confines of narrower transdiagnostic factors such as internalizing and externalizing. In this study, we compared three methods of estimating p factor strength. We compared omega hierarchical and explained common variance calculated from confirmatory factor analysis (CFA) bifactor models with maximum likelihood (ML) estimation, from exploratory structural equation modeling/exploratory factor analysis models with a bifactor rotation, and from Bayesian structural equation modeling (BSEM) bifactor models. Our simulation results suggested that BSEM with small variance priors on secondary loadings might be the preferred option. However, CFA with ML also performed well provided secondary loadings were modeled. We provide two empirical examples of applying the three methodologies using a normative sample of youth (z-proso, n = 1,286) and a university counseling sample (n = 359).

  3. Reducing uncertainty for estimating forest carbon stocks and dynamics using integrated remote sensing, forest inventory and process-based modeling

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.

    2015-12-01

    Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.

  4. Joint release rate estimation and measurement-by-measurement model correction for atmospheric radionuclide emission in nuclear accidents: An application to wind tunnel experiments.

    PubMed

    Li, Xinpeng; Li, Hong; Liu, Yun; Xiong, Wei; Fang, Sheng

    2018-03-05

    The release rate of atmospheric radionuclide emissions is a critical factor in the emergency response to nuclear accidents. However, there are unavoidable biases in radionuclide transport models, leading to inaccurate estimates. In this study, a method that simultaneously corrects these biases and estimates the release rate is developed. Our approach provides a more complete measurement-by-measurement correction of the biases with a coefficient matrix that considers both deterministic and stochastic deviations. This matrix and the release rate are jointly solved by the alternating minimization algorithm. The proposed method is generic because it does not rely on specific features of transport models or scenarios. It is validated against wind tunnel experiments that simulate accidental releases in a heterogonous and densely built nuclear power plant site. The sensitivities to the position, number, and quality of measurements and extendibility of the method are also investigated. The results demonstrate that this method effectively corrects the model biases, and therefore outperforms Tikhonov's method in both release rate estimation and model prediction. The proposed approach is robust to uncertainties and extendible with various center estimators, thus providing a flexible framework for robust source inversion in real accidents, even if large uncertainties exist in multiple factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Estimating Health-State Utility for Economic Models in Clinical Studies: An ISPOR Good Research Practices Task Force Report.

    PubMed

    Wolowacz, Sorrel E; Briggs, Andrew; Belozeroff, Vasily; Clarke, Philip; Doward, Lynda; Goeree, Ron; Lloyd, Andrew; Norman, Richard

    Cost-utility models are increasingly used in many countries to establish whether the cost of a new intervention can be justified in terms of health benefits. Health-state utility (HSU) estimates (the preference for a given state of health on a cardinal scale where 0 represents dead and 1 represents full health) are typically among the most important and uncertain data inputs in cost-utility models. Clinical trials represent an important opportunity for the collection of health-utility data. However, trials designed primarily to evaluate efficacy and safety often present challenges to the optimal collection of HSU estimates for economic models. Careful planning is needed to determine which of the HSU estimates may be measured in planned trials; to establish the optimal methodology; and to plan any additional studies needed. This report aimed to provide a framework for researchers to plan the collection of health-utility data in clinical studies to provide high-quality HSU estimates for economic modeling. Recommendations are made for early planning of health-utility data collection within a research and development program; design of health-utility data collection during protocol development for a planned clinical trial; design of prospective and cross-sectional observational studies and alternative study types; and statistical analyses and reporting. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  6. Detailed Characterization of Nearshore Processes During NCEX

    NASA Astrophysics Data System (ADS)

    Holland, K.; Kaihatu, J. M.; Plant, N.

    2004-12-01

    Recent technology advances have allowed the coupling of remote sensing methods with advanced wave and circulation models to yield detailed characterizations of nearshore processes. This methodology was demonstrated as part of the Nearshore Canyon EXperiment (NCEX) in La Jolla, CA during Fall 2003. An array of high-resolution, color digital cameras was installed to monitor an alongshore distance of nearly 2 km out to depths of 25 m. This digital imagery was analyzed over the three-month period through an automated process to produce hourly estimates of wave period, wave direction, breaker height, shoreline position, sandbar location, and bathymetry at numerous locations during daylight hours. Interesting wave propagation patterns in the vicinity of the canyons were observed. In addition, directional wave spectra and swash / surf flow velocities were estimated using more computationally intensive methods. These measurements were used to provide forcing and boundary conditions for the Delft3D wave and circulation model, giving additional estimates of nearshore processes such as dissipation and rip currents. An optimal approach for coupling these remotely sensed observations to the numerical model was selected to yield accurate, but also timely characterizations. This involved assimilation of directional spectral estimates near the offshore boundary to mimic forcing conditions achieved under traditional approaches involving nested domains. Measurements of breaker heights and flow speeds were also used to adaptively tune model parameters to provide enhanced accuracy. Comparisons of model predictions and video observations show significant correlation. As compared to nesting within larger-scale and coarser resolution models, the advantages of providing boundary conditions data using remote sensing is much improved resolution and fidelity. For example, rip current development was both modeled and observed. These results indicate that this approach to data-model coupling is tenable and may be useful in near-real-time characterizations required by many applied scenarios.

  7. Unbiased Estimates of Variance Components with Bootstrap Procedures

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2007-01-01

    This article provides general procedures for obtaining unbiased estimates of variance components for any random-model balanced design under any bootstrap sampling plan, with the focus on designs of the type typically used in generalizability theory. The results reported here are particularly helpful when the bootstrap is used to estimate standard…

  8. IRT Item Parameter Recovery with Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models

    ERIC Educational Resources Information Center

    Casabianca, Jodi M.; Lewis, Charles

    2015-01-01

    Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…

  9. Sensitivity analysis of pars-tensa young's modulus estimation using inverse finite-element modeling

    NASA Astrophysics Data System (ADS)

    Rohani, S. Alireza; Elfarnawany, Mai; Agrawal, Sumit K.; Ladak, Hanif M.

    2018-05-01

    Accurate estimates of the pars-tensa (PT) Young's modulus (EPT) are required in finite-element (FE) modeling studies of the middle ear. Previously, we introduced an in-situ EPT estimation technique by optimizing a sample-specific FE model to match experimental eardrum pressurization data. This optimization process requires choosing some modeling assumptions such as PT thickness and boundary conditions. These assumptions are reported with a wide range of variation in the literature, hence affecting the reliability of the models. In addition, the sensitivity of the estimated EPT to FE modeling assumptions has not been studied. Therefore, the objective of this study is to identify the most influential modeling assumption on EPT estimates. The middle-ear cavity extracted from a cadaveric temporal bone was pressurized to 500 Pa. The deformed shape of the eardrum after pressurization was measured using a Fourier transform profilometer (FTP). A base-line FE model of the unpressurized middle ear was created. The EPT was estimated using golden section optimization method, which minimizes the cost function comparing the deformed FE model shape to the measured shape after pressurization. The effect of varying the modeling assumptions on EPT estimates were investigated. This included the change in PT thickness, pars flaccida Young's modulus and possible FTP measurement error. The most influential parameter on EPT estimation was PT thickness and the least influential parameter was pars flaccida Young's modulus. The results of this study provide insight into how different parameters affect the results of EPT optimization and which parameters' uncertainties require further investigation to develop robust estimation techniques.

  10. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.

    The Biogenic Emission Inventory System (BEIS) used by the United States Environmental Protection Agency (Lamb et al., 1993, Atmospheric Environment21, 1695-1705; Pierce and Waldruff, 1991, J. Air Waste Man. Ass.41, 937-941) was tested for its ability to provide realistic microclimate descriptions within a deciduous forest in Canada. The microclimate description within plant canopies is required because isoprene emission rates from plants are strongly influenced by foliage temperature and photosynthetically active radiation impinging on leaves while monoterpene emissions depend primarily on leaf temperature. Model microclimate results combined with plant emission rates and local biomass distribution were used to derive isoprene and α-pinene emissions from the deciduous forest canopy. In addition, modelled isoprene emission estimates were compared to measured emission rates at the leaf level. The current model formulation provides realistic microclimatic conditions for the forest crown where modelled and measured air and foliage temperature are within 3°C. However, the model provides inadequate microclimate characterizations in the lower canopy where estimated and measured foliage temperatures differ by as much as 10°C. This poor agreement may be partly due to improper model characterization of relative humidity and ambient temperature within the canopy. These uncertainties in estimated foliage temperature can lead to underestimates of hydrocarbon emission estimates of two-fold. Moreover, the model overestimates hydrocarbon emissions during the early part of the growing season and underestimates emissions during the middle and latter part of the growing season. These emission uncertainties arise because of the assumed constant biomass distribution of the forest and constant hydrocarbon emission rates throughout the season. The BEIS model, which is presently used in Canada to estimate inventories of hydrocarbon emissions from vegetation, underestimates emission rates by at least two-fold compared to emissions derived from field measurements. The isoprene emission algorithm proposed by Guenther et al. (1993), applied at the leaf level, provides relatively good agreement compared to measurements. Field measurements indicate that isoprene emissions change with leaf ontogeny and differ amongst tree species. Emission rates defined as function of foliage development stage and plant species need to be introduced in the hydrocarbon emission algorithms. Extensive model evaluation and more hydrocarbon emission measurement;: from different plant species are required to fully assess the appropriateness of this emission calculation approach for Canadian forests.

  11. Estimating effects of limiting factors with regression quantiles

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Schroeder, R.L.

    1999-01-01

    In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes in the means from standard linear model procedures. Estimating a range of regression quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns for exploratory and inferential analyses in observational studies of limiting factors, especially when sampling large spatial and temporal scales.

  12. Integration of biogenic emissions in environmental fate, transport, and exposure systems

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos I.

    Biogenic emissions make a significant contribution to the levels of aeroallergens and secondary air pollutants such as ozone. Understanding major factors contributing to allergic airway diseases requires accurate characterization of emissions and transport/transformation of biogenic emissions. However, biogenic emission estimates are laden with large uncertainties. Furthermore, the current biogenic emission estimation models use low-resolution data for estimating land use, vegetation biomass and VOC emissions. Furthermore, there are currently no established methods for estimating bioaerosol emissions over continental or regional scale, which can impact the ambient levels of pollent that have synergestic effects with other gaseous pollutants. In the first part of the thesis, an detailed review of different approaches and available databases for estimating biogenic emissions was conducted, and multiple geodatabases and satellite imagery were used in a consistent manner to improve the estimates of biogenic emissions over the continental United States. These emissions represent more realistic, higher resolution estimates of biogenic emissions (including those of highly reactive species such as isoprene). The impact of these emissions on tropospheric ozone levels was studied at a regional scale through the application of the USEPA's Community Multiscale Air Quality (CMAQ) model. Minor, but significant differences in the levels of ambient ozone were observed. In the second part of the thesis, an algorithm for estimating emissions of pollen particles from major allergenic tree and plant families in the United States was developed, extending the approach for modeling biogenic gas emissions in the Biogenic Emission Inventory System (BEIS). A spatio-temporal vegetation map was constructed from different remote sensing sources and local surveys, and was coupled with a meteorological model to develop pollen emissions rates. This model overcomes limitations posed by the lack of temporally resolved dynamic vegetation mapping in traditional pollen emission estimation methods. The pollen emissions model was applied to study the pollen emissions for North East US at 12 km resolution for comparison with ground level tree pollen data. A pollen transport model that simulates complex dispersion and deposition was developed through modifications to the USEPA's Community Multiscale Air Quality (CMAQ) model. The peak pollen emission predictions were within a day of peak pollen counts measured, thus corroborating independent model verification. Furthermore, the peak predicted pollen concentration estimates were within two days of the peak measured pollen counts, thus providing independent corroboration. The models for emissions and dispersion allow data-independent estimation of pollen levels, and provide an important component in assessing exposures of populations to pollen, especially under different climate change scenarios.

  13. Estimation of real-time runway surface contamination using flight data recorder parameters

    NASA Astrophysics Data System (ADS)

    Curry, Donovan

    Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the results show the minimum frequency at which the algorithm still provides moderately accurate data is at 2Hz. In addition, the linear analysis shows that with estimated parameters increased and decreased up to 25% at random, high priority parameters have to be accurate to within at least +/-5% to have an effect of less than 1% change in the average coefficient of friction. Non-linear analysis results show that the algorithm can be considered reasonably accurate for all simulated cases when inaccuracies in the estimated parameters vary randomly and simultaneously up to +/-27%. At worst-case the maximum percentage change in average coefficient of friction is less than 10% for all surfaces.

  14. The influence of a time-varying least squares parametric model when estimating SFOAEs evoked with swept-frequency tones

    NASA Astrophysics Data System (ADS)

    Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.

    2018-05-01

    Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.

  15. Remote sensing-aided systems for snow qualification, evapotranspiration estimation, and their application in hydrologic models

    NASA Technical Reports Server (NTRS)

    Korram, S.

    1977-01-01

    The design of general remote sensing-aided methodologies was studied to provide the estimates of several important inputs to water yield forecast models. These input parameters are snow area extent, snow water content, and evapotranspiration. The study area is Feather River Watershed (780,000 hectares), Northern California. The general approach involved a stepwise sequence of identification of the required information, sample design, measurement/estimation, and evaluation of results. All the relevent and available information types needed in the estimation process are being defined. These include Landsat, meteorological satellite, and aircraft imagery, topographic and geologic data, ground truth data, and climatic data from ground stations. A cost-effective multistage sampling approach was employed in quantification of all the required parameters. The physical and statistical models for both snow quantification and evapotranspiration estimation was developed. These models use the information obtained by aerial and ground data through appropriate statistical sampling design.

  16. Monte Carlo uncertainty analysis of dose estimates in radiochromic film dosimetry with single-channel and multichannel algorithms.

    PubMed

    Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio

    2018-03-01

    To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Assessment of Various Remote Sensing Technologies in Biomass and Nitrogen Content Estimation Using AN Agricultural Test Field

    NASA Astrophysics Data System (ADS)

    Näsi, R.; Viljanen, N.; Kaivosoja, J.; Hakala, T.; Pandžić, M.; Markelin, L.; Honkavaara, E.

    2017-10-01

    Multispectral and hyperspectral imaging is usually acquired by satellite and aircraft platforms. Recently, miniaturized hyperspectral 2D frame cameras have showed great potential to precise agriculture estimations and they are feasible to combine with lightweight platforms, such as drones. Drone platform is a flexible tool for remote sensing applications with environment and agriculture. The assessment and comparison of different platforms such as satellite, aircraft and drones with different sensors, such as hyperspectral and RGB cameras is an important task in order to understand the potential of the data provided by these equipment and to select the most appropriate according to the user applications and requirements. In this context, open and permanent test fields are very significant and helpful experimental environment, since they provide a comparative data for different platforms, sensors and users, allowing multi-temporal analyses as well. Objective of this work was to investigate the feasibility of an open permanent test field in context of precision agriculture. Satellite (Sentinel-2), aircraft and drones with hyperspectral and RGB cameras were assessed in this study to estimate biomass, using linear regression models and in-situ samples. Spectral data and 3D information were used and compared in different combinations to investigate the quality of the models. The biomass estimation accuracies using linear regression models were better than 90 % for the drone based datasets. The results showed that the use of spectral and 3D features together improved the estimation model. However, estimation of nitrogen content was less accurate with the evaluated remote sensing sensors. The open and permanent test field showed to be suitable to provide an accurate and reliable reference data for the commercial users and farmers.

  18. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    PubMed

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Marshall

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on modelmore » add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.« less

  20. Holographic estimate of the meson cloud contribution to nucleon axial form factor

    NASA Astrophysics Data System (ADS)

    Ramalho, G.

    2018-04-01

    We use light-front holography to estimate the valence quark and the meson cloud contributions to the nucleon axial form factor. The free couplings of the holographic model are determined by the empirical data and by the information extracted from lattice QCD. The holographic model provides a good description of the empirical data when we consider a meson cloud mixture of about 30% in the physical nucleon state. The estimate of the valence quark contribution to the nucleon axial form factor compares well with the lattice QCD data for small pion masses. Our estimate of the meson cloud contribution to the nucleon axial form factor has a slower falloff with the square momentum transfer compared to typical estimates from quark models with meson cloud dressing.

  1. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  2. A simple linear model for estimating ozone AOT40 at forest sites from raw passive sampling data.

    PubMed

    Ferretti, Marco; Cristofolini, Fabiana; Cristofori, Antonella; Gerosa, Giacomo; Gottardini, Elena

    2012-08-01

    A rapid, empirical method is described for estimating weekly AOT40 from ozone concentrations measured with passive samplers at forest sites. The method is based on linear regression and was developed after three years of measurements in Trentino (northern Italy). It was tested against an independent set of data from passive sampler sites across Italy. It provides good weekly estimates compared with those measured by conventional monitors (0.85 ≤R(2)≤ 0.970; 97 ≤ RMSE ≤ 302). Estimates obtained using passive sampling at forest sites are comparable to those obtained by another estimation method based on modelling hourly concentrations (R(2) = 0.94; 131 ≤ RMSE ≤ 351). Regression coefficients of passive sampling are similar to those obtained with conventional monitors at forest sites. Testing against an independent dataset generated by passive sampling provided similar results (0.86 ≤R(2)≤ 0.99; 65 ≤ RMSE ≤ 478). Errors tend to accumulate when weekly AOT40 estimates are summed to obtain the total AOT40 over the May-July period, and the median deviation between the two estimation methods based on passive sampling is 11%. The method proposed does not require any assumptions, complex calculation or modelling technique, and can be useful when other estimation methods are not feasible, either in principle or in practice. However, the method is not useful when estimates of hourly concentrations are of interest.

  3. Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography

    PubMed Central

    Kasaragod, Deepa; Makita, Shuichi; Hong, Young-Joo; Yasuno, Yoshiaki

    2017-01-01

    This paper presents a noise-stochastic corrected maximum a posteriori estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for a posteriori estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by in vivo measurement of optic nerve head. PMID:28270974

  4. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas

    PubMed Central

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-01-01

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R2 of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R2 between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R2 value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R2 and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible. PMID:27367708

  5. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas.

    PubMed

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-06-28

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R² of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R² between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R² value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R² and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible.

  6. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Saunier, Olivier; Mathieu, Anne

    2012-03-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativity of the measurements, those that are instrumental, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. We propose to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We apply the method to the estimation of the Fukushima Daiichi source term using activity concentrations in the air. The results are compared to an L-curve estimation technique and to Desroziers's scheme. The total reconstructed activities significantly depend on the chosen method. Because of the poor observability of the Fukushima Daiichi emissions, these methods provide lower bounds for cesium-137 and iodine-131 reconstructed activities. These lower bound estimates, 1.2 × 1016 Bq for cesium-137, with an estimated standard deviation range of 15%-20%, and 1.9 - 3.8 × 1017 Bq for iodine-131, with an estimated standard deviation range of 5%-10%, are of the same order of magnitude as those provided by the Japanese Nuclear and Industrial Safety Agency and about 5 to 10 times less than the Chernobyl atmospheric releases.

  7. Markov state models from short non-equilibrium simulations—Analysis and correction of estimation bias

    NASA Astrophysics Data System (ADS)

    Nüske, Feliks; Wu, Hao; Prinz, Jan-Hendrik; Wehmeyer, Christoph; Clementi, Cecilia; Noé, Frank

    2017-03-01

    Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, over the last 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs from short non-equilibrium simulations, and we provide an expression for the error between unbiased transition probabilities and the expected estimate from many short simulations. We show that the unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in the limit of long lag times and good discretization. Further, we exploit observable operator model (OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system without estimating an MSM transition matrix, which allows us to practically assess the discretization quality of the MSM. Applications to model systems and molecular dynamics simulation data of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in PyEMMA of version 2.3.

  8. A Modularized Efficient Framework for Non-Markov Time Series Estimation

    NASA Astrophysics Data System (ADS)

    Schamberg, Gabriel; Ba, Demba; Coleman, Todd P.

    2018-06-01

    We present a compartmentalized approach to finding the maximum a-posteriori (MAP) estimate of a latent time series that obeys a dynamic stochastic model and is observed through noisy measurements. We specifically consider modern signal processing problems with non-Markov signal dynamics (e.g. group sparsity) and/or non-Gaussian measurement models (e.g. point process observation models used in neuroscience). Through the use of auxiliary variables in the MAP estimation problem, we show that a consensus formulation of the alternating direction method of multipliers (ADMM) enables iteratively computing separate estimates based on the likelihood and prior and subsequently "averaging" them in an appropriate sense using a Kalman smoother. As such, this can be applied to a broad class of problem settings and only requires modular adjustments when interchanging various aspects of the statistical model. Under broad log-concavity assumptions, we show that the separate estimation problems are convex optimization problems and that the iterative algorithm converges to the MAP estimate. As such, this framework can capture non-Markov latent time series models and non-Gaussian measurement models. We provide example applications involving (i) group-sparsity priors, within the context of electrophysiologic specrotemporal estimation, and (ii) non-Gaussian measurement models, within the context of dynamic analyses of learning with neural spiking and behavioral observations.

  9. Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina

    2012-03-01

    Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.

  10. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Goldberg, Marshall

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output frommore » total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.« less

  11. Downscaler Model for predicting daily air pollution

    EPA Pesticide Factsheets

    This model combines daily ozone and particulate matter monitoring and modeling data from across the U.S. to provide improved fine-scale estimates of air quality in communities and other specific locales.

  12. Integrating chronological uncertainties for annually laminated lake sediments using layer counting, independent chronologies and Bayesian age modelling (Lake Ohau, South Island, New Zealand)

    NASA Astrophysics Data System (ADS)

    Vandergoes, Marcus J.; Howarth, Jamie D.; Dunbar, Gavin B.; Turnbull, Jocelyn C.; Roop, Heidi A.; Levy, Richard H.; Li, Xun; Prior, Christine; Norris, Margaret; Keller, Liz D.; Baisden, W. Troy; Ditchburn, Robert; Fitzsimons, Sean J.; Bronk Ramsey, Christopher

    2018-05-01

    Annually resolved (varved) lake sequences are important palaeoenvironmental archives as they offer a direct incremental dating technique for high-frequency reconstruction of environmental and climate change. Despite the importance of these records, establishing a robust chronology and quantifying its precision and accuracy (estimations of error) remains an essential but challenging component of their development. We outline an approach for building reliable independent chronologies, testing the accuracy of layer counts and integrating all chronological uncertainties to provide quantitative age and error estimates for varved lake sequences. The approach incorporates (1) layer counts and estimates of counting precision; (2) radiometric and biostratigrapic dating techniques to derive independent chronology; and (3) the application of Bayesian age modelling to produce an integrated age model. This approach is applied to a case study of an annually resolved sediment record from Lake Ohau, New Zealand. The most robust age model provides an average error of 72 years across the whole depth range. This represents a fractional uncertainty of ∼5%, higher than the <3% quoted for most published varve records. However, the age model and reported uncertainty represent the best fit between layer counts and independent chronology and the uncertainties account for both layer counting precision and the chronological accuracy of the layer counts. This integrated approach provides a more representative estimate of age uncertainty and therefore represents a statistically more robust chronology.

  13. Information-geometric measures as robust estimators of connection strengths and external inputs.

    PubMed

    Tatsuno, Masami; Fellous, Jean-Marc; Amari, Shun-Ichi

    2009-08-01

    Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.

  14. RECENT ENHANCEMENTS TO THE DIETARY EXPOSURE POTENTIAL MODEL

    EPA Science Inventory

    Presentation describes recent enhancements & new applications of the Dietary Exposure Potential Model (DEPM), a model developed to assist in design & interpretation of dietary exposure measurements. Model is an interactive system that provides dietary exposure estimates using dat...

  15. Extended Kalman Filter framework for forecasting shoreline evolution

    USGS Publications Warehouse

    Long, Joseph; Plant, Nathaniel G.

    2012-01-01

    A shoreline change model incorporating both long- and short-term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model-data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non-observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).

  16. Costs of providing infusion therapy for patients with inflammatory bowel disease in a hospital-based infusion center setting.

    PubMed

    Afzali, Anita; Ogden, Kristine; Friedman, Michael L; Chao, Jingdong; Wang, Anthony

    2017-04-01

    Inflammatory bowel disease (IBD) (e.g. ulcerative colitis [UC] and Crohn's disease [CD]) severely impacts patient quality-of-life. Moderate-to-severe disease is often treated with biologics requiring infusion therapy, adding incremental costs beyond drug costs. This study evaluates US hospital-based infusion services costs for treatment of UC or CD patients receiving infliximab or vedolizumab therapy. A model was developed, estimating annual costs of providing monitored infusions using an activity-based costing framework approach. Multiple sources (published literature, treatment product inserts) informed base-case model input estimates. The total modeled per patient infusion therapy costs in Year 1 with infliximab and vedolizumab was $38,782 and $41,320, respectively, and Year 2+, $49,897 and $36,197, respectively. Drug acquisition cost was the largest total costs driver (90-93%), followed by costs associated with hospital-based infusion provision: labor (53-56%, non-drug costs), allocated overhead (23%, non-drug costs), non-labor (23%, non-drug costs), and laboratory (7-10%, non-drug costs). Limitations included reliance on published estimates, base-case cost estimates infusion drug, and supplies, not accounting for volume pricing, assumption of a small hospital infusion center, and that, given the model adopts the hospital perspective, costs to the patient were not included in infusion administration cost base-case estimates. This model is an early step towards a framework to fully analyze infusion therapies' associated costs. Given the lack of published data, it would be beneficial for hospital administrators to assess total costs and trade-offs with alternative means of providing biologic therapies. This analysis highlights the value to hospital administrators of assessing cost associated with infusion patient mix to make more informed resource allocation decisions. As the landscape for reimbursement changes, tools for evaluating the costs of infusion therapy may help hospital administrators make informed choices and weigh trade-offs associated with providing infusion services for IBD patients.

  17. On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.

    1992-01-01

    We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.

  18. A numerical procedure for recovering true scattering coefficients from measurements with wide-beam antennas

    NASA Technical Reports Server (NTRS)

    Wang, Qinglin; Gogineni, S. P.

    1991-01-01

    A numerical procedure for estimating the true scattering coefficient, sigma(sup 0), from measurements made using wide-beam antennas. The use of wide-beam antennas results in an inaccurate estimate of sigma(sup 0) if the narrow-beam approximation is used in the retrieval process for sigma(sup 0). To reduce this error, a correction procedure was proposed that estimates the error resulting from the narrow-beam approximation and uses the error to obtain a more accurate estimate of sigma(sup 0). An exponential model was assumed to take into account the variation of sigma(sup 0) with incidence angles, and the model parameters are estimated from measured data. Based on the model and knowledge of the antenna pattern, the procedure calculates the error due to the narrow-beam approximation. The procedure is shown to provide a significant improvement in estimation of sigma(sup 0) obtained with wide-beam antennas. The proposed procedure is also shown insensitive to the assumed sigma(sup 0) model.

  19. The ACCE method: an approach for obtaining quantitative or qualitative estimates of residual confounding that includes unmeasured confounding

    PubMed Central

    Smith, Eric G.

    2015-01-01

    Background:  Nonrandomized studies typically cannot account for confounding from unmeasured factors.  Method:  A method is presented that exploits the recently-identified phenomenon of  “confounding amplification” to produce, in principle, a quantitative estimate of total residual confounding resulting from both measured and unmeasured factors.  Two nested propensity score models are constructed that differ only in the deliberate introduction of an additional variable(s) that substantially predicts treatment exposure.  Residual confounding is then estimated by dividing the change in treatment effect estimate between models by the degree of confounding amplification estimated to occur, adjusting for any association between the additional variable(s) and outcome. Results:  Several hypothetical examples are provided to illustrate how the method produces a quantitative estimate of residual confounding if the method’s requirements and assumptions are met.  Previously published data is used to illustrate that, whether or not the method routinely provides precise quantitative estimates of residual confounding, the method appears to produce a valuable qualitative estimate of the likely direction and general size of residual confounding. Limitations:  Uncertainties exist, including identifying the best approaches for: 1) predicting the amount of confounding amplification, 2) minimizing changes between the nested models unrelated to confounding amplification, 3) adjusting for the association of the introduced variable(s) with outcome, and 4) deriving confidence intervals for the method’s estimates (although bootstrapping is one plausible approach). Conclusions:  To this author’s knowledge, it has not been previously suggested that the phenomenon of confounding amplification, if such amplification is as predictable as suggested by a recent simulation, provides a logical basis for estimating total residual confounding. The method's basic approach is straightforward.  The method's routine usefulness, however, has not yet been established, nor has the method been fully validated. Rapid further investigation of this novel method is clearly indicated, given the potential value of its quantitative or qualitative output. PMID:25580226

  20. Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements

    NASA Astrophysics Data System (ADS)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.

    2015-01-01

    Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.

  1. Graphic comparison of reserve-growth models for conventional oil and accumulation

    USGS Publications Warehouse

    Klett, T.R.

    2003-01-01

    The U.S. Geological Survey (USGS) periodically assesses crude oil, natural gas, and natural gas liquids resources of the world. The assessment procedure requires estimated recover-able oil and natural gas volumes (field size, cumulative production plus remaining reserves) in discovered fields. Because initial reserves are typically conservative, subsequent estimates increase through time as these fields are developed and produced. The USGS assessment of petroleum resources makes estimates, or forecasts, of the potential additions to reserves in discovered oil and gas fields resulting from field development, and it also estimates the potential fully developed sizes of undiscovered fields. The term ?reserve growth? refers to the commonly observed upward adjustment of reserve estimates. Because such additions are related to increases in the total size of a field, the USGS uses field sizes to model reserve growth. Future reserve growth in existing fields is a major component of remaining U.S. oil and natural gas resources and has therefore become a necessary element of U.S. petroleum resource assessments. Past and currently proposed reserve-growth models compared herein aid in the selection of a suitable set of forecast functions to provide an estimate of potential additions to reserves from reserve growth in the ongoing National Oil and Gas Assessment Project (NOGA). Reserve growth is modeled by construction of a curve that represents annual fractional changes of recoverable oil and natural gas volumes (for fields and reservoirs), which provides growth factors. Growth factors are used to calculate forecast functions, which are sets of field- or reservoir-size multipliers. Comparisons of forecast functions were made based on datasets used to construct the models, field type, modeling method, and length of forecast span. Comparisons were also made between forecast functions based on field-level and reservoir- level growth, and between forecast functions based on older and newer data. The reserve-growth model used in the 1995 USGS National Assessment and the model currently used in the NOGA project provide forecast functions that yield similar estimates of potential additions to reserves. Both models are based on the Oil and Gas Integrated Field File from the Energy Information Administration (EIA), but different vintages of data (from 1977 through 1991 and 1977 through 1996, respectively). The model based on newer data can be used in place of the previous model, providing similar estimates of potential additions to reserves. Fore-cast functions for oil fields vary little from those for gas fields in these models; therefore, a single function may be used for both oil and gas fields, like that used in the USGS World Petroleum Assessment 2000. Forecast functions based on the field-level reserve growth model derived from the NRG Associates databases (from 1982 through 1998) differ from those derived from EIA databases (from 1977 through 1996). However, the difference may not be enough to preclude the use of the forecast functions derived from NRG data in place of the forecast functions derived from EIA data. Should the model derived from NRG data be used, separate forecast functions for oil fields and gas fields must be employed. The forecast function for oil fields from the model derived from NRG data varies significantly from that for gas fields, and a single function for both oil and gas fields may not be appropriate.

  2. Risk estimation using probability machines

    PubMed Central

    2014-01-01

    Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306

  3. Risk estimation using probability machines.

    PubMed

    Dasgupta, Abhijit; Szymczak, Silke; Moore, Jason H; Bailey-Wilson, Joan E; Malley, James D

    2014-03-01

    Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a "risk machine", will share properties from the statistical machine that it is derived from.

  4. Modeling of Army Research Laboratory EMP simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miletta, J.R.; Chase, R.J.; Luu, B.B.

    1993-12-01

    Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).

  5. Improving riverine constituent concentration and flux estimation by accounting for antecedent discharge conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Ball, William P.

    2017-04-01

    Regression-based approaches are often employed to estimate riverine constituent concentrations and fluxes based on typically sparse concentration observations. One such approach is the recently developed WRTDS ("Weighted Regressions on Time, Discharge, and Season") method, which has been shown to provide more accurate estimates than prior approaches in a wide range of applications. Centered on WRTDS, this work was aimed at developing improved models for constituent concentration and flux estimation by accounting for antecedent discharge conditions. Twelve modified models were developed and tested, each of which contains one additional flow variable to represent antecedent conditions and which can be directly derived from the daily discharge record. High-resolution (∼daily) data at nine diverse monitoring sites were used to evaluate the relative merits of the models for estimation of six constituents - chloride (Cl), nitrate-plus-nitrite (NOx), total Kjeldahl nitrogen (TKN), total phosphorus (TP), soluble reactive phosphorus (SRP), and suspended sediment (SS). For each site-constituent combination, 30 concentration subsets were generated from the original data through Monte Carlo subsampling and then used to evaluate model performance. For the subsampling, three sampling strategies were adopted: (A) 1 random sample each month (12/year), (B) 12 random monthly samples plus additional 8 random samples per year (20/year), and (C) flow-stratified sampling with 12 regular (non-storm) and 8 storm samples per year (20/year). Results reveal that estimation performance varies with both model choice and sampling strategy. In terms of model choice, the modified models show general improvement over the original model under all three sampling strategies. Major improvements were achieved for NOx by the long-term flow-anomaly model and for Cl by the ADF (average discounted flow) model and the short-term flow-anomaly model. Moderate improvements were achieved for SS, TP, and TKN by the ADF model. By contrast, no such achievement was achieved for SRP by any proposed model. In terms of sampling strategy, performance of all models (including the original) was generally best using strategy C and worst using strategy A, and especially so for SS, TP, and SRP, confirming the value of routinely collecting stormflow samples. Overall, this work provides a comprehensive set of statistical evidence for supporting the incorporation of antecedent discharge conditions into the WRTDS model for estimation of constituent concentration and flux, thereby combining the advantages of two recent developments in water quality modeling.

  6. Estimating organ doses from tube current modulated CT examinations using a generalized linear model.

    PubMed

    Bostani, Maryam; McMillan, Kyle; Lu, Peiyun; Kim, Grace Hyun J; Cody, Dianna; Arbique, Gary; Greenberg, S Bruce; DeMarco, John J; Cagnon, Chris H; McNitt-Gray, Michael F

    2017-04-01

    Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter (WED) and regional CTDI vol as variables and (b) using the same exponential relationship with the addition of categorical variables such as scanner model and organ to provide a more complete estimate of factors that may affect organ dose. Finally, estimates from generated models were compared to those obtained from SSDE and ImPACT. The Generalized Linear Model yielded organ dose estimates that were significantly closer to the MC reference organ dose values than were organ doses estimated via SSDE or ImPACT. Moreover, the GLM estimates were better than those of SSDE or ImPACT irrespective of whether or not categorical variables were used in the model. While the improvement associated with a categorical variable was substantial in estimating breast dose, the improvement was minor for other organs. The GLM approach extends the current CT dose estimation methods by allowing the use of additional variables to more accurately estimate organ dose from TCM scans. Thus, this approach may be able to overcome the limitations of current CT dose metrics to provide more accurate estimates of patient dose, in particular, dose to organs with considerable variability across the population. © 2017 American Association of Physicists in Medicine.

  7. A Thermal-based Two-Source Energy Balance Model for Estimating Evapotranspiration over Complex Canopies

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation describes a robust but relatively simple LS...

  8. Advanced risk assessment of the effects of graphite fibers on electronic and electric equipment, phase 1. [simulating vulnerability to airports and communities from fibers released during aircraft fires

    NASA Technical Reports Server (NTRS)

    Pocinki, L. S.; Kaplan, L. D.; Cornell, M. E.; Greenstone, R.

    1979-01-01

    A model was developed to generate quantitative estimates of the risk associated with the release of graphite fibers during fires involving commercial aircraft constructed with graphite fiber composite materials. The model was used to estimate the risk associated with accidents at several U.S. airports. These results were then combined to provide an estimate of the total risk to the nation.

  9. Verification of Sulfate Attack Penetration Rates for Saltstone Disposal Unit Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    Recent Special Analysis modeling of Saltstone Disposal Units consider sulfate attack on concrete and utilize degradation rates estimated from Cementitious Barriers Partnership software simulations. This study provides an independent verification of those simulation results using an alternative analysis method and an independent characterization data source. The sulfate penetration depths estimated herein are similar to the best-estimate values in SRNL-STI-2013-00118 Rev. 2 and well below the nominal values subsequently used to define Saltstone Special Analysis base cases.

  10. Last menstrual period provides the best estimate of gestation length for women in rural Guatemala.

    PubMed

    Neufeld, Lynnette M; Haas, Jere D; Grajéda, Ruben; Martorell, Reynaldo

    2006-07-01

    The accurate estimation of gestational age in field studies in rural areas of developing countries continues to present difficulties for researchers. Our objective was to determine the best method for gestational age estimation in rural Guatemala. Women of childbearing age from four communities in rural Guatemala were invited to participate in a longitudinal study. Gestational age at birth was determined by an early second trimester measure of biparietal diameter, last menstrual period (LMP), the Capurro neonatal examination and symphysis-fundus height (SFH) for 171 women-infant pairs. Regression modelling was used to determine which method provided the best estimate of gestational age using ultrasound as the reference. Gestational age estimated by LMP was within +/-14 days of the ultrasound estimate for 94% of the sample. LMP-estimated gestational age explained 46% of the variance in gestational age estimated by ultrasound whereas the neonatal examination explained only 20%. The results of this study suggest that, when trained field personnel assist women to recall their date of LMP, this date provides the best estimate of gestational age. SFH measured during the second trimester may provide a reasonable alternative when LMP is unavailable.

  11. POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models

    PubMed Central

    Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.

    2014-01-01

    The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516

  12. Estimating riparian understory vegetation cover with beta regression and copula models

    USGS Publications Warehouse

    Eskelson, Bianca N.I.; Madsen, Lisa; Hagar, Joan C.; Temesgen, Hailemariam

    2011-01-01

    Understory vegetation communities are critical components of forest ecosystems. As a result, the importance of modeling understory vegetation characteristics in forested landscapes has become more apparent. Abundance measures such as shrub cover are bounded between 0 and 1, exhibit heteroscedastic error variance, and are often subject to spatial dependence. These distributional features tend to be ignored when shrub cover data are analyzed. The beta distribution has been used successfully to describe the frequency distribution of vegetation cover. Beta regression models ignoring spatial dependence (BR) and accounting for spatial dependence (BRdep) were used to estimate percent shrub cover as a function of topographic conditions and overstory vegetation structure in riparian zones in western Oregon. The BR models showed poor explanatory power (pseudo-R2 ≤ 0.34) but outperformed ordinary least-squares (OLS) and generalized least-squares (GLS) regression models with logit-transformed response in terms of mean square prediction error and absolute bias. We introduce a copula (COP) model that is based on the beta distribution and accounts for spatial dependence. A simulation study was designed to illustrate the effects of incorrectly assuming normality, equal variance, and spatial independence. It showed that BR, BRdep, and COP models provide unbiased parameter estimates, whereas OLS and GLS models result in slightly biased estimates for two of the three parameters. On the basis of the simulation study, 93–97% of the GLS, BRdep, and COP confidence intervals covered the true parameters, whereas OLS and BR only resulted in 84–88% coverage, which demonstrated the superiority of GLS, BRdep, and COP over OLS and BR models in providing standard errors for the parameter estimates in the presence of spatial dependence.

  13. Estimation and Modelling of Land Surface Temperature Using Landsat 7 ETM+ Images and Fuzzy System Techniques

    NASA Astrophysics Data System (ADS)

    Bisht, K.; Dodamani, S. S.

    2016-12-01

    Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.

  14. Robust small area estimation of poverty indicators using M-quantile approach (Case study: Sub-district level in Bogor district)

    NASA Astrophysics Data System (ADS)

    Girinoto, Sadik, Kusman; Indahwati

    2017-03-01

    The National Socio-Economic Survey samples are designed to produce estimates of parameters of planned domains (provinces and districts). The estimation of unplanned domains (sub-districts and villages) has its limitation to obtain reliable direct estimates. One of the possible solutions to overcome this problem is employing small area estimation techniques. The popular choice of small area estimation is based on linear mixed models. However, such models need strong distributional assumptions and do not easy allow for outlier-robust estimation. As an alternative approach for this purpose, M-quantile regression approach to small area estimation based on modeling specific M-quantile coefficients of conditional distribution of study variable given auxiliary covariates. It obtained outlier-robust estimation from influence function of M-estimator type and also no need strong distributional assumptions. In this paper, the aim of study is to estimate the poverty indicator at sub-district level in Bogor District-West Java using M-quantile models for small area estimation. Using data taken from National Socioeconomic Survey and Villages Potential Statistics, the results provide a detailed description of pattern of incidence and intensity of poverty within Bogor district. We also compare the results with direct estimates. The results showed the framework may be preferable when direct estimate having no incidence of poverty at all in the small area.

  15. A New Monte Carlo Method for Estimating Marginal Likelihoods.

    PubMed

    Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O

    2018-06-01

    Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution include the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing optimal weights. Simulation studies were conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.

  16. Dual-process theory and signal-detection theory of recognition memory.

    PubMed

    Wixted, John T

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know procedure, and both methods are now widely used in the neuroscience literature to identify the brain correlates of recollection and familiarity. However, in recent years, a substantial literature has accumulated directly contrasting the signal-detection model against the threshold/detection model, and that literature is almost unanimous in its endorsement of signal-detection theory. A dual-process version of signal-detection theory implies that individual recognition decisions are not process pure, and it suggests new ways to investigate the brain correlates of recognition memory. ((c) 2007 APA, all rights reserved).

  17. Comparing two tools for ecosystem service assessments regarding water resources decisions.

    PubMed

    Dennedy-Frank, P James; Muenich, Rebecca Logsdon; Chaubey, Indrajeet; Ziv, Guy

    2016-07-15

    We present a comparison of two ecohydrologic models commonly used for planning land management to assess the production of hydrologic ecosystem services: the Soil and Water Assessment Tool (SWAT) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) annual water yield model. We compare these two models at two distinct sites in the US: the Wildcat Creek Watershed in Indiana and the Upper Upatoi Creek Watershed in Georgia. The InVEST and SWAT models provide similar estimates of the spatial distribution of water yield in Wildcat Creek, but very different estimates of the spatial distribution of water yield in Upper Upatoi Creek. The InVEST model may do a poor job estimating the spatial distribution of water yield in the Upper Upatoi Creek Watershed because baseflow provides a significant portion of the site's total water yield, which means that storage dynamics which are not modeled by InVEST may be important. We also compare the ability of these two models, as well as one newly developed set of ecosystem service indices, to deliver useful guidance for land management decisions focused on providing hydrologic ecosystem services in three particular decision contexts: environmental flow ecosystem services, ecosystem services for potable water supply, and ecosystem services for rainfed irrigation. We present a simple framework for selecting models or indices to evaluate hydrologic ecosystem services as a way to formalize where models deliver useful guidance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  19. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  20. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  1. Model Year 2017 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  2. Model Year 2018 Fuel Economy Guide: EPA Fuel Economy Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  3. Design of a Field Test for Probability of Hit by Antiaircraft Guns

    DTIC Science & Technology

    1973-02-01

    not available. • The cost of conducting the numerous field test trials that would be needed to establish the loss rates of aircraft to antiaircraft...mathematical models provide a readily available and relatively inexpensive way to obtain estimates of aircraft losses to antiaircraft guns. Because these...aircraft losses to antiaircraft guns, the use of the models can contribute greatly to better decisions. But if the models produce invalid estimates

  4. Advances in Land Data Assimilation at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2009-01-01

    Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the SMAP L4_SM product. Terrestrial water storage observations from GRACE satellite system were also successfully assimilated into the NASA Catchment model and provided improved estimates of groundwater variability when compared to the model estimates alone. Moreover, satellite-based land surface temperature (LST) observations from the ISCCP archive were assimilated using a bias estimation module that was specifically designed for LST assimilation. As with soil moisture, LST assimilation provides modest yet statistically significant improvements when compared to the model or satellite observations alone. To achieve the improvement, however, the LST assimilation algorithm must be adapted to the specific formulation of LST in the land model. An improved method for the assimilation of snow cover observations was also developed. Finally, the coupling of LIS to the mesoscale Weather Research and Forecasting (WRF) model enabled investigations into how the sensitivity of land-atmosphere interactions to the specific choice of planetary boundary layer scheme and land surface model varies across surface moisture regimes, and how it can be quantified and evaluated against observations. The on-going development and integration of land assimilation modules into the Land Information System will enable the use of GSFC software with a variety of land models and make it accessible to the research community.

  5. A one-step method for modelling longitudinal data with differential equations.

    PubMed

    Hu, Yueqin; Treinen, Raymond

    2018-04-06

    Differential equation models are frequently used to describe non-linear trajectories of longitudinal data. This study proposes a new approach to estimate the parameters in differential equation models. Instead of estimating derivatives from the observed data first and then fitting a differential equation to the derivatives, our new approach directly fits the analytic solution of a differential equation to the observed data, and therefore simplifies the procedure and avoids bias from derivative estimations. A simulation study indicates that the analytic solutions of differential equations (ASDE) approach obtains unbiased estimates of parameters and their standard errors. Compared with other approaches that estimate derivatives first, ASDE has smaller standard error, larger statistical power and accurate Type I error. Although ASDE obtains biased estimation when the system has sudden phase change, the bias is not serious and a solution is also provided to solve the phase problem. The ASDE method is illustrated and applied to a two-week study on consumers' shopping behaviour after a sale promotion, and to a set of public data tracking participants' grammatical facial expression in sign language. R codes for ASDE, recommendations for sample size and starting values are provided. Limitations and several possible expansions of ASDE are also discussed. © 2018 The British Psychological Society.

  6. Probabilistic estimates of number of undiscovered deposits and their total tonnages in permissive tracts using deposit densities

    USGS Publications Warehouse

    Singer, Donald A.; Kouda, Ryoichi

    2011-01-01

    Empirical evidence indicates that processes affecting number and quantity of resources in geologic settings are very general across deposit types. Sizes of permissive tracts that geologically could contain the deposits are excellent predictors of numbers of deposits. In addition, total ore tonnage of mineral deposits of a particular type in a tract is proportional to the type’s median tonnage in a tract. Regressions using size of permissive tracts and median tonnage allow estimation of number of deposits and of total tonnage of mineralization. These powerful estimators, based on 10 different deposit types from 109 permissive worldwide control tracts, generalize across deposit types. Estimates of number of deposits and of total tonnage of mineral deposits are made by regressing permissive area, and mean (in logs) tons in deposits of the type, against number of deposits and total tonnage of deposits in the tract for the 50th percentile estimates. The regression equations (R2 = 0.91 and 0.95) can be used for all deposit types just by inserting logarithmic values of permissive area in square kilometers, and mean tons in deposits in millions of metric tons. The regression equations provide estimates at the 50th percentile, and other equations are provided for 90% confidence limits for lower estimates and 10% confidence limits for upper estimates of number of deposits and total tonnage. Equations for these percentile estimates along with expected value estimates are presented here along with comparisons with independent expert estimates. Also provided are the equations for correcting for the known well-explored deposits in a tract. These deposit-density models require internally consistent grade and tonnage models and delineations for arriving at unbiased estimates.

  7. Broadband assessment of degree-2 gravitational changes from GRACE and other estimates, 2002-2015

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Ries, J. C.

    2016-03-01

    Space geodetic measurements, including the Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), and Earth rotation provide independent and increasingly accurate estimates of variations in Earth's gravity field Stokes coefficients ΔC21, ΔS21, and ΔC20. Mass redistribution predicted by climate models provides another independent estimate of air and water contributions to these degree-2 changes. SLR has been a successful technique in measuring these low-degree gravitational changes. Broadband comparisons of independent estimates of ΔC21, ΔS21, and ΔC20 from GRACE, SLR, Earth rotation, and climate models during the GRACE era from April 2002 to April 2015 show that the current GRACE release 5 solutions of ΔC21 and ΔS21 provided by the Center for Space Research (CSR) are greatly improved over earlier solutions and agree remarkably well with other estimates, especially on ΔS21 estimates. GRACE and Earth rotation ΔS21 agreement is exceptionally good across a very broad frequency band from intraseasonal, seasonal, to interannual and decadal periods. SLR ΔC20 estimates remain superior to GRACE and Earth rotation estimates, due to the large uncertainty in GRACE ΔC20 solutions and particularly high sensitivity of Earth rotation ΔC20 estimates to errors in the wind fields. With several estimates of ΔC21, ΔS21, and ΔC20 variations, it is possible to estimate broadband noise variance and noise power spectra in each, given reasonable assumptions about noise independence. The GRACE CSR release 5 solutions clearly outperform other estimates of ΔC21 and ΔS21 variations with the lowest noise levels over a broad band of frequencies.

  8. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  9. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.

    2010-01-01

    Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.

  10. Supplemental materials for the analysis of capture-recapture data for polar bears in Western Hudson Bay, Canada, 1984-2004

    USGS Publications Warehouse

    Regehr, Eric V.; Lunn, Nicholas J.; Amstrup, Steven C.; Stirling, Ian

    2007-01-01

    Regehr and others (2007, Survival and population size of polar bears in western Hudson Bay in relation to earlier sea ice breakup: Journal of Wildlife Management, v. 71, no. 8) evaluated survival in relation to climatic conditions and estimated population size for polar bears (Ursus maritimus) in western Hudson Bay, Canada. Here, we provide supplemental materials for the analyses in Regehr and others (2007). We demonstrate how tag-return data from harvested polar bears were used to adjust estimates of total survival for human-caused mortality. We describe the sex and age composition of the capture and harvest samples and provide results for goodness-of-fit tests applied to capture-recapture models. We also describe the capture-recapture model selection procedure and the structure of the most supported model, which was used to estimate survival and population size.

  11. Linear estimation of coherent structures in wall-bounded turbulence at Re τ = 2000

    NASA Astrophysics Data System (ADS)

    Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S.

    2018-04-01

    The estimation problem for a fully-developed turbulent channel flow at Re τ = 2000 is considered. Specifically, a Kalman filter is designed using a Navier–Stokes-based linear model. The estimator uses time-resolved velocity measurements at a single wall-normal location (provided by DNS) to estimate the time-resolved velocity field at other wall-normal locations. The estimator is able to reproduce the largest scales with reasonable accuracy for a range of wavenumber pairs, measurement locations and estimation locations. Importantly, the linear model is also able to predict with reasonable accuracy the performance that will be achieved by the estimator when applied to the DNS. A more practical estimation scheme using the shear stress at the wall as measurement is also considered. The estimator is still able to estimate the largest scales with reasonable accuracy, although the estimator’s performance is reduced.

  12. Identifying and Assessing Gaps in Subseasonal to Seasonal Prediction Skill using the North American Multi-model Ensemble

    NASA Astrophysics Data System (ADS)

    Pegion, K.; DelSole, T. M.; Becker, E.; Cicerone, T.

    2016-12-01

    Predictability represents the upper limit of prediction skill if we had an infinite member ensemble and a perfect model. It is an intrinsic limit of the climate system associated with the chaotic nature of the atmosphere. Producing a forecast system that can make predictions very near to this limit is the ultimate goal of forecast system development. Estimates of predictability together with calculations of current prediction skill are often used to define the gaps in our prediction capabilities on subseasonal to seasonal timescales and to inform the scientific issues that must be addressed to build the next forecast system. Quantification of the predictability is also important for providing a scientific basis for relaying to stakeholders what kind of climate information can be provided to inform decision-making and what kind of information is not possible given the intrinsic predictability of the climate system. One challenge with predictability estimates is that different prediction systems can give different estimates of the upper limit of skill. How do we know which estimate of predictability is most representative of the true predictability of the climate system? Previous studies have used the spread-error relationship and the autocorrelation to evaluate the fidelity of the signal and noise estimates. Using a multi-model ensemble prediction system, we can quantify whether these metrics accurately indicate an individual model's ability to properly estimate the signal, noise, and predictability. We use this information to identify the best estimates of predictability for 2-meter temperature, precipitation, and sea surface temperature from the North American Multi-model Ensemble and compare with current skill to indicate the regions with potential for improving skill.

  13. Change-in-ratio methods for estimating population size

    USGS Publications Warehouse

    Udevitz, Mark S.; Pollock, Kenneth H.; McCullough, Dale R.; Barrett, Reginald H.

    2002-01-01

    Change-in-ratio (CIR) methods can provide an effective, low cost approach for estimating the size of wildlife populations. They rely on being able to observe changes in proportions of population subclasses that result from the removal of a known number of individuals from the population. These methods were first introduced in the 1940’s to estimate the size of populations with 2 subclasses under the assumption of equal subclass encounter probabilities. Over the next 40 years, closed population CIR models were developed to consider additional subclasses and use additional sampling periods. Models with assumptions about how encounter probabilities vary over time, rather than between subclasses, also received some attention. Recently, all of these CIR models have been shown to be special cases of a more general model. Under the general model, information from additional samples can be used to test assumptions about the encounter probabilities and to provide estimates of subclass sizes under relaxations of these assumptions. These developments have greatly extended the applicability of the methods. CIR methods are attractive because they do not require the marking of individuals, and subclass proportions often can be estimated with relatively simple sampling procedures. However, CIR methods require a carefully monitored removal of individuals from the population, and the estimates will be of poor quality unless the removals induce substantial changes in subclass proportions. In this paper, we review the state of the art for closed population estimation with CIR methods. Our emphasis is on the assumptions of CIR methods and on identifying situations where these methods are likely to be effective. We also identify some important areas for future CIR research.

  14. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil

    PubMed Central

    Nunes, Matheus Henrique

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074

  15. Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, kai

    2007-01-01

    Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.

  16. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    PubMed

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  17. Sensitivity of Value Added School Effect Estimates to Different Model Specifications and Outcome Measures

    ERIC Educational Resources Information Center

    Pride, Bryce L.

    2012-01-01

    The Adequate Yearly Progress (AYP) Model has been used to make many high-stakes decisions concerning schools, though it does not provide a complete assessment of student academic achievement and school effectiveness. To provide a clearer perspective, many states have implemented various Growth and Value Added Models, in addition to AYP. The…

  18. Occupancy Modeling for Improved Accuracy and Understanding of Pathogen Prevalence and Dynamics

    PubMed Central

    Colvin, Michael E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2015-01-01

    Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmon Oncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/ metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%. PMID:25738709

  19. Occupancy modeling for improved accuracy and understanding of pathogen prevalence and dynamics

    USGS Publications Warehouse

    Colvin, Michael E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2015-01-01

    Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmonOncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population:Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%.

  20. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide estimates of ground-water inflow using similar water input. The calibration periods were water years 1990-2002 for watersheds in the Carson Range, and water years 1981-97 for watersheds in the Pine Nut Mountains. Daily mean values for water years 1990-2002 were then simulated using the calibrated watershed models in the Pine Nut Mountains. The daily mean values of precipitation, runoff, evapotranspiration, and ground-water inflow simulated from the watershed models were summed to provide annual mean rates and volumes for each year of the simulations, and mean annual rates and volumes computed for water years 1990-2002. Mean annual bias for the period of record for models of Daggett Creek and Fredericksburg Canyon watersheds, two gaged perennial watersheds in the Carson Range, was within 4 percent and relative errors were about 6 and 12 percent, respectively. Model fit was not as satisfactory for two gaged perennial watersheds, Pine Nut and Buckeye Creeks, in the Pine Nut Mountains. The Pine Nut Creek watershed model had a large negative mean annual bias and a relative error of -11 percent, underestimated runoff for all years but the wet years in the latter part of the record, but adequately simulated the bulk of the spring runoff most of the years. The Buckeye Creek watershed model overestimated mean annual runoff with a relative error of about -5 percent when water year 1994 was removed from the analysis because it had a poor record. The bias and error of the calibrated models were within generally accepted limits for watershed models, indicating the simulated rates and volumes of runoff and ground-water inflow were reasonable. The total mean annual ground-water inflow to Carson Valley computed using estimates simulated by the watershed models was 38,000 acre-feet, including ground-water inflow from Eagle Valley, recharge from precipitation on eolian sand and gravel deposits, and ground-water recharge from precipitation on the western alluvial fans. The estimate was in close agreement with that obtained from the chloride-balance method, 40,000 acre-feet, but was considerably greater than the estimate obtained from the water-yield method, 22,000 acre-feet. The similar estimates obtained from the watershed models and chloride-balance method, two relatively independent methods, provide more confidence that they represent a reasonably accurate volume of ground-water inflow to Carson Valley. However, the two estimates are not completely independent because they use similar distributions of mean annual precipitation. Annual ground-water recharge of the basin-fill aquifers in Carson Valley ranged from 51,000 to 54,000 acre-feet computed using estimates of ground-water inflow to Carson Valley simulated from the watershed models combined with previous estimates of other ground-water budget components. Estimates of mean annual ground-water discharge range from 44,000 to 47,000 acre-feet. The low range estimate for ground-water recharge, 51,000 acre-feet per year, is most similar to the high range estimate for ground-water discharge, 47,000 acre-feet per year. Thus, an average annual volume of about 50,000 acre-feet is a reasonable estimate for mean annual ground-water recharge to and discharge from the basin-fill aquifers in Carson Valley. The results of watershed models indicate that significant interannual variability in the volumes of ground-water inflow is caused by climate variations. During multi-year drought conditions, the watershed simulations indicate that ground-water recharge could be as much as 80 percent less than the mean annual volume of 50,000 acre-feet.

  1. Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra.

    PubMed

    Lund, Steven P; Hubbard, Joseph B; Halter, Michael

    2014-11-06

    Diffusion processes superimposed upon deterministic motion play a key role in understanding and controlling the transport of matter, energy, momentum, and even information in physics, chemistry, material science, biology, and communications technology. Given functions defining these random and deterministic components, the Fokker-Planck (FP) equation is often used to model these diffusive systems. Many methods exist for estimating the drift and diffusion profiles from one or more identifiable diffusive trajectories; however, when many identical entities diffuse simultaneously, it may not be possible to identify individual trajectories. Here we present a method capable of simultaneously providing nonparametric estimates for both drift and diffusion profiles from evolving density profiles, requiring only the validity of Langevin/FP dynamics. This algebraic FP manipulation provides a flexible and robust framework for estimating stationary drift and diffusion coefficient profiles, is not based on fluctuation theory or solved diffusion equations, and may facilitate predictions for many experimental systems. We illustrate this approach on experimental data obtained from a model lipid bilayer system exhibiting free diffusion and electric field induced drift. The wide range over which this approach provides accurate estimates for drift and diffusion profiles is demonstrated through simulation.

  2. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion

    PubMed Central

    Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.

    2012-01-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511

  3. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion.

    PubMed

    Wood, Nathan A; Del Agua, Diego Moral; Zenati, Marco A; Riviere, Cameron N

    2011-12-05

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described.

  4. Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications

    PubMed Central

    2011-01-01

    Background The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, methods for estimating enrichment levels in ChIP-seq data for these computational studies are understudied and variable. Since the conclusions drawn from these data mining and machine learning applications strongly depend on the enrichment level inputs, a comparison of estimation methods with respect to the performance of statistical models should be made. Results Various methods were used to estimate the gene-wise ChIP-seq enrichment levels for 20 histone methylations and the histone variant H2A.Z. The Multivariate Adaptive Regression Splines (MARS) algorithm was applied for each estimation method using the estimation of enrichment levels as predictors and gene expression levels as responses. The methods used to estimate enrichment levels included tag counting and model-based methods that were applied to whole genes and specific gene regions. These methods were also applied to various sizes of estimation windows. The MARS model performance was assessed with the Generalized Cross-Validation Score (GCV). We determined that model-based methods of enrichment estimation that spatially weight enrichment based on average patterns provided an improvement over tag counting methods. Also, methods that included information across the entire gene body provided improvement over methods that focus on a specific sub-region of the gene (e.g., the 5' or 3' region). Conclusion The performance of data mining and machine learning methods when applied to histone modification ChIP-seq data can be improved by using data across the entire gene body, and incorporating the spatial distribution of enrichment. Refinement of enrichment estimation ultimately improved accuracy of model predictions. PMID:21834981

  5. An Improved Analysis of Forest Carbon Dynamics using Data Assimilation

    NASA Technical Reports Server (NTRS)

    Williams, Mathew; Schwarz, Paul A.; Law, Beverly E.; Kurpius, Meredith R.

    2005-01-01

    There are two broad approaches to quantifying landscape C dynamics - by measuring changes in C stocks over time, or by measuring fluxes of C directly. However, these data may be patchy, and have gaps or biases. An alternative approach to generating C budgets has been to use process-based models, constructed to simulate the key processes involved in C exchange. However, the process of model building is arguably subjective, and parameters may be poorly defined. This paper demonstrates why data assimilation (DA) techniques - which combine stock and flux observations with a dynamic model - improve estimates of, and provide insights into, ecosystem carbon (C) exchanges. We use an ensemble Kalman filter (EnKF) to link a series of measurements with a simple box model of C transformations. Measurements were collected at a young ponderosa pine stand in central Oregon over a 3-year period, and include eddy flux and soil C02 efflux data, litterfall collections, stem surveys, root and soil cores, and leaf area index data. The simple C model is a mass balance model with nine unknown parameters, tracking changes in C storage among five pools; foliar, wood and fine root pools in vegetation, and also fresh litter and soil organic matter (SOM) plus coarse woody debris pools. We nested the EnKF within an optimization routine to generate estimates from the data of the unknown parameters and the five initial conditions for the pools. The efficacy of the DA process can be judged by comparing the probability distributions of estimates produced with the EnKF analysis vs. those produced with reduced data or model alone. Using the model alone, estimated net ecosystem exchange of C (NEE)= -251 f 197g Cm-2 over the 3 years, compared with an estimate of -419 f 29gCm-2 when all observations were assimilated into the model. The uncertainty on daily measurements of NEE via eddy fluxes was estimated at 0.5gCm-2 day-1, but the uncertainty on assimilated estimates averaged 0.47 g Cm-2 day-1, and only exceeded 0.5gC m-2 day-1 on days where neither eddy flux nor soil efflux data were available. In generating C budgets, the assimilation process reduced the uncertainties associated with using data or model alone and the forecasts of NEE were statistically unbiased estimates. The results of the analysis emphasize the importance of time series as constraints. Occasional, rare measurements of stocks have limited use in constraining the estimates of other components of the C cycle. Long time series are particularly crucial for improving the analysis of pools with long time constants, such as SOM, woody biomass, and woody debris. Long-running forest stem surveys, and tree ring data, offer a rich resource that could be assimilated to provide an important constraint on C cycling of slow pools. For extending estimates of NEE across regions, DA can play a further important role, by assimilating remote-sensing data into the analysis of C cycles. We show, via sensitivity analysis, how assimilating an estimate of photosynthesis - which might be provided indirectly by remotely sensed data - improves the analysis of NEE.

  6. Generating Health Estimates by Zip Code: A Semiparametric Small Area Estimation Approach Using the California Health Interview Survey.

    PubMed

    Wang, Yueyan; Ponce, Ninez A; Wang, Pan; Opsomer, Jean D; Yu, Hongjian

    2015-12-01

    We propose a method to meet challenges in generating health estimates for granular geographic areas in which the survey sample size is extremely small. Our generalized linear mixed model predicts health outcomes using both individual-level and neighborhood-level predictors. The model's feature of nonparametric smoothing function on neighborhood-level variables better captures the association between neighborhood environment and the outcome. Using 2011 to 2012 data from the California Health Interview Survey, we demonstrate an empirical application of this method to estimate the fraction of residents without health insurance for Zip Code Tabulation Areas (ZCTAs). Our method generated stable estimates of uninsurance for 1519 of 1765 ZCTAs (86%) in California. For some areas with great socioeconomic diversity across adjacent neighborhoods, such as Los Angeles County, the modeled uninsured estimates revealed much heterogeneity among geographically adjacent ZCTAs. The proposed method can increase the value of health surveys by providing modeled estimates for health data at a granular geographic level. It can account for variations in health outcomes at the neighborhood level as a result of both socioeconomic characteristics and geographic locations.

  7. Evaluation of Thompson-type trend and monthly weather data models for corn yields in Iowa, Illinois, and Indiana

    NASA Technical Reports Server (NTRS)

    French, V. (Principal Investigator)

    1982-01-01

    An evaluation was made of Thompson-Type models which use trend terms (as a surrogate for technology), meteorological variables based on monthly average temperature, and total precipitation to forecast and estimate corn yields in Iowa, Illinois, and Indiana. Pooled and unpooled Thompson-type models were compared. Neither was found to be consistently superior to the other. Yield reliability indicators show that the models are of limited use for large area yield estimation. The models are objective and consistent with scientific knowledge. Timely yield forecasts and estimates can be made during the growing season by using normals or long range weather forecasts. The models are not costly to operate and are easy to use and understand. The model standard errors of prediction do not provide a useful current measure of modeled yield reliability.

  8. The Model Averaging for Dichotomous Response Benchmark Dose (MADr-BMD) Tool

    EPA Pesticide Factsheets

    Providing quantal response models, which are also used in the U.S. EPA benchmark dose software suite, and generates a model-averaged dose response model to generate benchmark dose and benchmark dose lower bound estimates.

  9. Spatial-altitudinal and temporal variation of Degree Day Factors (DDFs) in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Attaullah, Haleema; Masud, Tabinda; Khan, Mujahid

    2017-04-01

    Melt contribution from snow and ice in the Hindukush-Karakoram-Himalayan (HKH) region could account for more than 80% of annual river flows in the Upper Indus Basin (UIB). Increase or decrease in precipitation, energy input and glacier reserves can significantly affect water resources of this region. Therefore improved hydrological modelling and accurate future water resources prediction are vital for food production and hydro-power generation for millions of people living downstream, and are intensively needed. In mountain regions Degree Day Factors (DDFs) significantly vary on spatial and altitudinal basis, and are primary inputs of temperature-based hydrological modelling. However previous studies have used different DDFs as calibration parameters without due attention to the physical meaning of the values employed, and these estimates possess significant variability and uncertainty. This study provides estimates of DDFs for various altitudinal zones in the UIB at sub-basin level. Snow, clean ice and ice with debris cover bear different melt rates (or DDFs), therefore areally-averaged DDFs based on snow, clean and debris-covered ice classes in various altitudinal zones have been estimated for all sub-basins of the UIB. Zonal estimates of DDFs in the current study are significantly different from earlier adopted DDFs, hence suggest a revisit of previous hydrological modelling studies. DDFs presented in current study have been validated by using Snowmelt Runoff Model (SRM) in various sub-basins with good Nash Sutcliffe coefficients (R2 > 0.85) and low volumetric errors (Dv<10%). DDFs and methods provided in the current study can be used in future improved hydrological modelling and to provide accurate predictions of future river flows changes. The methodology used for estimation of DDFs is robust, and can be adopted to produce such estimates in other regions of the, particularly in the nearby other HKH basins.

  10. Uplift rates of marine terraces as a constraint on fault-propagation fold kinematics: Examples from the Hawkswood and Kate anticlines, North Canterbury, New Zealand

    NASA Astrophysics Data System (ADS)

    Oakley, David O. S.; Fisher, Donald M.; Gardner, Thomas W.; Stewart, Mary Kate

    2018-01-01

    Marine terraces on growing fault-propagation folds provide valuable insight into the relationship between fold kinematics and uplift rates, providing a means to distinguish among otherwise non-unique kinematic model solutions. Here, we investigate this relationship at two locations in North Canterbury, New Zealand: the Kate anticline and Haumuri Bluff, at the northern end of the Hawkswood anticline. At both locations, we calculate uplift rates of previously dated marine terraces, using DGPS surveys to estimate terrace inner edge elevations. We then use Markov chain Monte Carlo methods to fit fault-propagation fold kinematic models to structural geologic data, and we incorporate marine terrace uplift into the models as an additional constraint. At Haumuri Bluff, we find that marine terraces, when restored to originally horizontal surfaces, can help to eliminate certain trishear models that would fit the geologic data alone. At Kate anticline, we compare uplift rates at different structural positions and find that the spatial pattern of uplift rates is more consistent with trishear than with a parallel-fault propagation fold kink-band model. Finally, we use our model results to compute new estimates for fault slip rates ( 1-2 m/ka at Kate anticline and 1-4 m/ka at Haumuri Bluff) and ages of the folds ( 1 Ma), which are consistent with previous estimates for the onset of folding in this region. These results are consistent with previous work on the age of onset of folding in this region, provide revised estimates of fault slip rates necessary to understand the seismic hazard posed by these faults, and demonstrate the value of incorporating marine terraces in inverse fold kinematic models as a means to distinguish among non-unique solutions.

  11. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  12. Hierarchical models and Bayesian analysis of bird survey information

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Royle, J. Andrew; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    Summary of bird survey information is a critical component of conservation activities, but often our summaries rely on statistical methods that do not accommodate the limitations of the information. Prioritization of species requires ranking and analysis of species by magnitude of population trend, but often magnitude of trend is a misleading measure of actual decline when trend is poorly estimated. Aggregation of population information among regions is also complicated by varying quality of estimates among regions. Hierarchical models provide a reasonable means of accommodating concerns about aggregation and ranking of quantities of varying precision. In these models the need to consider multiple scales is accommodated by placing distributional assumptions on collections of parameters. For collections of species trends, this allows probability statements to be made about the collections of species-specific parameters, rather than about the estimates. We define and illustrate hierarchical models for two commonly encountered situations in bird conservation: (1) Estimating attributes of collections of species estimates, including ranking of trends, estimating number of species with increasing populations, and assessing population stability with regard to predefined trend magnitudes; and (2) estimation of regional population change, aggregating information from bird surveys over strata. User-friendly computer software makes hierarchical models readily accessible to scientists.

  13. High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools.

    PubMed

    Ernstoff, Alexi S; Fantke, Peter; Huang, Lei; Jolliet, Olivier

    2017-11-01

    Specialty software and simplified models are often used to estimate migration of potentially toxic chemicals from packaging into food. Current models, however, are not suitable for emerging applications in decision-support tools, e.g. in Life Cycle Assessment and risk-based screening and prioritization, which require rapid computation of accurate estimates for diverse scenarios. To fulfil this need, we develop an accurate and rapid (high-throughput) model that estimates the fraction of organic chemicals migrating from polymeric packaging materials into foods. Several hundred step-wise simulations optimised the model coefficients to cover a range of user-defined scenarios (e.g. temperature). The developed model, operationalised in a spreadsheet for future dissemination, nearly instantaneously estimates chemical migration, and has improved performance over commonly used model simplifications. When using measured diffusion coefficients the model accurately predicted (R 2  = 0.9, standard error (S e ) = 0.5) hundreds of empirical data points for various scenarios. Diffusion coefficient modelling, which determines the speed of chemical transfer from package to food, was a major contributor to uncertainty and dramatically decreased model performance (R 2  = 0.4, S e  = 1). In all, this study provides a rapid migration modelling approach to estimate exposure to chemicals in food packaging for emerging screening and prioritization approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Parameter Estimation for Thurstone Choice Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vojnovic, Milan; Yun, Seyoung

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one ormore » more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.« less

  15. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.

  16. Integrated computational model of the bioenergetics of isolated lung mitochondria

    PubMed Central

    Zhang, Xiao; Jacobs, Elizabeth R.; Camara, Amadou K. S.; Clough, Anne V.

    2018-01-01

    Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from those of mitochondria from other organs. To the best of our knowledge, this model is the first for the bioenergetics of isolated lung mitochondria. PMID:29889855

  17. Integrated computational model of the bioenergetics of isolated lung mitochondria.

    PubMed

    Zhang, Xiao; Dash, Ranjan K; Jacobs, Elizabeth R; Camara, Amadou K S; Clough, Anne V; Audi, Said H

    2018-01-01

    Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from those of mitochondria from other organs. To the best of our knowledge, this model is the first for the bioenergetics of isolated lung mitochondria.

  18. Using Uncertainty Quantification to Guide Development and Improvements of a Regional-Scale Model of the Coastal Lowlands Aquifer System Spanning Texas, Louisiana, Mississippi, Alabama and Florida

    NASA Astrophysics Data System (ADS)

    Foster, L. K.; Clark, B. R.; Duncan, L. L.; Tebo, D. T.; White, J.

    2017-12-01

    Several historical groundwater models exist within the Coastal Lowlands Aquifer System (CLAS), which spans the Gulf Coastal Plain in Texas, Louisiana, Mississippi, Alabama, and Florida. The largest of these models, called the Gulf Coast Regional Aquifer System Analysis (RASA) model, has been brought into a new framework using the Newton formulation for MODFLOW-2005 (MODFLOW-NWT) and serves as the starting point of a new investigation underway by the U.S. Geological Survey to improve understanding of the CLAS and provide predictions of future groundwater availability within an uncertainty quantification (UQ) framework. The use of an UQ framework will not only provide estimates of water-level observation worth, hydraulic parameter uncertainty, boundary-condition uncertainty, and uncertainty of future potential predictions, but it will also guide the model development process. Traditionally, model development proceeds from dataset construction to the process of deterministic history matching, followed by deterministic predictions using the model. This investigation will combine the use of UQ with existing historical models of the study area to assess in a quantitative framework the effect model package and property improvements have on the ability to represent past-system states, as well as the effect on the model's ability to make certain predictions of water levels, water budgets, and base-flow estimates. Estimates of hydraulic property information and boundary conditions from the existing models and literature, forming the prior, will be used to make initial estimates of model forecasts and their corresponding uncertainty, along with an uncalibrated groundwater model run within an unconstrained Monte Carlo analysis. First-Order Second-Moment (FOSM) analysis will also be used to investigate parameter and predictive uncertainty, and guide next steps in model development prior to rigorous history matching by using PEST++ parameter estimation code.

  19. A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications

    Treesearch

    Jay M. Ver Hoef; Hailemariam Temesgen; Sergio Gómez

    2013-01-01

    Forest surveys provide critical information for many diverse interests. Data are often collected from samples, and from these samples, maps of resources and estimates of aerial totals or averages are required. In this paper, two approaches for mapping and estimating totals; the spatial linear model (SLM) and k-NN (k-Nearest Neighbor) are compared, theoretically,...

  20. An NCME Instructional Module on Estimating Item Response Theory Models Using Markov Chain Monte Carlo Methods

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Bolt, Daniel M.

    2007-01-01

    The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain…

Top