Effective Reading and Writing Instruction: A Focus on Modeling
ERIC Educational Resources Information Center
Regan, Kelley; Berkeley, Sheri
2012-01-01
When providing effective reading and writing instruction, teachers need to provide explicit modeling. Modeling is particularly important when teaching students to use cognitive learning strategies. Examples of how teachers can provide specific, explicit, and flexible instructional modeling is presented in the context of two evidence-based…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less
DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL
Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...
Polytomous Rasch Models in Counseling Assessment
ERIC Educational Resources Information Center
Willse, John T.
2017-01-01
This article provides a brief introduction to the Rasch model. Motivation for using Rasch analyses is provided. Important Rasch model concepts and key aspects of result interpretation are introduced, with major points reinforced using a simulation demonstration. Concrete guidelines are provided regarding sample size and the evaluation of items.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; Pelton, Mitch A.
2007-08-09
One of the most important concerns for regulatory agencies is the concept of reproducibility (i.e., reproducibility means credibility) of an assessment. One aspect of reproducibility deals with tampering of the assessment. In other words, when multiple groups are engaged in an assessment, it is important to lock down the problem that is to be solved and/or to restrict the models that are to be used to solve the problem. The objective of this effort is to provide the U.S. Nuclear Regulatory Commission (NRC) with a means to limit user access to models and to provide a mechanism to constrain themore » conceptual site models (CSMs) when appropriate. The purpose is to provide the user (i.e., NRC) with the ability to “lock down” the CSM (i.e., picture containing linked icons), restrict access to certain models, or both.« less
The Simple Expenditure Model with Trade: How Should We Model Imports?
ERIC Educational Resources Information Center
Cherry, Robert
2001-01-01
Models imports as a fixed proportion of spending rather than as a function of total or disposable income. Predicts the initial autonomous change in domestic spending by netting out spending shifts. Presents formulation which provides a clearer understanding of how leakages influence the multiplier process. (RLH)
CARDS: A blueprint and environment for domain-specific software reuse
NASA Technical Reports Server (NTRS)
Wallnau, Kurt C.; Solderitsch, Anne Costa; Smotherman, Catherine
1992-01-01
CARDS (Central Archive for Reusable Defense Software) exploits advances in domain analysis and domain modeling to identify, specify, develop, archive, retrieve, understand, and reuse domain-specific software components. An important element of CARDS is to provide visibility into the domain model artifacts produced by, and services provided by, commercial computer-aided software engineering (CASE) technology. The use of commercial CASE technology is important to provide rich, robust support for the varied roles involved in a reuse process. We refer to this kind of use of knowledge representation systems as supporting 'knowledge-based integration.'
Army College Fund Cost-Effectiveness Study
1990-11-01
Section A.2 presents a theory of enlistment supply to provide a basis for specifying the regression model , The model Is specified in Section A.3, which...Supplementary materials are included in the final four sections. Section A.6 provides annual trends in the regression model variables. Estimates of the model ...millions, A.S. ESTIMATION OF A YOUTH EARNINGS FORECASTING MODEL Civilian pay is an important explanatory variable in the regression model . Previous
Tyler Jon Smith
2008-01-01
In Montana and much of the Rocky Mountain West, the single most important parameter in forecasting the controls on regional water resources is snowpack. Despite the heightened importance of snowpack, few studies have considered the representation of uncertainty in coupled snowmelt/hydrologic conceptual models. Uncertainty estimation provides a direct interpretation of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Toll, J.; Cothern, K.
1995-12-31
The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less
Some guidance on preparing validation plans for the DART Full System Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Genetha Anne; Hough, Patricia Diane; Hills, Richard Guy
2009-03-01
Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generallymore » applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.« less
Peer Review of EPA's Draft BMDS Document: Exponential ...
BMDS is one of the Agency's premier tools for estimating risk assessments, therefore the validity and reliability of its statistical models are of paramount importance. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling.
Hydrological modelling in forested systems | Science ...
This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.
Role modelling in medical education: the importance of teaching skills.
Burgess, Annette; Oates, Kim; Goulston, Kerry
2016-04-01
By observation of role models, and participation in activities, students develop their attitudes, values and professional competencies. Literature suggests that clinical skills and knowledge, personality, and teaching skills are three main areas that students consider central to the identification of positive role models. The aim of this study was to explore junior medical students' opinions of the ideal attributes of a good role model in clinical tutors. The study was conducted with one cohort (n = 301) of students who had completed year 1 of the medical programme in 2013. All students were asked to complete a questionnaire regarding the ideal attributes of a good role model in a clinical tutor. The questionnaire consisted of seven closed items and one open-ended question. The response rate to the questionnaire was 265/301 (88%). Although students found all three key areas important in a good role model, students emphasised the importance of excellence in teaching skills. Specifically, students see good role models as being able to provide a constructive learning environment, a good understanding of the curriculum and an ability to cater to the learning needs of all students. Students see good role models as being able to provide a constructive learning environment While acknowledging the importance of a patient-centred approach, as well as clinical knowledge and skills, our findings reinforce the importance of the actual teaching abilities of role models within medical education. © 2015 John Wiley & Sons Ltd.
What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.
2012-12-01
A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. Itmore » then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.« less
Global Coupled Carbon and Nitrogen Models: Successes, Failures and What next?
NASA Astrophysics Data System (ADS)
Holland, E. A.
2011-12-01
Over the last few years, there has been a great deal of progress in modeling coupled terrestrial global carbon and nitrogen cycles and their roles in Earth System models. The collection of recent models provides some surprising results and insights. A critical question for Earth system models is: How do the coupled C/N model results impact atmospheric carbon dioxide concentrations compared to carbon only models? Some coupled models predict increased atmospheric carbon dioxide concentrations, the result expected from nitrogen-limited photosynthesis uptake of carbon dioxide, while others predict little change or decreased carbon dioxide uptake with a coupled carbon and nitrogen cycle. With this range of impacts for climate critical atmospheric carbon dioxide concentrations, there is clearly a need for additional comparison of measurements and models. Randerson et al.'s CLAMP study provided important constraints and comparison for primarily for aboveground carbon uptake. However, nitrogen supply is largely determined decomposition and soil processes. I will present comparisons of NCAR's CESM results with soil and litter carbon and nitrogen fluxes and standing stocks. These belowground data sets of both carbon and nitrogen provide important benchmarks for coupled C/N models.
NASA Astrophysics Data System (ADS)
Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang
2018-05-01
Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.
Solar EUV irradiance for space weather applications
NASA Astrophysics Data System (ADS)
Viereck, R. A.
2015-12-01
Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.
USDA-ARS?s Scientific Manuscript database
Understanding and prediction of snowmelt-generated streamflow at sub-daily time scales is important for reservoir scheduling and climate change characterization. This is particularly important in the Western U.S. where over 50% of water supply is provided by snowmelt during the melting period. Previ...
ERIC Educational Resources Information Center
Praslova, Ludmila
2010-01-01
Assessment of educational effectiveness provides vitally important feedback to Institutions of Higher Education. It also provides important information to external stakeholders, such as prospective students, parents, governmental and local regulatory entities, professional and regional accrediting organizations, and representatives of the…
Peer Review Documents Related to the Evaluation of ...
BMDS is one of the Agency's premier tools for estimating risk assessments, therefore the validity and reliability of its statistical models are of paramount importance. This page provides links to peer review and expert summaries of the BMDS application and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling. This page provides links to peer reviews and expert summaries of the BMDS applications and its models as they were developed and eventually released.
Mouse Models for Unraveling the Importance of Diet in Colon Cancer Prevention
Tammariello, Alexandra E.; Milner, John A.
2010-01-01
Diet and genetics are both considered important risk determinants for colorectal cancer, a leading cause of death worldwide. Several genetically engineered mouse models have been created, including the ApcMin mouse, to aid in the identification of key cancer related processes and to assist with the characterization of environmental factors, including the diet, which influence risk. Current research using these models provides evidence that several bioactive food components can inhibit genetically predisposed colorectal cancer, while others increase risk. Specifically, calorie restriction or increased exposure to n-3 fatty acids, sulforaphane, chafuroside, curcumin, and dibenzoylmethane were reported protective. Total fat, calories and all-trans retinoic acid are associated with an increased risk. Unraveling the importance of specific dietary components in these models is complicated by the basal diet used, the quantity of test components provided, and interactions among food components. Newer models are increasingly available to evaluate fundamental cellular processes, including DNA mismatch repair, immune function and inflammation as markers for colon cancer risk. Unfortunately, these models have been used infrequently to examine the influence of specific dietary components. The enhanced use of these models can shed mechanistic insights about the involvement of specific bioactive food and components and energy as determinants of colon cancer risk. However, the use of available mouse models to exactly represent processes important to human gastrointestinal cancers will remain a continued scientific challenge. PMID:20122631
Understanding the Listening Process: Rethinking the "One Size Fits All" Model
ERIC Educational Resources Information Center
Wolvin, Andrew
2013-01-01
Robert Bostrom's seminal contributions to listening theory and research represent an impressive legacy and provide listening scholars with important perspectives on the complexities of listening cognition and behavior. Bostrom's work provides a solid foundation on which to build models that more realistically explain how listeners function…
Hydrological modelling in forested systems
This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...
NASA Technical Reports Server (NTRS)
Righter, K.
2000-01-01
Highly siderophile elements provide important constraints on planetary differentiation due to their siderophile behavior. Their interpretation in terms of planetary differentiation models has so far overlooked the importance of sulfide saturation and under-saturation.
Yiu, Sean; Farewell, Vernon T; Tom, Brian D M
2018-02-01
In psoriatic arthritis, it is important to understand the joint activity (represented by swelling and pain) and damage processes because both are related to severe physical disability. The paper aims to provide a comprehensive investigation into both processes occurring over time, in particular their relationship, by specifying a joint multistate model at the individual hand joint level, which also accounts for many of their important features. As there are multiple hand joints, such an analysis will be based on the use of clustered multistate models. Here we consider an observation level random-effects structure with dynamic covariates and allow for the possibility that a subpopulation of patients is at minimal risk of damage. Such an analysis is found to provide further understanding of the activity-damage relationship beyond that provided by previous analyses. Consideration is also given to the modelling of mean sojourn times and jump probabilities. In particular, a novel model parameterization which allows easily interpretable covariate effects to act on these quantities is proposed.
CellML metadata standards, associated tools and repositories
Beard, Daniel A.; Britten, Randall; Cooling, Mike T.; Garny, Alan; Halstead, Matt D.B.; Hunter, Peter J.; Lawson, James; Lloyd, Catherine M.; Marsh, Justin; Miller, Andrew; Nickerson, David P.; Nielsen, Poul M.F.; Nomura, Taishin; Subramanium, Shankar; Wimalaratne, Sarala M.; Yu, Tommy
2009-01-01
The development of standards for encoding mathematical models is an important component of model building and model sharing among scientists interested in understanding multi-scale physiological processes. CellML provides such a standard, particularly for models based on biophysical mechanisms, and a substantial number of models are now available in the CellML Model Repository. However, there is an urgent need to extend the current CellML metadata standard to provide biological and biophysical annotation of the models in order to facilitate model sharing, automated model reduction and connection to biological databases. This paper gives a broad overview of a number of new developments on CellML metadata and provides links to further methodological details available from the CellML website. PMID:19380315
Evolutionary Thinking in Microeconomic Models: Prestige Bias and Market Bubbles
Bell, Adrian Viliami
2013-01-01
Evolutionary models broadly support a number of social learning strategies likely important in economic behavior. Using a simple model of price dynamics, I show how prestige bias, or copying of famed (and likely successful) individuals, influences price equilibria and investor disposition in a way that exacerbates or creates market bubbles. I discuss how integrating the social learning and demographic forces important in cultural evolution with economic models provides a fruitful line of inquiry into real-world behavior. PMID:23544100
ERIC Educational Resources Information Center
Mirman, Daniel; Estes, Katharine Graf; Magnuson, James S.
2010-01-01
Statistical learning mechanisms play an important role in theories of language acquisition and processing. Recurrent neural network models have provided important insights into how these mechanisms might operate. We examined whether such networks capture two key findings in human statistical learning. In Simulation 1, a simple recurrent network…
Driving terrestrial ecosystem models from space
NASA Technical Reports Server (NTRS)
Waring, R. H.
1993-01-01
Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.
Aiken, Alice
2012-01-01
This article provides an overview of work done in Canada involving the use of physiotherapists in models of collaborative care to enhance orthopedic care and practice. Valuable lessons learned and an important model of collaborative care are summarized. The research around these models of care has also contributed to important scope of practice changes for the profession of physiotherapy.
Surface relief model for photopolymers without cover plating.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Marini, S; Beléndez, A; Pascual, I
2011-05-23
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information to characterize and understand the material behaviour. In this paper we present a 3-dimensional model based on direct measurements of parameters to predict the relief structures generated on the material. This model is successfully applied to different photopolymers with different values of monomer diffusion. The importance of monomer diffusion in depth is also discussed.
NASA Astrophysics Data System (ADS)
Neves, Marco A. C.; Simões, Sérgio; Sá e Melo, M. Luisa
2010-12-01
CXCR4 is a G-protein coupled receptor for CXCL12 that plays an important role in human immunodeficiency virus infection, cancer growth and metastasization, immune cell trafficking and WHIM syndrome. In the absence of an X-ray crystal structure, theoretical modeling of the CXCR4 receptor remains an important tool for structure-function analysis and to guide the discovery of new antagonists with potential clinical use. In this study, the combination of experimental data and molecular modeling approaches allowed the development of optimized ligand-receptor models useful for elucidation of the molecular determinants of small molecule binding and functional antagonism. The ligand-guided homology modeling approach used in this study explicitly re-shaped the CXCR4 binding pocket in order to improve discrimination between known CXCR4 antagonists and random decoys. Refinement based on multiple test-sets with small compounds from single chemotypes provided the best early enrichment performance. These results provide an important tool for structure-based drug design and virtual ligand screening of new CXCR4 antagonists.
Modeling of the nearshore marine ecosystem with the AQUATOX model
Process-based models can be used to forecast the responses of coastal ecosystems to changes under future scenarios. However, most models applied to coastal systems do not include higher trophic levels, which are important providers of ecosystem services. AQUATOX is a mechanistic...
Use of mouse models to study the mechanisms and consequences of RBC clearance
Hod, E. A.; Arinsburg, S. A.; Francis, R. O.; Hendrickson, J. E.; Zimring, J. C.; Spitalnik, S. L.
2013-01-01
Mice provide tractable animal models for studying the pathophysiology of various human disorders. This review discusses the use of mouse models for understanding red-blood-cell (RBC) clearance. These models provide important insights into the pathophysiology of various clinically relevant entities, such as autoimmune haemolytic anaemia, haemolytic transfusion reactions, other complications of RBC transfusions and immunomodulation by Rh immune globulin therapy. Mouse models of both antibody- and non-antibody-mediated RBC clearance are reviewed. Approaches for exploring unanswered questions in transfusion medicine using these models are also discussed. PMID:20345515
DiStefano, Joseph
2014-01-01
Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p 1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I–O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)–COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and–importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It’s illustrated and validated here for models of moderate complexity, with and without initial conditions. Built-in examples include unidentifiable 2 to 4-compartment and HIV dynamics models. PMID:25350289
Future-year ozone prediction for the United States using updated models and inputs.
Collet, Susan; Kidokoro, Toru; Karamchandani, Prakash; Shah, Tejas; Jung, Jaegun
2017-08-01
The relationship between emission reductions and changes in ozone can be studied using photochemical grid models. These models are updated with new information as it becomes available. The primary objective of this study was to update the previous Collet et al. studies by using the most up-to-date (at the time the study was done) modeling emission tools, inventories, and meteorology available to conduct ozone source attribution and sensitivity studies. Results show future-year, 2030, design values for 8-hr ozone concentrations were lower than base-year values, 2011. The ozone source attribution results for selected cities showed that boundary conditions were the dominant contributors to ozone concentrations at the western U.S. locations, and were important for many of the eastern U.S. Point sources were generally more important in the eastern United States than in the western United States. The contributions of on-road mobile emissions were less than 5 ppb at a majority of the cities selected for analysis. The higher-order decoupled direct method (HDDM) results showed that in most of the locations selected for analysis, NOx emission reductions were more effective than VOC emission reductions in reducing ozone levels. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies. The relationship between emission reductions and changes in ozone can be studied using photochemical grid models, which are updated with new available information. This study was to update the previous Collet et al. studies by using the most current, at the time the study was done, models and inventory to conduct ozone source attribution and sensitivity studies. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.
Integrative modelling for One Health: pattern, process and participation
Redding, D. W.; Wood, J. L. N.
2017-01-01
This paper argues for an integrative modelling approach for understanding zoonoses disease dynamics, combining process, pattern and participatory models. Each type of modelling provides important insights, but all are limited. Combining these in a ‘3P’ approach offers the opportunity for a productive conversation between modelling efforts, contributing to a ‘One Health’ agenda. The aim is not to come up with a composite model, but seek synergies between perspectives, encouraging cross-disciplinary interactions. We illustrate our argument with cases from Africa, and in particular from our work on Ebola virus and Lassa fever virus. Combining process-based compartmental models with macroecological data offers a spatial perspective on potential disease impacts. However, without insights from the ground, the ‘black box’ of transmission dynamics, so crucial to model assumptions, may not be fully understood. We show how participatory modelling and ethnographic research of Ebola and Lassa fever can reveal social roles, unsafe practices, mobility and movement and temporal changes in livelihoods. Together with longer-term dynamics of change in societies and ecologies, all can be important in explaining disease transmission, and provide important complementary insights to other modelling efforts. An integrative modelling approach therefore can offer help to improve disease control efforts and public health responses. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584172
Effect of different implementations of the same ice history in GIA modeling
NASA Astrophysics Data System (ADS)
Barletta, V. R.; Bordoni, A.
2013-11-01
This study shows the effect of changing the way ice histories are implemented in Glacial Isostatic Adjustment (GIA) codes to solve the sea level equation. The ice history models are being constantly improved and are provided in different formats. The overall algorithmic design of the sea-level equation solver often forces to implement the ice model in a representation that differs from the one originally provided. We show that using different representations of the same ice model gives important differences and artificial contributions to the sea level estimates, both at global and at regional scale. This study is not a speculative exercise. The ICE-5G model adopted in this work is widely used in present day sea-level analysis, but discrepancies between the results obtained by different groups for the same ice models still exist, and it was the effort to set a common reference for the sea-level community that inspired this work. Understanding this issue is important to be able to reduce the artefacts introduced by a non-suitable ice model representation. This is especially important when developing new GIA models, since neglecting this problem can easily lead to wrong alignment of the ice and sea-level histories, particularly close to the deglaciation areas, like Antarctica.
NASA Astrophysics Data System (ADS)
Titi Purwantini, V.; Sutanto, Yusuf
2018-05-01
This research is to create a model of flood control in the city of Surakarta using Servqual method and Importance Performance Analysis. Service quality is generally defined as the overall assessment of a service by the customersor the extent to which a service meets customer’s needs or expectations. The purpose of this study is to find the first model of flood control that is appropriate to the condition of the community. Surakarta This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood. The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood.The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is Importance Performance Analysis. Samples were people living in flooded areas in the city of Surakarta. Result this research is Satisfaction = Responsiveness+ Realibility + Assurance + Empathy+ Tangible (Servqual Model) and Importance Performance Analysis is From Cartesian diagram can be made Flood Control Formula as follow: Food Control = High performance
Older people's experiences of patient-centered treatment for chronic pain: a qualitative study.
Teh, Carrie F; Karp, Jordan F; Kleinman, Arthur; Reynolds Iii, Charles F; Weiner, Debra K; Cleary, Paul D
2009-04-01
Older adults with chronic pain who seek treatment often are in a health care environment that emphasizes patient-directed care, a change from the patriarchal model of care to which many older adults are accustomed. To explore the experiences of older adults seeking treatment for chronic pain, with respect to patient-directed care and the patient-provider relationship. In-depth interviews with 15 Caucasian older adults with chronic pain who had been evaluated at a university-based pain clinic. All interviews were audiotaped and the transcripts were analyzed using a grounded theory based approach. Older adults with chronic pain vary in their willingness to be involved in their treatment decisions. Many frequently participate in decisions about their pain treatment by asking for or refusing specific treatments, demanding quality care, or operating outside of the patient-provider relationship to manage pain on their own. However, others prefer to let their provider make the decisions. In either case, having a mutually respectful patient-provider relationship is important to this population. Specifically, participants described the importance of "being heard" and "being understood" by providers. As some providers switch from a patriarchal model of care toward a model of care that emphasizes patient activation and patient-centeredness, the development and cultivation of valued patient-provider relationships may change. While it is important to encourage patient involvement in treatment decisions, high-quality, patient-centered care for older adults with chronic pain should include efforts to strengthen the patient-provider relationship by attending to differences in patients' willingness to engage in patient-directed care and emphasizing shared decision-making.
Kim, Hea-Won; Park, Taekyung; Quiring, Stephanie; Barrett, Diana
2018-01-01
A coalition model is often used to serve victims of human trafficking but little is known about whether the model is adequately meeting the needs of the victims. The purpose of this study was to examine anti-human trafficking collaboration model in terms of its impact and the collaborative experience, including challenges and lessons learned from the service providers' perspective. Mixed methods study was conducted to evaluate the impact of a citywide anti-trafficking coalition model from the providers' perspectives. Web-based survey was administered with service providers (n = 32) and focus groups were conducted with Core Group members (n = 10). Providers reported the coalition model has made important impacts in the community by increasing coordination among the key agencies, law enforcement, and service providers and improving quality of service provision. Providers identified the improved and expanded partnerships among coalition members as the key contributing factor to the success of the coalition model. Several key strategies were suggested to improve the coalition model: improved referral tracking, key partner and protocol development, and information sharing.
Bayes factors and multimodel inference
Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.
Thermal modelling using discrete vasculature for thermal therapy: a review
Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.
2013-01-01
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700
What are the mechanics of quantum cognition?
Navarro, Daniel Joseph; Fuss, Ian
2013-06-01
Pothos & Busemeyer (P&B) argue that quantum probability (QP) provides a descriptive model of behavior and can also provide a rational analysis of a task. We discuss QP models using Marr's levels of analysis, arguing that they make most sense as algorithmic level theories. We also highlight the importance of having clear interpretations for basic mechanisms such as interference.
How to measure technology assessment: an introduction.
Hasman, Arie
2014-01-01
This contribution introduces the Technology Acceptance model. Since information systems are still underutilized, application of models of user acceptance can provide important clues about what can be done to increase system usage.
Darrah, Johanna; Loomis, Joan; Manns, Patricia; Norton, Barbara; May, Laura
2006-11-01
The Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada, recently implemented a Master of Physical Therapy (MPT) entry-level degree program. As part of the curriculum design, two models were developed, a Model of Best Practice and the Clinical Decision-Making Model. Both models incorporate four key concepts of the new curriculum: 1) the concept that theory, research, and clinical practice are interdependent and inform each other; 2) the importance of client-centered practice; 3) the terminology and philosophical framework of the World Health Organization's International Classification of Functioning, Disability, and Health; and 4) the importance of evidence-based practice. In this article the general purposes of models for learning are described; the two models developed for the MPT program are described; and examples of their use with curriculum design and teaching are provided. Our experiences with both the development and use of models of practice have been positive. The models have provided both faculty and students with a simple, systematic structured framework to organize teaching and learning in the MPT program.
Building Path Diagrams for Multilevel Models
ERIC Educational Resources Information Center
Curran, Patrick J.; Bauer, Daniel J.
2007-01-01
Multilevel models have come to play an increasingly important role in many areas of social science research. However, in contrast to other modeling strategies, there is currently no widely used approach for graphically diagramming multilevel models. Ideally, such diagrams would serve two functions: to provide a formal structure for deriving the…
Palfreyman, Zoe; Haycraft, Emma; Meyer, Caroline
2015-03-01
Parents are important role models for their children's eating behaviours. This study aimed to further validate the recently developed Parental Modelling of Eating Behaviours Scale (PARM) by examining the relationships between maternal self-reports on the PARM with the modelling practices exhibited by these mothers during three family mealtime observations. Relationships between observed maternal modelling and maternal reports of children's eating behaviours were also explored. Seventeen mothers with children aged between 2 and 6 years were video recorded at home on three separate occasions whilst eating a meal with their child. Mothers also completed the PARM, the Children's Eating Behaviour Questionnaire and provided demographic information about themselves and their child. Findings provided validation for all three PARM subscales, which were positively associated with their observed counterparts on the observational coding scheme (PARM-O). The results also indicate that habituation to observations did not change the feeding behaviours displayed by mothers. In addition, observed maternal modelling was significantly related to children's food responsiveness (i.e., their interest in and desire for foods), enjoyment of food, and food fussiness. This study makes three important contributions to the literature. It provides construct validation for the PARM measure and provides further observational support for maternal modelling being related to lower levels of food fussiness and higher levels of food enjoyment in their children. These findings also suggest that maternal feeding behaviours remain consistent across repeated observations of family mealtimes, providing validation for previous research which has used single observations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kincses, Zsigmond Tamas; Király, András; Veréb, Dániel; Vécsei, László
2015-01-01
The importance of imaging biomarkers has been acknowledged in the diagnosis and in the follow-up of Alzheimer's disease (AD), one of the major causes of dementia. Next to the molecular biomarkers and PET imaging investigations, structural MRI approaches provide important information about the disease progression and about the pathomechanism. Furthermore,a growing body of literature retranslates these imaging biomarkers to various rodent models of the disease. The goal of this review is to provide an overview of the macro- and microstructural imaging biomarkers of AD, concentrating on atrophy measures and diffusion MRI alterations. A survey is also given of the imaging approaches used in rodent models of dementias that can promote drug development.
Modeling the Structure of Composite Supernova Remnants
NASA Astrophysics Data System (ADS)
Slane, Patrick
2015-09-01
The dynamical structure of a composite SNR, along with its broadband emission, provides crucial constraints on the ejecta mass and explosion energy, the properties of the pulsar that powers the associated wind nebula, and the ultimate fate of the particles that it injects. Of particular importance is the effect of asymmetries introduced through spatial variations in the ambient medium density and by rapid motion of the pulsar. Here we propose hydrodynamical and semi-analytical modeling of G21.5-0.9 and G292.0+1.8, SNRs for which deep Chandra observations have provided key input parameters for these models. We will derive ambient conditions and pulsar properties that lead to the observed morphology, broadband emission, and shock conditions in these important composite systems.
Meteorological Processors and Accessory Programs
Surface and upper air data, provided by NWS, are important inputs for air quality models. Before these data are used in some of the EPA dispersion models, meteorological processors are used to manipulate the data.
Engineering Large Animal Species to Model Human Diseases.
Rogers, Christopher S
2016-07-01
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
The Effects of Media Reports on Disease Spread and Important Public Health Measurements
Collinson, Shannon; Khan, Kamran; Heffernan, Jane M.
2015-01-01
Controlling the spread of influenza to reduce the effects of infection on a population is an important mandate of public health. Mass media reports on an epidemic or pandemic can provide important information to the public, and in turn, can induce positive healthy behaviour practices (i.e., handwashing, social distancing) in the individuals, that will reduce the probability of contracting the disease. Mass media fatigue, however, can dampen these effects. Mathematical models can be used to study the effects of mass media reports on epidemic/pandemic outcomes. In this study we employ a stochastic agent based model to provide a quantification of mass media reports on the variability in important public health measurements. We also include mass media report data compiled by the Global Public Health Intelligence Network, to study the effects of mass media reports in the 2009 H1N1 pandemic. We find that the report rate and the rate at which individuals relax their healthy behaviours (media fatigue) greatly affect the variability in important public health measurements. When the mass media reporting data is included in the model, two peaks of infection result. PMID:26528909
NASA Astrophysics Data System (ADS)
Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong
2018-06-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.
[Identification of ecological corridors and its importance by integrating circuit theory].
Song, Li Li; Qin, Ming Zhou
2016-10-01
Landscape connectivity is considered as an extraordinarily important factor affecting various ecological processes. The least cost path (LCP) on the basis of minimum cumulative resis-tance model (MCRM) may provide a more efficient approach to identify functional connectivity in heterogeneous landscapes, and is already adopted by the research of landscape functional connecti-vity assessment and ecological corridor simulation. Connectivity model on circuit theory (CMCT) replaced the edges in the graph theory with resistors, cost distance with resistance distance to measure the functional connectivity in heterogeneous landscapes. By means of Linkage Mapper tool and Circuitscape software, the simulated landscape generated from SIMMAP 2.0 software was viewed as the study object in this article, aimed at exploring how to integrate MCRM with CMCT to identify ecological corridors and relative importance of landscape factors. The results showed that two models had their individual advantages and mutual complement. MCRM could effectively identify least cost corridors among habitats. CMCT could effectively identify important landscape factor and pinch point, which had important influence on landscape connectivity. We also found that the position of pinch point was not affected by corridor width, which had obvious advantage in the research of identifying the importance of corridors. The integrated method could provide certain scientific basis for regional ecological protection planning and ecological corridor design.
Berget, Cari; Lindwall, Jennifer; Shea, Jacqueline J; Klingensmith, Georgeanna J; Anderson, Barbara J; Cain, Cindy; Raymond, Jennifer K
2017-06-01
The purpose of this pilot was to implement an innovative group care model, "Team Clinic", for adolescents with type 1 diabetes and assess patient and provider perspectives. Ninety-one intervention patients and 87 controls were enrolled. Ninety-six percent of intervention adolescents endorsed increased support and perceived connecting with peers as important. The medical providers and staff also provided positive feedback stating Team Clinic allowed more creativity in education and higher quality of care. Team Clinic may be a promising model to engage adolescents and incorporate education and support into clinic visits in a format valued by patients and providers.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Nishimura, Stephanie T; Hishinuma, Earl S; Goebert, Deborah A; Onoye, Jane M M; Sugimoto-Matsuda, Jeanelle J
2018-02-01
To provide one model for evaluating academic research centers, given their vital role in addressing public health issues. A theoretical framework is described for a comprehensive evaluation plan for research centers. This framework is applied to one specific center by describing the center's Logic Model and Evaluation Plan, including a sample of the center's activities. Formative and summative evaluation information is summarized. In addition, a summary of outcomes is provided: improved practice and policy; reduction of risk factors and increase in protective factors; reduction of interpersonal youth violence in the community; and national prototype for prevention of interpersonal youth violence. Research centers are important mechanisms to advance science and improve people's quality of life. Because of their more infrastructure-intensive and comprehensive approach, they also require substantial resources for success, and thus, also require careful accountability. It is therefore important to comprehensively evaluate these centers. As provided herein, a more systematic and structured approach utilizing logic models, an evaluation plan, and successful processes can provide research centers with a functionally useful method in their evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
White, R. J.
1973-01-01
A detailed description of Guyton's model and modifications are provided. Also included are descriptions of several typical experiments which the model can simulate to illustrate the model's general utility. A discussion of the problems associated with the interfacing of the model to other models such as respiratory and thermal regulation models which is prime importance since these stimuli are not present in the current model is also included. A user's guide for the operation of the model on the Xerox Sigma 3 computer is provided and two programs are described. A verification plan and procedure for performing experiments is also presented.
Hug, Thomas; Benedetti, Lorenzo; Hall, Eric R; Johnson, Bruce R; Morgenroth, Eberhard; Nopens, Ingmar; Rieger, Leiv; Shaw, Andrew; Vanrolleghem, Peter A
2009-01-01
As mathematical modeling of wastewater treatment plants has become more common in research and consultancy, a mismatch between education and requirements for model-related jobs has developed. There seems to be a shortage of skilled people, both in terms of quantity and in quality. In order to address this problem, this paper provides a framework to outline different types of model-related jobs, assess the required skills for these jobs and characterize different types of education that modelers obtain "in school" as well as "on the job". It is important to consider that education of modelers does not mainly happen in university courses and that the variety of model related jobs goes far beyond use for process design by consulting companies. To resolve the mismatch, the current connection between requirements for different jobs and the various types of education has to be assessed for different geographical regions and professional environments. This allows the evaluation and improvement of important educational paths, considering quality assurance and future developments. Moreover, conclusions from a workshop involving practitioners and academics from North America and Europe are presented. The participants stressed the importance of non-technical skills and recommended strengthening the role of realistic modeling experience in university training. However, this paper suggests that all providers of modeling education and support, not only universities, but also software suppliers, professional associations and companies performing modeling tasks are called to assess and strengthen their role in training and support of professional modelers.
Developing, Testing, and Using Theoretical Models for Promoting Quality in Education
ERIC Educational Resources Information Center
Creemers, Bert; Kyriakides, Leonidas
2015-01-01
This paper argues that the dynamic model of educational effectiveness can be used to establish stronger links between educational effectiveness research (EER) and school improvement. It provides research evidence to support the validity of the model. Thus, the importance of using the dynamic model to establish an evidence-based and theory-driven…
ERIC Educational Resources Information Center
Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.
2010-01-01
As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…
Identifying influences on model uncertainty: an application using a forest carbon budget model
James E. Smith; Linda S. Heath
2001-01-01
Uncertainty is an important consideration for both developers and users of environmental simulation models. Establishing quantitative estimates of uncertainty for deterministic models can be difficult when the underlying bases for such information are scarce. We demonstrate an application of probabilistic uncertainty analysis that provides for refinements in...
A test of the habitat suitability model for Merriam's wild turkeys
Mark A. Rumble; Stanley H. Anderson
1996-01-01
An important research area regarding the wild turkey (Meleagris gallopavo) is development of sound habitat models. Habitat models provide standardized methods to quantify wild turkey habitat and stimulate new research hypotheses. Habitat suitability index (HSI) models show species-habitat relationships on a scale of O-l, with 1 being optimum. A...
A Model School Facility for Energy (with Related Video)
ERIC Educational Resources Information Center
Spangler, Seth; Crutchfield, Dave
2011-01-01
Energy modeling can be a powerful tool for managing energy-reduction concepts for an institution. Different types of energy models are developed at various stages of a project to provide data that can verify or disprove suggested energy-efficiency measures. Education institutions should understand what an energy model can do and, more important,…
Guide to Working with Model Providers.
ERIC Educational Resources Information Center
Walter, Katie; Hassel, Bryan C.
Often a central feature of a school's improvement efforts is the adoption of a Comprehensive School Reform (CSR) model, an externally developed research-based design for school improvement. Adopting a model is only the first step in CSR. Another important step is forging partnerships with developers of CSR models. This guide aims to help schools…
EIA model documentation: Petroleum market model of the national energy modeling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-28
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supplymore » for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less
Assessment of the Draft AIAA S-119 Flight Dynamic Model Exchange Standard
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Murri, Daniel G.; Hill, Melissa A.; Jessick, Matthew V.; Penn, John M.; Hasan, David A.; Crues, Edwin Z.; Falck, Robert D.; McCarthy, Thomas G.; Vuong, Nghia;
2011-01-01
An assessment of a draft AIAA standard for flight dynamics model exchange, ANSI/AIAA S-119-2011, was conducted on behalf of NASA by a team from the NASA Engineering and Safety Center. The assessment included adding the capability of importing standard models into real-time simulation facilities at several NASA Centers as well as into analysis simulation tools. All participants were successful at importing two example models into their respective simulation frameworks by using existing software libraries or by writing new import tools. Deficiencies in the libraries and format documentation were identified and fixed; suggestions for improvements to the standard were provided to the AIAA. An innovative tool to generate C code directly from such a model was developed. Performance of the software libraries compared favorably with compiled code. As a result of this assessment, several NASA Centers can now import standard models directly into their simulations. NASA is considering adopting the now-published S-119 standard as an internal recommended practice.
Using models to manage systems subject to sustainability indicators
Hill, M.C.
2006-01-01
Mathematical and numerical models can provide insight into sustainability indicators using relevant simulated quantities, which are referred to here as predictions. To be useful, many concerns need to be considered. Four are discussed here: (a) mathematical and numerical accuracy of the model; (b) the accuracy of the data used in model development, (c) the information observations provide to aspects of the model important to predictions of interest as measured using sensitivity analysis; and (d) the existence of plausible alternative models for a given system. The four issues are illustrated using examples from conservative and transport modelling, and using conceptual arguments. Results suggest that ignoring these issues can produce misleading conclusions.
Wetland Hydrology | Science Inventory | US EPA
This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co
Older People’s Experiences of Patient-Centered Treatment for Chronic Pain: A Qualitative Study
Teh, Carrie F.; Karp, Jordan F.; Kleinman, Arthur; Reynolds, Charles F.; Weiner, Debra K.; Cleary, Paul D.
2010-01-01
Introduction Older adults with chronic pain who seek treatment often are in a health care environment that emphasizes patient-directed care, a change from the patriarchal model of care to which many older adults are accustomed. Objective To explore the experiences of older adults seeking treatment for chronic pain, with respect to patient-directed care and the patient–provider relationship. Design In-depth interviews with 15 Caucasian older adults with chronic pain who had been evaluated at a university-based pain clinic. All interviews were audiotaped and the transcripts were analyzed using a grounded theory based approach. Results Older adults with chronic pain vary in their willingness to be involved in their treatment decisions. Many frequently participate in decisions about their pain treatment by asking for or refusing specific treatments, demanding quality care, or operating outside of the patient–provider relationship to manage pain on their own. However, others prefer to let their provider make the decisions. In either case, having a mutually respectful patient–provider relationship is important to this population. Specifically, participants described the importance of “being heard” and “being understood” by providers. Conclusions As some providers switch from a patriarchal model of care toward a model of care that emphasizes patient activation and patient-centeredness, the development and cultivation of valued patient–provider relationships may change. While it is important to encourage patient involvement in treatment decisions, high-quality, patient-centered care for older adults with chronic pain should include efforts to strengthen the patient–provider relationship by attending to differences in patients’ willingness to engage in patient-directed care and emphasizing shared decision-making. PMID:19207235
Emerson, Mitchell R; Gallagher, Ryan J; Marquis, Janet G; LeVine, Steven M
2009-01-01
Advancing the understanding of the mechanisms involved in the pathogenesis of multiple sclerosis (MS) likely will lead to new and better therapeutics. Although important information about the disease process has been obtained from research on pathologic specimens, peripheral blood lymphocytes and MRI studies, the elucidation of detailed mechanisms has progressed largely through investigations using animal models of MS. In addition, animal models serve as an important tool for the testing of putative interventions. The most commonly studied model of MS is experimental autoimmune encephalomyelitis (EAE). This model can be induced in a variety of species and by various means, but there has been concern that the model may not accurately reflect the disease process, and more importantly, it may give rise to erroneous findings when it is used to test possible therapeutics. Several reasons have been given to explain the shortcomings of this model as a useful testing platform, but one idea provides a framework for improving the value of this model, and thus, it deserves careful consideration. In particular, the idea asserts that EAE studies are inadequately designed to enable appropriate evaluation of putative therapeutics. Here we discuss problem areas within EAE study designs and provide suggestions for their improvement. This paper is principally directed at investigators new to the field of EAE, although experienced investigators may find useful suggestions herein. PMID:19389303
Introduction: Occam’s Razor (SOT - Fit for Purpose workshop introduction)
Mathematical models provide important, reproducible, and transparent information for risk-based decision making. However, these models must be constructed to fit the needs of the problem to be solved. A “fit for purpose” model is an abstraction of a complicated problem that allow...
Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A
2013-03-01
Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mobile Modelling for Crowdsourcing Building Interior Data
NASA Astrophysics Data System (ADS)
Rosser, J.; Morley, J.; Jackson, M.
2012-06-01
Indoor spatial data forms an important foundation to many ubiquitous computing applications. It gives context to users operating location-based applications, provides an important source of documentation of buildings and can be of value to computer systems where an understanding of environment is required. Unlike external geographic spaces, no centralised body or agency is charged with collecting or maintaining such information. Widespread deployment of mobile devices provides a potential tool that would allow rapid model capture and update by a building's users. Here we introduce some of the issues involved in volunteering building interior data and outline a simple mobile tool for capture of indoor models. The nature of indoor data is inherently private; however in-depth analysis of this issue and legal considerations are not discussed in detail here.
NASA Technical Reports Server (NTRS)
Toon, O. B.; Turco, R. P.; Hamill, P.; Kiang, C. S.; Whitten, R. C.
1979-01-01
Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided.
Addressing Learning Style Criticism: The Unified Learning Style Model Revisited
NASA Astrophysics Data System (ADS)
Popescu, Elvira
Learning style is one of the individual differences that play an important but controversial role in the learning process. This paper aims at providing a critical analysis regarding learning styles and their use in technology enhanced learning. The identified criticism issues are addressed by reappraising the so called Unified Learning Style Model (ULSM). A detailed description of the ULSM components is provided, together with their rationale. The practical applicability of the model in adaptive web-based educational systems and its advantages versus traditional learning style models are also outlined.
A multimodal logistics service network design with time windows and environmental concerns
Zhang, Dezhi; He, Runzhong; Wang, Zhongwei
2017-01-01
The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained. PMID:28934272
A multimodal logistics service network design with time windows and environmental concerns.
Zhang, Dezhi; He, Runzhong; Li, Shuangyan; Wang, Zhongwei
2017-01-01
The design of a multimodal logistics service network with customer service time windows and environmental costs is an important and challenging issue. Accordingly, this work established a model to minimize the total cost of multimodal logistics service network design with time windows and environmental concerns. The proposed model incorporates CO2 emission costs to determine the optimal transportation mode combinations and investment selections for transfer nodes, which consider transport cost, transport time, carbon emission, and logistics service time window constraints. Furthermore, genetic and heuristic algorithms are proposed to set up the abovementioned optimal model. A numerical example is provided to validate the model and the abovementioned two algorithms. Then, comparisons of the performance of the two algorithms are provided. Finally, this work investigates the effects of the logistics service time windows and CO2 emission taxes on the optimal solution. Several important management insights are obtained.
Villalobos, Bianca T; Bridges, Ana J
2016-07-01
This study tests the parameters of Weiner's attribution model of caregiving, which describes how attributions of controllability relate to emotional reactions, which in turn influence willingness to provide support to stigmatized individuals. To date, the model has not been explored in the context of cultural variables, the caregiver-recipient relationship, or types of support. The present study examined the attribution model using a Latino community sample (N = 96) that was presented with vignettes describing an individual with depression. Support was found for the basic attribution model. Familismo was predictive of attributions of controllability and the basic model was predictive of emotional support, but not instrumental support. Participants were more willing to provide instrumental support to a partner, but had more positive affective reactions toward a sibling. The findings provide important information about contextual factors that may motivate Latino caregivers to provide support. © The Author(s) 2015.
Land-use planning for nearshore ecosystem services—the Puget Sound Ecosystem Portfolio Model
Byrd, Kristin
2011-01-01
The 2,500 miles of shoreline and nearshore areas of Puget Sound, Washington, provide multiple benefits to people—"ecosystem services"—including important fishing, shellfishing, and recreation industries. To help resource managers plan for expected growth in coming decades, the U.S. Geological Survey Western Geographic Science Center has developed the Puget Sound Ecosystem Portfolio Model (PSEPM). Scenarios of urban growth and shoreline modifications serve as model inputs to develop alternative futures of important nearshore features such as water quality and beach habitats. Model results will support regional long-term planning decisions for the Puget Sound region.
An Investigation of Software Scaffolds Supporting Modeling Practices
NASA Astrophysics Data System (ADS)
Fretz, Eric B.; Wu, Hsin-Kai; Zhang, Baohui; Davis, Elizabeth A.; Krajcik, Joseph S.; Soloway, Elliot
2002-08-01
Modeling of complex systems and phenomena is of value in science learning and is increasingly emphasised as an important component of science teaching and learning. Modeling engages learners in desired pedagogical activities. These activities include practices such as planning, building, testing, analysing, and critiquing. Designing realistic models is a difficult task. Computer environments allow the creation of dynamic and even more complex models. One way of bringing the design of models within reach is through the use of scaffolds. Scaffolds are intentional assistance provided to learners from a variety of sources, allowing them to complete tasks that would otherwise be out of reach. Currently, our understanding of how scaffolds in software tools assist learners is incomplete. In this paper the scaffolds designed into a dynamic modeling software tool called Model-It are assessed in terms of their ability to support learners' use of modeling practices. Four pairs of middle school students were video-taped as they used the modeling software for three hours, spread over a two week time frame. Detailed analysis of coded videotape transcripts provided evidence of the importance of scaffolds in supporting the use of modeling practices. Learners used a variety of modeling practices, the majority of which occurred in conjunction with scaffolds. The use of three tool scaffolds was assessed as directly as possible, and these scaffolds were seen to support a variety of modeling practices. An argument is made for the continued empirical validation of types and instances of tool scaffolds, and further investigation of the important role of teacher and peer scaffolding in the use of scaffolded tools.
Julian, Timothy R; Pickering, Amy J
2015-01-01
Diarrheal diseases are a leading cause of under-five mortality and morbidity in sub-Saharan Africa. Quantitative exposure modeling provides opportunities to investigate the relative importance of fecal-oral transmission routes (e.g. hands, water, food) responsible for diarrheal disease. Modeling, however, requires accurate descriptions of individuals' interactions with the environment (i.e., activity data). Such activity data are largely lacking for people in low-income settings. In the present study, we collected activity data and microbiological sampling data to develop a quantitative microbial exposure model for two female caretakers in peri-urban Tanzania. Activity data were combined with microbiological data of contacted surfaces and fomites (e.g. broom handle, soil, clothing) to develop example exposure profiles describing second-by-second estimates of fecal indicator bacteria (E. coli and enterococci) concentrations on the caretaker's hands. The study demonstrates the application and utility of video activity data to quantify exposure factors for people in low-income countries and apply these factors to understand fecal contamination exposure pathways. This study provides both a methodological approach for the design and implementation of larger studies, and preliminary data suggesting contacts with dirt and sand may be important mechanisms of hand contamination. Increasing the scale of activity data collection and modeling to investigate individual-level exposure profiles within target populations for specific exposure scenarios would provide opportunities to identify the relative importance of fecal-oral disease transmission routes.
Vickaryous, Matthew K; McLean, Katherine E
2011-01-01
Reptiles (lizards, snakes, turtles and crocodylians) are becoming increasing popular as models for developmental investigations. In this review the leopard gecko, Eublepharis macularius, is presented as a reptilian model for embryonic studies. We provide details of husbandry, breeding and modifications to two popular histological techniques (whole-mount histochemistry and immunohistochemistry). In addition, we provide a summary of basic reptilian husbandry requirements and discuss important details of embryonic nutrition, egg anatomy and sex determination.
The Need for Developmental Models in Supervising School Counselors
ERIC Educational Resources Information Center
Gallo, Laura L.
2013-01-01
Developmental models, like Stoltenberg, McNeil, and Delworth's integrated developmental model (IDM) for supervision (1998), provide supervisors with an important resource in understanding and managing the counseling student's development and experience. The current status of school counseling supervision is discussed as well as the…
High-power microwave bipolar transistor modeling
NASA Astrophysics Data System (ADS)
Asensio, Alberto; Perez, Felix
1992-01-01
This article introduces a model for high-power microwave bipolar transistors and its associated parameter-measuring strategy, whose inclusion of thermal phenomena in the dc characterization allows a good estimate of the device's thermal resistance to be obtained. This type of model provides important capabilities for solid-state radar transmitter design.
A Representation for Gaining Insight into Clinical Decision Models
Jimison, Holly B.
1988-01-01
For many medical domains uncertainty and patient preferences are important components of decision making. Decision theory is useful as a representation for such medical models in computer decision aids, but the methodology has typically had poor performance in the areas of explanation and user interface. The additional representation of probabilities and utilities as random variables serves to provide a framework for graphical and text insight into complicated decision models. The approach allows for efficient customization of a generic model that describes the general patient population of interest to a patient- specific model. Monte Carlo simulation is used to calculate the expected value of information and sensitivity for each model variable, thus providing a metric for deciding what to emphasize in the graphics and text summary. The computer-generated explanation includes variables that are sensitive with respect to the decision or that deviate significantly from what is typically observed. These techniques serve to keep the assessment and explanation of the patient's decision model concise, allowing the user to focus on the most important aspects for that patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benyamin, David; Piran, Tsvi; Shaviv, Nir J.
The boron to carbon (B/C) and sub-Fe/Fe ratios provide an important clue on cosmic ray (CR) propagation within the Galaxy. These ratios estimate the grammage that the CRs traverse as they propagate from their sources to Earth. Attempts to explain these ratios within the standard CR propagation models require ad hoc modifications and even with those these models necessitate inconsistent grammages to explain both ratios. As an alternative, physically motivated model, we have proposed that CRs originate preferably within the galactic spiral arms. CR propagation from dynamic spiral arms has important imprints on various secondary to primary ratios, such asmore » the B/C ratio and the positron fraction. We use our spiral-arm diffusion model with the spallation network extended up to nickel to calculate the sub-Fe/Fe ratio. We show that without any additional parameters the spiral-arm model consistently explains both ratios with the same grammage, providing further evidence in favor of this model.« less
NASA Astrophysics Data System (ADS)
Gaytan, Candice Renee
Modeling is an important scientific practice through which scientists generate, evaluate, and revise scientific knowledge, and it can be translated into science classrooms as a means for engaging students in authentic scientific practice. Much of the research investigating modeling in classrooms focuses on student learning, leaving a gap in understanding how teachers enact this important practice. This dissertation draws on data collected through a model-based curricular project to uncover instructional moves teachers made to enact modeling, to describe factors influencing enactment, and to discuss a framework for designing and enacting modeling lessons. I framed my analysis and interpretation of data within the varying perceptions of modeling found in the science studies and science education literature. Largely, modeling is described to varying degrees as a means to engage students in sense-making or as a means to deliver content to students. This frame revealed how the instructional moves teachers used to enact modeling may have influenced its portrayal as a reasoning practice. I found that teachers' responses to their students' ideas or questions may have important consequences for students' engagement in modeling, and thus, sense-making. To investigate factors influencing the portrayal of modeling, I analyzed teacher interviews and writings for what they perceived affected instruction. My findings illustrate alignments and misalignments between what teachers perceive modeling to be and what they do through instruction. In particular, teachers valued providing their students with time to collaborate and to share their ideas, but when time was perceived as a constraint, instruction shifted towards delivering content. Additionally, teachers' perceptions of students' capacity to engage in modeling is also related to if and how they provided opportunities for students to make sense of phenomena. The dissertation closes with a discussion of a framework for designing and enacting lessons for engaging students in modeling. I draw on examples from this study to provide context for how the framework can support teachers in engaging students in modeling. Altogether, this dissertation describes how teachers facilitate modeling and why varying enactments may be observed, filling a gap in researchers' understanding of how teachers enact modeling in science classrooms.
Risk stratification following acute myocardial infarction.
Singh, Mandeep
2007-07-01
This article reviews the current risk assessment models available for patients presenting with myocardial infarction (MI). These practical tools enhance the health care provider's ability to rapidly and accurately assess patient risk from the event or revascularization therapy, and are of paramount importance in managing patients presenting with MI. This article highlights the models used for ST-elevation MI (STEMI) and non-ST elevation MI (NSTEMI) and provides an additional description of models used to assess risks after primary angioplasty (ie, angioplasty performed for STEMI).
Optimal service using Matlab - simulink controlled Queuing system at call centers
NASA Astrophysics Data System (ADS)
Balaji, N.; Siva, E. P.; Chandrasekaran, A. D.; Tamilazhagan, V.
2018-04-01
This paper presents graphical integrated model based academic research on telephone call centres. This paper introduces an important feature of impatient customers and abandonments in the queue system. However the modern call centre is a complex socio-technical system. Queuing theory has now become a suitable application in the telecom industry to provide better online services. Through this Matlab-simulink multi queuing structured models provide better solutions in complex situations at call centres. Service performance measures analyzed at optimal level through Simulink queuing model.
Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.
Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael
2016-11-01
Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.
Modelling sexually transmitted infections: less is usually more for informing public health policy.
Regan, David G; Wilson, David P
2008-03-01
Mathematical models have been used to investigate the dynamics of infectious disease transmission since Bernoulli's smallpox modelling in 1760. Their use has become widespread for exploring how epidemics can be prevented or contained. Here we discuss the importance of modelling the dynamics of sexually transmitted infections, the technology-driven dichotomy in methodology, and the need to 'keep it simple' to explore sensitivity, to link the models to reality and to provide understandable mechanistic explanations for real-world policy-makers. The aim of models, after all, is to influence or change public health policy by providing rational forecasting based on sound scientific principles.
ECP Bone Workshop Day 2, Session 1: Validation of Exercise Countermeasures
NASA Technical Reports Server (NTRS)
Myers, Jerry G.
2007-01-01
The thesis of this session of the ECP Bone workshop is that computer modeling is required in order to evaluate factor of risk for fracture when considering the uniquely localized bone loss conditions experienced by Astronauts. This session provides an opportunity to introduce the Integrated Medical Model Bone Fracture Risk (IMM-BFxRM) simulation approach and how this and other models improve understanding of the effects of exercise countermeasures. This workshop session also provides an opportunity for the panel to provide recommendations on this and other "complex modeling" approaches, as well as, the importance of funding the IMM-BFxRM and companion efforts by external scientists (Lang and Keyak).
Long-term athletic development- part 1: a pathway for all youth.
Lloyd, Rhodri S; Oliver, Jon L; Faigenbaum, Avery D; Howard, Rick; De Ste Croix, Mark B A; Williams, Craig A; Best, Thomas M; Alvar, Brent A; Micheli, Lyle J; Thomas, D Phillip; Hatfield, Disa L; Cronin, John B; Myer, Gregory D
2015-05-01
The concept of developing talent and athleticism in youth is the goal of many coaches and sports systems. Consequently, an increasing number of sporting organizations have adopted long-term athletic development models in an attempt to provide a structured approach to the training of youth. It is clear that maximizing sporting talent is an important goal of long-term athletic development models. However, ensuring that youth of all ages and abilities are provided with a strategic plan for the development of their health and physical fitness is also important to maximize physical activity participation rates, reduce the risk of sport- and activity-related injury, and to ensure long-term health and well-being. Critical reviews of independent models of long-term athletic development are already present within the literature; however, to the best of our knowledge, a comprehensive examination and review of the most prominent models does not exist. Additionally, considerations of modern day issues that may impact on the success of any long-term athletic development model are lacking, as are proposed solutions to address such issues. Therefore, within this 2-part commentary, Part 1 provides a critical review of existing models of practice for long-term athletic development and introduces a composite youth development model that includes the integration of talent, psychosocial and physical development across maturation. Part 2 identifies limiting factors that may restrict the success of such models and offers potential solutions.
Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand
2015-01-01
The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.
Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.
2016-11-08
We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.
We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less
NASA Astrophysics Data System (ADS)
Torgersen, Thomas
2006-06-01
Multiple issues in hydrologic and environmental sciences are now squarely in the public focus and require both government and scientific study. Two facts also emerge: (1) The new approach being touted publicly for advancing the hydrologic and environmental sciences is the establishment of community-operated "big science" (observatories, think tanks, community models, and data repositories). (2) There have been important changes in the business of science over the last 20 years that make it important for the hydrologic and environmental sciences to demonstrate the "value" of public investment in hydrological and environmental science. Given that community-operated big science (observatories, think tanks, community models, and data repositories) could become operational, I argue that such big science should not mean a reduction in the importance of single-investigator science. Rather, specific linkages between the large-scale, team-built, community-operated big science and the single investigator should provide context data, observatory data, and systems models for a continuing stream of hypotheses by discipline-based, specialized research and a strong rationale for continued, single-PI ("discovery-based") research. I also argue that big science can be managed to provide a better means of demonstrating the value of public investment in the hydrologic and environmental sciences. Decisions regarding policy will still be political, but big science could provide an integration of the best scientific understanding as a guide for the best policy.
Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models
NASA Astrophysics Data System (ADS)
Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.
2017-12-01
While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).
Permutation importance: a corrected feature importance measure.
Altmann, André; Toloşi, Laura; Sander, Oliver; Lengauer, Thomas
2010-05-15
In life sciences, interpretability of machine learning models is as important as their prediction accuracy. Linear models are probably the most frequently used methods for assessing feature relevance, despite their relative inflexibility. However, in the past years effective estimators of feature relevance have been derived for highly complex or non-parametric models such as support vector machines and RandomForest (RF) models. Recently, it has been observed that RF models are biased in such a way that categorical variables with a large number of categories are preferred. In this work, we introduce a heuristic for normalizing feature importance measures that can correct the feature importance bias. The method is based on repeated permutations of the outcome vector for estimating the distribution of measured importance for each variable in a non-informative setting. The P-value of the observed importance provides a corrected measure of feature importance. We apply our method to simulated data and demonstrate that (i) non-informative predictors do not receive significant P-values, (ii) informative variables can successfully be recovered among non-informative variables and (iii) P-values computed with permutation importance (PIMP) are very helpful for deciding the significance of variables, and therefore improve model interpretability. Furthermore, PIMP was used to correct RF-based importance measures for two real-world case studies. We propose an improved RF model that uses the significant variables with respect to the PIMP measure and show that its prediction accuracy is superior to that of other existing models. R code for the method presented in this article is available at http://www.mpi-inf.mpg.de/ approximately altmann/download/PIMP.R CONTACT: altmann@mpi-inf.mpg.de, laura.tolosi@mpi-inf.mpg.de Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
White, Jeremy; Stengel, Victoria; Rendon, Samuel; Banta, John
2017-08-01
Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral
in that they reproduce daily mean streamflow acceptably well according to Nash-Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management the most. Additionally, the reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET difference compared to the full-parameterization model; total volumetric ET difference is a primary metric for evaluating the outcomes of brush management. The failure of the reduced-parameterization model to provide robust uncertainty estimates demonstrates the importance of parameterization when attempting to quantify uncertainty in land-cover change simulations.
White, Jeremy; Stengel, Victoria G.; Rendon, Samuel H.; Banta, John
2017-01-01
Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash–Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management the most. Additionally, the reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET difference compared to the full-parameterization model; total volumetric ET difference is a primary metric for evaluating the outcomes of brush management. The failure of the reduced-parameterization model to provide robust uncertainty estimates demonstrates the importance of parameterization when attempting to quantify uncertainty in land-cover change simulations.
Dawson-Rose, Carol; Cuca, Yvette P.; Webel, Allison R.; Solís Báez, Solymar S.; Holzemer, William L.; Rivero-Méndez, Marta; Eller, Lucille Sanzero; Reid, Paula; Johnson, Mallory O.; Kemppainen, Jeanne; Reyes, Darcel; Nokes, Kathleen; Nicholas, Patrice K.; Matshediso, Ellah; Mogobe, Keitshokile Dintle; Sabone, Motshedisi B.; Ntsayagae, Esther I.; Shaibu, Sheila; Corless, Inge B.; Wantland, Dean; Lindgren, Teri
2016-01-01
Health literacy is important for access to and quality of HIV care. While most models of health literacy acknowledge the importance of the patient–provider relationship to disease management, a more nuanced understanding of this relationship is needed. Thematic analysis from 28 focus groups with HIV-experienced patients (n = 135) and providers (n = 71) identified a long-term and trusting relationship as an essential part of HIV treatment over the continuum of HIV care. We found that trust and relationship building over time were important for patients with HIV as well as for their providers. An expanded definition of health literacy that includes gaining a patient’s trust and engaging in a process of health education and information sharing over time could improve HIV care. Expanding clinical perspectives to include trust and the importance of the patient–provider relationship to a shared understanding of health literacy may improve patient experiences and engagement in care. PMID:27080926
Webb, Elisabeth B.; Fowler, Drew N.; Woodall, Brendan A.; Vrtiska, Mark P.
2018-01-01
Assessing nutrient stores in avian species is important for understanding the extent to which body condition influences success or failure in life‐history events. We evaluated predictive models using morphometric characteristics to estimate total body lipids (TBL) and total body protein (TBP), based on traditional proximate analyses, in spring migrating lesser snow geese (Anser caerulescens caerulescens) and Ross's geese (A. rossii). We also compared performance of our lipid model with a previously derived predictive equation for TBL developed for nesting lesser snow geese. We used external and internal measurements on 612 lesser snow and 125 Ross's geese collected during spring migration in 2015 and 2016 within the Central and Mississippi flyways to derive and evaluate predictive models. Using a validation data set, our best performing lipid model for snow geese better predicted TBL (root mean square error [RMSE] of 23.56) compared with a model derived from nesting individuals (RMSE = 48.60), suggesting the importance of season‐specific models for accurate lipid estimation. Models that included body mass and abdominal fat deposit best predicted TBL determined by proximate analysis in both species (lesser snow goose, R2 = 0.87, RMSE = 23.56: Ross's geese, R2 = 0.89, RMSE = 13.75). Models incorporating a combination of external structural measurements in addition to internal muscle and body mass best predicted protein values (R2 = 0.85, RMSE = 19.39 and R2 = 0.85, RMSE = 7.65, lesser snow and Ross's geese, respectively), but protein models including only body mass and body size were also competitive and provided extended utility to our equations for field applications. Therefore, our models indicated the importance of specimen dissection and measurement of the abdominal fat pad to provide the most accurate lipid estimates and provide alternative dissection‐free methods for estimating protein.
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models
Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John
2016-01-01
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886
Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models
Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.
2014-01-01
This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.
NASA Astrophysics Data System (ADS)
Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.
2014-12-01
At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and lower plates, and also use realistic constitutive models to represent the locked zone. Another important advantage is that the 3D model provides a full representation of the interseismic deformation, which is important for interpreting GPS data.
Importance of fishing as a segmentation variable in the application of a social worlds model
Gigliotti, Larry M.; Chase, Loren
2017-01-01
Market segmentation is useful to understanding and classifying the diverse range of outdoor recreation experiences sought by different recreationists. Although many different segmentation methodologies exist, many are complex and difficult to measure accurately during in-person intercepts, such as that of creel surveys. To address that gap in the literature, we propose a single-item measure of the importance of fishing as a surrogate to often overly- or needlesslycomplex segmentation techniques. The importance of fishing item is a measure of the value anglers place on the activity or a coarse quantification of how central the activity is to the respondent’s lifestyle (scale: 0 = not important, 1 = slightly, 2 = moderately, 3 = very, and 4 = fishing is my most important recreational activity). We suggest the importance scale may be a proxy measurement for segmenting anglers using the social worlds model as a theoretical framework. Vaske (1980) suggested that commitment to recreational activities may be best understood in relation to social group participation and the social worlds model provides a rich theoretical framework for understanding social group segments. Unruh (1983) identified four types of actor involvement in social worlds: strangers, tourists, regulars, and insiders, differentiated by four characteristics (orientation, experiences, relationships, and commitment). We evaluated the importance of fishing as a segmentation variable using data collected by a mixed-mode survey of South Dakota anglers fishing in 2010. We contend that this straightforward measurement may be useful for segmenting outdoor recreation activities when more complicated segmentation schemes are not suitable. Further, this index, when coupled with the social worlds model, provides a valuable framework for understanding the segments and making management decisions.
A CONSISTENT APPROACH FOR THE APPLICATION OF PHARMACOKINETIC MODELING IN CANCER RISK ASSESSMENT
Physiologically based pharmacokinetic (PBPK) modeling provides important capabilities for improving the reliability of the extrapolations across dose, species, and exposure route that are generally required in chemical risk assessment regardless of the toxic endpoint being consid...
A Unified Model of Geostrophic Adjustment and Frontogenesis
NASA Astrophysics Data System (ADS)
Taylor, John; Shakespeare, Callum
2013-11-01
Fronts, or regions with strong horizontal density gradients, are ubiquitous and dynamically important features of the ocean and atmosphere. In the ocean, fronts are associated with enhanced air-sea fluxes, turbulence, and biological productivity, while atmospheric fronts are associated with some of the most extreme weather events. Here, we describe a new mathematical framework for describing the formation of fronts, or frontogenesis. This framework unifies two classical problems in geophysical fluid dynamics, geostrophic adjustment and strain-driven frontogenesis, and provides a number of important extensions beyond previous efforts. The model solutions closely match numerical simulations during the early stages of frontogenesis, and provide a means to describe the development of turbulence at mature fronts.
Nonrational processes in ethical decision making.
Rogerson, Mark D; Gottlieb, Michael C; Handelsman, Mitchell M; Knapp, Samuel; Younggren, Jeffrey
2011-10-01
Most current ethical decision-making models provide a logical and reasoned process for making ethical judgments, but these models are empirically unproven and rely upon assumptions of rational, conscious, and quasilegal reasoning. Such models predominate despite the fact that many nonrational factors influence ethical thought and behavior, including context, perceptions, relationships, emotions, and heuristics. For example, a large body of behavioral research has demonstrated the importance of automatic intuitive and affective processes in decision making and judgment. These processes profoundly affect human behavior and lead to systematic biases and departures from normative theories of rationality. Their influence represents an important but largely unrecognized component of ethical decision making. We selectively review this work; provide various illustrations; and make recommendations for scientists, trainers, and practitioners to aid them in integrating the understanding of nonrational processes with ethical decision making.
Challenges and opportunities for tissue-engineering polarized epithelium.
Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P
2014-02-01
The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.
Changes in Female Career Goals and Attitudes during College.
ERIC Educational Resources Information Center
Walker, Alice A.
Research has indicated that female models are important for female college students in their career decisions. To examine the effect of female role models on the career choices of college females, 57 freshmen students were provided with role models through interaction with female faculty advisers, and through exposure to female career women in a…
Assessing the Therapeutic Environment in Hybrid Models of Treatment: Prisoner Perceptions of Staff
ERIC Educational Resources Information Center
Kubiak, Sheryl Pimlott
2009-01-01
Hybrid treatment models within prisons are staffed by both criminal justice and treatment professionals. Because these models may be indicative of future trends, examining the perceptions of prisoners/participants may provide important information. This study examines the perceptions of male and female inmates in three prisons, comparing those in…
Emery, D W
1997-01-01
In many circles, managed care and capitation have become synonymous; unfortunately, the assumptions informing capitation are based on a flawed unidimensional model of risk. PEHP of Utah has rejected the unidimensional model and has therefore embraced a multidimensional model of risk that suggests that global fees are the optimal purchasing modality. A globally priced episode of care forms a natural unit of analysis that enhances purchasing clarity, allows providers to more efficiently focus on the Marginal Rate of Technical Substitution, and conforms to the multidimensional reality of risk. Most importantly, global fees simultaneously maximize patient choice and provider cost consciousness.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering
Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2011-01-01
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454
Cholinergic modulation of cognitive processing: insights drawn from computational models
Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.
2012-01-01
Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936
Duan, Naibin; Bai, Yang; Sun, Honghe; Wang, Nan; Ma, Yumin; Li, Mingjun; Wang, Xin; Jiao, Chen; Legall, Noah; Mao, Linyong; Wan, Sibao; Wang, Kun; He, Tianming; Feng, Shouqian; Zhang, Zongying; Mao, Zhiquan; Shen, Xiang; Chen, Xiaoliu; Jiang, Yuanmao; Wu, Shujing; Yin, Chengmiao; Ge, Shunfeng; Yang, Long; Jiang, Shenghui; Xu, Haifeng; Liu, Jingxuan; Wang, Deyun; Qu, Changzhi; Wang, Yicheng; Zuo, Weifang; Xiang, Li; Liu, Chang; Zhang, Daoyuan; Gao, Yuan; Xu, Yimin; Xu, Kenong; Chao, Thomas; Fazio, Gennaro; Shu, Huairui; Zhong, Gan-Yuan; Cheng, Lailiang; Fei, Zhangjun; Chen, Xuesen
2017-08-15
Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road is proposed based on evidence from diverse genomic analyses. Cultivated apples likely originate from Malus sieversii in Kazakhstan, followed by intensive introgressions from M. sylvestris. M. sieversii in Xinjiang of China turns out to be an "ancient" isolated ecotype not directly contributing to apple domestication. We have identified selective sweeps underlying quantitative trait loci/genes of important fruit quality traits including fruit texture and flavor, and provide evidences supporting a model of apple fruit size evolution comprising two major events with one occurring prior to domestication and the other during domestication. This study outlines the genetic basis of apple domestication and evolution, and provides valuable information for facilitating marker-assisted breeding and apple improvement.Apple is one of the most important fruit crops. Here, the authors perform deep genome resequencing of 117 diverse accessions and reveal comprehensive models of apple origin, speciation, domestication, and fruit size evolution as well as candidate genes associated with important agronomic traits.
Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2002-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.
Interpersonal Emotion Regulation Model of Mood and Anxiety Disorders.
Hofmann, Stefan G
2014-10-01
Although social factors are of critical importance in the development and maintenance of emotional disorders, the contemporary view of emotion regulation has been primarily limited to intrapersonal processes. Based on diverse perspectives pointing to the communicative function of emotions, the social processes in self-regulation, and the role of social support, this article presents an interpersonal model of emotion regulation of mood and anxiety disorders. This model provides a theoretical framework to understand and explain how mood and anxiety disorders are regulated and maintained through others. The literature, which provides support for the model, is reviewed and the clinical implications are discussed.
Jaiswal, Kishor
2013-01-01
This memo lays out a procedure for the GEM software to offer an available vulnerability function for any acceptable set of attributes that the user specifies for a particular building category. The memo also provides general guidelines on how to submit the vulnerability or fragility functions to the GEM vulnerability repository, stipulating which attributes modelers must provide so that their vulnerability or fragility functions can be queried appropriately by the vulnerability database. An important objective is to provide users guidance on limitations and applicability by providing the associated modeling assumptions and applicability of each vulnerability or fragility function.
Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.
Breskin, Alexander; Cole, Stephen R; Westreich, Daniel
2018-05-01
Since being introduced to epidemiology in 2000, marginal structural models have become a commonly used method for causal inference in a wide range of epidemiologic settings. In this brief report, we aim to explore three subtleties of marginal structural models. First, we distinguish marginal structural models from the inverse probability weighting estimator, and we emphasize that marginal structural models are not only for longitudinal exposures. Second, we explore the meaning of the word "marginal" in "marginal structural model." Finally, we show that the specification of a marginal structural model can have important implications for the interpretation of its parameters. Each of these concepts have important implications for the use and understanding of marginal structural models, and thus providing detailed explanations of them may lead to better practices for the field of epidemiology.
A dynamic simulation model for analyzing the importance of forest resources in Alaska.
Wilbur R. Maki; Douglas Olson; Con H. Schallau
1985-01-01
A dynamic simulation model has been adapted for use in Alaska. It provides a flexible tool for examining the economic consequences of alternative forest resource management policies. The model could be adapted for use elsewhere if an interindustry transaction table is available or can be developed. To demonstrate the model's usefulness, the contribution of the...
Electromechanical models of the ventricles
Constantino, Jason; Gurev, Viatcheslav
2011-01-01
Computational modeling has traditionally played an important role in dissecting the mechanisms for cardiac dysfunction. Ventricular electromechanical models, likely the most sophisticated virtual organs to date, integrate detailed information across the spatial scales of cardiac electrophysiology and mechanics and are capable of capturing the emergent behavior and the interaction between electrical activation and mechanical contraction of the heart. The goal of this review is to provide an overview of the latest advancements in multiscale electromechanical modeling of the ventricles. We first detail the general framework of multiscale ventricular electromechanical modeling and describe the state of the art in computational techniques and experimental validation approaches. The powerful utility of ventricular electromechanical models in providing a better understanding of cardiac function is then demonstrated by reviewing the latest insights obtained by these models, focusing primarily on the mechanisms by which mechanoelectric coupling contributes to ventricular arrythmogenesis, the relationship between electrical activation and mechanical contraction in the normal heart, and the mechanisms of mechanical dyssynchrony and resynchronization in the failing heart. Computational modeling of cardiac electromechanics will continue to complement basic science research and clinical cardiology and holds promise to become an important clinical tool aiding the diagnosis and treatment of cardiac disease. PMID:21572017
Barton, Catherine A; Zarzecki, Charles J; Russell, Mark H
2010-04-01
This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility.
Modeling of Wildlife-Associated Zoonoses: Applications and Caveats
Lewis, Bryan L.; Marathe, Madhav; Eubank, Stephen; Blackburn, Jason K.
2012-01-01
Abstract Wildlife species are identified as an important source of emerging zoonotic disease. Accordingly, public health programs have attempted to expand in scope to include a greater focus on wildlife and its role in zoonotic disease outbreaks. Zoonotic disease transmission dynamics involving wildlife are complex and nonlinear, presenting a number of challenges. First, empirical characterization of wildlife host species and pathogen systems are often lacking, and insight into one system may have little application to another involving the same host species and pathogen. Pathogen transmission characterization is difficult due to the changing nature of population size and density associated with wildlife hosts. Infectious disease itself may influence wildlife population demographics through compensatory responses that may evolve, such as decreased age to reproduction. Furthermore, wildlife reservoir dynamics can be complex, involving various host species and populations that may vary in their contribution to pathogen transmission and persistence over space and time. Mathematical models can provide an important tool to engage these complex systems, and there is an urgent need for increased computational focus on the coupled dynamics that underlie pathogen spillover at the human–wildlife interface. Often, however, scientists conducting empirical studies on emerging zoonotic disease do not have the necessary skill base to choose, develop, and apply models to evaluate these complex systems. How do modeling frameworks differ and what considerations are important when applying modeling tools to the study of zoonotic disease? Using zoonotic disease examples, we provide an overview of several common approaches and general considerations important in the modeling of wildlife-associated zoonoses. PMID:23199265
Moore, Jennifer E; Titler, Marita G; Kane Low, Lisa; Dalton, Vanessa K; Sampselle, Carolyn M
2015-01-01
In response to the passage of the Affordable Care Act in the United States, clinicians and researchers are critically evaluating methods to engage patients in implementing evidence-based care to improve health outcomes. However, most models on implementation only target clinicians or health systems as the adopters of evidence. Patients are largely ignored in these models. A new implementation model that captures the complex but important role of patients in the uptake of evidence may be a critical missing link. Through a process of theory evaluation and development, we explore patient-centered concepts (patient activation and shared decision making) within an implementation model by mapping qualitative data from an elective induction of labor study to assess the model's ability to capture these key concepts. The process demonstrated that a new, patient-centered model for implementation is needed. In response, the Evidence Informed Decision Making through Engagement Model is presented. We conclude that, by fully integrating women into an implementation model, outcomes that are important to both the clinician and patient will improve. In the interest of providing evidence-based care to women during pregnancy and childbirth, it is essential that care is patient centered. The inclusion of concepts discussed in this article has the potential to extend beyond maternity care and influence other clinical areas. Utilizing the newly developed Evidence Informed Decision Making through Engagement Model provides a framework for utilizing evidence and translating it into practice while acknowledging the important role that women have in the process. Published by Elsevier Inc.
Regional crop yield forecasting: a probabilistic approach
NASA Astrophysics Data System (ADS)
de Wit, A.; van Diepen, K.; Boogaard, H.
2009-04-01
Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.
Computational Modeling of Space Physiology
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Griffin, Devon W.
2016-01-01
The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.
Computational Modeling in Concert with Laboratory Studies: Application to B Cell Differentiation
Remediation is expensive, so accurate prediction of dose-response is important to help control costs. Dose response is a function of biological mechanisms. Computational models of these mechanisms improve the efficiency of research and provide the capability for prediction.
A new bee species that excavates sandstone nests
USDA-ARS?s Scientific Manuscript database
Many wonder why animals act in seemingly injurious ways. Understanding the behavior of pollinators such as bees is especially important because of the necessary ecosystem service they provide. The new species Anthophora pueblo, discovered excavating sandstone nests, provides a model system for addre...
Job stress models for predicting burnout syndrome: a review.
Chirico, Francesco
2016-01-01
In Europe, the Council Directive 89/391 for improvement of workers' safety and health has emphasized the importance of addressing all occupational risk factors, and hence also psychosocial and organizational risk factors. Nevertheless, the construct of "work-related stress" elaborated from EU-OSHA is not totally corresponding with the "psychosocial" risk, that is a broader category of risk, comprising various and different psychosocial risk factors. The term "burnout", without any binding definition, tries to integrate symptoms as well as cause of the burnout process. In Europe, the most important methods developed for the work related stress risk assessment are based on the Cox's transactional model of job stress. Nevertheless, there are more specific models for predicting burnout syndrome. This literature review provides an overview of job burnout, highlighting the most important models of job burnout, such as the Job Strain, the Effort/Reward Imbalance and the Job Demands-Resources models. The difference between these models and the Cox's model of job stress is explored.
Coalescent: an open-science framework for importance sampling in coalescent theory.
Tewari, Susanta; Spouge, John L
2015-01-01
Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only effective sample size. Here, we evaluate proposals in the coalescent literature, to discover that the order of efficiency among the three importance sampling schemes changes when one considers running time as well as effective sample size. We also describe a computational technique called "just-in-time delegation" available to improve the trade-off between running time and precision by constructing improved importance sampling schemes from existing ones. Thus, our systems approach is a potential solution to the "2(8) programs problem" highlighted by Felsenstein, because it provides the flexibility to include or exclude various features of similar coalescent models or importance sampling schemes.
An Overview of Atmospheric Chemistry and Air Quality Modeling
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.
2017-01-01
This presentation will include my personal research experience and an overview of atmospheric chemistry and air quality modeling to the participants of the NASA Student Airborne Research Program (SARP 2017). The presentation will also provide examples on ways to apply airborne observations for chemical transport (CTM) and air quality (AQ) model evaluation. CTM and AQ models are important tools in understanding tropospheric-stratospheric composition, atmospheric chemistry processes, meteorology, and air quality. This presentation will focus on how NASA scientist currently apply CTM and AQ models to better understand these topics. Finally, the importance of airborne observation in evaluating these topics and how in situ and remote sensing observations can be used to evaluate and improve CTM and AQ model predictions will be highlighted.
Community Modeling Program for Space Weather: A CCMC Perspective
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
A community modeling program, which provides a forum for exchange and integration between modelers, has excellent potential for furthering our Space Weather modeling and forecasting capabilities. The design of such a program is of great importance to its success. In this presentation, we will argue that the most effective community modeling program should be focused on Space Weather-related objectives, and that it should be open and inclusive. The tremendous successes of prior community research activities further suggest that the most effective implementation of a new community modeling program should be based on community leadership, rather than on domination by individual institutions or centers. This presentation will provide an experience-based justification for these conclusions.
The cognitive structural approach for image restoration
NASA Astrophysics Data System (ADS)
Mardare, Igor; Perju, Veacheslav; Casasent, David
2008-03-01
It is analyzed the important and actual problem of the defective images of scenes restoration. The proposed approach provides restoration of scenes by a system on the basis of human intelligence phenomena reproduction used for restoration-recognition of images. The cognitive models of the restoration process are elaborated. The models are realized by the intellectual processors constructed on the base of neural networks and associative memory using neural network simulator NNToolbox from MATLAB 7.0. The models provides restoration and semantic designing of images of scenes under defective images of the separate objects.
Stakeholder validation of a model of readiness for transition to adult care.
Schwartz, Lisa A; Brumley, Lauren D; Tuchman, Lisa K; Barakat, Lamia P; Hobbie, Wendy L; Ginsberg, Jill P; Daniel, Lauren C; Kazak, Anne E; Bevans, Katherine; Deatrick, Janet A
2013-10-01
That too few youth with special health care needs make the transition to adult-oriented health care successfully may be due, in part, to lack of readiness to transfer care. There is a lack of theoretical models to guide development and implementation of evidence-based guidelines, assessments, and interventions to improve transition readiness. To further validate the Social-ecological Model of Adolescent and Young Adult Readiness to Transition (SMART) via feedback from stakeholders (patients, parents, and providers) from a medically diverse population in need of life-long follow-up care, survivors of childhood cancer. Mixed-methods participatory research design. A large Mid-Atlantic children's hospital. Adolescent and young adult survivors of childhood cancer (n = 14), parents (n = 18), and pediatric providers (n = 10). Patients and parents participated in focus groups; providers participated in individual semi-structured interviews. Validity of SMART was assessed 3 ways: (1) ratings on importance of SMART components for transition readiness using a 5-point scale (0-4; ratings >2 support validity), (2) nominations of 3 "most important" components, and (3) directed content analysis of focus group/interview transcripts. Qualitative data supported the validity of SMART, with minor modifications to definitions of components. Quantitative ratings met criteria for validity; stakeholders endorsed all components of SMART as important for transition. No additional SMART variables were suggested by stakeholders and the "most important" components varied by stakeholders, thus supporting the comprehensiveness of SMART and need to involve multiple perspectives. SMART represents a comprehensive and empirically validated framework for transition research and program planning, supported by survivors of childhood cancer, parents, and pediatric providers. Future research should validate SMART among other populations with special health care needs.
NASA Astrophysics Data System (ADS)
Morrow, Rosemary; de Mey, Pierre
1995-12-01
The flow characteristics in the region of the Azores Current are investigated by assimilating TOPEX/POSEIDON and ERS 1 altimeter data into the multilevel Harvard quasigeostrophic (QG) model with open boundaries (Miller et al., 1983) using an adjoint variational scheme (Moore, 1991). The study site lies in the path of the Azores Current, where a branch retroflects to the south in the vicinity of the Madeira Rise. The region was the site of an intensive field program in 1993, SEMAPHORE. We had two main aims in this adjoint assimilation project. The first was to see whether the adjoint method could be applied locally to optimize an initial guess field, derived from the continous assimilation of altimetry data using optimal interpolation (OI). The second aim was to assimilate a variety of different data sets and evaluate their importance in constraining our QG model. The adjoint assimilation of surface data was effective in optimizing the initial conditions from OI. After 20 iterations the cost function was generally reduced by 50-80%, depending on the chosen data constraints. The primary adjustment process was via the barotropic mode. Altimetry proved to be a good constraint on the variable flow field, in particular, for constraining the barotropic field. The excellent data quality of the TOPEX/POSEIDON (T/P) altimeter data provided smooth and reliable forcing; but for our mesoscale study in a region of long decorrelation times O(30 days), the spatial coverage from the combined T/P and ERS 1 data sets was more important for constraining the solution and providing stable flow at all levels. Surface drifters provided an excellent constraint on both the barotropic and baroclinic model fields. More importantly, the drifters provided a reliable measure of the mean field. Hydrographic data were also applied as a constraint; in general, hydrography provided a weak but effective constraint on the vertical Rossby modes in the model. Finally, forecasts run over a 2-month period indicate that the initial conditions optimized by the 20-day adjoint assimilation provide more stable, longer-term forecasts.
The enduring importance of animal modelsin understanding periodontal disease
Hajishengallis, George; Lamont, Richard J; Graves, Dana T
2015-01-01
Whereas no single animal model can reproduce the complexity of periodontitis, different aspects of the disease can be addressed by distinct models. Despite their limitations, animal models are essential for testing the biological significance of in vitro findings and for establishing cause-and-effect relationships relevant to clinical observations, which are typically correlative. We provide evidence that animal-based studies have generated a durable framework for dissecting the mechanistic basis of periodontitis. These studies have solidified the etiologic role of bacteria in initiating the inflammatory response that leads to periodontal bone loss and have identified key mediators (IL-1, TNF, prostaglandins, complement, RANKL) that induce inflammatory breakdown. Moreover, animal studies suggest that dysbiosis, rather than individual bacterial species, are important in initiating periodontal bone loss and have introduced the concept that organisms previously considered commensals can play important roles as accessory pathogens or pathobionts. These studies have also provided insight as to how systemic conditions, such as diabetes or leukocyte adhesion deficiency, contribute to tissue destruction. In addition, animal studies have identified and been useful in testing therapeutic targets. PMID:25574929
Toledo-Ibarra, G. A.; Rojas-Mayorquín, A. E.; Girón-Pérez, M. I.
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals. PMID:24324508
Toledo-Ibarra, G A; Rojas-Mayorquín, A E; Girón-Pérez, M I
2013-01-01
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.
Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network.
Postnov, Dmitry D; Marsh, Donald J; Postnov, Dmitry E; Braunstein, Thomas H; Holstein-Rathlou, Niels-Henrik; Martens, Erik A; Sosnovtseva, Olga
2016-07-01
Through regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons. The functional consequences of this interaction are not understood, and at present it is not possible to address this question experimentally. We provide experimental data and a new modeling approach to clarify this problem. To resolve details of microvascular structure, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat kidney. Using these results together with published micro-computed tomography (μCT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation results show that the renal arterial architecture plays an important role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons.
Hawkins, Robert J; Kremer, Michael J; Swanson, Barbara; Fogg, Lou; Pierce, Penny; Pearson, Julie
2014-01-01
The level of patient satisfaction is a result of a complex set of interactions between the patient and the health care provider. It is important to quantify satisfaction with care because it involves the patient in the care experience and decreases the potential gap between expected and actual care delivered. We tested a preliminary 23-item instrument to measure patient satisfaction with general anesthesia care. The rating scale Rasch model was chosen as the framework. There were 10 items found to have sufficient evidence of stable fit statistics. Items included 2 questions related to information provided, 2 questions related to concern and kindness of the provider, and 1 question each for interpersonal skills of the provider, attention by the provider, feeling safe, well-being, privacy, and overall anesthesia satisfaction. Such actions as providing enough time to understand the anesthesia plan, answering questions related to the anesthetic, showing kindness and concern for the patient, displaying good interpersonal skills, providing adequate attention to the patient, providing a safe environment that maintains privacy and provides a sense of well-being are important actions that are well within the control of individual anesthesia providers and may lead to improved care from the perception of the patient.
Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests
NASA Astrophysics Data System (ADS)
Stewart, Gordon; Muskulus, Michael
2016-09-01
Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.
Modeling Time Series Data for Supervised Learning
ERIC Educational Resources Information Center
Baydogan, Mustafa Gokce
2012-01-01
Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…
Job Loss: An Individual Level Review and Model.
ERIC Educational Resources Information Center
DeFrank, Richard S.; Ivancevich, John M.
1986-01-01
Reviews behavioral, medical, and social science literature to illustrate the complexity and multidisciplinary nature of the job loss experience and provides a conceptual model to examine individual responses to job loss. Emphasizes the importance of including organizational-relevant variables in individual level conceptualizations and proposed…
MODELING FISH AND SHELLFISH DISTRIBUTIONS IN THE MOBILE BAY ESTUARY, USA
Estuaries in the Gulf of Mexico provide rich habitat for many fish and shellfish, including those that have been identified as economically and ecologically important. For the Mobile Bay estuary, we developed statistical models to relate distributions of individual species and sp...
Optical Properties of Three Beach Waters: Implications for Predictive Modeling of Enterococci
Sunlight plays an important role in the inactivation of fecal indicator bacteria in recreational waters. Solar radiation can explain temporal trends in bacterial counts and is commonly used as an explanatory variable in predictive models. Broadband surface radiation provides a ba...
Simulating natural selection in landscape genetics
E. L. Landguth; S. A. Cushman; N. Johnson
2012-01-01
Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially- explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal...
NASA Astrophysics Data System (ADS)
Glaze, L. S.; Baloga, S. M.; Garvin, J. B.; Quick, L. C.
2014-05-01
Lava flows and flow fields on Venus lack sufficient topographic data for any type of quantitative modeling to estimate eruption rates and durations. Such modeling can constrain rates of resurfacing and provide insights into magma plumbing systems.
A Nitrogen Physical Input-Output Table (PIOT) Model for Illinois
Nitrogen (N) presents an important challenge for sustainability due to its role in providing goods and services to society, since release of N beyond its intended use has many negative consequences. Several systems modeling approaches have been developed to understand the tradeof...
Biomolecular electrostatics and solvation: a computational perspective
Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G.; Schnieders, Michael J.; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A.
2012-01-01
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view towards describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g., solvent structure, polarization, ion binding, and nonpolar behavior) in order to provide a background to understand the different types of solvation models. PMID:23217364
Biomolecular electrostatics and solvation: a computational perspective.
Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G; Schnieders, Michael J; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A
2012-11-01
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.
Value and role of intensive care unit outcome prediction models in end-of-life decision making.
Barnato, Amber E; Angus, Derek C
2004-07-01
In the United States, intensive care unit (ICU) admission at the end of life is commonplace. What is the value and role of ICU mortality prediction models for informing the utility of ICU care?In this article, we review the history, statistical underpinnings,and current deployment of these models in clinical care. We conclude that the use of outcome prediction models to ration care that is unlikely to provide an expected benefit is hampered by imperfect performance, the lack of real-time availability, failure to consider functional outcomes beyond survival, and physician resistance to the use of probabilistic information when death is guaranteed by the decision it informs. Among these barriers, the most important technical deficiency is the lack of automated information systems to provide outcome predictions to decision makers, and the most important research and policy agenda is to understand and address our national ambivalence toward rationing care based on any criterion.
Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.
2003-01-01
Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.
A Theoretical and Experimental Analysis of the Outside World Perception Process
NASA Technical Reports Server (NTRS)
Wewerinke, P. H.
1978-01-01
The outside scene is often an important source of information for manual control tasks. Important examples of these are car driving and aircraft control. This paper deals with modelling this visual scene perception process on the basis of linear perspective geometry and the relative motion cues. Model predictions utilizing psychophysical threshold data from base-line experiments and literature of a variety of visual approach tasks are compared with experimental data. Both the performance and workload results illustrate that the model provides a meaningful description of the outside world perception process, with a useful predictive capability.
Exploring the Standard Model of Particles
ERIC Educational Resources Information Center
Johansson, K. E.; Watkins, P. M.
2013-01-01
With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…
ERIC Educational Resources Information Center
Jones, Thomas; Laughlin, Thomas
2009-01-01
Nothing could be more effective than a wilderness experience to demonstrate the importance of conserving biodiversity. When that is not possible, though, there are computer models with several features that are helpful in understanding how biodiversity is measured. These models are easily used when natural resources, transportation, and time…
ERIC Educational Resources Information Center
Johnston, Charlotte; Ohan, Jeneva L.
2005-01-01
Presents a social-cognitive model outlining the role of parental attributions for child behavior in parent?child interactions. Examples of studies providing evidence for the basic model are presented, with particular reference to applications of the model in families of children with Attention-Deficit/Hyperactivity Disorder (ADHD) and/or…
ERIC Educational Resources Information Center
Watson, Donnie W.; Rawson, Richard R.; Rataemane, Solomon; Shafer, Michael S.; Obert, Jeanne; Bisesi, Lorrie; Tanamly, Susie
2003-01-01
This paper presents a rationale for the use of a distance education approach in the clinical training of community substance abuse treatment providers. Developing and testing new approaches to the clinical training and supervision of providers is important in the substance abuse treatment field where new information is always available. A…
A preliminary geodetic data model for geographic information systems
NASA Astrophysics Data System (ADS)
Kelly, K. M.
2009-12-01
Our ability to gather and assimilate integrated data collections from multiple disciplines is important for earth system studies. Moreover, geosciences data collection has increased dramatically, with pervasive networks of observational stations on the ground, in the oceans, in the atmosphere and in space. Contemporary geodetic observations from several space and terrestrial technologies contribute to our knowledge of earth system processes and thus are a valuable source of high accuracy information for many global change studies. Assimilation of these geodetic observations and numerical models into models of weather, climate, oceans, hydrology, ice, and solid Earth processes is an important contribution geodesists can make to the earth science community. Clearly, the geodetic observations and models are fundamental to these contributions. ESRI wishes to provide leadership in the geodetic community to collaboratively build an open, freely available content specification that can be used by anyone to structure and manage geodetic data. This Geodetic Data Model will provide important context for all geographic information. The production of a task-specific geodetic data model involves several steps. The goal of the data model is to provide useful data structures and best practices for each step, making it easier for geodesists to organize their data and metadata in a way that will be useful in their data analyses and to their customers. Built on concepts from the successful Arc Marine data model, we introduce common geodetic data types and summarize the main thematic layers of the Geodetic Data Model. These provide a general framework for envisioning the core feature classes required to represent geodetic data in a geographic information system. Like Arc Marine, the framework is generic to allow users to build workflow or product specific geodetic data models tailored to the specific task(s) at hand. This approach allows integration of the data with other existing geophysical datasets, thus facilitating creation of multi-tiered models. The Geodetic Data Model encourages data assimilation and analysis and facilitates data interoperability, coordination and integration in earth system modeling. It offers a basic set of data structures organized in a simple and homogeneous way and can streamline access to and processing of geodetic data. It can aid knowledge discovery through the use of GIS technology to enable identification and understanding of relationships and provide well-established tools and methods to communicate complex technical knowledge with non-specialist audiences. The Geodetic Data Model comprise the base classes for using workflow driven ontology (WDO) techniques for specifying the computation of complex geodetic products along with the ability to capture provenance information. While we do not specify WDO for any given geodetic product, we recognize that structured geodetic data is essential for generating any geodetic WDO, a task that can be streamlined in some GIS software.
ERIC Educational Resources Information Center
Akmanoglu, Nurgul; Yanardag, Mehmet; Batu, E. Sema
2014-01-01
Teaching play skills is important for children with autism. The purpose of the present study was to compare effectiveness and efficiency of providing video modeling and graduated guidance together and video modeling alone for teaching role playing skills to children with autism. The study was conducted with four students. The study was conducted…
Şimşek, Ömer Faruk
2013-01-01
The main aim of the present study was to provide additional knowledge about the mediatory processes through which language relates to depression. Although previous research gave clear evidence that language is closely related to depression, the research on intervening variables in the relationship has been limited. The present investigation tested a structural equation model in which self-concept clarity and self-consciousness mediated the relationship between personal perceptions of language and depression. Since "the need for absolute truth" construct has been shown to be important in providing greater consistency in estimates of the relationships among the variables, it has been added to the model as a control variable. The results supported the model and showed that personal perceptions of language predicted self-concept clarity, which in turn predicted the participants' self-reflection and self-rumination. Self-reflection and self-rumination, in turn, predicted depression.
Proactive patient rounding to increase customer service and satisfaction on an orthopaedic unit.
Tea, Christine; Ellison, Michael; Feghali, Fadia
2008-01-01
Customer service and patient satisfaction have become increasingly important in the healthcare industry. Given limited resources and a myriad of choices, on which facets of patient satisfaction should healthcare providers focus? An analysis of 40,000 observations across 4 hospitals found 1 important intervention: timely staff responsiveness. Using the Plan-Do-Check-Act (PDCA) quality methodology, the goal was set to improve staff responsiveness to orthopaedic patient needs and requests, thus improving patient satisfaction. A model to improve staff responsiveness was systematically developed and implemented. The I Care Rounding model places the emphasis on proactively meeting patient needs through hourly rounding, rather than caregivers providing care in a reactionary mode. After full implementation, positive improvement was demonstrated.
Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique
Yang, Yunchun; Zhang, Chunmei; Chen, Rong; Huang, Po
2017-01-01
Presynaptic and postsynaptic neurotoxins are proteins which act at the presynaptic and postsynaptic membrane. Correctly predicting presynaptic and postsynaptic neurotoxins will provide important clues for drug-target discovery and drug design. In this study, we developed a theoretical method to discriminate presynaptic neurotoxins from postsynaptic neurotoxins. A strict and objective benchmark dataset was constructed to train and test our proposed model. The dipeptide composition was used to formulate neurotoxin samples. The analysis of variance (ANOVA) was proposed to find out the optimal feature set which can produce the maximum accuracy. In the jackknife cross-validation test, the overall accuracy of 94.9% was achieved. We believe that the proposed model will provide important information to study neurotoxins. PMID:28303250
NASTRAN analysis of the 1/8-scale space shuttle dynamic model
NASA Technical Reports Server (NTRS)
Bernstein, M.; Mason, P. W.; Zalesak, J.; Gregory, D. J.; Levy, A.
1973-01-01
The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures.
The integrated effect of moderate exercise on coronary heart disease.
Mathews, Marc J; Mathews, Edward H; Mathews, George E
Moderate exercise is associated with a lower risk for coronary heart disease (CHD). A suitable integrated model of the CHD pathogenetic pathways relevant to moderate exercise may help to elucidate this association. Such a model is currently not available in the literature. An integrated model of CHD was developed and used to investigate pathogenetic pathways of importance between exercise and CHD. Using biomarker relative-risk data, the pathogenetic effects are representable as measurable effects based on changes in biomarkers. The integrated model provides insight into higherorder interactions underlying the associations between CHD and moderate exercise. A novel 'connection graph' was developed, which simplifies these interactions. It quantitatively illustrates the relationship between moderate exercise and various serological biomarkers of CHD. The connection graph of moderate exercise elucidates all the possible integrated actions through which risk reduction may occur. An integrated model of CHD provides a summary of the effects of moderate exercise on CHD. It also shows the importance of each CHD pathway that moderate exercise influences. The CHD risk-reducing effects of exercise appear to be primarily driven by decreased inflammation and altered metabolism.
Hayes, Timothy S.; Cox, Dennis P.; Bliss, James D.; Piatak, Nadine M.; Seal, Robert R.
2015-01-01
This report contains a descriptive model of sediment-hosted stratabound copper (SSC) deposits that supersedes the model of Cox and others (2003). This model is for use in assessments of mineral resource potential. SSC deposits are the second most important sources of copper in the world behind porphyry copper deposits. Around 20 percent of the copper in the world is produced from this class of deposits. They are also the most important sources of cobalt in the world, and they are fourth among classes of ore deposits in production of silver. SSC deposits are the basis of the economies of three countries: Democratic Republic of Congo, Poland, and Zambia. This report provides a description of the key features of SSC deposits; it identifies their tectonic-sedimentary environments; it illustrates geochemical, geophysical, and geoenvironmental characteristics of SSC deposits; it reviews and evaluates hypotheses on how these deposits formed; it presents exploration and assessment guides; and it lists some gaps in our knowledge about the SSC deposits. A summary follows that provides overviews of many subjects concerning SSC deposits.
Leong, Frederick T; Lee, Szu-Hui
2006-01-01
As an extension of F. T. L. Leong's (1996) integrative model, this article presents the cultural accommodation model (CAM), an enhanced theoretical guide to effective cross-cultural clinical practice and research. Whereas F. T. L. Leong's model identifies the importance of integrating the universal, group, and individual dimensions, the CAM takes the next step by providing a theoretical guide to effective psychotherapy with culturally different clients by means of a cultural accommodation process. This model argues for the importance of selecting and applying culture-specific constructs when working with culturally diverse groups. The first step of the CAM is to identify cultural disparities that are often ignored and then accommodate them by using current culturally specific concepts. In this article, several different cultural "gaps" or culture-specific constructs of relevance to Asian Americans with strong scientific foundations are selected and discussed as they pertain to providing effective psychotherapy to this ethnic minority group. Finally, a case study is incorporated to illustrate application of the CAM. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Modeling Protein Expression and Protein Signaling Pathways
Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan
2015-01-01
High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646
Mendyk, Aleksander; Güres, Sinan; Szlęk, Jakub; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies. PMID:26101544
Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.
Model-experiment interaction to improve representation of phosphorus limitation in land models
NASA Astrophysics Data System (ADS)
Norby, R. J.; Yang, X.; Cabugao, K. G. M.; Childs, J.; Gu, L.; Haworth, I.; Mayes, M. A.; Porter, W. S.; Walker, A. P.; Weston, D. J.; Wright, S. J.
2015-12-01
Carbon-nutrient interactions play important roles in regulating terrestrial carbon cycle responses to atmospheric and climatic change. None of the CMIP5 models has included routines to represent the phosphorus (P) cycle, although P is commonly considered to be the most limiting nutrient in highly productive, lowland tropical forests. Model simulations with the Community Land Model (CLM-CNP) show that inclusion of P coupling leads to a smaller CO2 fertilization effect and warming-induced CO2 release from tropical ecosystems, but there are important uncertainties in the P model, and improvements are limited by a dearth of data. Sensitivity analysis identifies the relative importance of P cycle parameters in determining P availability and P limitation, and thereby helps to define the critical measurements to make in field campaigns and manipulative experiments. To improve estimates of P supply, parameters that describe maximum amount of labile P in soil and sorption-desorption processes are necessary for modeling the amount of P available for plant uptake. Biochemical mineralization is poorly constrained in the model and will be improved through field observations that link root traits to mycorrhizal activity, phosphatase activity, and root depth distribution. Model representation of P demand by vegetation, which currently is set by fixed stoichiometry and allometric constants, requires a different set of data. Accurate carbon cycle modeling requires accurate parameterization of the photosynthetic machinery: Vc,max and Jmax. Relationships between the photosynthesis parameters and foliar nutrient (N and P) content are being developed, and by including analysis of covariation with other plant traits (e.g., specific leaf area, wood density), we can provide a basis for more dynamic, trait-enabled modeling. With this strong guidance from model sensitivity and uncertainty analysis, field studies are underway in Puerto Rico and Panama to collect model-relevant data on P supply and demand functions. New FACE and soil warming experiments in P-limited ecosystems in subtropical Australia, and tropical Brazil, Puerto Rico, and Panama will provide important benchmarks for the performance of P-enabled models under future conditions.
Providing Nutritional Care in the Office Practice: Teams, Tools, and Techniques.
Kushner, Robert F
2016-11-01
Provision of dietary counseling in the office setting is enhanced by using team-based care and electronic tools. Effective provider-patient communication is essential for fostering behavior change: the key component of lifestyle medicine. The principles of communication and behavior change are skill-based and grounded in scientific theories and models. Motivational interviewing and shared decision making, a collaboration process between patients and their providers to reach agreement about a health decision, is an important process in counseling. The stages of change, self-determination, health belief model, social cognitive model, theory of planned behavior, and cognitive behavioral therapy are used in the counseling process. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.
2003-07-20
A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants,more » including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.« less
Taylor, Miles G.
2014-01-01
Objectives. To test different forms of private insurance coverage as mediators for racial disparities in onset, persistent level, and acceleration of functional limitations among Medicare age-eligible Americans. Method. Data come from 7 waves of the Health and Retirement Study (1996–2008). Onset and progression latent growth models were used to estimate racial differences in onset, level, and growth of functional limitations among a sample of 5,755 people aged 65 and older in 1996. Employer-provided insurance, spousal insurance, and market insurance were next added to the model to test how differences in private insurance mediated the racial gap in physical limitations. Results. In baseline models, African Americans had larger persistent level of limitations over time. Although employer-provided, spousal provided, and market insurances were directly associated with lower persistent levels of limitation, only differences in market insurance accounted for the racial disparities in persistent level of limitations. Discussion. Results suggest private insurance is important for reducing functional limitations, but market insurance is an important mediator of the persistently larger level of limitations observed among African Americans. PMID:24569001
MODTRAN4 radiative transfer modeling for atmospheric correction
NASA Astrophysics Data System (ADS)
Berk, Alexander; Anderson, Gail P.; Bernstein, Lawrence S.; Acharya, Prabhat K.; Dothe, H.; Matthew, Michael W.; Adler-Golden, Steven M.; Chetwynd, James H.; Richtsmeier, Steven C.; Pukall, Brian; Allred, Clark L.; Jeong, Laila S.; Hoke, Michael L.
1999-10-01
MODTRAN4, the latest publicly released version of MODTRAN, provides many new and important options for modeling atmospheric radiation transport. A correlated-k algorithm improves multiple scattering, eliminates Curtis-Godson averaging, and introduces Beer's Law dependencies into the band model. An optimized 15 cm(superscript -1) band model provides over a 10-fold increase in speed over the standard MODTRAN 1 cm(superscript -1) band model with comparable accuracy when higher spectral resolution results are unnecessary. The MODTRAN ground surface has been upgraded to include the effects of Bidirectional Reflectance Distribution Functions (BRDFs) and Adjacency. The BRDFs are entered using standard parameterizations and are coupled into line-of-sight surface radiance calculations.
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, L. M.; Rounds, J.; Burleyson, C. D.
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone levelmore » was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.; ...
2017-09-22
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
Mavronicolas, Heather A; Laraque, Fabienne; Shankar, Arti; Campbell, Claudia
2017-05-01
Care coordination programmes are an important aspect of HIV management whose success depends largely on HIV primary care provider (PCP) and case manager collaboration. Factors influencing collaboration among HIV PCPs and case managers remain to be studied. The study objective was to test an existing theoretical model of interprofessional collaborative practice and determine which factors play the most important role in facilitating collaboration. A self-administered, anonymous mail survey was sent to HIV PCPs and case managers in New York City. An adapted survey instrument elicited information on demographic, contextual, and perceived social exchange (trustworthiness, role specification, and relationship initiation) characteristics. The dependent variable, perceived interprofessional practice, was constructed from a validated scale. A sequential block wise regression model specifying variable entry order examined the relative importance of each group of factors and of individual variables. The analysis showed that social exchange factors were the dominant drivers of collaboration. Relationship initiation was the most important predictor of interprofessional collaboration. Additional influential factors included organisational leadership support of collaboration, practice settings, and frequency of interprofessional meetings. Addressing factors influencing collaboration among providers will help public health programmes optimally design their structural, hiring, and training strategies to foster effective social exchanges and promote collaborative working relationships.
Dawson-Rose, Carol; Cuca, Yvette P; Webel, Allison R; Solís Báez, Solymar S; Holzemer, William L; Rivero-Méndez, Marta; Sanzero Eller, Lucille; Reid, Paula; Johnson, Mallory O; Kemppainen, Jeanne; Reyes, Darcel; Nokes, Kathleen; Nicholas, Patrice K; Matshediso, Ellah; Mogobe, Keitshokile Dintle; Sabone, Motshedisi B; Ntsayagae, Esther I; Shaibu, Sheila; Corless, Inge B; Wantland, Dean; Lindgren, Teri
2016-01-01
Health literacy is important for access to and quality of HIV care. While most models of health literacy acknowledge the importance of the patient-provider relationship to disease management, a more nuanced understanding of this relationship is needed. Thematic analysis from 28 focus groups with HIV-experienced patients (n = 135) and providers (n = 71) identified a long-term and trusting relationship as an essential part of HIV treatment over the continuum of HIV care. We found that trust and relationship building over time were important for patients with HIV as well as for their providers. An expanded definition of health literacy that includes gaining a patient's trust and engaging in a process of health education and information sharing over time could improve HIV care. Expanding clinical perspectives to include trust and the importance of the patient-provider relationship to a shared understanding of health literacy may improve patient experiences and engagement in care. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Interpersonal Emotion Regulation Model of Mood and Anxiety Disorders
Hofmann, Stefan G.
2014-01-01
Although social factors are of critical importance in the development and maintenance of emotional disorders, the contemporary view of emotion regulation has been primarily limited to intrapersonal processes. Based on diverse perspectives pointing to the communicative function of emotions, the social processes in self-regulation, and the role of social support, this article presents an interpersonal model of emotion regulation of mood and anxiety disorders. This model provides a theoretical framework to understand and explain how mood and anxiety disorders are regulated and maintained through others. The literature, which provides support for the model, is reviewed and the clinical implications are discussed. PMID:25267867
Status of the AIAA Modeling and Simulation Format Standard
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Hildreth, Bruce L.
2008-01-01
The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.
A biological compression model and its applications.
Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd
2011-01-01
A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.
MicroRNAs and complex diseases: from experimental results to computational models.
Chen, Xing; Xie, Di; Zhao, Qi; You, Zhu-Hong
2017-10-17
Plenty of microRNAs (miRNAs) were discovered at a rapid pace in plants, green algae, viruses and animals. As one of the most important components in the cell, miRNAs play a growing important role in various essential and important biological processes. For the recent few decades, amounts of experimental methods and computational models have been designed and implemented to identify novel miRNA-disease associations. In this review, the functions of miRNAs, miRNA-target interactions, miRNA-disease associations and some important publicly available miRNA-related databases were discussed in detail. Specially, considering the important fact that an increasing number of miRNA-disease associations have been experimentally confirmed, we selected five important miRNA-related human diseases and five crucial disease-related miRNAs and provided corresponding introductions. Identifying disease-related miRNAs has become an important goal of biomedical research, which will accelerate the understanding of disease pathogenesis at the molecular level and molecular tools design for disease diagnosis, treatment and prevention. Computational models have become an important means for novel miRNA-disease association identification, which could select the most promising miRNA-disease pairs for experimental validation and significantly reduce the time and cost of the biological experiments. Here, we reviewed 20 state-of-the-art computational models of predicting miRNA-disease associations from different perspectives. Finally, we summarized four important factors for the difficulties of predicting potential disease-related miRNAs, the framework of constructing powerful computational models to predict potential miRNA-disease associations including five feasible and important research schemas, and future directions for further development of computational models. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Modeling and Deorphanization of Orphan GPCRs.
Diaz, Constantino; Angelloz-Nicoud, Patricia; Pihan, Emilie
2018-01-01
Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.
How to become a top model: impact of animal experimentation on human Salmonella disease research.
Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J
2011-05-01
Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.
Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Fayek; M. Ren
2007-02-14
Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue ofmore » spent nuclear fuel.« less
Thinking Developmentally: The Next Evolution in Models of Health.
Garner, Andrew S
2016-09-01
As the basic sciences that inform conceptions of human health advance, so must the models that are used to frame additional research, to teach the next generation of providers, and to inform health policy. This article briefly reviews the evolution from a biomedical model to a biopsychosocial (BPS) model and to an ecobiodevelopmental (EBD) model. Like the BPS model, the EBD model reaffirms the biological significance of psychosocial features within the patient's ecology, but it does so at the molecular and cellular levels. More importantly, the EBD model adds the dimension of time, forcing providers to "think developmentally" and to acknowledge the considerable biological and psychological consequences of previous experiences. For the health care system to move from a reactive "sick care" system to a proactive "well care" system, all providers must begin thinking developmentally by acknowledging the dynamic but cumulative dance between nature and nurture that drives development, behavior, and health, not only in childhood, but across the lifespan.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.
Havlicek, Martin; Friston, Karl J; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D
2011-06-15
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
In-beam γ -ray spectroscopy of Mn 63
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baugher, T.; Gade, A.; Janssens, R. V. F.
2016-01-01
Background: Neutron-rich, even-mass chromium and iron isotopes approaching neutron number N = 40 have been important benchmarks in the development of shell-model effective interactions incorporating the effects of shell evolution in the exotic regime. Odd-mass manganese nuclei have received less attention, but provide important and complementary sensitivity to these interactions. Purpose: We report the observation of two new γ -ray transitions in 63 Mn , which establish the ( 9 / 2 - ) and ( 11 / 2 - ) levels on top of the previously known ( 7 / 2 - ) first-excited state. The lifetime for themore » ( 7 / 2 - ) and ( 9 / 2 - ) excited states were determined for the first time, while an upper limit could be established for the ( 11 / 2 - ) level. Method: Excited states in 63 Mn have been populated in inelastic scattering from a 9 Be target and in the fragmentation of 65 Fe . γ γ coincidence relationships were used to establish the decay level scheme. A Doppler line-shape analysis for the Doppler-broadened ( 7 / 2 - ) → 5 / 2 - , ( 9 / 2 - ) → ( 7 / 2 - ) , and ( 11 / 2 - ) → ( 9 / 2 - ) transitions was used to determine (limits for) the corresponding excited-state lifetimes. Results: The low-lying level scheme and the excited-state lifetimes were compared with large-scale shell-model calculations using different model spaces and effective interactions in order to isolate important aspects of shell evolution in this region of structural change. Conclusions: While the theoretical ( 7 / 2 - ) and ( 9 / 2 - ) excitation energies show little dependence on the model space, the calculated lifetime of the ( 7 / 2 - ) level and calculated energy of the ( 11 / 2 - ) level reveal the importance of including the neutron g 9 / 2 and d 5 / 2 orbitals in the model space. The LNPS effective shell-model interaction provides the best overall agreement with the new data.« less
Importance of Personalized Health-Care Models: A Case Study in Activity Recognition.
Zdravevski, Eftim; Lameski, Petre; Trajkovik, Vladimir; Pombo, Nuno; Garcia, Nuno
2018-01-01
Novel information and communication technologies create possibilities to change the future of health care. Ambient Assisted Living (AAL) is seen as a promising supplement of the current care models. The main goal of AAL solutions is to apply ambient intelligence technologies to enable elderly people to continue to live in their preferred environments. Applying trained models from health data is challenging because the personalized environments could differ significantly than the ones which provided training data. This paper investigates the effects on activity recognition accuracy using single accelerometer of personalized models compared to models built on general population. In addition, we propose a collaborative filtering based approach which provides balance between fully personalized models and generic models. The results show that the accuracy could be improved to 95% with fully personalized models, and up to 91.6% with collaborative filtering based models, which is significantly better than common models that exhibit accuracy of 85.1%. The collaborative filtering approach seems to provide highly personalized models with substantial accuracy, while overcoming the cold start problem that is common for fully personalized models.
Analysis of functional importance of binding sites in the Drosophila gap gene network model.
Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria
2015-01-01
The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.
Import Security: Assessing the Risks of Imported Food.
Welburn, Jonathan; Bier, Vicki; Hoerning, Steven
2016-11-01
We use data on food import violations from the FDA Operational and Administrative System for Import Support (OASIS) to address rising concerns associated with imported food, quantify import risks by product and by country of origin, and explore the usefulness of OASIS data for risk assessment. In particular, we assess whether there are significant trends in violations, whether import violations can be used to quantify risks by country and by product, and how import risks depend on economic factors of the country of origin. The results show that normalizing import violations by volume of imports provides a meaningful indicator of risk. We then use regression analysis to characterize import risks. Using this model, we analyze import risks by product type, violation type, and economic factors of the country of origin. We find that OASIS data are useful in quantifying food import risks, and that the rate of refusals provides a useful decision tool for risk management. Furthermore, we find that some economic factors are significant indicators of food import risk by country. © 2016 Society for Risk Analysis.
A modeling study examining the impact of nutrient boundaries ...
A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent
Pain Relief in Nonhuman Primate Models of Arthritis.
Vierboom, Michel P M; Breedveld, Elia; Keehnen, Merei; Klomp, Rianne; Bakker, Jaco
2017-01-01
Animal models of rheumatoid arthritis are important in the elucidation of etiopathogenic mechanisms of the disease and for the development of promising new therapies. Species specificity of new biological compounds and their mode of action preclude safety and efficacy testing in rodent models of disease. Nonhuman primates (NHP) can fill this niche and provide the only relevant model. Over the last two decades models of collagen-induced arthritis (CIA) were developed in the rhesus monkey and the common marmoset. However, NHP are higher-order animals and complex sentient beings. So especially in models where pain is an intricate part of the disease, analgesia needs to be addressed because of ethical considerations. In our model, a morphine-based pain relief was used that does not interfere with the normal development of disease allowing us to evaluate important mechanistic aspects of the arthritis.
NASA Astrophysics Data System (ADS)
Li, Xin; Zhang, Lu; Tang, Ying; Huang, Shanguo
2018-03-01
The light-tree-based optical multicasting (LT-OM) scheme provides a spectrum- and energy-efficient method to accommodate emerging multicast services. Some studies focus on the survivability technologies for LTs against a fixed number of link failures, such as single-link failure. However, a few studies involve failure probability constraints when building LTs. It is worth noting that each link of an LT plays different important roles under failure scenarios. When calculating the failure probability of an LT, the importance of its every link should be considered. We design a link importance incorporated failure probability measuring solution (LIFPMS) for multicast LTs under independent failure model and shared risk link group failure model. Based on the LIFPMS, we put forward the minimum failure probability (MFP) problem for the LT-OM scheme. Heuristic approaches are developed to address the MFP problem in elastic optical networks. Numerical results show that the LIFPMS provides an accurate metric for calculating the failure probability of multicast LTs and enhances the reliability of the LT-OM scheme while accommodating multicast services.
Thurman, Pamela Jumper; Vernon, Irene S; Plested, Barbara
2007-01-01
Although HIV/AIDS prevention has presented challenges over the past 25 years, prevention does work! To be most effective, however, prevention must be specific to the culture and the nature of the community. Building the capacity of a community for prevention efforts is not an easy process. If capacity is to be sustained, it must be practical and utilize the resources that already exist in the community. Attitudes vary across communities; resources vary, political climates are constantly varied and changing. Communities are fluid-always changing, adapting, growing. They are "ready" for different things at different times. Readiness is a key issue! This article presents a model that has experienced a high level of success in building community capacity for effective prevention/intervention for HIV/AIDS and offers case studies for review. The Community Readiness Model provides both quantitative and qualitative information in a user-friendly structure that guides a community through the process of understanding the importance of the measure of readiness. The model identifies readiness- appropriate strategies, provides readiness scores for evaluation, and most important, involves community stakeholders in the process. The article will demonstrate the importance of developing strategies consistent with readiness levels for more cost-effective and successful prevention efforts.
Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill
2013-01-01
An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...
ERIC Educational Resources Information Center
Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher
2015-01-01
This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade…
Lakes provide a variety of ecosystem service benefits that are important to communities in the United States. Standard water quality indicators can be used to assess a lake’s potential to provide ecosystem services such as provisioning of water for domestic, industrial, and agric...
Bullying Prevention and the Parent Involvement Model
ERIC Educational Resources Information Center
Kolbert, Jered B.; Schultz, Danielle; Crothers, Laura M.
2014-01-01
A recent meta-analysis of bullying prevention programs provides support for social-ecological theory, in which parent involvement addressing child bullying behaviors is seen as important in preventing school-based bullying. The purpose of this manuscript is to suggest how Epstein and colleagues' parent involvement model can be used as a…
Distributed Hypothesis Testing in Distributed Sensor Networks
1984-07-01
single structure(, object Is Itself an important task in many applica- tions. At least at he conceptual level, there is no dlffculty in treating targets...First, we need to provide a modeling framwork within which the models of the various nodes, constructed as discussed above, can be embedded. It is within
Urban green spaces are potentially important to biodiversity conservation because they represent habitat islands in a mosaic of development, and could harbor high biodiversity or provide connectivity to nearby habitat. Presence only species distribution models (SDMs) represent a ...
Medical School Research Pipeline: Medical Student Research Experience in Psychiatry
ERIC Educational Resources Information Center
Balon, Richard; Heninger, George; Belitsky, Richard
2006-01-01
Objective: The authors discuss the importance of introducing research training in psychiatry and neurosciences to medical students. Methods: A review of existing models of research training in psychiatry with focus on those providing research training to medical students is presented. Results: Two research-training models for medical students that…
Exact Tests for the Rasch Model via Sequential Importance Sampling
ERIC Educational Resources Information Center
Chen, Yuguo; Small, Dylan
2005-01-01
Rasch proposed an exact conditional inference approach to testing his model but never implemented it because it involves the calculation of a complicated probability. This paper furthers Rasch's approach by (1) providing an efficient Monte Carlo methodology for accurately approximating the required probability and (2) illustrating the usefulness…
Project BLEND: An Inclusive Model of Early Intervention Services.
ERIC Educational Resources Information Center
Brown, William; Horn, Eva M.; Heiser, JoAnn G.; Odom, Samuel L.
1996-01-01
This paper describes a model demonstration project to provide inclusive early intervention services to young children with developmental delays and their families. It notes the importance of collaborative partnerships among the significant adults in a child's life as a basis for effective program implementation. The project has three major…
Multiple-Group Analysis Using the sem Package in the R System
ERIC Educational Resources Information Center
Evermann, Joerg
2010-01-01
Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…
Cognitive Trait Modelling: The Case of Inductive Reasoning Ability
ERIC Educational Resources Information Center
Kinshuk, Taiyu Lin; McNab, Paul
2006-01-01
Researchers have regarded inductive reasoning as one of the seven primary mental abilities that account for human intelligent behaviours. Researchers have also shown that inductive reasoning ability is one of the best predictors for academic performance. Modelling of inductive reasoning is therefore an important issue for providing adaptivity in…
ERIC Educational Resources Information Center
Maruyama, Geoffrey
1992-01-01
A Lewinian orientation to educational problems fits current innovative thinking in education (e.g., models for making education multicultural), and provides the bases of important applied work on cooperative learning techniques and constructive ways of structuring conflict within educational settings. Lewinian field theory provides a broad…
Models and Methodologies for Multimedia Courseware Production.
ERIC Educational Resources Information Center
Barker, Philip; Giller, Susan
Many new technologies are now available for delivering and/or providing access to computer-based learning (CBL) materials. These technologies vary in sophistication in many important ways, depending upon the bandwidth that they provide, the interactivity that they offer and the types of end-user connectivity that they support.Invariably,…
Marsh, Herbert W
2008-10-01
Following William James (1890/1963), many leading self-esteem researchers continue to support the Individual-importance hypothesis-that the relation between specific facets of self-concept and global self-esteem depends on the importance an individual places on each specific facet. However, empirical support for the hypothesis is surprisingly elusive, whether evaluated in terms of an importance-weighted average model, a generalized multiple regression approach for testing self-concept-by-importance interactions, or idiographic approaches. How can actual empirical support for such an intuitively appealing and widely cited psychological principle be so elusive? Hardy and Moriarty (2006), acknowledging this previous failure of the Individual-importance hypothesis, claim to have solved the conundrum, demonstrating an innovative idiographic approach that provides clear support for it. However, a critical evaluation of their new approach, coupled with a reanalysis of their data, undermines their claims. Indeed, their data provide compelling support against the Individual-importance hypothesis, which remains as elusive as ever.
The piglet as a model for B cell and immune system development
Butler, J.E.; Lager, K.M.; Splichal, I.; Francis, D.; Kacskovics, I.; Sinkora, M.; Wertz, N.; Sun, J.; Zhao, Y.; Brown, W.R.; DeWald, R.; Dierks, S.; Muyldermans, S.; Lunney, J.K.; McCray, P.B.; Rogers, C.S.; Welsh, M.J.; Navarro, P.; Klobasa, F.; Habe, F.; Ramsoondar, J.
2010-01-01
The ability to identify factors responsible for disease in all species depends on the ability to separate those factors which are environmental from those that are intrinsic. This is particularly important for studies on the development of the adaptive immune response of neonates. Studies on laboratory rodents or primates have been ambiguous because neither the effect of environmental nor maternal factors on the newborn can be controlled in mammals that: (i) transmit potential maternal immunoregulatory factors in utero and (ii) are altricial and cannot be reared after birth without their mothers. Employing the newborn piglet model can address each of these concerns. However, it comes at the price of having first to characterize the immune system of swine and its development. This review focuses on the porcine B cell system, especially on the methods used for its characterization in fetal studies and neonatal piglets. Understanding these procedures is important in the interpretation of the data obtained. Studies on neonatal piglets have (a) provided valuable information on the development of the adaptive immune system, (b) lead to important advances in evolutionary biology, (c) aided our understanding of passive immunity and (d) provided opportunities to use swine to address specific issues in veterinary and biomedical research and immunotherapy. This review summarizes the history of the development of the piglet as a model for antibody repertoire development, thus providing a framework to guide future investigators. PMID:19056129
An Object-Based Approach to Evaluation of Climate Variability Projections and Predictions
NASA Astrophysics Data System (ADS)
Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.
2017-12-01
Evaluations of the performance of earth system model predictions and projections are of critical importance to enhance usefulness of these products. Such evaluations need to address specific concerns depending on the system and decisions of interest; hence, evaluation tools must be tailored to inform about specific issues. Traditional approaches that summarize grid-based comparisons of analyses and models, or between current and future climate, often do not reveal important information about the models' performance (e.g., spatial or temporal displacements; the reason behind a poor score) and are unable to accommodate these specific information needs. For example, summary statistics such as the correlation coefficient or the mean-squared error provide minimal information to developers, users, and decision makers regarding what is "right" and "wrong" with a model. New spatial and temporal-spatial object-based tools from the field of weather forecast verification (where comparisons typically focus on much finer temporal and spatial scales) have been adapted to more completely answer some of the important earth system model evaluation questions. In particular, the Method for Object-based Diagnostic Evaluation (MODE) tool and its temporal (three-dimensional) extension (MODE-TD) have been adapted for these evaluations. More specifically, these tools can be used to address spatial and temporal displacements in projections of El Nino-related precipitation and/or temperature anomalies, ITCZ-associated precipitation areas, atmospheric rivers, seasonal sea-ice extent, and other features of interest. Examples of several applications of these tools in a climate context will be presented, using output of the CESM large ensemble. In general, these tools provide diagnostic information about model performance - accounting for spatial, temporal, and intensity differences - that cannot be achieved using traditional (scalar) model comparison approaches. Thus, they can provide more meaningful information that can be used in decision-making and planning. Future extensions and applications of these tools in a climate context will be considered.
Santermans, Eva; Robesyn, Emmanuel; Ganyani, Tapiwa; Sudre, Bertrand; Faes, Christel; Quinten, Chantal; Van Bortel, Wim; Haber, Tom; Kovac, Thomas; Van Reeth, Frank; Testa, Marco; Hens, Niel; Plachouras, Diamantis
2016-01-01
The Ebola outbreak in West Africa has infected at least 27,443 individuals and killed 11,207, based on data until 24 June, 2015, released by the World Health Organization (WHO). This outbreak has been characterised by extensive geographic spread across the affected countries Guinea, Liberia and Sierra Leone, and by localized hotspots within these countries. The rapid recognition and quantitative assessment of localised areas of higher transmission can inform the optimal deployment of public health resources. A variety of mathematical models have been used to estimate the evolution of this epidemic, and some have pointed out the importance of the spatial heterogeneity apparent from incidence maps. However, little is known about the district-level transmission. Given that many response decisions are taken at sub-national level, the current study aimed to investigate the spatial heterogeneity by using a different modelling framework, built on publicly available data at district level. Furthermore, we assessed whether this model could quantify the effect of intervention measures and provide predictions at a local level to guide public health action. We used a two-stage modelling approach: a) a flexible spatiotemporal growth model across all affected districts and b) a deterministic SEIR compartmental model per district whenever deemed appropriate. Our estimates show substantial differences in the evolution of the outbreak in the various regions of Guinea, Liberia and Sierra Leone, illustrating the importance of monitoring the outbreak at district level. We also provide an estimate of the time-dependent district-specific effective reproduction number, as a quantitative measure to compare transmission between different districts and give input for informed decisions on control measures and resource allocation. Prediction and assessing the impact of control measures proved to be difficult without more accurate data. In conclusion, this study provides us a useful tool at district level for public health, and illustrates the importance of collecting and sharing data.
Modeling greenhouse gas emissions from dairy farms.
Rotz, C Alan
2017-11-15
Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Parametric regression model for survival data: Weibull regression model as an example
2016-01-01
Weibull regression model is one of the most popular forms of parametric regression model that it provides estimate of baseline hazard function, as well as coefficients for covariates. Because of technical difficulties, Weibull regression model is seldom used in medical literature as compared to the semi-parametric proportional hazard model. To make clinical investigators familiar with Weibull regression model, this article introduces some basic knowledge on Weibull regression model and then illustrates how to fit the model with R software. The SurvRegCensCov package is useful in converting estimated coefficients to clinical relevant statistics such as hazard ratio (HR) and event time ratio (ETR). Model adequacy can be assessed by inspecting Kaplan-Meier curves stratified by categorical variable. The eha package provides an alternative method to model Weibull regression model. The check.dist() function helps to assess goodness-of-fit of the model. Variable selection is based on the importance of a covariate, which can be tested using anova() function. Alternatively, backward elimination starting from a full model is an efficient way for model development. Visualization of Weibull regression model after model development is interesting that it provides another way to report your findings. PMID:28149846
Projections of the 21st Century Freezing/Thawing Index in the Northern Hemisphere
NASA Astrophysics Data System (ADS)
Frauenfeld, O. W.; Zhang, T.; Teng, H.; Etringer, A. J.
2006-12-01
Variability in the ground thermal regime in high-latitude cold regions has important ramifications for surface and subsurface hydrology, carbon exchange, the surface energy and moisture balance, and ecosystem diversity and productivity. However, assessing these variations, particularly in light of reported widespread atmospheric and terrestrial changes over recent decades, remains a challenge due to the sparse observing networks in high latitudes. The annual freezing/thawing (F/T) index can be used to predict and map permafrost and seasonally frozen ground distribution, active layer and seasonal freeze depths, and has important engineering applications, thereby providing important information on climate variability in cold regions. Reliable long-term measurements of the F/T index are thus important variables for understanding and predicting high-latitude climate processes. The F/T index is defined as the cumulative number of degree-days below/above 0°C for a given time period. However, in recent work we have established that long- term monthly air temperature measurements can be used very reliably to approximate the annual F/T index. This has enabled us to produce a 25-km gridded Northern Hemisphere annual F/T index data set for 1901-2002 (see http://nsidc.org/data/ggd649.html). In this current effort we employ model projections of surface air temperatures from the Intergovernmental Panel on Climate Change (IPPC) Fourth Assessment Report (AR4) to provide an estimate of 21st century F/T index changes. This will provide an important analog to recent work on trying to establish near-surface permafrost changes in the Arctic. We will make use of runs for the four emission scenarios ("commit," "SRESA2," "SRESA1B," and "SRESB1") and "20th Century Climate in Coupled Models" (20c3m) from all 16 available models, as well as a multi-model ensemble. We first perform a comparison between our existing historical data base of F/T indices and the overlapping period of the IPCC model runs to assess the correspondence between historical observations and models. Next, we calculate the F/T index based on future scenarios, and apply the 20th century F/T indices to estimate future distributions of frozen ground, as well as active layer and seasonal freeze depths.
2012-01-01
Background We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis. Methods The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions. Results The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression. Conclusions We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients. PMID:23241496
3D QSAR models built on structure-based alignments of Abl tyrosine kinase inhibitors.
Falchi, Federico; Manetti, Fabrizio; Carraro, Fabio; Naldini, Antonella; Maga, Giovanni; Crespan, Emmanuele; Schenone, Silvia; Bruno, Olga; Brullo, Chiara; Botta, Maurizio
2009-06-01
Quality QSAR: A combination of docking calculations and a statistical approach toward Abl inhibitors resulted in a 3D QSAR model, the analysis of which led to the identification of ligand portions important for affinity. New compounds designed on the basis of the model were found to have very good affinity for the target, providing further validation of the model itself.The X-ray crystallographic coordinates of the Abl tyrosine kinase domain in its active, inactive, and Src-like inactive conformations were used as targets to simulate the binding mode of a large series of pyrazolo[3,4-d]pyrimidines (known Abl inhibitors) by means of GOLD software. Receptor-based alignments provided by molecular docking calculations were submitted to a GRID-GOLPE protocol to generate 3D QSAR models. Analysis of the results showed that the models based on the inactive and Src-like inactive conformations had very poor statistical parameters, whereas the sole model based on the active conformation of Abl was characterized by significant internal and external predictive ability. Subsequent analysis of GOLPE PLS pseudo-coefficient contour plots of this model gave us a better understanding of the relationships between structure and affinity, providing suggestions for the next optimization process. On the basis of these results, new compounds were designed according to the hydrophobic and hydrogen bond donor and acceptor contours, and were found to have improved enzymatic and cellular activity with respect to parent compounds. Additional biological assays confirmed the important role of the selected compounds as inhibitors of cell proliferation in leukemia cells.
Ergodic model for the expansion of spherical nanoplasmas.
Peano, F; Coppa, G; Peinetti, F; Mulas, R; Silva, L O
2007-06-01
Recently, the collisionless expansion of spherical nanoplasmas has been analyzed with a new ergodic model, clarifying the transition from hydrodynamiclike to Coulomb-explosion regimes, and providing accurate laws for the relevant features of the phenomenon. A complete derivation of the model is presented here. The important issue of the self-consistent initial conditions is addressed by analyzing the initial charging transient due to the electron expansion, in the approximation of immobile ions. A comparison among different kinetic models for the expansion is presented, showing that the ergodic model provides a simplified description, which retains the essential information on the electron distribution, in particular, the energy spectrum. Results are presented for a wide range of initial conditions (determined from a single dimensionless parameter), in excellent agreement with calculations from the exact Vlasov-Poisson theory, thus providing a complete and detailed characterization of all the stages of the expansion.
Feasibility Assessment of a Fine-Grained Access Control Model on Resource Constrained Sensors.
Uriarte Itzazelaia, Mikel; Astorga, Jasone; Jacob, Eduardo; Huarte, Maider; Romaña, Pedro
2018-02-13
Upcoming smart scenarios enabled by the Internet of Things (IoT) envision smart objects that provide services that can adapt to user behavior or be managed to achieve greater productivity. In such environments, smart things are inexpensive and, therefore, constrained devices. However, they are also critical components because of the importance of the information that they provide. Given this, strong security is a requirement, but not all security mechanisms in general and access control models in particular are feasible. In this paper, we present the feasibility assessment of an access control model that utilizes a hybrid architecture and a policy language that provides dynamic fine-grained policy enforcement in the sensors, which requires an efficient message exchange protocol called Hidra. This experimental performance assessment includes a prototype implementation, a performance evaluation model, the measurements and related discussions, which demonstrate the feasibility and adequacy of the analyzed access control model.
Feasibility Assessment of a Fine-Grained Access Control Model on Resource Constrained Sensors
Huarte, Maider; Romaña, Pedro
2018-01-01
Upcoming smart scenarios enabled by the Internet of Things (IoT) envision smart objects that provide services that can adapt to user behavior or be managed to achieve greater productivity. In such environments, smart things are inexpensive and, therefore, constrained devices. However, they are also critical components because of the importance of the information that they provide. Given this, strong security is a requirement, but not all security mechanisms in general and access control models in particular are feasible. In this paper, we present the feasibility assessment of an access control model that utilizes a hybrid architecture and a policy language that provides dynamic fine-grained policy enforcement in the sensors, which requires an efficient message exchange protocol called Hidra. This experimental performance assessment includes a prototype implementation, a performance evaluation model, the measurements and related discussions, which demonstrate the feasibility and adequacy of the analyzed access control model. PMID:29438338
Modal split model considering carpool mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyles, R.W.
1979-03-01
Modal split remains a primary concern of transportation planners as the state-of-the art has developed from diversion curves to behavioral models. The approach taken here is to formulate the mode-choice decision for the work trip as a linear combination of real and perceived characteristics of the modes considered. The logit formulation is used with three modes being considered: two automobile modes (drive-alone and carpool) and a public transit mode (bus). The final model provides insight into which factors are important in travel decisions among these three modes and the importance of examining traveler's perceptions of the differences among modes relativemore » to actual measurable differences.« less
Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-04-01
Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with respect to other commonly used approaches in the literature.
[Study on Information Extraction of Clinic Expert Information from Hospital Portals].
Zhang, Yuanpeng; Dong, Jiancheng; Qian, Danmin; Geng, Xingyun; Wu, Huiqun; Wang, Li
2015-12-01
Clinic expert information provides important references for residents in need of hospital care. Usually, such information is hidden in the deep web and cannot be directly indexed by search engines. To extract clinic expert information from the deep web, the first challenge is to make a judgment on forms. This paper proposes a novel method based on a domain model, which is a tree structure constructed by the attributes of search interfaces. With this model, search interfaces can be classified to a domain and filled in with domain keywords. Another challenge is to extract information from the returned web pages indexed by search interfaces. To filter the noise information on a web page, a block importance model is proposed. The experiment results indicated that the domain model yielded a precision 10.83% higher than that of the rule-based method, whereas the block importance model yielded an F₁ measure 10.5% higher than that of the XPath method.
A Scenario-Based Protocol Checker for Public-Key Authentication Scheme
NASA Astrophysics Data System (ADS)
Saito, Takamichi
Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).
Formalizing nursing knowledge: from theories and models to ontologies.
Peace, Jane; Brennan, Patricia Flatley
2009-01-01
Knowledge representation in nursing is poised to address the depth of nursing knowledge about the specific phenomena of importance to nursing. Nursing theories and models may provide a starting point for making this knowledge explicit in representations. We combined knowledge building methods from nursing and ontology design methods from biomedical informatics to create a nursing representation of family health history. Our experience provides an example of how knowledge representations may be created to facilitate electronic support for nursing practice and knowledge development.
Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9.
Li, Shanshan; Liu, Yanwei; Liu, Zengrong; Wang, Ruiqi
2016-01-01
In the nervous system, Hes1 shows an oscillatory manner in neural progenitors but a persistent one in neurons. Many models involving Hes1 have been provided for the study of neural differentiation but few of them take the role of microRNA into account. It is known that a microRNA, miR-9, plays crucial roles in modulating Hes1 oscillations. However, the roles of miR-9 in controlling Hes1 oscillations and inducing transition between different cell fates still need to be further explored. Here we provide a mathematical model to show the interaction between miR-9 and Hes1, with the aim of understanding how the Hes1 oscillations are produced, how they are controlled, and further, how they are terminated. Based on the experimental findings, the model demonstrates the essential roles of Hes1 and miR-9 in regulating the dynamics of the system. In particular, the model suggests that the balance between miR-9 and Hes1 plays important roles in the choice between progenitor maintenance and neural differentiation. In addition, the synergistic (or antagonistic) effects of several important regulations are investigated so as to elucidate the effects of combinatorial regulation in neural decision-making. Our model provides a qualitative mechanism for understanding the process in neural fate decisions regulated by Hes1 and miR-9.
Personal Wilderness Relationships: Building on a Transactional Approach
NASA Astrophysics Data System (ADS)
Dvorak, Robert G.; Borrie, William T.; Watson, Alan E.
2013-12-01
Wilderness managers are charged with the challenging goal of balancing resource protection and experience quality across a broad, value-laden landscape. While research has provided insight into visitors' motivations and their meanings for wilderness, a struggle exists to implement experiential concepts within current management frameworks. This research posits the human experience of wilderness to be an evolving, enduring relationship, and that research needs can be addressed by conceptualizing and investigating an individuals' personal wilderness relationship. The purpose of this study was to explore wilderness relationships of visitors to the Boundary Waters Canoe Area Wilderness. A predictive model was proposed to investigate the internal dimensions of a visitor's wilderness relationship. A mail-back questionnaire was distributed during the summer of 2007, resulting in a sample of 564 respondents. Data were analyzed using confirmatory factor analysis and structural equation modeling. Results from testing several relationship models provided support for a multidimensional structure consisting of five factors with a single overarching relationship factor. The preferred relationship model indicated the importance of identities and attachment in place relationships. Trust and commitment toward management were also important considerations. This research provided the preliminary evidence for a multidimensional wilderness relationship model and complements a perspective of wilderness experiences as wilderness. Findings may help to reframe decision-making and public-input processes that guide management actions to increased wilderness character protection and facilitate quality wilderness experiences.
The first near-infrared reflectance spectrum of an exoplanet
NASA Astrophysics Data System (ADS)
Desert, Jean-Michel
2017-08-01
Amongst the important results that came out in the field of exoplanetology is that clouds and hazes in exoplanet atmospheres seem to be ubiquitous. Their presence provides important information on the chemistry and composition of atmospheres, and have major impact on planets' energy budgets and evolutions. Aerosols are also important observationally because they prevent probing deeper atmospheric composition, and they have been the common interpretation in a long list of published featureless transmission spectra. However, none of these indirect detections can definitely confirm or deny the presence of aerosols; thus, we propose a program that will change our view on aerosols by looking at their reflectivity.Theoretical models and laboratory experiments have long speculated on the origins and properties of aerosols in exoplanet atmospheres. More recent studies have shown that photochemical hazes can be very reflective in the near-Infrared (NIR) for planets cooler than 900 K. We propose to tackle this revolutionizing idea by pioneering an observational program that will both test these new models and provide a novel way to study atmospheres of exoplanets.We will look for reflective hazes in the NIR with WFC3 and deliver the first geometric albedo spectrum (Ag) of an exoplanet: WASP-80b. We will measure expected reflectivity (Ag=0.5) at high level of confidence (7-Sigma), and put stringent limits on haze models. This program will provide a pathway towards the study of exoplanets around low mass-stars through their reflectivity, which is urgent since these will be the golden targets for JWST. Only HST can provide the required precision for such an experiment.
Fida, Roberta; Laschinger, Heather K Spence; Leiter, Michael P
Incivility has negative consequences in the workplace and remains a prevalent issue in nursing. Research has consistently linked incivility to nurse burnout and, in turn, to poor mental health and turnover intentions. To retain high-quality nurses, it is important to understand what factors might protect nurses from the negative effects of workplace mistreatment. The aim of the study was to investigate the role of relational occupational coping self-efficacy in protecting nurses from workplace incivility and related burnout and turnover intentions. A two-wave national sample of 596 Canadian nurses completed mail surveys both at Time 1 and one year later at Time 2. Structural equation modeling was used to test the hypothesized model. The model showed a good fit, and most of the hypothesized paths were significant. Overall, the results supported the hypothesized protective effect of relational occupational coping self-efficacy against incivility and later burnout, mental health, and turnover intentions. Relational occupational coping self-efficacy is an important protective factor against negative work behavior. Organizations should provide nurses with opportunities to build their coping strategies for managing job demands and difficult interpersonal interactions. Similarly, providing exposure to effective role models and providing meaningful verbal encouragement are other sources of efficacy information for building nurses' relational coping self-efficacy.
NASA Astrophysics Data System (ADS)
Huo, Liang'an; Jiang, Jiehui; Gong, Sixing; He, Bing
2016-05-01
Rumor transmission has become an important issue in emergency event. In this paper, a rumor transmission model with Holling-type II functional response was proposed, which provides excellent explanations of the scientific knowledge effect with rumor spreading. By a global analysis of the model and studying the stability of the rumor-free equilibrium and the rumor-endemic equilibrium, we found that the number of infective individuals equal to zero or positive integer as time went on. A numerical simulation is carried out to illustrate the feasibility of our main results. The results will provide the theoretical support to rumor control in emergency event and also provide decision makers references for the public opinions management.
McClain, Zachary; Hawkins, Linda A; Yehia, Baligh R
2016-01-01
Health outcomes are affected by patient, provider, and environmental factors. Previous studies have evaluated patient-level factors; few focusing on environment. Safe clinical spaces are important for lesbian, gay, bisexual, and transgender (LGBT) communities. This study evaluates current models of LGBT health care delivery, identifies strengths and weaknesses, and makes recommendations for LGBT spaces. Models are divided into LGBT-specific and LGBT-embedded care delivery. Advantages to both models exist, and they provide LGBT patients different options of healthcare. Yet certain commonalities must be met: a clean and confidential system. Once met, LGBT-competent environments and providers can advocate for appropriate care for LGBT communities, creating environments where they would want to seek care.
Peer Review for EPA's Biologically Based Dose-Response ...
EPA is developing a regulation for perchlorate in drinking water. As part the regulatory process EPA must develop a Maximum Contaminant Level Goal (MCLG). FDA and EPA scientists developed a biologically based dose-response (BBDR) model to assist in deriving the MCLG. This model is designed to determine under what conditions of iodine nutrition and exposure to perchlorate across sensitive lifestages would result in low serum free and total thyroxine (hypothyroxinemia). EPA is undertaking a peer review to provide a focused, objective independent peer evaluation of the draft model and its model results report. EPA is undertaking a peer review to provide a focused, objective independent peer evaluation of the draft model and its model results report. Peer review is an important component of the scientific process. The criticism, suggestions, and new ideas provided by the peer reviewers stimulate creative thought, strengthen the interpretation of the reviewed material, and confer credibility on the product. The peer review objective is to provide advice to EPA on steps that will yield a highly credible scientific product that is supported by the scientific community and a defensible perchlorate MCLG.
Preterm labor--modeling the uterine electrical activity from cellular level to surface recording.
Rihana, S; Marque, C
2008-01-01
Uterine electrical activity is correlated to the appearance of uterine contractions. forceful contractions appear at the end of term. Therefore, understanding the genesis and the propagation of uterine electrical activity may provide an efficient tool to diagnose preterm labor. Moreover, the control of uterine excitability seems to have important consequences in the control of preterm labor. Modeling the electrical activity in uterine tissue is thus an important step in understanding physiological uterine contractile mechanisms and to permit uterine EMG simulation. Our model presented in this paper, incorporates ion channel models at the cell level, the reaction diffusion equations at the tissue level and the spatiotemporal integration at the uterine EMG reconstructed level. This model validates some key physiological observation hypotheses concerning uterine excitability and propagation.
Post-audits of Three Groundwater Models for Evaluating Plume Containment
NASA Astrophysics Data System (ADS)
Andersen, P. F.
2003-12-01
Groundwater extraction systems were designed using numerical models at three sites within a U.S. Army Ammunition Plant in Tennessee. Each site, and hence model, has unique qualities such as boundary conditions, extensiveness of the contaminant plume, and quantity and quality of hydrogeologic data. Performance of each of these extraction systems has been evaluated throughout their operation, providing an opportunity to perform post-audits on the accuracy of the groundwater models that were used in their design. Areas of comparison between the models and the observed response in the natural systems include hydraulic head, drawdown, horizontal and vertical gradients, and extent of capture zones. The results of the post-audits show the importance of using all available data in the construction and calibration of the models, the importance of having sufficient data, and the critical nature of an accurate conceptual model. The post-audits also show that although it may be possible to assess the accuracy of the model predictions, it is often not possible to explain the reasons for discrepancies between predicted and observed results. From a practical perspective, parameter uncertainty is important to account for in the development of the models and subsequent design of the extraction systems.
Myokit: A simple interface to cardiac cellular electrophysiology.
Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A
2016-01-01
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery
Eltzschig, Holger K.
2013-01-01
The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets. PMID:21942704
Thorne, Lesley H; Johnston, David W; Urban, Dean L; Tyne, Julian; Bejder, Lars; Baird, Robin W; Yin, Suzanne; Rickards, Susan H; Deakos, Mark H; Mobley, Joseph R; Pack, Adam A; Chapla Hill, Marie
2012-01-01
Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood.
Thorne, Lesley H.; Johnston, David W.; Urban, Dean L.; Tyne, Julian; Bejder, Lars; Baird, Robin W.; Yin, Suzanne; Rickards, Susan H.; Deakos, Mark H.; Mobley, Joseph R.; Pack, Adam A.; Chapla Hill, Marie
2012-01-01
Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood. PMID:22937022
Role of Water in Proton-Hydroxide Conductance Across Model and Biological Membranes
1989-09-30
of water in proton-hydroxide conductance across model and biological membranes 12. PERSONAL AUTHOR(S) Deamer, David W. 1 a. TYPE OF REPORT 13b. TIME...identify by block number) The goal of this research is to understand the mechanism of proton translocation in model and biological membranes. The...which conducts protons through hydrogen bonded water, thereby providing an important model for investigating such processes. The Fo subunit of
Us and Them: Religious Education and the Role of Proper Communication in Conflict Prevention
ERIC Educational Resources Information Center
Massoudi, Mehrdad
2010-01-01
The importance of proper language, in the context of multicultural education, and how it can be of help in conflict prevention is discussed. A brief discussion of what a model does and how a scientific model is constructed is provided. A circular model is developed where it is proposed that thought, language, and action, as the three most…
Mapping migratory flyways in Asia using dynamic Brownian bridge movement models
Palm, E.C.; Newman, S.H.; Prosser, Diann J.; Xiao, Xiangming; Luo, Ze; Batbayar, Nyambayar; Balachandran, Sivananinthaperumal; Takekawa, John Y.
2015-01-01
The dynamic Brownian bridge movement model improves our understanding of flyways by estimating relative use of regions in the flyway while providing detailed, quantitative information on migration timing and population connectivity including uncertainty between locations. This model effectively quantifies the relative importance of different migration corridors and stopover sites and may help prioritize specific areas in flyways for conservation of waterbird populations.
The application of NASCAD as a NASTRAN pre- and post-processor
NASA Technical Reports Server (NTRS)
Peltzman, Alan N.
1987-01-01
The NASA Computer Aided Design (NASCAD) graphics package provides an effective way to interactively create, view, and refine analytic data models. NASCAD's macro language, combined with its powerful 3-D geometric data base allows the user important flexibility and speed in constructing his model. This flexibility has the added benefit of enabling the user to keep pace with any new NASTRAN developments. NASCAD allows models to be conveniently viewed and plotted to best advantage in both pre- and post-process phases of development, providing useful visual feedback to the analysis process. NASCAD, used as a graphics compliment to NASTRAN, can play a valuable role in the process of finite element modeling.
Cost decomposition of linear systems with application to model reduction
NASA Technical Reports Server (NTRS)
Skelton, R. E.
1980-01-01
A means is provided to assess the value or 'cst' of each component of a large scale system, when the total cost is a quadratic function. Such a 'cost decomposition' of the system has several important uses. When the components represent physical subsystems which can fail, the 'component cost' is useful in failure mode analysis. When the components represent mathematical equations which may be truncated, the 'component cost' becomes a criterion for model truncation. In this latter event component costs provide a mechanism by which the specific control objectives dictate which components should be retained in the model reduction process. This information can be valuable in model reduction and decentralized control problems.
Maxwell's second- and third-order equations of transfer for non-Maxwellian gases
NASA Technical Reports Server (NTRS)
Baganoff, D.
1992-01-01
Condensed algebraic forms for Maxwell's second- and third-order equations of transfer are developed for the case of molecules described by either elastic hard spheres, inverse-power potentials, or by Bird's variable hard-sphere model. These hardly reduced, yet exact, equations provide a new point of origin, when using the moment method, in seeking approximate solutions in the kinetic theory of gases for molecular models that are physically more realistic than that provided by the Maxwell model. An important by-product of the analysis when using these second- and third-order relations is that a clear mathematical connection develops between Bird's variable hard-sphere model and that for the inverse-power potential.
NASA Astrophysics Data System (ADS)
Sun, Guodong; Mu, Mu
2017-05-01
An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.
Is Financial Literacy a Determinant of Health?
Meyer, Melanie
2017-08-01
Changes in economic conditions and healthcare delivery models have shifted more healthcare costs to patients, resulting in greater patient financial responsibilities. As a result, it is important to understand the potential impact of financial literacy on patients' healthcare behavior. With the focus on delivering better health outcomes at lower costs, factors that influence patient behavior are important considerations for healthcare providers. Although researchers have proposed a variety of conceptual models that identify influential factors, those models do not fully address financial literacy and its potential impact patients' healthcare decisions. This article examines existing models of patient healthcare decision-making and current research on factors affecting patient decision-making and behavior and then presents recommendations for closing the identified gap in our current knowledge.
NASA Astrophysics Data System (ADS)
Boyd-Lee, Ashley; King, Julia
1992-07-01
A discrete statistical model of fatigue crack growth in a nickel base superalloy Waspaloy, which is quantitative from the start of the short crack regime to failure, is presented. Instantaneous crack growth rate distributions and persistence of arrest distributions are used to compute fatigue lives and worst case scenarios without extrapolation. The basis of the model is non-material specific, it provides an improved method of analyzing crack growth rate data. For Waspaloy, the model shows the importance of good bulk fatigue crack growth resistance to resist early short fatigue crack growth and the importance of maximizing crack arrest both by the presence of a proportion of small grains and by maximizing grain boundary corrugation.
Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian
2008-05-01
Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional-structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06: This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13-17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic processes have recently been included and point the way to a new direction in plant modelling research.
Choice modeling: public preferences for enhancing benefits from private forests in the Adirondacks
Donald F. Dennis; Mark J. Twery
2007-01-01
Recognizing the importance of private land in meeting society's needs for forest-related benefits, public agencies fund programs that provide aid to private landowners to enhance public benefits derived from these lands. This may include technical help, education, tax incentives, and cost-share programs for various management activities. It is important that...
Important parameters for smoke plume rise simulation with Daysmoke
L. Liu; G.L. Achtemeier; S.L. Goodrick; W. Jackson
2010-01-01
Daysmoke is a local smoke transport model and has been used to provide smoke plume rise information. It includes a large number of parameters describing the dynamic and stochastic processes of particle upward movement, fallout, fluctuation, and burn emissions. This study identifies the important parameters for Daysmoke simulations of plume rise and seeks to understand...
Modeling the Hydrologic Processes of a Depressional Forested Wetland in South Carolina, U.S.A.
Ge Sun; Timothy Callahan; Jennifer E. Pyzoha; Carl C. Trettin; Devendra M. Amatya
2004-01-01
Depressional forested wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays are common land features in the Atlantic Coastal Plain of the southeastern US. Those wetlands play important roles in providing wildlife habitats, water quality improvement, and carbon sequestration. Great stresses have been imposed on those important ecosystems...
Examining family meetings at end of life: The model of practice in a hospice inpatient unit.
Meeker, Mary Ann; Waldrop, Deborah P; Seo, Jin Young
2015-10-01
Our purpose was to rigorously examine the nature of family meetings as conducted in an inpatient hospice care unit in order to generate an inductive theoretical model. In this two-phase project, we first interviewed eight members of the interdisciplinary care team who participated in multiple family meetings each week. Interview questions explored why and how they conducted family meetings. Using an observation template created from these interview data, we subsequently conducted ethnographic observations during family meetings. Using the methods of grounded theory, our findings were synthesized into a theoretical model depicting the structure and process of formal family meetings within this setting. The core of the family meeting was characterized by cognitive and affective elements aimed at supporting the family and facilitating quality care by clarifying the past, easing the present, and protecting the future. This inductive model was subsequently found to be highly aligned with a sense of coherence, an important influence on coping, and adaptation to the stress of a life-limiting illness. Provider communication with family members is particularly critical during advanced illness and end-of-life care. The National Consensus Project clinical practice guidelines for quality palliative care list regular family meetings among the recommended practices for excellent communication during end-of-life care, but do not provide specific guidance on how and when to provide such meetings. Our findings provide a theoretical model that can inform the design of a family meeting to address family members' needs for meaningful and contextualized information, validation of their important contributions to care, and preparation for the patient's death.
Soler, María José; Riera, Marta; Batlle, Daniel
2012-01-01
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The use of experimental models of DN has provided valuable information regarding many aspects of DN, including pathophysiology, progression, implicated genes, and new therapeutic strategies. A large number of mouse models of diabetes have been identified and their kidney disease was characterized to various degrees. Most experimental models of type 2 DN are helpful in studying early stages of DN, but these models have not been able to reproduce the characteristic features of more advanced DN in humans such as nodules in the glomerular tuft or glomerulosclerosis. The generation of new experimental models of DN created by crossing, knockdown, or knockin of genes continues to provide improved tools for studying DN. These models provide an opportunity to search for new mechanisms involving the development of DN, but their shortcomings should be recognized as well. Moreover, it is important to recognize that the genetic background has a substantial effect on the susceptibility to diabetes and kidney disease development in the various models of diabetes. PMID:22461787
A Conceptual Model for Teaching Critical Thinking in a Knowledge Economy
ERIC Educational Resources Information Center
Chadwick, Clifton
2011-01-01
Critical thinking, viewed as rational and analytic thinking, is crucial for participation in a knowledge economy and society. This article provides a brief presentation of the importance of teaching critical thinking in a knowledge economy; suggests a conceptual model for teaching thinking; examines research on the historical role of teachers in…
ERIC Educational Resources Information Center
Maxwell, Graham; Noonan, Peter; Bahr, Mark; Hardy, Ian
2004-01-01
Vocational education and training (VET) policy is increasingly focused on the importance of quality in each VET institution's capacity to deliver effective programs. This report addresses institutional-level monitoring and evaluation of performance and provides a comprehensive model which institutes can use for this purpose. The model draws on…
Experimental Evaluation of a Serious Game for Teaching Software Process Modeling
ERIC Educational Resources Information Center
Chaves, Rafael Oliveira; von Wangenheim, Christiane Gresse; Furtado, Julio Cezar Costa; Oliveira, Sandro Ronaldo Bezerra; Santos, Alex; Favero, Eloi Luiz
2015-01-01
Software process modeling (SPM) is an important area of software engineering because it provides a basis for managing, automating, and supporting software process improvement (SPI). Teaching SPM is a challenging task, mainly because it lays great emphasis on theory and offers few practical exercises. Furthermore, as yet few teaching approaches…
Dynamics of buckbrush populations under simulated forest restoration alternatives
David W. Huffman; Margaret M. Moore
2008-01-01
Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...
Dynamics of buckbrush populations under simulated forest restoration alternatives (P-53)
David W. Huffman; Margaret M. Moore
2008-01-01
Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...
Reflections from the GPE Financing Conference in Dakar: A Model of Education Diplomacy
ERIC Educational Resources Information Center
Golden, April Michelle
2018-01-01
Providing inclusive and equitable quality education for all children will require sustained cooperation and investment from donor and partner nations worldwide. As a multi-stakeholder funding mechanism, the Global Partnership for Education (GPE) is an important Education Diplomacy model. The 2018 Dakar Financing Conference is a vibrant…
Improving Primary School Prospective Teachers' Understanding of the Mathematics Modeling Process
ERIC Educational Resources Information Center
Bal, Aytgen Pinar; Doganay, Ahmet
2014-01-01
The development of mathematical thinking plays an important role on the solution of problems faced in daily life. Determining the relevant variables and necessary procedural steps in order to solve problems constitutes the essence of mathematical thinking. Mathematical modeling provides an opportunity for explaining thoughts in real life by making…
University Students' Opinions Concerning Science-Technology-Society Issues
ERIC Educational Resources Information Center
Dolu, Gamze
2016-01-01
Determining what students think about science, technology, and society (STS) is of great importance. This also provides the basis for scientific literacy. As such, this study was conducted with a total of 102 senior students attending a university located in western Turkey. This study utilized the survey model as a research model and the…
A Small Dose of HIV? HIV Vaccine Mental Models and Risk Communication
ERIC Educational Resources Information Center
Newman, Peter A.; Seiden, Danielle S.; Roberts, Kathleen J.; Kakinami, Lisa; Duan, Naihua
2009-01-01
Existing knowledge and beliefs related to HIV vaccines provide an important basis for the development of risk communication messages to support future HIV vaccine dissemination. This study explored HIV vaccine mental models among adults from segments of the population disproportionately affected by HIV/AIDS. Nine focus groups were conducted with…
Measuring Perceptual (In) Congruence between Information Service Providers and Users
ERIC Educational Resources Information Center
Boyce, Crystal
2017-01-01
Library quality is no longer evaluated solely on the value of its collections, as user perceptions of service quality play an increasingly important role in defining overall library value. This paper presents a retooling of the LibQUAL+ survey instrument, blending the gap measurement model with perceptual congruence model studies from information…
A Model for Alumni Participation in Student Recruitment. AIR Forum 1980 Paper.
ERIC Educational Resources Information Center
Habben, Dorothy E.; Stewart, Clifford T.
A model is presented for constructing and evaluating an effective alumni volunteer program to aid in the student recruitment effort. A review of successful programs reveals certain common features and provides important touchstones for other schools looking for the principles and practices with which to organize their own efforts. The first…
Science Teacher Candidates' Perceptions about Roles and Nature of Scientific Models
ERIC Educational Resources Information Center
Yenilmez Turkoglu, Ayse; Oztekin, Ceren
2016-01-01
Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks…
Confidence Intervals for Weighted Composite Scores under the Compound Binomial Error Model
ERIC Educational Resources Information Center
Kim, Kyung Yong; Lee, Won-Chan
2018-01-01
Reporting confidence intervals with test scores helps test users make important decisions about examinees by providing information about the precision of test scores. Although a variety of estimation procedures based on the binomial error model are available for computing intervals for test scores, these procedures assume that items are randomly…
Dynamics of pulsatile flow in fractal models of vascular branching networks.
Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt
2009-07-01
Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.
Oncology Modeling for Fun and Profit! Key Steps for Busy Analysts in Health Technology Assessment.
Beca, Jaclyn; Husereau, Don; Chan, Kelvin K W; Hawkins, Neil; Hoch, Jeffrey S
2018-01-01
In evaluating new oncology medicines, two common modeling approaches are state transition (e.g., Markov and semi-Markov) and partitioned survival. Partitioned survival models have become more prominent in oncology health technology assessment processes in recent years. Our experience in conducting and evaluating models for economic evaluation has highlighted many important and practical pitfalls. As there is little guidance available on best practices for those who wish to conduct them, we provide guidance in the form of 'Key steps for busy analysts,' who may have very little time and require highly favorable results. Our guidance highlights the continued need for rigorous conduct and transparent reporting of economic evaluations regardless of the modeling approach taken, and the importance of modeling that better reflects reality, which includes better approaches to considering plausibility, estimating relative treatment effects, dealing with post-progression effects, and appropriate characterization of the uncertainty from modeling itself.
Titan I propulsion system modeling and possible performance improvements
NASA Astrophysics Data System (ADS)
Giusti, Oreste
This thesis features the Titan I propulsion systems and offers data-supported suggestions for improvements to increase performance. The original propulsion systems were modeled both graphically in CAD and via equations. Due to the limited availability of published information, it was necessary to create a more detailed, secondary set of models. Various engineering equations---pertinent to rocket engine design---were implemented in order to generate the desired extra detail. This study describes how these new models were then imported into the ESI CFD Suite. Various parameters are applied to these imported models as inputs that include, for example, bi-propellant combinations, pressure, temperatures, and mass flow rates. The results were then processed with ESI VIEW, which is visualization software. The output files were analyzed for forces in the nozzle, and various results were generated, including sea level thrust and ISP. Experimental data are provided to compare the original engine configuration models to the derivative suggested improvement models.
Survey of CACREP-Accredited Programs: Training Counselors To Provide Treatment for Sexual Abuse.
ERIC Educational Resources Information Center
Kitzrow, Martha Anne
2002-01-01
Discusses the importance of training counselors to provide adequate treatment for survivors of sexual abuse. Presents the results of a survey of programs approved by the Council for Accreditation of Counseling and Related Educational Programs regarding current training practices, and offers recommendations and a model for developing a training…
A Conceptual Framework of "Top 5" Ethical Lessons for the Helping Professions
ERIC Educational Resources Information Center
Castro-Atwater, Sheri A.; Huynh Hohnbaum, Anh-Luu
2015-01-01
One of the important tasks of supervisors and educators in the human service fields is to provide their fieldwork students with models of appropriate ethical behavior and decision-making. The ethical training that educators provide to students in the helping professions will greatly influence how prepared students feel to navigate through…
47 CFR 15.123 - Labeling of digital cable ready products.
Code of Federal Regulations, 2012 CFR
2012-10-01
... supply or design products of the type it tests, nor provide any other products or services that could... must not supply or design products of the type it tests, nor provide any other products or services... a qualified test facility. If the model fails to comply, the manufacturer or importer shall have any...
47 CFR 15.123 - Labeling of digital cable ready products.
Code of Federal Regulations, 2014 CFR
2014-10-01
... supply or design products of the type it tests, nor provide any other products or services that could... must not supply or design products of the type it tests, nor provide any other products or services... a qualified test facility. If the model fails to comply, the manufacturer or importer shall have any...
47 CFR 15.123 - Labeling of digital cable ready products.
Code of Federal Regulations, 2013 CFR
2013-10-01
... supply or design products of the type it tests, nor provide any other products or services that could... must not supply or design products of the type it tests, nor provide any other products or services... a qualified test facility. If the model fails to comply, the manufacturer or importer shall have any...
Dycus, Justin C.; Wisniewski, Jason M.; Peterson, James T.
2015-01-01
This study provides insight to the factors affecting the growth of stream-dwelling freshwater mussels. Although hierarchical von Bertalanffy growth models are rarely used for freshwater mussel age and growth studies, this approach can provide important information regarding the ecology of freshwater mussels.
Strengthening the case for saproxylic arthropod conservation: a call for ecosystem services research
Michael Ulyshen
2013-01-01
While research on the ecosystem services provided by biodiversity is becoming widely embraced as an important tool in conservation, the services provided by saproxylic arthropods - an especially diverse and threatened assemblage dependent on dead or dying wood - remain unmeasured. A conceptual model depicting the reciprocal relationships between dead wood and...
NASA Astrophysics Data System (ADS)
Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.
2014-12-01
It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the origin of ambient exposure to hazardous air pollutants in an industrial fence line community near the Houston Ship Channel. Preliminary results derived from analysis of MARC observations during the BEE-TEX experiment will be presented.
Lindsay, Ana Cristina; Greaney, Mary L; Wallington, Sherrie F; Wright, Julie A
2017-11-12
Latinos are the largest and most rapidly growing minority population group in the USA and are disproportionally affected by obesity and related chronic diseases. Child care providers likely influence the eating and physical activity behaviours of children in their care, and therefore are important targets for interventions designed to prevent childhood obesity. Nonetheless, there is a paucity of research examining the behaviours of family child care home (FCCH) providers and whether they model healthy eating and physical activity behaviours. Therefore, this study explored Latino FCCH providers' beliefs and practices related to healthy eating, physical activity and sedentary behaviours, and how they view their ability to serve as role models for these behaviours for young children in their care. This is a qualitative study consisting of six focus groups conducted in Spanish with a sample of 44 state-licensed Latino FCCH providers in the state of Massachusetts. Translated transcripts were analysed using thematic analyses to identify meaningful patterns. Analyses revealed that Latino FCCH providers have positive beliefs and attitudes about the importance of healthy eating and physical activity for children in their care, but personally struggle with these same behaviours and with maintaining a healthy weight status. The ability of Latino FCCH providers to model healthy eating and physical activity may be limited by their low self-efficacy in their ability to be physically active, eat a healthy diet and maintain a healthy weight. Interventions designed to improve healthy eating and physical activity behaviours of children enrolled in FCCHs should address providers' own health behaviours as well as their modelling of these health behaviours. Future research can build on the findings of this qualitative study by quantifying Latino FCCH providers' eating and physical activity behaviours, and determining how these behaviours influence behaviours and health outcomes of children in their care. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.
2016-12-01
Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.
NASA Astrophysics Data System (ADS)
Serbin, S.; Shiklomanov, A. N.; Viskari, T.; Desai, A. R.; Townsend, P. A.; Dietze, M.
2015-12-01
Modeling global change requires accurate representation of terrestrial carbon (C), energy and water fluxes. In particular, capturing the properties of vegetation canopies that describe the radiation regime are a key focus for global change research because the properties related to radiation utilization and penetration within plant canopies provide an important constraint on terrestrial ecosystem productivity, as well as the fluxes of water and energy from vegetation to the atmosphere. As such, optical remote sensing observations present an important, and as yet relatively untapped, source of observations that can be used to inform modeling activities. In particular, high-spectral resolution optical data at the leaf and canopy scales offers the potential for an important and direct data constraint on the parameterization and structure of the radiative transfer model (RTM) scheme within ecosystem models across diverse vegetation types, disturbance and management histories. In this presentation we highlight ongoing work to integrate optical remote sensing observations, specifically leaf and imaging spectroscopy (IS) data across a range of forest ecosystems, into complex ecosystem process models within an efficient computational assimilation framework as a means to improve the description of canopy optical properties, vegetation composition, and modeled radiation balance. Our work leverages the Predictive Ecosystem Analyzer (PEcAn; http://www.pecanproject.org/) ecoinformatics toolbox together with a RTM module designed for efficient assimilation of leaf and IS observations to inform vegetation optical properties as well as associated plant traits. Ultimately, an improved understanding of the radiation balance of ecosystems will provide a better constraint on model projections of energy balance, vegetation composition, and carbon pools and fluxes thus allowing for a better diagnosis of the vulnerability of terrestrial ecosystems in response to global change.
Ratmann, Oliver; Andrieu, Christophe; Wiuf, Carsten; Richardson, Sylvia
2009-06-30
Mathematical models are an important tool to explain and comprehend complex phenomena, and unparalleled computational advances enable us to easily explore them without any or little understanding of their global properties. In fact, the likelihood of the data under complex stochastic models is often analytically or numerically intractable in many areas of sciences. This makes it even more important to simultaneously investigate the adequacy of these models-in absolute terms, against the data, rather than relative to the performance of other models-but no such procedure has been formally discussed when the likelihood is intractable. We provide a statistical interpretation to current developments in likelihood-free Bayesian inference that explicitly accounts for discrepancies between the model and the data, termed Approximate Bayesian Computation under model uncertainty (ABCmicro). We augment the likelihood of the data with unknown error terms that correspond to freely chosen checking functions, and provide Monte Carlo strategies for sampling from the associated joint posterior distribution without the need of evaluating the likelihood. We discuss the benefit of incorporating model diagnostics within an ABC framework, and demonstrate how this method diagnoses model mismatch and guides model refinement by contrasting three qualitative models of protein network evolution to the protein interaction datasets of Helicobacter pylori and Treponema pallidum. Our results make a number of model deficiencies explicit, and suggest that the T. pallidum network topology is inconsistent with evolution dominated by link turnover or lateral gene transfer alone.
Goal importance within planned behaviour theory as 'the' predictor of study behaviour in college.
Sideridis, G D; Kaissidis-Rodafinos, A
2001-12-01
The theory of planned behaviour has been rarely used for the explanation of student study behaviour and achievement. Although successful, the theory has been criticised for not including important cognitions, so goal importance was added in the present study. Goal importance refers to the weight-importance an individual assigns towards achieving a specific goal (Hollenbeck & Williams, 1987). The purpose of Study 1 was to explain the study behaviour habits of first year college students, using a) Ajzen and Madden's (1986) theory of planned behaviour, and b) planned behaviour with the addition of goal importance. The purpose of Study 2 was to replicate the findings of Study 1. The sample of Study 1 included 149 first year students of an American College located in northern Greece. Study 2 included 85 first year students of the same institution. The students in Study 1 were given a questionnaire four weeks prior to the end of the spring 1998 semester, and those in Study 2 in the autumn of 1998, including all elements of the theory of planned behaviour and goal importance. The data were modelled using Covariance Structural Modelling (CSM) and EQS 5.7b (Bentler, 1998). The planned behaviour model was not well supported in Study 1 providing a Comparative Fit Index (CFI) of.83. However, when goal importance was included in the equation, the resulting structural model produced a CFI of.94. The final structural model of Study 1 was re-tested with the sample of Study 2 and produced a CFI =.95. Findings suggest that goal importance is the causal agent in directing all elements necessary to achieve high levels of study behaviour. Future studies should examine the role of goal importance with other behaviours as well.
System Dynamics Modeling for Supply Chain Information Sharing
NASA Astrophysics Data System (ADS)
Feng, Yang
In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.
Partially composite particle physics with and without supersymmetry
NASA Astrophysics Data System (ADS)
Kramer, Thomas A.
Theories in which the Standard Model fields are partially compositeness provide elegant and phenomenologically viable solutions to the Hierarchy Problem. In this thesis we will study types of models from two different perspectives. We first derive an effective field theory describing the interactions of the Standard Models fields with their lightest composite partners based on two weakly coupled sectors. Technically, via the AdS/CFT correspondence, our model is dual to a highly deconstructed theory with a single warped extra-dimension. This two sector theory provides a simplified approach to the phenomenology of this important class of theories. We then use this effective field theoretic approach to study models with weak scale accidental supersymmetry. Particularly, we will investigate the possibility that the Standard Model Higgs field is a member of a composite supersymmetric sector interacting weakly with the known Standard Model fields.
NASA Astrophysics Data System (ADS)
Samperton, K. M.; Schoene, B.; Annen, C.
2015-12-01
Insights into the characteristic rates and processes of crustal magmatic systems can best be made through the integration of observational, analytical and modeling perspectives. We present such an approach in reconstructing the emplacement, differentiation and cooling history of the Bergell Intrusion (N Italy/SE Switzerland), a normally-zoned pluton preserving a ~10 km mid-crustal transect. U-Pb zircon, titanite and allanite geo-/thermochronology of Bergell granitoids provide key empirical constraints for informing numerical simulations of pulse-wise, incremental assembly. Protracted zircon crystallization histories, representing the time between magma zircon saturation and cooling to the solidus, provide a direct petrologic link to forward models of magma emplacement, both of which can be used to derive quantitative magmatic cooling rates for the middle crust. Titanite and allanite dates provide additional constraints on the timing of solidification. Geochronology and modeling are performed in the context of detailed field and structural observations, including those previously interpreted as evidence of upward, pluton-scale melt migration via floor convergence/roof ballooning. Combined Bergell data and modeling demonstrate that pulsed assembly can lead to the formation of substantial melt reservoirs in the middle crust: this finding is largely in contrast to similar models of shallow crustal plutons, highlighting the importance of factors such as ambient country rock temperature in affecting melt residence timescales. This work emphasizes the importance of implementing joint data/modeling studies to intrusive rocks across the full range of spatial scales, emplacement levels and tectonic settings observed on Earth.
Integrating multi-scale data to create a virtual physiological mouse heart.
Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P
2013-04-06
While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.
Integrating multi-scale data to create a virtual physiological mouse heart
Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.
2013-01-01
While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525
A Scientific Cognitive-Behavioral Model of Tinnitus: Novel Conceptualizations of Tinnitus Distress
McKenna, Laurence; Handscomb, Lucy; Hoare, Derek J.; Hall, Deborah A.
2014-01-01
The importance of psychological factors in tinnitus distress has been formally recognized for almost three decades. The psychological understanding of why tinnitus can be a distressing condition posits that it becomes problematic when it acquires an emotive significance through cognitive processes. Principle therapeutic efforts are directed at reducing or removing the cognitive (and behavioral) obstacles to habituation. Here, the evidence relevant to a new psychological model of tinnitus is critically reviewed. The model posits that patients’ interpretations of tinnitus and the changes in behavior that result are given a central role in creating and maintaining distress. The importance of selective attention and the possibility that this leads to distorted perception of tinnitus is highlighted. From this body of evidence, we propose a coherent cognitive-behavioral model of tinnitus distress that is more in keeping with contemporary psychological theories of clinical problems (particularly that of insomnia) and which postulates a number of behavioral processes that are seen as cognitively mediated. This new model provides testable hypotheses to guide future research to unravel the complex mechanisms underpinning tinnitus distress. It is also well suited to define individual symptomatology and to provide a framework for the delivery of cognitive-behavioral therapy. PMID:25339938
Lorenz, Anne; Pawar, Vinay; Häussler, Susanne; Weiss, Siegfried
2016-11-01
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models. © 2016 Federation of European Biochemical Societies.
Quantum protocols within Spekkens' toy model
NASA Astrophysics Data System (ADS)
Disilvestro, Leonardo; Markham, Damian
2017-05-01
Quantum mechanics is known to provide significant improvements in information processing tasks when compared to classical models. These advantages range from computational speedups to security improvements. A key question is where these advantages come from. The toy model developed by Spekkens [R. W. Spekkens, Phys. Rev. A 75, 032110 (2007), 10.1103/PhysRevA.75.032110] mimics many of the features of quantum mechanics, such as entanglement and no cloning, regarded as being important in this regard, despite being a local hidden variable theory. In this work, we study several protocols within Spekkens' toy model where we see it can also mimic the advantages and limitations shown in the quantum case. We first provide explicit proofs for the impossibility of toy bit commitment and the existence of a toy error correction protocol and consequent k -threshold secret sharing. Then, defining a toy computational model based on the quantum one-way computer, we prove the existence of blind and verified protocols. Importantly, these two last quantum protocols are known to achieve a better-than-classical security. Our results suggest that such quantum improvements need not arise from any Bell-type nonlocality or contextuality, but rather as a consequence of steering correlations.
Generation of transgenic mouse model using PTTG as an oncogene.
Kakar, Sham S; Kakar, Cohin
2015-01-01
The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.
Li, Pei; Beck, Wayne D.; Callahan, Patrick M.; Terry, Alvin V.; Bartlett, Michael G.
2016-01-01
Background Attention has been paid to cotinine (COT), one of the major metabolites of nicotine (NIC), for its pro-cognitive effects and potential therapeutic activities against Alzheimer's Disease (AD) and other types of cognitive impairment. In order to facilitate pharmacological and toxicological studies on COT for its pro-cognitive activities, we conducted a pharmacokinetic (PK) study of COT in rats, providing important oral and intravenously (IV) PK information. Methods In this study, plasma samples were obtained up to 48 hours after COT was dosed to rats orally and IV at a dose of 3 mg/kg. Plasma samples were prepared and analyzed using a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalytical method, providing concentration profiles of COT and metabolites after oral and IV administrations. Results The data were fitted into a one-compartment model and a two-compartment model for the oral and IV groups, respectively, providing important PK information for COT including PK profiles, half-life, clearance and bioavailability. The results suggested fast absorption, slow elimination and high bioavailability of COT in rats. Conclusions Several important facts about the PK properties in rats suggested COT could be a potential pro-cognitive agent. Information about the pharmacokinetics of COT in rats revealed in this study is of great importance for the future studies on COT or potential COT analogues as agents for improving cognition. PMID:25933960
Comparing geological and statistical approaches for element selection in sediment tracing research
NASA Astrophysics Data System (ADS)
Laceby, J. Patrick; McMahon, Joe; Evrard, Olivier; Olley, Jon
2015-04-01
Elevated suspended sediment loads reduce reservoir capacity and significantly increase the cost of operating water treatment infrastructure, making the management of sediment supply to reservoirs of increasingly importance. Sediment fingerprinting techniques can be used to determine the relative contributions of different sources of sediment accumulating in reservoirs. The objective of this research is to compare geological and statistical approaches to element selection for sediment fingerprinting modelling. Time-integrated samplers (n=45) were used to obtain source samples from four major subcatchments flowing into the Baroon Pocket Dam in South East Queensland, Australia. The geochemistry of potential sources were compared to the geochemistry of sediment cores (n=12) sampled in the reservoir. The geochemical approach selected elements for modelling that provided expected, observed and statistical discrimination between sediment sources. Two statistical approaches selected elements for modelling with the Kruskal-Wallis H-test and Discriminatory Function Analysis (DFA). In particular, two different significance levels (0.05 & 0.35) for the DFA were included to investigate the importance of element selection on modelling results. A distribution model determined the relative contributions of different sources to sediment sampled in the Baroon Pocket Dam. Elemental discrimination was expected between one subcatchment (Obi Obi Creek) and the remaining subcatchments (Lexys, Falls and Bridge Creek). Six major elements were expected to provide discrimination. Of these six, only Fe2O3 and SiO2 provided expected, observed and statistical discrimination. Modelling results with this geological approach indicated 36% (+/- 9%) of sediment sampled in the reservoir cores were from mafic-derived sources and 64% (+/- 9%) were from felsic-derived sources. The geological and the first statistical approach (DFA0.05) differed by only 1% (σ 5%) for 5 out of 6 model groupings with only the Lexys Creek modelling results differing significantly (35%). The statistical model with expanded elemental selection (DFA0.35) differed from the geological model by an average of 30% for all 6 models. Elemental selection for sediment fingerprinting therefore has the potential to impact modeling results. Accordingly is important to incorporate both robust geological and statistical approaches when selecting elements for sediment fingerprinting. For the Baroon Pocket Dam, management should focus on reducing the supply of sediments derived from felsic sources in each of the subcatchments.
Rosaceae Fruit Development, Ripening and Post-harvest: An Epigenetic Perspective
Farinati, Silvia; Rasori, Angela; Varotto, Serena; Bonghi, Claudio
2017-01-01
Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding. PMID:28769956
Noninvasive identification of the total peripheral resistance baroreflex
NASA Technical Reports Server (NTRS)
Mukkamala, Ramakrishna; Toska, Karin; Cohen, Richard J.
2003-01-01
We propose two identification algorithms for quantitating the total peripheral resistance (TPR) baroreflex, an important contributor to short-term arterial blood pressure (ABP) regulation. Each algorithm analyzes beat-to-beat fluctuations in ABP and cardiac output, which may both be obtained noninvasively in humans. For a theoretical evaluation, we applied both algorithms to a realistic cardiovascular model. The results contrasted with only one of the algorithms proving to be reliable. This algorithm was able to track changes in the static gains of both the arterial and cardiopulmonary TPR baroreflex. We then applied both algorithms to a preliminary set of human data and obtained contrasting results much like those obtained from the cardiovascular model, thereby making the theoretical evaluation results more meaningful. This study suggests that, with experimental testing, the reliable identification algorithm may provide a powerful, noninvasive means for quantitating the TPR baroreflex. This study also provides an example of the role that models can play in the development and initial evaluation of algorithms aimed at quantitating important physiological mechanisms.
Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc
NASA Astrophysics Data System (ADS)
Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.
2014-12-01
Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.
Cullings, Harry M
2012-03-01
The Radiation Effects Research Foundation (RERF) uses a dosimetry system to calculate radiation doses received by the Japanese atomic bomb survivors based on their reported location and shielding at the time of exposure. The current system, DS02, completed in 2003, calculates detailed doses to 15 particular organs of the body from neutrons and gamma rays, using new source terms and transport calculations as well as some other improvements in the calculation of terrain and structural shielding, but continues to use methods from an older system, DS86, to account for body self-shielding. Although recent developments in models of the human body from medical imaging, along with contemporary computer speed and software, allow for improvement of the calculated organ doses, before undertaking changes to the organ dose calculations, it is important to evaluate the improvements that can be made and their potential contribution to RERF's research. The analysis provided here suggests that the most important improvements can be made by providing calculations for more organs or tissues and by providing a larger series of age- and sex-specific models of the human body from birth to adulthood, as well as fetal models.
NASA Astrophysics Data System (ADS)
Peck, M. A.
2016-02-01
Gaining a cause-and-effect understanding of climate-driven changes in marine fish populations at appropriate spatial scales is important for providing robust advice for ecosystem-based fisheries management. Coupling long-term, retrospective analyses and 3-d biophysical, individual-based models (IBMs) shows great potential to reveal mechanism underlying historical changes and to project future changes in marine fishes. IBMs created for marine fish early life stages integrate organismal-level physiological responses and climate-driven changes in marine habitats (from ocean physics to lower trophic level productivity) to test and reveal processes affecting marine fish recruitment. Case studies are provided for hindcasts and future (A1 and B2 projection) simulations performed on some of the most ecologically- and commercially-important pelagic and demersal fishes in the North Sea including European anchovy, Atlantic herring, European sprat and Atlantic cod. We discuss the utility of coupling biophysical IBMs to size-spectrum models to better project indirect (trophodynamic) pathways of climate influence on the early life stages of these and other fishes. Opportunities and challenges are discussed regarding the ability of these physiological-based tools to capture climate-driven changes in living marine resources and food web dynamics of shelf seas.
Exercise-Based Oncology Rehabilitation: Leveraging the Cardiac Rehabilitation Model
Dittus, Kim L.; Lakoski, Susan G.; Savage, Patrick D.; Kokinda, Nathan; Toth, Michael; Stevens, Diane; Woods, Kimberly; O’Brien, Patricia; Ades, Philip A.
2014-01-01
PURPOSE The value of exercise and rehabilitative interventions for cancer survivors is increasingly clear and oncology rehabilitation programs could provide these important interventions. However, a pathway to create oncology rehabilitation has not been delineated. Community-based cardiac rehabilitation (CR) programs staffed by health care professionals with experience in providing rehabilitation and secondary prevention services to individuals with coronary heart disease are widely available and provide a potential model and location for oncology rehabilitation programs. Our purpose is to outline the rehabilitative needs of cancer survivors and demonstrate how oncology rehabilitation can be created using a cardiac rehabilitation model. METHODS We identify the impairments associated with cancer and its therapy that respond to rehabilitative interventions. Components of the CR model that would benefit cancer survivors are described. An example of an oncology rehabilitation program using a CR model is presented. RESULTS Cancer survivors have impairments associated with cancer and its therapy that improve with rehabilitation. Our experience demonstrates that effective rehabilitation services can be provided utilizing an existing CR infrastructure. Few adjustments to current cardiac rehabilitation models would be needed to provide oncology rehabilitation. Preliminary evidence suggests that cancer survivors participating in an oncology rehabilitation program experience improvements in psychological and physiologic parameters. CONCLUSIONS Utilizing the CR model of rehabilitative services and disease management provides a much needed mechanism to bring oncology rehabilitation to larger numbers of cancer survivors. PMID:25407596
[Leaders as intermediates between economic incentive models and professional motivation].
Korlén, Sara; Essén, Anna; Lindgren, Peter; Amer-Wåhlin, Isis; von Thiele Schwarz, Ulrica
2018-05-24
The application of economic incentives to providers in health care governance is debated. Advocates argue that it drives efficiency and improvement, opponents claim that it leads to unintended consequences for patients and professionals. Research shows that incentives can increase well-defined activities and targets, but there is a lack of substantial evidence that applications in health care lead to desired outcomes. The motivational literature acknowledges internal sources of motivation as important determinants of behavior, and the literature about professions suggests that professional values of serving patient needs is a key motivator. The management literature identifies the important role of leaders in aligning external demands and rewards to staff preferences, using their own management and leadership skills. Findings in health services research confirm the vital role of leaders for successful implementation and improvement work. In sum, internal motivators and the role of leaders are important to acknowledge also when understanding how economic governance models are put into practice.Our recently published qualitative case study provides empirical examples of how clinical leaders function as intermediaries between a local care choice model, including financial incentives, and the motivation of staff. The strategies deployed by the leaders aimed to align the economic logics of the model to the professional focus on increasing patient value. The main conclusion from these empirical examples, as well as previous research, is that health care managers play a key role in aligning economic incentive models with professional values and in translating such models in to feasible tasks related to the provision of high quality care.
A new face for private providers in developing countries: what implications for public health?
Palmer, Natasha; Mills, Anne; Wadee, Haroon; Gilson, Lucy; Schneider, Helen
2003-01-01
The use of private health care providers in low- and middle-income countries (LMICs) is widespread and is the subject of considerable debate. We review here a new model of private primary care provision emerging in South Africa, in which commercial companies provide standardized primary care services at relatively low cost. The structure and operation of one such company is described, and features of service delivery are compared with the most probable alternatives: a private general practitioner or a public sector clinic. In a case study of cost and quality of services, the clinics were popular with service users and run at a cost per visit comparable to public sector primary care clinics. However, their current role in tackling important public health problems was limited. The implications for public health policy of the emergence of this new model of private provider are discussed. It is argued that encouraging the use of such clinics by those who can afford to pay for them might not help to improve care available for the poorest population groups, which are an important priority for the government. Encouraging such providers to compete for government funding could, however, be desirable if the range of services presently offered, and those able to access them, could be broadened. However, the constraints to implementing such a system successfully are notable, and these are acknowledged. Even without such contractual arrangements, these companies provide an important lesson to the public sector that acceptability of services to users and low-cost service delivery are not incompatible objectives.
A new face for private providers in developing countries: what implications for public health?
Palmer, Natasha; Mills, Anne; Wadee, Haroon; Gilson, Lucy; Schneider, Helen
2003-01-01
The use of private health care providers in low- and middle-income countries (LMICs) is widespread and is the subject of considerable debate. We review here a new model of private primary care provision emerging in South Africa, in which commercial companies provide standardized primary care services at relatively low cost. The structure and operation of one such company is described, and features of service delivery are compared with the most probable alternatives: a private general practitioner or a public sector clinic. In a case study of cost and quality of services, the clinics were popular with service users and run at a cost per visit comparable to public sector primary care clinics. However, their current role in tackling important public health problems was limited. The implications for public health policy of the emergence of this new model of private provider are discussed. It is argued that encouraging the use of such clinics by those who can afford to pay for them might not help to improve care available for the poorest population groups, which are an important priority for the government. Encouraging such providers to compete for government funding could, however, be desirable if the range of services presently offered, and those able to access them, could be broadened. However, the constraints to implementing such a system successfully are notable, and these are acknowledged. Even without such contractual arrangements, these companies provide an important lesson to the public sector that acceptability of services to users and low-cost service delivery are not incompatible objectives. PMID:12764496
A Note About HARP's State Trimming Method
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Hayhurst, Kelly J.; Johnson, Sally C.
1998-01-01
This short note provides some additional insight into how the HARP program works. In some cases, it is possible for HARP to tdm away too many states and obtain an optimistic result. The HARP Version 7.0 manual warns the user that 'Unlike the ALL model, the SAME model can automatically drop failure modes for certain system models. The user is cautioned to insure that no important failure modes are dropped; otherwise, a non-conservative result can be given.' This note provides an example of where this occurs and a pointer to further documentation that gives a means of bounding the error associated with trimming these states.
Embedded-explicit emergent literacy intervention I: Background and description of approach.
Justice, Laura M; Kaderavek, Joan N
2004-07-01
This article, the first of a two-part series, provides background information and a general description of an emergent literacy intervention model for at-risk preschoolers and kindergartners. The embedded-explicit intervention model emphasizes the dual importance of providing young children with socially embedded opportunities for meaningful, naturalistic literacy experiences throughout the day, in addition to regular structured therapeutic interactions that explicitly target critical emergent literacy goals. The role of the speech-language pathologist (SLP) in the embedded-explicit model encompasses both indirect and direct service delivery: The SLP consults and collaborates with teachers and parents to ensure the highest quality and quantity of socially embedded literacy-focused experiences and serves as a direct provider of explicit interventions using structured curricula and/or lesson plans. The goal of this integrated model is to provide comprehensive emergent literacy interventions across a spectrum of early literacy skills to ensure the successful transition of at-risk children from prereaders to readers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Chenn Zhou
2008-10-15
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerfulmore » for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.« less
Early experience with a new model of employer group purchasing in Minnesota.
Christianson, J; Feldman, R; Weiner, J P; Drury, P
1999-01-01
The Buyers Health Care Action Group (BHCAG) in the Twin Cities has implemented a new purchasing initiative that offers employees a choice among care systems with nonoverlapping networks of primary care providers. These systems offer a standardized benefit package, submit annual bids, and are paid on a risk-adjusted basis. Employees are provided with information on quality and other differences among systems, and most have financial incentives to choose lower-cost systems. Generally, providers have responded favorably to direct contracting and to risk-adjusted payments but have concerns about the risk-adjustment mechanism used and, more importantly, the strength of employers' commitment to the purchasing model.
Does Litter Size Variation Affect Models of Terrestrial Carnivore Extinction Risk and Management?
Devenish-Nelson, Eleanor S.; Stephens, Philip A.; Harris, Stephen; Soulsbury, Carl; Richards, Shane A.
2013-01-01
Background Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores. Methodology/Principal Findings We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species – the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used. Conclusion/Significance These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes. PMID:23469140
Does litter size variation affect models of terrestrial carnivore extinction risk and management?
Devenish-Nelson, Eleanor S; Stephens, Philip A; Harris, Stephen; Soulsbury, Carl; Richards, Shane A
2013-01-01
Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores. We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species - the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used. These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes.
Standard Model of Particle Physics--a health physics perspective.
Bevelacqua, J J
2010-11-01
The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.
Emerging In Vitro Liver Technologies for Drug Metabolism and Inter-Organ Interactions
Bale, Shyam Sundhar; Moore, Laura
2016-01-01
In vitro liver models provide essential information for evaluating drug metabolism, metabolite formation, and hepatotoxicity. Interfacing liver models with other organ models could provide insights into the desirable as well as unintended systemic side effects of therapeutic agents and their metabolites. Such information is invaluable for drug screening processes particularly in the context of secondary organ toxicity. While interfacing of liver models with other organ models has been achieved, platforms that effectively provide human-relevant precise information are needed. In this concise review, we discuss the current state-of-the-art of liver-based multiorgan cell culture platforms primarily from a drug and metabolite perspective, and highlight the importance of media-to-cell ratio in interfacing liver models with other organ models. In addition, we briefly discuss issues related to development of optimal liver models that include recent advances in hepatic cell lines, stem cells, and challenges associated with primary hepatocyte-based liver models. Liver-based multiorgan models that achieve physiologically relevant coupling of different organ models can have a broad impact in evaluating drug efficacy and toxicity, as well as mechanistic investigation of human-relevant disease conditions. PMID:27049038
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Harter, T.
2015-12-01
Accurate estimation of groundwater (GW) budgets and effective management of agricultural GW pumping remains a challenge in much of California's Central Valley (CV) due to a lack of irrigation well metering. CVHM and C2VSim are two regional-scale integrated hydrologic models that provide estimates of historical and current CV distributed pumping rates. However, both models estimate GW pumping using conceptually different agricultural water models with uncertainties that have not been adequately investigated. Here, we evaluate differences in distributed agricultural GW pumping and recharge estimates related to important differences in the conceptual framework and model assumptions used to simulate surface water (SW) and GW interaction across the root zone. Differences in the magnitude and timing of GW pumping and recharge were evaluated for a subregion (~1000 mi2) coincident with Yolo County, CA, to provide similar initial and boundary conditions for both models. Synthetic, multi-year datasets of land-use, precipitation, evapotranspiration (ET), and SW deliveries were prescribed for each model to provide realistic end-member scenarios for GW-pumping demand and recharge. Results show differences in the magnitude and timing of GW-pumping demand, deep percolation, and recharge. Discrepancies are related, in large part, to model differences in the estimation of ET requirements and representation of soil-moisture conditions. CVHM partitions ET demand, while C2VSim uses a bulk ET rate, resulting in differences in both crop-water and GW-pumping demand. Additionally, CVHM assumes steady-state soil-moisture conditions, and simulates deep percolation as a function of irrigation inefficiencies, while C2VSim simulates deep percolation as a function of transient soil-moisture storage conditions. These findings show that estimates of GW-pumping demand are sensitive to these important conceptual differences, which can impact conjunctive-use water management decisions in the CV.
[Design of Complex Cavity Structure in Air Route System of Automated Peritoneal Dialysis Machine].
Quan, Xiaoliang
2017-07-30
This paper introduced problems about Automated Peritoneal Dialysis machine(APD) that the lack of technical issues such as the structural design of the complex cavities. To study the flow characteristics of this special structure, the application of ANSYS CFX software is used with k-ε turbulence model as the theoretical basis of fluid mechanics. The numerical simulation of flow field simulation result in the internal model can be gotten after the complex structure model is imported into ANSYS CFX module. Then, it will present the distribution of complex cavities inside the flow field and the flow characteristics parameter, which will provide an important reference design for APD design.
Bromaghin, Jeffrey F.; McDonald, Trent L.; Amstrup, Steven C.
2013-01-01
Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly- Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.
The shifting sands of self: a framework for the experience of self in addiction.
Gray, Mary Tod
2005-04-01
The self is a common yet unclear theme in addiction studies. William James's model of self provides a framework to explore the experience of self. His model details the subjective and objective constituents, the sense of self-continuity through time, and the ephemeral and plural nature of the changing self. This exploration yields insights into the self that can be usefully applied to subjective experiences with psychoactive drugs of addiction. Results of this application add depth to the common understanding of self in addiction, acknowledge the importance of feelings and choice in the sense of self created in addiction experiences, and affirm the values salient to these interior experiences in addiction. These results suggest meaning derived from those values, and provide important background knowledge for the nurse interacting with these clients.
NASA Astrophysics Data System (ADS)
Jones, A. P.
2016-12-01
The role and importance of nanoparticles for interstellar chemistry and beyond is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), focusing on their active surface chemistry, the effects of nitrogen doping and the natural selection of interesting nanoparticle sub-structures. Nanoparticle-driven chemistry, and in particular the role of intrinsic epoxide-type structures, could provide a viable route to the observed gas phase OH in tenuous interstellar clouds en route to becoming molecular clouds. The aromatic-rich moieties present in asphaltenes probably provide a viable model for the structures present within aromatic-rich interstellar carbonaceous grains. The observed doping of such nanoparticle structures with nitrogen, if also prevalent in interstellar dust, could perhaps have important and observable consequences for surface chemistry and the formation of precursor pre-biotic species.
Inference for local autocorrelations in locally stationary models.
Zhao, Zhibiao
2015-04-01
For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.
Integrating advanced practice providers into medical critical care teams.
McCarthy, Christine; O'Rourke, Nancy C; Madison, J Mark
2013-03-01
Because there is increasing demand for critical care providers in the United States, many medical ICUs for adults have begun to integrate nurse practitioners and physician assistants into their medical teams. Studies suggest that such advanced practice providers (APPs), when appropriately trained in acute care, can be highly effective in helping to deliver high-quality medical critical care and can be important elements of teams with multiple providers, including those with medical house staff. One aspect of building an integrated team is a practice model that features appropriate coding and billing of services by all providers. Therefore, it is important to understand an APP's scope of practice, when they are qualified for reimbursement, and how they may appropriately coordinate coding and billing with other team providers. In particular, understanding when and how to appropriately code for critical care services (Current Procedural Terminology [CPT] code 99291, critical care, evaluation and management of the critically ill or critically injured patient, first 30-74 min; CPT code 99292, critical care, each additional 30 min) and procedures is vital for creating a sustainable program. Because APPs will likely play a growing role in medical critical care units in the future, more studies are needed to compare different practice models and to determine the best way to deploy this talent in specific ICU settings.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2014-11-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
Kochendorfer, Logan B; Kerns, Kathryn A
2017-05-01
Relationships with parents and friends are important contexts for developing romantic relationship skills. Parents and friends may influence both the timing of involvement and the quality of romantic relationships. Three models of the joint influence of parents and friends (direct effects model, mediation model, and moderator model) have been proposed. The present study uses data from a longitudinal study (n = 1012; 49.8% female; 81.1% Caucasian) to examine how attachment and friendship quality at age 10 years predict romantic relationship involvement and quality at ages 12 and 15 years. The results supported the direct effects model, with attachment and friendship quality uniquely predicting different romantic relationship outcomes. The findings provide further support for the important influence of family and friends on early romantic relationships.
Characterizing and Assessing a Large-Scale Software Maintenance Organization
NASA Technical Reports Server (NTRS)
Briand, Lionel; Melo, Walcelio; Seaman, Carolyn; Basili, Victor
1995-01-01
One important component of a software process is the organizational context in which the process is enacted. This component is often missing or incomplete in current process modeling approaches. One technique for modeling this perspective is the Actor-Dependency (AD) Model. This paper reports on a case study which used this approach to analyze and assess a large software maintenance organization. Our goal was to identify the approach's strengths and weaknesses while providing practical recommendations for improvement and research directions. The AD model was found to be very useful in capturing the important properties of the organizational context of the maintenance process, and aided in the understanding of the flaws found in this process. However, a number of opportunities for extending and improving the AD model were identified. Among others, there is a need to incorporate quantitative information to complement the qualitative model.
CDF and PDF Comparison Between Humacao, Puerto Rico and Florida
NASA Technical Reports Server (NTRS)
Gonzalez-Rodriguez, Rosana
2004-01-01
The knowledge of the atmospherics phenomenon is an important part in the communication system. The principal factor that contributes to the attenuation in a Ka band communication system is the rain attenuation. We have four years of tropical region observations. The data in the tropical region was taken in Humacao, Puerto Rico. Previous data had been collected at various climate regions such as desserts, template area and sub-tropical regions. Figure 1 shows the ITU-R rain zone map for North America. Rain rates are important to the rain attenuation prediction models. The models that predict attenuation generally are of two different kinds. The first one is the regression models. By using a data set these models provide an idea of the observed attenuation and rain rates distribution in the present, past and future. The second kinds of models are physical models which use the probability density functions (PDF).
Raisch, D W
1990-04-01
The purpose of this literature review is to develop a model of methods to be used to influence prescribing. Four bodies of literature were identified as being important for developing the model: (1) Theoretical prescribing models furnish information concerning factors that affect prescribing and how prescribing decisions are made. (2) Theories of persuasion provide insight into important components of educational communications. (3) Research articles of programs to improve prescribing identify types of programs that have been found to be successful. (4) Theories of human inference describe how judgments are formulated and identify errors in judgment that can play a role in prescribing. This review is presented in two parts. This article reviews prescribing models, theories of persuasion, studies of administrative programs to control prescribing, and sub-optimally designed studies of educational efforts to influence drug prescribing.
What Can the Diffusion Model Tell Us About Prospective Memory?
Horn, Sebastian S.; Bayen, Ute J.; Smith, Rebekah E.
2011-01-01
Cognitive process models, such as Ratcliff’s (1978) diffusion model, are useful tools for examining cost- or interference effects in event-based prospective memory (PM). The diffusion model includes several parameters that provide insight into how and why ongoing-task performance may be affected by a PM task and is ideally suited to analyze performance because both reaction time and accuracy are taken into account. Separate analyses of these measures can easily yield misleading interpretations in cases of speed-accuracy tradeoffs. The diffusion model allows us to measure possible criterion shifts and is thus an important methodological improvement over standard analyses. Performance in an ongoing lexical decision task (Smith, 2003) was analyzed with the diffusion model. The results suggest that criterion shifts play an important role when a PM task is added, but do not fully explain the cost effect on RT. PMID:21443332
Langley's CSI evolutionary model: Phase 2
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Elliott, Kenny B.; Belvin, W. Keith; Teter, John E.
1995-01-01
Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.
Introduction to the use of regression models in epidemiology.
Bender, Ralf
2009-01-01
Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.
A high-level object-oriented model for representing relationships in an electronic medical record.
Dolin, R. H.
1994-01-01
The importance of electronic medical records to improve the quality and cost-effectiveness of medical care continues to be realized. This growing importance has spawned efforts at defining the structure and content of medical data, which is heterogeneous, highly inter-related, and complex. Computer-assisted data modeling tools have greatly facilitated the process of representing medical data, however the complex inter-relationships of medical information can result in data models that are large and cumbersome to manipulate and view. This report presents a high-level object-oriented model for representing the relationships between objects or entities that might exist in an electronic medical record. By defining the relationship between objects at a high level and providing for inheritance, this model enables relating any medical entity to any other medical entity, even though the relationships were not directly specified or known during data model design. PMID:7949981
Annealed Importance Sampling for Neural Mass Models
Penny, Will; Sengupta, Biswa
2016-01-01
Neural Mass Models provide a compact description of the dynamical activity of cell populations in neocortical regions. Moreover, models of regional activity can be connected together into networks, and inferences made about the strength of connections, using M/EEG data and Bayesian inference. To date, however, Bayesian methods have been largely restricted to the Variational Laplace (VL) algorithm which assumes that the posterior distribution is Gaussian and finds model parameters that are only locally optimal. This paper explores the use of Annealed Importance Sampling (AIS) to address these restrictions. We implement AIS using proposals derived from Langevin Monte Carlo (LMC) which uses local gradient and curvature information for efficient exploration of parameter space. In terms of the estimation of Bayes factors, VL and AIS agree about which model is best but report different degrees of belief. Additionally, AIS finds better model parameters and we find evidence of non-Gaussianity in their posterior distribution. PMID:26942606
Finite Element Modeling of In-Situ Stresses near Salt Bodies
NASA Astrophysics Data System (ADS)
Sanz, P.; Gray, G.; Albertz, M.
2011-12-01
The in-situ stress field is modified around salt bodies because salt rock has no ability to sustain shear stresses. A reliable prediction of stresses near salt is important for planning safe and economic drilling programs. A better understanding of in-situ stresses before drilling can be achieved using finite element models that account for the creeping salt behavior and the elastoplastic response of the surrounding sediments. Two different geomechanical modeling techniques can be distinguished: "dynamic" modeling and "static" modeling. "Dynamic" models, also known as forward models, simulate the development of structural processes in geologic time. This technique provides the evolution of stresses and so it is used to simulate the initiation and development of structural features, such as, faults, folds, fractures, and salt diapers. The original or initial configuration and the unknown final configuration of forward models are usually significantly different therefore geometric non-linearities need to be considered. These models may be difficult to constrain when different tectonic, deposition, and erosion events, and the timing among them, needs to be accounted for. While dynamic models provide insight into the stress evolution, in many cases is very challenging, if not impossible, to forward model a configuration to its known present-day geometry; particularly in the case of salt layers that evolve into highly irregular and complex geometries. Alternatively, "static" models use the present-day geometry and present-day far-field stresses to estimate the present-day in-situ stress field inside a domain. In this case, it is appropriate to use a small deformation approach because initial and final configurations should be very similar, and more important, because the equilibrium of stresses should be stated in the present-day initial configuration. The initial stresses and the applied boundary conditions are constrained by the geologic setting and available data. This modeling technique does not predict the evolution of structural elements or stresses with time; therefore it does not provide any insight into the formation of fractures that were previously developed under a different stress condition or the development of overpressure generated by a high sedimentation rate. This work provides a validation for predicting in-situ stresses near salt using "static" models. We compare synthetic examples using both modeling techniques and show that stresses near salt predicted with "static" models are comparable to the ones generated by "dynamic" models.
Thermo-optical Modelling of Laser Matter Interactions in Selective Laser Melting Processes.
NASA Astrophysics Data System (ADS)
Vinnakota, Raj; Genov, Dentcho
Selective laser melting (SLM) is one of the promising advanced manufacturing techniques, which is providing an ideal platform to manufacture components with zero geometric constraints. Coupling the electromagnetic and thermodynamic processes involved in the SLM, and developing the comprehensive theoretical model of the same is of great importance since it can provide significant improvements in the printing processes by revealing the optimal parametric space related to applied laser power, scan velocity, powder material, layer thickness and porosity. Here, we present a self-consistent Thermo-optical model which simultaneously solves the Maxwell's and the heat transfer equations and provides an insight into the electromagnetic energy released in the powder-beds and the concurrent thermodynamics of the particles temperature rise and onset of melting. The numerical calculations are compared with developed analytical model of the SLM process providing insight into the dynamics between laser facilitated Joule heating and radiation mitigated rise in temperature. These results provide guidelines toward improved energy efficiency and optimization of the SLM process scan rates. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.
ERIC Educational Resources Information Center
Hallstrom, Jonas; Gyberg, Per
2011-01-01
The history of technology can play an important role in illuminating the fundamentals of technological change, but it is important that technology teachers, teacher educators, curriculum developers and researchers can be provided with good analytical tools for this purpose. In this article, we propose a model of techno-historical interplay, as a…
Statistical Ensemble of Large Eddy Simulations
NASA Technical Reports Server (NTRS)
Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.
Ferret models of viral pathogenesis.
Enkirch, T; von Messling, V
2015-05-01
Emerging and well-known viral diseases remain one the most important global public health threats. A better understanding of their pathogenesis and mechanisms of transmission requires animal models that accurately reproduce these aspects of the disease. Here we review the role of ferrets as an animal model for the pathogenesis of different respiratory viruses with an emphasis on influenza and paramyxoviruses. We will describe the anatomic and physiologic characteristics that contribute to the natural susceptibility of ferrets to these viruses, and provide an overview of the approaches available to analyze their immune responses. Recent insights gained using this model will be highlighted, including the development of new prophylactic and therapeutic approaches. To provide decision criteria for the use of this animal model, its strengths and limitations will be discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Predictive and Prognostic Models: Implications for Healthcare Decision-Making in a Modern Recession
Vogenberg, F. Randy
2009-01-01
Various modeling tools have been developed to address the lack of standardized processes that incorporate the perspectives of all healthcare stakeholders. Such models can assist in the decision-making process aimed at achieving specific clinical outcomes, as well as guide the allocation of healthcare resources and reduce costs. The current efforts in Congress to change the way healthcare is financed, reimbursed, and delivered have rendered the incorporation of modeling tools into the clinical decision-making all the more important. Prognostic and predictive models are particularly relevant to healthcare, particularly in the clinical decision-making, with implications for payers, patients, and providers. The use of these models is likely to increase, as providers and patients seek to improve their clinical decision process to achieve better outcomes, while reducing overall healthcare costs. PMID:25126292
Growing high quality hardwoods: Plantation trials of mixed hardwood species in Tennessee
Christopher M. Oswalt; Wayne K. Clatterbuck
2011-01-01
Hardwood plantations are becoming increasingly important in the United States. To date, many foresters have relied on a conifer plantation model as the basis of establishing and managing hardwood plantations. The monospecific approach suggested by the conifer plantation model does not appear to provide for the development of quality hardwood logs similar to those found...
Science: Model Curriculum Guide, Kindergarten through Grade Eight.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This guide was developed with the intention of helping teachers and school site administrators in California review the elementary science curriculum and compare it to an idealized model that is presented in the document. Part I of the guide provides a summary of a number of characteristics considered to be important to a strong elementary science…
USDA-ARS?s Scientific Manuscript database
Flash floods are an important component of the semi-arid hydrological cycle, and provide the potential for groundwater recharge as well as posing a dangerous natural hazard. A number of catchment models have been applied to flash flood prediction; however, in general they perform poorly. This study ...
A Working Model of Natural Selection Illustrated by Table Tennis
ERIC Educational Resources Information Center
Dinc, Muhittin; Kilic, Selda; Aladag, Caner
2013-01-01
Natural selection is one of the most important topics in biology and it helps to clarify the variety and complexity of organisms. However, students in almost every stage of education find it difficult to understand the mechanism of natural selection and they can develop misconceptions about it. This article provides an active model of natural…
Beyond the Model: Building an Effective and Dynamic IT Curriculum
ERIC Educational Resources Information Center
Brewer, Jeffrey; Harriger, Alka; Mendonca, John
2006-01-01
A model curriculum, such as that developed by the ACM/SIGITE Curriculum Committee (2005), has two important functions. First, it provides a base structure for newly developing programs that can use it as a platform for articulating a curriculum. Second, it offers an existing curriculum framework that can be used for validation by existing…
The aerodynamics of small Reynolds numbers
NASA Technical Reports Server (NTRS)
Schmitz, F. W.
1980-01-01
Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.
Toward a New Model for Thinking and Planning: The Emerging Context for Life in America.
ERIC Educational Resources Information Center
Banach, William J.; Lorenzo, Albert L.
Intended for use by individuals or groups in initiating strategic thinking and planning, this document provides national data on 21 dimensions of the environmental scanning process grouped into nine categories and presents a model of strategic planning. Following a brief introduction describing the importance of environmental factors in planning,…
E. L. Landguth; S. A. Cushman; M. A. Murphy; G. Luikart
2010-01-01
Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic...
ERIC Educational Resources Information Center
Grable, John E.
2011-01-01
Innovation in doctoral degree program development and delivery provides an effective counterpoint to the expert-apprentice model established in the Middle Ages. The author outlines the importance of innovation in reaching adult learners and describes an innovative hybrid PhD program designed to allow aspiring doctoral adult-age students to pursue…
Using Response Times to Assess Learning Progress: A Joint Model for Responses and Response Times
ERIC Educational Resources Information Center
Wang, Shiyu; Zhang, Susu; Douglas, Jeff; Culpepper, Steven
2018-01-01
Analyzing students' growth remains an important topic in educational research. Most recently, Diagnostic Classification Models (DCMs) have been used to track skill acquisition in a longitudinal fashion, with the purpose to provide an estimate of students' learning trajectories in terms of the change of fine-grained skills overtime. Response time…
Alternative Methods for Assessing Mediation in Multilevel Data: The Advantages of Multilevel SEM
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Zhang, Zhen; Zyphur, Michael J.
2011-01-01
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's…
1988-11-01
264 ANALYSIS RESTART. ............. ..... ....... 269 1.0 TITLE CARD. .............. ............. 271 2.0 CONTROL CARDS...stress soil model will provide a tool for such analysis of waterfront structures. To understand the significance of liquefaction, it is important to note...Implementing this effective stress soil model into a finite element computer program would allow analysis of soil and structure together. TECHNICAL BACKGROUND
ERIC Educational Resources Information Center
Bouis, Stephanie; Reif, Susan; Whetten, Kathryn; Scovil, Janet; Murray, Andrea; Swartz, Marvin
2007-01-01
The challenge of providing effective treatment services for the growing population of HIV-positive individuals who are also dually diagnosed with substance use and mental disorders has only recently been recognized as an important public health concern affecting both HIV treatment and prevention. This article describes a treatment model that was…
Co-Attention Based Neural Network for Source-Dependent Essay Scoring
ERIC Educational Resources Information Center
Zhang, Haoran; Litman, Diane
2018-01-01
This paper presents an investigation of using a co-attention based neural network for source-dependent essay scoring. We use a co-attention mechanism to help the model learn the importance of each part of the essay more accurately. Also, this paper shows that the co-attention based neural network model provides reliable score prediction of…
ERIC Educational Resources Information Center
Reynolds, Cecil R.
1981-01-01
The importance of neuropsychological paradigms of higher order human information processing in providing remedial services to learning-problem children and in providing a guide to the habilitation of learning for all children is explained. The conceptual requirements of such models as well as their implementation are described. (Author/AL)
Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard
2015-01-01
Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.
Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard
2015-01-01
Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments. PMID:26226511
Langenstein, Christoph; Schork, Diana; Badenhoop, Klaus; Herrmann, Eva
2016-12-01
Graves' disease (GD) is an important and prevalent thyroid autoimmune disorder. Standard therapy for GD consists of antithyroid drugs (ATD) with treatment periods of around 12 months but relapse is frequent. Since predictors for relapse are difficult to identify the individual decision making for optimal treatment is often arbitrary. After reviewing the literature on this topic we summarize important factors involved in GD and with respect to their potential for relapse prediction from markers before and after treatment. This information was used to design a mathematical model integrating thyroid hormone parameters, thyroid size, antibody titers and a complex algorithm encompassing genetic predisposition, environmental exposures and current immune activity in order to arrive at a prognostic index for relapse risk after treatment. In the search for a tool to analyze and predict relapse in GD mathematical modeling is a promising approach. In analogy to mathematical modeling approaches in other diseases such as viral infections, we developed a differential equation model on the basis of published clinical trials in patients with GD. Although our model needs further evaluation to be applicable in a clinical context, it provides a perspective for an important contribution to a final statistical prediction model.
On Subsurface Fracture Opening and Closure
NASA Astrophysics Data System (ADS)
Wang, Y.
2016-12-01
Mechanistic understanding of fracture opening and closure in geologic media is of significant importance to nature resource extraction and waste management, such as geothermal energy extraction, oil/gas production, radioactive waste disposal, and carbon sequestration and storage). A dynamic model for subsurface fracture opening and closure has been formulated. The model explicitly accounts for the stress concentration around individual aperture channels and the stress-activated mineral dissolution and precipitation. A preliminary model analysis has demonstrated the importance of the stress-activated dissolution mechanism in the evolution of fracture aperture in a stressed geologic medium. The model provides a reasonable explanation for some key features of fracture opening and closure observed in laboratory experiments, including a spontaneous switch from a net permeability reduction to a net permeability increase with no changes in a limestone fracture experiment.
Perspective: Markov models for long-timescale biomolecular dynamics.
Schwantes, C R; McGibbon, R T; Pande, V S
2014-09-07
Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics.
POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models
Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.
2014-01-01
The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516
TLS from fundamentals to practice
Urzhumtsev, Alexandre; Afonine, Pavel V.; Adams, Paul D.
2014-01-01
The Translation-Libration-Screw-rotation (TLS) model of rigid-body harmonic displacements introduced in crystallography by Schomaker & Trueblood (1968) is now a routine tool in macromolecular studies and is a feature of most modern crystallographic structure refinement packages. In this review we consider a number of simple examples that illustrate important features of the TLS model. Based on these examples simplified formulae are given for several special cases that may occur in structure modeling and refinement. The derivation of general TLS formulae from basic principles is also provided. This manuscript describes the principles of TLS modeling, as well as some select algorithmic details for practical application. An extensive list of applications references as examples of TLS in macromolecular crystallography refinement is provided. PMID:25249713
Representing Learning With Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence, for instance, in diagnosis and expert systems, as a unified qualitative and quantitative framework for representing and reasoning with probabilities and independencies. Their development and use spans several fields including artificial intelligence, decision theory and statistics, and provides an important bridge between these communities. This paper shows by way of example that these models can be extended to machine learning, neural networks and knowledge discovery by representing the notion of a sample on the graphical model. Not only does this allow a flexible variety of learning problems to be represented, it also provides the means for representing the goal of learning and opens the way for the automatic development of learning algorithms from specifications.
NASA Astrophysics Data System (ADS)
Prein, A. F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; Brisson, E.; Kollet, S. J.; Schmidli, J.; Van Lipzig, N. P. M.; Leung, L. R.
2015-12-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. We aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
NASA Astrophysics Data System (ADS)
Vandergoes, Marcus J.; Howarth, Jamie D.; Dunbar, Gavin B.; Turnbull, Jocelyn C.; Roop, Heidi A.; Levy, Richard H.; Li, Xun; Prior, Christine; Norris, Margaret; Keller, Liz D.; Baisden, W. Troy; Ditchburn, Robert; Fitzsimons, Sean J.; Bronk Ramsey, Christopher
2018-05-01
Annually resolved (varved) lake sequences are important palaeoenvironmental archives as they offer a direct incremental dating technique for high-frequency reconstruction of environmental and climate change. Despite the importance of these records, establishing a robust chronology and quantifying its precision and accuracy (estimations of error) remains an essential but challenging component of their development. We outline an approach for building reliable independent chronologies, testing the accuracy of layer counts and integrating all chronological uncertainties to provide quantitative age and error estimates for varved lake sequences. The approach incorporates (1) layer counts and estimates of counting precision; (2) radiometric and biostratigrapic dating techniques to derive independent chronology; and (3) the application of Bayesian age modelling to produce an integrated age model. This approach is applied to a case study of an annually resolved sediment record from Lake Ohau, New Zealand. The most robust age model provides an average error of 72 years across the whole depth range. This represents a fractional uncertainty of ∼5%, higher than the <3% quoted for most published varve records. However, the age model and reported uncertainty represent the best fit between layer counts and independent chronology and the uncertainties account for both layer counting precision and the chronological accuracy of the layer counts. This integrated approach provides a more representative estimate of age uncertainty and therefore represents a statistically more robust chronology.
Prein, Andreas F; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P M; Leung, Ruby
2015-06-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
NASA Astrophysics Data System (ADS)
Prein, Andreas F.; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P. M.; Leung, Ruby
2015-06-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
Patel, Hitesh; Baeza, Juan; Patel, Mitesh; Greene, Linda; Theobald, Nick
2007-01-01
Abstract Objective Genitourinary service providers are struggling to meet patient demand and have introduced changes in access structure to cope. In this study, we explored the perspectives of clients and providers upon the different models of access introduced and whether these maintained service quality using the SERQUAL model. Methods Primary data were collected in May 2005 at two genitourinary medicine clinics, two Accident and Emergency Departments and from members of a university ‘gay’ society all of which were located in London. Forty‐four high‐risk clients and 11 health service providers underwent semi‐structured face‐to‐face interviews. Results Both the walk‐in and appointment‐based access systems were appreciated by clients. Clients said that the most important issue was that they were not turned away when they presented. Health‐care providers had a variety of opinions about the two systems as they had different impacts on morale, training and service provision. Conclusions Service quality can be maintained by using both walk‐in and appointment‐based systems. This is because our data, in line with Parasuraman's model of service quality, showed that ‘access’ is but one determinant of quality. Having different modes of access facilitates patient choice, which is paramount in a modern health‐care system. However, to provide a good service it is important to maintain a motivated staff, who can be affected by their working environment. PMID:17524007
van Meeuwen, Dorine Pd; van Walt Meijer, Quirine J; Simonse, Lianne Wl
2015-03-24
With a growing population of health care clients in the future, the organization of high-quality and cost-effective service providing becomes an increasing challenge. New online eHealth services are proposed as innovative options for the future. Yet, a major barrier to these services appears to be the lack of new business model designs. Although design efforts generally result in visual models, no such artifacts have been found in the literature on business model design. This paper investigates business model design in eHealth service practices from a design perspective. It adopts a research by design approach and seeks to unravel what characteristics of business models determine an online service and what are important value exchanges between health professionals and clients. The objective of the study was to analyze the construction of care models in-depth, framing the essential elements of a business model, and design a new care model that structures these elements for the particular context of an online pre-care service in practice. This research employs a qualitative method of an in-depth case study in which different perspectives on constructing a care model are investigated. Data are collected by using the visual business modeling toolkit, designed to cocreate and visualize the business model. The cocreated models are transcribed and analyzed per actor perspective, transactions, and value attributes. We revealed eight new actors in the business model for providing the service. Essential actors are: the intermediary network coordinator connecting companies, the service dedicated information technology specialists, and the service dedicated health specialist. In the transactions for every service providing we found a certain type of contract, such as a license contract and service contracts for precare services and software products. In addition to the efficiency, quality, and convenience, important value attributes appeared to be: timelines, privacy and credibility, availability, pleasantness, and social interaction. Based on the in-depth insights from the actor perspectives, the business model for online precare services is modeled with a visual design. A new care model of the online precare service is designed and compiled of building blocks for the business model. For the construction of a care model, actors, transactions, and value attributes are essential elements. The design of a care model structures these elements in a visual way. Guided by the business modeling toolkit, the care model design artifact is visualized in the context of an online precare service. Important building blocks include: provision of an online flow of information with regular interactions to the client stimulates self-management of personal health and service-dedicated health expert ensure an increase of the perceived quality of the eHealth service.
2015-01-01
Background With a growing population of health care clients in the future, the organization of high-quality and cost-effective service providing becomes an increasing challenge. New online eHealth services are proposed as innovative options for the future. Yet, a major barrier to these services appears to be the lack of new business model designs. Although design efforts generally result in visual models, no such artifacts have been found in the literature on business model design. This paper investigates business model design in eHealth service practices from a design perspective. It adopts a research by design approach and seeks to unravel what characteristics of business models determine an online service and what are important value exchanges between health professionals and clients. Objective The objective of the study was to analyze the construction of care models in-depth, framing the essential elements of a business model, and design a new care model that structures these elements for the particular context of an online pre-care service in practice. Methods This research employs a qualitative method of an in-depth case study in which different perspectives on constructing a care model are investigated. Data are collected by using the visual business modeling toolkit, designed to cocreate and visualize the business model. The cocreated models are transcribed and analyzed per actor perspective, transactions, and value attributes. Results We revealed eight new actors in the business model for providing the service. Essential actors are: the intermediary network coordinator connecting companies, the service dedicated information technology specialists, and the service dedicated health specialist. In the transactions for every service providing we found a certain type of contract, such as a license contract and service contracts for precare services and software products. In addition to the efficiency, quality, and convenience, important value attributes appeared to be: timelines, privacy and credibility, availability, pleasantness, and social interaction. Based on the in-depth insights from the actor perspectives, the business model for online precare services is modeled with a visual design. A new care model of the online precare service is designed and compiled of building blocks for the business model. Conclusions For the construction of a care model, actors, transactions, and value attributes are essential elements. The design of a care model structures these elements in a visual way. Guided by the business modeling toolkit, the care model design artifact is visualized in the context of an online precare service. Important building blocks include: provision of an online flow of information with regular interactions to the client stimulates self-management of personal health and service-dedicated health expert ensure an increase of the perceived quality of the eHealth service. PMID:25831094
Franco, Natália M; Medeiros, Gabriel F; Silva, Edson A; Murta, Angela S; Machado, Aydano P; Fidalgo, Robson N
2015-01-01
This work presents a Modeling Language and its technological infrastructure to customize the vocabulary of Communication Boards (CB), which are important tools to provide more humanization of health care. Using a technological infrastructure based on Model-Driven Development (MDD) approach, our Modelin Language (ML) creates an abstraction layer between users (e.g., health professionals such as an audiologist or speech therapist) and application code. Moreover, the use of a metamodel enables a syntactic corrector for preventing creation of wrong models. Our ML and metamodel enable more autonomy for health professionals in creating customized CB because it abstracts complexities and permits them to deal only with the domain concepts (e.g., vocabulary and patient needs). Additionally, our infrastructure provides a configuration file that can be used to share and reuse models. This way, the vocabulary modelling effort will decrease our time since people share vocabulary models. Our study provides an infrastructure that aims to abstract the complexity of CB vocabulary customization, giving more autonomy to health professionals when they need customizing, sharing and reusing vocabularies for CB.
Trust Model to Enhance Security and Interoperability of Cloud Environment
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Ping, Lingdi
Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.
Engaging Students In Modeling Instruction for Introductory Physics
NASA Astrophysics Data System (ADS)
Brewe, Eric
2016-05-01
Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.
Primary care providers and medical homes for individuals with spina bifida.
Walker, William O
2008-01-01
The contributions of primary care providers to the successful care of children with spina bifida cannot be underestimated. Overcoming systemic barriers to their integration into a comprehensive care system is essential. By providing routine and disability specific care through the structure of a Medical Home, they are often the first line resource and support for individuals and their families. The Medical Home model encourages primary care providers to facilitate discussions on topics as varied as education and employment. Knowledge of specific medical issues unique to this population allows the primary care provider to complement the efforts of other specialty clinics and providers in often neglected areas such as sexual health, obesity and latex sensitization. As individuals with spina bifida live into adulthood, and access to traditional multidisciplinary care models evolves, these skills will take on increasing importance within the scope of providing comprehensive and coordinated care.
Animal models to study microRNA function
Pal, Arpita S.; Kasinski, Andrea L.
2018-01-01
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research towards identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely towards uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster and D. rerio do not develop cancers, but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating pre-clinical efficacy of microRNA-based cancer therapeutics. PMID:28882225
Importance of dowels in transversal joints in concrete pavements
NASA Astrophysics Data System (ADS)
Grosek, Jiri; Chupik, Vladimir; Stryk, Josef; Brezina, Ilja
2017-09-01
Concrete pavements are designed for heavy loaded road structures. Their usage brings a number of specific issues. It is necessary to solve them all to ensure that concrete pavements will fulfil their function along the whole design period. One of these issues concerns dowels, which are located in transversal joints. Modelling of load, caused by heavy vehicles, with the use of the finite element method, provides valuable information about the stress condition of concrete pavement. The results of modelling can be verified by measurements or experiments in practice. Dowels and tie bars in jointed unreinforced concrete pavements and the importance of their correct placement, dimensions and material quality on pavement behaviour and lifespan were studied as a part of R&D projects of Technology Agency of the Czech Republic Nos. TA02031195 and TE01020168. The paper presents the experience from the modelling and performed experiments and makes conclusions which are important for the use in practice.
Neural network model for automatic traffic incident detection : executive summary.
DOT National Transportation Integrated Search
2001-04-01
Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...
Astrobiological Research on Tardigrades: Implications for Extraterrestrial Life Forms
NASA Astrophysics Data System (ADS)
Horikawa, D. D.
2013-11-01
Tardigrades have been considered as a model for astrobiological studies based on their tolerance to extreme environments. Future research on tardigrades might provide important insight into the possibilities of existence of multicellular life forms.
GENETICS AND POPULATION-LEVEL RISK ASSESSMENT
Genetic variation defines population structure and provides the mechanism for populations to adapt to novel stressors. Despite its fundamental importance in understanding populations, genetic information has been included rarely in models of population dynamics (endangered speci...
Delusions and prediction error: clarifying the roles of behavioural and brain responses
Corlett, Philip Robert; Fletcher, Paul Charles
2015-01-01
Griffiths and colleagues provided a clear and thoughtful review of the prediction error model of delusion formation [Cognitive Neuropsychiatry, 2014 April 4 (Epub ahead of print)]. As well as reviewing the central ideas and concluding that the existing evidence base is broadly supportive of the model, they provide a detailed critique of some of the experiments that we have performed to study it. Though they conclude that the shortcomings that they identify in these experiments do not fundamentally challenge the prediction error model, we nevertheless respond to these criticisms. We begin by providing a more detailed outline of the model itself as there are certain important aspects of it that were not covered in their review. We then respond to their specific criticisms of the empirical evidence. We defend the neuroimaging contrasts that we used to explore this model of psychosis arguing that, while any single contrast entails some ambiguity, our assumptions have been justified by our extensive background work before and since. PMID:25559871
NASA Astrophysics Data System (ADS)
Kulchitsky, A.; Maurits, S.; Watkins, B.
2006-12-01
With the widespread availability of the Internet today, many people can monitor various scientific research activities. It is important to accommodate this interest providing on-line access to dynamic and illustrative Web-resources, which could demonstrate different aspects of ongoing research. It is especially important to explain and these research activities for high school and undergraduate students, thereby providing more information for making decisions concerning their future studies. Such Web resources are also important to clarify scientific research for the general public, in order to achieve better awareness of research progress in various fields. Particularly rewarding is dissemination of information about ongoing projects within Universities and research centers to their local communities. The benefits of this type of scientific outreach are mutual, since development of Web-based automatic systems is prerequisite for many research projects targeting real-time monitoring and/or modeling of natural conditions. Continuous operation of such systems provide ongoing research opportunities for the statistically massive validation of the models, as well. We have developed a Web-based system to run the University of Alaska Fairbanks Polar Ionospheric Model in real-time. This model makes use of networking and computational resources at the Arctic Region Supercomputing Center. This system was designed to be portable among various operating systems and computational resources. Its components can be installed across different computers, separating Web servers and computational engines. The core of the system is a Real-Time Management module (RMM) written Python, which facilitates interactions of remote input data transfers, the ionospheric model runs, MySQL database filling, and PHP scripts for the Web-page preparations. The RMM downloads current geophysical inputs as soon as they become available at different on-line depositories. This information is processed to provide inputs for the next ionospheic model time step and then stored in a MySQL database as the first part of the time-specific record. The RMM then performs synchronization of the input times with the current model time, prepares a decision on initialization for the next model time step, and monitors its execution. Then, as soon as the model completes computations for the next time step, RMM visualizes the current model output into various short-term (about 1-2 hours) forecasting products and compares prior results with available ionospheric measurements. The RMM places prepared images into the MySQL database, which can be located on a different computer node, and then proceeds to the next time interval continuing the time-loop. The upper-level interface of this real-time system is the a PHP-based Web site (http://www.arsc.edu/SpaceWeather/new). This site provides general information about the Earth polar and adjacent mid-latitude ionosphere, allows for monitoring of the current developments and short-term forecasts, and facilitates access to the comparisons archive stored in the database.
NASA Technical Reports Server (NTRS)
Tonkay, Gregory
1990-01-01
The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.
Optimization of the Magnetic Field Homogeneity Area for Solenoid Type Magnets
NASA Astrophysics Data System (ADS)
Perepelkin, Eugene; Polyakova, Rima; Tarelkin, Aleksandr; Kovalenko, Alexander; Sysoev, Pavel; Sadovnikova, Marianne; Yudin, Ivan
2018-02-01
Homogeneous magnetic fields are important requisites in modern physics research. In this paper we discuss the problem of magnetic field homogeneity area maximization for solenoid magnets. We discuss A-model and B-model, which are basic types of solenoid magnets used to provide a homogeneous field, and methods for their optimization. We propose C-model which can be used for the NICA project. We have also carried out a cross-check of the C-model with the parameters stated for the CLEO II detector.
Acoustic Modeling of Lightweight Structures: A Literature Review
NASA Astrophysics Data System (ADS)
Yang, Shasha; Shen, Cheng
2017-10-01
This paper gives an overview of acoustic modeling for three kinds of typical lightweight structures including double-leaf plate system, stiffened single (or double) plate and porous material. Classical models are citied to provide frame work of theoretical modeling for acoustic property of lightweight structures; important research advances derived by our research group and other authors are introduced to describe the current state of art for acoustic research. Finally, remaining problems and future research directions are concluded and prospected briefly
Friggens, Megan M.; Finch, Deborah M.
2015-01-01
Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy’s warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales. PMID:26700871
Friggens, Megan M; Finch, Deborah M
2015-01-01
Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy's warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales.
Animal models on HTLV-1 and related viruses: what did we learn?
Hajj, Hiba El; Nasr, Rihab; Kfoury, Youmna; Dassouki, Zeina; Nasser, Roudaina; Kchour, Ghada; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali
2012-01-01
Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases. PMID:23049525
NASA Astrophysics Data System (ADS)
Klassert, C. J. A.; Yoon, J.; Gawel, E.; Klauer, B.; Sigel, K.; Talozi, S.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Tilmant, A.; Harou, J. J.; Mustafa, D.; Medellin-Azuara, J.; Rajsekhar, D.; Avisse, N.; Zhang, H.
2016-12-01
In arid countries around the world, markets of private small-scale water providers, mostly delivering water via tanker trucks, have emerged to balance the shortcomings of public water supply systems. While these markets can provide substantial contributions to meeting customers' water demands, they often partially rely on illegal water abstractions, thus imposing an unregulated and unmonitored strain on ground and surface water resources. Despite their important impacts on water users' welfare and resource sustainability, these markets are still poorly understood. We use a multi-agent, hydroeconomic simulation model, developed as part of the Jordan Water Project, to investigate the role of these markets in a country-wide case-study of Jordan. Jordan's water sector is characterized by a severe and growing scarcity of water resources, high intermittency in the public water network, and a strongly increasing demand due to an unprecedented refugee crisis. The tanker water market serves an important role in providing water from rural wells to households and commercial enterprises, especially during supply interruptions. In order to overcome the lack of direct data about this partially illegal market, we simulate demand and supply for tanker water. The demand for tanker water is conceptualized as a residual demand, remaining after a water user has depleted all available cheap and qualitatively reliable piped water. It is derived from residential and commercial demand functions on the basis of survey data. Tanker water supply is determined by farm simulation models calculating the groundwater pumping cost and the agricultural opportunity cost of tanker water. A market algorithm is then used to match rural supplies with users' demands, accounting for survey data on tanker operators' transport costs and profit expectations. The model is used to gain insights into the size of the tanker markets in all 89 subdistricts of Jordan and their responsiveness to various policy interventions. A dynamic coupling of the model with a country-wide groundwater model allows for projections of the spatial development of the tanker market over time. Accounting for this important supply source will be essential for the formulation of any policy aiming to reconcile the interests of water users with resource sustainability.
Liu, Nan; D'Aunno, Thomas
2012-04-01
To develop simple stylized models for evaluating the productivity and cost-efficiencies of different practice models to involve nurse practitioners (NPs) in primary care, and in particular to generate insights on what affects the performance of these models and how. The productivity of a practice model is defined as the maximum number of patients that can be accounted for by the model under a given timeliness-to-care requirement; cost-efficiency is measured by the corresponding annual cost per patient in that model. Appropriate queueing analysis is conducted to generate formulas and values for these two performance measures. Model parameters for the analysis are extracted from the previous literature and survey reports. Sensitivity analysis is conducted to investigate the model performance under different scenarios and to verify the robustness of findings. Employing an NP, whose salary is usually lower than a primary care physician, may not be cost-efficient, in particular when the NP's capacity is underutilized. Besides provider service rates, workload allocation among providers is one of the most important determinants for the cost-efficiency of a practice model involving NPs. Capacity pooling among providers could be a helpful strategy to improve efficiency in care delivery. The productivity and cost-efficiency of a practice model depend heavily on how providers organize their work and a variety of other factors related to the practice environment. Queueing theory provides useful tools to take into account these factors in making strategic decisions on staffing and panel size selection for a practice model. © Health Research and Educational Trust.
Sworn testimony of the model evidence: Gaussian Mixture Importance (GAME) sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-07-01
What is the "best" model? The answer to this question lies in part in the eyes of the beholder, nevertheless a good model must blend rigorous theory with redeeming qualities such as parsimony and quality of fit. Model selection is used to make inferences, via weighted averaging, from a set of K candidate models, Mk; k=>(1,…,K>), and help identify which model is most supported by the observed data, Y>˜=>(y˜1,…,y˜n>). Here, we introduce a new and robust estimator of the model evidence, p>(Y>˜|Mk>), which acts as normalizing constant in the denominator of Bayes' theorem and provides a single quantitative measure of relative support for each hypothesis that integrates model accuracy, uncertainty, and complexity. However, p>(Y>˜|Mk>) is analytically intractable for most practical modeling problems. Our method, coined GAussian Mixture importancE (GAME) sampling, uses bridge sampling of a mixture distribution fitted to samples of the posterior model parameter distribution derived from MCMC simulation. We benchmark the accuracy and reliability of GAME sampling by application to a diverse set of multivariate target distributions (up to 100 dimensions) with known values of p>(Y>˜|Mk>) and to hypothesis testing using numerical modeling of the rainfall-runoff transformation of the Leaf River watershed in Mississippi, USA. These case studies demonstrate that GAME sampling provides robust and unbiased estimates of the evidence at a relatively small computational cost outperforming commonly used estimators. The GAME sampler is implemented in the MATLAB package of DREAM and simplifies considerably scientific inquiry through hypothesis testing and model selection.
An agent-based simulation model to study accountable care organizations.
Liu, Pai; Wu, Shinyi
2016-03-01
Creating accountable care organizations (ACOs) has been widely discussed as a strategy to control rapidly rising healthcare costs and improve quality of care; however, building an effective ACO is a complex process involving multiple stakeholders (payers, providers, patients) with their own interests. Also, implementation of an ACO is costly in terms of time and money. Immature design could cause safety hazards. Therefore, there is a need for analytical model-based decision-support tools that can predict the outcomes of different strategies to facilitate ACO design and implementation. In this study, an agent-based simulation model was developed to study ACOs that considers payers, healthcare providers, and patients as agents under the shared saving payment model of care for congestive heart failure (CHF), one of the most expensive causes of sometimes preventable hospitalizations. The agent-based simulation model has identified the critical determinants for the payment model design that can motivate provider behavior changes to achieve maximum financial and quality outcomes of an ACO. The results show nonlinear provider behavior change patterns corresponding to changes in payment model designs. The outcomes vary by providers with different quality or financial priorities, and are most sensitive to the cost-effectiveness of CHF interventions that an ACO implements. This study demonstrates an increasingly important method to construct a healthcare system analytics model that can help inform health policy and healthcare management decisions. The study also points out that the likely success of an ACO is interdependent with payment model design, provider characteristics, and cost and effectiveness of healthcare interventions.
Becker, Betsy Jane; Aloe, Ariel M; Duvendack, Maren; Stanley, T D; Valentine, Jeffrey C; Fretheim, Atle; Tugwell, Peter
2017-09-01
To outline issues of importance to analytic approaches to the synthesis of quasi-experiments (QEs) and to provide a statistical model for use in analysis. We drew on studies of statistics, epidemiology, and social-science methodology to outline methods for synthesis of QE studies. The design and conduct of QEs, effect sizes from QEs, and moderator variables for the analysis of those effect sizes were discussed. Biases, confounding, design complexities, and comparisons across designs offer serious challenges to syntheses of QEs. Key components of meta-analyses of QEs were identified, including the aspects of QE study design to be coded and analyzed. Of utmost importance are the design and statistical controls implemented in the QEs. Such controls and any potential sources of bias and confounding must be modeled in analyses, along with aspects of the interventions and populations studied. Because of such controls, effect sizes from QEs are more complex than those from randomized experiments. A statistical meta-regression model that incorporates important features of the QEs under review was presented. Meta-analyses of QEs provide particular challenges, but thorough coding of intervention characteristics and study methods, along with careful analysis, should allow for sound inferences. Copyright © 2017 Elsevier Inc. All rights reserved.
Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles
2013-01-01
coupled with combustor – Combustor, component for subsonic or supersonic combustion – Nozzle , expands flow for high thrust and may provide lift... supersonic solution method that is used for both the inlet and nozzle components. The supersonic model SAMURI is a substantial improvement over previous models...purely supersonic inviscid flow. As a result, the model is also appropriate for other applications, including the nozzle , which is important 19 Figure
Developments in Coastal Ocean Modeling
NASA Astrophysics Data System (ADS)
Allen, J. S.
2001-12-01
Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.
Validation of Model Forecasts of the Ambient Solar Wind
NASA Technical Reports Server (NTRS)
Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.
2009-01-01
Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.
NASA Astrophysics Data System (ADS)
Raczka, B. M.; Bowling, D. R.; Lin, J. C.; Lee, J. E.; Yang, X.; Duarte, H.; Zuromski, L.
2017-12-01
Forests of the Western United States are prone to drought, temperature extremes, forest fires and insect infestation. These disturbance render carbon stocks and land-atmosphere carbon exchanges highly variable and vulnerable to change. Regional estimates of carbon exchange from terrestrial ecosystem models are challenged, in part, by a lack of net ecosystem exchange observations (e.g. flux towers) due to the complex mountainous terrain. Alternatively, carbon estimates based on light use efficiency models that depend upon remotely-sensed greenness indices are challenged due to a weak relationship with GPP during the winter season. Recent advances in the retrieval of remotely sensed solar induced fluorescence (SIF) have demonstrated a strong seasonal relationship between GPP and SIF for deciduous, grass and, to a lesser extent, conifer species. This provides an important opportunity to use remotely-sensed SIF to calibrate terrestrial ecosystem models providing a more accurate regional representation of biomass and carbon exchange across mountainous terrain. Here we incorporate both leaf-level fluorescence and leaf-to-canopy radiative transfer represented by the SCOPE model into CLM 4.5 (CLM-SIF). We simulate canopy level fluorescence at a sub-alpine forest site (Niwot Ridge, Colorado) and test whether these simulations reproduce remotely-sensed SIF from a satellite (GOME2). We found that the average peak SIF during the growing season (yrs 2007-2013) was similar between the model and satellite observations (within 15%); however, simulated SIF during the winter season was significantly greater than the satellite observations (5x higher). This implies that the fluorescence yield is overestimated by the model during the winter season. It is important that the modeled representation of seasonal fluorescence yield is improved to provide an accurate seasonal representation of SIF across the Western United States.
The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal
Hawkes, Jason E.; Gudjonsson, Johann E.; Ward, Nicole L.
2016-01-01
Since 2009, the imiquimod- or Aldara-induced (3M Pharmaceuticals, St. Paul, MN) model of acute skin inflammation has become the most widely used mouse model in preclinical psoriasis studies. Although this model offers researchers numerous benefits, there are important limitations and possible confounding variables to consider. The imiquimod model requires careful consideration and warrants scrutiny of the data generated by its use. In this perspective, we provide an overview of the advantages and disadvantages of this mouse model and offer suggestions for its use in psoriasis research. PMID:27955901
More-Realistic Digital Modeling of a Human Body
NASA Technical Reports Server (NTRS)
Rogge, Renee
2010-01-01
A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.
Hunt, R.J.; Feinstein, D.T.; Pint, C.D.; Anderson, M.P.
2006-01-01
As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code: (1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model calibration required the use of a 'universal' parameter estimation code in order to include all types of observations in the objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness common to deterministic watershed models. ?? 2005 Elsevier B.V. All rights reserved.
Context-Aware Recommender Systems
NASA Astrophysics Data System (ADS)
Adomavicius, Gediminas; Tuzhilin, Alexander
The importance of contextual information has been recognized by researchers and practitioners in many disciplines, including e-commerce personalization, information retrieval, ubiquitous and mobile computing, data mining, marketing, and management. While a substantial amount of research has already been performed in the area of recommender systems, most existing approaches focus on recommending the most relevant items to users without taking into account any additional contextual information, such as time, location, or the company of other people (e.g., for watching movies or dining out). In this chapter we argue that relevant contextual information does matter in recommender systems and that it is important to take this information into account when providing recommendations. We discuss the general notion of context and how it can be modeled in recommender systems. Furthermore, we introduce three different algorithmic paradigms - contextual prefiltering, post-filtering, and modeling - for incorporating contextual information into the recommendation process, discuss the possibilities of combining several contextaware recommendation techniques into a single unifying approach, and provide a case study of one such combined approach. Finally, we present additional capabilities for context-aware recommenders and discuss important and promising directions for future research.
Linking models and data on vegetation structure
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.
2010-06-01
For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.
NASA Astrophysics Data System (ADS)
Wilson, M. W.; Burbey, T. J.
2017-12-01
Aquifers in fractured crystalline bedrock are located over half of the earth's surface and are vital civil and economic resources particularly in places where ample, safe surface water is not available. With fractured media aquifers providing large percentages of water for municipal, industrial, and agricultural use in many regions of the world. Distinguishing sustainable quantities of extraction is of paramount importance to the continuing viability of these important resources and the communities they serve. The fractured and faulted crystalline-rock aquifer system supporting the community of Ploemeur France has been providing one million cubic meters of water annually, resulting in a modest long-term drawdown of about 15m. To understand the sources and mechanisms of recharge that support this aquifer system, a three-dimensional ABAQUS model was developed using known geologic, water-level and geodetic (tiltmeters and GPS) data to simulate the natural aquifer system that is dominated by a permeable sub-vertical fault and an intersecting semi-horizontal contact zone. The model is used to constrain the poromechanical properties of the fault and contact zones relative to the host crystalline rocks and overlying saprolite by taking advantage of the tilt and seasonal GPS responses caused by municipal pumping along with water-level data for the area. A chief goal in this modeling effort is to assess the sources of recharge to this aquifer system that is atypically productive for a crystalline-rock setting. Preliminary results suggest that the source of water supplying this community is a combination of rapid localized recharge through the saprolite and fault zone and recharge along the contact zone, both from the north (older water) and where it is exposed to the south (younger water). The modeling effort also shows the importance of combining GPS and surface tiltmeter data with water-level measurements for constraining the properties of this complex aquifer system and providing a realistic framework of the recharge and flow characteristics.
Tropical rainforest response to marine sky brightening climate engineering
NASA Astrophysics Data System (ADS)
Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill
2015-04-01
Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.
Silkworm: A Promising Model Organism in Life Science.
Meng, Xu; Zhu, Feifei; Chen, Keping
2017-09-01
As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.
NASA Astrophysics Data System (ADS)
Campbell, Eleanor E.; Paustian, Keith
2015-12-01
Soil organic matter (SOM) is an important natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystem function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. We conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4) SOM dynamics in deep soil layers; and (5) SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions.
Zajac, Zuzanna; Stith, Bradley M.; Bowling, Andrea C.; Langtimm, Catherine A.; Swain, Eric D.
2015-01-01
Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust decisions.
Campbell, Eleanor E.; Paustian, Keith
2015-12-23
It is important to note that Soil organic matter (SOM) is a great natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In our SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystemmore » function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. Finally, we conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4)SOM dynamics in deep soil layers; and (5)SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions.« less
Transcultural nursing: providing culturally congruent care to the Hausa of Northwest Africa.
Chmielarczyk, V
1991-01-01
Research around the world is now beginning to validate the theory of Cultural Care as an important means to provide culturally congruent care to clients, families, and groups of diverse cultures. Knowledge of Leininger's Theory of Cultural Care Diversity and Universality can provide meaningful care to clients who have different traditional and current beliefs and values. The Leininger Sunrise Model can serve as a valuable guide to discover care meanings and practices related to the theory, and to provide practical and meaningful culture specific care decisions and actions by nurses. The three major modes of action, namely, cultural care maintenance or preservation, accommodation or negotiation, and repatterning or restructuring, are important differential means to provide culturally congruent care to clients within their own cultural setting. This article considers the application of such care for the Hausa of Northwest Africa.(ABSTRACT TRUNCATED AT 250 WORDS)
Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.
Ignasiak, Dominika; Dendorfer, Sebastian; Ferguson, Stephen J
2016-04-11
Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R(2)=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neural network model for automatic traffic incident detection : final report, August 2001.
DOT National Transportation Integrated Search
2001-08-01
Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...
ERIC Educational Resources Information Center
Leana-Tascilar, Marilena Z.
2015-01-01
The Actiotope Model of Giftedness (AMG) focuses on person-environment interactions instead of on the personality traits associated with actions. Motivation is a combination of intrinsic and extrinsic forces that are fundamental to the production of actions. Therefore, the resources provided by the environment or person are important for the…
Culturally Aware Agents for Training Environments (CAATE): Phase I Final Report
2009-01-01
attitudes, relationships , personality, personal traits, state, social roles, physical context. The initial set of potentially important cultural... relationships that affect culturally situated behavior. For instance, we will want to be able to model interconnections such as familial... relationships , group membership, and attitudes (e.g., trust, dislike). To accomplish this, our design leverages social network modeling technologies provided by
Measuring the impact of urbanization on scenic quality: land use change in the northeast
Robert O. Brush; James F. Palmer
1979-01-01
The changes in scenic quality resulting from urbanization are explored for a region in the Northeast. The relative contributions to scenic quality of certain landscape features are examined by developing regression models for the region and for town landscapes within that region. The models provide empirical evidence of the importance of trees for maintaining high...
Modeling snag dynamics in northern Arizona mixed-conifer and ponderosa pine forests
Joseph L. Ganey; Scott C. Vojta
2007-01-01
Snags (standing dead trees) are important components of forested habitats that contribute to ecological decay and recycling processes as well as providing habitat for many life forms. As such, snags are of special interest to land managers, but information on dynamics of snag populations is lacking. We modeled trends in snag populations in mixed-conifer and ponderosa...
A Four- and Five-Factor Structural Model for Wechsler Tests: Does It Really Matter Clinically?
ERIC Educational Resources Information Center
Schwartz, David M.
2013-01-01
The purpose of this commentary is to focus on the clinical utility of the four- and five-factor structural models for the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). It provides a discussion of important considerations when evaluating the clinical utility of the…
Using maximum entropy modeling to identify and prioritize red spruce forest habitat in West Virginia
Nathan R. Beane; James S. Rentch; Thomas M. Schuler
2013-01-01
Red spruce forests in West Virginia are found in island-like distributions at high elevations and provide essential habitat for the endangered Cheat Mountain salamander and the recently delisted Virginia northern flying squirrel. Therefore, it is important to identify restoration priorities of red spruce forests. Maximum entropy modeling was used to identify areas of...
North American Observing Systems: An Interagency Group Runs Tests at the NCCS
NASA Technical Reports Server (NTRS)
2002-01-01
Some 250,000 weather reports are collected by the National Weather Service (NWS) every day. Important measurements are taken by satellites, weather balloons, ground weather stations, airplanes, oceangoing ships, and tethered ocean buoys. Local or global weather models rely on these reports to provide the raw data used as initial conditions for the models to produce a weather prediction.
ERIC Educational Resources Information Center
Dickinson, Paul Gordon
2017-01-01
This paper evaluates the effect and potential of a new educational learning model called Peer to Peer (P2P). The study was focused on Laurea, Hyvinkaa's Finland campus and its response to bridging the gap between traditional educational methods and working reality, where modern technology plays an important role. The study describes and evaluates…
Simulation of Electric Propulsion Thrusters (Preprint)
2011-02-07
activity concerns the plumes produced by electric thrusters. Detailed information on the plumes is required for safe integration of the thruster...ground-based laboratory facilities. Device modelling also plays an important role in plume simulations by providing accurate boundary conditions at...methods used to model the flow of gas and plasma through electric propulsion devices. Discussion of the numerical analysis of other aspects of
ERIC Educational Resources Information Center
Stenning, Keith; van Lambalgen, Michiel
2004-01-01
Modern logic provides accounts of both interpretation and derivation which work together to provide abstract frameworks for modelling the sensitivity of human reasoning to task, context and content. Cognitive theories have underplayed the importance of interpretative processes. We illustrate, using Wason's [Q. J. Exp. Psychol. 20 (1968) 273]…
Genetically engineered mouse models and human osteosarcoma
2012-01-01
Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has enabled the development of tractable, highly penetrant murine models of OS. These models share many of the cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous metastasis. The recent development of these models has been a significant advance for efforts to improve our understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically modifiable platform for preclinical evaluation of new therapeutics. PMID:23036272
The Impact of ENSO on Trace Gas Composition in the Upper Troposphere to Lower Stratosphere
NASA Technical Reports Server (NTRS)
Oman, Luke; Douglass, Anne; Ziemke, Jerry; Waugh, Darryn Warwick
2016-01-01
The El Nino-Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical troposphere and its effects extend well into the stratosphere. Its impact on atmospheric dynamics and chemistry cause important changes to trace gas constituent distributions. A comprehensive suite of satellite observations, reanalyses, and chemistry climate model simulations are illuminating our understanding of processes like ENSO. Analyses of more than a decade of observations from NASAs Aura and Aqua satellites, combined with simulations from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) and other Chemistry Climate Modeling Initiative (CCMI) models, and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis have provided key insights into the response of atmospheric composition to ENSO. While we will primarily focus on ozone and water vapor responses in the upper troposphere to lower stratosphere, the effects of ENSO ripple through many important trace gas species throughout the atmosphere. The very large 2015-2016 El Nino event provides an opportunity to closely examine these impacts with unprecedented observational breadth. An improved quantification of natural climate variations, like those from ENSO, is needed to detect and quantify anthropogenic climate changes.
Kranstauber, Bart; Kays, Roland; Lapoint, Scott D; Wikelski, Martin; Safi, Kamran
2012-07-01
1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Yu, J.
1999-01-01
Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.
Buying on margin, selling short in an agent-based market model
NASA Astrophysics Data System (ADS)
Zhang, Ting; Li, Honggang
2013-09-01
Credit trading, or leverage trading, which includes buying on margin and selling short, plays an important role in financial markets, where agents tend to increase their leverages for increased profits. This paper presents an agent-based asset market model to study the effect of the permissive leverage level on traders’ wealth and overall market indicators. In this model, heterogeneous agents can assume fundamental value-converging expectations or trend-persistence expectations, and their effective demands of assets depend both on demand willingness and wealth constraints, where leverage can relieve the wealth constraints to some extent. The asset market price is determined by a market maker, who watches the market excess demand, and is influenced by noise factors. By simulations, we examine market results for different leverage ratios. At the individual level, we focus on how the leverage ratio influences agents’ wealth accumulation. At the market level, we focus on how the leverage ratio influences changes in the asset price, volatility, and trading volume. Qualitatively, our model provides some meaningful results supported by empirical facts. More importantly, we find a continuous phase transition as we increase the leverage threshold, which may provide a further prospective of credit trading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.
2012-06-06
We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bondingmore » interface.« less
NASA Astrophysics Data System (ADS)
Lee, Yu-Cheng; Yen, Tieh-Min; Tsai, Chih-Hung
This study provides an integrated model of Supplier Quality Performance Assesment (SQPA) activity for the semiconductor industry through introducing the ISO 9001 management framework, Importance-Performance Analysis (IPA) Supplier Quality Performance Assesment and Taguchi`s Signal-to-Noise Ratio (S/N) techniques. This integrated model provides a SQPA methodology to create value for all members under mutual cooperation and trust in the supply chain. This method helps organizations build a complete SQPA framework, linking organizational objectives and SQPA activities to optimize rating techniques to promote supplier quality improvement. The techniques used in SQPA activities are easily understood. A case involving a design house is illustrated to show our model.
Sandia National Laboratories analysis code data base
NASA Astrophysics Data System (ADS)
Peterson, C. W.
1994-11-01
Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.
Older driver fitness-to-drive evaluation using naturalistic driving data.
Guo, Feng; Fang, Youjia; Antin, Jonathan F
2015-09-01
As our driving population continues to age, it is becoming increasingly important to find a small set of easily administered fitness metrics that can meaningfully and reliably identify at-risk seniors requiring more in-depth evaluation of their driving skills and weaknesses. Sixty driver assessment metrics related to fitness-to-drive were examined for 20 seniors who were followed for a year using the naturalistic driving paradigm. Principal component analysis and negative binomial regression modeling approaches were used to develop parsimonious models relating the most highly predictive of the driver assessment metrics to the safety-related outcomes observed in the naturalistic driving data. This study provides important confirmation using naturalistic driving methods of the relationship between contrast sensitivity and crash-related events. The results of this study provide crucial information on the continuing journey to identify metrics and protocols that could be applied to determine seniors' fitness to drive. Published by Elsevier Ltd.
Small interstellar molecules and what they tell us
NASA Astrophysics Data System (ADS)
Neufeld, David A.
2018-06-01
Observations at ultraviolet, visible, infrared and radio wavelengths provide a wealth of information about the molecular inventory of the interstellar medium (ISM). Because of the different chemical pathways responsible for their formation and destruction, different molecules probe specific aspects of the interstellar environment. Carefully interpreted with the use of astrochemical models, they provide unique information of general astrophysical importance, yielding estimates of the cosmic ray density, the molecular fraction, the ultraviolet radiation field, and the dissipation of energy within the turbulent ISM. Laboratory experiments and quantum-mechanical calculations are essential both in providing the spectroscopic data needed to identify interstellar molecules and for elucidating the fundamental physical and chemical processes that must be included in astrochemical models.
Improved gap size estimation for scaffolding algorithms.
Sahlin, Kristoffer; Street, Nathaniel; Lundeberg, Joakim; Arvestad, Lars
2012-09-01
One of the important steps of genome assembly is scaffolding, in which contigs are linked using information from read-pairs. Scaffolding provides estimates about the order, relative orientation and distance between contigs. We have found that contig distance estimates are generally strongly biased and based on false assumptions. Since erroneous distance estimates can mislead in subsequent analysis, it is important to provide unbiased estimation of contig distance. In this article, we show that state-of-the-art programs for scaffolding are using an incorrect model of gap size estimation. We discuss why current maximum likelihood estimators are biased and describe what different cases of bias we are facing. Furthermore, we provide a model for the distribution of reads that span a gap and derive the maximum likelihood equation for the gap length. We motivate why this estimate is sound and show empirically that it outperforms gap estimators in popular scaffolding programs. Our results have consequences both for scaffolding software, structural variation detection and for library insert-size estimation as is commonly performed by read aligners. A reference implementation is provided at https://github.com/SciLifeLab/gapest. Supplementary data are availible at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Lindstrøm, Ulf; Smout, Sophie; Howell, Daniel; Bogstad, Bjarte
2009-10-01
The Barents Sea ecosystem, one of the most productive and commercially important ecosystems in the world, has experienced major fluctuations in species abundance the past five decades. Likely causes are natural variability, climate change, overfishing and predator-prey interactions. In this study, we use an age-length structured multi-species model (Gadget, Globally applicable Area-Disaggregated General Ecosystem Toolbox) to analyse the historic population dynamics of major fish and marine mammal species in the Barents Sea. The model was used to examine possible effects of a number of plausible biological and fisheries scenarios. The results suggest that changes in cod mortality from fishing or cod cannibalism levels have the largest effect on the ecosystem, while changes to the capelin fishery have had only minor effects. Alternate whale migration scenarios had only a moderate impact on the modelled ecosystem. Indirect effects are seen to be important, with cod fishing pressure, cod cannibalism and whale predation on cod having an indirect impact on capelin, emphasising the importance of multi-species modelling in understanding and managing ecosystems. Models such as the one presented here provide one step towards an ecosystem-based approach to fisheries management.
Zhang, Hui; Yu, Peng; Ren, Ji-Xia; Li, Xi-Bo; Wang, He-Li; Ding, Lan; Kong, Wei-Bao
2017-12-01
Mitochondrial dysfunction has been considered as an important contributing factor in the etiology of drug-induced organ toxicity, and even plays an important role in the pathogenesis of some diseases. The objective of this investigation was to develop a novel prediction model of drug-induced mitochondrial toxicity by using a naïve Bayes classifier. For comparison, the recursive partitioning classifier prediction model was also constructed. Among these methods, the prediction performance of naïve Bayes classifier established here showed best, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training set and external test set were 95 ± 0.6% and 81 ± 1.1%, respectively. In addition, four important molecular descriptors and some representative substructures of toxicants produced by ECFP_6 fingerprints were identified. We hope the established naïve Bayes prediction model can be employed for the mitochondrial toxicity assessment, and these obtained important information of mitochondrial toxicants can provide guidance for medicinal chemists working in drug discovery and lead optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nurses' and patients' perceptions of privacy protection behaviours and information provision.
Kim, Kyunghee; Han, Yonghee; Kim, Ji-Su
2017-08-01
With increased attention to patient privacy and autonomy, privacy protection and information provision for patients are becoming increasingly important. The aim of this study was to identify and analyse nurses' and patients' perceptions of the importance and performance of protecting patients' privacy and providing them with relevant information. This study is a descriptive cross-sectional investigation. Participants and research context: Participants were 168 patients hospitalised in medical and surgical wards and 176 nurses who cared for them. Ethical consideration: This study was approved by the Chung-Ang University Bioethics Committee, and informed written consent was collected from all participants. Nurses' recognition of the importance of protecting patients' privacy and providing adequate information was higher compared to their actual performance, and the nurses' level of performance was higher in comparison with the patients' recognition of its importance. Although a holistic approach to patient privacy protection and information provision is needed, the medical field has not embraced this model of care. These findings provide empirical data to create an ethical environment for the future, as considerable attention has been devoted to patients' rights and medical institutions' liability for providing explanations to patients.
The role of ocean climate data in operational Naval oceanography
NASA Technical Reports Server (NTRS)
Chesbrough, Radm G.
1992-01-01
Local application of global-scale models describes the U.S. Navy's basic philosophy for operational oceanography in support of fleet operations. Real-time data, climatologies, coupled air/ocean models, and large scale computers are the essential components of the Navy's system for providing the war fighters with the performance predictions and tactical decision aids they need to operate safely and efficiently. In peacetime, these oceanographic predictions are important for safety of navigation and flight. The paucity and uneven distribution of real-time data mean we have to fall back on climatology to provide the basic data to operate our models. The Navy is both a producer and user of climatologies; it provides observations to the national archives and in turn employs data from these archives to establish data bases. Suggestions for future improvements to ocean climate data are offered.
Modeling study of deposition locations in the 291-Z plenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, L.A.; Glissmeyer, J.A.
The TEMPEST (Trent and Eyler 1991) and PART5 computer codes were used to predict the probable locations of particle deposition in the suction-side plenum of the 291-Z building in the 200 Area of the Hanford Site, the exhaust fan building for the 234-5Z, 236-Z, and 232-Z buildings in the 200 Area of the Hanford Site. The Tempest code provided velocity fields for the airflow through the plenum. These velocity fields were then used with TEMPEST to provide modeling of near-floor particle concentrations without particle sticking (100% resuspension). The same velocity fields were also used with PART5 to provide modeling ofmore » particle deposition with sticking (0% resuspension). Some of the parameters whose importance was tested were particle size, point of injection and exhaust fan configuration.« less
Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-07-29
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.
Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-01-01
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946
Ganguly, Debabani; Chen, Jianhan
2011-04-01
Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.
Bayesian accounts of covert selective attention: A tutorial review.
Vincent, Benjamin T
2015-05-01
Decision making and optimal observer models offer an important theoretical approach to the study of covert selective attention. While their probabilistic formulation allows quantitative comparison to human performance, the models can be complex and their insights are not always immediately apparent. Part 1 establishes the theoretical appeal of the Bayesian approach, and introduces the way in which probabilistic approaches can be applied to covert search paradigms. Part 2 presents novel formulations of Bayesian models of 4 important covert attention paradigms, illustrating optimal observer predictions over a range of experimental manipulations. Graphical model notation is used to present models in an accessible way and Supplementary Code is provided to help bridge the gap between model theory and practical implementation. Part 3 reviews a large body of empirical and modelling evidence showing that many experimental phenomena in the domain of covert selective attention are a set of by-products. These effects emerge as the result of observers conducting Bayesian inference with noisy sensory observations, prior expectations, and knowledge of the generative structure of the stimulus environment.
NASA Astrophysics Data System (ADS)
Hogan, J.; Fenstermacher, M.; Groth, M.; West, P.; Coster, D.; Thomas, P.
2003-10-01
Better understanding of carbon production and eventual pathways is an important need for ITER. ELM events can provide a significant carbon source, and small scale experiments predict significant dependence of C production rates on incident deuterium flux and surface temperature, quantities which change significantly during an ELM event. Thus, development of better quantitative models has been hampered by lack of sufficient time resolution during ELMs. Recent progress on DIII-D has significantly improved the spectroscopic resolution [1, 2]. Measured CIII evolution during low- and high-density DIII-D LSN ELMy H-modes (type I and type I-III, respectively) has been compared with modeling using the solps5.0/Eirene99 coupled edge code, and the CASTEM- 2000 3-D, time dependent thermal analysis code. The latter provides time-resolved absolute surface temperature distributions for the cases described in [2]. Comparison with observations using the Roth et al annealing model for chemical sputtering finds qualitative agreement. However, the transition in ELM type/frequency as density increases is the most important factor, and this is an input to the calculation given the present state of first principles ELM models. [1] M Fenstermacher et al EPS2003 [2] M Groth et al J Nucl Mater 2003
Matriarchal model for cardiovascular prevention.
Wild, R A; Taylor, E L; Knehans, A; Cleaver, V
1994-02-01
Family patterns of cardiovascular risk behavior are well documented. Significant correlation exists between spouse-spouse, parent-child, and sibling-sibling for cholesterol, high- and low-density lipoprotein, diet, physical activity, and smoking. Family/environmental influences are important in how/if risk and/or preventive behavior is learned. The family matriarch commonly functions as gatekeeper, controlling eating behavior, access to health care, and other patterns. She often acts as menu planner, shopper, and preparer of meals for all family members. She provides information and verbal reinforcement about food and is a powerful model concerning dietary practices. In fact, the mother, as head of household in most single-parent families, may be the only adult model for many children. Because relevance and credibility are the most important characteristics of a behavioral model, parents (especially mothers) are strong models for observational learning by children. Risk factor information and risk reduction activities adopted by the matriarch can be generalized to the entire family if she learns the skills to act as a change agent. Initiation of this process of education and training the matriarch lies with primary care providers for women (Ob-Gyns see most women). By teaching risk reduction to the matriarch as a component of primary care, physician interaction can have a rippling effect.
Mather, Jennie Powell
2012-02-01
The current resurgence of interest in the cancer stem cell (CSC) hypothesis as possibly providing a unifying theory of cancer biology is fueled by the growing body of work on normal adult tissue stem cells and the promise that CSC may hold the key to one of the central problems of clinical oncology: tumor recurrence. Many studies suggest that the microenvironment plays a role, perhaps a seminal one, in cancer development and progression. In addition, the possibility that the stem cell-like component of tumors is capable of rapid and reversible changes of phenotype raises questions concerning studies with these populations and the application of what we learn to the clinical situation. These types of questions are extremely difficult to study using in vivo models or freshly isolated cells. Established cell lines grown in defined conditions provide important model systems for these studies. There are three types of in vitro models for CSCs: (a) selected subpopulations of existing tumor lines (derived from serum-containing medium; (b) creation of lines from tumor or normal cells by genetic manipulation; or (c) direct in vitro selection of CSC from tumors or sorted tumor cells using defined serum-free conditions. We review the problems associated with creating and maintaining in vitro cultures of CSCs and the progress to date on the establishment of these important models. Copyright © 2011 AlphaMed Press.
NASA Astrophysics Data System (ADS)
Aneri, Parikh; Sumathy, S.
2017-11-01
Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.
Marsh, Erin E.; Anderson, Eric D.
2011-01-01
Nickel-cobalt (Ni-Co) laterite deposits are an important source of nickel (Ni). Currently, there is a decline in magmatic Ni-bearing sulfide lode deposit resources. New efforts to develop an alternative source of Ni, particularly with improved metallurgy processes, make the Ni-Co laterites an important exploration target in anticipation of the future demand for Ni. This deposit model provides a general description of the geology and mineralogy of Ni-Co laterite deposits, and contains discussion of the influences of climate, geomorphology (relief), drainage, tectonism, structure, and protolith on the development of favorable weathering profiles. This model of Ni-Co laterite deposits represents part of the U.S. Geological Survey Mineral Resources Program's effort to update the existing models to be used for an upcoming national mineral resource assessment.
A model for bacterial colonization of sinking aggregates.
Bearon, R N
2007-01-01
Sinking aggregates provide important nutrient-rich environments for marine bacteria. Quantifying the rate at which motile bacteria colonize such aggregations is important in understanding the microbial loop in the pelagic food web. In this paper, a simple analytical model is presented to predict the rate at which bacteria undergoing a random walk encounter a sinking aggregate. The model incorporates the flow field generated by the sinking aggregate, the swimming behavior of the bacteria, and the interaction of the flow with the swimming behavior. An expression for the encounter rate is computed in the limit of large Péclet number when the random walk can be approximated by a diffusion process. Comparison with an individual-based numerical simulation is also given.
Infrared radiation models for atmospheric methane
NASA Technical Reports Server (NTRS)
Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.
1986-01-01
Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.
Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section
NASA Technical Reports Server (NTRS)
Taflove, Allen; Umashankar, Korada R.
1989-01-01
Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.
Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I
2002-10-17
Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.
An assessment of a conical horn waveguide to represent the human eardrum
NASA Astrophysics Data System (ADS)
Fields, Taylor N.; Schnetzer, Lucia; Brister, Eileen; Yates, Charles W.; Withnell, Robert H.
2018-05-01
This study examined a model of the acoustic input impedance of the ear that includes a waveguide model of the eardrum. The eardrum was modeled as a lossless conical-horn with rigid walls. The ear canal was modeled as a one-dimensional lossy transmission line. The output impedance of the eardrum, the middle ear, and the cochlea, was modeled as a circuit analog. The model was fit to acoustic input impedance data from human ears using a nonlinear least-squares fit. The impact of a conical-horn shape for the eardrum was quantified by comparison with the eardrum modeled as a near-flat surface. The model provided a good match to the data over the frequency range examined. A conical-horn model of the human eardrum provided gain at high frequencies, most notably above 1–2 kHz, with a broader middle-ear frequency response. This finding may suggest that eardrum shape plays an important role in sound transmission to the cochlea.
Terrestrial Planet Finder Coronagraph Optical Modeling
NASA Technical Reports Server (NTRS)
Basinger, Scott A.; Redding, David C.
2004-01-01
The Terrestrial Planet Finder Coronagraph will rely heavily on modeling and analysis throughout its mission lifecycle. Optical modeling is especially important, since the tolerances on the optics as well as scattered light suppression are critical for the mission's success. The high contrast imaging necessary to observe a planet orbiting a distant star requires new and innovative technologies to be developed and tested, and detailed optical modeling provides predictions for evaluating design decisions. It also provides a means to develop and test algorithms designed to actively suppress scattered light via deformable mirrors and other techniques. The optical models are used in conjunction with structural and thermal models to create fully integrated optical/structural/thermal models that are used to evaluate dynamic effects of disturbances on the overall performance of the coronagraph. The optical models we have developed have been verified on the High Contrast Imaging Testbed. Results of the optical modeling verification and the methods used to perform full three-dimensional near-field diffraction analysis are presented.
Designing automation for human use: empirical studies and quantitative models.
Parasuraman, R
2000-07-01
An emerging knowledge base of human performance research can provide guidelines for designing automation that can be used effectively by human operators of complex systems. Which functions should be automated and to what extent in a given system? A model for types and levels of automation that provides a framework and an objective basis for making such choices is described. The human performance consequences of particular types and levels of automation constitute primary evaluative criteria for automation design when using the model. Four human performance areas are considered--mental workload, situation awareness, complacency and skill degradation. Secondary evaluative criteria include such factors as automation reliability, the risks of decision/action consequences and the ease of systems integration. In addition to this qualitative approach, quantitative models can inform design. Several computational and formal models of human interaction with automation that have been proposed by various researchers are reviewed. An important future research need is the integration of qualitative and quantitative approaches. Application of these models provides an objective basis for designing automation for effective human use.
NASA Astrophysics Data System (ADS)
Guenther, A. B.; Duhl, T.
2011-12-01
Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.
A Web-Based System for Bayesian Benchmark Dose Estimation.
Shao, Kan; Shapiro, Andrew J
2018-01-11
Benchmark dose (BMD) modeling is an important step in human health risk assessment and is used as the default approach to identify the point of departure for risk assessment. A probabilistic framework for dose-response assessment has been proposed and advocated by various institutions and organizations; therefore, a reliable tool is needed to provide distributional estimates for BMD and other important quantities in dose-response assessment. We developed an online system for Bayesian BMD (BBMD) estimation and compared results from this software with U.S. Environmental Protection Agency's (EPA's) Benchmark Dose Software (BMDS). The system is built on a Bayesian framework featuring the application of Markov chain Monte Carlo (MCMC) sampling for model parameter estimation and BMD calculation, which makes the BBMD system fundamentally different from the currently prevailing BMD software packages. In addition to estimating the traditional BMDs for dichotomous and continuous data, the developed system is also capable of computing model-averaged BMD estimates. A total of 518 dichotomous and 108 continuous data sets extracted from the U.S. EPA's Integrated Risk Information System (IRIS) database (and similar databases) were used as testing data to compare the estimates from the BBMD and BMDS programs. The results suggest that the BBMD system may outperform the BMDS program in a number of aspects, including fewer failed BMD and BMDL calculations and estimates. The BBMD system is a useful alternative tool for estimating BMD with additional functionalities for BMD analysis based on most recent research. Most importantly, the BBMD has the potential to incorporate prior information to make dose-response modeling more reliable and can provide distributional estimates for important quantities in dose-response assessment, which greatly facilitates the current trend for probabilistic risk assessment. https://doi.org/10.1289/EHP1289.
Guziolowski, Carito; Videla, Santiago; Eduati, Federica; Thiele, Sven; Cokelaer, Thomas; Siegel, Anne; Saez-Rodriguez, Julio
2013-09-15
Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and generate reliable predictions. We propose the use of Answer Set Programming to explore exhaustively the space of feasible logic models. Toward this end, we have developed caspo, an open-source Python package that provides a powerful platform to learn and characterize logic models by leveraging the rich modeling language and solving technologies of Answer Set Programming. We illustrate the usefulness of caspo by revisiting a model of pro-growth and inflammatory pathways in liver cells. We show that, if experimental error is taken into account, there are thousands (11 700) of models compatible with the data. Despite the large number, we can extract structural features from the models, such as links that are always (or never) present or modules that appear in a mutual exclusive fashion. To further characterize this family of models, we investigate the input-output behavior of the models. We find 91 behaviors across the 11 700 models and we suggest new experiments to discriminate among them. Our results underscore the importance of characterizing in a global and exhaustive manner the family of feasible models, with important implications for experimental design. caspo is freely available for download (license GPLv3) and as a web service at http://caspo.genouest.org/. Supplementary materials are available at Bioinformatics online. santiago.videla@irisa.fr.
Guziolowski, Carito; Videla, Santiago; Eduati, Federica; Thiele, Sven; Cokelaer, Thomas; Siegel, Anne; Saez-Rodriguez, Julio
2013-01-01
Motivation: Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and generate reliable predictions. Results: We propose the use of Answer Set Programming to explore exhaustively the space of feasible logic models. Toward this end, we have developed caspo, an open-source Python package that provides a powerful platform to learn and characterize logic models by leveraging the rich modeling language and solving technologies of Answer Set Programming. We illustrate the usefulness of caspo by revisiting a model of pro-growth and inflammatory pathways in liver cells. We show that, if experimental error is taken into account, there are thousands (11 700) of models compatible with the data. Despite the large number, we can extract structural features from the models, such as links that are always (or never) present or modules that appear in a mutual exclusive fashion. To further characterize this family of models, we investigate the input–output behavior of the models. We find 91 behaviors across the 11 700 models and we suggest new experiments to discriminate among them. Our results underscore the importance of characterizing in a global and exhaustive manner the family of feasible models, with important implications for experimental design. Availability: caspo is freely available for download (license GPLv3) and as a web service at http://caspo.genouest.org/. Supplementary information: Supplementary materials are available at Bioinformatics online. Contact: santiago.videla@irisa.fr PMID:23853063
Rutter, Carolyn M; Knudsen, Amy B; Marsh, Tracey L; Doria-Rose, V Paul; Johnson, Eric; Pabiniak, Chester; Kuntz, Karen M; van Ballegooijen, Marjolein; Zauber, Ann G; Lansdorp-Vogelaar, Iris
2016-07-01
Microsimulation models synthesize evidence about disease processes and interventions, providing a method for predicting long-term benefits and harms of prevention, screening, and treatment strategies. Because models often require assumptions about unobservable processes, assessing a model's predictive accuracy is important. We validated 3 colorectal cancer (CRC) microsimulation models against outcomes from the United Kingdom Flexible Sigmoidoscopy Screening (UKFSS) Trial, a randomized controlled trial that examined the effectiveness of one-time flexible sigmoidoscopy screening to reduce CRC mortality. The models incorporate different assumptions about the time from adenoma initiation to development of preclinical and symptomatic CRC. Analyses compare model predictions to study estimates across a range of outcomes to provide insight into the accuracy of model assumptions. All 3 models accurately predicted the relative reduction in CRC mortality 10 years after screening (predicted hazard ratios, with 95% percentile intervals: 0.56 [0.44, 0.71], 0.63 [0.51, 0.75], 0.68 [0.53, 0.83]; estimated with 95% confidence interval: 0.56 [0.45, 0.69]). Two models with longer average preclinical duration accurately predicted the relative reduction in 10-year CRC incidence. Two models with longer mean sojourn time accurately predicted the number of screen-detected cancers. All 3 models predicted too many proximal adenomas among patients referred to colonoscopy. Model accuracy can only be established through external validation. Analyses such as these are therefore essential for any decision model. Results supported the assumptions that the average time from adenoma initiation to development of preclinical cancer is long (up to 25 years), and mean sojourn time is close to 4 years, suggesting the window for early detection and intervention by screening is relatively long. Variation in dwell time remains uncertain and could have important clinical and policy implications. © The Author(s) 2016.
The Python Project: A Unique Model for Extending Research Opportunities to Undergraduate Students
Harvey, Pamela A.; Wall, Christopher; Luckey, Stephen W.; Langer, Stephen
2014-01-01
Undergraduate science education curricula are traditionally composed of didactic instruction with a small number of laboratory courses that provide introductory training in research techniques. Research on learning methodologies suggests this model is relatively ineffective, whereas participation in independent research projects promotes enhanced knowledge acquisition and improves retention of students in science. However, availability of faculty mentors and limited departmental budgets prevent the majority of students from participating in research. A need therefore exists for this important component in undergraduate education in both small and large university settings. A course was designed to provide students with the opportunity to engage in a research project in a classroom setting. Importantly, the course collaborates with a sponsor's laboratory, producing a symbiotic relationship between the classroom and the laboratory and an evolving course curriculum. Students conduct a novel gene expression study, with their collective data being relevant to the ongoing research project in the sponsor's lab. The success of this course was assessed based on the quality of the data produced by the students, student perception data, student learning gains, and on whether the course promoted interest in and preparation for careers in science. In this paper, we describe the strategies and outcomes of this course, which represents a model for efficiently providing research opportunities to undergraduates. PMID:25452492
Kail, Ben Lennox; Taylor, Miles G
2014-09-01
To test different forms of private insurance coverage as mediators for racial disparities in onset, persistent level, and acceleration of functional limitations among Medicare age-eligible Americans. Data come from 7 waves of the Health and Retirement Study (1996-2008). Onset and progression latent growth models were used to estimate racial differences in onset, level, and growth of functional limitations among a sample of 5,755 people aged 65 and older in 1996. Employer-provided insurance, spousal insurance, and market insurance were next added to the model to test how differences in private insurance mediated the racial gap in physical limitations. In baseline models, African Americans had larger persistent level of limitations over time. Although employer-provided, spousal provided, and market insurances were directly associated with lower persistent levels of limitation, only differences in market insurance accounted for the racial disparities in persistent level of limitations. Results suggest private insurance is important for reducing functional limitations, but market insurance is an important mediator of the persistently larger level of limitations observed among African Americans. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mid-infrared Integrated-light Photometry Of LMC Star Clusters
NASA Astrophysics Data System (ADS)
Pessev, Peter; Goudfrooij, P.; Puzia, T.; Chandar, R.
2008-03-01
Massive star clusters (Galactic Globular Clusters and Populous Clusters in the Magellanic Clouds) are the best available approximation of Simple Stellar Populations (SSPs). Since the stellar populations in these nearby objects are studied in details, they provide fundamental age/metallicity templates for interpretation of the galaxy properties, testing and calibration of the SSP Models. Magellanic Cloud clusters are particularly important since they populate a region of the age/metallicity parameter space that is not easily accessible in our Galaxy. We present the first Mid-IR integrated-light measurements for six LMC clusters based on our Spitzer IRAC imaging program. Since we are targeting a specific group of intermediate-age clusters, our imaging goes deeper compared to SAGE-LMC survey data. We present a literature compilation of clusters' properties along with multi-wavelength integrated light photometry database spanning from the optical (Johnson U band) to the Mid-IR (IRAC Channel 4). This data provides an important empirical baseline for the interpretation of galaxy colors in the Mid-IR (especially high-z objects whose integrated-light is dominated by TP-AGB stars emission). It is also a valuable tool to check the SSP model predictions in the intermediate-age regime and provides calibration data for the next generation of SSP models.
Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A
2017-01-01
Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2015-04-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
(F)UV Spectral Analysis of Hot, Hydrogen-Rich Central Stars of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.
2010-11-01
Metal abundances of CSPNe are not well known although they provide important constraints on AGB nucleosynthesis. We aim to determine metal abundances of two hot, hydrogen-rich CSPNe (namely of A35 and NGC3587, the latter also known as M97 or the Owl Nebula) and to derive Teff and log g precisely from high-resolution, high-S/N (far-) ultraviolet observations obtained with FUSE and HST/STIS. For this purpose, we utilize NLTE model atmospheres calculated with TMAP, the Tübingen Model Atmosphere Package. Due to strong line absorption of the ISM, simultaneous modeling of interstellar features has become a standard tool in our analyses. We present preliminary results, demonstrating the importance of combining stellar and interstellar models, in order to clearly identify and measure the strengths of strategic photospheric lines.
NASA Astrophysics Data System (ADS)
Varela-González, M.; Riveiro, B.; Arias-Sánchez, P.; González-Jorge, H.; Martínez-Sánchez, J.
2014-11-01
The rapid evolution of integral schemes, accounting for geometric and semantic data, has been importantly motivated by the advances in the last decade in mobile laser scanning technology; automation in data processing has also recently influenced the expansion of the new model concepts. This paper reviews some important issues involved in the new paradigms of city 3D modelling: an interoperable schema for city 3D modelling (cityGML) and mobile mapping technology to provide the features that composing the city model. This paper focuses in traffic signs, discussing their characterization using cityGML in order to ease the implementation of LiDAR technology in road management software, as well as analysing some limitations of the current technology in the labour of automatic detection and classification.
Review on the structural approach of the Black-Scholes model
NASA Astrophysics Data System (ADS)
Saad, Shakila; Jaffar, Maheran Mohd
2015-05-01
Black-Scholes model developed in 1973 has become one of the important concepts in modern financial theory. This model is regarded as one of the best ways in determining fair prices of the options. Many studies have been done to improve the performance of the Black-Scholes model since this model is built with few limitations. Thus, the objective of this review paper is to discuss on the Black-Scholes model. The aim of this review paper is to present the derivation of Black-Scholes, Merton and KMV-Merton models. Besides, it provides a literature review on the modifications done by the researchers on the Black-Scholes model.
The oral case presentation: toward a performance-based rhetorical model for teaching and learning.
Chan, Mei Yuit
2015-01-01
The oral case presentation is an important communicative activity in the teaching and assessment of students. Despite its importance, not much attention has been paid to providing support for teachers to teach this difficult task to medical students who are novices to this form of communication. As a formalized piece of talk that takes a regularized form and used for a specific communicative goal, the case presentation is regarded as a rhetorical activity and awareness of its rhetorical and linguistic characteristics should be given due consideration in teaching. This paper reviews practitioners' and the limited research literature that relates to expectations of medical educators about what makes a good case presentation, and explains the rhetorical aspect of the activity. It is found there is currently a lack of a comprehensive model of the case presentation that projects the rhetorical and linguistic skills needed to produce and deliver a good presentation. Attempts to describe the structure of the case presentation have used predominantly opinion-based methodologies. In this paper, I argue for a performance-based model that would not only allow a description of the rhetorical structure of the oral case presentation, but also enable a systematic examination of the tacit genre knowledge that differentiates the expert from the novice. Such a model will be a useful resource for medical educators to provide more structured feedback and teaching support to medical students in learning this important genre.
An empirical perspective for understanding climate change impacts in Switzerland
Henne, Paul; Bigalke, Moritz; Büntgen, Ulf; Colombaroli, Daniele; Conedera, Marco; Feller, Urs; Frank, David; Fuhrer, Jürg; Grosjean, Martin; Heiri, Oliver; Luterbacher, Jürg; Mestrot, Adrien; Rigling, Andreas; Rössler, Ole; Rohr, Christian; Rutishauser, This; Schwikowski, Margit; Stampfli, Andreas; Szidat, Sönke; Theurillat, Jean-Paul; Weingartner, Rolf; Wilcke, Wolfgan; Tinner, Willy
2018-01-01
Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.
Alexander, Marcalee Sipski; Marson, Lesley
2018-01-01
Preclinical research in animal models is important for understanding the neural pathways and pathophysiology underlying changes in sexual function after SCI. In vivo animal models, primarily rodents, have provided valuable information on the central pathways regulating sexual arousal and orgasm; however, further research is required in females and preclinical modeling of SCI that can be better translated to men and women. Translation of the autonomic and somatic regulation of sexual responses from preclinical models through clinical research correlates well with respect to the peripheral-spinal systems involved. However, due to the nature of sexual responses, parallel studies are necessary in animals and humans. Human studies of individuals with SCIs have provided information about the neurologic control of arousal and orgasm. Psychogenic arousal is related to the preservation of sensation at T11-L2 whereas orgasm requires the presence of an intact sacral reflex arc. Studies point to evidence of a spinal pattern generator at L3-5. Because of the exact nature of SCIs, further research using neuroimaging will be beneficial, not only to elucidate the neurological control of sexual responses after SCI, but also in able-bodied individuals. Understanding and ameliorating the effects of SCI on sexual function is important to the well-being and quality of life of individuals with SCIs and their partners, thus future research should focus more on this important topic. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mahura, Alexander; Amstrup, Bjarne; Nuterman, Roman; Yang, Xiaohua; Baklanov, Alexander
2017-04-01
Air pollution is a serious problem in different regions of China and its continuously growing megacities. Information on air quality, and especially, in urbanized areas is important for decision making, emergency response and population. In particular, the metropolitan areas of Shanghai, Beijing, and Pearl River Delta are well known as main regions having serious air pollution problems. The on-line integrated meteorology-chemistry-aerosols Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) model adapted for China and selected megacities is applied for forecasting of weather and atmospheric composition (with focus on aerosols). The model system is running in downscaling chain from regional to urban scales at subsequent horizontal resolutions of 15-5-2.5 km. The model setup includes also the urban Building Effects Parameterization module, describing different types of urban districts (industrial commercial, city center, high density and residential) with its own morphological and aerodynamical characteristics. The effects of urbanization are important for atmospheric transport, dispersion, deposition, and chemical transformations, in addition to better quality emission inventories for China and selected urban areas. The Enviro-HIRLAM system provides meteorology and air quality forecasts at regional-subregional-urban scales (China - East China - selected megacities). In particular, such forecasting is important for metropolitan areas, where formation and development of meteorological and chemical/aerosol patterns are especially complex. It also provides information for evaluation impact on selected megacities of China as well as for investigation relationship between air pollution and meteorology.
The oral case presentation: toward a performance-based rhetorical model for teaching and learning
Chan, Mei Yuit
2015-01-01
The oral case presentation is an important communicative activity in the teaching and assessment of students. Despite its importance, not much attention has been paid to providing support for teachers to teach this difficult task to medical students who are novices to this form of communication. As a formalized piece of talk that takes a regularized form and used for a specific communicative goal, the case presentation is regarded as a rhetorical activity and awareness of its rhetorical and linguistic characteristics should be given due consideration in teaching. This paper reviews practitioners’ and the limited research literature that relates to expectations of medical educators about what makes a good case presentation, and explains the rhetorical aspect of the activity. It is found there is currently a lack of a comprehensive model of the case presentation that projects the rhetorical and linguistic skills needed to produce and deliver a good presentation. Attempts to describe the structure of the case presentation have used predominantly opinion-based methodologies. In this paper, I argue for a performance-based model that would not only allow a description of the rhetorical structure of the oral case presentation, but also enable a systematic examination of the tacit genre knowledge that differentiates the expert from the novice. Such a model will be a useful resource for medical educators to provide more structured feedback and teaching support to medical students in learning this important genre. PMID:26194482
Eisenhauer, Bronwyn; Natoli, Sharon; Liew, Gerald; Flood, Victoria M.
2017-01-01
Lutein and zeaxanthin (L/Z) are the predominant carotenoids which accumulate in the retina of the eye. The impact of L/Z intake on the risk and progression of age-related macular degeneration (AMD), a leading cause of blindness in the developed world, has been investigated in cohort studies and clinical trials. The aims of this review were to critically examine the literature and evaluate the current evidence relating to L/Z intake and AMD, and describe important food sources and factors that increase the bioavailability of L/Z, to inform dietary models. Cohort studies generally assessed L/Z from dietary sources, while clinical trials focused on providing L/Z as a supplement. Important considerations to take into account in relation to dietary L/Z include: nutrient-rich sources of L/Z, cooking methods, diet variety and the use of healthy fats. Dietary models include examples of how suggested effective levels of L/Z can be achieved through diet alone, with values of 5 mg and 10 mg per day described. These diet models depict a variety of food sources, not only from dark green leafy vegetables, but also include pistachio nuts and other highly bioavailable sources of L/Z such as eggs. This review and the diet models outlined provide information about the importance of diet variety among people at high risk of AMD or with early signs and symptoms of AMD. PMID:28208784
Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis
Hohwieler, Meike; Perkhofer, Lukas; Liebau, Stefan; Seufferlein, Thomas; Müller, Martin
2016-01-01
Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs. PMID:28815024
NASA Astrophysics Data System (ADS)
Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott; Westerman, Drew A.; Clark, Brian R.
2017-09-01
Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.
Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.
2017-01-01
Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Butler, B.; Shannon, K.
2014-12-01
Near-surface wind predictions are important for a number of applications, including transport and dispersion, wind energy forecasting, and wildfire behavior. Researchers and forecasters would benefit from a wind model that could be readily applied to complex terrain for use in these various disciplines. Unfortunately, near-surface winds in complex terrain are not handled well by traditional modeling approaches. Numerical weather prediction models employ coarse horizontal resolutions which do not adequately resolve sub-grid terrain features important to the surface flow. Computational fluid dynamics (CFD) models are increasingly being applied to simulate atmospheric boundary layer (ABL) flows, especially in wind energy applications; however, the standard functionality provided in commercial CFD models is not suitable for ABL flows. Appropriate CFD modeling in the ABL requires modification of empirically-derived wall function parameters and boundary conditions to avoid erroneous streamwise gradients due to inconsistences between inlet profiles and specified boundary conditions. This work presents a new version of a near-surface wind model for complex terrain called WindNinja. The new version of WindNinja offers two options for flow simulations: 1) the native, fast-running mass-consistent method available in previous model versions and 2) a CFD approach based on the OpenFOAM modeling framework and optimized for ABL flows. The model is described and evaluations of predictions with surface wind data collected from two recent field campaigns in complex terrain are presented. A comparison of predictions from the native mass-consistent method and the new CFD method is also provided.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model
2008-07-01
arranged in groups ( clusters ). The space, itself, was divided into four quadrants, which had 1, 2, 3, and 4 objects, respectively. The arrangement of... clusters , of objects play an important role in the model’s performance, by providing some context for narrowing the search for the target to a portion of the...model uses a hierarchical approach to accomplish this. First, the model identifies a group or cluster of objects that contains the target. The number of
Organizational culture associated with provider satisfaction.
Scammon, Debra L; Tabler, Jennifer; Brunisholz, Kimberly; Gren, Lisa H; Kim, Jaewhan; Tomoaia-Cotisel, Andrada; Day, Julie; Farrell, Timothy W; Waitzman, Norman J; Magill, Michael K
2014-01-01
Organizational culture is key to the successful implementation of major improvement strategies. Transformation to a patient-centered medical home (PCHM) is such an improvement strategy, requiring a shift from provider-centric care to team-based care. Because this shift may impact provider satisfaction, it is important to understand the relationship between provider satisfaction and organizational culture, specifically in the context of practices that have transformed to a PCMH model. This was a cross-sectional study of surveys conducted in 2011 among providers and staff in 10 primary care clinics implementing their version of a PCMH: Care by Design. Measures included the Organizational Culture Assessment Instrument and the American Medical Group Association provider satisfaction survey. Providers were most satisfied with quality of care (mean, 4.14; scale of 1-5) and interactions with patients (mean, 4.12) and were least satisfied with time spent working (mean, 3.47), paperwork (mean, 3.45), and compensation (mean, 3.35). Culture profiles differed across clinics, with family/clan and hierarchical cultures the most common. Significant correlations (P ≤ .05) between provider satisfaction and clinic culture archetypes included family/clan culture negatively correlated with administrative work; entrepreneurial culture positively correlated with the Time Spent Working dimension; market/rational culture positively correlated with how practices were facing economic and strategic challenges; and hierarchical culture negatively correlated with the Relationships with Staff and Resource dimensions. Provider satisfaction is an important metric for assessing experiences with features of a PCMH model. Identification of clinic-specific culture archetypes and archetype associations with provider satisfaction can help inform practice redesign. Attention to effective methods for changing organizational culture is recommended.
Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C
2017-01-01
Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.
Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming
2014-12-01
Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
O'Neill, Andrea; Erikson, Li; Barnard, Patrick
2017-01-01
While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.
Pharmaceutical industry and trade liberalization using computable general equilibrium model.
Barouni, M; Ghaderi, H; Banouei, Aa
2012-01-01
Computable general equilibrium models are known as a powerful instrument in economic analyses and widely have been used in order to evaluate trade liberalization effects. The purpose of this study was to provide the impacts of trade openness on pharmaceutical industry using CGE model. Using a computable general equilibrium model in this study, the effects of decrease in tariffs as a symbol of trade liberalization on key variables of Iranian pharmaceutical products were studied. Simulation was performed via two scenarios in this study. The first scenario was the effect of decrease in tariffs of pharmaceutical products as 10, 30, 50, and 100 on key drug variables, and the second was the effect of decrease in other sectors except pharmaceutical products on vital and economic variables of pharmaceutical products. The required data were obtained and the model parameters were calibrated according to the social accounting matrix of Iran in 2006. The results associated with simulation demonstrated that the first scenario has increased import, export, drug supply to markets and household consumption, while import, export, supply of product to market, and household consumption of pharmaceutical products would averagely decrease in the second scenario. Ultimately, society welfare would improve in all scenarios. We presents and synthesizes the CGE model which could be used to analyze trade liberalization policy issue in developing countries (like Iran), and thus provides information that policymakers can use to improve the pharmacy economics.
Physiotherapy practice in the private sector: organizational characteristics and models.
Perreault, Kadija; Dionne, Clermont E; Rossignol, Michel; Poitras, Stéphane; Morin, Diane
2014-08-29
Even if a large proportion of physiotherapists work in the private sector worldwide, very little is known of the organizations within which they practice. Such knowledge is important to help understand contexts of practice and how they influence the quality of services and patient outcomes. The purpose of this study was to: 1) describe characteristics of organizations where physiotherapists practice in the private sector, and 2) explore the existence of a taxonomy of organizational models. This was a cross-sectional quantitative survey of 236 randomly-selected physiotherapists. Participants completed a purpose-designed questionnaire online or by telephone, covering organizational vision, resources, structures and practices. Organizational characteristics were analyzed descriptively, while organizational models were identified by multiple correspondence analyses. Most organizations were for-profit (93.2%), located in urban areas (91.5%), and within buildings containing multiple businesses/organizations (76.7%). The majority included multiple providers (89.8%) from diverse professions, mainly physiotherapy assistants (68.7%), massage therapists (67.3%) and osteopaths (50.2%). Four organizational models were identified: 1) solo practice, 2) middle-scale multiprovider, 3) large-scale multiprovider and 4) mixed. The results of this study provide a detailed description of the organizations where physiotherapists practice, and highlight the importance of human resources in differentiating organizational models. Further research examining the influences of these organizational characteristics and models on outcomes such as physiotherapists' professional practices and patient outcomes are needed.
A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).
Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong
2014-01-01
Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.
Adams, Matthew D; Kanaroglou, Pavlos S
2016-03-01
Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved twenty percent of the data to validate the predictions. The models' performances were measured with a coefficient of determination at 0.78 and 0.34 for PM2.5 and NO2, respectively. We apply a relative importance measure to identify the importance of each variable in the neural network to partially overcome the black box issues of neural network models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Should visual speech cues (speechreading) be considered when fitting hearing aids?
NASA Astrophysics Data System (ADS)
Grant, Ken
2002-05-01
When talker and listener are face-to-face, visual speech cues become an important part of the communication environment, and yet, these cues are seldom considered when designing hearing aids. Models of auditory-visual speech recognition highlight the importance of complementary versus redundant speech information for predicting auditory-visual recognition performance. Thus, for hearing aids to work optimally when visual speech cues are present, it is important to know whether the cues provided by amplification and the cues provided by speechreading complement each other. In this talk, data will be reviewed that show nonmonotonicity between auditory-alone speech recognition and auditory-visual speech recognition, suggesting that efforts designed solely to improve auditory-alone recognition may not always result in improved auditory-visual recognition. Data will also be presented showing that one of the most important speech cues for enhancing auditory-visual speech recognition performance, voicing, is often the cue that benefits least from amplification.
Performance and Architecture Lab Modeling Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-06-19
Analytical application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult. Furthermore, models are frequently expressed in forms that are hard to distribute and validate. The Performance and Architecture Lab Modeling tool, or Palm, is a modeling tool designed to make application modeling easier. Palm provides a source code modeling annotation language. Not only does the modeling language divide the modeling task into sub problems, it formally links an application's source code with its model. This link is important because a model's purpose is to capture application behavior. Furthermore, this linkmore » makes it possible to define rules for generating models according to source code organization. Palm generates hierarchical models according to well-defined rules. Given an application, a set of annotations, and a representative execution environment, Palm will generate the same model. A generated model is a an executable program whose constituent parts directly correspond to the modeled application. Palm generates models by combining top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. A model's hierarchy is defined by static and dynamic source code structure. Because Palm coordinates models and source code, Palm's models are 'first-class' and reproducible. Palm automates common modeling tasks. For instance, Palm incorporates measurements to focus attention, represent constant behavior, and validate models. Palm's workflow is as follows. The workflow's input is source code annotated with Palm modeling annotations. The most important annotation models an instance of a block of code. Given annotated source code, the Palm Compiler produces executables and the Palm Monitor collects a representative performance profile. The Palm Generator synthesizes a model based on the static and dynamic mapping of annotations to program behavior. The model -- an executable program -- is a hierarchical composition of annotation functions, synthesized functions, statistics for runtime values, and performance measurements.« less
Streptococcus mutans: a new Gram-positive paradigm?
Quivey, Robert G.; Koo, Hyun; Abranches, Jacqueline
2013-01-01
Despite the enormous contributions of the bacterial paradigms Escherichia coli and Bacillus subtilis to basic and applied research, it is well known that no single organism can be a perfect representative of all other species. However, given that some bacteria are difficult, or virtually impossible, to cultivate in the laboratory, that some are recalcitrant to genetic and molecular manipulation, and that others can be extremely dangerous to manipulate, the use of model organisms will continue to play an important role in the development of basic research. In particular, model organisms are very useful for providing a better understanding of the biology of closely related species. Here, we discuss how the lifestyle, the availability of suitable in vitro and in vivo systems, and a thorough understanding of the genetics, biochemistry and physiology of the dental pathogen Streptococcus mutans have greatly advanced our understanding of important areas in the field of bacteriology such as interspecies biofilms, competence development and stress responses. In this article, we provide an argument that places S. mutans, an organism that evolved in close association with the human host, as a novel Gram-positive model organism. PMID:23393147
Jensen, Mark P; Turk, Dennis C
2014-01-01
Chronic pain is a prevalent problem with significant costs to individuals, significant others, and society. In this article, which introduces the American Psychologist special issue on chronic pain, we provide an overview of the seminal contributions made by psychologists to our current understanding of this important problem. We also describe the primary treatments that have been developed based on psychological principles and models of pain, many of which have demonstrated efficacy for reducing pain and its impact on psychological and physical functioning. The article ends with an enumeration of directions for future research and clinical practice. We believe that the chronicle of psychology's role in improving our understanding and treatment of pain provides a model for how psychologists can have a significant influence on many fields, and that the models and approaches developed for understanding and treating pain may be of use to psychologists working in other areas. Thus, we think that chronic pain is an important area of study that offers insights about translational research for ALL psychologists. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Seismic detection of a hydraulic fracture from shear-wave VSP data at Lost Hills Field, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadows, M.A.; Winterstein, D.F.
1994-01-01
The authors describe the results of a geophysical experiment in which shear waves (S-waves) were used to detect the presence of a hydraulic fracture in a diatomite reservoir at the Lost Hills Field. They show evidence that transient S-waves recorded in a monitor well represent diffracted energy that disappears as the fracture closes. They also show how, using simple models, one can establish limits on fracture lengths and heights by accurately modeling the scattered wavefield. These limits are dependent upon both the recording geometry and the wavelength of the S-waves incident on the fracture. The principles of S-wave recording andmore » processing described here can provide important information about the geometry of induced fractures, which are becoming increasingly important for enhanced recovery. The paper presents background information about the Lost Hills Field and provide other details relevant for mapping induced fractures. The remainder of the paper treats the data processing and modeling of the experiment itself and discusses the implications for future experiments of this type.« less
Maurya, Mano Ram; Subramaniam, Shankar
2007-01-01
This article addresses how quantitative models such as the one proposed in the companion article can be used to study cellular network perturbations such as knockdowns and pharmacological perturbations in a predictive manner. Using the kinetic model for cytosolic calcium dynamics in RAW 264.7 cells developed in the companion article, the calcium response to complement 5a (C5a) for the knockdown of seven proteins (C5a receptor; G-β-2; G-α,i-2,3; regulator of G-protein signaling-10; G-protein coupled receptor kinase-2; phospholipase C β-3; arrestin) is predicted and validated against the data from the Alliance for Cellular Signaling. The knockdown responses provide insights into how altered expressions of important proteins in disease states result in intermediate measurable phenotypes. Long-term response and long-term dose response have also been predicted, providing insights into how the receptor desensitization, internalization, and recycle result in tolerance. Sensitivity analysis of long-term response shows that the mechanisms and parameters in the receptor recycle path are important for long-term calcium dynamics. PMID:17483189
NASA Astrophysics Data System (ADS)
Keefer, Dennis; Rhodes, Robert
1993-05-01
Electrically powered arc jets which produce thrust at high specific impulse could provide a substantial cost reduction for orbital transfer and station keeping missions. There is currently a limited understanding of the complex, nonlinear interactions in the plasma propellant which has hindered the development of high efficiency arc jet thrusters by making it difficult to predict the effect of design changes and to interpret experimental results. A computational model developed at the University of Tennessee Space Institute (UTSI) to study laser powered thrusters and radio frequency gas heaters has been adapted to provide a tool to help understand the physical processes in arc jet thrusters. The approach is to include in the model those physical and chemical processes which appear to be important, and then to evaluate our judgement by the comparison of numerical simulations with experimental data. The results of this study have been presented at four technical conferences. The details of the work accomplished in this project are covered in the individual papers included in the appendix of this report. We present a brief description of the model covering its most important features followed by a summary of the effort.
Implementing climate change mitigation in health services: the importance of context.
Desmond, Sharon
2016-10-01
Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies. © The Author(s) 2016.
Hybrid Automatic Building Interpretation System
NASA Astrophysics Data System (ADS)
Pakzad, K.; Klink, A.; Müterthies, A.; Gröger, G.; Stroh, V.; Plümer, L.
2011-09-01
HABIS (Hybrid Automatic Building Interpretation System) is a system for an automatic reconstruction of building roofs used in virtual 3D building models. Unlike most of the commercially available systems, HABIS is able to work to a high degree automatically. The hybrid method uses different sources intending to exploit the advantages of the particular sources. 3D point clouds usually provide good height and surface data, whereas spatial high resolution aerial images provide important information for edges and detail information for roof objects like dormers or chimneys. The cadastral data provide important basis information about the building ground plans. The approach used in HABIS works with a multi-stage-process, which starts with a coarse roof classification based on 3D point clouds. After that it continues with an image based verification of these predicted roofs. In a further step a final classification and adjustment of the roofs is done. In addition some roof objects like dormers and chimneys are also extracted based on aerial images and added to the models. In this paper the used methods are described and some results are presented.
Cannavò, Flavio; Camacho, Antonio G; González, Pablo J; Mattia, Mario; Puglisi, Giuseppe; Fernández, José
2015-06-09
Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.
Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José
2015-01-01
Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494
Do quantitative decadal forecasts from GCMs provide decision relevant skill?
NASA Astrophysics Data System (ADS)
Suckling, E. B.; Smith, L. A.
2012-04-01
It is widely held that only physics-based simulation models can capture the dynamics required to provide decision-relevant probabilistic climate predictions. This fact in itself provides no evidence that predictions from today's GCMs are fit for purpose. Empirical (data-based) models are employed to make probability forecasts on decadal timescales, where it is argued that these 'physics free' forecasts provide a quantitative 'zero skill' target for the evaluation of forecasts based on more complicated models. It is demonstrated that these zero skill models are competitive with GCMs on decadal scales for probability forecasts evaluated over the last 50 years. Complications of statistical interpretation due to the 'hindcast' nature of this experiment, and the likely relevance of arguments that the lack of hindcast skill is irrelevant as the signal will soon 'come out of the noise' are discussed. A lack of decision relevant quantiative skill does not bring the science-based insights of anthropogenic warming into doubt, but it does call for a clear quantification of limits, as a function of lead time, for spatial and temporal scales on which decisions based on such model output are expected to prove maladaptive. Failing to do so may risk the credibility of science in support of policy in the long term. The performance amongst a collection of simulation models is evaluated, having transformed ensembles of point forecasts into probability distributions through the kernel dressing procedure [1], according to a selection of proper skill scores [2] and contrasted with purely data-based empirical models. Data-based models are unlikely to yield realistic forecasts for future climate change if the Earth system moves away from the conditions observed in the past, upon which the models are constructed; in this sense the empirical model defines zero skill. When should a decision relevant simulation model be expected to significantly outperform such empirical models? Probability forecasts up to ten years ahead (decadal forecasts) are considered, both on global and regional spatial scales for surface air temperature. Such decadal forecasts are not only important in terms of providing information on the impacts of near-term climate change, but also from the perspective of climate model validation, as hindcast experiments and a sufficient database of historical observations allow standard forecast verification methods to be used. Simulation models from the ENSEMBLES hindcast experiment [3] are evaluated and contrasted with static forecasts of the observed climatology, persistence forecasts and against simple statistical models, called dynamic climatology (DC). It is argued that DC is a more apropriate benchmark in the case of a non-stationary climate. It is found that the ENSEMBLES models do not demonstrate a significant increase in skill relative to the empirical models even at global scales over any lead time up to a decade ahead. It is suggested that the contsruction and co-evaluation with the data-based models become a regular component of the reporting of large simulation model forecasts. The methodology presented may easily be adapted to other forecasting experiments and is expected to influence the design of future experiments. The inclusion of comparisons with dynamic climatology and other data-based approaches provide important information to both scientists and decision makers on which aspects of state-of-the-art simulation forecasts are likely to be fit for purpose. [1] J. Bröcker and L. A. Smith. From ensemble forecasts to predictive distributions, Tellus A, 60(4), 663-678 (2007). [2] J. Bröcker and L. A. Smith. Scoring probabilistic forecasts: The importance of being proper, Weather and Forecasting, 22, 382-388 (2006). [3] F. J. Doblas-Reyes, A. Weisheimer, T. N. Palmer, J. M. Murphy and D. Smith. Forecast quality asessment of the ENSEMBLES seasonal-to-decadal stream 2 hindcasts, ECMWF Technical Memorandum, 621 (2010).
Molecular Modeling on the PC (by Matthew F. Schlecht)
NASA Astrophysics Data System (ADS)
Rioux, Reviewed Frank
2000-06-01
"Computeraided molecular modeling doesn't exist for its own sake, but to contribute to scientific endeavor, and enable the scientist to work smarter." This is the last sentence of Schlecht's preface and it says something very important about contemporary scientific research in the academic and industrial venues. Owing to the accelerating improvement in computer technology (hardware and software) and its widespread availability, molecular modeling has become a reliable and important tool in chemical research. Consequently, experimentalists have incorporated molecular modeling techniques in their research, and partnerships with computational chemists have become common. This is a wellorganized and thorough monograph that devotes its attention to one type of molecular modeling, molecular mechanics, and one molecular modeling software package, PCMODEL. Schlecht targets two reader-user groups, the novice and the journeyman modeler, and articulates three goals. He wants to provide the novice with an introduction to molecular mechanics, and after that with some practical examples of the use of empirical force field calculations. His third goal is to provide the journeyman modeler with a reference work that will aid "further study and practice". These are potentially conflicting goals, but Schlecht is, in my opinion, successful because of the way his book is organized. A comprehensive treatment such as this one is not meant to be read from cover to cover, because it is both an exposition of basic principles and a user's manual. Therefore, the novice and the experienced modeler will undoubtedly use this book in different ways. For example, a novice modeler might be advised to read the Preface and Chapter 1, which together provide a broad introduction to the historical development and goals of molecular mechanics. From there the novice could go to Chapter 5 and read section 5.1 on the components of the molecular mechanics force field, which is presented in 22 pages with plenty of graphical support. The reader is now ready to move to Chapter 6 on applications and work through the 32 exercises (Chapters 3 and 4 have an additional 11 exercises) designed to illustrate the current uses of molecular modeling in academic and industrial research. Chapter 3 (Input and Output), Chapter 4 (File Formats), and the balance of Chapter 5 can be consulted as needed. For example, Chapter 5 contains 160 pages on the evolution of the various empirical force fields in use today and important information in each case on parameterization and implementation. Besides finding a clearly written, wellorganized, thorough presentation, the reader will appreciate a number of other important features. There are numerous references (993) to the primary literature covering the field of molecular mechanics from its beginnings to mid1997, when the book went to press. There is a complete glossary of PCMODEL commands, and a comprehensive and valuable glossary (77 pages) of frequently used computer terms. There are 392 figures (many of them screen captures) providing illustrations of the PCMODEL interface in use and examples of input and output files. To aid the reader/user in obtaining expertise as a modeler, a diskette containing all the structure files for all the exercises accompanies the text. In addition, the author provides, on the same diskette, a browserreadable HTML file that contains links to a large number of pertinent resources on the World Wide Web. In summary, Molecular Modeling on the PC, by Matthew Schlecht, is a very impressive contribution to the molecular modeling literature. Schlecht's book should be in every college and university library and in the personal libraries of those who want to learn more about molecular mechanics or who anticipate its use in their teaching or research.
Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)
NASA Astrophysics Data System (ADS)
Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.
2017-12-01
We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.
Tatem, Andrew J; Qiu, Youliang; Smith, David L; Sabot, Oliver; Ali, Abdullah S; Moonen, Bruno
2009-12-10
Malaria endemicity in Zanzibar has reached historically low levels, and the epidemiology of malaria transmission is in transition. To capitalize on these gains, Zanzibar has commissioned a feasibility assessment to help inform on whether to move to an elimination campaign. Declining local transmission has refocused attention on imported malaria. Recent studies have shown that anonimized mobile phone records provide a valuable data source for characterizing human movements without compromising the privacy of phone users. Such movement data in combination with spatial data on P. falciparum endemicity provide a way of characterizing the patterns of parasite carrier movements and the rates of malaria importation, which have been used as part of the malaria elimination feasibility assessment for the islands of Zanzibar. Records encompassing three months of complete mobile phone usage for the period October-December 2008 were obtained from the Zanzibar Telecom (Zantel) mobile phone network company, the principal provider on the islands of Zanzibar. The data included the dates of all phone usage by 770,369 individual anonymous users. Each individual call and message was spatially referenced to one of six areas: Zanzibar and five mainland Tanzania regions. Information on the numbers of Zanzibar residents travelling to the mainland, locations visited and lengths of stay were extracted. Spatial and temporal data on P. falciparum transmission intensity and seasonality enabled linkage of this information to endemicity exposure and, motivated by malaria transmission models, estimates of the expected patterns of parasite importation to be made. Over the three month period studied, 88% of users made calls that were routed only through masts on Zanzibar, suggesting that no long distance travel was undertaken by this group. Of those who made calls routed through mainland masts the vast majority of trips were estimated to be of less than five days in length, and to the Dar Es Salaam Zantel-defined region. Though this region covered a wide range of transmission intensities, data on total infection numbers in Zanzibar combined with mathematical models enabled informed estimation of transmission exposure and imported infection numbers. These showed that the majority of trips made posed a relatively low risk for parasite importation, but risk groups visiting higher transmission regions for extended periods of time could be identified. Anonymous mobile phone records provide valuable information on human movement patterns in areas that are typically data-sparse. Estimates of human movement patterns from Zanzibar to mainland Tanzania suggest that imported malaria risk from this group is heterogeneously distributed; a few people account for most of the risk for imported malaria. In combination with spatial data on malaria endemicity and transmission models, movement patterns derived from phone records can inform on the likely sources and rates of malaria importation. Such information is important for assessing the feasibility of malaria elimination and planning an elimination campaign.
Hölsken, Annett; Buslei, Rolf
2017-05-01
Even though ACP is a benign tumor, treatment is challenging because of the tumor's eloquent location. Today, with the exception of surgical intervention and irradiation, further treatment options are limited. However, ongoing molecular research in this field provides insights into the pathways involved in ACP pathogenesis and reveal a plethora of druggable targets. In the next step, appropriate models are essential to identify the most suitable and effective substances for clinical practice. Primary cell cultures in low passages provide a proper and rapid tool for initial drug potency testing. The patient-derived xenograft (PDX) model accommodates ACP complexity in that it shows respect to the preserved architecture and similar histological appearance to human tumors and therefore provides the most appropriate means for analyzing pharmacological efficacy. Nevertheless, further research is needed to understand in more detail the biological background of ACP pathogenesis, which provides the identification of the best targets in the hierarchy of signaling cascades. ACP models are also important for the continuous testing of new targeting drugs, to establish precision medicine. © 2017 International Society of Neuropathology.