Sample records for models pulsation analysis

  1. The research on flow pulsation characteristics of axial piston pump

    NASA Astrophysics Data System (ADS)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  2. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    NASA Astrophysics Data System (ADS)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  3. Binary Model for the Heartbeat Star System KIC 4142768

    NASA Astrophysics Data System (ADS)

    Manuel, Joseph; Hambleton, Kelly

    2018-01-01

    Heartbeat stars are a class of eccentric (e > 0.2) binary systems that undergo strong tidal forces. These tidal forces cause the shape of each star and the temperature across the stellar surfaces to change. This effect also generates variations in the light curve in the form of tidally-induced pulsations, which are theorized to have a significant effect on the circularization of eccentric orbits (Zahn, 1975). Using the binary modeling software PHOEBE (Prša & Zwitter 2005) on the Kepler photometric data and Keck radial velocity data for the eclipsing, heartbeat star KIC 4142768, we have determined the fundamental parameters including masses and radii. The frequency analysis of the residual data has surprisingly revealed approximately 29 pulsations with 8 being Delta Scuti pulsations, 10 being Gamma Doradus pulsations, and 11 being tidally-induced pulsations. After subtracting an initial binary model from the original, detrended photometric data, we analyzed the pulsation frequencies in the residual data. We then were able to disentangle the identified pulsations from the original data in order to conduct subsequent binary modeling. We plan to continue this study by applying asteroseismology to KIC 4142768. Through our continued investigation, we hope to extract information about the star’s internal structure and expect this will yield additional, interesting results.

  4. Analysis and modeling of leakage current sensor under pulsating direct current

    NASA Astrophysics Data System (ADS)

    Li, Kui; Dai, Yihua; Wang, Yao; Niu, Feng; Chen, Zhao; Huang, Shaopo

    2017-05-01

    In this paper, the transformation characteristics of current sensor under pulsating DC leakage current is investigated. The mathematical model of current sensor is proposed to accurately describe the secondary side current and excitation current. The transformation process of current sensor is illustrated in details and the transformation error is analyzed from multi aspects. A simulation model is built and a sensor prototype is designed to conduct comparative evaluation, and both simulation and experimental results are presented to verify the correctness of theoretical analysis.

  5. Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 3: Unsteady aerodynamics of bodies with concave nose geometries

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1976-01-01

    An analysis of the unsteady aerodynamics of bodies with concave nose geometries was performed. The results show that the experimentally observed pulsating flow on spiked bodies and in forward facing cavities can be described by the developed simple mathematical model of the phenomenon. Static experimental data is used as a basis for determination of the oscillatory frequency of spike-induced flow pulsations. The agreement between predicted and measured reduced frequencies is generally very good. The spiked-body mathematical model is extended to describe the pulsations observed in forward facing cavities and it is shown that not only the frequency but also the pressure time history can be described with the accuracy needed to predict the experimentally observed time average effects. This implies that it should be possible to determine analytically the impact of the flow pulsation on the structural integrity of the nozzles for the jettisoned empty SRM-shells.

  6. Instability, finite amplitude pulsation and mass-loss in models of massive OB-type stars

    NASA Astrophysics Data System (ADS)

    Yadav, Abhay Pratap; Glatzel, Wolfgang

    2017-11-01

    Variability and mass-loss are common phenomena in massive OB-type stars. It is argued that they are caused by violent strange mode instabilities identified in corresponding stellar models. We present a systematic linear stability analysis with respect to radial perturbations of massive OB-type stars with solar chemical composition and masses between 23 and 100 M⊙. For selected unstable stellar models, we perform non-linear simulations of the evolution of the instabilities into the non-linear regime. Finite amplitude pulsations with periods in the range between hours and 100 d are found to be the final result of the instabilities. The pulsations are associated with a mean acoustic luminosity which can be the origin of a pulsationally driven wind. Corresponding mass-loss rates lie in the range between 10-9 and 10-4 M⊙ yr-1 and may thus affect the evolution of massive stars.

  7. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  8. δ Scuti-type pulsation in the hot component of the Algol-type binary system BG Peg

    NASA Astrophysics Data System (ADS)

    Şenyüz, T.; Soydugan, E.

    2014-02-01

    In this study, 23 Algol-type binary systems, which were selected as candidate binaries with pulsating components, were observed at the Çanakkale Onsekiz Mart University Observatory. One of these systems was BG Peg. Its hotter component shows δ Scuti-type light variations. Physical parameters of BG Peg were derived from modelling the V light curve using the Wilson-Devinney code. The frequency analysis shows that the pulsational component of the BG Peg system pulsates in two modes with periods of 0.039 and 0.047 d. Mode identification indicates that both modes are most likely non-radial l = 2 modes.

  9. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    NASA Astrophysics Data System (ADS)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  10. Identification of possible non-stationary effects in a new type of vortex furnace

    NASA Astrophysics Data System (ADS)

    Shadrin, Evgeniy Yu.; Anufriev, Igor S.; Papulov, Anatoly P.

    2017-10-01

    The article presents the results of an experimental study of pressure and velocity pulsations in the model of improved vortex furnace with distributed air supply and vertically oriented nozzles of the secondary blast. Investigation of aerodynamic characteristics of a swirling flow with different regime parameters was conducted in an isothermal laboratory model (in 1:25 scale) of vortex furnace using laser Doppler measuring system and pressure pulsations analyzer. The obtained results have revealed a number of features of the flow structure, and the spectral analysis of pressure and velocity pulsations allows to speak about the absence of large-scale unsteady vortical structures in the studied design.

  11. On the evolutionary status and pulsations of the recently discovered blue large-amplitude pulsators (BLAPs)

    NASA Astrophysics Data System (ADS)

    Romero, Alejandra D.; Córsico, A. H.; Althaus, L. G.; Pelisoli, I.; Kepler, S. O.

    2018-06-01

    The blue large-amplitude pulsators (BLAPs) constitute a new class of pulsating stars. They are hot stars with effective temperatures of ˜30 000 K and surface gravities of log g ˜ 4.9, that pulsate with periods in the range 20-40 min. Until now, their origin and evolutionary state, as well as the nature of their pulsations, were not been unveiled. In this paper, we propose that the BLAPs are the hot counterpart of the already known pulsating pre-extremely low mass (pre-ELM) white dwarf (WD) stars, that are He-core low-mass stars resulting from interacting binary evolution. Using fully evolutionary sequences, we show that the BLAPs are well represented by pre-ELM WD models with high effective temperature and stellar masses ˜0.34 M⊙. From the analysis of their pulsational properties, we find that the observed variabilities can be explained by high-order non-radial g-mode pulsations or, in the case of the shortest periods, also by low-order radial modes, including the fundamental radial mode. The theoretical modes with periods in the observed range are unstable due to the κ mechanism associated with the Z-bump in the opacity at log T ˜ 5.25.

  12. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247-25B

    NASA Astrophysics Data System (ADS)

    Istrate, A. G.; Fontaine, G.; Heuser, C.

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247-25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247-25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247-25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  13. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  14. The challenge of measuring magnetic fields in strongly pulsating stars: the case of HD 96446

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Hubrig, S.; Ilyin, I.; Schöller, M.; Briquet, M.

    2017-01-01

    Among the early B-type stars, He-rich Bp stars exhibit the strongest large-scale organized magnetic fields with a predominant dipole contribution. The presence of β Cep-like pulsations in the typical magnetic early Bp-type star HD 96446 was announced a few years ago, but the analysis of the magnetic field geometry was hampered by the absence of a reliable rotation period and a sophisticated procedure for accounting for the impact of pulsations on the magnetic field measurements. Using new spectropolarimetric observations and a recently determined rotation period based on an extensive spectroscopic time series, we investigate the magnetic field model parameters of this star under more detailed considerations of the pulsation behaviour of line profiles.

  15. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  16. Numerical evaluation of longitudinal motions of Wigley hulls advancing in waves by using Bessho form translating-pulsating source Green'S function

    NASA Astrophysics Data System (ADS)

    Xiao, Wenbin; Dong, Wencai

    2016-06-01

    In the framework of 3D potential flow theory, Bessho form translating-pulsating source Green's function in frequency domain is chosen as the integral kernel in this study and hybrid source-and-dipole distribution model of the boundary element method is applied to directly solve the velocity potential for advancing ship in regular waves. Numerical characteristics of the Green function show that the contribution of local-flow components to velocity potential is concentrated at the nearby source point area and the wave component dominates the magnitude of velocity potential in the far field. Two kinds of mathematical models, with or without local-flow components taken into account, are adopted to numerically calculate the longitudinal motions of Wigley hulls, which demonstrates the applicability of translating-pulsating source Green's function method for various ship forms. In addition, the mesh analysis of discrete surface is carried out from the perspective of ship-form characteristics. The study shows that the longitudinal motion results by the simplified model are somewhat greater than the experimental data in the resonant zone, and the model can be used as an effective tool to predict ship seakeeping properties. However, translating-pulsating source Green function method is only appropriate for the qualitative analysis of motion response in waves if the ship geometrical shape fails to satisfy the slender-body assumption.

  17. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247–25B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istrate, A. G.; Fontaine, G.; Heuser, C., E-mail: istrate@uwm.edu

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247−25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247−25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to themore » observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247−25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.« less

  18. Nonlinear Modeling of Radial Stellar Pulsations

    NASA Astrophysics Data System (ADS)

    Smolec, R.

    2009-09-01

    In this thesis, I present the results of my work concerning the nonlinear modeling of radial stellar pulsations. I will focus on classical Cepheids, particularly on the double-mode phenomenon. History of nonlinear modeling of radial stellar pulsations begins in the sixties of the previous century. At the beginning convection was disregarded in model equations. Qualitatively, almost all features of the radial pulsators were successfully modeled with purely radiative hydrocodes. Among problems that remained, the most disturbing was modeling of the double-mode phenomenon. This long-standing problem seemed to be finally solved with the inclusion of turbulent convection into the model equations (Kollath et al. 1998, Feuchtinger 1998). Although dynamical aspects of the double-mode behaviour were extensively studied, its origin, particularly the specific role played by convection, remained obscure. To study this and other problems of radial stellar pulsations, I implemented the convection into pulsation hydrocodes. The codes adopt the Kuhfuss (1986) convection model. In other codes, particularly in the Florida-Budapest hydrocode (e.g. Kollath et al. 2002), used in comput! ation of most of the published double-mode models, different approximations concerning e.g. eddy-viscous terms or treatment of convectively stable regions are adopted. Particularly the neglect of negative buoyancy effects in the Florida-Budapest code and its consequences, were never discussed in the literature. These consequences are severe. Concerning the single-mode pulsators, neglect of negative buoyancy leads to smaller pulsation amplitudes, in comparison to amplitudes computed with code including these effects. Particularly, neglect of negative buoyancy reduces the amplitude of the fundamental mode very strong. This property of the Florida-Budapest models is crucial in bringing up the stable non-resonant double-mode Cepheid pulsation involving fundamental and first overtone modes (F/1O). Such pulsation is not observed in models computed including negative buoyancy. As the neglect of negative buoyancy is physically not correct, so are the double-mode Cepheid models computed with the Florida-Budapest hydrocode. Extensive search for F/1O double-mode Cepheid pulsation with the codes including negative buoyancy effects yielded null result. Some resonant double-mode F/1O Cepheid models were found, but their occurrence was restricted to a very narrow domain in the Hertzsprung-Russel diagram. Model computations intended to model the double-overtone (1O/2O) Cepheids in the Large Magellanic Cloud, also revealed some stable double-mode pulsations, however, restricted to a narrow period range. Resonances are most likely conductive in bringing up the double-mode behaviour observed in these models. However, majority of the double-overtone LMC Cepheids cannot be reproduced with our codes. Hence, the modeling of double-overtone Cepheids with convective hydrocodes is not satisfactory, either. Double-mode pulsation still lacks satisfactory explanation, and problem of its modeling remains open.

  19. Pulsating strings with mixed three-form flux

    NASA Astrophysics Data System (ADS)

    Hernández, Rafael; Nieto, Juan Miguel; Ruiz, Roberto

    2018-04-01

    Circular strings pulsating in AdS 3 × S 3 × T 4 with mixed R-R and NS-NS three-form fluxes can be described by an integrable deformation of the one-dimensional Neumann-Rosochatius mechanical model. In this article we find a general class of pulsating solutions to this integrable system that can be expressed in terms of elliptic functions. In the limit of strings moving in AdS 3 with pure NS-NS three-form flux, where the action reduces to the SL(2, ℝ) WZW model, we find agreement with the analysis of the classical solutions of the system performed using spectral flow by Maldacena and Ooguri. We use our elliptic solutions in AdS 3 to extend the dispersion relation beyond the limit of pure NS-NS flux.

  20. Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry

    NASA Astrophysics Data System (ADS)

    Dragostinoff, Nikolaus; Werkmeister, René M.; Klaizer, József; Gröschl, Martin; Schmetterer, Leopold

    2013-12-01

    Low-coherence tissue interferometry is a technique for the depth-resolved measurement of ocular fundus pulsations. Whereas fundus pulsation amplitudes at preselected axial positions can readily be assessed by this method, coupling of the interferometer with a pulse oximeter additionally allows for the reconstruction of the time course of ocular fundus pulsation with respect to the cardiac cycle of the subject. For this purpose, the interferogram resulting from the superposition of waves reflected at the cornea and the ocular fundus is recorded synchronously with the plethysmogram. A new method for evaluating the time course of synthetic interferograms in combination with plethysmograms based on averaging several pulse periods has been developed. This technique allows for the analysis of amplitudes, time courses, and phase differences of fundus pulsations at preselected axial and transversal positions and for creating fundus pulsation movies. Measurements are performed in three healthy emmetropic subjects at angles from 0 deg to 18 deg to the axis of vision. Considerably different time courses, amplitudes, and phases with respect to the cardiac cycle are found at different angles. Data on ocular fundus pulsation obtained with this technique can-among other applications-be used to verify and to improve biomechanical models of the eye.

  1. Seismic Analysis of Pulsating Subdwarf B Star EPIC 212508753 Using the K2 Mission

    NASA Astrophysics Data System (ADS)

    Crooke, John; Reed, Michael D.; Baran, Andrzej; Telting, John H.; Østensen, Roy H.

    2018-01-01

    EPIC 212508753 is a subdwarf B (hot horizontal branch, sdB) star which has been observed by the Kepler Space Telescope during its extended mission, K2, in short cadence mode where a new image is obtained roughly every minute for about 75 days. Using time series analysis of the data we have found the star to be a rare hybrid pulsator with both g- and p-mode pulsations where most of the pulsations are p modes. These pulsators are extremely important as p modes sample near the surface and g modes can sample deeper, near to the core. This means that hybrid pulsators allow us to characterize the entire star. The hotter, predominantly p-mode pulsators are rarer so that makes EPIC 212508753 particularly interesting for seismic study. In this poster we will present preliminary results of our analysis of K2 data. We have discovered frequency multiplets in both the p- and g-mode regions which we use to identify pulsation modes and determine that EPIC 212508753 rotates like a solid body, in contrast to some other sdB stars.

  2. Non-radial pulsations in Be stars. Preparation of the COROT space mission.

    NASA Astrophysics Data System (ADS)

    Gutierrez-Soto, J.

    2006-12-01

    The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of 1 ppm, and several thousands in the exoplanet fields with an accuracy of a few 10-4 and colour information. The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT. In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields. Special emphasis has been given to two Be stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and which we have modelled in terms of stellar pulsations. We have also performed an in-depth spectroscopic study of NW Ser and modelled the non-radial pulsations taking into account the rotational effects. A technique to search for faint Be stars based on CCD photometry has also been developed. We present here a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy SMC.

  3. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and first overtone radial modes in KIC 5950759. The observed phase modulation of the radial modes in this star is two orders of magnitude larger than predicted by stellar evolutionary models, yet is consistent with the prediction of increasing periods of radial modes for stars on the main sequence. The statistical analysis of 983 δ Sct stars, including the results from the search for amplitude modulation, is a valuable resource for ongoing and future space missions such as K2, TESS and PLATO, because the high quality 4-yr Kepler data set will not be surpassed for some time. The observational studies of individual stars in this thesis provide strong evidence that non-linear processes are clearly at work in the majority of δ Sct stars, and provide valuable constraints for future asteroseismic modelling.

  4. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    NASA Astrophysics Data System (ADS)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  5. Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects

    NASA Astrophysics Data System (ADS)

    Uzunov, Ivan M.; Georgiev, Zhivko D.; Arabadzhiev, Todor N.

    2018-05-01

    In this paper we study the transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation (CCQGLE) under the influence of nonlinear gain, its saturation, and higher-order effects: self-steepening, third-order of dispersion, and intrapulse Raman scattering in the anomalous dispersion region. The variation method and the method of moments are applied in order to obtain the dynamic models with finite degrees of freedom for the description of stationary and pulsating solutions. Having applied the first model and its bifurcation analysis we have discovered the existence of families of subcritical Poincaré-Andronov-Hopf bifurcations due to the intrapulse Raman scattering, as well as some small nonlinear gain and the saturation of the nonlinear gain. A phenomenon of nonlinear stability has been studied and it has been shown that long living pulsating solutions with relatively small fluctuations of amplitude and frequencies exist at the bifurcation point. The numerical analysis of the second model has revealed the existence of Poincaré-Andronov-Hopf bifurcations of Raman dissipative soliton under the influence of the self-steepening effect and large nonlinear gain. All our theoretical predictions have been confirmed by the direct numerical solution of the full perturbed CCQGLE. The detailed comparison between the results obtained by both dynamic models and the direct numerical solution of the perturbed CCQGLE has proved the applicability of the proposed models in the investigation of the solutions of the perturbed CCQGLE.

  6. Simulation model of a variable-speed pumped-storage power plant in unstable operating conditions in pumping mode

    NASA Astrophysics Data System (ADS)

    Martínez-Lucas, G.; Pérez-Díaz, J. I.; Sarasúa, J. I.; Cavazzini, G.; Pavesi, G.; Ardizzon, G.

    2017-04-01

    This paper presents a dynamic simulation model of a laboratory-scale pumped-storage power plant (PSPP) operating in pumping mode with variable speed. The model considers the dynamic behavior of the conduits by means of an elastic water column approach, and synthetically generates both pressure and torque pulsations that reproduce the operation of the hydraulic machine in its instability region. The pressure and torque pulsations are generated each from a different set of sinusoidal functions. These functions were calibrated from the results of a CFD model, which was in turn validated from experimental data. Simulation model results match the numerical results of the CFD model with reasonable accuracy. The pump-turbine model (the functions used to generate pressure and torque pulsations inclusive) was up-scaled by hydraulic similarity according to the design parameters of a real PSPP and included in a dynamic simulation model of the said PSPP. Preliminary conclusions on the impact of unstable operation conditions on the penstock fatigue were obtained by means of a Monte Carlo simulation-based fatigue analysis.

  7. Nonlinear convective pulsation models of type II Cepheids

    NASA Astrophysics Data System (ADS)

    Smolec, Radoslaw

    2015-08-01

    We present a grid of nonlinear convective pulsation models of type-II Cepheids: BL Her stars, W Vir stars and RV Tau stars. The models cover a wide range of masses, luminosities, effective temperatures and chemical compositions. The most interesting result is detection of deterministic chaos in the models. Different routes to chaos are detected (period doubling, intermittent route) as well as variety of phenomena intrinsic to chaotic dynamics (periodic islands within chaotic bands, crisis bifurcation, type-I and type-III intermittency). Some of the phenomena (period doubling in BL Her and in RV Tau stars, irregular pulsation of RV Tau stars) are well known in the pulsation of type-II Cepheids. Prospects of discovering the other are briefly discussed. Transition from BL Her type pulsation through W Vir type till RV Tau type is analysed. In the most luminous models a dynamical instability is detected, which indicates that pulsation driven mass loss is important process occurring in type-II Cepheids.

  8. Testing theoretical models of subdwarf B stars using multicolor photometry

    NASA Astrophysics Data System (ADS)

    Reed, Mike; Baran, Andrzej; Ostensen, Roy; O'Toole, Simon

    2012-08-01

    Pulsating stars allow a direct investigation of their structure and evolutionary history from the evaluation of pulsation modes. However, the observed pulsation frequencies must first be identified with spherical harmonics (modes). For subdwarfs B (sdB) stars, such identifications using white light photometry currently have significant limitations. We intend to use multicolor photometry to identify pulsation modes and constrain structure models. We propose to observe the pulsating sdB star PG0154+182 (BI Ari) with our multicolor instrument GT Cam. Our observations will be compared with perturbative atmospheric models (BRUCE/KYLIE) to identify the pulsation modes. This is part of our NSF grant to obtain seismic tools to test structure and evolution models; constraining stellar parameters including total mass, envelope mass, internal composition discontinuities and internal rotation. During winter/spring 2012, we were allocated three runs on the 2.1 m to collect multicolor data on other promising pulsating subdwarf B stars as part of this work. Those runs were very successful, prompting our continued proposals. In addition, we will obtain 3-color data using MAIA on the Mercator Telescope (using guaranteed institutional time).

  9. Report of geomagnetic pulsation indices for space weather applications

    USGS Publications Warehouse

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  10. Survey of non-linear hydrodynamic models of type-II Cepheids

    NASA Astrophysics Data System (ADS)

    Smolec, R.

    2016-03-01

    We present a grid of non-linear convective type-II Cepheid models. The dense model grids are computed for 0.6 M⊙ and a range of metallicities ([Fe/H] = -2.0, -1.5, -1.0), and for 0.8 M⊙ ([Fe/H] = -1.5). Two sets of convective parameters are considered. The models cover the full temperature extent of the classical instability strip, but are limited in luminosity; for the most luminous models, violent pulsation leads to the decoupling of the outermost model shell. Hence, our survey reaches only the shortest period RV Tau domain. In the Hertzsprung-Russell diagram, we detect two domains in which period-doubled pulsation is possible. The first extends through the BL Her domain and low-luminosity W Vir domain (pulsation periods ˜2-6.5 d). The second domain extends at higher luminosities (W Vir domain; periods >9.5 d). Some models within these domains display period-4 pulsation. We also detect very narrow domains (˜10 K wide) in which modulation of pulsation is possible. Another interesting phenomenon we detect is double-mode pulsation in the fundamental mode and in the fourth radial overtone. Fourth overtone is a surface mode, trapped in the outer model layers. Single-mode pulsation in the fourth overtone is also possible on the hot side of the classical instability strip. The origin of the above phenomena is discussed. In particular, the role of resonances in driving different pulsation dynamics as well as in shaping the morphology of the radius variation curves is analysed.

  11. ɛ-mechanism driven pulsations in hot subdwarf stars with mixed H-He atmospheres

    NASA Astrophysics Data System (ADS)

    Battich, Tiara; Miller Bertolami, Marcelo M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-12-01

    The ɛ mechanism is a self-excitation mechanism of stellar pulsations which acts in regions where nuclear burning takes place. It has been shown that the ɛ mechanism can excite pulsations in hot pre-horizontal branch stars before they settle into the stable helium core-burning phase and that the shortest periods of LS IV-14º116 could be explained that way.We aim to study the ɛ mechanism in stellar models appropriate for hot pre-horizontal branch stars to predict their pulsational properties.We perform detailed computations of non-adiabatic non-radial pulsations on such stellar models.We predict a new instability domain of long-period gravity modes in the log g - log Teff plane at roughly 22000 K ≲ Teff ≲ 50000 K and 4.67 ≲ log g ≲ 6.15, with a period range from 200 to 2000 s. Comparison with the three known pulsating He-rich subdwarfs shows that the ɛ mechanism can excite pulsations in models with similar surface properties except for modes with the shortest observed periods. Based on simple estimates we expect at least 3 stars in the current samples of hot-subdwarf stars to be pulsating by the ɛ mechanism. Our results could constitute a theoretical basis for future searches of pulsators in the Galactic field.

  12. FAMIAS User Manual

    NASA Astrophysics Data System (ADS)

    Zima, Wolfgang

    2008-10-01

    The excitation of pulsation modes in Beta Cephei and Slowly Pulsating B stars is known to be very sensitive to opacity changes in the stellar interior where T ~ 2 x 10E5 K. In this region differences in opacity up to ~ 50% can be induced by the choice between OPAL and OP opacity tables, and between two different metal mixtures (Grevesse & Noels 1993 and Asplund et al. 2005). We have extended the non-adiabatic computations presented in Miglio et al. (2007) towards models of higher mass and pulsation modes of degree l = 3, and we present here the instability domains in the HR- and log P-log Teff diagrams resulting from different choices of opacity tables, and for three different metallicities. FAMIAS (Frequency Analysis and Mode Identification for AsteroSeismology) is a collection of state-of-the-art software tools for the analysis of photometric and spectroscopic time series data. It is one of the deliverables of the Work Package NA5: Asteroseismology of the European Coordination Action in Helio-and Asteroseismology (HELAS). Two main sets of tools are incorporated in FAMIAS. The first set allows to search for periodicities in the data using Fourier and non-linear least-squares fitting algorithms. The other set allows to carry out a mode identification for the detected pulsation frequencies to determine their pulsational quantum numbers, the harmonic degree, m. The types of stars to which famias is applicable are main-sequence pulsators hotter than the Sun. This includes the Gamma Dor stars, Delta Sct stars, the slowly pulsating B stars and the Beta Cep stars - basically all pulsating main-sequence stars, for which empirical mode identification is required to successfully carry out asteroseismology. This user manual describes how to use the different features of FAMIAS and provides two tutorials that demonstrate the usage of FAMIAS for spectroscopic and photometric mode identification.

  13. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    NASA Astrophysics Data System (ADS)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial pulsations, and atmospheric shocks of various scales, which give rise to complex changing structures in the atmospheres of AGB stars.

  14. Deep asteroseismic sounding of the compact hot B subdwarf pulsator KIC02697388 from Kepler time series photometry

    NASA Astrophysics Data System (ADS)

    Charpinet, S.; Van Grootel, V.; Fontaine, G.; Green, E. M.; Brassard, P.; Randall, S. K.; Silvotti, R.; Østensen, R. H.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Kawaler, S. D.; Clarke, B. D.; Li, J.; Wohler, B.

    2011-06-01

    Context. Contemporary high precision photometry from space provided by the Kepler and CoRoT satellites generates significant breakthroughs in terms of exploiting the long-period, g-mode pulsating hot B subdwarf (sdBVs) stars with asteroseismology. Aims: We present a detailed asteroseismic study of the sdBVs star KIC02697388 monitored with Kepler, using the rich pulsation spectrum uncovered during the ~27-day-long exploratory run Q2.3. Methods: We analyse new high-S/N spectroscopy of KIC02697388 using appropriate NLTE model atmospheres to provide accurate atmospheric parameters for this star. We also reanalyse the Kepler light curve using standard prewhitening techniques. On this basis, we apply a forward modelling technique using our latest generation of sdB models. The simultaneous match of the independent periods observed in KIC02697388 with those of models leads objectively to the identification of the pulsation modes and, more importantly, to the determination of some of the parameters of the star. Results: The light curve analysis reveals 43 independent frequencies that can be associated with oscillation modes. All the modulations observed in this star correspond to g-mode pulsations except one high-frequency signal, which is typical of a p-mode oscillation. Although the presence of this p-mode is surprising considering the atmospheric parameters that we derive for this cool sdB star (Teff = 25 395 ± 227 K, log g = 5.500 ± 0.031 (cgs), and log N(He) /N(H) = -2.767 ± 0.122), we show that this mode can be accounted for particularly well by our optimal seismic models, both in terms of frequency match and nonadiabatic properties. The seismic analysis leads us to identify two model solutions that can both account for the observed pulsation properties of KIC02697388. Despite this remaining ambiguity, several key parameters of the star can be derived with stringent constraints, such as its mass, its H-rich envelope mass, its radius, and its luminosity. We derive the properties of the core proposing that it is a relatively young sdB star that has burnt less than ~34% (in mass) of its central helium and has a relatively large mixed He/C/O core. This latter measurement is in line with the trend already uncovered for two other g-mode sdB pulsators analysed with asteroseismology and suggests that extra mixing is occurring quite early in the evolution of He cores on the horizontal branch. Conclusions: Additional monitoring with Kepler of this particularly interesting sdB star should reveal the inner properties of KIC02697388 and provide important information about the mode driving mechanism and the helium core properties. Tables 3 and 4 are available in electronic form at http://www.aanda.org

  15. New observations and asteroseismic analysis of the subdwarf B pulsator PG 1219+534

    NASA Astrophysics Data System (ADS)

    Grootel, Valérie Van; Péters, Marie-Julie; Green, Elizabeth M.; Charpinet, Stéphane; Brassard, Pierre; Fontaine, Gilles

    2018-03-01

    We present a new asteroseismic modeling of the hot B subdwarf (sdB) pulsator PG 1219+534, based on a 3- month campaign with the Mont4K/Kuiper combination at Mt Bigelow (Arizona) and on updated atmospheric parameters from high S/N low and medium resolution spectroscopy. On the basis of the nine independent pulsation periods extracted from the photometric light curve, we carried out an astroseismic analysis by applying the forward modeling approach using our latest (third and fourth generation) sdB models. Atmospheric parameters (Teff = 34 258 ± 170 K, log g = 5.838 ± 0.030) were used as independent constraints, as well as partial mode identification based on observed multiplet structures we ascribed to stellar rotation. The optimal model found is remarkably consistent between various analyses with third and fourth generation of sdB models, and also with previously published analysis with second generation sdB models. It corresponds to a sdB with a canonical mass (0.46 ± 0.02 M⊙), rather thin H-He envelope (log q(envl) = -3.75 ± 0.12), and close to He-burning exhaustion (Xcore(C + O) = 0.86 ± 0.05).We also investigate the internal rotation of the star.We find that PG 1219+534 rotates very slowly (Prot = 34.91 ± 0.84 days) and that solid-body rotation is reached at least down to ˜60% of the radius.

  16. Spectroscopic analysis of Cepheid variables with 2D radiation-hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Vasilyev, Valeriy

    2018-06-01

    The analysis of chemical enrichment history of dwarf galaxies allows to derive constraints on their formation and evolution. In this context, Cepheids play a very important role, as these periodically variable stars provide a means to obtain accurate distances. Besides, chemical composition of Cepheids can provide a strong constraint on the chemical evolution of the system. Standard spectroscopic analysis of Cepheids is based on using one-dimensional (1D) hydrostatic model atmospheres, with convection parametrised using the mixing-length theory. However, this quasi-static approach has theoretically not been validated. In my talk, I will discuss the validity of the quasi-static approximation in spectroscopy of short-periodic Cepheids. I will show the results obtained using a 2D time-dependent envelope model of a pulsating star computed with the radiation-hydrodynamics code CO5BOLD. I will then describe the impact of new models on the spectroscopic diagnostic of the effective temperature, surface gravity, microturbulent velocity, and metallicity. One of the interesting findings of my work is that 1D model atmospheres provide unbiased estimates of stellar parameters and abundances of Cepheid variables for certain phases of their pulsations. Convective inhomogeneities, however, also introduce biases. I will then discuss how these results can be used in a wider parameter space of pulsating stars and present an outlook for the future studies.

  17. Interpretation of the BRITE oscillation spectra of the early B-type stars: ν Eri and α Lupi

    NASA Astrophysics Data System (ADS)

    Walczak, P.; Daszyńska-Daszkiewicz, J.; Pamyatnykh, A.; Handler, G.; Pigulski, A.

    2017-09-01

    ν Eridani is a well known multiperiodic β Cephei pulsator which exhibits also the SPB (Slowly Pulsating B-type stars) type modes. Recent frequency analysis of the BRITE photometry of α Lupi showed that the star is also a hybrid β Cep/SPB pulsator, in which both high and low frequencies were detected. We construct complex seismic models in order to account for the observed frequency range, the values of the frequencies themselves and the non-adiabatic parameter f for the dominant mode. Our studies suggest that significant modifications of the opacity profile at the temperature range log{T}\\in (5.0-5.5) are necessary to fulfill all these requirements.

  18. Effects of rotation and tidal distortions on the shapes of radial velocity curves of polytropic models of pulsating variable stars

    NASA Astrophysics Data System (ADS)

    Kumar, Tarun; Lal, Arvind Kumar; Pathania, Ankush

    2018-06-01

    Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropicmodels of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.

  19. Observations of Cepheids with the MOST satellite: contrast between pulsation modes

    NASA Astrophysics Data System (ADS)

    Evans, N. R.; Szabó, R.; Derekas, A.; Szabados, L.; Cameron, C.; Matthews, J. M.; Sasselov, D.; Kuschnig, R.; Rowe, J. F.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Weiss, W. W.

    2015-02-01

    The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadian MOST (Microvariability and Oscillations of Stars) satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modelled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light-curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O - C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short time-scales.

  20. SPIPS: Spectro-Photo-Interferometry of Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine

    2017-10-01

    SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.

  1. The MACHO Project Large Magellanic Cloud Variable-Star Inventory. IX. Frequency Analysis of the First-Overtone RR Lyrae Stars and the Indication for Nonradial Pulsations

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R.; Alves, D. R.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kovács, G.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.

    2000-10-01

    More than 1300 variables classified provisionally as first-overtone RR Lyrae pulsators in the MACHO variable-star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of nine types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental and first-overtone) variables, this study increased the number of known double-mode stars in the LMC to 181. During the total 6.5 yr time span of the data, 10% of the stars showed strong period changes. The size, and in general also the patterns of the period changes, exclude a simple evolutionary explanation. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type, there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type, the number of remnant components is two; they are also closely spaced, and are symmetric in their frequency spacing relative to the central component. This latter type of variables are associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (~20%) among the fundamental-mode variables versus the low occurrence rate of their first-overtone counterparts makes it more difficult to explain the Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. None of the current theoretical models are able to explain the observed close frequency components without invoking nonradial pulsation components in these stars.

  2. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wit, Julien de; Lewis, Nikole K.; Knutson, Heather A.

    2017-02-20

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of themore » eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.« less

  3. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    NASA Astrophysics Data System (ADS)

    de Wit, Julien; Lewis, Nikole K.; Knutson, Heather A.; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Batygin, Konstantin; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-02-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet-star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ˜350 hr of 4.5 μm observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μm photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  4. Understanding the dynamical structure of pulsating stars: The Baade-Wesselink projection factor of the δ Scuti stars AI Velorum and β Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Guiglion, G.; Nardetto, N.; Mathias, P.; Domiciano de Souza, A.; Poretti, E.; Rainer, M.; Fokin, A.; Mourard, D.; Gieren, W.

    2013-02-01

    Aims: The Baade-Wesselink method of distance determination is based on the oscillations of pulsating stars. The key parameter of this method is the projection factor used to convert the radial velocity into the pulsation velocity. Our analysis was aimed at deriving for the first time the projection factor of δ Scuti stars, using high-resolution spectra of the high-amplitude pulsator AI Vel and of the fast rotator β Cas. Methods: The geometric component of the projection factor (i.e. p0) was calculated using a limb-darkening model of the intensity distribution for AI Vel, and a fast-rotator model for β Cas. Then, using SOPHIE/OHP data for β Cas and HARPS/ESO data for AI Vel, we compared the radial velocity curves of several spectral lines forming at different levels in the atmosphere and derived the velocity gradient associated to the spectral-line-forming regions in the atmosphere of the star. This velocity gradient was used to derive a dynamical projection factor p. Results: We find a flat velocity gradient for both stars and finally p = p0 = 1.44 for AI Vel and p = p0 = 1.41 for β Cas. By comparing Cepheids and δ Scuti stars, these results bring valuable insights into the dynamical structure of pulsating star atmospheres. They suggest that the period-projection factor relation derived for Cepheids is also applicable to δ Scuti stars pulsating in a dominant radial mode. This work uses observations made with the HARPS instrument at the 3.6 m telescope (La Silla, Chile) in the framework of the LP185.D-0056 and with the SOPHIE instrument at OHP (France).

  5. Modeling of High Capacity Passive Cooling System

    DTIC Science & Technology

    2009-03-01

    Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat

  6. Studies on the latitudinal distribution of ground-based geomagnetic pulsations and fluctuations in the interplanetary medium using discrete mathematical analysis methods

    NASA Astrophysics Data System (ADS)

    Zelinsky, N. R.; Kleimenova, N. G.; Malysheva, L. M.

    2014-07-01

    Ground-based geomagnetic Pc5 (2-7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ˜ 30-50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called "anomaly rectification" in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth's magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.

  7. A non-pulsating neutron star in the supernova remnant HESS J1731-347/G353.6-0.7 with a carbon atmosphere

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Pühlhofer, G.; Suleimanov, V.; Simon, S.; Werner, K.; Santangelo, A.

    2013-08-01

    Context. The central compact object (CCO) candidate in the center of the supernova remnant shell HESS J1731-347/G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray spectrum. If the absence of pulsations is interpreted as evidence for the emitting surface area being the entire neutron star surface, the assumption of the measured flux being due to a blackbody emission translates into a source distance that is inconsistent with current estimates of the remnant's distance. Aims: With the best available observational data, we extended the pulse period search down to a sub-millisecond time scale and used a carbon atmosphere model to describe the X-ray spectrum of the CCO and to estimate geometrical parameters of the neutron star. Methods: To search for pulsations we used data of an observation of the source with XMM-Newton performed in timing mode. For the spectral analysis, we used earlier XMM-Newton observations performed in imaging mode, which permits a more accurate treatment of the background. The carbon atmosphere models used to fit the CCO spectrum are computed assuming hydrostatic and radiative equilibria and take into account pressure ionization and the presence of spectral lines. Results: Our timing analysis did not reveal any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding further supports the hypothesis that the emitting surface area is the entire neutron star surface. The carbon atmosphere model provides a good fit to the CCO spectrum and leads to a normalization consistent with the available distance estimates of the remnant. The derived constraints on the mass and radius of the source are consistent with reasonable values of the neutron star mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347/G353.6-0.7 is the second object of this class for which a carbon atmosphere model provides a consistent description of X-ray emission.

  8. Analysis of Pulsating Components in the Eclipsing Binary Systems LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii, and V638 Scorpii

    NASA Astrophysics Data System (ADS)

    Streamer, M.; Bohlsen, T.; Ogmen, Y.

    2016-06-01

    Eclipsing binary stars are especially valuable for studies of stellar evolution. If pulsating components are also present then the stellar interior can be studied using asteroseismology techniques. We present photometric data and the analysis of the delta Scuti pulsations that we have discovered in five eclipsing binary systems. The systems are: LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii and V638 Scorpii. The dominant pulsation frequencies range between 13 - 29 cycles per day with semi-amplitudes of 4 - 20 millimagnitudes.

  9. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  10. Mathematical Modelling of the Infusion Test

    NASA Astrophysics Data System (ADS)

    Cieslicki, Krzysztof

    2007-01-01

    The objective of this paper was to improve the well established in clinical practice Marmarou model for intracranial volume-pressure compensation by adding the pulsatile components. It was demonstrated that complicated pulsation and growth in intracranial pressure during infusion test could be successfully modeled by the relatively simple analytical expression derived in this paper. The CSF dynamics were tested in 25 patients with clinical symptoms of hydrocephalus. Basing on the frequency spectrum of the patient's baseline pressure and identified parameters of CSF dynamic, for each patient an "ideal" infusion test curve free from artefacts and slow waves was simulated. The degree of correlation between simulated and real curves obtained from clinical observations gave insight into the adequacy of assumptions of Marmarou model. The proposed method of infusion tests analysis designates more exactly the value of the reference pressure, which is usually treated as a secondary and of uncertain significance. The properly identified value of the reference pressure decides on the degree of pulsation amplitude growth during IT, as well as on the value of elastance coefficient. The artificially generated tests with various pulsation components were also applied to examine the correctness of the used algorithm of identification of the original Marmarou model parameters.

  11. Doubled-lined eclipsing binary system KIC~2306740 with pulsating component discovered from Kepler space photometry

    NASA Astrophysics Data System (ADS)

    Yakut, Kadri

    2015-08-01

    We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.

  12. Petersen diagram revolution

    NASA Astrophysics Data System (ADS)

    Smolec, Radoslaw; Dziembowski, Wojciech; Moskalik, Pawel; Netzel, Henryka; Prudil, Zdenek; Skarka, Marek; Soszynski, Igor

    2017-09-01

    Over the recent years, the Petersen diagram for classical pulsators, Cepheids and RR Lyr stars, populated with a few hundreds of new multiperiodic variables. We review our analyses of the OGLE data, which resulted in a significant extension of the known, and in the discovery of a few new and distinct forms of multiperiodic pulsation. The showcase includes not only radial mode pulsators, but also radial-non-radial pulsators and stars with significant modulation observed on top of the beat pulsation. First theoretical models explaining the new forms of stellar variability are briefly discussed.

  13. Massive pulsating stars observed by BRITE-Constellation. I. The triple system β Centauri (Agena)

    NASA Astrophysics Data System (ADS)

    Pigulski, A.; Cugier, H.; Popowicz, A.; Kuschnig, R.; Moffat, A. F. J.; Rucinski, S. M.; Schwarzenberg-Czerny, A.; Weiss, W. W.; Handler, G.; Wade, G. A.; Koudelka, O.; Matthews, J. M.; Mochnacki, St.; Orleański, P.; Pablo, H.; Ramiaramanantsoa, T.; Whittaker, G.; Zocłońska, E.; Zwintz, K.

    2016-04-01

    Context. Asteroseismology of massive pulsating stars of β Cep and SPB types can help us to uncover the internal structure of massive stars and understand certain physical phenomena that are taking place in their interiors. We study β Centauri (Agena), a triple system with two massive fast-rotating early B-type components which show p- and g-mode pulsations; the system's secondary is also known to have a measurable magnetic field. Aims: This paper aims to precisely determine the masses and detect pulsation modes in the two massive components of β Cen with BRITE-Constellation photometry. In addition, seismic models for the components are considered and the effects of fast rotation are discussed. This is done to test the limitations of seismic modeling for this very difficult case. Methods: A simultaneous fit of visual and spectroscopic orbits is used to self-consistently derive the orbital parameters, and subsequently the masses, of the components. Time-series analysis of BRITE-Constellation data is used to detect pulsation modes and derive their frequencies, amplitudes, phases, and rates of frequency change. Theoretically-predicted frequencies are calculated for the appropriate evolutionary models and their stability is checked. The effects of rotational splitting and coupling are also presented. Results: The derived masses of the two massive components are equal to 12.02 ± 0.13 and 10.58 ± 0.18 M⊙. The parameters of the wider, A-B system, presently approaching periastron passage, are constrained. Analysis of the combined blue- and red-filter BRITE-Constellation photometric data of the system revealed the presence of 19 periodic terms, of which eight are likely g modes, nine are p modes, and the remaining two are combination terms. It cannot be excluded that one or two low-frequency terms are rotational frequencies. It is possible that both components of β Cen are β Cep/SPB hybrids. An attempt to use the apparent changes of frequency to distinguish which modes originate in which component did not succeed, but there is potential for using this method when more BRITE data become available. Conclusions: Agena seems to be one of very few rapidly rotating massive objects with rich p- and g-mode spectra, and precisely known masses. It can therefore be used to gain a better understanding of the excitation of pulsations in relatively rapidly rotating stars and their seismic modeling. Lacking proper mode identification, the pulsation frequencies found in β Cen cannot yet be used to constrain the internal structure of the components, but it may be possible to achieve this in the future with the use of spectroscopy and spectropolarimetry. In particular, these kinds of data can be used for mode identification since they provide new radial velocities. In consequence, they may help to improve the orbital solution, derive more precise masses, magnetic field strength and geometry, inclination angles, and reveal rotation periods. They may also help to assign pulsation frequencies to components. Finally, the case studied here illustrates the potential of BRITE-Constellation data for the detection of rich-frequency spectra of small-amplitude modes in massive pulsating stars. Based on data collected by the BRITE-Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA) and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Centre for Science (NCN).

  14. Pressure Pulsation in a High Head Francis Turbine Operating at Variable Speed

    NASA Astrophysics Data System (ADS)

    Sannes, D. B.; Iliev, I.; Agnalt, E.; Dahlhaug, O. G.

    2018-06-01

    This paper presents the preliminary work of the master thesis of the author, written at the Norwegian University of Science and Technology. Today, many Francis turbines experience formations of cracks in the runner due to pressure pulsations. This can eventually cause failure. One way to reduce this effect is to change the operation point of the turbine, by utilizing variable speed technology. This work presents the results from measurements of the Francis turbine at the Waterpower Laboratory at NTNU. Measurements of pressure pulsations and efficiency were done for the whole operating range of a high head Francis model turbine. The results will be presented in a similar diagram as the Hill Chart, but instead of constant efficiency curves there will be curves of constant peak-peak values. This way, it is possible to find an optimal operation point for the same power production, were the pressure pulsations are at its lowest. Six points were chosen for further analysis to instigate the effect of changing the speed by ±50 rpm. The analysis shows best results for operation below BEP when the speed was reduced. The change in speed also introduced the possibility to have other frequencies in the system. It is therefore important avoid runner speeds that can cause resonance in the system.

  15. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    NASA Astrophysics Data System (ADS)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  16. Ionospheric electron heating associated with pulsating auroras: joint optical and PFISR observations

    NASA Astrophysics Data System (ADS)

    Liang, J.; Donovan, E.; Spanswick, E.; Reimer, A.; Hampton, D. L.; Varney, R. H.

    2017-12-01

    In a recent survey based upon Swarm satellite data, Liang et al. [2017] repeatedly identified a strong electron temperature (Te) enhancement associated with the pulsating aurora at Swarm altitudes ( 460 km). The observation of Te enhancement is not contingent upon whether the pulsating patch is "on" or "off" at the satellite traversal epoch. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the 4D (space-time) variations of the Te enhancement in association with the pulsating aurora. In a long-lasting pulsating auroral event on 19 March 2015, we identify strong Te enhancements ( 600-1200 K) in the upper F-region ionosphere ( 300-600 km altitude) in conjunction to the passage of pulsating auroras over PFISR beams. The spatial-temporal variations of PFISR Te enhancement are found to generally conform to the variations of pulsating auroras. However, collocated meridian spectrograph observations suggest that the pulsating auroras of interest are composed of energetic electron precipitation with characteristic energy ≥10 keV, which is not supposed to be efficient in heating electrons in the upper F-region. On the other hand, only moderate (<27%) Ne enhancements are found in the upper F-region during the pulsating aurora and Te enhancement interval. There are also moderate Te enhancements ( 100 K) in the E-region accompanying the pulsating auroras, but no clue of Te enhancement is found in the lower F-region. Based upon the above observations and simulations using the model developed in Liang et al. [2017], we propose that thermal conduction from the topside ionosphere, led by magnetospheric heat fluxes, constitutes the most likely underlying mechanism for the upper F-region electron heating associated with pulsating auroras. Such magnetospheric heat fluxes may be pertinent to one long-hypothesized feature of pulsating auroras, namely the existence of an enhanced low-energy plasma population in magnetospheric magnetic flux tubes threading the pulsating auroral patch. Liang, J. B. Yang, E. Donovan, J. Burchill, and D. Knudsen (2017), Ionospheric electron heating associated with pulsating auroras: A Swarm survey and model simulation, JGRA53073, in press

  17. An Analysis of Pulsating Subdwarf B Star EPIC 203948264 Observed During Campaign 2 of K2

    NASA Astrophysics Data System (ADS)

    Ketzer, Laura; Reed, Mike

    2017-10-01

    We present a preliminary analysis of the newly-discovered pulsating subdwarf B (sdB) star EPIC 203948264. The target was observed for 83 days in short cadence mode during Campaign 2 of K2, the two-gyro mission of the Kepler space telescope. A time-series analysis of the data revealed 22 independent pulsation frequencies in the g-mode region ranging from 100 to 600 μHz (0:5 to 2:8 hours). The main method we use to identify pulsation modes is asymptotic period spacing, and we were able to assign all but one of the pulsations to either l = 1 or l = 2. The average period spacings of both sequences are 261:34 ± 0.78 s and 151:18 ± 0.34 s, respectively. The pulsation amplitudes range from 0.77 ppt down to the detection limit at 0.212 ppt, and are not stable over the duration of the campaign. We detected one possible low-amplitude, l = 2, rotationally split multiplet, which allowed us to constrain the rotation period to 46 days or longer. This makes EPIC 203948264 another slowly rotating sdB star.

  18. Effects of Pump Pulsation on Hydrodynamic Properties and Dissolution Profiles in Flow-Through Dissolution Systems (USP 4).

    PubMed

    Yoshida, Hiroyuki; Kuwana, Akemi; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-06-01

    To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations. Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets. PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems. Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.

  19. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    NASA Astrophysics Data System (ADS)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  20. Tidal Asteroseismology

    NASA Astrophysics Data System (ADS)

    Burkart, Joshua

    2012-01-01

    The recently discovered Kepler system KOI-54 is a face-on eccentric binary consisting of two similar A stars. Its lightcurve exhibits 20 tidally excited pulsations at perfect harmonics of the orbital frequency, and another 10 nonharmonic pulsations. Analysis of such data is a new form of asteroseismology in which oscillation amplitudes and phases rather than frequencies contain information that can be mined to constrain stellar properties. I will discuss the physics of mode excitation and the range of harmonics expected to be observed. I will then show the results of numerical modeling of the pulsation spectrum, using a nonadiabatic stellar oscillation code including rotation in the "traditional approximation", which qualitatively reproduce the observations. I will discuss the evolutionary history of the KOI-54 system, and will show that the system is likely in a state of stochastic dynamical pseudosynchronization with stellar spin periods of 1.5 days, significantly faster than the classical theoretical prediction of 2.5 days. Time permitting, I will also address the nonharmonic pulsations observed in KOI-54, and show that they can be produced by nonlinear three-mode coupling.

  1. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.

  2. Searching for frequency multiplets in the pulsating subdwarf B star PG 1219+534

    NASA Astrophysics Data System (ADS)

    Crooke, John; Roessler, Ryan; Reed, Michael

    2017-01-01

    Subdwarf B (sdB) stars represent the stripped cores of horizontal branch stars. Pulsating sdB stars allow us to probe this important stage in evolution. Thanks to Kepler data, we now know that sdB star rotation periods are long; on the order of tens of days. This explains why they were not measured using ground-based follow-up data, which typically only spanned a week or two. Azimuthal pulsation degeneracies are removed by rotation, and so by detected pulsation frequency multiplets, we can determine pulsation modes and apply constraints to models, which tell us stellar structure. We need the ground-based observations as Kepler did not detect many p-mode pulsators, but rather almost exclusively g-mode pulsators. The shorter-period p-modes occur in hotter sdB stars, and so we need these to measure the pulsation dependence across the horizontal branch. During 2015, we observed PG 1219+534 (hereafter PG1219) over several months using our local 16 inch robotic telescope. Here we report preliminary results of processing those data to search for pulsation multiplets.

  3. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  4. First Optical Observations of Interhemispheric Electron Reflections Within Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Samara, M.; Michell, R. G.; Khazanov, G. V.

    2017-01-01

    A case study of a pulsating auroral event imaged optically at high time resolution presents direct observational evidence in agreement with the interhemispheric electron bouncing predicted by the Super Thermal Electron Transport model. Pulsation-on times are identified and subsequent equally spaced fainter pulsations are also noted and can be explained by a portion/percentage of the primary precipitating electrons reflecting upward from the ionosphere, traveling to the opposite hemisphere and reflecting upward again. The high time resolution of these data, combined with the short duration of the pulsation-on time (approx. 1 s) and the relatively long spacing between pulsations (approx. 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere.

  5. Pulsating B and Be stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Diago, P. D.; Gutiérrez-Soto, J.; Fabregat, J.; Martayan, C.

    2008-03-01

    Context: Stellar pulsations in main-sequence B-type stars are driven by the κ-mechanism due to the Fe-group opacity bump. The current models do not predict the presence of instability strips in the B spectral domain at very low metallicities. As the metallicity of the SMC is lower than Z = 0.005, it constitutes a very suitable object to test these predictions. Aims: The main objective is to investigate the existence of B-type pulsators at low metallicities, searching for short-term periodic variability in absorption-line B and Be stars in the SMC. The analysis has been performed in a sample of 313 B and Be stars with fundamental astrophysical parameters accurately determined from high-resolution spectroscopy. Methods: Photometric light curves of the MACHO project have been analyzed using standard Fourier techniques and linear and non-linear least squares fitting methods. The position of the pulsating stars in the HR diagram has been used to ascertain their nature and to map the instability regions in the SMC. Results: We have detected 9 absorption-line B stars showing short-period variability, two among them being multiperiodic. One star is most likely a β Cephei variable and the remaining 8 are SPB stars. The SPB instability strip in the SMC is shifted towards higher temperatures than the Galaxy. In the Be star sample, 32 stars are short-period variables, 20 among them multiperiodic. 4.9% of B stars and 25.3% of Be stars are pulsating stars. Conclusions: β Cephei and SPB stars do exist at the SMC metallicity. The fractions of SPB stars and pulsating Be stars in the SMC are lower than in the Galaxy. The fraction of pulsating Be stars in the SMC is much higher than the fraction of pulsating absorption-line B stars, as in the Galaxy.

  6. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  7. [Sterilization effect analysis of B-class pulsation table top vacuum sterilizer to dental handpieces].

    PubMed

    Zeng, Shu-Rong; Jiang, Bo; Xiao, Xiao-Rong

    2007-06-01

    Discuss sterilization effect of B-class pulsation table top vacuum pressure steam sterilizer for dental handpiece. Analysis selection of sterilizer for dental handpiece and sterilization management processes and sterilization effect monitoring, evaluation of monitoring result and effective sterilization method. The B-class pulsation table top vacuum pressure steam sterilizer to dental handpiece in West China Stomatological Hospital of Sichuan University met the requirement of the chemical and biological monitoring. Its efficiency of sterilization was 100%. The results of aerobic culture, anaerobic culture, B-type hepatitis mark monitoring to sterilized dental handpiece were negative. It is effective method for dental handpiece sterilization to use B-class pulsation table top vacuum pressure steam sterilizer.

  8. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE PAGES

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; ...

    2015-04-21

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  9. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  10. Pulsation in Chemically Peculiar Stars

    NASA Astrophysics Data System (ADS)

    Sachkov, M.

    2015-04-01

    Chemically peculiar stars offer the opportunity to study the interaction of strong magnetic fields, rotation, and pulsation. The rapidly oscillating chemically peculiar A stars (roAp) are a subgroup of the chemically peculiar magnetic A stars. They are high-overtone, low-degree p-mode pulsators. Until recently, the classical asteroseismic analysis, i.e., frequency analysis, of these stars was based on ground and space photometric observations. Significant progress was achieved through the access to the uninterrupted, ultra-high-precision data from the MOST, COROT, and Kepler satellites. Over the last ten years, the studies of roAp stars have been altered drastically from the observational point of view through the usage of time-resolved, high-resolution spectra. Their unusual pulsation characteristics, caused by the interplay between short vertical lengths of pulsation waves and strong stratification of chemical elements, allow us to examine the upper roAp atmosphere in more detail than is possible for any star except the Sun. In this paper a review of the results of recent studies of the pulsations of roAp stars is presented.

  11. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  12. The development of early pulsation theory, or, how Cepheids are like steam engines"

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2011-05-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A.S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. These theoretical models relied on highly speculative physics, but nonetheless returned very impressive results despite attacks from figures such as James Jeans. Surprisingly, the pulsation theory not only depended on developments in stellar physics, but also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  13. Pulsational mode-typing in line profile variables. I - Four Beta Cephei stars

    NASA Technical Reports Server (NTRS)

    Campos, A. J.; Smith, M. A.

    1980-01-01

    The detailed variations of line profiles in the Beta Cephei-type variable stars Gamma Pegasi, Beta Cephei, Delta Ceti and Sigma Scorpii are modeled throughout their pulsation cycles in order to classify the dominant pulsation mode as radial or nonradial. High-dispersion Reticon observations of the variables were obtained for the Si III line at 4567 A, and line profiles broadened by radial or nonradial pulsations, rotation and radial-tangential macroturbulence were calculated based on a model atmosphere. It is found that only a radial pulsation mode can reproduce the radial velocity amplitude, changes in line asymmetry and uniform line width observed in all four stars. Results are in agreement with the color-to-light arguments of Stamford and Watson (1978), and suggest that radial pulsation plays the dominant role in the observed variations in most Beta Cephei stars. Evidence for shocks or moving shells is also found in visual line data for Sigma Scorpii and an ultraviolet line of Beta Cephei, together with evidence of smooth, secular period changes in Beta Cephei and Delta Ceti.

  14. Physics and Chemistry of MW Laser-induced Discharge in Gas Flows and Plasma Jets

    DTIC Science & Technology

    2007-12-01

    with the large scaled flow pulsations . In 3.3 the results of numerical modeling of a thin low-density heated channel of limited length – shock layer...in Fig. 3.2.13. The red points correspond to the values of time moments for Fig. 3.2.11, 12. Mechanism of heated area boundary pulsations ...Mechanism of heated area boundary pulsations is analogical to described above mechanism of the bow shock position pulsations and is connected with

  15. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Arndt, Christoph M.; Carter, Campbell D.; Meier, Wolfgang

    2012-03-01

    A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ` noisy') flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (` quiet') flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.

  16. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    PubMed

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-03-01

    Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases.

  17. Long-Term Variability in o Ceti and Other Mira Variables: Signs of Supergranular Convection?

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Karovska, Margarita

    2009-09-01

    We describe our study of long-term variability of o Ceti (Mira A), the prototype of the Mira-type pulsating stars. Our study was originally undertaken to search for coherent long-period variability, but the results of our analysis didn't uncover this. However, we detected a low-frequency ``red noise'' in the Fourier spectrum of the o Ceti century-long light curve. We have since found similar behavior in other Miras and pulsating giant stars and have begun a study of a large sample of Mira variables. Similar red noise has been previously detected in red supergiants and attributed to supergranular convection. Its presence in Miras suggests the phenomenon may be ubiquitous in cool giant pulsators. These results support high-angular resolution observations of Miras and supergiants showing asymmetries in their surface brightness distributions, which may be due to large supergranular convection cells. Theoretical modeling, and numerical simulations of pulsation processes in late-type giants and supergiants should therefore take into account the effects of deep convection and large supergranular structures, which in turn may provide important insights into the behavior of Miras and other giant and supergiant pulsators. In this work, we summarize our results for o Ceti, present preliminary results of our broader study of Mira variables, and discuss how the results of this study may be used by future studies of AGB variables.

  18. First axion bounds from a pulsating helium-rich white dwarf star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battich, T.; Córsico, A.H.; Althaus, L.G.

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on theirmore » pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain g {sub ae} < 3.3 × 10{sup -13} for the axion-electron coupling constant, or m {sub a} cos{sup 2}β ∼< 11.5 meV for the axion mass. This constraint is relaxed to g {sub ae} < 5.5 × 10{sup -13} ( m {sub a} cos{sup 2}β ∼< 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.« less

  19. Observations and analysis of Alfvén wave phase mixing in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Sarris, T. E.; Wright, A. N.; Li, X.

    2009-03-01

    Signatures of Alfvén wave phase mixing in the Earth's magnetosphere, observed as polarization rotation of a transverse, Pc5 magnetospheric pulsation, are presented and compared to theory. The polarization rotation occurred during a rare event of a dayside narrowband ULF magnetospheric pulsation that lasted for 5 consecutive days, from 24 to 30 November 1997; details of this event were reported by Sarris et al. (2009) through observations at geosynchronous orbit and on the ground. In this paper we investigate the polarization signatures of the pulsation by performing a detailed analysis of its transverse components as observed through hodogram plots. Density measurements from one of the Los Alamos National Laboratory (LANL) spacecraft which had its L shells closest to GOES-8 are used to calculate field line resonance frequencies at geosynchronous orbit; these frequency calculations show good agreement with the observed pulsations but also have a local time offset. For an instance of an observed polarization rotation we estimate the observed poloidal lifetime of the pulsation by the time taken for the poloidal and toroidal amplitudes to become equal, which we compare with the theoretical approximation to the poloidal lifetime, as calculated in a box model magnetosphere by Mann and Wright (1995). Density measurements from different LANL spacecraft at geosynchronous orbit and their varying L shells as derived from their varying local times are used to estimate a local gradient in the local Alfvén speed, which is then used in the calculation of the predicted poloidal lifetime. This is the first time that such polarization rotations are directly observed and compared with theoretical predictions.

  20. An eclipsing post common-envelope system consisting of a pulsating hot subdwarf B star and a brown dwarf companion

    NASA Astrophysics Data System (ADS)

    Schaffenroth, V.; Barlow, B. N.; Drechsel, H.; Dunlap, B. H.

    2015-04-01

    Hot subdwarf B stars (sdBs) are evolved, core helium-burning objects located on the extreme horizontal branch. Their formation history is still puzzling because the sdB progenitors must lose nearly all of their hydrogen envelope during the red-giant phase. About half of the known sdBs are in close binaries with periods from 1.2 h to a few days, which implies that they experienced a common-envelope phase. Eclipsing hot subdwarf binaries (also called HW Virginis systems) are rare but important objects for determining fundamental stellar parameters. Even more significant and uncommon are those binaries containing a pulsating sdB, since the mass can be determined independently by asteroseismology. Here we present a first analysis of the eclipsing hot subdwarf binary V2008-1753. The light curve shows a total eclipse, a prominent reflection effect, and low-amplitude pulsations with periods from 150 to 180 s. An analysis of the light- and radial velocity curves indicates a mass ratio close to q = 0.146, an radial velocity semi-amplitude of K = 54.6 km s-1, and an inclination of i = 86.8°. Combining these results with our spectroscopic determination of the surface gravity, log g = 5.83, the best-fitting model yields an sdB mass of 0.47 M⊙ and a companion mass of 69 MJup. Because the latter mass is below the hydrogen-burning limit, V2008-1753 represents the first HW Vir system that is known to consist of a pulsating sdB and a brown dwarf companion. Consequently, it holds strong potential for better constraining models of sdB binary evolution and asteroseismology.

  1. Testing the Model of Oscillating Magnetic Traps

    NASA Astrophysics Data System (ADS)

    Szaforz, Ż.; Tomczak, M.

    2015-01-01

    The aim of this paper is to test the model of oscillating magnetic traps (the OMT model), proposed by Jakimiec and Tomczak ( Solar Phys. 261, 233, 2010). This model describes the process of excitation of quasi-periodic pulsations (QPPs) observed during solar flares. In the OMT model energetic electrons are accelerated within a triangular, cusp-like structure situated between the reconnection point and the top of a flare loop as seen in soft X-rays. We analyzed QPPs in hard X-ray light curves for 23 flares as observed by Yohkoh. Three independent methods were used. We also used hard X-ray images to localize magnetic traps and soft X-ray images to diagnose thermal plasmas inside the traps. We found that the majority of the observed pulsation periods correlates with the diameters of oscillating magnetic traps, as was predicted by the OMT model. We also found that the electron number density of plasma inside the magnetic traps in the time of pulsation disappearance is strongly connected with the pulsation period. We conclude that the observations are consistent with the predictions of the OMT model for the analyzed set of flares.

  2. Occurrence and average behavior of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  3. Experimental study of pressure pulsations in the flow duct of a medium-size model hydroelectric generator with Francis turbine

    NASA Astrophysics Data System (ADS)

    Platonov, D. V.; Maslennikova, A. V.; Dekterev, D. A.; Minakov, A. V.; Abramov, A. V.

    2018-01-01

    In the present study, we report on the results of an experimental study of pressure pulsations in the flow duct of a medium-scale hydrodynamic bench with Francis turbine. In various regimes, integral and pulsation characteristics of the turbine were measured. With the help of high-speed filming, the structure of the flow behind the turbine runner was analyzed, and the influence of this structure on the intensity and frequency of pressure pulsations in the flow duct was demonstrated.

  4. Resonances as the general cause of the outbursts in the symbiotic system AG Draconis

    NASA Astrophysics Data System (ADS)

    Gális, R.; Hric, L.; Friedjung, M.; Petrík, K.

    1999-08-01

    The general behaviour of the symbiotic system AG Dra is studied in the context of the long-term photometry monitoring and radial velocity analysis. Period analysis of the data gave two values of periods, 549fd73 +/- 1fd59 and 355fd27 +/- 1fd82 days for orbital motion and pulsations of cool giant respectively. The new orbital elements have been determined as well as the new orbital and pulsation ephemerides respectively. The ratio of the orbital to the pulsation period is actually very close to 14/9, so resonance might occur. We suggested, that this is the general cause of the recurrence time of the active stages. The pulsations of the cool component are very probably non-radial, so accretion by the white dwarf is particularly high when the material ejected due to the pulsations, is ejected in certain directions with respect to the line joining the two stars. The manifestations of this phenomena are the observed outbursts themselves.

  5. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    PubMed Central

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-01-01

    AIMS/BACKGROUND: Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. METHODS: In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. RESULTS: Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. CONCLUSIONS: Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases. PMID:8703859

  6. Seismology of rapidly rotating and solar-like stars

    NASA Astrophysics Data System (ADS)

    Reese, Daniel Roy

    2018-05-01

    A great deal of progress has been made in stellar physics thanks to asteroseismology, the study of pulsating stars. Indeed, asteroseismology is currently the only way to probe the internal structure of stars. The work presented here focuses on some of the theoretical aspects of this domain and addresses two broad categories of stars, namely solar-like pulsators (including red giants), and rapidly rotating pulsating stars. The work on solar-like pulsators focuses on setting up methods for efficiently characterising a large number of stars, in preparation for space missions like TESS and PLATO 2.0. In particular, the AIMS code applies an MCMC algorithm to find stellar properties and a sample of stellar models which fit a set of seismic and classic observational constraints. In order to reduce computation time, this code interpolates within a precalculated grid of models, using a Delaunay tessellation which allows a greater flexibility on the construction of the grid. Using interpolated models based on the outputs from this code or models from other forward modelling codes, it is possible to obtain refined estimates of various stellar properties such as the mean density thanks to inversion methods put together by me and G. Buldgen, my former PhD student. Finally, I show how inversion-type methods can also be used to test more qualitative information such as whether a decreasing rotation profile is compatible with a set of observed rotational splittings and a given reference model. In contrast to solar-like pulsators, the pulsation modes of rapidly rotating stars remain much more difficult to interpret due to the complexity of the numerical calculations needed to calculate such modes, the lack of simple frequency patterns, and the fact that it is difficult to predict mode amplitudes. The work described here therefore focuses on addressing the above difficulties one at a time in the hopes that it will one day be possible to carry out detailed asteroseismology in these stars. First of all, the non-adiabatic pulsation equations and their numerical implementation are described. The variational principle and work integrals are addressed. This is followed by a brief classification of the pulsation modes one can expect in rapidly rotating stars. I then address the frequencies patterns resulting from acoustic island modes and the interpretations of observed pulsation spectra based on these. This is then followed by a description of mode identification techniques and the ongoing efforts to adapt them to rapid rotation. Finally, the last part briefly deals with mode excitation.

  7. Constraints on pre-main-sequence evolution from stellar pulsations

    NASA Astrophysics Data System (ADS)

    Casey, M. P.; Zwintz, K.; Guenther, D. B.

    2014-02-01

    Pulsating pre-main-sequence (PMS) stars afford the earliest opportunity in the lifetime of a star to which the concepts of asteroseismology can be applied. PMS stars should be structurally simpler than their evolved counterparts, thus (hopefully!) making any asteroseismic analysis relatively easier. Unfortunately, this isn't necessarily the case. The majority of these stars (around 80) are δ Scuti pulsators, with a couple of γ Doradus, γ Doradus - δ Scuti hybrids, and slowly pulsating B stars thrown into the mix. The majority of these stars have only been discovered within the last ten years, with the community still uncovering the richness of phenomena associated with these stars, many of which defy traditional asteroseismic analysis. A systematic asteroseismic analysis of all of the δ Scuti PMS stars was performed in order to get a better handle on the properties of these stars as a group. Some strange results have been found, including one star pulsating up to the theoretical acoustic cut-off frequency of the star, and a number of stars in which the most basic asteroseismic analysis suggests problems with the stars' positions in the Hertzsprung-Russell diagram. From this we get an idea of the\\break constraints - or lack thereof - that these results can put on PMS stellar evolution.

  8. Searching for X-ray Pulsations from Neutron Stars Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas

    2017-08-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.

  9. Searching for X-ray Pulsations from Neutron Stars Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  10. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  11. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, I.; Zijlstra, A. A., E-mail: iain.mcdonald-2@jb.man.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk

    2016-06-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to themore » first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.« less

  12. MOST light-curve analysis of the γ Doradus pulsator HR 8799, showing resonances and amplitude variations

    NASA Astrophysics Data System (ADS)

    Sódor, Á.; Chené, A.-N.; De Cat, P.; Bognár, Zs.; Wright, D. J.; Marois, C.; Walker, G. A. H.; Matthews, J. M.; Kallinger, T.; Rowe, J. F.; Kuschnig, R.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2014-08-01

    Context. The central star of the HR 8799 system is a γ Doradus-type pulsator. The system harbours four planetary-mass companions detected by direct imaging, and is a good solar system analogue. The masses of the companions are not accurately known because the estimation depends greatly on the age of the system, which is also not known with sufficient accuracy. Asteroseismic studies of the star might help to better constrain the age of HR 8799. We organized an extensive photometric and multi-site spectroscopic observing campaign to study the pulsations of the central star. Aims: The aim of the present study is to investigate the pulsation properties of HR 8799 in detail via the ultra-precise 47 d nearly continuous photometry obtained with the Microvariability and Oscillations in STars (MOST) space telescope, and to find as many independent pulsation modes as possible, which is the prerequisite for an asteroseismic age determination. Methods: We carried out Fourier analysis of the wide-band photometric time series. Results: We find that resonance and sudden amplitude changes characterize the pulsation of HR 8799. The dominant frequency is always at f1 = 1.978 d-1.Many multiples of one-ninth of the dominant frequency appear in the Fourier spectrum of the MOST data: n/9 f1, where n = {1,2,3,4,5,6,7,8,9,10,13,14,17,18}. Our analysis also reveals that many of these peaks show strong amplitude decrease and phase variations even on the 47 d time scale. The dependencies between the pulsation frequencies of HR 8799 make the planned subsequent asteroseismic analysis rather difficult. We point out some resemblance between the light curve of HR 8799 and the modulated pulsation light curves of Blazhko RR Lyrae stars. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  13. The attractor dimension of solar decimetric radio pulsations

    NASA Technical Reports Server (NTRS)

    Kurths, J.; Benz, A. O.; Aschwanden, M. J.

    1991-01-01

    The temporal characteristics of decimetric pulsations and related radio emissions during solar flares are analyzed using statistical methods recently developed for nonlinear dynamic systems. The results of the analysis is consistent with earlier reports on low-dimensional attractors of such events and yield a quantitative description of their temporal characteristics and hidden order. The estimated dimensions of typical decimetric pulsations are generally in the range of 3.0 + or - 0.5. Quasi-periodic oscillations and sudden reductions may have dimensions as low as 2. Pulsations of decimetric type IV continua have typically a dimension of about 4.

  14. Time-resolved spectral analysis of the pulsating helium star V652 Her

    NASA Astrophysics Data System (ADS)

    Jeffery, C. S.; Woolf, V. M.; Pollacco, D. L.

    2001-09-01

    A series of 59 moderate-resolution high signal-to-noise spectra of the pulsating helium star V652 Her covering 1.06 pulsation cycles was obtained with the William Herschel Telescope. These have been supplemented by archival ultraviolet and visual spectrophotometry and used to make a time-dependent study of the properties of V652 Her throughout the pulsation cycle. This study includes the following features: the most precise radial velocity curve for V652 Her measured so far, new software for the automatic measurement of effective temperature, surface gravity and projected rotation velocities from moderate-resolution spectra, self-consistent high-precision measurements of effective temperature and surface gravity around the pulsation cycle, a demonstration of excessive line-broadening at minimum radius and evidence for a pulsation-driven shock front, a new method for the direct measurement of the radius of a pulsating star using radial velocity and surface gravity measurements alone, new software for the automatic measurement of chemical abundances and microturbulent velocity, updated chemical abundances for V652 Her compared with previous work (\\cite{Jef99}), a reanalysis of the total flux variations (cf. \\cite{Lyn84}) in good agreement with previous work, and revised measurements of the stellar mass and radius which are similar to recent results for another pulsating helium star, BX Cir. Masses measured without reference to the ultraviolet fluxes turn out to be unphysically low (~0.18 M{\\odot}). The best estimate for the dimensions of V652 Her averaged over the pulsation cycle is given by: lt; Teff >=22 930+/-10 K and < log g > =3.46+/-0.05 (ionization equilibrium), < Teff > =20 950+/-70 K (total flux method), < R>=2.31+/-0.02 R{\\odot}, < L>=919+/-14 L{\\odot}, M=0.59+/-0.18 M{\\odot} and d=1.70+/-0.02 kpc. Two significant problems were encountered. The line-blanketed hydrogen-deficient model atmospheres used yield effective temperatures from the optical spectrum (ionization equilibrium) and visual and UV photometry (bolometric flux) that are inconsistent. Secondly, the IUE spectra are poorly distributed in phase and have low signal-to-noise. These problems may introduce systematic errors of up to 0.1 M{\\odot}. Based on observations obtained with the William Herschel Telescope, the United Kingdom Infrared Telescope, and on INES data from the IUE satellite.

  15. Four new massive pulsating white dwarfs including an ultramassive DAV

    NASA Astrophysics Data System (ADS)

    Curd, Brandon; Gianninas, A.; Bell, Keaton J.; Kilic, Mukremin; Romero, A. D.; Allende Prieto, Carlos; Winget, D. E.; Winget, K. I.

    2017-06-01

    We report the discovery of four massive (M > 0.8 M⊙) ZZ Ceti white dwarfs, including an ultramassive 1.16 M⊙ star. We obtained ground-based, time series photometry for 13 white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect monoperiodic pulsations in three of our targets (J1015, J1554 and J2038) and identify three periods of pulsation in J0840 (173, 327 and 797 s). Fourier analysis of the remaining nine objects does not indicate variability above the 4 detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass M = 1.14 ± 0.01 M⊙, hydrogen and helium envelope masses of MH = 5.8 × 10-7 M⊙ and MHe = 4.5 × 10-4 M⊙ and an expected core crystallized mass ratio of 50-70 per cent. J1015, J1554 and J2038 have masses in the range 0.84-0.91 M⊙ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass M > 0.85 M⊙, and detailed asteroseismic modelling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.

  16. Multiperiodic pulsations in the Be stars NW Serpentis and V1446 Aquilae

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Suárez, J. C.; Moya, A.; Garrido, R.; Hubert, A.-M.; Floquet, M.; Neiner, C.; Frémat, Y.

    2007-09-01

    Aims:We present accurate photometric time series of two Be stars: NW Ser and V1446 Aql. Both stars were observed at the Observatorio de Sierra Nevada (Granada) in July 2003 with an automatic four-channel Strömgren photometer. We also present a preliminary theoretical study showing that the periodic variations exhibited by these stars can be due to pulsation. Methods: An exhaustive Fourier analysis together with a least-square fitting has been carried out on the time series for all four Strömgren bands. Several independent frequencies and non-periodic trends explain most of the variance. A theoretical non-adiabatic code applied to stellar models for these stars shows that g-modes are unstable. Results: Both stars show rapid variations in amplitude, probably due to a beating phenomenon. Four significant frequencies have been detected for each star. Comparison of the observed amplitude ratios for each pulsational frequency with those calculated from theoretical pulsation codes allows us to estimate the pulsation modes associated with the different detected frequencies. NW Ser seems also to show unstable p-modes and thus could be one of the newly discovered β Cephei and SPB hybrid stars. Further spectroscopic observations are planned to study the stability of the detected frequencies. Tables A.1 and A.2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/472/565

  17. Strong Ionospheric Electron Heating Associated With Pulsating Auroras - A Swarm Survey

    NASA Astrophysics Data System (ADS)

    Liang, J.; Yang, B.; Burchill, J. K.; Donovan, E.; Knudsen, D. J.

    2016-12-01

    A pulsating aurora is a repetitive modulation of auroral luminosity with periods typically of the order of 1-30 sec. It is often observed in the equatorward portion of the auroral oval. While it is generally recognized that the ultimate source of the pulsating auroral precipitation comes from energetic electrons of magnetospheric origin, investigating the ionospheric signature of the pulsating aurora may offer clues to the magnetosphere-ionosphere coupling aspect of the pulsating aurora and, under certain circumstance, to the generation mechanism of the pulsating aurora. In this study, we perform an extensive survey on the ionospheric signatures (electron temperature, plasma density and field-aligned current etc.) of pulsating auroras using Swarm satellite data. Via the survey we repeatedly identify a strong electron temperature enhancement associated with the pulsating aurora. On average, the electron temperature at Swarm satellite altitude ( 500 km) increases from 2100 K at subauroral altitudes to a peak of 2900 K upon entering the pulsating aurora patch. This indicates that the pulsating auroras may act as an important heating source of the nightside ionosphere/thermosphere. On the other hand, no well-defined trend of plasma density variation associated with pulsating auroras is identified in the survey. There often exist moderate upward field-aligned currents (up to a few mA/m2) within the pulsating auroral patch when the patch is "on" during the traversal of satellites [Gillies et al., 2015], and the electron temperature enhancement is found to be positively correlated with the magnitude of the field-aligned current. In a few events with high-resolution Swarm electric field instrument (EFI) data, we find that the on-time pulsating auroral patch is associated with structured electric field disturbances with peaks exceeding 10 mV/m. Based upon observations and ionospheric models, we consider and evaluate several possible mechanisms that may account for the strong electron heating associated with the pulsating aurora, including the Joule heating related to the field-aligned current and to the structured electric field, the backscattered secondary electrons led by the impact of pulsating auroral precipitation, and the vertical conductive heat transport.

  18. β Lup, δ Lup, and τ^1 Lup observed by BRITE-Constellation

    NASA Astrophysics Data System (ADS)

    Cugier, H.; Pigulski, A.

    2017-09-01

    Time-series analysis of BRITE-Constellation photometry of β Lup, δ Lup and τ^1 Lup revealed 16, 22 and four pulsation modes, respectively. An attempt to constrain internal structure of these stars via seismic modelling was also made.

  19. Crystallization of the Pulsating White Dwarf Star, BPM 37093

    NASA Astrophysics Data System (ADS)

    Salois, Amee; Winget, D.

    2010-01-01

    BPM 37093 is unique among pulsating white dwarf stars because it is expected to have a highly crystallized interior. By understanding how this star is crystallizing, we gain a better understanding of extreme physics. Theoretical models of the evolution of white dwarf stars suggest that they crystallize from the inside out. The pulsations of the star, which we see as intensity variations, cannot penetrate this crystallized interior. Therefore, as the star crystallizes there is a smaller volume for the propagation of the pulsations and the pulsation periods are changed accordingly. We studied these changes in the periods of the pulsations of the star over ten weeks during the McDonald Observatory Research Experience for Undergraduates Program. By studying the changes in the pulsations periods of the star we can determine the mass fraction of the star that is crystallized. Comparing Fourier transforms of our observed light curves taken in 2004 and 2005 at CTIO with data taken in 1998 and 1999 by Kanaan et al. we hope to see the changes that have occurred in the star as well as determining a better approximation of the star's crystallized mass fraction.

  20. An additional pulsating mode (7.35 mHz) and pulsations timing variations of PG 1613+426

    NASA Astrophysics Data System (ADS)

    Otani, Tomomi; Oswalt, Terry D.; Majewski, Patrice; Jordan, Riley; Amaral, Marc; Moss, Adam

    2017-12-01

    We present the detection of an additional pulsation mode (7.35 mHz) of a subdwarf B star, PG 1613+426, and periodic Observed minus Calculated (O-C) variations for two existing pulsations. PG 1613+426 is near the hot end of the sdB instability strip. One pulsation mode (6.94 mHz) was detected so far by Bonanno et al. (2002) and another pulsation mode candidate (7.05 mHz) was proposed with a confidence level above 90% by Kuassivi and Ferlet (2005). To constrain sdB star evolutional scenarios, this star was monitored in 2010, 2011, 2015, and 2017 as a part of a project for finding companions to sdB stars using the pulsation timing method. The photometric analysis of those data shows an additional 7.35 mHz pulsation mode as well as the previously detected 6.93 mHz mode. However the 7.05 mHz mode was not detected. Nightly amplitude changes of 7.35 mHz mode were observed in the 2011 data, however the 2017 data did not show nightly amplitude shifts. O-C variations were detected in both 6.93 mHz and 7.35 mHz pulsations, indicating that PG 1613+426 may have a low mass companion star. However, more observations are needed to confirm it.

  1. Discovery and Asteroseismological Analysis of the Pulsating sdB Star PG 0014+067

    NASA Astrophysics Data System (ADS)

    Brassard, P.; Fontaine, G.; Billères, M.; Charpinet, S.; Liebert, James; Saffer, R. A.

    2001-12-01

    We report the discovery of low-amplitude, short-period, multiperiodic luminosity variations in the hot B subdwarf PG 0014+067. This star was selected as a potential target in the course of our ongoing survey to search for pulsators of the EC 14026 type. Our model atmosphere analysis of the time-averaged Multiple Mirror Telescope (MMT) optical spectrum of PG 0014+067 indicates that this star has Teff=33,550+/-380 K and logg=5.77+/-0.10, which places it right in the middle of the theoretical EC 14026 instability region in the logg-Teff plane. A standard analysis of our Canada-France-Hawaii Telescope (CFHT) light curve reveals the presence of at least 13 distinct harmonic oscillations with periods in the range 80-170 s. Fine structure (closely spaced frequency doublets) is observed in three of these oscillations, and five high-frequency peaks due to nonlinear cross frequency superpositions of the basic oscillations are also possibly seen in the Fourier spectrum. The largest oscillation has an amplitude ~=0.22% of the mean brightness of the star, making PG 0014+067 the EC 14026 star with the smallest intrinsic amplitudes so far. On the basis of the 13 observed periods, we carry out a detailed asteroseismological analysis of the data starting with an extensive search in parameter space for a model that could account for the observations. To make this search efficient, objective, and reliable, we use a newly developed period matching technique based on an optimization algorithm. This search leads to a model that can account remarkably well for the 13 observed periods in the light curve of PG 0014+067. A detailed comparison of the theoretical period spectrum of this optimal model with the distribution of the 13 observed periods leads to the realization that 10 other pulsations, with lower amplitudes than the threshold value used in our standard analysis, are probably present in the light curve of PG 0014+067. Altogether, we tentatively identify 23 distinct pulsation modes in our target star (counting the frequency doublets referred to above as single modes). These are all low-order acoustic modes with adjacent values of k and with l=0, 1, 2, and 3. They define a band of unstable periods, in close agreement with nonadiabatic pulsation theory. Furthermore, the average relative dispersion between the 23 observed periods and the periods of the corresponding 23 theoretical modes of the optimal model is only ~=0.8%, a remarkable achievement by asteroseismological standards. On the basis of our analysis, we infer that the global structural parameters of PG 0014+067 are logg=5.780+/-0.008, Teff=34,500K+/-2690 K, M*/Msolar=0.490+/-0.019, log(Menv/M*)=-4.31+/-0.22, and R/Rsolar=0.149+/-0.004. If we combine these estimates of the surface gravity, total mass, and radius with our value of the spectroscopic temperature (which is more accurately evaluated than its asteroseismological counterpart, in direct contrast to the surface gravity), we also find that PG 0014+067 has a luminosity L/Lsolar=25.5+/-2.5, has an absolute visual magnitude MV=4.48+/-0.12, and is located at a distance d=1925+/-195 pc (using V=15.9+/-0.1). If we interpret the fine structure (frequency doublets) observed in three of the 23 pulsations in terms of rotational splitting, we further find that PG 0014+067 rotates with a period of 29.2+/-0.9 hr and has a maximum rotational broadening velocity of Vsini<~6.2+/-0.4 km s-1. Based on observations gathered at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii.

  2. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim

    2015-08-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  3. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  4. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit (e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M1 = 1.84 ± 0.18 M⊙, M2 = 1.73 ± 0.17 M⊙ and radii of R1 = 2.01 ± 0.09 R⊙, R2 = 1.68 ± 0.08 R⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = -2 prograde modes.

  5. The Development of Early Pulsation Theory, or, How Cepheids Are Like Steam Engines

    NASA Astrophysics Data System (ADS)

    Stanley, M.

    2012-06-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A. S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. Surprisingly, the pulsation theory not only depended on novel developments in stellar physics, but the theory also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  6. The pulsation index, effective temperature, and thickness of the hydrogen layer in the pulsating DA white dwarf G117-B15A

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Mailloux, T. M.; Zhang, E.; Koester, D.; Stiening, R. F.; Bless, R. C.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    We have measured the amplitude of the 215 s pulsation of the pulsating DA white dwarf, or ZZ Ceti star, G117-B15A in six passbands with effective wavelengths from 1570 to 6730 A. We find that the index of the pulsation is l = 1 with a high degree of confidence, the first unambiguous determination of l for a pulsation of a ZZ Ceti star. We also find that log g and T(sub eff) are tightly correlated for model atmospheres that fit the data, such that at log g = 7.5 the temperature is 11,750 K and at log g = 8.0 the temperature is 12,375 K. Adopting log g = 7.97 +/- 0.06 from published observations of the optical spectrum of G117-B15A, the correlation yields T(sub eff) = 12,375 +/- 125 K. This temperature is free of flux calibration errors and should be substantially more reliable than temperatures derived for IUE spectra. Since G117-B15A is thought to lie close to the blue edge of the ZZ Ceti instability strip, this low temperature also implies a low temperature for the blue edge. Using pulsation models calculated by Fontaine et al. (1992) and Bradley (1994), we find that the mass of the hydrogen layer in G117-B15A lies between 1.0 x 10(exp -6) solar mass (for k = 1) and 8 x 10(exp -5) solar mass (for k = 2). This range of masses is (barely) consistent with the masses predicted by recent models for the ejection of planetary nebulae, (8-13) x 10(exp -5) solar mass. The mass is too large to be consistent with models invoking thin hydrogen layers to explain the spectral evolution of white dwarfs.

  7. Viscous Analysis of Pulsating Hydrodynamic Instability and Thermal Coupling Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that, when the burning rate is realistically allowed to depend on temperature as well as pressure, sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes like pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wave numbers are sufficiently small. This analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wave number perturbations, the intrinsic pulsating instability for small wave numbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  8. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. I. Description and validation of the model

    NASA Astrophysics Data System (ADS)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2017-10-01

    Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling offers new insight into the nature of pulsating stars.

  9. Structural and core parameters of the hot B subdwarf KPD 0629-0016 from CoRoT g-mode asteroseismology

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Charpinet, S.; Fontaine, G.; Green, E. M.; Brassard, P.

    2010-12-01

    Context. The asteroseismic exploitation of long period, g-mode hot B subdwarf pulsators (sdBVs), undermined so far by limitations associated with ground-based observations, has now become possible, thanks to high quality data obtained from space such as those recently gathered with the CoRoT (COnvection, ROtation, and planetary Transits) satellite. Aims: We propose a detailed seismic analysis of the sdBVs star KPD 0629-0016, the first compact pulsator monitored with CoRoT, using the g-mode pulsations recently uncovered by that space-borne observatory during short run SRa03. Methods: We use a forward modeling approach on the basis of our latest sdB models, which are now suitable for the accurate computation of the g-mode pulsation properties. The simultaneous match of the independent periods observed in KPD 0629-0016 with those of the models leads objectively to the identification of the pulsation modes and, more importantly, to the determination of the structural and core parameters of the star. Results: The optimal model we found closely reproduces the 18 observed periods retained in our analysis at a 0.23% level on average. These are identified as low-degree (ℓ = 1 and 2), intermediate-order (k = -9 through -74) g-modes. The structural and core parameters for KPD 0629-0016 are the following (formal fitting errors only): Teff = 26 290 ± 530 K, log g = 5.450 ± 0.034, M_* = 0.471 ± 0.002 M⊙, log (Menv/M_*) = -2.42 ± 0.07, log (1-Mcore/M_*) = -0.27 ± 0.01, and Xcore(C+O) = 0.41 ± 0.01. We additionally derive an age of 42.6 ± 1.0 Myr after the zero-age extreme horizontal branch, the radius R = 0.214 ± 0.009 R⊙, the luminosity L = 19.7 ± 3.2 L⊙, the absolute magnitude MV = 4.23 ± 0.13, the reddening index E(B-V) = 0.128 ± 0.023, and the distance d = 1190 ± 115 pc. Conclusions: The advent of high-precision time-series photometry from space with instruments like CoRoT now allows as demonstrated with KPD 0629-0016 the full exploitation of g-modes as deep probes of the internal structure of these stars, in particular for determining the mass of the convective core and its chemical composition. The CoRoT space mission, launched on December 27th 2006, has been developped and is operated by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.

  10. CRITICAL EVALUATION OF MAGNETIC FIELD DETECTIONS REPORTED FOR PULSATING B-TYPE STARS IN LIGHT OF ESPaDOnS, NARVAL, AND REANALYZED FORS1/2 OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultz, M.; Wade, G. A.; Grunhut, J.

    2012-05-01

    Recent spectropolarimetric studies of seven slowly pulsating B (SPB) and {beta} Cep stars have suggested that photospheric magnetic fields are more common in B-type pulsators than in the general population of B stars, suggesting a significant connection between magnetic and pulsational phenomena. We present an analysis of new and previously published spectropolarimetric observations of these stars. New Stokes V observations obtained with the high-resolution ESPaDOnS and Narval instruments confirm the presence of a magnetic field in one of the stars ({epsilon} Lup), but find no evidence of magnetism in five others. A re-analysis of the published longitudinal field measurements obtainedmore » with the low-resolution FORS1/2 spectropolarimeters finds that the measurements of all stars show more scatter from zero than can be attributed to Gaussian noise, suggesting the presence of a signal and/or systematic underestimation of error bars. Re-reduction and re-measurement of the FORS1/2 spectra from the ESO archive demonstrates that small changes in reduction procedure lead to substantial changes in the inferred longitudinal field, and substantially reduces the number of field detections at the 3{sigma} level. Furthermore, we find that the published periods are not unique solutions to the time series of either the original or the revised FORS1/2 data. We conclude that the reported field detections, proposed periods, and field geometry models for {alpha} Pyx, 15 CMa, 33 Eri, and V1449 Aql are artifacts of the data analysis and reduction procedures, and that magnetic fields at the reported strength are no more common in SPB/{beta} Cep stars than in the general population of B stars.« less

  11. Pulsation Modes of sdBV Stars Observed with Kepler

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Baran, A. S.; Quint, A. C.; Telting, J. H.; Østensen, R. H.; O'Toole, S. J.

    2012-03-01

    During the Kepler satellite's first year of operation, its short cadence observations were obtained in a survey mode where targets received one month of nearly continuous observations. 48 subdwarf B stars were observed of which 14 were found to be pulsators, with only one of these having predominantly short periods. The other 13 were mostly long-period (g-mode) pulsators. With Kepler's exquisite duty cycle and data quality, an average of 23 periods per star were detected with ranges from 6 to 44. As the g-mode pulsations are high-overtone (typically n > 10), asymptotic period relations could apply and so we searched for evenly spaced periods. We found these for l =1 and 2 modes in all but one of the Kepler stars and that one outlier has a very complex temporal spectrum caused by a close companion. We were able to associate 204 of 299 measured periods with l = 1 and 2 modes. Those results should provide tight constraints on pulsation models. However, they also offer a surprise as current structure models predict significant mode trapping, which is inconsistent with the period spacings we have found.

  12. Application of bifurcation analysis for determining the mechanism of coding of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Dik, O. E.; Shelykh, T. N.; Plakhova, V. B.; Nozdrachev, A. D.; Podzorova, S. A.; Krylov, B. V.

    2015-10-01

    The patch clamp method is used for studying the characteristics of slow sodium channels responsible for coding of nociceptive signals. Quantitative estimates of rate constants of transitions of "normal" and pharmacologically modified activation gating mechanisms of these channels are obtained. A mathematical model of the type of Hogdkin-Huxley nociceptive neuron membrane is constructed. Cometic acid, which is a drug substance of a new nonopioid analgesic, is used as a pharmacological agent. The application of bifurcation analysis makes it possible to outline the boundaries of the region in which a periodic impulse activity is generated. This boundary separates the set of values of the model parameter for which periodic pulsation is observed from the values for which such pulsations are absent or damped. The results show that the finest effect of modulation of physical characteristic of a part of a protein molecule and its effective charge suppresses the excitability of the nociceptive neuron membrane and, hence, leads to rapid reduction of pain.

  13. Probing pulsation physics by resolving dynamical structure in the photosphere of V652 Herculis

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon

    2015-08-01

    The extrem helium star V652 Herculis is pulsating in a fundamental radial model with a period of 0.1 d. Amongst many other unique properties, the radial motion of the surface can be cleanly divided into an intense acceleration phase followed by a near ballistic phase. The major question was whether the accelaration phase is shocked. In addition, the transparency of the hydrogen-deficient atmosphere means that layers of the atmosphere are observed which are deeper than is normal in hydrogen-rich stars. New observations have been able to resolve the vertical motion of the photosphere as a function of optical depth, and hence have mapped the outward passage of minimum radius. New hydrodynamic models for the pulsation are being developed, and these are coupled to a formal radiative transfer solution in order to model the dynamical spectrum directly. We will present the latest models for the pulsations in V652 Her, compare these with our Subaru high-resolution observations, and endeavour to extract new information about the overall and internal properties of V652 Her - the born-again rocket star.

  14. Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Donovan, E.; Reimer, A.; Hampton, D.; Zou, S.; Varney, R.

    2018-05-01

    In a recent study, Liang et al. (2017, https://doi.org/10.1002/2017JA024127) repeatedly identified strong electron temperature (Te) enhancements when Swarm satellites traversed pulsating auroral patches. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the F region plasma signatures related to pulsating auroras. On 19 March 2015 night, which contained multiple intervals of pulsating auroral activities, we identify a statistical trend, albeit not a one-to-one correspondence, of strong Te enhancements ( 500-1000 K) in the upper F region ionosphere during the passages of pulsating auroras over PFISR. On the other hand, there is no discernible and repeatable density enhancement in the upper F region during pulsating auroral intervals. Collocated optical and NOAA satellite observations suggest that the pulsating auroras are composed of energetic electron precipitation with characteristic energy >10 keV, which is inefficient in electron heating in the upper F region. Based upon PFISR observations and simulations from Liang et al. (2017) model, we propose that thermal conduction from the topside ionosphere, which is heated by precipitating low-energy electrons, offers the most likely explanation for the observed electron heating in the upper F region associated with pulsating auroras. Such a heating mechanism is similar to that underlying the "stable auroral red arcs" in the subauroral ionosphere. Our proposal conforms to the notion on the coexistence of an enhanced cold plasma population and the energetic electron precipitation, in magnetospheric flux tubes threading the pulsating auroral patch. In addition, we find a trend of enhanced ion upflows during pulsating auroral intervals.

  15. Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores

    NASA Astrophysics Data System (ADS)

    Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David

    2017-10-01

    Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.

  16. The pulsation-rotation interaction: Greatest hits and the B-side

    NASA Astrophysics Data System (ADS)

    Townsend, Rich

    2014-02-01

    It has long been known that rotation can have an appreciable impact on stellar pulsation - by modifying the usual p and g modes found in the non-rotating case, and by introducing new classes of modes. However, it's only relatively recently that advances in numerical simulations and complementary theoretical treatments have enabled us to model these phenomena in any great detail. In this talk I'll review highlights in this area (the `Greatest Hits'), before considering the flip side (or the `B-side', for those of us old enough to remember vinyl records) of the pulsation-rotation interaction: how pulsation can itself influence internal rotation profiles.

  17. A reexamination of ATS 6 magnetometer data for radially polarized Pc 3 magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcpherron, R. L.

    1983-01-01

    The polarization of Pc 3 (22-100 MHz) magnetic pulsations measured by the ATS 6 fluxgate magnetometer at synchronous orbit has been examined by using dynamic autospectral analysis. In contrast to the result obtained by Arthur et al. (1977) using the same data set, very few cases of radially polarized Pc 3 pulsations are found. It is suggested that satellite noise in the radial component, which depends on frequency f as 0.015/f (nT-squared/Hz), is responsible for this disagreement. In the presence of this type of noise, diagonalization of the spectral matrix can produce an erroneous major axis of polarization. Most Pc 3 pulsations classified as radially polarized by Arthur et al. appear to be a consequence of small amplitude azimuthal pulsations contaminated by satellite noise.

  18. Precision asteroseismology of the pulsating white dwarf GD 1212 using a two-wheel-controlled Kepler spacecraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermes, J. J.; Charpinet, S.; Barclay, Thomas

    We present a preliminary analysis of the cool pulsating white dwarf (WD) GD 1212, enabled by more than 11.5 days of space-based photometry obtained during an engineering test of the two-reaction-wheel-controlled Kepler spacecraft. We detect at least 19 independent pulsation modes, ranging from 828.2-1220.8 s, and at least 17 nonlinear combination frequencies of those independent pulsations. Our longest uninterrupted light curve, 9.0 days in length, evidences coherent difference frequencies at periods inaccessible from the ground, up to 14.5 hr, the longest-period signals ever detected in a pulsating WD. These results mark some of the first science to come from amore » two-wheel-controlled Kepler spacecraft, proving the capability for unprecedented discoveries afforded by extending Kepler observations to the ecliptic.« less

  19. Observational studies of roAp stars

    NASA Astrophysics Data System (ADS)

    Sachkov, M.

    2014-11-01

    Rapidly oscillating Ap (roAp) stars are high-overtone, low-degree p-mode pulsators that are also chemically peculiar magnetic A stars. Until recently the classical asteroseismic analysis i.e. frequency analysis, of these stars was based on ground and space photometric observations. Significant progress was achieved through access to uninterrupted, ultra-high-precision data from MOST, COROT and Kepler satellites. Over the last ten years the study of roAp stars has been altered drastically from an observational point of view through studies of time-resolved, high-resolution spectra. Their unusual pulsational characteristics, caused by an interplay between the short vertical lengths of the pulsation waves and strong stratification of chemical elements, allow us to examine the upper roAp atmosphere in more detail than is possible for any star except the Sun. In this paper I review the results of recent studies of the pulsations of roAp stars.

  20. ON A NEW THEORETICAL FRAMEWORK FOR RR LYRAE STARS. I. THE METALLICITY DEPENDENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marconi, M.; Coppola, G.; Musella, I.

    2015-07-20

    We present new nonlinear, time-dependent convective hydrodynamical models of RR Lyrae stars computed assuming a constant helium-to-metal enrichment ratio and a broad range in metal abundances (Z = 0.0001–0.02). The stellar masses and luminosities adopted to construct the pulsation models were fixed according to detailed central He-burning horizontal-branch evolutionary models. The pulsation models cover a broad range in stellar luminosity and effective temperatures and the modal stability is investigated for both fundamental (FU) and first overtone polsators (FOs). We predict the topology of the instability strip (IS) as a function of the metal content and new analytical relations for themore » edges of the IS in the observational plane. Moreover, a new analytical relation to constrain the pulsation mass of double pulsators as a function of the period ratio and the metal content is provided. We derive new Period–Radius–Metallicity relations for FU and FO pulsators. They agree quite well with similar empirical and theoretical relations in the literature. From the predicted bolometric light curves, transformed into optical (UBVRI) and near-infrared (NIR; JHK) bands, we compute the intensity-averaged mean magnitudes along the entire pulsation cycle and in turn new and homogenous metal-dependent (RIJHK) Period–Luminosity relations. Moreover, we compute new dual and triple-band optical, optical–NIR, and NIR Period–Wesenheit–Metallicity relations. Interestingly, we find that the optical Period-W(V, B–V) is independent of the metal content and that the accuracy of individual distances is a balance between the adopted diagnostics and the precision of photometric and spectroscopic data sets.« less

  1. KIC 6048106: an Algol-type eclipsing system with long-term magnetic activity and hybrid pulsations - I. Binary modelling

    NASA Astrophysics Data System (ADS)

    Samadi Ghadim, A.; Lampens, P.; Jassur, M.

    2018-03-01

    The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.

  2. Application of the results of experimental and numerical turbulent flow researches based on pressure pulsations analysis

    NASA Astrophysics Data System (ADS)

    Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhalev, Yuri A.; Khakhaleva, Larisa V.; Chukalin, Andrei V.

    2017-07-01

    The numerical investigation of the turbulent flow with the impacts, based on a modified Prandtl mixing-length model with using of the analysis of pulsations of pressure, calculation of structure and a friction factor of a turbulent flow is made. These results under the study allowed us to propose a new design of a cooled turbine blade and gas turbine mobile. The turbine blade comprises a combined cooling and cylindrical cavity on the blade surface, and on the inner surfaces of the cooling channels too damping cavity located on the guide vanes of the compressor of a gas turbine engine, increase the supply of gas-dynamic stability of the compressor of a gas turbine engine, reduce the resistance of the guide blades, and increase the efficiency of the turbine engine.

  3. Spectro-Interferometry Studies of Velocity-Related Phenomena at the Surface of Stars: Pulsation and Rotation

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Patru, Fabien; Aufdenberg, Jason

    We illustrate here two applications of spectro-interferometry to the study of velocity fields at the surface of stars: pulsation and rotation. Stellar pulsation has been resolved spectroscopically for a long time, and interferometry has resolved stellar diameters variations due to pulsation. Combining the two provides unique insights to the study of Cepheids, in particular regarding the structure of the photosphere or investigating the infamous projection factor which biases distances measured by the Baade-Wesselink method. On the other hand, resolving the surface velocity field of rotating stars offers a unique opportunity to potentially study differential rotation in other cases than for the Sun. We also present the model we have implemented recently, as well as two applications to VLTI/AMBER Data: the pulsation of Cepheids and the rotation of intermediate mass main sequence stars.

  4. Analysis of photometry of luminous hot stars from BRITE

    NASA Astrophysics Data System (ADS)

    Rybicka, M.

    2017-09-01

    The hot part of the Hertzsprung-Russell diagram contains many types of variable stars. The driving mechanisms are not yet understood. They can be pulsations, convection, stellar wind, granulation or other processes. The pulsations can be excited by different mechanisms. We will present here the results of the analysis of the BRITE-Constellation photometry of OB stars.

  5. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  6. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion. 1; Inviscid Analysis

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1999-01-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a non-zero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a non-steady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  7. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI.

    PubMed

    Yildiz, Selda; Thyagaraj, Suraj; Jin, Ning; Zhong, Xiaodong; Heidari Pahlavian, Soroush; Martin, Bryn A; Loth, Francis; Oshinski, John; Sabra, Karim G

    2017-08-01

    To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Generation of traveling atmospheric disturbances during pulsating geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gardner, Larry; Schunk, Robert

    Traveling Atmospheric Disturbances (TADs) are effective in transporting momentum and en-ergy deposited at high latitudes to the mid and low latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper ther-mosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here, a high-resolution global thermosphere-ionosphere model was used to study the basic characteristic of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the May 4, 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs were excited that propagated away form the auroral oval both toward the poles and toward the equator at all longitudes, with the maximum amplitudes between midnight and dawn. The TAD amplitudes were a maximum near the poles, diminished towards the equator and were larger on the nightside than on the dayside. The TADs propagated at a slight upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreas-ing latitude. The TADs crossed the equator and propagated to mid-latitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500-3000 km and the phase speeds from 800-1000 m/s. The maximum TAD perturbations are 20% for the mass density 14% for the neutral temperature and 100 m/s for the winds.

  9. Generation of traveling atmospheric disturbances during pulsating geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gardner, L. C.; Schunk, R. W.

    2010-08-01

    Traveling atmospheric disturbances (TADs) are effective in transporting momentum and energy deposited at high latitudes to the midlatitude and low-latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper thermosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here a high-resolution global thermosphere-ionosphere model was used to study the basic characteristics of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the 4 May 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs that propagated away from the auroral oval toward both the poles and the equator at all longitudes, with the maximum amplitudes between midnight and dawn, were excited. The TAD amplitudes were at maximum near the poles and diminished toward the equator and were larger on the nightside than on the dayside. The TADs propagated at a slightly upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreasing latitude. The TADs crossed the equator and propagated to midlatitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500 to 3000 km and the phase speeds vary from 800 to 1000 m/s. The maximum TAD perturbations are 20% for the mass density, 14% for the neutral temperature, and 100 m/s for the winds.

  10. Pressure pulsations in piping system excited by a centrifugal turbomachinery taking the damping characteristics into consideration

    NASA Astrophysics Data System (ADS)

    Hayashi, I.; Kaneko, S.

    2014-02-01

    Pressure pulsations excited by a centrifugal turbomachinery such as compressor, fan or pump at the blade passing frequency may cause severe noise and vibrations in piping system. Therefore, the practical evaluation method of pressure pulsations is strongly recommended. In particular, the maximum pressure amplitude under the resonant conditions should be appropriately evaluated. In this study, a one-dimensional excitation source model for a compressor or pump is introduced based on the equation of motion, so as to incorporate the non-linear damping proportional to velocity squared in the total piping system including the compressor or pump. The damping characteristics of the compressor or pump are investigated by using the semi-empirical model. It is shown that the resistance coefficient of the compressor or pump depends on the Reynolds number that is defined using the equivalent velocity of the pulsating flow. The frequency response of the pressure amplitude and the pressure distribution in the piping system can be evaluated by introducing the equivalent resistance of the compressor or pump and that of piping system. In particular, the relation of the maximum pressure amplitude in piping system to the location of the excitation source under resonant conditions can be evaluated. Finally, the reduction of the pressure pulsations by use of an orifice plate is discussed in terms of the pulsation energy loss.

  11. Photometric Study of the Pulsating, Eclipsing Binary OO Dra

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Yan, Z. Z.; Luo, Z. Q.; Luo, C. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  12. Small-Scale Features in Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, Sarah; Jaynes, Allison N.; Knudsen, David J.; Trondsen, Trond; Lessard, Marc

    2011-01-01

    A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the offphase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.

  13. Photometric study of the pulsating, eclipsing binary OO DRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component.more » A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.« less

  14. A Novel Approach to Solve Linearized Stellar Pulsation Equations

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Teitler, S.

    2011-01-01

    We present a new approach to modeling linearized, non-radial pulsations in differentially rotating, massive stars. As a first step in this direction, we consider adiabatic pulsations and adopt the Cowling approximation that perturbations of the gravitational potential and its radial derivative are negligible. The angular dependence of the pulsation modes is expressed as a series expansion of associated Legendre polynomials; the resulting coupled system of differential equations is then solved by finding the eigenfrequencies at which the determinant of a characteristic matrix vanishes. Our method improves on previous treatments by removing the requirement that an arbitrary normalization be applied to the eigenfunctions; this brings the benefit of improved numerical robustness.

  15. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} ergmore » s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).« less

  16. Computational predictions of flame spread over alcohol pools

    NASA Technical Reports Server (NTRS)

    Schiller, D. N.; Ross, H. D.; Sirignano, W. A.

    1993-01-01

    The effects of buoyancy and thermocapillarity on pulsating and uniform flame spread above n-propanol fuel pools have been studied using a numerical model. Data obtained indicate that the existence of pulsating flame spread is dependent upon the formation of a gas-phase recirculation cell which entrains evaporating fuel vapor in front of the leading edge of the flame. The size of the recirculation cell which is affected by the extent of liquid motion ahead of the flame, is shown to dictate whether flame spread is uniform or pulsating. The amplitude and period of the flame pulsations are found to be proportional to the maximum extent of the flow head. Under conditions considered, liquid motion was not affected appreciably by buoyancy. Horizontal convection in the liquid is the dominant mechanism for transporting heat ahead of the flame for both the pulsating and uniform regimes.

  17. An ultraviolet and visible spectroscopic study of a pulsational cycle of RY Sagittarii

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; Lawson, W. A.; Cottrell, P. L.; Whitney, Barbara A.; Stanford, S. Adam; De Ruyter, Frank

    1994-01-01

    High-dispersion visible and ultraviolet spectra and UBVRI photometry, covering a complete pulsation of the R Coronae Borealis star RY Sgr, have been obtained. The UV spectra were the first high-dispersion data ever obtained for the star. Together these observations comprise the most complete data set covering an RCB star pulsation cycle. The cycle observed was somewhat anomalous as it was affected by a second 55 day pulsation period as well as the primary 38 day period. However, the visible spectra showed the typical line splitting and radial velocity variations which have been observed previously. The simultaneous UV spectra showed much smaller, and phase-shifted, velocity variations than those seen in the visible. No evidence was seen of shock-induced emission at Mg II. These observations provide some support for the models of pulsating hydrogen deficient stars developed by Saio & Wheeler.

  18. 2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander

    2015-08-01

    We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.

  19. White dwarf variability with gPhoton: pulsators

    NASA Astrophysics Data System (ADS)

    Tucker, Michael A.; Fleming, Scott W.; Pelisoli, Ingrid; Romero, Alejandra; Bell, Keaton J.; Kepler, S. O.; Caton, Daniel B.; Debes, John; Montgomery, Michael H.; Thompson, Susan E.; Koester, Detlev; Million, Chase; Shiao, Bernie

    2018-04-01

    We present results from a search for short time-scale white dwarf variability using gPhoton, a time-tagged data base of GALEX photon events and associated software package. We conducted a survey of 320 white dwarf stars in the McCook-Sion catalogue, inspecting each for photometric variability with particular emphasis on variability over time-scales less than ˜30 min. From that survey, we present the discovery of a new pulsating white dwarf: WD 2246-069. A Ca II K line is found in archival ESO spectra and an IR excess is seen in WISE W1 and W2 bands. Its independent modes are identified in follow-up optical photometry and used to model its interior structure. Additionally, we detect UV pulsations in four previously known pulsating ZZ Ceti-type (DAVs). Included in this group is the simultaneous fitting of the pulsations of WD 1401-147 in optical, near-ultraviolet and far-ultraviolet bands using nearly concurrent Whole Earth Telescope and GALEX data, providing observational insight into the wavelength dependence of white dwarf pulsation amplitudes.

  20. Response of cricket and spider motion-sensing hairs to airflow pulsations

    PubMed Central

    Kant, R.; Humphrey, J. A. C.

    2009-01-01

    Closed-form analytical solutions are presented for the angular displacement, velocity and acceleration of motion-sensing filiform hairs exposed to airflow pulsations of short time duration. The specific situations of interest correspond to a spider intentionally moving towards a cricket, or an insect unintentionally moving towards or flying past a spider. The trichobothria of the spider Cupiennius salei and the cercal hairs of the cricket Gryllus bimaculatus are explored. Guided by earlier work, the spatial characteristics of the velocity field due to a flow pulsation are approximated by the local incompressible flow field due to a moving sphere. This spatial field is everywhere modulated in time by a Gaussian function represented by the summation of an infinite Fourier series, thus allowing an exploration of the spectral dependence of hair motion. Owing to their smaller total inertia, torsional restoring constant and total damping constant, short hairs are found to be significantly more responsive than long hairs to a flow pulsation. It is also found that the spider trichobothria are underdamped, while the cercal hairs of the cricket are overdamped. As a consequence, the spider hairs are more responsive to sudden air motions. Analysis shows that while two spiders of different characteristic sizes and lunge velocities can generate pulsations with comparable energy content, the associated velocity fields display different patterns of spatial decay with distance from the pulsation source. As a consequence, a small spider lunging at a high velocity generates a smaller telltale far-field velocity signal than a larger spider lunging at a lower velocity. The results obtained are in broad agreement with several of the observations and conclusions derived from combined flow and behavioural experiments performed by Casas et al. for running spiders, and by Dangles et al. for spiders and a physical model of spiders lunging at crickets. PMID:19324674

  1. The Spin Pulse of the Intermediate Polar V1062 Tauri

    NASA Technical Reports Server (NTRS)

    Hellier, Coel; Beardmore, A. P.; Mukai, Koji; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We combine ASCA and RXTE data of V1062 Tau to confirm the presence of a 62-min X-ray pulsation. We show that the pulsation is caused largely by the variation of dense partial absorption, in keeping with current models of accretion onto magnetic white dwarfs. Further parameterisation of the spin pulse is, however, hampered by ambiguities in the models.

  2. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pintore, F.; Mereghetti, S.; Zampieri, L.

    2017-02-10

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M {sub ⊙} black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model,more » consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.« less

  3. Asteroseismology and mass loss in Be stars. Study with CoRoT

    NASA Astrophysics Data System (ADS)

    Diago, P. D.

    The general aim of this work is the study of Be stars with the CoRoT space mission. The mechanisms responsible of the production and dynamics of the circumstellar gas in Be stars are still not constrained. Observations of non-radial pulsation beating phenomena connected to outbursts point toward a relevance of pulsation, but this mechanism cannot be generalized. In this regard, the observation of classical Be stars with the high-precision CoRoT satellite is providing important keys to understand the physics of these objects and the nature of the Be phenomenon. In order to study the light variations of the selected stars we use photometric and spectroscopic observations. These observations allow us to extract frequencies, amplitudes and phases of these variations. As we will show, these light variations can be connected with pulsations on the stellar surface. For carrying out the frequency analysis we have developed a new code based on standard Fourier analysis. The point is that this code, called PASPER, allows the frequency analysis of large sets of light curves in an automatic mode. This Ph.D. thesis is arranged as follows: In the first three Chapters we describe the scientific framework of this project, giving a brief description on Asteroseismology, presenting the current status of Be stars, and describing the basics of the Fourier analysis and the rudiments of the time series analysis. At the early begin of this Ph.D. thesis, the CoRoT satellite was still on ground getting ready for the launch. In this context, we perform a search for short-period B and Be star variables in the low metallicity environment of the Magellanic Clouds. This study constitutes the Part I of this Ph.D. thesis. This Part has a double goal: i) to test the frequency analysis codes; and ii) to detect observationally beta Cephei and SPB-like B-type pulsators in low metallicity environments, actually not predicted by the pulsational theory and models. This constitutes the PartI. Part II is devoted to the study of Be stars with the CoRoT space mission. Here we depict a complete review on the CoRoT mission. We also describe the results on the analysis of three Be stars from the CoRoT exoplanet field. Finally, we present the results on the frequency analysis of the late Be star HD50209, observed in the seismology field of the \\corot satellite. The analysis of this Be star has revealed up to sixty frequencies, grouped in six different and separated sets, attributed to g-mode pulsations. Finally, we resume the main conclusions of the whole project, including prospects and future work to be done. An addendum with all the published results derived from this project has been added at the end of this Part II. Part III encloses the Appendixes, providing a brief summary of this work in Spanish, a complete description on basic equations of non-radial oscillation, the user guide of the PASPER code and the user guide of the KURTZ_BOS code.

  4. VizieR Online Data Catalog: Pulsation model data for delta Cep and eta Aql (Merand+, 2015)

    NASA Astrophysics Data System (ADS)

    Merand, A.; Kervella, P.; Breitfelder, J.; Gallenne, A.; Coude du Foresto, V.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S.; Sturmann, L.; Sturmann, J.; Turner, N. H.

    2015-09-01

    FITS files containing the stars' (delta Cep and eta Aql) data and model presented in the paper. Each fits file has 3 HDU: 1- primary HDU: contains no data apart from the header. The header has the parameters of the model (keywords 'HIERARCH PARAM') as well as some other quantities derived from the modeling (keywords 'HIERARCH MODEL'). These quantities are aimed at people who would like to reproduce or compare their results with us. 2- 'DATA' HDU: this contains the data used for the fit. Each line is a scalar measurement described as follow: col1='MJD' (E) modified Julian date of the observations col2='OBS' (A50) description of the data point: the string before ";" defines the type, after ";" is the source. after | are anciliary data: for diam, UDdiam: [wavelengthum, interfbaseline_m] for mag: photometric band for color: photometric band1 - photometric band2 col3='MEAS' (E) the actual measurements. units are km/s for Vpuls or Vrad (which includes the p-factor correction), and mas (milli-arcseconds) for diameters (diam of UDdiam). col4='ERR' (E) the uncertainty on the measurement. col5='MODEL' (E) corresponding value predicted by the model col6='PHASE' (E) pulsation phase computed from the model ranges from 0 to 1. col7='PERIOD' (E) pulsation period computed from the model in days 3- 'MODEL' HDU: a tabulation of the pulsation model, as a function of pulsation phase. col1='PHASE' (E) phase from 0 to 1. col2='Vpuls' (E) pulsation velocity, in km/s. col3='Vrad' (E) radial velocity, in km/s. It is Vpuls/p-factor + Vgamma. col4='diam' (E) Rosseland angular diameter, in milliarcseconds (mas). col5='Teff' (E) effective temperature, in Kelvin. col6='Lum' (E) Luminosity in solar luminosities. col7='logg' (E) surface gravity, in log_10(cm/s2). col8,9,10='diamK xxxm' (E) biased angular diameters measured by an interferometer at baselines xxx (in m), for xxx=[100, 200, 300]. In milliarcseconds col>=11= 'MAG ...' or 'COLOR ...' (E) reddenned magnitudes or colors in various bands, depending on the data entry. '...' is the name of band for magnitudes, and pair of bands for colors. (6 data files).

  5. Detection of Geomagnetic Pulsations of the Earth Using GPS-TEC Data

    NASA Astrophysics Data System (ADS)

    Koroglu, Ozan; Arikan, Feza; Köroǧlu, Meltem; Sabri Ozkazanc, Yakup

    2016-07-01

    The magnetosphere of the Earth is made up of both magnetic fields and plasma. In this layer, plasma waves propagate as Ultra Low Frequency (ULF) waves having mHz scale frequencies. ULF waves are produced due to complicated solar-geomagnetic interactions. In the literature, these ULF waves are defined as pulsations. The geomagnetic pulsations are classified into main two groups as continuous pulsations (Pc) and irregular pulsations (Pi). These pulsations can be determined by ionospheric parameters due to the complex lithosphere-ionosphere-magnetosphere coupling processes. Total Electron Content (TEC) is one of the most important parameters for investigating the variability of ionosphere. Global Positioning System (GPS) provides a cost-effective means for estimating TEC from GPS satellite orbital height of 20,000 km to the ground based receivers. Therefore, the time series of GPS-TEC inherently contains the above mentioned ULF waves. In this study, time series analysis of GPS-TEC is carried out by applying periodogram method to the mid-latitude annual TEC data. After the analysis of GPS-TEC data obtained for GPS stations located in Central Europe and Turkey for 2011, it is observed that some of the fundamental frequencies that are indicators of Pc waves, diurnal and semi-diurnal periodicity and earth-free oscillations can be identified. These results will be used in determination of low frequency trend structure of magnetosphere and ionosphere. Further investigation of remaining relatively low magnitude frequencies, all Pi and Pc can be identified by using time and frequency domain techniques such as wavelet analysis. This study is supported by the joint TUBITAK 115E915 and joint TUBITAK114E092 and AS CR 14/001 projects.

  6. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  7. Optical interferometry and Gaia parallaxes for a robust calibration of the Cepheid distance scale

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Mérand, Antoine; Gallenne, Alexandre; Trahin, Boris; Borgniet, Simon; Pietrzynski, Grzegorz; Nardetto, Nicolas; Gieren, Wolfgang

    2018-04-01

    We present the modeling tool we developed to incorporate multi-technique observations of Cepheids in a single pulsation model: the Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). The combination of angular diameters from optical interferometry, radial velocities and photometry with the coming Gaia DR2 parallaxes of nearby Galactic Cepheids will soon enable us to calibrate the projection factor of the classical Parallax-of-Pulsation method. This will extend its applicability to Cepheids too distant for accurate Gaia parallax measurements, and allow us to precisely calibrate the Leavitt law's zero point. As an example application, we present the SPIPS model of the long-period Cepheid RS Pup that provides a measurement of its projection factor, using the independent distance estimated from its light echoes.

  8. Noise-driven switching and chaotic itinerancy among dynamic states in a three-mode intracavity second-harmonic generation laser operating on a Λ transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan

    2003-09-01

    We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.

  9. White Dwarf Asteroseismology and the 12C(α,γ)16O Rate

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2003-04-01

    Due to a new global analysis method, it is now possible to measure the internal composition of pulsating white dwarf stars, even with relatively simple theoretical models. The precise internal mixture of carbon and oxygen is the largest single source of uncertainty in ages derived from white dwarf cosmochronometry, and it contains information about the rate of the astrophysically important, but experimentally uncertain, 12C(α,γ)16O nuclear reaction. Recent determinations of the internal composition and structure of two helium-atmosphere variable (DBV) white dwarf stars, GD 358 and CBS 114, initially led to conflicting implied rates for the 12C(α,γ)16O reaction. If both stars were formed through single-star evolution, then the initial analyses of their pulsation frequencies must have differed in some systematic way. I present improved fits to the two sets of pulsation data, resolving the tension between the initial results and leading to a value for the 12C(α,γ)16O reaction rate that is consistent with recent laboratory measurements.

  10. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    NASA Astrophysics Data System (ADS)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  11. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    NASA Astrophysics Data System (ADS)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  12. Non-contact method of search and analysis of pulsating vessels

    NASA Astrophysics Data System (ADS)

    Avtomonov, Yuri N.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Despite the variety of existing methods of recording the human pulse and a solid history of their development, there is still considerable interest in this topic. The development of new non-contact methods, based on advanced image processing, caused a new wave of interest in this issue. We present a simple but quite effective method for analyzing the mechanical pulsations of blood vessels lying close to the surface of the skin. Our technique is a modification of imaging (or remote) photoplethysmography (i-PPG). We supplemented this method with the addition of a laser light source, which made it possible to use other methods of searching for the proposed pulsation zone. During the testing of the method, several series of experiments were carried out with both artificial oscillating objects as well as with the target signal source (human wrist). The obtained results show that our method allows correct interpretation of complex data. To summarize, we proposed and tested an alternative method for the search and analysis of pulsating vessels.

  13. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  14. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    NASA Astrophysics Data System (ADS)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand, and that some improvements of the theoretical models are required on the other hand in order to place the asteroseismological results on a firmer ground.

  15. The Baade-Wesselink projection factor of the δ-Scuti stars AI Vel and β Cas

    NASA Astrophysics Data System (ADS)

    Guiglion, G.; Nardetto, N.; Domiciano de Souza, A.; Mathias, P.; Mourard, D.; Poretti, E.

    2012-12-01

    The Baade-Wesselink method of distance determination is based on the oscillations of pulsating stars. After determining the angular diameter and the linear radius variations, the distance is derived by a simple ratio. The linear radius variation is measured by integrating the pulsation velocity (hereafter V_{puls}) over one pulsating cycle. However, from observations we have only access to the radial velocity (V_{rad}) because of the projection along the line-of-sight. The projection factor, used to convert the radial velocity into the pulsation velocity, is defined by: p = V_{puls} / V_{rad}. We aim to derive the projection factor for two δ-Scuti stars, the high amplitude pulsator AI Vel and the fast rotator β Cas. The geometric component of the projection factor is derived using a limb-darkening model of the intensity distribution of AI Vel, and a fast rotator model for β Cas. Then, by comparing the radial velocity curves of several spectral lines forming at different levels in the atmosphere, we derive directly the velocity gradient (in a part of the atmosphere of the star) using SOPHIE/OHP data for β Cas and HARPS/ESO data for AI Vel, which is used to derive a dynamical projection factor for both stars. We find p = 1.44 ± 0.05 for AI Vel and p = 1.41 ± 0.25 for β Cas. By comparing Cepheids and δ-Scuti stars, these results bring valuable insights into the dynamical structure of pulsating star atmospheres.

  16. Applying the new method of time-frequency transforms to the analysis of the characteristics of geomagnetic Pc5 pulsations

    NASA Astrophysics Data System (ADS)

    Zelinsky, N. R.; Kleimenova, N. G.; Gromova, L. I.

    2017-09-01

    This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29-30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.

  17. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam: Interaction and Radioactive Decay

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Nomoto, Ken'ichi; Blinnikov, Sergei; Sorokina, Elena; Quimby, Robert; Baklanov, Petr

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a 56Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of 56Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M⊙ ejecta and 20-40 M⊙ circumstellar medium. The ejected 56Ni mass is about 6 M⊙, which results from explosive nucleosynthesis with large explosion energy (2-3) × 1052 erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.

  18. Survey for δ Sct components in eclipsing binaries and new correlations between pulsation frequency and fundamental stellar characteristics

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.; Soydugan, E.; Zasche, P.

    2012-05-01

    CCD observations of 68 eclipsing binary systems, candidates for containing δ Scuti components, were obtained. Their light curves are analysed using the PERIOD04 software for possible pulsational behaviour. For the systems QY Aql, CZ Aqr, TY Cap, WY Cet, UW Cyg, HL Dra, HZ Dra, AU Lac, CL Lyn and IO UMa, complete light curves were observed due to the detection of a pulsating component. All of them, except QY Aql and IO UMa, are analysed with modern astronomical softwares in order to determine their geometrical and pulsational characteristics. Spectroscopic observations of WY Cet and UW Cyg were used to estimate the spectral class of their primary components, while for HZ Dra radial velocities of its primary were measured. O - C diagram analysis was performed for the cases showing peculiar orbital period variations, namely CZ Aqr, TY Cap, WY Cet and UW Cyg, with the aim of obtaining a comprehensive picture of these systems. An updated catalogue of 74 close binaries including a δ Scuti companion is presented. Moreover, a connection between orbital and pulsation periods, as well as a correlation between evolutionary status and dominant pulsation frequency for these systems, is discussed.

  19. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    PubMed

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  20. Development of Pulsating Twin Jets Mechanism for Mixing Flow Heat Transfer Analysis

    PubMed Central

    Abdullah, Shahrir

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency. PMID:24672370

  1. Cycles of self-pulsations in a photonic integrated circuit.

    PubMed

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  2. Pulsations in the Earth's Lower Ionosphere Synchronized With Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, Laura A.; Gallagher, Peter T.; McCauley, Joseph; Dennis, Brian R.; Ireland, Jack; Inglis, Andrew

    2017-10-01

    Solar flare emission at X-ray and extreme ultraviolet (EUV) energies can cause substantial enhancements in the electron density in the Earth's lower ionosphere. It has now become clear that flares exhibit quasi-periodic pulsations with timescales of minutes at X-ray energies, but to date, it has not been known if the ionosphere is sensitive to this variability. Here using a combination of very low frequency (24 kHz) measurement together with space-based X-ray and EUV observations, we report pulsations of the ionospheric D region, which are synchronized with a set of pulsating flare loops. Modeling of the ionosphere show that the D region electron density varies by up to an order of magnitude over the timescale of the pulsations (˜ 20 min). Our results reveal that the Earth's ionosphere is more sensitive to small-scale changes in solar soft X-ray flux than previously thought and implies that planetary ionospheres are closely coupled to small-scale changes in solar/stellar activity.

  3. Search for Optical Pulsation in M82 X-2

    NASA Astrophysics Data System (ADS)

    Collura, G.; Strader, P.; Meeker, S. R.; Szypryt, P.; Walter, A. B.; Bockstiegel, C.; Mazin, B. A.; Prince, T. A.

    2017-11-01

    We report on a search for optical pulsation from M82 X-2 over a range of periods. M82 X-2 is an X-ray pulsar with a 1.37s average spin period and a 2.5 day sinusoidal modulation. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 inch Hale telescope at the Palomar Observatory. We performed H test and χ 2 statistical analysis. No significant optical pulsations were found in the wavelength range of 3000-11000 Å with a pulsation period between 1.36262 and 1.37462 s. We found an upper limit on pulsed emission in the 4000-8000 Å wavelength range to be fainter than ˜20.5 mag AB , corresponding to ˜23 μJy.

  4. Evaluation of runner cone extension to dampen pressure pulsations in a Francis model turbine

    NASA Astrophysics Data System (ADS)

    Gogstad, Peter Joachim; Dahlhaug, Ole Gunnar

    2016-11-01

    Today's energy market has a high demand of flexibility due to introduction of other intermittent renewables as wind and solar. To ensure a steady power supply, hydro turbines are often forced to operate more at part load conditions. Originally, turbines were built for steady operation around the best efficiency point. The demand of flexibility, combined with old designs has showed an increase in turbines having problems with hydrodynamic instabilities such as pressure pulsations. Different methods have been investigated to mitigate pressure pulsations. Air injection shows a significant reduction of pressure pulsation amplitudes. However, installation of air injection requires extra piping and a compressor. Investigation of other methods such as shaft extension shows promising results for some operational points, but may significantly reduce the efficiency of the turbine at other operational points. The installation of an extension of the runner cone has been investigated at NTNU by Vekve in 2004. This has resulted in a cylindrical extension at Litjfossen Power Plant in Norway, where the bolt suffered mechanical failure. This indicates high amplitude pressure pulsations in the draft tube centre. The high pressure pulsation amplitudes are believed to be related to high tangential velocity in the draft tube. The mentioned runner cone extension has further been developed to a freely rotating extension. The objective is to reduce the tangential velocity in the draft tube and thereby the pressure pulsation amplitudes.

  5. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less

  6. High-resolution spectroscopy and abundance analysis of δ Scuti stars near the γ Doradus instability strip

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Niemczura, E.; Polińska, M.; Hełminiak, K. G.; Lampens, P.; Molenda-Żakowicz, J.; Ukita, N.; Kambe, E.

    2017-10-01

    δ Scuti stars are remarkable objects for asteroseismology. In spite of decades of investigations, there are still important questions about these pulsating stars to be answered, such as their positions in log Teff-log g diagram, or the dependence of the pulsation modes on atmospheric parameters and rotation. Therefore, we performed a detailed spectroscopic study of 41 δ Scuti stars. The selected objects are located near the γ Doradus instability strip to make a reliable comparison between both types of variables. Spectral classification, stellar atmospheric parameters (Teff, log g, ξ) and v sin I values were determined. The spectral types and luminosity classes of stars were found to be A1-F5 and III-V, respectively. The Teff ranges from 6600 to 9400 K, whereas the obtained log g values are from 3.4 to 4.3. The v sin I values were found between 10 and 222 km s-1. The derived chemical abundances of δ Scuti stars were compared to those of the non-pulsating stars and γ Doradus variables. It turned out that both δ Scuti and γ Doradus variables have similar abundance patterns, which are slightly different from the non-pulsating stars. These chemical differences can help us to understand why there are non-pulsating stars in classical instability strip. Effects of the obtained parameters on pulsation period and amplitude were examined. It appears that the pulsation period decreases with increasing Teff. No significant correlations were found between pulsation period, amplitude and v sin I.

  7. New pulsating white dwarfs in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Nilsson, R.; Uthas, H.; Ytre-Eide, M.; Solheim, J.-E.; Warner, B.

    2006-07-01

    The number of discovered non-radially pulsating white dwarfs (WDs) in cataclysmic variables (CVs) is increasing rapidly by the aid of the Sloan Digital Sky Survey (SDSS). We performed photometric observations of two additional objects, SDSS J133941.11+484727.5 (SDSS 1339), independently discovered as a pulsator by Gänsicke et al., and SDSS J151413.72+454911.9, which we identified as a CV/ZZ Ceti hybrid. In this Letter we present the results of the remote observations of these targets performed with the Nordic Optical Telescope (NOT) during the Nordic-Baltic Research School at Molėtai Observatory, and follow-up observations executed by NOT in service mode. We also present three candidates we found to be non-pulsating. The results of our observations show that the main pulsation frequencies agree with those found in previous CV/ZZ Ceti hybrids, but specifically for SDSS 1339 the principal period differs slightly between individual observations and also from the recent independent observation by Gänsicke et al. Analysis of SDSS colour data for the small sample of pulsating and non-pulsating CV/ZZ Ceti hybrids found so far seems to indicate that the r - i colour could be a good marker for the instability strip of this class of pulsating WDs. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. E-mail: ricky@astro.lu.se

  8. The nature of the driving mechanism in the pulsating hybrid PG 1159 star Abell 43

    NASA Astrophysics Data System (ADS)

    Quirion, P.-O.; Fontaine, G.; Brassard, P.

    2005-10-01

    We extend our previous pulsational stability analyses of PG 1159 stars by modeling the hybrid PG 1159 type star Abell 43. We show that the standard κ-mechanism due to the ionization of C and O in the envelope of this H-rich PG 1159 star is perfectly able to drive g-mode pulsations. Thus, contrary to a recent suggestion, there is no need to invoke any new or exotic mechanism to explain the pulsational instabilities observed in this particular star. Our expected instability band for l=1 modes extends in period from ~2604 s to ~5529 s, which is consistent with the available photometric observations of Abell 43. We also suggest that efforts to detect luminosity variations in its sibling NGC 7094 be pursued.

  9. Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Dong, Wen-Cai

    2013-08-01

    A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.

  10. Interpretation of the BRITE oscillation data of the hybrid pulsator ν Eridani: a call for the modification of stellar opacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daszyńska-Daszkiewicz, J.; Pamyatnykh, A. A.; Walczak, P.

    The analysis of the BRIght Target Explorer (BRITE) oscillation spectrum of the main-sequence early B-type star ν Eridani is presented in this paper. Only models with the modified mean opacity profile can account for the observed frequency ranges as well as for the values of some individual frequencies. The number of the κ-modified seismic models is constrained by the non-adiabatic parameter f, which is very sensitive to the opacity changes in the subphotospheric layers, where the pulsations are driven. We present an example of the model that satisfies all the above conditions. It seems that the OPLIB opacities are preferredmore » over those from the OPAL and OP projects. Finally and moreover, we discuss additional consequences of the opacity modification, namely, an enhancement of the efficiency of convection in the Z bump as well as an occurrence of close radial modes which is a kind of avoided-crossing phenomenon common for non-radial modes in standard main-sequence models.« less

  11. Interpretation of the BRITE oscillation data of the hybrid pulsator ν Eridani: a call for the modification of stellar opacities

    DOE PAGES

    Daszyńska-Daszkiewicz, J.; Pamyatnykh, A. A.; Walczak, P.; ...

    2016-12-22

    The analysis of the BRIght Target Explorer (BRITE) oscillation spectrum of the main-sequence early B-type star ν Eridani is presented in this paper. Only models with the modified mean opacity profile can account for the observed frequency ranges as well as for the values of some individual frequencies. The number of the κ-modified seismic models is constrained by the non-adiabatic parameter f, which is very sensitive to the opacity changes in the subphotospheric layers, where the pulsations are driven. We present an example of the model that satisfies all the above conditions. It seems that the OPLIB opacities are preferredmore » over those from the OPAL and OP projects. Finally and moreover, we discuss additional consequences of the opacity modification, namely, an enhancement of the efficiency of convection in the Z bump as well as an occurrence of close radial modes which is a kind of avoided-crossing phenomenon common for non-radial modes in standard main-sequence models.« less

  12. THE IMPACT OF SURFACE TEMPERATURE INHOMOGENEITIES ON QUIESCENT NEUTRON STAR RADIUS MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 inmore » the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.« less

  13. Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; Kero, Antti; Verronen, Pekka T.; Miyoshi, Yoshizumi; Oyama, Shin-Ichiro; Saito, Shinji

    2016-10-01

    Energetic particle precipitation into the upper atmosphere creates excess amounts of odd nitrogen and odd hydrogen. These destroy mesospheric and upper stratospheric ozone in catalytic reaction chains, either in situ at the altitude of the energy deposition or indirectly due to transport to other altitudes and latitudes. Recent statistical analysis of satellite data on mesospheric ozone reveals that the variations during energetic electron precipitation from Earth's radiation belts can be tens of percent. Here we report model calculations of ozone destruction due to a single event of pulsating aurora early in the morning on 17 November 2012. The presence of high-energy component in the precipitating electron flux (>200 keV) was detected as ionization down to 68 km altitude, by the VHF incoherent scatter radar of European Incoherent Scatter (EISCAT) Scientific Association (EISCAT VHF) in Tromsø, Norway. Observations by the Van Allen Probes satellite B showed the occurrence of rising tone lower band chorus waves, which cause the precipitation. We model the effect of high-energy electron precipitation on ozone concentration using a detailed coupled ion and neutral chemistry model. Due to a 30 min, recorded electron precipitation event we find 14% odd oxygen depletion at 75 km altitude. The uncertainty of the higher-energy electron fluxes leads to different possible energy deposition estimates during the pulsating aurora event. We find depletion of odd oxygen by several tens of percent, depending on the precipitation characteristics used in modeling. The effect is notably maximized at the sunset time following the occurrence of the precipitation.

  14. Design and Performance Improvement of AC Machines Sharing a Common Stator

    NASA Astrophysics Data System (ADS)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.

  15. On the relation between friction losses and pressure pulsations caused by Rotor Stator interaction on the Francis-99 turbine

    NASA Astrophysics Data System (ADS)

    Østby, Petter T. K.; Tore Billdal, Jan; Haugen, Bjørn; Dahlhaug, Ole Gunnar

    2017-01-01

    High head Francis runners are subject to pressure pulsations caused by rotor stator interaction. To ensure safe operation of such turbines, it is important to be able to predict these pulsations. For turbine manufacturers it is often a dilemma whether to perform very advanced and time consuming CFD calculations or to rely on simpler calculations to save development time. This paper tries to evaluate simplifications of the CFD model while still capturing the RSI phenomena and ensuring that the calculation does not underpredict the pressure amplitudes. The effects which turbulence modeling, wall friction, viscosity and mesh have on the pressure amplitudes will be investigated along with time savings with each simplification. The hypothesis is that rotor stator interaction is manly driven by inviscid flow and can therefore be modeled by the Euler equations.

  16. A Refined Search for Pulsations in White Dwarf Companions to Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Hermes, J. J.; Córsico, A. H.; Kosakowski, Alekzander; Brown, Warren R.; Antoniadis, John; Calcaferro, Leila M.; Gianninas, A.; Althaus, Leandro G.; Green, M. J.

    2018-06-01

    We present optical high-speed photometry of three millisecond pulsars with low-mass (<0.3 M⊙) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a M⋆ = 0.16 - 0.19M⊙ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.

  17. Automated detection of Pi 2 pulsations using wavelet analysis: 1. Method and an application for substorm monitoring

    USGS Publications Warehouse

    Nose, M.; Iyemori, T.; Takeda, M.; Kamei, T.; Milling, D.K.; Orr, D.; Singer, H.J.; Worthington, E.W.; Sumitomo, N.

    1998-01-01

    Wavelet analysis is suitable for investigating waves, such as Pi 2 pulsations, which are limited in both time and frequency. We have developed an algorithm to detect Pi 2 pulsations by wavelet analysis. We tested the algorithm and found that the results of Pi 2 detection are consistent with those obtained by visual inspection. The algorithm is applied in a project which aims at the nowcasting of substorm onsets. In this project we use real-time geomagnetic field data, with a sampling rate of 1 second, obtained at mid- and low-latitude stations (Mineyama in Japan, the York SAMNET station in the U.K., and Boulder in the U.S.). These stations are each separated by about 120??in longitude, so at least one station is on the nightside at all times. We plan to analyze the real-time data at each station using the Pi 2 detection algorithm, and to exchange the detection results among these stations via the Internet. Therefore we can obtain information about substorm onsets in real-time, even if we are on the dayside. We have constructed a system to detect Pi 2 pulsations automatically at Mineyama observatory. The detection results for the period of February to August 1996 showed that the rate of successful detection of Pi 2 pulsations was 83.4% for the nightside (18-06MLT) and 26.5% for the dayside (06-18MLT). The detection results near local midnight (20-02MLT) give the rate of successful detection of 93.2%.

  18. Multicolor Photometry and Time-resolved Spectroscopy of Two sdBV Stars

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; O'Toole, S. J.; Telting, J. H.; Østensen, R. H.; Heber, U.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; LaCluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Bean, J.

    2012-03-01

    Observational mode constraints have mostly been lacking for short period pulsating sdB stars, yet such identifications are vital to constrain models. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining radial velocity (RV) and multicolor measurements has also been shown as an effective means of constraining mode identifications. We present preliminary results for Feige 48 and EC 01541-1409 using both time-resolved spectroscopy and multicolor photometry and an initial examination of their pulsation modes using the atmospheric codes BRUCE and KYLIE.

  19. Observations and asteroseismic analysis of the rapidly pulsating hot B subdwarf PG 0911+456

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Green, E. M.; Van Grootel, V.; Fontaine, G.; Charpinet, S.; Lesser, M.; Brassard, P.; Sugimoto, T.; Chayer, P.; Fay, A.; Wroblewski, P.; Daniel, M.; Story, S.; Fitzgerald, T.

    2007-12-01

    Aims:The principal aim of this project is to determine the structural parameters of the rapidly pulsating subdwarf B star PG 0911+456 from asteroseismology. Our work forms part of an ongoing programme to constrain the internal characteristics of hot B subdwarfs with the long-term goal of differentiating between the various formation scenarios proposed for these objects. So far, a detailed asteroseismic interpretation has been carried out for 6 such pulsators, with apparent success. First comparisons with evolutionary theory look promising, however it is clear that more targets are needed for meaningful statistics to be derived. Methods: The observational pulsation periods of PG 0911+456 were extracted from rapid time-series photometry using standard Fourier analysis techniques. Supplemented by spectroscopic estimates of the star's mean atmospheric parameters, they were used as a basis for the “forward modelling” approach in asteroseismology. The latter culminates in the identification of one or more “optimal” models that can accurately reproduce the observed period spectrum. This naturally leads to an identification of the oscillations detected in terms of degree ℓ and radial order k, and infers the structural parameters of the target. Results: The high S/N low- and medium resolution spectroscopy obtained led to a refinement of the atmospheric parameters for PG 0911+456, the derived values being T_eff = 31 940 ± 220 K, log g = 5.767 ± 0.029, and log He/H = -2.548 ± 0.058. From the photometry it was possible to extract 7 independent pulsation periods in the 150-200 s range with amplitudes between 0.05 and 0.8% of the star's mean brightness. There was no indication of fine frequency splitting over the 68-day time baseline, suggesting a very slow rotation rate. An asteroseismic search of parameter space identified several models that matched the observed properties of PG 0911+456 well, one of which was isolated as the “optimal” model on the basis of spectroscopic and mode identification considerations. All the observed pulsations are identified with low-order acoustic modes with degree indices ℓ = 0,1,2 and 4, and match the computed periods with a dispersion of only 0.26%, typical of the asteroseismological studies carried out to date for this type of star. The inferred structural parameters of PG 0911+456 are T_eff = 31 940 ± 220 K (from spectroscopy), log {g} = 5.777 ± 0.002, Mast/M⊙ = 0.39 ± 0.01, log{M_env/Mast} = -4.69 ± 0.07, R/R⊙ = 0.133 ± 0.001 and L/L⊙ = 16.4 ± 0.8. We also derive the absolute magnitude MV = 4.82 ± 0.04 and a distance d = 930.3 ± 27.4 pc. This study made extensive use of the computing facilities offered by the Calcul en Midi-Pyrénées (CALMIP) project and the Centre Informatique National de l'Enseignement Supérieur (CINES), France. Some of the spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  20. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-11-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  1. KEPLER ECLIPSING BINARIES WITH DELTA SCUTI/GAMMA DORADUS PULSATING COMPONENTS. I. KIC 9851944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.

    2016-07-20

    KIC 9851944 is a short-period ( P = 2.16 days) eclipsing binary in the Kepler field of view. By combining the analysis of Kepler photometry and phase-resolved spectra from Kitt Peak National Observatory and Lowell Observatory, we determine the atmospheric and physical parameters of both stars. The two components have very different radii (2.27 R {sub ⊙}, 3.19 R {sub ⊙}) but close masses (1.76 M {sub ⊙}, 1.79 M {sub ⊙}) and effective temperatures (7026, 6902 K), indicating different evolutionary stages. The hotter primary is still on the main sequence (MS), while the cooler and larger secondary star hasmore » evolved to the post-MS, burning hydrogen in a shell. A comparison with coeval evolutionary models shows that it requires solar metallicity and a higher mass ratio to fit the radii and temperatures of both stars simultaneously. Both components show δ Scuti-type pulsations, which we interpret as p -modes and p and g mixed modes. After a close examination of the evolution of δ Scuti pulsational frequencies, we make a comparison of the observed frequencies with those calculated from MESA/GYRE.« less

  2. KIC 9533489: a genuine γ Doradus - δ Scuti Kepler hybrid pulsator with transit events

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Lampens, P.; Frémat, Y.; Southworth, J.; Sódor, Á.; De Cat, P.; Isaacson, H. T.; Marcy, G. W.; Ciardi, D. R.; Gilliland, R. L.; Martín-Fernández, P.

    2015-09-01

    Context. Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to study the full interior of the genuine hybrids, in which both low radial order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most δ Scuti stars also show long-period light variations represents a real challenge for theory. Aims: We aim at determining the pulsation frequencies of KIC 9533489, to search for regular patterns and spacings among them, and to investigate the stability of the frequencies and the amplitudes. An additional goal is to study the serendipitously detected transit events: is KIC 9533489 the host star? What are the limitations on the physical parameters of the involved bodies? Methods: We performed a Fourier analysis of all the available Kepler light curves. We investigated the frequency and period spacings and determined the stellar physical parameters from spectroscopic observations. We also modelled the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 d-1. The light variations are dominated by the beating of two dominant frequencies located at around 4 d-1. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v ≈ 70 km s-1, i> 70°) or a fast rotator (v ≈ 200 km s-1) with i ≈ 20°. The transit analysis disclosed that the transit events that occur with a ≈197 d period may be caused by a 1.6 RJup body orbiting a fainter star, which would be spatially coincident with KIC 9533489.

  3. Periodic Variations in the O - C Diagrams of Five Pulsation Frequencies of the DB White Dwarf EC 20058-5234

    NASA Astrophysics Data System (ADS)

    Dalessio, J.; Sullivan, D. J.; Provencal, J. L.; Shipman, H. L.; Sullivan, T.; Kilkenny, D.; Fraga, L.; Sefako, R.

    2013-03-01

    Variations in the pulsation arrival time of five independent pulsation frequencies of the DB white dwarf EC 20058-5234 individually imitate the effects of reflex motion induced by a planet or companion but are inconsistent when considered in unison. The pulsation frequencies vary periodically in a 12.9 year cycle and undergo secular changes that are inconsistent with simple neutrino plus photon-cooling models. The magnitude of the periodic and secular variations increases with the period of the pulsations, possibly hinting that the corresponding physical mechanism is located near the surface of the star. The phase of the periodic variations appears coupled to the sign of the secular variations. The standards for pulsation-timing-based detection of planetary companions around pulsating white dwarfs, and possibly other variables such as subdwarf B stars, should be re-evaluated. The physical mechanism responsible for this surprising result may involve a redistribution of angular momentum or a magnetic cycle. Additionally, variations in a supposed combination frequency are shown to match the sum of the variations of the parent frequencies to remarkable precision, an expected but unprecedented confirmation of theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  4. The discovery of two pulsating subdwarf B stars in NGC 6791 using Kepler data

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Baran, A.; Østensen, R. H.; Telting, J.; O'Toole, S. J.

    2012-12-01

    We report the discovery of two new pulsating subdwarf B (sdB) stars in the open cluster NGC 6791 using data from the Kepler spacecraft. Three sdB stars were observed for one month in short-cadence (1 min) mode and three months in long-cadence (30 min) mode during Quarter 11 (fall 2011). The stars have Kepler Input Catalogue numbers of 2437937, 2569576 and 2569583 with previous designations of B5, B3 and B6, respectively. Another sdB star exists in the cluster and it is also known to be a pulsator. We also obtained Nordic Optical Telescope spectra to update effective temperatures, surface gravities and helium abundances and compare the spectroscopic properties of all four stars on a uniform model grid. We detect four periodicities between 0.9 and 2.4 h in B3 above a detection limit of 0.53 parts per thousand (ppt) and nine periodicities between 1.1 and 2.2 h in B5 above a detection limit of 0.37 ppt. No pulsations were detected in B6 to the detection threshold of 0.29 ppt. The long-cadence data were less useful as few observations are obtained per pulsation period, yet they do indicate that the pulsations are variable from month to month. The spacings between the pulsation periods are similar to other g-mode pulsating sdB stars observed by Kepler, indicating that the periodicities can be associated witquals; 1 modes. A fit to the periods give spacings of 234.6 ± 0.6 and 242.6 ± 1.5 s for B3 and B5, respectively.

  5. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    NASA Astrophysics Data System (ADS)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the results, we observed significant correlations between ground magnetic pulsations and solar wind speed at difference earthquake epicenter depths. The details of the analysis will be discussed in the presentation.

  6. Observation and modeling of compressional Pi 3 magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Matsuoka, Hitoshi; Takahashi, K.; Yumoto, K.; Anderson, B. J.; Sibeck, D. G.

    1995-01-01

    Compressional magnetic pulsations with irregular waveforms and periods longer than 150 s (here termed Pi 3) have been studied by using data from Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) and GOES 5 and 6 in the dayside magnetosphere and compared with signatures on the ground at low latitudes by using data from Kakioka station (L = 1.25). On the ground, the pulsations appear in the horizontal component. A study of 17 such concurrent events during a 2-month period in 1986 reveals the following pulsation characteristics. (1) The peak-to-peak amplitudes in space (delta B(sub T)) and on the ground (delta H) are comparable and are in the range of 0.5-7 nT. (2) On the ground the pulsations can be seen at all local times, even at midnight, while at geostationary orbit they are observed only on the dayside with a clear amplitude maximum at noon. (3) The pulsations on the ground lag those observed by CCE near local noon, and the lag increases as the local time separation between CCE and the ground station increases. The time lag is 1-2 min longer when the ground station is on the nightside than when it is on the dayside. (4) The time lag between pulsations observed at geostationary orbit and near noon by CCE varies systematically with local time and is about 2 min per 6 hours of local time separation. These observations indicate that some nightside pulsations in the Pi 3 band have dayside origins. The position dependence of the pulsation amplitude can be explained well by changes in the magnetopause current, which are in turn presumably caused by changes in the solar wind dynamic pressure. The time lags observed in space are consistent with signal propagation in the MHD fast mode, but the variation in space-ground time lags with ground station local time must be attributed to another mechanism.

  7. Binarity and Variable Stars in the Open Cluster NGC 2126

    NASA Astrophysics Data System (ADS)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  8. Convection and Overshoot in Models of Doradus and Scuti Stars

    DOE PAGES

    Lovekin, Catherine C.; Guzik, Joyce Ann

    2017-10-27

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. Wemore » also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.« less

  9. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam:Interaction and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a {sup 56}Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of {sup 56}Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M {sub ⊙} ejecta and 20–40 M {submore » ⊙} circumstellar medium. The ejected {sup 56}Ni mass is about 6 M {sub ⊙}, which results from explosive nucleosynthesis with large explosion energy (2–3)×10{sup 52} erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.« less

  10. Convection and Overshoot in Models of Doradus and Scuti Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovekin, Catherine C.; Guzik, Joyce Ann

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. Wemore » also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.« less

  11. Convection and Overshoot in Models of γ Doradus and δ Scuti Stars

    NASA Astrophysics Data System (ADS)

    Lovekin, C. C.; Guzik, J. A.

    2017-11-01

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. We have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. We also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. As a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.

  12. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  13. A NEW ANALYSIS OF THE TWO CLASSICAL ZZ CETI WHITE DWARFS GD 165 AND ROSS 548. I. PHOTOMETRY AND SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giammichele, N.; Fontaine, G.; Bergeron, P.

    2015-12-10

    We present the first of a two-part seismic analysis of the two bright hot ZZ Ceti stars GD 165 and Ross 548. In this first part, we report the results of frequency extraction exercises based on time-series data sets of exceptional quality. We uncovered up to 13 independent pulsation modes in GD 165, regrouped into six main frequency multiplets. These include 9 secure (signal-to-noise ratio, S/N > 4) detections and 4 possible ones (4 ≥ S/N ≥ 3). Likewise, we isolated 11 independent modes in Ross 548 (9 secure and 2 possible detections), also regrouped into 6 multiplets. The multiplet structure is likely causedmore » by rotational splitting. We also provide updated estimates of the time-averaged atmospheric properties of these two pulsators in the light of recent developments on the front of atmospheric modeling for DA white dwarfs.« less

  14. Alterations of pulsation absorber characteristics in experimental hydrocephalus.

    PubMed

    Park, Eun-Hyoung; Dombrowski, Stephen; Luciano, Mark; Zurakowski, David; Madsen, Joseph R

    2010-08-01

    Analysis of waveform data in previous studies suggests that the pulsatile movement of CSF may play a role in attenuating strong arterial pulsations entering the cranium, and its effectiveness in attenuating these pulsations may be altered by changes in intracranial pressure (ICP). These findings were obtained in studies performed in canines with normal anatomy of the CSF spaces. How then would pulsation absorbance respond to changes in CSF movement under obstructive conditions such as the development of hydrocephalus? In the present study, chronic obstructive hydrocephalus was induced by the injection of cyanoacrylate gel into the fourth ventricle of canines, and pulsation absorbance was compared before and after hydrocephalus induction. Five animals were evaluated with simultaneous recordings of ICP and arterial blood pressure (ABP) before and at 4 and 12 weeks after fourth ventricle obstruction by cyanoacrylate. To assess how the intracranial system responds to the arterial pulsatile component, ABP and ICP waveforms recorded in a time domain had to be analyzed in a frequency domain. In an earlier study the authors introduced a particular technique that allows characterization of the intracranial system in the frequency domain with sufficient accuracy and efficiency. This same method was used to analyze the relationship between ABP and ICP waveforms recorded during several acute states including hyperventilation as well as CSF withdrawal and infusion under conditions before and after inducing chronic obstructive hydrocephalus. Such a relationship is reflected in terms of a gain, which is a function of frequency. The cardiac pulsation absorbance (CPA) index, which is simply derived from a gain evaluated at the cardiac frequency, was used to quantitatively evaluate the changes in pulsation absorber function associated with the development of hydrocephalus within each of the animals, which did become hydrocephalic. To account for normal and hydrocephalic conditions within the same animal and at multiple time points, statistical analysis was performed by repeated-measures ANOVA. The performance of the pulsation absorber as assessed by CPA significantly deteriorated after the development of chronic hydrocephalus. In these animals the decrement in CPA was far more significant than other anticipated changes including those in ICP, compliance, or ICP pulse amplitude. To the extent that the free CSF movement acts as a buffer of arterial pulsation input to flow in microvessels, alterations in the pulsation absorber may play a pathophysiological role. One measure of alterations in the way the brain deals with pulsatile input-the CPA measurement-changes dramatically with the imposition of hydrocephalus. Results in the present study suggest that CPA may serve as a complementary metric to the conventional static measure of intracranial compliance in other experimental and clinical studies.

  15. Constraints on the explosion mechanism and progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Blondin, Stéphane; Hillier, D. John; Khokhlov, Alexei

    2014-06-01

    Observations of SN 2011fe at early times reveal an evolution analogous to a fireball model of constant colour. In contrast, our unmixed delayed detonations of Chandrasekhar-mass white dwarfs (DDC series) exhibit a faster brightening concomitant with a shift in colour to the blue. In this paper, we study the origin of these discrepancies. We find that strong chemical mixing largely resolves the photometric mismatch at early times, but it leads to an enhanced line broadening that contrasts, for example, with the markedly narrow Si II 6355 Å line of SN 2011fe. We also explore an alternative configuration with pulsational-delayed detonations (PDDEL model series). Because of the pulsation, PDDEL models retain more unburnt carbon, have little mass at high velocity, and have a much hotter outer ejecta after the explosion. The pulsation does not influence the inner ejecta, so PDDEL and DDC models exhibit similar radiative properties beyond maximum. However, at early times, PDDEL models show bluer optical colours and a higher luminosity, even for weak mixing. Their early-time radiation is derived primarily from the initial shock-deposited energy in the outer ejecta rather than radioactive-decay heating. Furthermore, PDDEL models show short-lived C II lines, reminiscent of SN 2013dy. They typically exhibit lines that are weaker, narrower, and of near-constant width, reminiscent of SN 2011fe. In addition to multidimensional effects, varying configurations for such `pulsations' offer a source of spectral diversity amongst Type Ia supernovae (SNe Ia). PDDEL and DDC models also provide one explanation for low- and high-velocity-gradient SNe Ia.

  16. Analysis of pulsating spray flames propagating in lean two-phase mixtures with unity Lewis number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicoli, C.; Haldenwang, P.; Suard, S.

    2005-11-01

    Pulsating (or oscillatory) spray flames have recently been observed in experiments on two-phase combustion. Numerical studies have pointed out that such front oscillations can be obtained even with very simple models of homogeneous two-phase mixtures, including elementary vaporization schemes. The paper presents an analytical approach within the simple framework of the thermal-diffusive model, which is complemented by a vaporization rate independent of gas temperature, as soon as the latter reaches a certain thermal threshold ({theta}{sub v} in reduced form). The study involves the Damkoehler number (Da), the ratio of chemical reaction rate to vaporization rate, and the Zeldovich number (Ze)more » as essential parameters. We use the standard asymptotic method based on matched expansions in terms of 1/Ze. Linear analysis of two-phase flame stability is performed by studying, in the absence of differential diffusive effects (unity Lewis number), the linear growth rate of 2-D perturbations added to steady plane solutions and characterized by wavenumber k in the direction transverse to spreading. A domain of existence is found for the pulsating regime. It corresponds to mixture characteristics often met in air-fuel two-phase systems: low boiling temperature ({theta}{sub v} << 1), reaction rate not higher than vaporization rate (Da < 1, i.e., small droplets), and activation temperature assumed to be high compared with flame temperature (Ze {>=} 10). Satisfactory comparison with numerical simulations confirms the validity of the analytical approach; in particular, positive growth rates have been found for planar perturbations (k = 0) and for wrinkled fronts (k {ne} 0). Finally, comparison between predicted frequencies and experimental measurements is discussed.« less

  17. Ground-base multicolour photometry of NGC 6811

    NASA Astrophysics Data System (ADS)

    Ocando, S.; Martín-Ruiz, S.; Rodríguez, E.

    2017-03-01

    NGC 6811 is one of the four open clusters in the field of view of the Kepler space mission. Among its members there are several known pulsating A-F stars of the δ Scuti, γ Doradus, and hybrid type, which makes this cluster a very interesting object to study its pulsational content. During the summers of 2013 and 2014 we performed an extensive observational campaign using the 1.5 m telescope at the Sierra Nevada Observatory and multicolour photometry. New pulsating variables candidates were detected in this work. We fulfilled a frequency analysis for the known variables, with very good agreement with previous results. By using Str ̈omgren photometry we were able to obtain the main physical parameters of the stars such as temperature, surface gravity, metallicity and luminosity. We have also determined the corresponding frequency phase-shifts and amplitude ratios between different filters as a first step to identify the pulsational modes of the variables.

  18. Spatial Structure of Multimode Oscillations in a Solar Flare on 14 May 2013 in EUV and Radio Bands

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitry; Nakariakov, Valery; Nisticò, Giuseppe; Shibasaki, Kiyoto; Kupriyanova, Elena

    Quasi-periodic pulsations and coronal loop oscillations in an X-class solar flare on 14 May 2013 are considered. Rapidly decaying kink oscillations of coronal loops with periods of several minutes in the flaring active region detected in the EUV band with SDO/AIA after the impulsive phase of the flare. Oscillations of neighbouring loops are excited simultaneously, but get rapidly out of phase. In the impulsive phase, observations in the radio band with the Nobeyama Radioheliograph and Radiopolarimeter show quasi-periodic pulsations that are most pronounced in the 17 GHz band. In the correlation plots and the integrated flux the pulsations have a symmetric triangular shape. The period of pulsations is about 1 min. Analysis of the spatial locations of the radio sources reveal that the triangularity is likely to be caused by superposition of several harmonic modes.

  19. On ɛ-mechanism driven pulsations in VV 47

    NASA Astrophysics Data System (ADS)

    Sowicka, Paulina; Handler, Gerald; Jones, David

    2018-06-01

    We report new observations of the central star of the planetary nebula VV 47 carried out to verify earlier assertions that the short-period pulsation modes detected in the star are driven by the ɛ mechanism. In our data, VV 47 was not variable up to a limit of 0.52 mmag in the Fourier amplitude spectrum up to the Nyquist frequency of 21.7 mHz. Given this null result we re-analyzed the data set in which oscillations were claimed. After careful data reduction, photometry, extinction correction, and analysis with a conservative criterion of S/N ≥ 4 in the Fourier amplitude spectrum, we found that the star was not variable during the original observations. The oscillations reported earlier were due to an over-optimistic detection criterion. We conclude that VV 47 did not pulsate during any measurements at hand; the observational detection of ɛ-driven pulsations remains arduous.

  20. Study of pulsations of chemically peculiar a stars

    NASA Astrophysics Data System (ADS)

    Sachkov, M. E.

    2014-01-01

    Rapidly oscillating chemically peculiar A stars (roAp) pulsate in high-overtone, low degree p-modes and form a sub-group of chemically peculiar magnetic A stars (Ap). Until recently, the classical asteroseismic research, i.e., frequency analysis, of these stars was based on photometric observations both ground-based and space-based. Significant progress has been achieved by obtaining uninterrupted, ultra-high precision data from the MOST, COROT, and Kepler satellites. Over the last ten years, a real breakthrough was achieved in the study of roAp stars due to the time-resolved, high spectral resolution spectroscopic observations. Unusual pulsational characteristics of these stars, caused by the interaction between propagating pulsationwaves and strong stratification of chemical elements, provide an opportunity to study the upper roAp star atmosphere in more detail than is possible for any star but the Sun, using spectroscopic data. In this paper the results of recent pulsation studies of these stars are reviewed.

  1. HD 51844: An Am δ Scuti in a binary showing periastron brightening

    NASA Astrophysics Data System (ADS)

    Hareter, M.; Paparó, M.; Weiss, W.; García Hernández, A.; Borkovits, T.; Lampens, P.; Rainer, M.; De Cat, P.; Marcos-Arenal, P.; Vos, J.; Poretti, E.; Baglin, A.; Michel, E.; Baudin, F.; Catala, C.

    2014-07-01

    Context. Pulsating stars in binary systems are ideal laboratories to test stellar evolution and pulsation theory, since a direct, model-independent determination of component masses is possible. The high-precision CoRoT photometry allows a detailed view of the frequency content of pulsating stars, enabling detection of patterns in their distribution. The object HD 51844 is such a case showing periastron brightening instead of eclipses. Aims: We present a comprehensive study of the HD 51844 system, where we derive physical parameters of both components, the pulsation content and frequency patterns. Additionally, we obtain the orbital elements, including masses, and the chemical composition of the stars. Methods: Time series analysis using standard tools was employed to extract the pulsation frequencies. Photospheric abundances of 21 chemical elements were derived by means of spectrum synthesis. We derived orbital elements both by fitting the observed radial velocities and the light curves, and we did asteroseismic modelling as well. Results: We found that HD 51844 is a double lined spectroscopic binary. The determined abundances are consistent with δ Delphini classification. We determined the orbital period (33.498 ± 0.002 d), the eccentricity (0.484 ± 0.020), the mass ratio (0.988 ± 0.02), and the masses to 2.0 ± 0.2 M⊙ for both components. Only one component showed pulsation. Two p modes (f22 and f36) and one g mode (forb) may be tidally excited. Among the 115 frequencies, we detected triplets due to the frequency modulation, frequency differences connected to the orbital period, and unexpected resonances (3:2, 3:5, and 3:4), which is a new discovery for a δ Sct star. The observed frequency differences among the dominant modes suggest a large separation of 2.0-2.2 d-1, which are consistent with models of mean density of 0.063 g cm-3, and with the binary solution and TAMS evolutionary phase for the pulsating component. The binary evolution is in an intermediate evolutionary phase; the stellar rotation is super-synchronised, but circularisation of the orbit is not reached. Based on observations obtained with the HERMES spectrograph attached to the Mercator Telescope which is operated on the island of La Palma by the University of Leuven (IvS) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The HERMES spectrograph is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany. Based on CoRoT space-based photometric data; the CoRoT space mission was developed and operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations collected at La Silla Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6 m telescope, under programme LP185.D-0056.Table 9 is available in electronic form at http://www.aanda.org

  2. The null result of a search for pulsational variations of the surface magnetic field in the roAp star γ Equulei

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Ryabchikova, T.; Landstreet, J. D.; Weiss, W. W.

    2004-06-01

    We describe an analysis of the time-resolved measurements of the surface magnetic field in the roAp star γEqu. We have obtained a high-resolution and high signal-to-noise (S/N) spectroscopic time series, and the magnetic field was determined using Zeeman-resolved profiles of the FeII 6149.25 Åand FeI 6173.34 Ålines. Contrary to recent reports, we do not find any evidence of magnetic variability with pulsation phase, and derive an upper limit of 5-10 G for pulsational modulation of the surface magnetic field in γEqu.

  3. Pulsation of late B-type stars

    NASA Technical Reports Server (NTRS)

    Beardsley, W. R.; Worek, T. F.; King, M. W.

    1980-01-01

    Radial velocity observations of three of the brightest stars in the Pleiades, Alcyone, Maia and Taygeta, made during the course of one night, 25 October 1976, are discussed. All three stars were discovered to be pulsating with periods of a few hours. Analysis of all published radial velocities for each star, covering more than 70 years and approximately 100,000 cycles, has established the value of the periods to eight decimal places, and demonstrated constancy of the periods. However, amplitudes of the radial velocity variations change over long time intervals, and changes in spectral line intensities are observed in phase with the pulsation. All three stars may also be members of binary systems.

  4. Further studies of the pulsation period and orbital elements of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Schreier, E. J.

    1977-01-01

    The long- and short-term variability of the 4.8-s pulsation and the 2.1-day orbital periods of Centaurus X-3 are studied. The pulsation period decreases over 4 yr with a fractional change of -0.00028 per yr, but with rms fluctuations of 0.0002 s. In August-September 1972, a continuous transition from speedup to slowdown was observed. The orbital period also decreases over 4 yr with decrease of approximately 8 millionths per yr, and with significant fluctuations of the order of 0.00001 day over months. The orbital eccentricity is found to be about 0.0008. The pulsation-period variability is found to be consistent with a near balance between the Alfven and corotation radii in an accretion-disk model. The orbital-period variability is interpreted in terms of tidal circularization and possible mass transfer and loss.

  5. EVIDENCE FOR EVAPORATION-INCOMPLETE CONDENSATION CYCLES IN WARM SOLAR CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froment, C.; Auchère, F.; Bocchialini, K.

    2015-07-10

    Quasi-constant heating at the footpoints of loops leads to evaporation and condensation cycles of the plasma: thermal non-equilibrium (TNE). This phenomenon is believed to play a role in the formation of prominences and coronal rain. However, it is often discounted as being involved in the heating of warm loops because the models do not reproduce observations. Recent simulations have shown that these inconsistencies with observations may be due to oversimplifications of the geometries of the models. In addition, our recent observations reveal that long-period intensity pulsations (several hours) are common in solar coronal loops. These periods are consistent with thosemore » expected from TNE. The aim of this paper is to derive characteristic physical properties of the plasma for some of these events to test the potential role of TNE in loop heating. We analyzed three events in detail using the six EUV coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We performed both a differential emission measure (DEM) and a time-lag analysis, including a new method to isolate the relevant signal from the foreground and background emission. For the three events, the DEM undergoes long-period pulsations, which is a signature of periodic heating even though the loops are captured in their cooling phase, as is the bulk of the active regions. We link long-period intensity pulsations to new signatures of loop heating with strong evidence for evaporation and condensation cycles. We thus simultaneously witness widespread cooling and TNE. Finally, we discuss the implications of our new observations for both static and impulsive heating models.« less

  6. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    PubMed

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  7. Isolas of periodic passive Q-switching self-pulsations in the three-level:two-level model for a laser with a saturable absorber.

    PubMed

    Doedel, Eusebius J; Pando, Carlos L L

    2011-11-01

    We show that a fundamental feature of the three-level:two-level model, used to describe molecular monomode lasers with a saturable absorber, is the existence of isolas of periodic passive Q-switching (PQS) self-pulsations. A common feature of these closed families of periodic solutions is that they contain regions of stability of the PQS self-pulsation bordered by period-doubling and fold bifurcations, when the control parameter is either the incoherent external pump or the cavity frequency detuning. These findings unveil the fundamental solution structure that is at the origin of the phenomenon known as "period-adding cascades" in our system. Using numerical continuation techniques we determine these isolas systematically, as well as the changes they undergo as secondary parameters are varied.

  8. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick

    Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.

  9. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities

    DOE PAGES

    Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick; ...

    2015-08-13

    Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.

  10. A survey for pulsations in A-type stars using SuperWASP

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.

    2015-12-01

    "It is sound judgement to hope that in the not too distant future we shall be competent to understand so simple a thing as a star." - Sir Arthur Stanley Eddington, The Internal Constitution of Stars, 1926 A survey of A-type stars is conducted with the SuperWASP archive in the search for pulsationally variable stars. Over 1.5 million stars are selected based on their (J-H) colour. Periodograms are calculated for light curves which have been extracted from the archive and cleaned of spurious points. Peaks which have amplitudes greater than 0.5 millimagnitude are identified in the periodograms. In total, 202 656 stars are identified to show variability in the range 5-300 c/d. Spectroscopic follow-up was obtained for 38 stars which showed high-frequency pulsations between 60 and 235 c/d, and a further object with variability at 636 c/d. In this sample, 13 were identified to be normal A-type δ Sct stars, 14 to be pulsating metallic-lined Am stars, 11 to be rapidly oscillating Ap (roAp) stars, and one to be a subdwarf B variable star. The spectra were used not only to classify the stars, but to determine an effective temperature through Balmer line fitting. Hybrid stars have been identified in this study, which show pulsations in both the high- and low-overtone domains; an observation not predicted by theory. These stars are prime targets to perform follow-up observations, as a confirmed detection of this phenomenon will have significant impact on the theory of pulsations in A-type stars. The detected number of roAp stars has expanded the known number of this pulsator class by 22 per cent. Within these results both the hottest and coolest roAp star have been identified. Further to this, one object, KIC 7582608, was observed by the Kepler telescope for 4 yr, enabling a detailed frequency analysis. This analysis has identified significant frequency variations in this star, leading to the hypothesis that this is the first close binary star of its type. The observational results presented in this thesis are able to present new challenges to the theory of pulsations in A-type stars, with potentially having the effect of further delaying the full understanding of 'so simple a thing as a star'.

  11. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  12. Quasi-Periodic Pulsations in the Earth's Ionosphere Synchronized with Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, L.; Gallagher, P.; McCauley, J.; Dennis, B. R.; Ireland, J.; Inglis, A. R.

    2017-12-01

    Solar flare activity is a powerful factor affecting the geophysical processes in the Earth's ionosphere. In particular, X-ray photons with wavelength < 10 A can penetrate down to the D-region ( 60-90 km in altitude) resulting in a dramatic increase of ionization in this lowest lying region of the Earth's ionosphere. This manifests as a substantial enhancement of electron density height profile at these altitudes to extents large enough to change the propagation conditions for Very Low Frequency (VLF 3-30 kHz) radio waves that travel in the waveguide formed by the Earth and the lower ionosphere. Recently, it has become clear that flares exhibit quasi-periodic pulsations with periods of seconds to minutes at EUV, X-ray and gamma-ray wavelengths. To date, it has not been known if the Earth's ionosphere is sensitive to these dynamic solar pulsations. Here, we report ionospheric pulsations with periods of 20 minutes that are synchronized with a set of pulsating flare loops using VLF observations of the ionospheric D-layer together with X-ray and EUV observations of a solar flare from the NOAA/GOES and NASA/SDO satellites. Modeling of the ionosphere show that the D-region electron density varies by up to an order of magnitude over the timescale of the pulsations. Our results show that the Earth's ionosphere is more sensitive to small-scale changes in solar activity than previously thought.

  13. Examples of seismic modelling

    NASA Astrophysics Data System (ADS)

    Pamyatnykh, A. A.

    2008-12-01

    Findings of a few recent asteroseismic studies of the main sequence pulsating stars, as per- formed in Wojciech Dziembowski’s group in Warsaw and in Michel Breger’s group in Vienna, are briefly presented and discussed. The selected objects are three hybrid pulsators ν Eridani, 12 Lacertae and γ Pegasi, which show both β Cephei and SPB type modes, and the δ Scuti type star 44 Tauri.

  14. Comparison of the effects of continuous and pulsatile left ventricular-assist devices on ventricular unloading using a cardiac electromechanics model

    PubMed Central

    Lim, Ki Moo; Constantino, Jason; Gurev, Viatcheslav; Zhu, Renjun; Trayanova, Natalia A.

    2012-01-01

    Left ventricular-assist devices (LVADs) are used to supply blood to the body of patients with heart failure. Pressure unloading is greater for counter-pulsating LVADs than for continuous LVADs. However, several clinical trials have demonstrated that myocardial recovery is similar for both types of LVAD. This study examined the contractile energy consumption of the myocardium with continuous and counter-pulsating LVAD support to ascertain the effect of the different LVADs on myocardial recovery. We used a three-dimensional electromechanical model of canine ventricles, with models of the circulatory system and an LVAD. We compared the left ventricular peak pressure (LVPP) and contractile ATP consumption between pulsatile and continuous LVADs. With the continuous and counter-pulsating LVAD, the LVPP decreased to 46 and 10%, respectively, and contractile ATP consumption decreased to 60 and 50%. The small difference between the contractile ATP consumption of these two types of LVAD may explain the comparable effects of the two types on myocardial recovery. PMID:22076841

  15. Asymptotic study of pulsating evolution of overdriven and CJ detonation with a chain-branching kinetics model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Mark; Chliquete, Carlos

    2011-01-20

    The pulsating dynamics of gaseous detonations with a model two-step chain-branching kinetic mechanism are studied both numerically and asymptotically. The model studied here was also used in [4], [3] and [2] and mimics the attributes of some chain-branching reaction mechanisms. Specifically, the model comprises a chain-initiationlbranching zone with an Arrhenius temperature-sensitive rate behind the detonation shock where fuel is converted into chain-radical with no heat release. This is followed by a chain-termination zone having a temperature insensitive rate where the exothermic heat of reaction is released. The lengths of these two zones depend on the relative rates of each stage.more » It was determined in [4] and [3] via asymptotic and numerical analysis that the ratio of the length of the chain-branching zone to that of the chain-initation zone relative to the size of the von Neumann state scaled activation energy in the chain initiation/branching zone has a primary influence of the stability of one-dimensional pulsating instability behavior for this model. In [2], the notion of a specific stability parameter related to this ratio was proposed that determines the boundary between stable and unstable waves. In [4], a slow-time varying asymptotic study was conducted of pulsating instability of Chapman-Jouguet (CJ) detonations with the above two-step rate model, assuming a large activation energy for the chain-initiation zone and a chain-termination zone longer than the chain-initiation zone. Deviations D{sub n}{sup (1)} ({tau}) of the detonation velocity from Chapman-Jouguet were of the order of the non-dimensional activation energy. Solutions were sought for a pulsation timescale of the order of the non-dimensional activation energy times the particle transit time through the induction zone. On this time-scale, the evolution of the chain-initation zone is quasi-steady. In [4], a time-dependent non-linear evolution equation for D{sub n}{sup (1)} ({tau}) was then constructed via a perturbation procedure for cases where the ratio of the length of the chain-termination zone to chain-initiation zone was less than the non-dimensional activation energy. To leading order, the steady CJ detonation was found to be unstable; higher-order corrections lead to the construction of a stability limit between stable and unsteady pulsating solutions. One conclusion from this study is that for a stability limit to occur at leading order, the period of pulsation of the detonation must occur on the time scale of particle passage through the longer chain-termination zone, while the length of the chain-termination zone must be of order of the non-dimensional activation energy longer than the chain-initiation zone. The relevance of these suggested scalings was verified via numerical solutions of the full Euler system in [3], and formed the basis of the stability parameter criteria suggested in [2]. In the following, we formulate an asymptotic study based on these new suggested scales, studying the implications for describing pulsating behavior in gaseous chain-branching detonations. Specifically, we find that the chain-induction zone structure is the same as that studied in [4]. However, the study of unsteady evolution in the chain-termination region is now governed by a set of asymptotically derived nonlinear POEs. Equations for the linear stablity behavior of this set of POE's is obtained, while the nonlinear POEs are solved numerically using a shock-attached, shock-fitting method developed by Henrick et aJ. [1]. The results thus far show that the stability threshold calculated using the new ratio of the chain-termination zone length to that of the chain-initiation zone yields a marked improvement over [2]. Additionally, solutions will be compared with predictions obtained from the solution of the full Euler system. Finally, the evolution equation previously derived in [4] has been generalized to consider both arbitrary reaction orders and any degree of overdrive.« less

  16. ON THE CHALLENGING VARIABILITY OF LS IV-14{sup 0}116: PULSATIONAL INSTABILITIES EXCITED BY THE {epsilon}-MECHANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller Bertolami, M. M.; Corsico, A. H.; Althaus, L. G., E-mail: mmiller@fcaglp.unlp.edu.ar

    2011-11-01

    We investigate the pulsation driving mechanism responsible for the long-period photometric variations observed in LS IV-14{sup 0}116, a subdwarf B star showing a He-enriched atmospheric composition. To this end, we perform detailed nonadiabatic pulsation computations over fully evolutionary post-He-core-flash stellar structure models, appropriate for hot subdwarf stars at evolutionary phases previous to the He-core burning stage. We found that the variability of LS IV-14{sup 0}116 can be attributed to non-radial g-mode pulsations excited by the {epsilon}-mechanism acting in the He-burning shells that appear before the star settles in the He-core burning stage. Even more interestingly, our results show that LSmore » IV-14{sup 0}116 could be the first known pulsating star in which the {epsilon}-mechanism of mode excitation is operating. Last but not the least, we find that the period range of destabilized modes is sensitive to the exact location of the burning shell, something that might help in distinguishing between the different evolutionary scenarios proposed for the formation of this star.« less

  17. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  18. Core overshoot and convection in δ Scuti and γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Lovekin, Catherine; Guzik, Joyce A.

    2017-09-01

    The effects of rotation on pulsation in δ Scuti and γ Doradus stars are poorly understood. Stars in this mass range span the transition from convective envelopes to convective cores, and realistic models of convection are thus a key part of understanding these stars. In this work, we use 2D asteroseismic modelling of 5 stars observed with the Kepler spacecraft to provide constraints on the age, mass, rotation rate, and convective core overshoot. We use Period04 to calculate the frequencies based on short cadence Kepler observations of five γ Doradus and δ Scuti stars. We fit these stars with rotating models calculated using MESA and adiabatic pulsation frequencies calculated with GYRE. Comparison of these models with the pulsation frequencies of three stars observed with Kepler allowed us to place constraints on the age, mass, and rotation rate of these stars. All frequencies not identified as possible combinations were compared to theoretical frequencies calculated using models including the effects of rotation and overshoot. The best fitting models for all five stars are slowly rotating at the best fitting age and have moderate convective core overshoot. In this work, we will discuss the results of the frequency extraction and fitting process.

  19. Which evolutionary status does the Blue Large-Amplitude Pulsators stay at?

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2018-05-01

    Asteroseismology is a very useful tool for exploring the stellar interiors and evolutionary status and for determining stellar fundamental parameters, such as stellar mass, radius, surface gravity, and the stellar mean density. In the present work, we use it to preliminarily analyze the 14 new-type pulsating stars: Blue Large-Amplitude Pulsators (BLAPs) which is observed by OGLE project, to roughly analyze their evolutionary status. We adopt the theory of single star evolution and artificially set the mass loss rate of \\dot{M}=-2× 10^{-4} M_{⊙}/year and mass loss beginning at the radius of R = 40 R_{⊙} on red giant branch to generate a series of theoretical models. Based on these theoretical models and the corresponding observations, we find that those BLAP stars are more likely to be the core helium burning stars. Most of them are in the middle and late phase of the helium burning.

  20. Comparative pulsation calculations with OP and OPAL opacities

    NASA Technical Reports Server (NTRS)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  1. A double layer model for solar X-ray and microwave pulsations

    NASA Technical Reports Server (NTRS)

    Tapping, K. F.

    1986-01-01

    The wide range of wavelengths over which quasi-periodic pulsations have been observed suggests that the mechanism causing them acts upon the supply of high energy electrons driving the emission processes. A model is described which is based upon the radial shrinkage of a magnetic flux tube. The concentration of the current, along with the reduction in the number of available charge carriers, can rise to a condition where the current demand exceeds the capacity of the thermal electrons. Driven by the large inductance of the external current circuit, an instability takes place in the tube throat, resulting in the formation of a potential double layer, which then accelerates electrons and ions to MeV energies. The double layer can be unstable, collapsing and reforming repeatedly. The resulting pulsed particle beams give rise to pulsating emission which are observed at radio and X-ray wavelengths.

  2. A nonradial pulsation model for the rapidly rotating Delta Scuti star Kappa(2) Bootis

    NASA Technical Reports Server (NTRS)

    Kennelly, E. J.; Walker, G. A. H.; Hubeny, I.

    1991-01-01

    A sectorial nonradial pulsation model is used to construct theoretical line profiles which mimic the variations for Kappa(2) Boo. Synthetic spectra generated with the appropriate Teff and log g are used as input. It is found that the data can be reproduced by the combination of a high-degree l is approximately equal to 12 mode with P(osc) aproximately equal to 0.071 d, and a low-degree mode, l is approximately equal to 0-2 with P(osc) approximately equal to 0.071-0.079 d. The projected rotational velocity (v sin i - 115 +/-5 km/s) was determined by fitting synthetic line profiles to the observed spectra. The velocity amplitude of the high-degree oscillations is estimated to be about 3.5 km/s. It is found that the ratio of the horizontal and radial pulsation amplitudes is small (about 0.02) and consistent with p-mode oscillations. Comparisons are made with models invoking starspots, and it is impossible to fit the observations of Kappa(2) Boo by a starspot model without assuming unrealistic values of radius or equatorial velocity.

  3. SABRE observations of Pi2 pulsations: case studies

    NASA Astrophysics Data System (ADS)

    Bradshaw, E. G.; Lester, M.

    1997-01-01

    The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Correspondence to :P. Francia->

  4. A pulsation zoo in the hot subdwarf B star KIC 10139564 observed by Kepler

    NASA Astrophysics Data System (ADS)

    Baran, A. S.; Reed, M. D.; Stello, D.; Østensen, R. H.; Telting, J. H.; Pakštienë, E.; O'Toole, S. J.; Silvotti, R.; Degroote, P.; Bloemen, S.; Hu, H.; Van Grootel, V.; Clarke, B. D.; Van Cleve, J.; Thompson, S. E.; Kawaler, S. D.

    2012-08-01

    We present our analyses of 15 months of Kepler data on KIC 10139564. We detected 57 periodicities with a variety of properties not previously observed all together in one pulsating subdwarf B (sdB) star. Ten of the periodicities were found in the low-frequency region, and we associate them with nonradial g modes. The other periodicities were found in the high-frequency region, which are likely p modes. We discovered that most of the periodicities are components of multiplets with a common spacing. Assuming that multiplets are caused by rotation, we derive a rotation period of 25.6 ± 1.8 d. The multiplets also allow us to identify the pulsations to an unprecedented extent for this class of pulsator. We also detect l ≥ 2 multiplets, which are sensitive to the pulsation inclination and can constrain limb darkening via geometric cancellation factors. While most periodicities are stable, we detected several regions that show complex patterns. Detailed analyses showed that these regions are complicated by several factors. Two are combination frequencies that originate in the super-Nyquist region and were found to be reflected below the Nyquist frequency. The Fourier peaks are clear in the super-Nyquist region, but the orbital motion of Kepler smears the Nyquist frequency in the barycentric reference frame and this effect is passed on to the sub-Nyquist reflections. Others are likely multiplets but unstable in amplitudes and/or frequencies. The density of periodicities also makes KIC 10139564 challenging to explain using published models. This menagerie of properties should provide tight constraints on structural models, making this sdB star the most promising for applying asteroseismology. To support our photometric analysis, we have obtained spectroscopic radial-velocity measurements of KIC 10139564 using low-resolution spectra in the Balmer-line region. We did not find any radial-velocity variation. We used our high signal-to-noise average spectrum to improve the atmospheric parameters of the sdB star, deriving Teff = 31 859 K and log g = 5.673 dex. Based also on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  5. Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751

    NASA Astrophysics Data System (ADS)

    Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie

    2018-02-01

    We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at discovering stellar (planetary) companions around pulsating stars using timing methods, as both require very stable pulsation modes.

  6. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus.

    PubMed

    Jaeger, Matthias; Khoo, Angela K; Conforti, David A; Cuganesan, Ramesh

    2016-11-01

    Phase contrast cine MRI with determination of pulsatile aqueductal cerebrospinal fluid (CSF) stroke volume and flow velocity has been suggested to assess intracranial pulsations in idiopathic normal pressure hydrocephalus (iNPH). We aimed to compare this non-invasive measure of pulsations to intracranial pressure (ICP) pulse wave amplitude from continuous ICP monitoring. We hypothesised that a significant correlation between these two markers of intracranial pulsations exists. Fifteen patients with suspected iNPH had continuous computerised ICP monitoring with calculation of mean ICP pulse wave amplitude (MWA) from time-domain analysis. MRI measured CSF aqueductal stroke volume and peak flow velocity. Mean MWA was 5.4mmHg (range 2.3-12.4mmHg). Mean CSF stroke volume and peak flow velocity were 65μl (range 3-195μl) and 9.31cm/s (range 1.68-15.0cm/s), respectively. No significant correlation between the invasive and non-invasive measures of pulsations existed (Spearman r=-0.30 and r=-0.27, respectively; p>0.05). We observed marked intra-individual fluctuation of MWA during continuous ICP monitoring of an average of 6.0mmHg (range 2.8-12.2mmHg). The results suggest a complex interplay between measures of pulsations derived from snapshot MRI measurements and continuous computerised ICP measurements, as no significant relationship existed in our data. Further study is needed to better understand the temporal profile of CSF MRI flow studies, as substantial variation in MWA over the course of several hours of ICP monitoring is common, suggesting that these physiologic fluctuations might obscure MRI snapshot measures of intracranial pulsations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Just how hot are the ω Centauri extreme horizontal branch pulsators?

    NASA Astrophysics Data System (ADS)

    Latour, M.; Randall, S. K.; Chayer, P.; Fontaine, G.; Calamida, A.; Ely, J.; Brown, T. M.; Landsman, W.

    2017-04-01

    Context. Past studies based on optical spectroscopy suggest that the five ω Cen pulsators form a rather homogeneous group of hydrogen-rich subdwarf O stars with effective temperatures of around 50 000 K. This places the stars below the red edge of the theoretical instability strip in the log g-Teff diagram, where no pulsation modes are predicted to be excited. Aims: Our goal is to determine whether this temperature discrepancy is real, or whether the stars' effective temperatures were simply underestimated. Methods: We present a spectral analysis of two rapidly pulsating extreme horizontal branch (EHB) stars found in ω Cen. We obtained Hubble Space Telescope/COS UV spectra of two ω Cen pulsators, V1 and V5, and used the ionisation equilibrium of UV metallic lines to better constrain their effective temperatures. As a by-product we also obtained FUV lightcurves of the two pulsators. Results: Using the relative strength of the N iv and N v lines as a temperature indicator yields Teff values close to 60 000 K, significantly hotter than the temperatures previously derived. From the FUV light curves we were able to confirm the main pulsation periods known from optical data. Conclusions: With the UV spectra indicating higher effective temperatures than previously assumed, the sdO stars would now be found within the predicted instability strip. Such higher temperatures also provide consistent spectroscopic masses for both the cool and hot EHB stars of our previously studied sample. Based on observations (proposal GO-13707) with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.

  8. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  9. Wind Competing Against Settling: A Coherent Model of the GW Virginis Instability Domain

    NASA Astrophysics Data System (ADS)

    Quirion, P.-O.; Fontaine, G.; Brassard, P.

    2012-08-01

    We examine in detail the proposition that GW Vir pulsators owe their existence to a residual stellar wind that competes against the settling of the carbon and oxygen atoms which "fuel" pulsational instabilities via their opacity. With cooling, the fading wind progressively loses its capacity to maintain enough of these opaque atoms in the driving region, leading naturally to a red edge where pulsations disappear. We investigate, in particular, the effects of changing the mass-loss law and the initial envelope composition on the position of the red edge in the log g-T eff diagram. With this approach, we derive a coherent picture of the GW Vir instability domain.

  10. Constraining the Evolution of ZZ Ceti

    NASA Technical Reports Server (NTRS)

    Mukadam, Anjum S.; Kepler, S. O.; Winget, D. E.; Nather, R. E.; Kilic, M.; Mullally, F.; vonHippel, T.; Kleinman, S. J.; Nitta, A.; Guzik, J. A.

    2003-01-01

    We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt 5 (5.5 plus or minus 1.9) x 10(exp -15) ss(sup -1), after correcting for proper motion. Our results are consistent with previous P values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is |P||P(raised dot)|greater than or equal to 1.2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions.

  11. Isolated bursts of irregular geomagnetic pulsations in the region of the dayside cusp

    NASA Astrophysics Data System (ADS)

    Kurazhkovskaya, N. A.; Klain, B. I.

    2017-09-01

    In this work, the results of comparative analysis of morphological regularities of right-polarized ( R type) and left-polarized ( L type) isolated bursts of ipcl pulsations (irregular pulsations continuous long period) with an anomalously large amplitude in the region of the daytime polar cusp, as well as conditions of their excitation, are presented. It has been found that R and L bursts are similar in the maximum amplitude level, wave packet duration, spectral composition, magnitude of ellipticity, diurnal variation shape, and other characteristics. At the same time, bursts of the R and L type are excited at different degrees of plasma turbulence in the generation region, at different IMF orientations in the plane of ecliptic, as well as in the plane perpendicular to it, and at different dynamics of the parameter β (characterizing the ratio of the thermal pressure to the magnetic pressure) and Alfvén Mach number Ma. It is supposed that the generation of isolated bursts of the R and L types can be related to the amplification of the plasma turbulence level due to the development of wind instability at the front boundary of the magnetosphere, and features of their polarization can be interpreted in the scope of the model of nonlinear propagation of Alfvén waves.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacciari, C.; Clementini, G.

    Attention is given to the folowing topics: population I and II variable stars; LP variables, the sun, and mass determination; and predegenerate and degenerate variables. Particular papers are presented on alternative evolutionary approaches to the absolute magnitude of the RR Lyrae variables; the evolution of the Cepheid stars; nonradial pulsations in rapidly rotating Delta Scuti stars; dynamical models of dust shells around Mira variables; and pulsations of central stars of planetary nebulae.

  13. Asteroseismology: Theory and phenomenology

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.

    1994-01-01

    Seismic studies of the Sun have succeeded in mapping the variation of sound speed with depth in the Sun, and variation of angular velocity with both depth and latitude. Many stars besides the Sun may also be amenable to asteroseismic analysis. Stars of roughly solar type should of course behave in ways similar to the sun, and stars of this sort form a large fraction of the potential targets for asteroseismology. But several other types of stars (delta scuti stars, roAP stars, and the pulsating white dwarfs) also have the desired pulsation characteristics. Pulsations in some of these stars are, for various reasons, much easier to observe than in the Sun-like stars. Virtually all unambiguous observations of multi-mode pulsators relate to these other categories of stars. Since oscillation mode frequencies are arguably the most precise measurement relating to a star that we can make, a few tens of such frequencies may still be of great importance to our understanding of the stellar structure and evolution.

  14. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  15. FAMIAS - A userfriendly new software tool for the mode identification of photometric and spectroscopic times series

    NASA Astrophysics Data System (ADS)

    Zima, W.

    2008-12-01

    FAMIAS (Frequency Analysis and Mode Identification for AsteroSeismology) is a collection of state-of-the-art software tools for the analysis of photometric and spectroscopic time series data. It is one of the deliverables of the Work Package NA5: Asteroseismology of the European Coordination Action in Helio- and Asteroseismology (HELAS1 ). Two main sets of tools are incorporated in FAMIAS. The first set allows to search for pe- riodicities in the data using Fourier and non-linear least-squares fitting algorithms. The other set allows to carry out a mode identification for the detected pulsation frequencies to deter- mine their pulsational quantum numbers, the harmonic degree, ℓ, and the azimuthal order, m. For the spectroscopic mode identification, the Fourier parameter fit method and the moment method are available. The photometric mode identification is based on pre-computed grids of atmospheric parameters and non-adiabatic observables, and uses the method of amplitude ratios and phase differences in different filters. The types of stars to which FAMIAS is appli- cable are main-sequence pulsators hotter than the Sun. This includes the Gamma Dor stars, Delta Sct stars, the slowly pulsating B stars and the Beta Cep stars - basically all pulsating main-sequence stars, for which empirical mode identification is required to successfully carry out asteroseismology. The complete manual for FAMIAS is published in a special issue of Communications in Asteroseismology, Vol 155. The homepage of FAMIAS2 provides the possibility to download the software and to read the on-line documentation.

  16. Vortex rope instabilities in a model of conical draft tube

    NASA Astrophysics Data System (ADS)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  17. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  18. The internal structure of ZZ Cet stars using quantitative asteroseismology: The case of R548

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Fontaine, G.; Brassard, P.; Charpinet, S.

    2014-02-01

    We explore quantitatively the low but sufficient sensitivity of oscillation modes to probe both the core composition and the details of the chemical stratification of pulsating white dwarfs. Until recently, applications of asteroseismic methods to pulsating white dwarfs have been far and few, and have generally suffered from an insufficient exploration of parameter space. To remedy this situation, we apply to white dwarfs the same double-optimization technique that has been used quite successfully in the context of pulsating hot B subdwarfs. Based on the frequency spectrum of the pulsating white dwarf R548, we are able to unravel in a robust way the unique onion-like stratification and the chemical composition of the star. Independent confirmations from both spectroscopic analyses and detailed evolutionary calculations including diffusion provide crucial consistency checks and add to the credibility of the inferred seismic model. More importantly, these results boost our confidence in the reliability of the forward method for sounding white dwarf internal structure with asteroseismology.

  19. Study of a sample of faint Be stars in the exofield of CoRoT. II. Pulsation and outburst events: Time series analysis of photometric variations

    NASA Astrophysics Data System (ADS)

    Semaan, T.; Hubert, A. M.; Zorec, J.; Gutiérrez-Soto, J.; Frémat, Y.; Martayan, C.; Fabregat, J.; Eggenberger, P.

    2018-06-01

    Context. The class of Be stars are the epitome of rapid rotators in the main sequence. These stars are privileged candidates for studying the incidence of rotation on the stellar internal structure and on non-radial pulsations. Pulsations are considered possible mechanisms to trigger mass-ejection phenomena required to build up the circumstellar disks of Be stars. Aims: Time series analyses of the light curves of 15 faint Be stars observed with the CoRoT satellite were performed to obtain the distribution of non-radial pulsation (NRP) frequencies in their power spectra at epochs with and without light outbursts and to discriminate pulsations from rotation-related photometric variations. Methods: Standard Fourier techniques were employed to analyze the CoRoT light curves. Fundamental parameters corrected for rapid-rotation effects were used to study the power spectrum as a function of the stellar location in the instability domains of the Hertzsprung-Russell (H-R) diagram. Results: Frequencies are concentrated in separate groups as predicted for g-modes in rapid B-type rotators, except for the two stars that are outside the H-R instability domain. In five objects the variations in the power spectrum are correlated with the time-dependent outbursts characteristics. Time-frequency analysis showed that during the outbursts the amplitudes of stable main frequencies within 0.03 c d-1 intervals strongly change, while transients and/or frequencies of low amplitude appear separated or not separated from the stellar frequencies. The frequency patterns and activities depend on evolution phases: (i) the average separations between groups of frequencies are larger in the zero-age main sequence (ZAMS) than in the terminal age main sequence (TAMS) and are the largest in the middle of the MS phase; (ii) a poor frequency spectrum with f ≲ 1 cd-1 of low amplitude characterizes the stars beyond the TAMS; and (iii) outbursts are seen in stars hotter than B4 spectral type and in the second half of the MS. Conclusions: The two main frequency groups are separated by δf = (1.24 ± 0.28) × frot in agreement with models of prograde sectoral g-modes (m = -1, -2) of intermediate-mass rapid rotators. The changes of amplitudes of individual frequencies and the presence of transients correlated with the outburst events deserve further studies of physical conditions in the subatmospheric layers to establish the relationship between pulsations and sporadic mass-ejection events. Tables 7 to 22 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A70

  20. Araucaria Project: Pulsating stars in binary systems and as distance indicators

    NASA Astrophysics Data System (ADS)

    Pilecki, Bogumił; Gieren, Wolfgang; Pietrzyński, Grzegorz; Smolec, Radosław

    2017-09-01

    Pulsating stars, like Cepheids or RR Lyrae stars, are ones of the most important distance indicators. They are also key objects for testing the predictions of stellar evolution and stellar pulsation theory. In the Araucaria Project we have studied these objects since 2002, measuring distances to the galaxies in the Local Group and beyond. In 2010 we have for the first time confirmed spectroscopically the existence of a classical Cepheid in an eclipsing binary system. This has opened an opportunity to study in great details and with high accuracy (better than 1%) the physical parameters of these very important objects. First dynamical mass determination (Mcep = 4.16 ± 0.03 M⊙) let us solve the long-standing mass discrepancy problem. Since then we have measured masses for 6 classical Cepheids in binary systems and determined projection factors for three of them. One of the analyzed systems was confirmed to consist of two first-overtone Cepheids. Type II Cepheids are recently becoming more important as distance indicators and astrophysics laboratory, although our knowledge of these stars is quite limited. Their evolutionary status is also not well understood and observational constraints are needed to confirm the current theories. We are presenting here our first results of the spectroscopic analysis of 4 of these systems. The masses of type II Cepheids seem consistent with the expected 0.5 - 0.6 M⊙. We also present first results of the fully modeled pulsator originally classified as peculiar W Vir star. The mass of this star is 1.51 ± 0.09 M⊙ and the p-factor 1.3 ± 0.03. It was eventually found not to belong to any typical Cepheid group.

  1. Line-depth-ratio temperatures for the close binary ν Octantis: new evidence supporting the conjectured circumstellar retrograde planet

    NASA Astrophysics Data System (ADS)

    Ramm, D. J.

    2015-06-01

    We explore the possibly that either star-spots or pulsations are the cause of a periodic radial velocity (RV) signal (P ˜ 400 d) from the K-giant binary ν Octantis (P ˜ 1050 d, e ˜ 0.25), alternatively conjectured to have a retrograde planet. Our study is based on temperatures derived from 22 line-depth ratios (LDRs) for ν Oct and 20 calibration stars. Empirical evidence and stability modelling provide unexpected support for the planet since other standard explanations (star-spots, pulsations and additional stellar masses) each have credibility problems. However, the proposed system presents formidable challenges to planet formation and stability theories: it has by far the smallest stellar separation of any claimed planet-harbouring binary (a_{_bin} ˜ 2.6 au) and an equally unbelievable separation ratio (a_{_pl}/a_{_bin} ˜ 0.5), hence the necessity that the circumstellar orbit be retrograde. The LDR analysis of 215 ν Oct spectra acquired between 2001 and 2007, from which the RV perturbation was first revealed, have no significant periodicity at any frequency. The LDRs recover the original 21 stellar temperatures with an average accuracy of 45 ± 25 K. The 215 ν Oct temperatures have a standard deviation of only 4.2 K. Assuming the host primary is not pulsating, the temperatures converted to magnitude differences strikingly mimic the very stable photometric Hipparcos observations 15 years previously, implying the long-term stability of the star and demonstrating a novel use of LDRs as a photometric gauge. Our results provide substantial new evidence that conventional star-spots and pulsations are unlikely causes of the RV perturbation. The controversial system deserves continued attention, including with higher resolving-power spectra for bisector and LDR analyses.

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Stationary force produced by an optical pulsating discharge in a laser engine model

    NASA Astrophysics Data System (ADS)

    Grachev, Gennadii N.; Tishchenko, V. N.; Apollonov, V. V.; Gulidov, A. I.; Smirnov, A. L.; Sobolev, A. V.; Zimin, M. I.

    2007-07-01

    An optical pulsating discharge produced by repetitively pulses laser radiation (with a pulse repetition rate of up to 100 kHz) is studied in a cylindrical tube simulating the reflector of a laser engine. The pressure of shock waves and the propulsion produced by them are measured. The discharge produced the stationary propulsion ~1 N kW-1.

  3. The MACHO Project LMC Variable Star Inventory. VIII. The Recent Star Formation History of the Large Magellanic Cloud from the Cepheid Period Distribution

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Bersier, D. F.; Cook, K. H.; Freeman, K. C.; Griest, K.; Guern, J. A.; Lehner, M.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.

    1999-02-01

    We present an analysis of the period distribution of about 1800 Cepheids in the LMC, based on data obtained by the MACHO microlensing experiment and on a previous catalog by C. H. Payne Gaposchkin. Using stellar evolution and pulsation models, we construct theoretical period-frequency distributions that are compared with the observations. These models reveal that a significant burst of star formation has occurred recently in the LMC (~1.15x10^8 yr). We also show that during the last ~10^8 yr, the main center of star formation has been propagating from southeast to northwest along the bar. We find that the evolutionary masses of Cepheids are still smaller than pulsation masses by ~7% and that the red edge of the Cepheid instability strip could be slightly bluer than indicated by theory. There are approximately 600 Cepheids with periods below ~2.5 days that cannot be explained by evolution theory. We suggest that they are anomalous Cepheids and that a number of these stars are double-mode Cepheids.

  4. Turbulent transport measurements in a model of GT-combustor

    NASA Astrophysics Data System (ADS)

    Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.

    2016-10-01

    To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.

  5. An investigation into inflection-point instability in the entrance region of a pulsating pipe flow

    PubMed Central

    Wang, R. H.; Jian, T. W.; Hsu, Y. T.

    2017-01-01

    This paper investigates the inflection-point instability that governs the flow disturbance initiated in the entrance region of a pulsating pipe flow. Under such a flow condition, the flow instability grows within a certain phase region in a pulsating cycle, during which the inflection point in the unsteady mean flow lifts away from the viscous effect-dominated region known as the Stokes layer. The characteristic frequency of the instability is found to be in agreement with that predicted by the mixing-layer model. In comparison with those cases not falling in this category, it is further verified that the flow phenomenon will take place only if the inflection point lifts away sufficiently from the Stokes layer. PMID:28265188

  6. FIRST MAGNETIC FIELD MODELS FOR RECENTLY DISCOVERED MAGNETIC {beta} CEPHEI AND SLOWLY PULSATING B STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubrig, S.; Ilyin, I.; Schoeller, M.

    2011-01-01

    In spite of recent detections of magnetic fields in a number of {beta} Cephei and slowly pulsating B (SPB) stars, their impact on stellar rotation, pulsations, and element diffusion has not yet been sufficiently studied. The reason for this is the lack of knowledge of rotation periods, the magnetic field strength distribution and temporal variability, and the field geometry. New longitudinal field measurements of four {beta} Cephei and candidate {beta} Cephei stars, and two SPB stars were acquired with FORS 2 at the Very Large Telescope. These measurements allowed us to carry out a search for rotation periods and tomore » constrain the magnetic field geometry for four stars in our sample.« less

  7. Toward a renewed Galactic Cepheid distance scale from Gaia and optical interferometry

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Mérand, Antoine; Gallenne, Alexandre; Trahin, Boris; Nardetto, Nicolas; Anderson, Richard I.; Breitfelder, Joanne; Szabados, Laszlo; Bond, Howard E.; Borgniet, Simon; Gieren, Wolfgang; Pietrzyński, Grzegorz

    2017-09-01

    Through an innovative combination of multiple observing techniques and modeling, we are assembling a comprehensive understanding of the pulsation and close environment of Cepheids. We developed the SPIPS modeling tool that combines all observables (radial velocimetry, photometry, angular diameters from interferometry) to derive the relevant physical parameters of the star (effective temperature, infrared excess, reddening, …) and the ratio of the distance and the projection factor d/p. We present the application of SPIPS to the long-period Cepheid RS Pup, for which we derive p = 1.25±0.06. The addition of this massive Cepheid consolidates the existing sample of p-factor measurements towards long-period pulsators. This allows us to conclude that p is constant or mildly variable around p = 1.29±0.04 (±3%) as a function of the pulsation period. The forthcoming Gaia DR2 will provide a considerable improvement in quantity and accuracy of the trigonometric parallaxes of Cepheids. From this sample, the SPIPS modeling tool will enable a robust calibration of the Cepheid distance scale.

  8. Estimation of the radial diffusion coefficient using REE-associated ground Pc 5 pulsations

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Yumoto, K.

    2010-12-01

    Pc 5 pulsations with frequencies between 1.67 and 6.67 mHz are believed to contribute to the REE in the outer radiation belt during magnetic storms, by means of the observations [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O'Brien et al., 2001, 2003] and several theoretical studies. The latter studies are roughly categorized into two themes: in-situ acceleration at L lower than 6.6 by wave-particle interactions [Liu et al., 199 9; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion from the outer to the inner magnetosphere [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible acceleration mechanism is the resonant interaction with Pc 5 toroidal and poloidal pulsations, referred as the radial diffusion mechanism. One of unsolved problems is where and which Pc 5 pulsation mode (toroidal and/or poloidal) play effective role in the radial diffusion process. In order to verify Pc 5 pulsation as the major roles for REEs, we have to examine the time variation of electron phase space density (cf. Green et al., 2004). Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients which determine the electron transportation efficiency, using ground-based magnetic field data. We estimated the radial diffusion coefficient of ground Pc 5 pulsations associated with the Relativistic Electron Enhancement (REE) in the geosynchronous orbit. In order to estimate the radial diffusion coefficient D_LL, we need the value of in-situ Pc 5 electric field power spectral density. In this paper, however, we estimated the equatorial electric field mapped from Pc 5 pulsations power spectral density on the ground. Reciprocal of radial diffusion coefficient describes the timescale T_LL for an electron to diffuse 1 Re. Applying a superposed epoch analysis about timescales T_LL of the radial diffusion for 12 REE events in 2008, we found that when the relativistic electron enhancements occur, T_LL at higher latitude (L larger than 5) is predominantly diffusional, whereas T_LL at lower latitude (L less than 4) is mainly convectional. We concluded that higher-latitude Pc 5 pulsations play more effective roles than lower latitude Pc 5 pulsations in the radial diffusion process.

  9. Pulsations Induced by Vibrations in Aircraft Engine Two-Stage Pump

    NASA Astrophysics Data System (ADS)

    Gafurov, S. A.; Salmina, V. A.; Handroos, H.

    2018-01-01

    This paper describes a phenomenon of induced pressure pulsations inside a two-stage aircraft engine pump. A considered pumps consists of a screw-centrifugal and gear stages. The paper describes the cause of two-stage pump elements loading. A number of hypothesis of pressure pulsations generation inside a pump were considered. The main focus in this consideration is made on phenomena that are not related to pump mode of operation. Provided analysis has shown that pump vibrations as well as pump elements self-oscillations are the main causes that lead to trailing vortices generation. Analysis was conducted by means FEM and CFD simulations as well by means of experimental investigations to obtain natural frequencies and flow structure inside a screw-centrifugal stage. To perform accurate simulations adequate boundary conditions were considered. Cavitation and turbulence phenomena have been also taken into account. Obtained results have shown generated trailing vortices lead to high-frequency loading of the impeller of screw-centrifugal stage and can be a cause of the bearing damage.

  10. An experimental study of dependence of hydro turbine vibration parameters on pressure pulsations in the flow path

    NASA Astrophysics Data System (ADS)

    Dekterev, D.; Maslennikova, A.; Abramov, A.

    2017-09-01

    The operation modes of the hydraulic power plant water turbine with the formation of a precessing vortex core were studied on the hydrodynamic set-up with the model of hydraulic unit. The dependence of low-frequency vibrations on flow pressure pulsations in the hydraulic unit was established. The results of the air injection effect on the vibrational parameters of the hydrodynamic set-up were presented.

  11. Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure.

    PubMed

    Di Rocco, C; Pettorossi, V E; Caldarelli, M; Mancinelli, R; Velardi, F

    1977-11-15

    Experimental hydrocephalus has been induced in lambs by artificial increase of the amplitude of intraventricular cerebrospinal fluid (CSF) oscillations related to arterial pulsations, without concomitant changes of the mean CSF-pressure. The characteristics of this hydrocephalus demonstrate that the intraventricular CSF-pulsations can play a role in the genesis of ventricular dilation. Such a method may be used to produce an original model of hydrocephalus independent of changes of CSF-circulation or absorption.

  12. Nanosecond electrical and optical pulses and self phase conjugation from photorefractive lithium niobate fibers and crystals

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N.; Kukhtareva, T.; Curley, M.; Jaenisch, H. M.; Edwards, M. E.; Gu, M.; Zhou, Z.; Guo, R.

    2007-09-01

    We have observed nanosecond electrical and optical pulsations from photorefractive lithium-niobate optical fibers using CW green and blue low-power lasers. Fourier spectra of the pulsations have a maximum at ~900 MHz with peaks separated by ~30MHz. We consider free-space and fiber supported illumination of the fiber crystal. Strong nonlinear enhanced backscattering with phase conjugation was observed from bulk crystals and crystal fibers along the C-axis. Model of transformation of CW laser irradiation of ferroelectric crystals into periodic nanosecond electrical and optical pulsations is suggested. This model includes combinations of photorefractive, pyroelectric, piezoelectric, and photogalvanic mechanisms of the holographic grating formation and crystal electrical charging. Possible applications of these short photo-induced electrical pulses for modulation of holographic beam coupling, pulsed electrolysis, electrophoresis, focused electron beams, X-ray and neutron generation, and hand-held micro X-ray devices for localized oncology imaging and treatment based on our advanced sensor work are discussed.

  13. An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Córsico, Alejandro H.; Althaus, Leandro G.; Bertolami, Marcelo M. Miller

    We employ an asteroseismic model of L19-2, a relatively massive ( M {sub *} ∼ 0.75 M {sub ⊙}) and hot ( T {sub eff} ∼ 12 100 K) pulsating DA (H-rich atmosphere) white dwarf star (DAV or ZZ Ceti variable), and use the observed values of the temporal rates of period change of its dominant pulsation modes (Π ∼ 113 s and Π ∼ 192 s), to derive a new constraint on the mass of the axion, the hypothetical non-barionic particle considered as a possible component of the dark matter of the Universe. If the asteroseismic model employed ismore » an accurate representation of L19-2, then our results indicate hints of extra cooling in this star, compatible with emission of axions of mass m {sub a} cos{sup 2}β ∼< 25 meV or an axion-electron coupling constant of g {sub ae} ∼< 7 × 10{sup −13}.« less

  14. Simulation of the westward traveling surge and Pi 2 pulsations during substorms

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Sun, W.

    1985-01-01

    The westward traveling surge and the Pi2 pulsations are simulated as a consequence of an enhanced magnetospheric convection in a model of magnetosphere coupling. The coupling is characterized by the bouncing of Alfven waves launched by the enhanced convection. The reflection of Alfven waves from the ionosphere is treated in which the height-integrated conductivity is allowed to be highly nonuniform and fully anisotropic. The reflection of Alfven waves from the magnetosphere is characterized by the coefficient Rm, depending on whether the field lines are open or closed. The conductivity in the model is self-consistently enhanced with increasing upward field-aligned current density. The results of the simulation, including the convection pattern, the electrojets, the field-aligned current, the conductivity enhancement, the oscillation of the westward electrojet, and the average speed of the westward surge are in reasonable agreement with the features of the westward traveling surge and the Pi 2 pulsations observed during substorms.

  15. Kepler eclipsing binaries with δ Scuti components and tidally induced heartbeat stars

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.

    δ Scuti stars are generally fast rotators and their pulsations are not in the asymptotic regime, so the interpretation of their pulsation spectra is a very difficult task. Binary stars, especially eclipsing systems, offer us the opportunity to constrain the space of fundamental stellar parameters. Firstly, we show the results of KIC9851944 and KIC4851217 as two case studies. We found the signature of the large frequency separation in the pulsational spectrum of both stars. The observed mean stellar density and the large frequency separation obey the linear relation in the log-log space as found by Suarez et al. (2014) and García Hernández et al. (2015). Second, we apply the simple `one-layer model' of Moreno & Koenigsberger (1999) to the prototype heartbeat star KOI-54. The model naturally reproduces the tidally induced high frequency oscillations and their frequencies are very close to the observed frequency at 90 and 91 times the orbital frequency.

  16. Pulsational stabilities of a star in thermal imbalance - Comparison between the methods

    NASA Technical Reports Server (NTRS)

    Vemury, S. K.

    1978-01-01

    The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes. For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms.

  17. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    NASA Astrophysics Data System (ADS)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  18. Supernova 1987A Interpreted through the SLIP Pulsar Model

    NASA Astrophysics Data System (ADS)

    Middleditch, John

    2010-01-01

    The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced by a rotating, magnetized body at many light cylinder radii, as would be the case for a neutron star born within any star of >1.5 solar masses, will drive pulsations close to the axis of rotation. Such highly collimated pulsations (<= 1 in 10,000), and the similarly collimated jets of particles which it drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light curve (days 3 - 20), the "Mystery Spot," observed slightly later (days 30 - 50 and >), and later, in less collimated form, the bipolarity of SN 1987A itself. The pulsations and jet interacted with circumstellar material (CM), to produce features observed in the very early light curve which correspond to: 1) the entry of the pulsed beam into the CM; 2) the entry of the 0.95 c particles into the CM; 3) the exit of the pulsed beam from the CM (with contributions in the B and I bands -- the same as later inferred/observed for its 2.14 ms pulsations); and 4) the exit of the fastest particles from the CM. Because of the energy requirements of the jet in these early stages, the spindown required of its pulsar could exceed 1e-5 Hz/s at a rotation rate of 500 Hz. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  19. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-02-01

    Laser welding is a potentially useful technique for joining two pieces of similar or dissimilar materials with high precision. In the present work, comparative studies on laser welding of similar metal of AISI 304SS and AISI 316SS have been conducted forming butt joints. A robotic control 600 W pulsed Nd:YAG laser source has been used for welding purpose. The effects of laser power, scanning speed and pulse width on the ultimate tensile strength and weld width have been investigated using the empirical models developed by RSM. The results of ANOVA indicate that the developed models predict the responses adequately within the limits of input parameters. 3-D response surface and contour plots have been developed to find out the combined effects of input parameters on responses. Furthermore, microstructural analysis as well as hardness and tensile behavior of the selected weld of 304SS and 316SS have been carried out to understand the metallurgical and mechanical behavior of the weld. The selection criteria are based on the maximum and minimum strength achieved by the respective weld. It has been observed that the current pulsation, base metal composition and variation in heat input have significant influence on controlling the microstructural constituents (i.e. phase fraction, grain size etc.). The result suggests that the low energy input pulsation generally produce fine grain structure and improved mechanical properties than the high energy input pulsation irrespective of base material composition. However, among the base materials, 304SS depict better microstructural and mechanical properties than the 316SS for a given parametric condition. Finally, desirability function analysis has been applied for multi-objective optimization for maximization of ultimate tensile strength and minimization of weld width simultaneously. Confirmatory tests have been conducted at optimum parametric conditions to validate the optimization techniques.

  20. CzeV293 and CzeV581-Two new high-amplitude double-mode delta Scuti stars

    NASA Astrophysics Data System (ADS)

    Skarka, M.; Cagaš, P.

    2016-07-01

    We report on the discovery of two high-amplitude double-mode delta Scuti stars in constellations of Hercules and Auriga. The stars were observed photometrically in five and two seasons, respectively. Frequency analysis revealed that both stars show complex pulsation behaviour with two independent modes and several combination peaks. Placing the stars into the Petersen diagram allowed us to identify the pulsation modes as the fundamental and the first overtone. Both stars follow the general trend for F/1O pulsators in the short-period part of the Petersen diagram and turned out to be classical members of HADS group of variables. Using empirical formulae we roughly estimate visual absolute magnitude, intrinsic (B - V) 0 colour index and temperature of the target stars.

  1. Interaction of pulsating and spinning waves in condensed phase combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booty, M.R.; Margolis, S.B.; Matkowsky, B.J.

    1986-10-01

    The authors employ a nonlinear stability analysis in the neighborhood of a multiple bifurcation point to describe the interaction of pulsating and spinning modes of condensed phase combustion. Such phenomena occur in the synthesis of refractory materials. In particular, they consider the propagation of combustion waves in a long thermally insulated cylindrical sample and show that steady, planar combustion is stable for a modified activation energy/melting parameter less than a critical value. Above this critical value primary bifurcation states, corresponding to time-periodic pulsating and spinning modes of combustion, emanate from the steadily propagating solution. By varying the sample radius, themore » authors split a multiple bifurcation point to obtain bifurcation diagrams which exhibit secondary, tertiary, and quarternary branching to various types of quasi-periodic combustion waves.« less

  2. The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data

    NASA Astrophysics Data System (ADS)

    Silvotti, R.; Schuh, S.; Kim, S.-L.; Lutz, R.; Reed, M.; Benatti, S.; Janulis, R.; Lanteri, L.; Østensen, R.; Marsh, T. R.; Dhillon, V. S.; Paparo, M.; Molnar, L.

    2018-04-01

    V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O-C method, in a previous article the presence of a planet was inferred with an orbital period of 3.2 years and a minimum mass of 3.2 MJup. Here we present an updated O-C analysis using a larger data set of 1066 h of photometric time series ( 2.5× larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999-2006 of the previous analysis). Up to the end of 2008, the new O-C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O-C trend of f1 changes, and the time derivative of the pulsation period (p.) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O-C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O-C diagrams of f1 and f2, but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analyzed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of p. for f1 and f2: using only the data up to the end of 2008, we obtain p.1 = (1.34 ± 0.04) × 10-12 and p.2 = (1.62 ± 0.22) × 10-12. The long-term variation of the two main pulsation periods (and the change of sign of p.1) is visible also in direct measurements made over several years. The absence of peaks near f1 in the Fourier transform and the secondary peak close to f2 confirm a previous identification as l = 0 and l = 1, respectively, and suggest a stellar rotation period of about 40 days. The new data allow constraining the main g-mode pulsation periods of the star. The complete set of data shown in Fig. 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A85Based on observations obtained at the following observatories: WHT 4.2m, TNG 3.6m, Calar Alto 2.2m, NOT 2.5m, Loiano 1.5m, LOAO 1.0m, MDM 1.3m, Moletai 1.6m, MONET-North 1.2m, Piszkéstető 1.0m, Mercator 1.2m, Wise 1.0m, Lulin 1.0m, Baker 0.6m.

  3. A spectro-interferometric view of l Carinae's modulated pulsations

    NASA Astrophysics Data System (ADS)

    Anderson, Richard I.; Mérand, Antoine; Kervella, Pierre; Breitfelder, Joanne; Eyer, Laurent; Gallenne, Alexandre

    Classical Cepheids are radially pulsating stars that enable important tests of stellar evolution and play a crucial role in the calibration of the local Hubble constant. l Carinae is a particularly well-known distance calibrator, being the closest long-period (P ~ 35.5 d) Cepheid and subtending the largest angular diameter. We have carried out an unprecedented observing program to investigate whether recently discovered cycle-to-cycle changes (modulations) of l Carinae's radial velocity (RV) variability are mirrored by its variability in angular size. To this end, we have secured a fully contemporaneous dataset of high-precision RVs and high-precision angular diameters. Here we provide a concise summary of our project and report preliminary results. We confirm the modulated nature of the RV variability and find tentative evidence of cycle-to-cycle differences in l Car's maximal angular diameter. Our analysis is exploring the limits of state-of-the-art instrumentation and reveals additional complexity in the pulsations of Cepheids. If confirmed, our result suggests a previously unknown pulsation cycle dependence of projection factors required for determining Cepheid distances via the Baade-Wesselink technique.

  4. [Assessment of blood flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations].

    PubMed

    Borowski, Dariusz; Czuba, Bartosz; Kaczmarek, Piotr; Włoch, Agata; Pawłowicz, Paweł; Wyrwas, Dorota; Wielgos, Mirosław; Sodowski, Krzysztof; Szaflik, Krzysztof

    2006-03-01

    Umbilical venous pulsation is an important sign of hemodynamic compromise, especially during fetal heart failure and asphyxia. The aim of this study was to determine of the blow flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations. The investigation included 18 fetuses with signs of the intrauterine growth restriction and umbilical venous pulsations after 28th weeks of gestation. We evaluated cerebral-placental ratio (CPR) and pulsation index (PI) in the middle cerebral artery (MCA) and the umbilical artery (UA). We observed brain sparring effect in all cases of analyzing fetuses. There were 77,8% of abnormal flow pattern in umbilical artery. 13 fetuses had a single pulsation pattern in umbilical vein and another 5 had double pulsation pattern. The coexistence of umbilical vein pulsation and abnormal flow pattern in umbilical artery is closely related to increased perinatal mortality.

  5. Conjugate Event Study of Geomagnetic ULF Pulsations with Wavelet-based Indices

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Clauer, C. R.; Kim, H.; Weimer, D. R.; Cai, X.

    2013-12-01

    The interactions between the solar wind and geomagnetic field produce a variety of space weather phenomena, which can impact the advanced technology systems of modern society including, for example, power systems, communication systems, and navigation systems. One type of phenomena is the geomagnetic ULF pulsation observed by ground-based or in-situ satellite measurements. Here, we describe a wavelet-based index and apply it to study the geomagnetic ULF pulsations observed in Antarctica and Greenland magnetometer arrays. The wavelet indices computed from these data show spectrum, correlation, and magnitudes information regarding the geomagnetic pulsations. The results show that the geomagnetic field at conjugate locations responds differently according to the frequency of pulsations. The index is effective for identification of the pulsation events and measures important characteristics of the pulsations. It could be a useful tool for the purpose of monitoring geomagnetic pulsations.

  6. Japanese MAGSAT team

    NASA Technical Reports Server (NTRS)

    Fukushima, N.; Maeda, H.; Yukutake, T.; Tanaka, M.; Miyazaki, Y.; Oshima, S.; Ogawa, K.; Kawamura, M.; Uyeda, S.; Kobayashi, K.

    1982-01-01

    Construction of a model of the regional magnetic field and investigation of the local magnetic anomalies and their origin were approaches used in attempts to study the crustal structure near Japan and its Antarctic bases. Spatial properties of the regional magnetic field and comparison of the regional model with that derived from MAGSAT data are discussed. Possible causes of the magnetic anomalies, and results of aeromagnetic surveys incorporating gravity and seismic data are explored. Ionospheric and magnetospheric contributions to geomagnetic variations, field-aligned currents, magnetic geomagnetic pulsations, and hydromagnetic waves by analysis of MAGSAT data are also examined.

  7. Outburst Activity Driven by Evolved Pulsating Star in the Symbiotic Binary AG Dra

    NASA Astrophysics Data System (ADS)

    Gális, R.; Hric, L.; Leedjärv, L.

    2015-12-01

    The symbiotic system AG Dra regularly undergoes quiescent and active stages which consist of the series of individual outbursts. The period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods. The longer one around ≈ 550 d is related to the orbital motion and the shorter one ≈355 d could be due to pulsation of the cool component of AG Dra.

  8. Dynamics of coherent flow structures of a pulsating unsteady glottal jet in human phonation.

    NASA Astrophysics Data System (ADS)

    Neubauer, Juergen; Miraghaie, Reza; Berry, David

    2004-11-01

    The primary sound source for human voice is oscillation of the vocal folds in the larynx. Phonation is the self-sustained oscillation of the viscoelastic vocal fold tissue driven by the air flow from the lung. It is due to the flow-induced Hopf instability of the biomechanical-aerodynamic system of vocal folds coupled to the aeroacoustic driving air flow. The aim of this study is to provide insight to the aero-acoustic part of the primary sound source of human voice. A physical rubber model of vocal folds with air flow conditions typical for human phonation was used. This model exhibits self-sustained oscillations similar to those in human phonation. The oscillating physical model can be regarded as a dynamic slit-like orifice that discharges a pulsating unsteady jet. A left-right flapping of the glottal jet axis was detected using hotwire anemometer measurements of the unsteady glottal jet. Flow visualization experiments revealed the detachment of the glottal jet from the physical model folds during the accelerating and decelerating phase of the jet pulsation. Roll-up of large-scale vortex rings as well as secondary vortex shedding in the form of Von Karman street due to shear layer instability were found downstream of the physical model.

  9. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p << 1. In addition to the classical cellular form of hydrodynamic stability, there exists a pulsating form corresponding to the loss of stability of steady, planar burning to time-dependent perturbations. This occurs for negative values of the parameter A(sub p), and is thus absent from the original Landau/Levich models. In the extended model, however, there exists a stable band of negative pressure sensitivities bounded above by the Landau type of instability, and below by this pulsating form of hydrodynamic instability. Indeed, nonsteady modes of combustion have been observed at low pressures in hydroxylammonium nitrate (HAN)-based liquid propellants, which often exhibit negative pressure sensitivities. While nonsteady combustion may correspond to secondary and higher-order bifurcations above the cellular boundary, it may also be a manifestation of this pulsating type of hydrodynamic instability. In the present work, a nonzero temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a significant modification of the pulsating boundary such that, for sufficiently large values of the temperature-sensitivity parameter, liquid-propellant combustion can become intrinsically unstable to this alternative form of hydrodynamic instability. For simplicity, further attention is confined here to the inviscid version of the problem since, despite the fact that viscous and surface-tension effects are comparable, the qualitative nature of the cellular boundary remains preserved in the zero-viscosity limit, as does the existence of the pulsating boundary. The mathematical model adopts the classical assumption that there is no distributed reaction in either the liquid or gas phases, but now the reaction sheet, representing either a pyrolysis reaction or an exothermic decomposition at the liquid/gas interface, is assumed to depend on local conditions there.

  10. Stellar pulsations in beyond Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  11. Pulsating hot O subdwarfs in ω Centauri: mapping a unique instability strip on the extreme horizontal branch

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Calamida, A.; Fontaine, G.; Monelli, M.; Bono, G.; Alonso, M. L.; Van Grootel, V.; Brassard, P.; Chayer, P.; Catelan, M.; Littlefair, S.; Dhillon, V. S.; Marsh, T. R.

    2016-05-01

    We present the results of an extensive survey for rapid pulsators among Extreme Horizontal Branch (EHB) stars in ω Cen. The observations performed consist of nearly 100 h of time-series photometry for several off-centre fields of the cluster, as well as low-resolution spectroscopy for a partially overlapping sample. We obtained photometry for some 300 EHB stars, for around half of which we are able to recover light curves of sufficient quality to either detect or place meaningful non-detection limits for rapid pulsations. Based on the spectroscopy, we derive reliable values of log g, Teff and log N(He) /N(H) for 38 targets, as well as good estimates of the effective temperature for another nine targets, whose spectra are slightly polluted by a close neighbour in the image. The survey uncovered a total of five rapid variables with multi-periodic oscillations between 85 and 125 s. Spectroscopically, they form a homogeneous group of hydrogen-rich subdwarf O stars clustered between 48 000 and 54 000 K. For each of the variables we are able to measure between two and three significant pulsations believed to constitute independent harmonic oscillations. However, the interpretation of the Fourier spectra is not straightforward due to significant fine structure attributed to strong amplitude variations. In addition to the rapid variables, we found an EHB star with an apparently periodic luminosity variation of ~2700 s, which we tentatively suggest may be caused by ellipsoidal variations in a close binary. Using the overlapping photometry and spectroscopy sample we are able to map an empirical ω Cen instability strip in log g - Teff space. This can be directly compared to the pulsation driving predicted from the Montréal "second-generation" models regularly used to interpret the pulsations in hot B subdwarfs. Extending the parameter range of these models to higher temperatures, we find that the region where p-mode excitation occurs is in fact bifurcated, and the well-known instability strip between 29 000-36 000 K where the rapid subdwarf B pulsators are found is complemented by a second one above 50 000 K in the models. While significant challenges remain at the quantitative level, we believe that the same κ-mechanism that drives the pulsations in hot B subdwarfs is also responsible for the excitation of the rapid oscillations observed in the ω Cen variables. Intriguingly, the ω Cen variables appear to form a unique class. No direct counterparts have so far been found either in the Galactic field, nor in other globular clusters, despite dedicated searches. Conversely, our survey revealed no ω Cen representatives of the rapidly pulsating hot B subdwarfs found among the field population, though their presence cannot be excluded from the limited sample. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal IDs 083.D-0833, 386.D-0669, 087.D-0216 and 091.D-0791).The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A1

  12. Quasi-periodic 1-hour pulsations in the Saturn's outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Rusaitis, L.; Khurana, K. K.; Walker, R. J.; Kivelson, M.

    2017-12-01

    Pulsations in the Saturn's magnetic field and particle fluxes of approximately 1-hour periodicity have been frequently detected in the outer Saturnian magnetosphere by the Cassini spacecraft since 2004. These particle and magnetic field enhancements have been typically observed more often in the dusk sector of the planet, and mid to high latitudes. We investigate nearly 200 of these events as detected by the magnetometer and the Cassini Low-Energy Magnetospheric Measurement System detector (LEMMS) data during the 2004-2015 time frame to characterize these pulsations and suggest their origin. The mechanism needed to produce these observed enhancements needs to permit the acceleration of the energetic electrons to a few MeV and a variable periodicity of enhancements from 40 to 90 minutes. We examine the relation of the oscillations to the periodic power modulations in Saturn kilometric radiation (SKR), using the SKR phase model of Kurth et al. [2007] and Provan et al. [2011]. Finally, we show that similar pulsations can also be observed at 2.5-D MHD simulations of Saturn's magnetosphere.

  13. KIC 3240411 - the hottest known SPB star with the asymptotic g-mode period spacing

    NASA Astrophysics Data System (ADS)

    Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga

    2018-05-01

    We report the discovery of the hottest hybrid B-type pulsator, KIC 3240411, that exhibits the period spacing in the low-frequency range. This pattern is associated with asymptotic properties of high-order gravity (g-) modes. Our seismic modelling made simultaneously with the mode identification shows that dipole axisymmetric modes best fit the observations. Evolutionary models are computed with MESA code and pulsational models with the linear non-adiabatic code employing the traditional approximation to include the effects of rotation. The problem of mode excitation is discussed. We confirm that significant modification is indispensable to explain an instability of both pressure and gravity modes in the observed frequency ranges of KIC 3240411.

  14. Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Leung, H. W.

    2017-06-01

    We have used AAVSO visual and photoelectric V data, and the AAVSO time-series package VSTAR and the Lomb-Scargle time-series algorithm to determine improved pulsation periods, "long secondary periods" (LSPs), and their amplitudes in 51 shorter-period pulsating red giants in the AAVSO photoelectric photometry program, and in the AAVSO long-period variable (LPV) binocular program. As is well known, radial pulsation becomes detectable in red giants at about spectral type M0, with periods of about 20 days. We find that the LSP phenomenon is also first detectable at about M0. Pulsation and LSP amplitudes increase from near zero to about 0.1 at pulsation periods of 100 days. At longer periods, the pulsation amplitudes continue to increase, but the LSP amplitudes are generally between 0.1 and 0.2 on average. The ratios of LSP to pulsation period cluster around 5 and 10, presumably depending on whether the pulsation period is the fundamental or first overtone. The pulsation and LSP phase curves are generally close to sinusoidal, except when the amplitude is small, in which case they may be distorted by observational scatter or, in the case of the LSP amplitude, by the pulsational variability. As with longer-period stars, the LSP amplitude i ncreases and decreases by a factor of two or more, for unknown reasons, on a time scale of about 20 LSPs. The LSP phenomenon is thus present and similar in radially pulsating red giants of all periods. Its cause remains unknown.

  15. Probing the driving region in hot subdwarf stars through nonadiabatic asteroseismology: the principle of the method

    NASA Astrophysics Data System (ADS)

    Charpinet, S.; Fontaine, G.; Brassard, P.

    2009-01-01

    Context: The κ-mechanism that drives pulsations in hot subdwarf stars is closely linked to the action of diffusive processes, including radiative levitation, which modulate the local contents of heavy elements in the stellar envelope. Iron, in particular, is important for its dominant contribution to the Z-bump feature in the envelope opacity, although other iron-peak elements, such as nickel for instance, may also play a significant role. Aims: Our main goal is to evaluate the potential of nonadiabatic asteroseismology for studying diffusive phenomena in these stars. In this exploratory work, we consider iron as a test case to establish the principle of the method. Methods: From model experiments, we explore the behavior of the pulsation engine under assumed local iron enrichments in the Z-bump layers, and we show how this may be related, through the period range of unstable modes, to some observed properties, i.e., the range of periods effectively detected, characterizing hot pulsating subdwarf stars. This connects nonadiabatic physics with observables. Results: We demonstrate that the strength of the pulsation engine is predominently controled by the amount of heavy metals (iron in our experiments) present at the Z-bump location, the chemical composition in other parts of the star being irrelevant to the process. We also show that this property can be used to probe directly the amount of metals present in this particular region, irrespective of the physical process involved to produce such abundances. In particular, we show that limits on the abundances needed for the onset of pulsations can be estimated. These can even be derived for individual stars based on their observed pulsation period range, as illustrated with two well-studied pulsating sdB stars: PG 1325+101 and Feige 48. Conclusions: We conclude by emphasizing the strong potential of nonadiabatic asteroseismology for hot subdwarf stars, which may hold the key for better understanding diffusive and competing mixing processes in stellar envelopes.

  16. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that allmore » these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.« less

  17. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  18. The VMC survey - XXIII. Model fitting of light and radial velocity curves of Small Magellanic Cloud classical Cepheids

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Molinaro, R.; Ripepi, V.; Cioni, M.-R. L.; Clementini, G.; Moretti, M. I.; Ragosta, F.; de Grijs, R.; Groenewegen, M. A. T.; Ivanov, V. D.

    2017-04-01

    We present the results of the χ2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of nine fundamental and three first overtone classical Cepheids in the Small Magellanic Cloud (SMC). The near-infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey 'VISTA near-infrared Y, J, Ks survey of the Magellanic Clouds system' (VMC). For each pulsator, isoperiodic model sequences have been computed by adopting a non-linear convective hydrodynamical code in order to reproduce the multifilter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover, the intrinsic masses and luminosities of the best-fitting model show that all these pulsators are brighter than the canonical evolutionary mass-luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass-loss. Assuming that the inferred deviation from the canonical MLR is only due to mass-loss, we derive the expected distribution of percentage mass-loss as a function of both the pulsation period and the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current period-radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way for the application to other extensive data bases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.

  19. The temporal spectrum of the sdB pulsating star HS 2201+2610 at 2 ms resolution

    NASA Astrophysics Data System (ADS)

    Silvotti, R.; Janulis, R.; Schuh, S. L.; Charpinet, S.; Oswalt, T.; Silvestri, N.; Gonzalez Perez, J. M.; Kalytis, R.; Meištas, E.; Ališauskas, D.; Marinoni, S.; Jiang, X. J.; Reed, M. D.; Riddle, R. L.; Bernabei, S.; Heber, U.; Bärnbantner, O.; Cordes, O.; Dreizler, S.; Goehler, E.; Østensen, R.; Bochanski, J.; Carlson, G.

    2002-07-01

    In this article we present the results of more than 180 hours of time-series photometry on the low gravity (log g=5.4, Teff=29 300 K, log He/H=-3.0 by number) sdB pulsating star HS 2201+2610, obtained between September 2000 and August 2001. The temporal spectrum is resolved and shows 5 close frequencies: three main signals at 2860.94, 2824.10 and 2880.69 mu Hz, with amplitudes of about 1%, 0.5% and 0.1% respectively, are detected from single run observations; two further peaks with very low amplitude (<0.07%) at 2738.01 and 2921.82 mu Hz are confirmed by phase analysis on several independent runs. Due to the small number of detected frequencies, it is not possible to obtain a univocal identification of the excited modes and perform a detailed seismological analysis of the star. No clear signatures of rotational splitting are seen. Nevertheless, the observed period spectrum is well inside the excited period window obtained from pulsation calculations with nonadiabatic models having effective temperature and surface gravity close to the spectroscopic estimates. Due to its relatively simple temporal spectrum, HS 2201+2610 is a very good candidate for trying to measure the secular variation of the pulsation periods in time. With this purpose a long-term monitoring of the star was started. The results of the first 11 months show amplitude variations up to ~ 20% on time-scales of months, which are probably real, and allow us to measure the pulsation frequencies with an unprecedented 0.02 mu Hz resolution. Based on observations obtained at the following telescopes: Loiano 1.5 m (Bologna Astronomical Observatory), Moletai 1.65 m (Institute of Theoretical Physics and Astronomy, Vilnius), Calar Alto 2.2 and 1.2 m (German-Spanish Astronomical Center operated by the Max-Plank-Institute für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy), SARA 0.9 m (Southeastern Association for Research in Astronomy, at Kitt Peak, Arizona), Tenerife 0.8 m (Instituto de Astrofisica de Canarias), NOT 2.6 m (operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias), Beijing 0.85 m (Beijing Astronomical Observatory), Fick 0.6 m (Iowa State University), Wendelstein 0.8 m (University of Munich).

  20. Evaluation of Pump Pulsation in Respirable Size-Selective Sampling: Part II. Changes in Sampling Efficiency

    PubMed Central

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M.; Harper, Martin

    2015-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232–1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form. PMID:24064963

  1. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    PubMed

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232-1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form.

  2. Time-resolved FUSE photometric and spectroscopic observations: PG 1219+534, PG 1605+072, and PG 1613+426

    NASA Astrophysics Data System (ADS)

    Kuassivi; Bonanno, A.; Ferlet, R.

    2005-11-01

    We report the detection of pulsations in the far ultraviolet (FUV) light curves of PG 1219+534, PG 1605+072 and PG 1613+426 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) in time tagged mode (TTAG). Exposures of the order of a few ksec were sufficient to observe the main frequencies of PG 1219+534 and PG 1605+072 and confirm the detection of a pulsation mode at the surface of PG 1613+426 as reported from ground. For the first time we derive time resolved spectroscopic FUSE data of a sdB pulsator (PG 1605+072) and comment on its line profile variation diagram (lpv diagram). We observe the phase shift between the maximum luminosity and the maximum radius to be consistent with the model of an adiabatic pulsator. We also present evidence that the line broadening previously reported is not caused by rotation but is rather an observational bias due to the rapid Doppler shift of the lines with 17 km s-1 amplitude. Thus our observations do not support the previous claim that PG 1605+072 is (or will evolve into) an unusually fast rotating degenerate dwarf. These results demonstrate the asteroseismological potential of the FUSE satellite which should be viewed as another powerful means of investigating stellar pulsations, along with the MOST and COROT missions.

  3. The Origin and Evolution of the White-Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Clemens, J. C.

    1994-12-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using "asteroseismology," a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10^-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via the same process as the hydrogen surface stars. There must be at least two separate channels for white dwarf formation. (SECTION: Dissertation Summary)

  4. The Origin and Evolution of the White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Clemens, J. C.

    1994-05-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using asteroseismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we call the Whole Earth Telescope (WET). By combining data from the WET with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10(-4) times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via the same process as the hydrogen surface stars. There must be at least two separate channels for white dwarf formation.

  5. The origin and evolution of the white dwarf stars

    NASA Astrophysics Data System (ADS)

    Clemens, James Christopher

    1994-01-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell Us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using 'asteroseismology', a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer, it is about 10-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via the same process as the hydrogen surface stars. There must be at least two separate channels for white dwarf formation.

  6. ASTEROSEISMIC ANALYSIS OF THE PRE-MAIN-SEQUENCE STARS IN NGC 2264

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, D. B.; Casey, M. P.; Kallinger, T.

    2009-10-20

    NGC 2264 is a young open cluster lying above the Galactic plane in which six variable stars have previously been identified as possible pre-main-sequence (PMS) pulsators. Their oscillation spectra are relatively sparse with each star having from 2 to 12 unambiguous frequency identifications based on Microvariability and Oscillations of Stars satellite and multi-site ground-based photometry. We describe our efforts to find classical PMS stellar models (i.e., models evolved from the Hayashi track) whose oscillation spectra match the observed frequencies. We find model eigenspectra that match the observed frequencies and are consistent with the stars' locations in the HR diagram formore » the three faintest of the six stars. Not all the frequencies found in spectra of the three brightest stars can be matched to classical PMS model spectra possibly because of effects not included in our PMS models such as chemical and angular momentum stratification in the outer layers of the star. All the oscillation spectra contain both radial and nonradial p-modes. We argue that the PMS pulsating stars divide into two groups depending on whether or not they have undergone complete mixing (i.e., have gone through a Hayashi phase). Lower mass stars that do evolve through a Hayashi phase have oscillation spectra predicted by classical PMS models, whereas more massive stars that do not, retain mass infall effects in their surface layers and are not well modeled by classical PMS models.« less

  7. Comment on "Pulsating Auroras Produced by Interactions of Electrons and Time Domain Structures" by Mozer Et Al.

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Bortnik, J.; Li, W.; Angelopoulos, V.; Donovan, E. F.; Spanswick, E. L.

    2018-03-01

    Mozer et al. (2017, https://doi.org/10.1002/2017JA024223) suggested that time domain structures (TDSs) drive pulsating aurora (with additional contributions by kinetic Alfvén waves (KAWs)) and that chorus waves have negligible effects. In this comment, we point out that electrons scattered by TDS or KAW (dominantly at 0.1-3 keV, <1 s modulation) cannot explain key features of pulsating aurora, which require precipitation above a few keV with a couple of tens of second modulation. Their study did not conduct quantitative evaluations of wave-aurora correlation. The use of short burst mode data ( <10 s) may only cover a single pulse of pulsating aurora and is not suitable for examining connections to pulsating aurora. "Field-aligned" electrons do not necessarily represent loss cone population, and their characteristic energy (hundreds of eV) is much lower than typical precipitation over pulsating aurora. By reexamining the events studied by Mozer et al., we quantitatively demonstrate that TDS and KAW are uncorrelated with pulsating aurora and that only chorus waves showed high correlations with pulsating aurora. Occasional simultaneous occurrence of TDS/KAW and pulsating aurora is found to be coincidental, because the correlation over a time scale of minutes is poor. Several auroral features analyzed in that paper are not pulsating aurora but other types of aurora. We also show that the chorus-pulsating aurora correlation can last for 2 h or longer and can be used to highlight dynamic changes in magnetic field mapping. Chorus waves can resonate with electrons above a few keV and are in agreement with pulsating auroral properties.

  8. Theoretical analysis of start-up power in helium pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Monan; Huang, Rongjin; Xu, Dong; Li, Laifeng

    2017-02-01

    An analytical model for one-turn helium pulsating heat pipes (PHPs) with single liquid slug and vapor plug is established in present study. When an additional heat power takes place in the evaporating section, temperature and pressure will increase. The pressure wave travels through vapor and liquid phases at different speed, producing a pressure difference in the system, which acts as an exciting force to start up the oscillating motion. Results show that the start-up power of helium PHP is related to the filling ratio. The start-up power increases with the filling ration. However, there exist an upper limit. Furthermore, the start-up power also depends on the inclination angle of PHP. When the inclination angle increases, the heat input needed to start up the oscillating motion decreases. But for one-turn helium PHP, it can not be started up when the inclination angle is up to 90°, equalling to horizontal position,. While the inclination angle ranges between 0° (vertical position) and 75°, it can operate successfully.

  9. Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population.

    PubMed

    Ducrot, Arnaud; Giletti, Thomas

    2014-09-01

    In this work we study the asymptotic behaviour of the Kermack-McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile's shape is periodic in time.

  10. Peculiar double-periodic pulsation in RR Lyrae stars of the OGLE collection - II. Short-period stars with a dominant radial fundamental mode

    NASA Astrophysics Data System (ADS)

    Prudil, Z.; Smolec, R.; Skarka, M.; Netzel, H.

    2017-03-01

    We report the discovery of a new group of double-periodic stars in the OGLE Galactic bulge photometry. In 38 stars identified as fundamental-mode RR Lyrae and four classified as first-overtone RR Lyrae, we detected an additional shorter periodicity. The periods of the dominant variability in the newly discovered group are 0.28 < PD < 0.41 d. Period ratios (0.68-0.72) are smaller than the period ratios of the Galactic bulge RRd stars. The typical amplitude ratio (of the additional to the dominant periodicity) is 20 per cent for the stars identified as fundamental-mode RR Lyrae and 50 per cent for stars classified as first-overtone RR Lyrae. 10 stars from our sample exhibit equidistant peaks in the frequency spectrum, which suggests the Blazhko-type modulation of the main pulsation frequency and/or additional periodicity. The Fourier coefficients R21 and R31 are some of the lowest among fundamental-mode RR Lyrae stars, but among the highest for the first-overtone pulsators. For the phase Fourier coefficients φ21 and φ31, our stars lie between RRab and RRc stars. The stars discussed were compared with radial linear pulsation models. Their position in the Petersen diagram cannot be reproduced by assuming that two radial modes are excited and their physical parameters are like those characteristic of RR Lyrae stars. The non-radial-mode scenario also faces difficulties. We conclude that the dominant variability is most likely due to pulsation in the radial fundamental mode, which applies to stars classified as first-overtone mode pulsators. At this point, we cannot explain the nature of the additional periodicity. Even more, the classification of the stars as RR Lyrae should be treated as tentative.

  11. Analysis of Coordinated Observations in the Region of the Day Side Polar Cleft

    DTIC Science & Technology

    1988-04-01

    measuremrnts in the invariant latitude Reiff. 1982; Luhmann et al., 1984: Chtu et al.. 1985 and range between 70’ and 800 with about 25-min time resolu... light line) .4 L index underneath. (figure courtesy of R. L. McPh! rron). comparison between the measured AL index and the computed AL inJex. The top...This is also a region where irregular magnetic pulsations ular pulsations measured by ground-based magnetometers in often occur. The intensity of these

  12. The Effect of Pressure Pulsations and Vibrations on Fully Developed Pipe Flow

    DTIC Science & Technology

    1981-08-01

    38 4.2 Fluid Response to a Fluttering Valve ..................................... 46 5.0 C O N C L U S I O N... valves , it is known from analysis (Refs. 1 through 4) and has been demonstrated experimentally (Refs. 5 through 8) that flow pulsations may (1...fully developed flow in a tube. 19 A E D C- TF1 -80-31 on the basis of hot-wire studies that the exchange process was altered but presented no

  13. Limits in the application of harmonic analysis to pulsating stars

    NASA Astrophysics Data System (ADS)

    Pascual-Granado, J.; Garrido, R.; Suárez, J. C.

    2015-09-01

    Using ultra-precise data from space instrumentation, we found that the underlying functions of stellar light curves from some AF pulsating stars are non-analytic, and consequently their Fourier expansion is not guaranteed. This result demonstrates that periodograms do not provide a mathematically consistent estimator of the frequency content for this type of variable stars. More importantly, this constitutes the first counterexample against the current paradigm, which considers that any physical process is described by a continuous (band-limited) function that is infinitely differentiable.

  14. Multipoint Spacecraft Observations of Long-Lasting Poloidal Pc4 Pulsations in the Dayside Magnetosphere on 1-2 May 2014

    NASA Technical Reports Server (NTRS)

    Korotova, Galina; Sibeck, David; Engebretson, Mark; Wygant, John; Thaller, Scott; Spence, Harlan; Kletzing, Craig; Angelopoulos, Vassilis; Redmon, Robert

    2016-01-01

    We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Geostationary Operational Environmental Satellite system (GOES) spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (R(sub E)). A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from Z(sub SM) = 0.30 R(sub E) to Z(sub SM) = -0.16 R(sub E). We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the second-mode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength). We demonstrated that higher frequencies occurred at times and locations where Alfven velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling following the storm.

  15. Computational model of miniature pulsating heat pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Mario J.; Givler, Richard C.

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid andmore » its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.« less

  16. The Effect of He3 Diffusion on the Pulsational Spectra of DBV Models

    NASA Astrophysics Data System (ADS)

    Montgomery, M. H.; Winget, D. E.

    Isotopic separation is inevitable in white dwarf stars if our understanding of diffusion is correct. This can have many important, and largely unexplored, astrophysical consequences. Asteroseismology gives an opportunity to investigate this possibility. We first examine the relevant timescales for diffusion in these objects, and compare them to the evolutionary timescales in the context of the DBV white dwarfs. We then explore the consequences which He3 separation has on the pulsational spectra of DBV models. Since GD 358 is the best-studied member of this class of variables, we pay particular attention to the way this could affect previous fits.

  17. Multiyear and multisite photometric campaigns on the bright high-amplitude pulsating subdwarf B star EC 01541-1409

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Kilkenny, D.; O'Toole, S.; Østensen, R. H.; Honer, C.; Gilker, J. T.; Quint, A. C.; Doennig, A. M.; Hicks, L. H.; Thompson, M. A.; McCart, P. A.; Zietsman, E.; Chen, W.-P.; Chen, C.-W.; Lin, C.-C.; Beck, P.; Degroote, P.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; Lacluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Baran, A.; Winiarski, M.; Drozdz, M.

    2012-03-01

    We present follow-up observations of the pulsating subdwarf B (sdB) star EC 01541-1409 as part of our efforts to resolve pulsation spectra for use in asteroseismological analyses. This paper reports on data obtained from a single-site campaign, during 2008, and a multisite campaign, during 2009. From limited 2008 data, we were able to clearly resolve and pre-whiten 24 periods. A subsequent multisite campaign spanning nearly 2 months found over 30 individual periodicities most of which were unstable in amplitude and/or phase. Pulsation amplitudes were found to the detection limit, meaning that further observations would likely reveal more periodicities. EC 01541-1409 reveals itself to be one of two sdB pulsators with many pulsation frequencies covering a large frequency range. Unlike the other star of this type (PG 0048+091), it has one high-amplitude periodicity which appears phase stable, making EC 01541-1409 an excellent candidate for exoplanet studies via pulsation phases. No multiplets were detected leaving EC 01541-1409 as yet another rich p-mode sdB pulsator without these features, limiting observational constraints on pulsation modes.

  18. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.

    2003-07-01

    We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231

  19. Oscilaciones estelares no-radiales: aplicación a configuraciones politrópicas y modelos de enanas blancas de He

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Benvenuto, O. G.

    Recently in our Observatory we have developed a new Stellar Pulsation Code, independently of other workers. Such program computes eigenvalues (eigenfrequencies) and eigenfunctions of non-radial modes in spherical non-perturbated stellar models. To accomplish this calculations, the four order eigenvalue problem (in the linear adiabatic approach) is solved by means of the well-know technique of Henyey on the finite differences scheme wich replace to the differential equations of the problem. In order to test the Code, we have computed numerous eigenmodes in polytropic configurations for several values of index n. In this comunication we show the excelent agreement of our results and that best available in the literature. Also, we present results of oscillations in models of white dwarf stars with homogeneus chemical composition (pure Helium). This models have been obtained with the Evolution Stellar Code of our Observatory. The calculations outlined above conform a first preliminary step in a major proyect whose main purpose is the study of pulsational properties of DA, DB and DO white dwarfs stars. Detailed investigations have demonstrated that such objets pulsates in non-radial g-modes with eigenperiods in the range 100-2000 sec.

  20. A search for millisecond periodic and quasi-periodic pulsations in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Mereghetti, S.; Grindlay, J. E.

    1987-01-01

    The results of a Fourier analysis to detect fast periodic and quasi-periodic pulsations in the X-ray emission from the sources 4U 0614 + 091, 4U 1636 - 536, 4U 1735 - 44, 4U 1820 30, GX 5 - 1, GX 9 + 9, Ser X-1, and Cyg X-2 are presented. This search has been carried out for the first time in the soft energy band (0.2-2.0 keV), using data from the Einstein Observatory high resolution imager instrument. An approximate method of minimizing the decrease in search sensitivity produced by the Doppler shift of the pulse periods due to source orbital motion is discussed. No pulsations have been detected, and upper limits, which depend on the orbital parameters assumed for the sources, are set on the pulsed flux fraction.

  1. Search for periodicities near 59 s in the COS-B gamma-ray data of 2CG195+04 (Geminga)

    NASA Technical Reports Server (NTRS)

    Buccheri, R.; Pollock, A. M. T.; Bennett, K.; Bignami, G. F.; Caraveo, P. A.; Hermsen, W.; Mayer-Hasselwander, H. A.; Sacco, B.

    1985-01-01

    The COS-B data relating to five observations in the general direction of Geminga, spanning 6.7 years, were searched for pulsation near 59 s. The SAS-2 indication is not confirmed. An indication of a 59 s pulsation in the gamma ray emission from 2CG195+04 (Geminga) was reported. Early analysis of COS-B data supported the result while later improved statistics did not confirm it. Subsequently, detection of a 59 s pulsation in the emission from the direction of Geminga at ultra high gamma and X-rays was reported. Geminga was identified with the X-ray source 1E0630+128. The final COS-B data on Geminga which was observed five times for a total of 214 days are reported.

  2. Numerical investigations of the unsteady blood flow in the end-to-side arteriovenous fistula for hemodialysis.

    PubMed

    Jodko, Daniel; Obidowski, Damian; Reorowicz, Piotr; Jóźwik, Krzysztof

    2016-01-01

    The aim of this study was to investigate the blood flow in the end-to-side arteriovenous (a-v) fistula, taking into account its pulsating nature and the patient-specific geometry of blood vessels. Computational Fluid Dynamics (CFD) methods were used for this analysis. DICOM images of the fistula, obtained from the angio-computed tomography, were a source of the data applied to develop a 3D geometrical model of the fistula. The model was meshed, then the ANSYS CFX v. 15.0 code was used to perform simulations of the flow in the vessels under analysis. Mesh independence tests were conducted. The non-Newtonian rheological model of blood and the Shear Stress Transport model of turbulence were employed. Blood vessel walls were assumed to be rigid. Flow patterns, velocity fields, the volume flow rate, the wall shear stress (WSS) propagation on particular blood vessel walls were shown versus time. The maximal value of the blood velocity was identified in the anastomosis - the place where the artery is connected to the vein. The flow rate was calculated for all veins receiving blood. The blood flow in the geometrically complicated a-v fistula was simulated. The values and oscillations of the WSS are the largest in the anastomosis, much lower in the artery and the lowest in the cephalic vein. A strong influence of the mesh on the results concerning the maximal and area-averaged WSS was shown. The relation between simulations of the pulsating and stationary flow under time-averaged flow conditions was presented.

  3. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Pulsations of light emitted by laser diodes

    NASA Astrophysics Data System (ADS)

    Enders, P.

    1988-11-01

    A system of three simple rate equations, derived from equations describing the excess heating near the front face of a resonator, is used as a model of the appearance of spontaneous (self-sustained) pulsations of light emitted by injection lasers. The rate equations are considered as an almost conservative system and the limit cycle is calculated for the system. The good agreement with numerical results favors our approximation, compared with other approximate calculations.

  4. Intrinsic Variability in Multiple Systems and Clusters: Open Questions

    NASA Astrophysics Data System (ADS)

    Lampens, P.

    2006-04-01

    It is most interesting and rewarding to probe the stellar structure of stars which belong to a system originating from the same parent cloud as this provides additional and more accurate constraints for the models. New results on pulsating components in multiple systems and clusters are beginning to emerge regularly. Based on concrete studies, I will present still unsolved problems and discuss some of the issues which may affect our understanding of the pulsation physics in such systems but also in general.

  5. Effect of counter-pulsation control of a pulsatile left ventricular assist device on working load variations of the native heart.

    PubMed

    Choi, Seong Wook; Nam, Kyoung Won; Lim, Ki Moo; Shim, Eun Bo; Won, Yong Soon; Woo, Heung Myong; Kwak, Ho Hyun; Noh, Mi Ryoung; Kim, In Young; Park, Sung Min

    2014-04-03

    When using a pulsatile left ventricular assist device (LVAD), it is important to reduce the cardiac load variations of the native heart because severe cardiac load variations can induce ventricular arrhythmia. In this study, we investigated the effect of counter-pulsation control of the LVAD on the reduction of cardiac load variation. A ventricular electrocardiogram-based counter-pulsation control algorithm for a LVAD was implemented, and the effects of counter-pulsation control of the LVAD on the reduction of the working load variations of the left ventricle were determined in three animal experiments. Deviations of the working load of the left ventricle were reduced by 51.3%, 67.9%, and 71.5% in each case, and the beat-to-beat variation rates in the working load were reduced by 84.8%, 82.7%, and 88.2% in each ease after counter-pulsation control. There were 3 to 12 premature ventricle contractions (PVCs) before counter-pulsation control, but no PVCs were observed during counter-pulsation control. Counter-pulsation control of the pulsatile LVAD can reduce severe cardiac load variations, but the average working load is not markedly affected by application of counter-pulsation control because it is also influenced by temporary cardiac outflow variations. We believe that counter-pulsation control of the LVAD can improve the long-term safety of heart failure patients equipped with LVADs.

  6. Double throat pressure pulsation dampener for oil-free screw compressors

    NASA Astrophysics Data System (ADS)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  7. Observational Δν-ρ¯ Relation for δ Sct Stars using Eclipsing Binaries and Space Photometry

    NASA Astrophysics Data System (ADS)

    García Hernández, A.; Martín-Ruiz, S.; Monteiro, Mário J. P. F. G.; Suárez, J. C.; Reese, D. R.; Pascual-Granado, J.; Garrido, R.

    2015-10-01

    Delta Scuti (δ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modeling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a δ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for δ Sct stars.

  8. Actin-mediated bacterial propulsion: comet profile, velocity pulsations.

    PubMed

    Benza, V G

    2008-05-23

    The propulsion of bacteria under the action of an actin gel network is examined in terms of gel concentration dynamics. The model includes the elasticity of the network, the gel-bacterium interaction, the bulk and interface polymerization. A formula for the cruise velocity is obtained where the contributions to bacterial motility arising from elasticity and polymerization are made explicit. Higher velocities correspond to lower concentration peaks and longer tails, in agreement with experimental results. The condition for the onset of motion is explicitly given. The behavior of the system is explored by varying the growth rates and the gel elasticity. At steady state two regimes are found, respectively, of constant and pulsating velocity; in the latter case, the velocity undergoes sudden accelerations and subsequent recoveries. The transition to the pulsating regime is obtained by increasing the elastic response of the gel.

  9. Stellar pulsations in beyond Horndeski gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify themore » best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.« less

  10. Frequency and mode identification of γ Doradus from photometric and spectroscopic observations*

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Wright, D. J.; De Cat, P.; Cottrell, P. L.

    2018-04-01

    The prototype star for the γ Doradus class of pulsating variables was studied employing photometric and spectroscopic observations to determine the frequencies and modes of pulsation. The four frequencies found are self-consistent between the observation types and almost identical to those found in previous studies (1.3641 d-1, 1.8783 d-1, 1.4742 d-1, and 1.3209 d-1). Three of the frequencies are classified as l, m = (1, 1) pulsations and the other is ambiguous between l, m = (2, 0) and (2, -2) modes. Two frequencies are shown to be stable over 20 yr since their first identification. The agreement in ground-based work makes this star an excellent calibrator between high-precision photometry and spectroscopy with the upcoming TESS observations and a potential standard for continued asteroseismic modelling.

  11. Francis-99 turbine numerical flow simulation of steady state operation using RANS and RANS/LES turbulence model

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Platonov, D.; Sentyabov, A.; Gavrilov, A.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at three regimes, using two eddy-viscosity- (EVM) and a Reynolds stress (RSM) RANS models (realizable k-ɛ, k-ω SST, LRR) and detached-eddy-simulations (DES), as well as large-eddy simulations (LES). Comparison of calculation results with the experimental data was carried out. Unlike the linear EVMs, the RSM, DES, and LES reproduced well the mean velocity components, and pressure pulsations in the diffusor draft tube. Despite relatively coarse meshes and insufficient resolution of the near-wall region, LES, DES also reproduced well the intrinsic flow unsteadiness and the dominant flow structures and the associated pressure pulsations in the draft tube.

  12. Light curves for bump Cepheids computed with a dynamically zoned pulsation code

    NASA Technical Reports Server (NTRS)

    Adams, T. F.; Castor, J. I.; Davis, C. G.

    1980-01-01

    The dynamically zoned pulsation code developed by Castor, Davis, and Davison was used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. The use of a code that is capable of producing reliable light curves demonstrates that the light and velocity curves for 9.8 day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the 'evolutionary mass.' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators.

  13. Viscous and Thermal Effects on Hydrodynamic Instability in Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during the deflagration of liquid propellants in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  14. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  15. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{supmore » −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.« less

  16. Large-Scale Aspects and Temporal Evolution of Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.

    2010-01-01

    Pulsating aurora is a common phenomenon generally believed to occur mainly in the aftermath of a, substorm, where dim long-period pulsating patches appear. The study determines the temporal and spatial evolution of pulsating events using two THEN IIIS ASI stations, at Gillam (66.18 mlat, 332.78 mlon, magnetic midnight at 0634 UT) and Fort Smith, (67.38 mlat, 306.64 mlon, magnetic midnight at, 0806 UT) along roughly the same invariant latitude. Parameters have been calculated from a database of 74 pulsating aurora events from 119 days of good optical data within the period from September 2007 through March 2008 as identified with the Gillam camera. It is shown that the source region of pulsating aurora drifts or expands eastward, away from magnetic midnight, for pre-midnight onsets and that the spatial evolution is more complicated for post midnight onsets, which has implications for the source mechanism. The most probable duration of a pulsating aurora event is roughly 1.5 hours while the distribution of possible event durations includes many long (several hours) events. This may suggest that pulsating aurora is not strictly a substorm recovery phase phenomenon but rather a persistent, long-lived phenomenon that may be temporarily disrupted by auroral substorms. Observations from the Gillam station show that in fact, pulsating aurora is quite common with the occurrence rate increasing to around 60% for morning hours, with 6910 of pulsating aurora onsets occurring after substorm breakup.

  17. High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard

    2013-01-01

    We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications. PMID:23986677

  18. Strange mode instabilities and mass loss in evolved massive primordial stars

    NASA Astrophysics Data System (ADS)

    Yadav, Abhay Pratap; Kühnrich Biavatti, Stefan Henrique; Glatzel, Wolfgang

    2018-04-01

    A linear stability analysis of models for evolved primordial stars with masses between 150 and 250 M⊙ is presented. Strange mode instabilities with growth rates in the dynamical range are identified for stellar models with effective temperatures below log Teff = 4.5. For selected models, the final fate of the instabilities is determined by numerical simulation of their evolution into the non-linear regime. As a result, the instabilities lead to finite amplitude pulsations. Associated with them are acoustic energy fluxes capable of driving stellar winds with mass-loss rates in the range between 7.7 × 10-7 and 3.5 × 10-4 M⊙ yr-1.

  19. Two-phase ultraviolet spectrophotometry of the pulsating white dwarf ZZ Piscium

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Kemper, E.; Grauer, A. D.; Holm, A. V.; Panek, R. J.; Schiffer, F. H., III

    1985-01-01

    Spectra of the pulsating white dwarf ZZ Psc (= G29-38) were obtained using the International Ultraviolet Explorer. By using a multiple-exposure technique in conjunction with simultaneous ground-based exposure-metering photometry, it was possible to obtain mean on-pulse and off-pulse spectra in the 1950-1310 A wavelength range. The ratio of the time-averaged on-pulse to off-pulse spectra is best fitted by a temperature variation that is in phase with the optical light variation. This result is consistent with the hypothesis that the observed variation is due to a high-order nonradial pulsation. Conventional ultraviolet spectra of ZZ Psc showed broad absorption features at 1390 and 1600 A. These features are also found in the spectra of the cool DA-type white dwarfs G226-29 and G67-23, and appear to increase in strength with decreasing temperature. A possible explanation for the 1600 A feature is absorption by the satellite band of resonance-broadened hydrogen Ly-alpha. Such absorption would also help explain a discrepancy between the observed pulsation amplitude shortward of 1650 A and the predicted amplitudes based on model atmospheres.

  20. Short-term variability and mass loss in Be stars. II. Physical taxonomy of photometric variability observed by the Kepler spacecraft

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Baade, D.; Carciofi, A. C.

    2016-09-01

    Context. Classical Be stars have been established as pulsating stars. Space-based photometric monitoring missions contributed significantly to that result. However, whether Be stars are just rapidly rotating SPB or β Cep stars, or whether they have to be understood differently, remains debated in the view of their highly complex power spectra. Aims: Kepler data of three known Be stars are re-visited to establish their pulsational nature and assess the properties of additional, non-pulsational variations. The three program stars turned out to be one inactive Be star, one active, continuously outbursting Be star, and one Be star transiting from a non-outbursting into an outbursting phase, thus forming an excellent sample to distill properties of Be stars in the various phases of their life-cycle. Methods: The Kepler data was first cleaned from any long-term variability with Lomb-Scargle based pre-whitening. Then a Lomb-Scargle analysis of the remaining short-term variations was compared to a wavelet analysis of the cleaned data. This offers a new view on the variability, as it enables us to see the temporal evolution of the variability and phase relations between supposed beating phenomena, which are typically not visualized in a Lomb-Scargle analysis. Results: The short-term photometric variability of Be stars must be disentangled into a stellar and a circumstellar part. The stellar part is on the whole not different from what is seen in non-Be stars. However, some of the observed phenomena might be to be due to resonant mode coupling, a mechanism not typically considered for B-type stars. Short-term circumstellar variability comes in the form of either a group of relatively well-defined, short-lived frequencies during outbursts, which are called Štefl frequencies, and broad bumps in the power spectra, indicating aperiodic variability on a time scale similar to typical low-order g-mode pulsation frequencies, rather than true periodicity. Conclusions: From a stellar pulsation perspective, Be stars are rapidly rotating SPB stars, that is they pulsate in low order g-modes, even if the rapid rotation can project the observed frequencies into the traditional high-order p-mode regime above about 4 c/d. However, when a circumstellar disk is present, Be star power spectra are complicated by both cyclic, or periodic, and aperiodic circumstellar phenomena, possibly even dominating the power spectrum.

  1. High School Students Watching Stars Evolve

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; MacNeil, D.; Meema-Coleman, L.; Morenz, K.

    2012-06-01

    (Abstract only) Some stars pulsate (vibrate). Their pulsation period depends primarily on their radius. The pulsation period changes if the radius changes, due to evolution, for instance. Even though the evolution is slow, the period change is measurable because it is cumulative. The observed time of maximum brightness (O) minus the calculated time (C), assuming that the period is constant, is plotted against time to produce an (O-C) diagram. If there is a uniform period change, this diagram will be a parabola, whose curvature - positive or negative - is proportional to the rate of period change. In this project, we study the period changes of RR Lyrae stars, old sun-like stars which are in the yellow giant phase, generating energy by thermonuclear fusion of helium into carbon. We chose 59 well-studied stars in the GEOS database, which consists of times of maximum measured by AAVSO and other observers. We included about a dozen RRc (first overtone pulsator) stars, since these have not been as well studied as the RRab (fundamental mode) stars because the maxima in their light curves are not as sharp. We will describe our results: about 2/3 of the stars showed parabolic (O-C) diagrams with period changes of up to 1.0 s/century, some with increasing periods and some with decreasing periods. The characteristic times for period changes (i.e. period divided by rate of change of period) were mostly 5-30 million years. These numbers are consistent with evolutionary models. Some stars showed too much scatter for analysis; we will discuss why. A few stars showed unusual (O-C) diagrams which cannot be explained simply by evolution. This project was carried out by coauthors MacNeil, Meema-Coleman, and Morenz, who were participants in the prestigious University of Toronto Mentorship Program, which enables outstanding senior high school students to participate in research at the university. We thank the AAVSO and other observers who made the measurements which were used in our project.

  2. Development and investigation of MOEMS type displacement-pressure sensor for biological information monitoring

    NASA Astrophysics Data System (ADS)

    Ostasevicius, Vytautas; Malinauskas, Karolis; Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas

    2016-04-01

    The aim of this paper is to develop and investigate MOEMS displacement-pressure sensor for biological information monitoring. Developing computational periodical microstructure models using COMSOL Multiphysics modeling software for modal and shape analysis and implementation of these results for design MOEMS displacement-pressure sensor for biological information monitoring was performed. The micro manufacturing technology of periodical microstructure having good diffraction efficiency was proposed. Experimental setup for characterisation of optical properties of periodical microstructure used for design of displacement-pressure sensor was created. Pulsating human artery dynamic characteristics in this paper were analysed.

  3. Variability of Red Supergiants in M31 from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Soraisam, Monika D.; Bildsten, Lars; Drout, Maria R.; Bauer, Evan B.; Gilfanov, Marat; Kupfer, Thomas; Laher, Russ R.; Masci, Frank; Prince, Thomas A.; Kulkarni, Shrinivas R.; Matheson, Thomas; Saha, Abhijit

    2018-05-01

    Most massive stars end their lives as red supergiants (RSGs), a short-lived evolutionary phase when they are known to pulsate with varying amplitudes. The RSG period–luminosity (PL) relation has been measured in the Milky Way, the Magellanic Clouds and M33 for about 120 stars in total. Using over 1500 epochs of R-band monitoring from the Palomar Transient Factory survey over a five-year period, we study the variability of 255 spectroscopically cataloged RSGs in M31. We find that all RGSs brighter than M K ≈ ‑10 mag (log(L/L ⊙) > 4.8) are variable at Δm R > 0.05 mag. Our period analysis finds 63 with significant pulsation periods. Using the periods found and the known values of M K for these stars, we derive the RSG PL relation in M31 and show that it is consistent with those derived earlier in other galaxies of different metallicities. We also detect, for the first time, a sequence of likely first-overtone pulsations. Comparison to stellar evolution models from MESA confirms the first-overtone hypothesis and indicates that the variable stars in this sample have 12 M ⊙ < M < 24 M ⊙. As these RSGs are the immediate progenitors to Type II-P core-collapse supernovae (SNe), we also explore the implication of their variability in the initial-mass estimates for SN progenitors based on archival images of the progenitors. We find that this effect is small compared to the present measurement errors.

  4. Simultaneous observation of Pc 3-4 pulsations in the solar wind and in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.; Luehr, H.; Acuna, M. H.

    1987-01-01

    The equatorially orbiting Active Magnetospheric Particle Tracer Explorers CCE and IRM satellites have made numerous observations of Pc 3-4 magnetic field pulsations (10-s to 100-s period) simultaneously at locations upstream of the earth's bow shock and inside the magnetosphere. These observations show solar wind/IMF control of two categories of dayside magnetospheric pulsations. Harmonically structured, azimuthally polarized pulsations are commonly observed from L = 4 to 9 in association with upstream waves. More monochromatic compressional pulsations are clearly evident on occasion, with periods identical to those observed simultaneously in the solar wind. The observations reported here are consistent with a high-latitude (cusp) entry mechanism for wave energy related to harmonically structured pulsations.

  5. Pulsation Detection from Noisy Ultrasound-Echo Moving Images of Newborn Baby Head Using Fourier Transform

    NASA Astrophysics Data System (ADS)

    Yamada, Masayoshi; Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Kishida, Jun; Nakamori, Nobuyuki; Kanamori, Hitoshi; Sakurai, Takashi; Kodama, Souichi

    1995-05-01

    In order to detect pulsation from a series of noisy ultrasound-echo moving images of a newborn baby's head for pediatric diagnosis, a digital image processing system capable of recording at the video rate and processing the recorded series of images was constructed. The time-sequence variations of each pixel value in a series of moving images were analyzed and then an algorithm based on Fourier transform was developed for the pulsation detection, noting that the pulsation associated with blood flow was periodically changed by heartbeat. Pulsation detection for pediatric diagnosis was successfully made from a series of noisy ultrasound-echo moving images of newborn baby's head by using the image processing system and the pulsation detection algorithm developed here.

  6. Constraining the physics of carbon crystallization through pulsations of a massive DAV BPM37093

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Kepler, S. O.; Chené, André-Nicolas; Koester, D.; Provencal, J. L.; Kleinmani, S. J.; Sullivan, D. J.; Chote, Paul; Sefako, Ramotholo; Kanaan, Antonio; Romero, Alejandra; Corti, Mariela; Kilic, Mukremin; Montgomery, M. H.; Winget, D. E.

    We are trying to reduce the largest uncertainties in using white dwarf stars as Galactic chronometers by understanding the details of carbon crystalliazation that currently result in a 1-2 Gyr uncertainty in the ages of the oldest white dwarf stars. We expect the coolest white dwarf stars to have crystallized interiors, but theory also predicts hotter white dwarf stars, if they are massive enough, will also have some core crystallization. BPM 37093 is the first discovered of only a handful of known massive white dwarf stars that are also pulsating DAV, or ZZ Ceti, variables. Our approach is to use the pulsations to constrain the core composition and amount of crystallization. Here we report our analysis of 4 hours of continuous time series spectroscopy of BPM 37093 with Gemini South combined with simultaneous time-series photometry from Mt. John (New Zealand), SAAO, PROMPT, and Complejo Astronomico El Leoncito (CASLEO, Argentina).

  7. Interaction of pulsating and spinning waves in nonadiabatic flame propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booty, M.R.; Margolis, S.B.; Matkowsky, B.J.

    1987-12-01

    The authors consider nonadiabatic premixed flame propagation in a long cylindrical channel. A steadily propagating planar flame exists for heat losses below a critical value. It is stable provided that the Lewis number and the volumetric heat loss coefficient are sufficiently small. At critical values of these parameters, bifurcated states, corresponding to time-periodic pulsating cellular flames, emanate from the steadily propagating solution. The authors analyze the problem in a neighborhood of a multiple primary bifurcation point. By varying the radius of the channel, they split the multiple bifurcation point and show that various types of stable periodic and quasi-periodic pulsatingmore » flames can arise as secondary, tertiary, and quaternary bifurcations. Their analysis describes several types of spinning and pulsating flame propagation which have been experimentally observed in nonadiabatic flames, and also describes additional quasi-periodic modes of burning which have yet to be documented experimentally.« less

  8. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. II. Determination of stellar parameters and abundances

    NASA Astrophysics Data System (ADS)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2018-03-01

    Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular phases of their pulsations. We identified convective inhomogeneities as the main driver behind potential biases. To obtain a complete view on the effects when determining stellar parameters with 1D models, multidimensional Cepheid atmosphere models are necessary for variables of longer period than investigated here.

  9. Photometric and Spectroscopic Analysis of CP Stars Under Indo-Russian Collaboration

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Semenko, E.; Moiseeva, A.; Joshi, G. C.; Joshi, Y. C.; Sachkov, M.

    2015-04-01

    The Indo-Russian collaboration is a joint venture between the astronomers of India (ARIES) and Russia (SAO and INASAN) to develop scientific and technical interactions by making use of observational facilities. Here we present the results obtained after the “Magnetic Conference” that was held in the Special Astrophysical Observatory, Russia in 2010. The analysis of time-series photometric CCD observations of HD 98851 shows a pulsation period of 1fh55, which is consistent with the period reported previously. We have also found a signature of short-term periodic variability in HD 207561. The analysis of high-resolution spectroscopic and spectropolarimetric observations of the sample stars revealed characteristics similar to Am stars, hence the excitation of the low-overtone pulsations are expected in these stars.

  10. Domains of pulsational instability of low-frequency modes in rotating upper main sequence stars

    NASA Astrophysics Data System (ADS)

    Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga

    2017-07-01

    We determine instability domains on the Hertzsprung-Russell diagram for rotating main sequence stars with masses of 2-20 M⊙. The effects of the Coriolis force are treated wihin the traditional approximation. High-order g modes with harmonic degrees ℓ up to 4 and mixed gravity-Rossby modes with |m| up to 4 are considered. We include the effects of rotation in wider instability strips for a given ℓ compared to the non-rotating case and in an extension of the pulsational instability to hotter and more massive models. We present results for a fixed value of the initial rotation velocity as well as for a fixed ratio of the angular rotation frequency to its critical value. Moreover, we check how the initial hydrogen abundance, metallicity, overshooting from the convective core and opacity affect the pulsational instability domains. The effect of rotation on the period spacing is also discussed.

  11. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  12. Photometric and spectroscopic investigation of the oscillating Algol type binary: EW Boo

    NASA Astrophysics Data System (ADS)

    Doğruel, Mustafa Burak; Gürol, Birol

    2015-10-01

    We obtained the physical and geometrical parameters of the EW Boo system, which exhibits short period and small amplitude pulsations as well as brightness variations due to orbital motion of components. Towards this end we carried out photometric observations at Ankara University Kreiken Observatory (AUKO) as well as spectroscopic observations at TUBITAK National Observatory (TNO). The light and radial velocity curves obtained from these observations have been simultaneously analyzed with PHOEBE and the absolute parameters of the system along with the geometric parameters of the components have been determined. Using model light curves of EW Boo, light curve regions in which the pulsations are active have been determined and as a result of analyses performed in the frequency region, characteristic parameters of pulsations have been obtained. We find that the results are compatible with current parameters of similar systems in the literature. The evolutionary status of the components is propounded and discussed.

  13. The period-luminosity and period-radius relations of Type II and anomalous Cepheids in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Jurkovic, M. I.

    2017-07-01

    Context. Type II Cepheids (T2Cs) and anomalous Cepheids (ACs) are pulsating stars that follow separate period-luminosity relations. Aims: We study the period-luminosity (PL) and period-radius (PR) relations for T2Cs and ACs in the Magellanic Clouds. Methods: In an accompanying paper we determined the luminosities and effective temperatures for the 335 T2Cs and ACs in the LMC and SMC discovered in the OGLE-III survey, by constructing the spectral energy distribution (SED) and fitting this with model atmospheres and a dust radiative transfer model (in the case of dust excess). Building on these results we studied the PL and PR relations of these sources. Using existing pulsation models for RR Lyrae and classical Cepheids we derive the period-luminosity-mass-temperature-metallicity relations and then estimate the pulsation mass. Results: The PL relation for the T2Cs does not appear to depend on metallicity and is Mbol = + 0.12-1.78log P (for P < 50 days), excluding the dusty RV Tau stars. Relations for fundamental and first overtone LMC ACs are also presented. The PR relation for T2C also shows little or no dependence on metallicity or period. Our preferred relation combines SMC and LMC stars and all T2C subclasses and is log R = 0.846 + 0.521log P. Relations for fundamental and first overtone LMC ACs are also presented. The pulsation masses from the RR Lyrae and classical Cepheid pulsation models agree well for the short period T2Cs, the BL Her subtype, and ACs, and are consistent with estimates in the literature, I.e. MBLH 0.49M⊙ and MAC 1.3M⊙, respectively. The masses of the W Vir appear similar to the BL Her. The situation for the pWVir and RV Tau stars is less clear. For many RV Tau the masses are in conflict with the standard picture of (single-star) post-AGB evolution, where the masses are either too large (≳1 M⊙) or too small (≲0.4 M⊙). Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A29

  14. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Wenhu; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084; Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale.more » Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.« less

  15. An Update on the Quirks of Pulsating, Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette

    2015-06-01

    At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.

  16. Pressure pulsations and hydraulic efficiency at Smeland power plant

    NASA Astrophysics Data System (ADS)

    Ulvan, V. S.; Kverno, J. O.; Dahlhaug, O. G.

    2018-06-01

    Smeland power plant in Norway is experiencing pressure pulsations in their Francis turbine when running above best efficiency point. By measuring both the pressure pulsations and runner efficiency, the cause and effect of the pulsations are to be investigated thoroughly, which is this works main purpose. To find the Francis runners efficiency the thermodynamic method has been used, which builds on the principle that all of the hydraulic losses turns into heat in the flow itself. By measuring the change of temperature before and after the turbine one can, with little other data, calculate the hydraulic efficiency. To identify the pressure pulsations, pressure transducers were placed on the inlet to the spiral casing, draft tube, and upper labyrinth. While doing measurements, air-injection through the runner was tested on full load, which nearly eradicated the pressure pulsations. This might be due to an increase of volume in a pulsating full load vortex that changed its eigenfrequency, and therefore stopped resonating.

  17. Reduction of background noise induced by wind tunnel jet exit vanes

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Brooks, T. F.; Hoad, D. R.

    1985-01-01

    The NASA-Langley 4 x 7 m wind tunnel develops low frequency flow pulsations at certain velocity ranges during open throat mode operation, affecting the aerodynamics of the flow and degrading the resulting model test data. Triangular vanes attached to the trailing edge of flat steel rails, mounted 10 cm from the inside of the jet exit walls, have been used to reduce this effect; attention is presently given to methods used to reduce the inherent noise generation of the vanes while retaining their pulsation reduction features.

  18. Relations between morning sector Pi 1 pulsation activity and particle and field characteristics observed by the DE 2 satellite

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Winningham, J. D.; Rosenberg, T. J.; Arnoldy, R. L.; Maynard, N. C.; Sugiura, M.

    1986-01-01

    Ground-based magnetometer, photometer, and riometer data are combined with low-altitude particle and electric and magnetic field data from the DE-2 spacecraft to provide a more complete characterization of the magnetospheric and tropospheric environment in which morning sector asymmetric Pi 1 pulsations are observed. The results of the study are in agreement with recent conclusions that morning sector asymmetric Pi 1 pulsations are physically related to pulsating aurorae. Precipitation of energetic electrons (E greater than 35 keV) coincides in every instance with the occurrence of these pulsations.

  19. The effect of Livermore OPAL opacities on the evolutionary masses of RR Lyrae stars

    NASA Technical Reports Server (NTRS)

    Yi, Sukyoung; Lee, Young-Wook; Demarque, Pierre

    1993-01-01

    We have investigated the effect of the new Livermore OPAL opacities on the evolution of horizontal-branch (HB) stars. This work was motivated by the recent stellar pulsation calculations using the new Livermore opacities, which suggest that the masses of double-mode RR Lyrae stars are 0.1-0.2 solar mass larger than those based on earlier opacities. Unlike the pulsation calculations, we find that the effect of opacity change on the evolution of HB stars is not significant. In particular, the effect of the mean masses of RR Lyrae stars is very small, showing a decrease of only 0.01-0.02 solar mass compared to the models based on old Cox-Stewart opacities. Consequently, with the new Livermore OPAL opacities, both the stellar pulsation and evolution models now predict approximately the same masses for the RR Lyrae stars. Our evolutionary models suggest that the mean masses of the RR Lyrae stars are about 0.76 and about 0.71 solar mass for M15 (Oosterhoff group II) and M3 (group I), respectively. If (alpha/Fe) = 0.4, these values are decreased by about 0.03 solar mass. Variations of the mean masses of RR Lyrae stars with HB morphology and metallicity are also presented.

  20. A linear and nonlinear study of Mira

    NASA Astrophysics Data System (ADS)

    Cox, A. N.; Ostlie, D. A.

    1993-12-01

    Both linear and nonlinear calculations of the 331 day, long period variable star Mira have been undertaken to see what radial pulsation mode is naturally selected. Models are similar to those considered in the linear nonadiabatic stellar pulsation study of Ostlie and Cox (1986). Models are considered with masses near one solar mass, luminosities between 4000 and 5000 solar luminosities, and effective temperatures of approximately 3000 K. These models have fundamental mode periods that closely match the pulsation period of Mira. The equation of state for the stellar material is given by the Stellingwerf (1975ab) procedure, and the opacity is obtained from a fit by Cahn that matches the low temperature molecular absorption data for the poplulation I Ross-Aller 1 mixture calculated from the Los Alamos Astrophysical Opacity Library. For the linear study, the Cox, Brownlee, and Eilers (1966) approximation is used for the linear theory variation of the convection luminosity. For the nonlinear work, the method described by Ostlie (1990) and Cox (1990) is followed. Results showing internal details of the radial fundamental and first overtone modes behavior in linear theory are presented. Preliminary radial fundamental mode nonlinear calculations are discussed. The very tentative conclusion is that neither the fundamental or first overtone mode is excluded from being the actual observed one.

  1. Gas compressor with side branch absorber for pulsation control

    DOEpatents

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  2. Pulsation in the presence of a strong magnetic field: the roAp star HD166473

    NASA Astrophysics Data System (ADS)

    Mathys, G.; Kurtz, D. W.; Elkin, V. G.

    2007-09-01

    Phase-resolved high-resolution, high signal-to-noise ratio (S/N) observations of the strongly magnetic roAp star HD166473 are analysed. HD166473 was selected as the target of this study because it has one of the strongest magnetic fields of all the roAp stars known with resolved magnetically split lines. Indeed, we show that enhanced pulsation diagnosis can be achieved from consideration of the different pulsation behaviour of the π and σ Zeeman components of the resolved spectral lines. This study is based on a time-series of high spectral resolution observations obtained with the Ultraviolet and Visual Echelle Spectrograph of the Very Large Telescope of the European Southern Observatory. Radial velocity variations due to pulsation are observed in rare earth lines, with amplitudes up to 110ms-1. The variations occur with three frequencies, already detected in photometry, but which can in this work be determined with better precision: 1.833, 1.886 and 1.928mHz. The pulsation amplitudes and phases observed in the rare earth element lines vary with atmospheric height, as is the case in other roAp stars studied in detail. Lines of Fe and of other (mostly non-rare earth) elements do not show any variation to very high precision (1.5ms-1 in the case of Fe). The low amplitudes of the observed variations do not allow the original goal of studying differences between the behaviour of the resolved Zeeman line components to be reached; the S/N achieved in the radial velocity determinations is insufficient to establish definitely the possible existence of such differences. Yet the analysis provides a tantalizing hint at the occurrence of variations of the mean magnetic field modulus with the pulsation frequency, with an amplitude of 21 +/- 5G. Based on observations collected at the European Southern Observatory, Paranal, Chile, as part of programme 067.D-0272. E-mail: gmathys@eso.org

  3. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  4. Study of Pulsations in the Atmosphere of the roAp star HD 137949

    NASA Astrophysics Data System (ADS)

    Sachkov, M.; Hareter, M.; Ryabchikova, T.; Wade, G.; Kochukhov, O.; Weiss, W. W.

    The roAp star HD 137949 (33 Lib) shows the most complex pulsational behaviour among all roAp stars. Mkrtichian et al. (2003) found nearly anti-phase pulsations of Nd II and Nd III lines, which they attribute to the presence of a pulsation node high in the atmosphere of HD 137949. This was confirmed by Kurtz at al. (2005), who also find that in some REE lines the main frequency, corresponding to 8.27 min, and its harmonic have almost equal RV amplitudes. Based on high accuracy observations Ryabchikova et al. (2007a) studied pulsational characteristics of the HD 137949 atmosphere in detail. In general, spectroscopy provides 3D resolution of modes and allows to search for the photometrically undetectable frequencies. The high-accuracy space photometry provides very high-precision measurements of detected pulsation frequencies and enables an accurate phasing of multi-site spectroscopic data. A combination of simultaneous spectroscopy and photometry represents the most sophisticated asteroseismic dataset for any roAp star. In 2009 the star HD 137949 became a target of an intense observing campaign that combined ground-based spectroscopy with space photometry, obtained with the MOST satellite. We collected 780 spectra using the ESPaDOnS spectrograph mounted on the 3.6 m CFHT telescope; 374 spectra were obtained with the FIES spectrograph mounted on the 2.56-m NOT to perform the time-resolved spectroscopy of HD 137949. In addition, we used 111 UVES spectra (2004) from the ESO archive to check the mode stability. The frequency analysis of the new radial velocity (RV) measurements confirmed the previously reported frequency pattern (two frequencies and the first harmonic of the main frequency), and revealed an additional frequency at 1.991 mHz. The new frequency solution fits perfectly the RV variations from the 2004 and 2009 observational sets providing a strong support for the p-mode stability in the roAp star HD 137949 for at least 5 years.

  5. Dynamic model including piping acoustics of a centrifugal compression system

    NASA Astrophysics Data System (ADS)

    van Helvoirt, Jan; de Jager, Bram

    2007-04-01

    This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.

  6. Convective heat transfer from a pulsating radial jet reattachment (PRJR) nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, J.Y.; James, D.L.; Parameswaran, S.

    1999-07-01

    Impinging jets of fluid have been used to cool, heat or dry surfaces in many industries including high temperature gas turbines, paper and glass manufacturing, textile drying, and electronic components. Jets may be broadly classified as either inline or radial. Inline jets typically have some type of circular or planer opening through which the fluid exits. The circular opening may be converging, well rounded, or of the same diameter as the nozzle or tube through which the fluid is delivered. Here, a numerical investigation for air exiting a Pulsating Radial Jet Reattachment (PRJR) nozzle was performed with various flow andmore » geometric conditions. The transient ensemble averaged Navier-Stokes equation with the standard {kappa}-{epsilon} turbulence model and the standard transient turbulent energy equation were solved to predict the velocity, pressure, and temperature distributions as a function of the pulsation rate, nondimensionalized nozzle-to-plate spacing, amplitude ratio, exit angle and gap Reynolds number. Sinusoidal profile, square and triangular pulsation profiles were simulated to determine the effect on the convective heat transfer during pulsation of nozzle. Grid movement is coupled to the flow field in a manner by a grid convection. Calculated reattachment radii for various conditions correlated well with previously obtained experimental results. Calculated convective heat transfer coefficients and surface pressure profiles for various geometric and flow conditions were compared with experimental results. Convective heat transfer coefficient calculations matched the experimental values very well outside the reattachment regions and underpredicted the convective heat transfer data underneath the nozzle in the dead water region and on the reattachment radius.« less

  7. Pulsating Hydrodynamic Instability in a Dynamic Model of Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1999-01-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the disturbance-wavenumber/ pressure-sensitivity plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  8. Impact of gaps in the asteroseismic characterization of pulsating stars. I. The efficiency of pre-whitening

    NASA Astrophysics Data System (ADS)

    Pascual-Granado, J.; Suárez, J. C.; Garrido, R.; Moya, A.; Hernández, A. García; Rodón, J. R.; Lares-Martiz, M.

    2018-06-01

    Context. It is known that the observed distribution of frequencies in CoRoT and Kepler δ Scuti stars has no parallelism with any theoretical model. Pre-whitening is a widespread technique in the analysis of time series with gaps from pulsating stars located in the classical instability strip, such as δ Scuti stars. However, some studies have pointed out that this technique might introduce biases in the results of the frequency analysis. Aims: This work aims at studying the biases that can result from pre-whitening in asteroseismology. The results will depend on the intrinsic range and distribution of frequencies of the stars. The periodic nature of the gaps in CoRoT observations, only in the range of the pulsational frequency content of the δ Scuti stars, is shown to be crucial to determining their oscillation frequencies, the first step in performing asteroseismology of these objects. Hence, here we focus on the impact of pre-whitening on the asteroseismic characterization of δ Scuti stars. Methods: We select a sample of 15 δ Scuti stars observed by the CoRoT satellite, for which ultra-high-quality photometric data have been obtained by its seismic channel. In order to study the impact on the asteroseismic characterization of δ Scuti stars we perform the pre-whitening procedure on three datasets: gapped data, linearly interpolated data, and data with gaps interpolated using Autoregressive and Moving Average models (ARMA). Results: The different results obtained show that at least in some cases pre-whitening is not an efficient procedure for the deconvolution of the spectral window. Therefore, in order to reduce the effect of the spectral window to a minimum, in addition to performing a pre-whitening of the data, it is necessary to interpolate with an algorithm that is aimed to preserve the original frequency content. Tables 5-49 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A40

  9. Multi-instrument observations of sub-minute quasi-periodic pulsations in solar flares

    NASA Astrophysics Data System (ADS)

    Dominique, Marie; Zhukov, Andrei; Dolla, Laurent

    2017-08-01

    Since a decade, quasi-periodic pulsations (QPPs) have been regularly reported to be observed in EUV and SXR during solar flares, while they were previously mostly observed in HXR and radio wavelengths. These new detections can be credited to a new generation of EUV space radiometers (SDO/EVE, PROBA2/LYRA, etc.) that significantly enhanced the instrument performances in terms of signal-to-noise ratio and time resolution. These new instruments allow us to perform statistical analysis of QPPs, which could ultimately help solving the long-debated question of their origin. However, recently, the methods (mainly the way to pre-process data and to account for the noise) used to detect QPPs in those wavelengths were questioned. In this presentation, we will discuss our current understanding of QPPs and the difficulties inherent to their detection. I will particularly address the sub-minute QPPs in the EUV and analyze them in the broader picture of multi-wavelength detection. How do they compare to the pulsations observed in other wavelength ranges? Are sub-minute QPPs and QPPs with longer periods produced by the same processes? What can we learn from the analysis of QPPs? Possible answers to these questions will be presented and discussed.

  10. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Luo, C. Q.; Fu, J. N.

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with amore » value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.« less

  11. The nature of EU Pegasi: An Algol-type binary with a δ Scuti-type component

    NASA Astrophysics Data System (ADS)

    Yang, Yuangui; Yuan, Huiyu; Dai, Haifeng; Zhang, Xiliang

    2018-03-01

    The comprehensive photometry and spectroscopy for the neglected eclipsing binary EU Pegasi are presented. We determine its spectral type to be A3V. With the W-D program, the photometric solution was deduced from the four-color light curves. The results imply that EU Peg is a detached binary with a mass ratio of q = 0.3105(± 0.0011), whose components nearly fill their Roche lobes. The low-amplitude pulsation occurs around the secondary eclipse, which may be attributed to the more massive component. Three frequencies are preliminarily explored by the Fourier analysis. The pulsating frequency at f1 = 34.1 c d-1 is a p-mode pulsation. The orbital period may be undergoing a secular decrease, superimposed by a cyclic variation. The period decreases at a rate of dP/dt = -7.34 ± 1.06 d yr-1, which may be attributed to mass loss from the system due to stellar wind. The cyclic oscillation, with Pmod = 31.0 ± 1.4 yr and A = 0.0054 ± 0.0010 d, may be caused by the light-time effect due to the assumed third body. With its evolution, the pulsating binary EU Peg will evolve from the detached configuration to the semi-detached case.

  12. Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone.

    PubMed

    Remer, Itay; Bilenca, Alberto

    2015-11-01

    Photoplethysmography is a well-established technique for the noninvasive measurement of blood pulsation. However, photoplethysmographic devices typically need to be in contact with the surface of the tissue and provide data from a single contact point. Extensions of conventional photoplethysmography to measurements over a wide field-of-view exist, but require advanced signal processing due to the low signal-to-noise-ratio of the photoplethysmograms. Here, we present a noncontact method based on temporal sampling of time-integrated speckle using a camera-phone for noninvasive, widefield measurements of physiological parameters across the human fingertip including blood pulsation and resting heart-rate frequency. The results show that precise estimation of these parameters with high spatial resolution is enabled by measuring the local temporal variation of speckle patterns of backscattered light from subcutaneous skin, thereby opening up the possibility for accurate high resolution blood pulsation imaging on a camera-phone. Camera-phone laser speckle imager along with measured relative blood perfusion maps of a fingertip showing skin perfusion response to a pulse pressure applied to the upper arm. The figure is for illustration only; the imager was stabilized on a stand throughout the experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On the Persistent Shape and Coherence of Pulsating Auroral Patches

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Mann, I. R.; Michell, R. G.; Samara, M.

    2018-05-01

    The pulsating aurora covers a broad range of fluctuating shapes that are poorly characterized. The purpose of this paper is therefore to provide objective and quantitative measures of the extent to which pulsating auroral patches maintain their shape, drift and fluctuate in a coherent fashion. We present results from a careful analysis of pulsating auroral patches using all-sky cameras. We have identified four well-defined individual patches that we follow in the patch frame of reference. In this way we avoid the space-time ambiguity which complicates rocket and satellite measurements. We find that the shape of the patches is remarkably persistent with 85-100% of the patch being repeated for 4.5-8.5 min. Each of the three largest patches has a temporal correlation with a negative dependence on distance, and thus does not fluctuate in a coherent fashion. A time-delayed response within the patches indicates that the so-called streaming mode might explain the incoherency. The patches appear to drift differently from the SuperDARN-determined E→×B→ convection velocity. However, in a nonrotating reference frame the patches drift with 230-287 m/s in a north eastward direction, which is what typically could be expected for the convection return flow.

  14. Temporal Characteristics and Energy Deposition of Pulsating Auroral Patches

    NASA Technical Reports Server (NTRS)

    Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.; Mann, I. R.

    2016-01-01

    We present a careful statistical analysis of pulsating aurora (PA) using all-sky green line (557.7 nm) images obtained at 3.3 Hz. Six well-defined individual PA patches are identified and extracted using a contouring technique. Quantitative parameters such as the patch duration (on-time and off-time), peak intensity, and integrated intensity are determined for each patch and each pulsation. The resulting characteristics serve as strict observational constraints that any of the many competing theories attempting to explain PA must predict. The purpose of this paper is to determine the characteristics of PA patches in order to provide better observational constraints on the suggested mechanisms. All aspects of the temporal behavior of the individual patches appear to be erratic. Historically, PA has been defined very loosely and we argue that the use of the term pulsating is inappropriate since our findings and other published results are not regularly periodic and thus a more appropriate term may be fluctuating aurora. Further, we find that the observational constraints do not fit well with the flow cyclotron maser theory, which in particular is suggested to create PA patches. There is no clear candidate of the suggested mechanisms and drivers to explain the observational constraints set by the PA patches in a satisfactory manner.

  15. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  16. The first comprehensive catalog of γ Dor pulsators and their characteristics

    NASA Astrophysics Data System (ADS)

    Ibanoglu, C.; Çakırlı, Ö.; Sipahi, E.

    2018-07-01

    We present the first comprehensive catalog of the γ Doradus type pulsating stars. This catalog covers observational properties of all γ Dor variables obtained until January 2017. The photometric and physical properties of 109 well - known γ Dor pulsators, 18 hybrid stars, 13 anomalous γ Dor stars, and 22 γ Dor stars in eclipsing plus 1 non-eclipsing SB2 binary systems are presented as separate tables. In addition, 291 candidate γ Dor variables discovered by CoRot, 307 candidate γ Dor, 205 hybrid and 11 candidate γ Dor in binaries discovered by Kepler were also presented. Distribution of the genuine single γ Dor pulsators in the Ppuls-Teff, Amplitude-Teff, Amplitude-Ppuls and L-Teff diagrams are presented and discussed. We find following correlations for the γ Dor pulsators in the eclipsing binaries: Ppuls ∝ Porb0.27, Ppuls ∝ Q0.45, and Ppuls ∝ r-0.44, where (Q) is the pulsation constant and r is the fractional radius of the pulsating component in the binary system. The correlation coefficients are not high enough due to limited sample and scattering in the data.

  17. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  18. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage

    PubMed Central

    Diem, Alexandra K.; MacGregor Sharp, Matthew; Gatherer, Maureen; Bressloff, Neil W.; Carare, Roxana O.; Richardson, Giles

    2017-01-01

    Alzheimer's Disease (AD) is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ) in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD) pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD. PMID:28883786

  19. Asteroseismology of OB stars with CoRoT

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Samadi, R.; Miglio, A.; Briquet, M.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Michel, E.

    2010-12-01

    The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars, via cooler hybrid p- and g-mode pulsators to the SPB stars near the edge of the instability strip. CoRoT lowers the sensitivity barrier from the typical mmag-precision reached from the ground, to the μmag-level reached from space. Within the wealth of detected and identified pulsation modes, relations have been found in the form of multiplets, combination of frequencies, and frequency- and period spacings. This wealth of observational evidence is finally providing strong constraints to test current models of the internal structure and pulsations of hot stars. Aside from the expected opacity driven modes with infinite lifetime, other unexpected types of variability are detected in massive stars, such as modes of stochastic nature. The simultaneous observation of all these light curve characteristics implies a challenge for both observational asteroseismology and stellar modelling. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  20. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  1. Acoustical modeling study of the open test section of the NASA Langley V/STOL wind tunnel

    NASA Technical Reports Server (NTRS)

    Ver, I. L.; Andersen, D. W.; Bliss, D. B.

    1975-01-01

    An acoustic model study was carried out to identify effective sound absorbing treatment of strategically located surfaces in an open wind tunnel test section. Also an aerodynamic study done concurrently, sought to find measures to control low frequency jet pulsations which occur when the tunnel is operated in its open test section configuration. The acoustical modeling study indicated that lining of the raised ceiling and the test section floor immediately below it, results in a substantial improvement. The aerodynamic model study indicated that: (1) the low frequency jet pulsations are most likely caused or maintained by coupling of aerodynamic and aeroacoustic phenomena in the closed tunnel circuit, (2) replacing the hard collector cowl with a geometrically identical but porous fiber metal surface of 100 mks rayls flow resistance does not result in any noticable reduction of the test section noise caused by the impingement of the turbulent flow on the cowl.

  2. Models of brachial to finger pulse wave distortion and pressure decrement.

    PubMed

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  3. Bone pulsating metastasis due to renal cell carcinoma.

    PubMed

    Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz

    2010-11-01

    Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.

  4. Time-resolved Spectroscopy and Multi-color Photometry Of The Pulsating and Short-period Binary Subdwarf B Star Feige 48

    NASA Astrophysics Data System (ADS)

    Reed, Mike; Baran, A.; O'Toole, S.

    2012-05-01

    Pulsating subdwarf B (sdB) stars can be used as probes of the helium fusing cores of horizontal branch stars. To probe these stars, asteroseismology must be able to observationally associate pulsation frequencies with modes. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining RV and multicolor measurements has also been shows as an effective means of constraining mode identifications. I will present results for Feige 48 using both time-resolved spectroscopy and multicolor photometry and attempts to constrain their pulsation modes using the atmospheric codes BRUCE and KYLIE.

  5. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  6. Test Characteristics of Neck Fullness and Witnessed Neck Pulsations in the Diagnosis of Typical AV Nodal Reentrant Tachycardia

    PubMed Central

    Sakhuja, Rahul; Smith, Lisa M; Tseng, Zian H; Badhwar, Nitish; Lee, Byron K; Lee, Randall J; Scheinman, Melvin M; Olgin, Jeffrey E; Marcus, Gregory M

    2011-01-01

    Summary Background Claims in the medical literature suggest that neck fullness and witnessed neck pulsations are useful in the diagnosis of typical AV nodal reentrant tachycardia (AVNRT). Hypothesis Neck fullness and witnessed neck pulsations have a high positive predictive value in the diagnosis of typical AVNRT. Methods We performed a cross sectional study of consecutive patients with palpitations presenting to a single electrophysiology (EP) laboratory over a 1 year period. Each patient underwent a standard questionnaire regarding neck fullness and/or witnessed neck pulsations during their palpitations. The reference standard for diagnosis was determined by electrocardiogram and invasive EP studies. Results Comparing typical AVNRT to atrial fibrillation (AF) or atrial flutter (AFL) patients, the proportions with neck fullness and witnessed neck pulsations did not significantly differ: in the best case scenario (using the upper end of the 95% confidence interval [CI]), none of the positive or negative predictive values exceeded 79%. After restricting the population to those with supraventricular tachycardia other than AF or AFL (SVT), neck fullness again exhibited poor test characteristics; however, witnessed neck pulsations exhibited a specificity of 97% (95% CI 90–100%) and a positive predictive value of 83% (95% CI 52–98%). After adjustment for potential confounders, SVT patients with witnessed neck pulsations had a 7 fold greater odds of having typical AVNRT, p=0.029. Conclusions Although neither neck fullness nor witnessed neck pulsations are useful in distinguishing typical AVNRT from AF or AFL, witnessed neck pulsations are specific for the presence of typical AVNRT among those with SVT. PMID:19479968

  7. Blue large-amplitude pulsators as a new class of variable stars

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, Paweł; Dziembowski, Wojciech A.; Latour, Marilyn; Angeloni, Rodolfo; Poleski, Radosław; di Mille, Francesco; Soszyński, Igor; Udalski, Andrzej; Szymański, Michał K.; Wyrzykowski, Łukasz; Kozłowski, Szymon; Skowron, Jan; Skowron, Dorota; Mróz, Przemek; Pawlak, Michał; Ulaczyk, Krzysztof

    2017-08-01

    Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.

  8. On the Origin of the Wind Variability of 55 Cyg

    NASA Astrophysics Data System (ADS)

    Haucke, M.; Kraus, M.; Venero, R. O. J.; Tomić, S.; Cidale, L. S.; Nickeler, D. H.; Curé, M.

    2014-10-01

    The early B-type supergiant 55 Cygni exhibits pronounced night-to-night variations in its Hα P-Cygni line profile, probably related to a strong variable stellar wind. In this work we studied a sample of spectroscopic observations, taken at the Observatory of Ondřejov (Czech Republic), in order to analyze the variations in the stellar and wind parameters. The observations were modeled using FASTWIND code (Santolaya-Rey, Puls & Herrero 1997, A&A 323, 488-512). Although we were not able to find an exact period from the Hα line profile variations, the same pattern (shape and intensity) seems to have a cyclic behaviour of about 17 days. The values for the wind and stellar parameters suggest changes of the mass loss rate by a factor of three during a cycle of variability. On the other hand, Kraus et al. (Precision Asteroseismology Proceedings, IAU Symposium 301, 2014) found that the HeI λ 6678 photospheric absorption line presents a 1.09 day period, which could be superimposed over a longer period. From the analysis of our theoretical parameters we found that a gravitational mode of pulsation could not be the only agent responsible for the observed variations. As the stars evolving from the main sequence to the red supergiant stage (RSG) have different pulsation properties than those evolving back to the blue supergiant region (Saio, Georgy & Meynet, 2013, MNRAS, 433, 1246), we conclude that 55 Cygni could be in a post-RSG phase with multiperiodic pulsation modes. The variable mass loss could be attributed to the coupling of the oscillation modes.

  9. Semiempirical methods for computing turbulent flows

    NASA Technical Reports Server (NTRS)

    Belov, I. A.; Ginzburg, I. P.

    1986-01-01

    Two semiempirical theories which provide a basis for determining the turbulent friction and heat exchange near a wall are presented: (1) the Prandtl-Karman theory, and (2) the theory utilizing an equation for the energy of turbulent pulsations. A comparison is made between exact numerical methods and approximate integral methods for computing the turbulent boundary layers in the presence of pressure, blowing, or suction gradients. Using the turbulent flow around a plate as an example, it is shown that, when computing turbulent flows with external turbulence, it is preferable to construct a turbulence model based on the equation for energy of turbulent pulsations.

  10. Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms?

    PubMed Central

    Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2015-01-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001–0.023 Hz) and low frequency (LF 0.023–0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. PMID:26690495

  11. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    PubMed

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  12. Searching for new white dwarf pulsators for TESS observations at Konkoly Observatory

    NASA Astrophysics Data System (ADS)

    Bognár, Zs; Kalup, Cs; Sódor, Á.; Charpinet, S.; Hermes, J. J.

    2018-07-01

    We present the results of our survey searching for new white dwarf pulsators for observations by the TESS space telescope. We collected photometric time-series data on 14 white dwarf variable candidates at Konkoly Observatory, and found two new bright ZZ Ceti stars, namely EGGR 120 and WD 1310+583. We performed a Fourier analysis of the datasets. In the case of EGGR 120, which was observed on one night only, we found one significant frequency at 1332μHz with 2.3 mmag amplitude. We successfully observed WD 1310+583 on eight nights, and determined 17 significant frequencies in the whole dataset. Seven of them seem to be independent pulsation modes between 634 and 2740μHz, and we performed preliminary asteroseismic investigations of the star utilizing six of these periods. We also identified three new light variables on the fields of white dwarf candidates: an eclipsing binary, a candidate delta Scuti/beta Cephei and a candidate W UMa-type star.

  13. Quasi-periodic pulsations in solar hard X-ray and microwave flares

    NASA Technical Reports Server (NTRS)

    Kosugi, Takeo; Kiplinger, Alan L.

    1986-01-01

    For more than a decade, various studies have pointed out that hard X-ray and microwave time profiles of some solar flares show quasi-periodic fluctuations or pulsations. Nevertheless, it was not until recently that a flare displaying large amplitude quasi-periodic pulsations in X-rays and microwaves was observed with good spectral coverage and with a sufficient time resolution. The event occurred on June 7, 1980, at approximately 0312 UT, and exhibits seven intense pulses with a quasi-periodicity of approximately 8 seconds in microwaves, hard X-rays, and gamma-ray lines. On May 12, 1983, at approximately 0253 UT, another good example of this type of flare was observed both in hard X-rays and in microwaves. Temporal and spectral characteristics of this flare are compared with the event of June 7, 1980. In order to further explore these observational results and theoretical scenarios, a study of nine additional quasi-periodic events were incorporated with the results from the two flares described. Analysis of these events are briefly summarized.

  14. VERY LONG-PERIOD PULSATIONS BEFORE THE ONSET OF SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Baolin; Huang, Jing; Tan, Chengming

    Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. It remains a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite , this work reports a new discovery of very long-periodic pulsations occurring in the preflare phase before the onset of solar flares (preflare-VLPs). These pulsations typically have periods of 8–30 min and last for about 1–2 hr. They aremore » possibly generated from LRC oscillations of plasma loops where electric current dominates the physical process during magnetic energy accumulation in the source region. Preflare-VLPs provide essential information for understanding the triggering mechanism and origin of solar flares, and may be a convenient precursory indicator to help us respond to solar explosions and the corresponding disastrous space weather events.« less

  15. IGR J170626143 is an Accreting Millisecond X-Ray Pulsar

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Keek, Laurens

    2017-01-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  16. Delta Scuti Variables

    NASA Astrophysics Data System (ADS)

    Handler, Gerald

    2009-09-01

    We review recent research on Delta Scuti stars from an observer's viewpoint. First, some signposts helping to find the way through the Delta Scuti jungle are placed. Then, some problems in studying individual pulsators in the framework of asteroseismology are given before a view on how the study of these variables has benefited (or not) from past and present high-precision asteroseismic space missions is presented. Some possible pitfalls in the analysis of data with a large dynamical range in pulsational amplitudes are pointed out, and a strategy to optimize the outcome of asteroseismic studies of Delta Scuti stars is suggested. We continue with some views on ``hybrid'' pulsators and interesting individual High Amplitude Delta Scuti stars, and then take a look on Delta Scuti stars in stellar systems of several different kinds. Recent results on pre-main sequence Delta Scuti stars are discussed as are questions related to the instability strip of these variables. Finally, some remarkable new theoretical results are highlighted before, instead of a set of classical conclusions, questions to be solved in the future, are raised.

  17. An experimental study of large-scale vortices over a blunt-faced flat plate in pulsating flow

    NASA Astrophysics Data System (ADS)

    Hwang, K. S.; Sung, H. J.; Hyun, J. M.

    Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=Uo(1+Aocos 2πfpt). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of Stp<=1.23 and Ao<=0.118 at ReH=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length xR as functions of Stp and Ao are scrutinized by using the forward-time fraction and surface pressure distributions (Cp). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (Ao=0) are consistent with the published data. In the lower range of Ao, as Stp increases, xR attains a minimum value at a particular pulsation frequency. For large Ao, the results show complicated behaviors of xR. For Stp>=0.80, changes in xR are insignificant as Ao increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer.

  18. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  19. The pulsationally modulated radial crossover signature of the slowly rotating magnetic B-type star ξ1 CMa

    NASA Astrophysics Data System (ADS)

    Shultz, M.; Kochukhov, O.; Wade, G. A.; Rivinius, Th

    2018-07-01

    We report the latest set of spectropolarimetric observations of the magnetic β Cep star ξ1 CMa. The new observations confirm the long-period model of Shultz et al. (2017), who proposed a rotational period of about 30 years and predicted that in 2018 the star should pass through a magnetic null. In perfect agreement with this projection, all longitudinal magnetic field ⟨Bz⟩ measurements are close to 0 G. Remarkably, individual Stokes V profiles all display a crossover signature, which is consistent with ⟨Bz⟩ ˜ 0 but is not expected when v sin i ˜ 0. The crossover signatures furthermore exhibit pulsationally modulated amplitude and sign variations. We show that these unexpected phenomena can all be explained by a `radial crossover' effect related to the star's radial pulsations, together with an important deviation of the global field topology from a purely dipolar structure, that we explore via a dipole+quadrupole configuration as the simplest non-dipolar field.

  20. Biomass drying in a pulsed fluidized bed without inert bed particles

    DOE PAGES

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less

  1. The pulsationally modulated radial crossover signature of the slowly rotating magnetic B-type star ξ1 CMa★

    NASA Astrophysics Data System (ADS)

    Shultz, M.; Kochukhov, O.; Wade, G. A.; Rivinius, Th

    2018-04-01

    We report the latest set of spectropolarimetric observations of the magnetic β Cep star ξ1 CMa. The new observations confirm the long-period model of Shultz et al. (2017), who proposed a rotational period of about 30 years and predicted that in 2018 the star should pass through a magnetic null. In perfect agreement with this projection, all longitudinal magnetic field ⟨Bz⟩ measurements are close to 0 G. Remarkably, individual Stokes V profiles all display a crossover signature, which is consistent with ⟨Bz⟩ ˜ 0 but is not expected when vsin i ˜ 0. The crossover signatures furthermore exhibit pulsationally modulated amplitude and sign variations. We show that these unexpected phenomena can all be explained by a `radial crossover' effect related to the star's radial pulsations, together with an important deviation of the global field topology from a purely dipolar structure, which we explore via a dipole+quadrupole configuration as the simplest non-dipolar field.

  2. The Coronal Monsoon: Thermal Nonequilibrium Revealed by Periodic Coronal Rain

    NASA Astrophysics Data System (ADS)

    Auchère, Frédéric; Froment, Clara; Soubrié, Elie; Antolin, Patrick; Oliver, Ramon; Pelouze, Gabriel

    2018-02-01

    We report on the discovery of periodic coronal rain in an off-limb sequence of Solar Dynamics Observatory/Atmospheric Imaging Assembly images. The showers are co-spatial and in phase with periodic (6.6 hr) intensity pulsations of coronal loops of the sort described by Auchère et al. and Froment et al. These new observations make possible a unified description of both phenomena. Coronal rain and periodic intensity pulsations of loops are two manifestations of the same physical process: evaporation/condensation cycles resulting from a state of thermal nonequilibrium. The fluctuations around coronal temperatures produce the intensity pulsations of loops, and rain falls along their legs if thermal runaway cools the periodic condensations down and below transition-region temperatures. This scenario is in line with the predictions of numerical models of quasi-steadily and footpoint heated loops. The presence of coronal rain—albeit non-periodic—in several other structures within the studied field of view implies that this type of heating is at play on a large scale.

  3. Theoretical research of helium pulsating heat pipe under steady state conditions

    NASA Astrophysics Data System (ADS)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  4. Spatial features of mid-latitude field-line resonances from simultaneous ground-satellite measurements

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    1996-07-01

    Three series of simultaneous pulsation measurements ( f<0.06 Hz) on the Freja satellite and at the Budkov Observatory have been spectrally processed (FFT) in 6-min intervals of Freja's transits near the local Budkov field line. Doppler-shifted, weighted spectral-peak frequencies, determined in both transverse magnetic components in the mean field-aligned coordinate system on Freja, allowed the estimation, by comparison with the stable frequency at Budkov, of fundamental frequencies of the local magnetic-field-line resonance ranged from 13 to 17 mHz in two pulsation events analyzed, with Kp=2+ to 0+. The ratio of total amplitudes of the spectral-pulsation components on the ground and on Freja at an altitude of ~1700 km (values <0.7) characterizes the transmissivity of the ionosphere. In the Pc3 frequency range this correlates well with simulation computations using models of the ionosphere under low solar activity. Acknowledgements. The Editor in Chief thanks two referees for their help in evaluating this paper.--> Correspondence to: L. Alperovich-->

  5. Dynamical Model Calculations of AGB Star Winds Including Time Dependent Dust Formation and Non-LTE Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Schirrmacher, V.; Woitke, P.; Sedlmayr, E.

    Stars on the Asymptotic Giant Branch (AGB) are pulsating objects in a late evolutionary stage. The stellar pulsation creates sound waves which steepen up to shock waves in the upper atmosphere and lead to a time dependent levitation of the outer atmosphere. Thereby, the stellar pulsation triggers and facilitates the formation of dust close to the star. The dust is accelerated by radiation pressure and drags the gas outwards due to frictional forces which is identified to provide the basic mass loss mechanism. A longstanding problem concerning the modelling of these physical processes is the influence of the propagating shock waves on the temperature structure of the wind, which strongly influences the dust formation. We have therefore improved our numerical models of AGB-star envelopes by including (i) a detailed calculation of non-LTE radiative heating and cooling rates, predominantly arising from atomic and molecular lines and (ii) atomic and molecular exitation aswell as ionisation and dissociation in the equation of state. First results, presented here, show that the cooling time scales behind the shock waves are usually rather short, but the binding energies of molecular hydrogen provide an important energy buffer capable to delay the radiative heating or cooling. Thus considerable deviations from radiative equilibrium may occur in the important inner dust forming layers.

  6. Forward and inverse modeling for jovian seismology

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason; Nettelmann, Nadine; Marley, Mark; Fortney, Jonathan

    2012-08-01

    Jupiter is expected to pulsate in a spectrum of acoustic modes and recent re-analysis of a spectroscopic time series has identified a regular pattern in the spacing of the frequencies (Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., Jacob, C. [2011]. Astron. Astrophys. 531, A104). This exciting result can provide constraints on gross jovian properties and warrants a more in-depth theoretical study of the seismic structure of Jupiter. With current instrumentation, such as the SYMPA instrument (Schmider, F.X. [2007]. Astron. Astrophys. 474, 1073-1080) used for the Gaulme et al. (Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., Jacob, C. [2011]. Astron. Astrophys. 531, A104) analysis, we assume that, at minimum, a set of global frequencies extending up to angular degree ℓ=25 could be observed. In order to identify which modes would best constraining models of Jupiter's interior and thus help motivate the next generation of observations, we explore the sensitivity of derived parameters to this mode set. Three different models of the jovian interior are computed and the theoretical pulsation spectrum from these models for ℓ⩽25 is obtained. We compute sensitivity kernels and perform linear inversions to infer details of the expected discontinuities in the profiles in the jovian interior. We find that the amplitude of the sound-speed jump of a few percent in the inner/outer envelope boundary seen in two of the applied models should be reasonably inferred with these particular modes. Near the core boundary where models predict large density discontinuities, the location of such features can be accurately measured, while their amplitudes have more uncertainty. These results suggest that this mode set would be sufficient to infer the radial location and strength of expected discontinuities in Jupiter's interior, and place strong constraints on the core size and mass. We encourage new observations to detect these jovian oscillations.

  7. Statistics of bow shock nonuniformity.

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1973-01-01

    The statistical occurrence of pulsation or oblique structure about the earth's generally nonuniform bow shock is estimated at selected points by combining a three-dimensional distribution of interplanetary field directions obtained for a six-day solar wind sector with an index of local pulsation geometry. The result, obtained with a pulsation index of 1.6, is a set of distribution patterns showing the dependence of the pulsation index on the field orientation at the selected shock loci for this value of the index.

  8. Maser mechanism of optical pulsations from anomalous X-ray pulsar 4U 0142+61

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Zhang, S. N.

    2004-11-01

    Based on the work of Luo & Melrose from the early 1990s, a maser curvature emission mechanism in the presence of curvature drift is used to explain the optical pulsations from anomalous X-ray pulsars (AXPs). The model comprises a rotating neutron star with a strong surface magnetic field, i.e. a magnetar. Assuming the space-charge-limited flow acceleration mechanism, in which the strongly magnetized neutron star induces strong electric fields that pull the charges from its surface and flow along the open field lines, the neutron star generates a dense flow of electrons and positrons (relativistic pair plasma) by either two-photon pair production or one-photon pair creation resulting from inverse Compton scattering of the thermal photons above the pulsar polar cap (PC). The motion of the pair plasma is essentially one-dimensional along the field lines. We propose that optical pulsations from AXPs are generated by a curvature-drift-induced maser developing in the PC of magnetars. Pair plasma is considered as an active medium that can amplify its normal modes. The curvature drift, which is energy-dependent, is another essential ingredient in allowing negative absorption (maser action) to occur. For the source AXP 4U 0142+61, we find that the optical pulsation triggered by curvature-drift maser radiation occurs at the radial distance R(νM) ~ 4.75 × 109 cm to the neutron star. The corresponding curvature maser frequency is about νM~ 1.39 × 1014 Hz, and the pulse component from the maser amplification is about 27 per cent. The result is consistent with the observation of the optical pulsations from AXP 4U 0142+61.

  9. Pulsations in the late-type Be star HD 50 209 detected by CoRoT

    NASA Astrophysics Data System (ADS)

    Diago, P. D.; Gutiérrez-Soto, J.; Auvergne, M.; Fabregat, J.; Hubert, A.-M.; Floquet, M.; Frémat, Y.; Garrido, R.; Andrade, L.; de Batz, B.; Emilio, M.; Espinosa Lara, F.; Huat, A.-L.; Janot-Pacheco, E.; Leroy, B.; Martayan, C.; Neiner, C.; Semaan, T.; Suso, J.; Catala, C.; Poretti, E.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Samadi, R.

    2009-10-01

    Context: The presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. Aims: To contribute to this discussion, we analyse the photometric time series of the B8IVe star HD 50 209 observed by the CoRoT mission in the seismology field. Methods: We use standard Fourier techniques and linear and non-linear least squares fitting methods to analyse the CoRoT light curve. In addition, we applied detailed modelling of high-resolution spectra to obtain the fundamental physical parameters of the star. Results: We have found four frequencies which correspond to gravity modes with azimuthal order m=0,-1,-2,-3 with the same pulsational frequency in the co-rotating frame. We also found a rotational period with a frequency of 0.679 cd-1 (7.754 μHz). Conclusions: HD 50 209 is a pulsating Be star as expected from its position in the HR diagram, close to the SPB instability strip. Based on observations made with the CoRoT satellite, with FEROS at the 2.2 m telescope of the La Silla Observatory under the ESO Large Programme LP178.D-0361 and with Narval at the Télescope Bernard Lyot of the Pic du Midi Observatory. Current address: Valencian International University (VIU), José Pradas Gallen s/n, 12006 Castellón, Spain. Current address: Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot; CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.

  10. On Pulsating and Cellular Forms of Hydrodynamic Instability in Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1998-01-01

    An extended Landau-Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid-gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio p, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of p in each of three distinguished wave-number regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A(sub p)(k), where A, is the pressure sensitivity of the burning rate and k is the wave number of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wave numbers for negative values of A(sub p), which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects but is more sensitive to the effects of liquid viscosity because, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A(sub p) as k increases through O(l) values. Thus, liquid-propellant combustion is predicted to be stable (that is, steady and planar) only for a range of negative pressure sensitivities that lie below the cellular boundary that exists for sufficiently small negative values of A(sub p) and above the pulsating boundary that exists for larger negative values of this parameter.

  11. About a flame propagation by a premixed gas mixture at high turbulence

    NASA Astrophysics Data System (ADS)

    Gaponov, Sergey A.

    2018-03-01

    In the paper the new model of the turbulent flame propagation in a premixed gas is offered. In its basis the diffusion equation of combustion products with a source, which is proportional to the contact surface of combustion products with a fresh mixture and an expansion coefficient is put. It is shown that the dependence of the generation rate of combustion products on their mass concentration satisfies conditions of the KPP (Kolmogorov, Petrovsky, Piskounov). In this case, the flame propagation speed depends on the flame surface in a unit volume near the leading front. But at turbulent motion the isolated fragments of combustion products surrounded with fresh mix can be formed on the forward front. It is assumed that the isolated fragments are the sphere shape at the weak turbulence, and with increase in intensity of turbulent pulsations the flame surface of each center is proportional to the pulsations velocity and inversely proportional to the flame speed relatively combustion products, i.e. it is inversely proportional to the product of normal flame speed and expansion coefficient. As a result the formula for the propagation speed calculation of the turbulent flame is proposed which includes not only traditional values of a pulsations velocity and normal flame speed, but also values of an expansion coefficient. On its basis it is explained why the turbulent flame speed exceeds the pulsations velocity by many times at moderate turbulence. It is shown that at the power dependence the turbulent flame speed on the pulsation velocity exponent can vary from 0.5 to unit. The received dependence can be improved if to replace the flat laminar flame with average on the surface of the curved flame, i.e. to take into account the Markstein theory.

  12. Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data

    NASA Astrophysics Data System (ADS)

    Bell, Keaton J.; Hermes, J. J.; Vanderbosch, Z.; Montgomery, M. H.; Winget, D. E.; Dennihy, E.; Fuchs, J. T.; Tremblay, P.-E.

    2017-12-01

    With typical periods of the order of 10 minutes, the pulsation signatures of ZZ Ceti variables (pulsating hydrogen-atmosphere white dwarf stars) are severely undersampled by long-cadence (29.42 minutes per exposure) K2 observations. Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling precision asteroseismology. We report the discovery of two new ZZ Cetis in long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by three to four nights of follow-up, high-speed (≤slant 30 s) photometry from the McDonald Observatory, we recover accurate pulsation frequencies for K2 signals that reflected four to five times off the Nyquist with the full precision of over 70 days of monitoring (∼0.01 μHz). In turn, the K2 observations enable us to select the correct peaks from the alias structure of the ground-based signals caused by gaps in the observations. We identify at least seven independent pulsation modes in the light curves of each of these stars. For EPIC 220274129, we detect three complete sets of rotationally split {\\ell }=1 (dipole mode) triplets, which we use to asteroseismically infer the stellar rotation period of 12.7 ± 1.3 hr. We also detect two sub-Nyquist K2 signals that are likely combination (difference) frequencies. We attribute our inability to match some of the K2 signals to the ground-based data to changes in pulsation amplitudes between epochs of observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC 220274129 near the middle of the ZZ Ceti instability strip, with {T}{eff} =11590+/- 200 K and 11810 ± 210 K, and masses 0.57 ± 0.03 M ⊙ and 0.62 ± 0.03 M ⊙, respectively.

  13. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorusmore » waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.« less

  14. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    DOE PAGES

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.; ...

    2015-10-28

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorusmore » waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.« less

  15. Pulsating flow past a tube bundle

    NASA Astrophysics Data System (ADS)

    Molochnikov, V. M.; Mikheev, N. I.; Vazeev, T. A.; Paereliy, A. A.

    2017-11-01

    Visualization of the pulsating cross-flow past the in-line and staggered tube bundles has been performed. The frequency and amplitude of forced flow pulsations and the tube pitch in the bundle varied in the experiments. The main attention was focused on the flow pattern in the near wake of the third-row tube. The most indicative regimes of flow past a tube in a bundle have been revealed depending on forced flow unsteadiness parameters. The obtained data have been generalized in the flow maps in the space of dimensionless frequency (Strouhal number, St) and relative pulsation amplitude, β, individually for the in-line and staggered tube arrangement. Three most indicative regimes of pulsating flow past the tubes in a bundle have been singled out in each flow map.

  16. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE PAGES

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...

    2016-08-16

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  17. Ionospheric signatures of cusp latitude Pc 3 pulsations

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Anderson, B. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Rosenberg, T. J.

    1990-01-01

    Search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica during selected days in March and April 1986 are compared. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low IMF cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the dayside cusp/cleft region. Pulsations in auroral light at 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. The observations suggest that precipitating magnetosheathlike electrons at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. These particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  18. Photometric and Spectroscopic Study of the Delta Scuti Stars FH Cam, CU CVn and CC Lyn

    NASA Astrophysics Data System (ADS)

    Conidis, G. J.; Gazeas, K. D.; Capobianco, C. C.; Ogloza, W.

    2010-06-01

    Three short period (P ˜ 1 day) variable stars from the Hipparcos catalogue targets were observed after suspected misclassification as Beta Lyr eclipsing systems (Perryman et al. 1997), as no secondary component had been noticed in the inspection of their Broadening Functions (BFs) (Rucinski 2002). FH Cam is found to be a multiple star system with a member exhibiting Delta Scuti behaviour. The dominant pulsation frequency is found to be 7.3411 ± 0.0002 c/d, which corresponds to a pulsation mode of l ≤ 1. We confirmed the pulsations of CU CVn using photometric observations and found a pulsation frequency of 14.7626 ± 0.0250 c/d, which is in agreement with the period given in literature. CC Lyn is a non-eclipsing visual binary (CCDM J07359+4302AB), the brighter component (A) is found to be a multi-mode Delta Scuti pulsator, with pulsation frequencies of 5.6402 ± 0.0004 c/d and 7.3368 ± 0.0005 c/d.

  19. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  20. Statistical studies of Pc 3-5 pulsations and their relevance for possible source mechanisms of ULF waves

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.

    1993-01-01

    A number of statistical studies using spacecraft data have been made of ULF waves in the magnetosphere. These studies provide an overview of ULF pulsation activity for r = 5-15 R(E) and allow an assessment of likely source mechanisms. In this review pulsations are categorized into five general types: compressional Pc 5, poloidal Pc 4, toroidal harmonics, toroidal Pc 5 (fundamental mode), and incoherent noise. The occurrence distributions and/or distributions of wave power of the different types suggest that compressional Pc 5 and poloidal Pc 4 derive their energy locally, most likely from energetic protons. The toroidal pulsations, both harmonic and fundamental mode, appear to be driven by an energy source outside the magnetopause - directly upstream in the sheath and solar wind for harmonics and the flanks for fundamentals. Incoherent pulsations are a prominent pulsation type but from their occurrence distribution alone it is unclear what their dominant energy source may be.

  1. Temperature Field During Flame Spread over Alcohol Pools: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Ross, Howard D.; Schiller, David N.

    1994-01-01

    A principal difference between flame spread over solid fuels and over liquid fuels is, in the latter case, the presence of liquid-phase convection ahead of the leading edge of the flame. The details of the fluid dynamics and heat transfer mechanisms in both the pulsating and uniform flame spread regimes were heavily debated, without resolution, in the 1960s and 1970s; recently, research on flame spread over pools was reinvigorated by the advent of enhanced diagnostic techniques and computational power. Temperature fields in the liquid, which enable determination of the extent of preheating ahead of the flame, were determined previously by the use of thermocouples and repetitive tests, and suggested that the surface temperature does not decrease monotonically ahead of the pulsating flame front, but that there exists a surface temperature valley. Recent predictions support this suggestion. However, others' thermocouple measurements and the recent field measurements using Holographic Interferometry (HI) did not find a similar valley. In this work we examine the temperature field using Rainbow Schlieren Deflectometry (RSD), with a measurement threshold exceeding that of conventional interferometry by a factor of 20:1, for uniform and pulsating flame spread using propanol and butanol as fuels. This technique was not applied before to flame spread over liquid pools, except in some preliminary measurements reported earlier. Noting that HI is sensitive to the refractive index while RSD responds to refractive index gradients, and that these two techniques might therefore be difficult to compare, we utilized a numerical simulation, described below, to predict and compare both types of field for the uniform and pulsating spread regimes. The experimental data also allows a validation of the model at a level of detail greater than has been attempted before.

  2. Transition between inverse and direct energy cascades in multiscale optical turbulence.

    PubMed

    Malkin, V M; Fisch, N J

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  3. Transition between inverse and direct energy cascades in multiscale optical turbulence

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  4. Troitskaya-Bolshakova effect as a manifestation of the solar wind wave turbulence

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Polyushkina, T. N.; Guglielmi, A. V.

    2018-02-01

    The impact of changes in the direction of the interplanetary magnetic field (IMF) on the amplitude of geomagnetic Pc3 pulsations (the Troitskaya-Bolshakova effect) is demonstrated using observations of several pulsation events. We show that the source of changes in the IMF cone angle is sometimes Alfvén waves propagating in the solar wind. For the analysis, measurements of geomagnetic pulsations at the mid-latitude Uzur magneto-telluric observatory and on three spacecraft outside the bow shock wave were used. The results show that the influence is exerted only by waves with a period of more than 40-60 min in a coordinate system fixed relative to the Earth. The Alfvén turbulence of a higher frequency is incoherent; the oscillations are of a chaotic nature, not coordinated in amplitude and phase either between satellites or with variations in the amplitude of Pc3. In some cases, the modulation of the pulsation amplitude is associated with the passage of the IMF sector boundary. An evaluation of the direction of propagation of Alfvén waves showed that they predominantly propagate from the Sun, but the normal of the wave fronts can deviate from the Sun-Earth line. This is quite consistent with earlier published results. The statistics of the basic properties of the oscillatory structures in the interplanetary medium, which we observed during the observation period, are given.

  5. The shock-heated atmosphere of an asymptotic giant branch star resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Vlemmings, Wouter; Khouri, Theo; O'Gorman, Eamon; De Beck, Elvire; Humphreys, Elizabeth; Lankhaar, Boy; Maercker, Matthias; Olofsson, Hans; Ramstedt, Sofia; Tafoya, Daniel; Takigawa, Aki

    2017-12-01

    Our current understanding of the chemistry and mass-loss processes in Sun-like stars at the end of their evolution depends critically on the description of convection, pulsations and shocks in the extended stellar atmosphere1. Three-dimensional hydrodynamical stellar atmosphere models provide observational predictions2, but so far the resolution to constrain the complex temperature and velocity structures seen in the models has been lacking. Here we present submillimetre continuum and line observations that resolve the atmosphere of the asymptotic giant branch star W Hydrae. We show that hot gas with chromospheric characteristics exists around the star. Its filling factor is shown to be small. The existence of such gas requires shocks with a cooling time longer than commonly assumed. A shocked hot layer will be an important ingredient in current models of stellar convection, pulsation and chemistry at the late stages of stellar evolution.

  6. Evolutionary Model and Oscillation Frequencies for α Ursae Majoris: A Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Guenther, D. B.; Demarque, P.; Buzasi, D.; Catanzarite, J.; Laher, R.; Conrow, T.; Kreidl, T.

    2000-02-01

    Inspired by the observations of low-amplitude oscillations of α Ursae Majoris A by Buzasi et al. using the WIRE satellite, a grid of stellar evolutionary tracks has been constructed to derive physically consistent interior models for the nearby red giant. The pulsation properties of these models were then calculated and compared with the observations. It is found that, by adopting the correct metallicity and for a normal helium abundance, only models in the mass range of 4.0-4.5 Msolar fall within the observational error box for α UMa A. This mass range is compatible, within the uncertainties, with the mass derived from the astrometric mass function. Analysis of the pulsation spectra of the models indicates that the observed α UMa oscillations can be most simply interpreted as radial (i.e., l=0) p-mode oscillations of low radial order n. The lowest frequencies observed by Buzasi et al. are compatible, within the observational errors, with model frequencies of radial orders n=0, 1, and 2 for models in the mass range of 4.0-4.5 Msolar. The higher frequencies observed can also be tentatively interpreted as higher n-valued radial p-modes, if we allow that some n-values are not presently observed. The theoretical l=1, 2, and 3 modes in the observed frequency range are g-modes with a mixed mode character, that is, with p-mode-like characteristics near the surface and g-mode-like characteristics in the interior. The calculated radial p-mode frequencies are nearly equally spaced, separated by 2-3 μHz. The nonradial modes are very densely packed throughout the observed frequency range and, even if excited to significant amplitudes at the surface, are unlikely to be resolved by the present observations.

  7. V850 Cyg: An eclipsing binary with a giant γ Dor pulsator

    NASA Astrophysics Data System (ADS)

    Çakırlı, Ö.; Ibanoglu, C.; Sipahi, E.; Akan, M. C.

    2017-04-01

    We present new spectroscopic observations of the double-lined eclipsing binary V850 Cyg. The long-cadence photometric observations obtained by Kepler were analysed and combined with the analysis of radial velocities for deriving the absolute parameters of the components. Masses and radii were determined as Mp=1.601 ± 0.076 M⊙ and Rp=4.239 ± 0.076 R⊙, Ms=0.851 ± 0.053 M⊙ and Rs=5.054 ± 0.087 R⊙ for the components of V850 Cyg. We estimate an interstellar reddening of 0.28 ± 0.12 mag and a distance of 1040 ± 160 pc for the system. The measured rotational velocity of the secondary appears to lower than that of synchronize rotation. However its spectral lines are too weak to be measured the rotational velocity with reasonable accuracy. We have extracted the synthetic light curve from the observations and excluded the data within the eclipses for the frequency analysis. We obtained at least nine frequencies in the γ Dor regime. It seems that the primary component oscillates with a dominant period of about 1.152549 ± 0.000009 days. We also compare pulsational properties of the primary star of V850 Cyg with the γ Dor type pulsating components in other binaries.

  8. Geomagnetic disturbances and pulsations as a high-latitude response to considerable alternating IMF Variations during the magnetic storm recovery phase (Case study: May 30, 2003)

    NASA Astrophysics Data System (ADS)

    Levitin, A. E.; Kleimenova, N. G.; Gromova, L. I.; Antonova, E. E.; Dremukhina, L. A.; Zelinsky, N. R.; Gromov, S. V.; Malysheva, L. M.

    2015-11-01

    Features of high-latitude geomagnetic disturbances during the magnetic storm ( Dst min =-144 nT) recovery phase were studied based on the observations on the Scandinavian profile of magnetometers (IMAGE). Certain non-typical effects that occur under the conditions of large positive IMF Bz values (about +20-25 nT) and large negative IMF By values (to-20 nT) were revealed. Thus, an intense (about 400 nT) negative bay in the X component of the magnetic field (the polar electrojet, PE) was observed in the dayside sector at geomagnetic latitudes higher than 70°. As the IMF B y reverses its sign from negative to positive, the bay in the X component was replaced by the bay in the Y component. The possible distribution of the fieldaligned currents of the NBZ system was analyzed based on the CHAMP satellite data. The results were compared with the position of the auroral oval (the OVATION model) and the ion and electron flux observations on the DMSP satellite. Analysis of the particle spectra indicated that these spectra correspond to the auroral oval dayside sector crossings by the satellite, i.e., to the dayside projection of the plasma ring surrounding the Earth. Arguments are presented for the assumption that the discussed dayside electrojet ( PE) is localized near the polar edge of the dayside auroral oval in a the closed magnetosphere. The features of the spectral and spatial dynamics of intense Pc5 geomagnetic pulsations were studied in this time interval. It was established that the spectrum of high-latitude (higher than ~70°) pulsations does not coincide with the spectrum of fluctuations in the solar wind and IMF. It was shown that Pc5 geomagnetic pulsations can be considered as resonance oscillations at latitudes lower than 70° and apparently reflect fluctuations in turbulent sheets adjacent to the magnetopause (the low-latitude boundary layer, a cusp throat) or in a turbulent magnetosheath at higher latitudes.

  9. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at speeds, which are much higher than the characteristic speeds of turbulent fluctuations. These effects can qualitatively change the dynamics of the explosion and, therefore, must be properly accounted for in the turbulent-flame subgrid-scale models.

  10. Outburst activity of the symbiotic system AG Dra

    NASA Astrophysics Data System (ADS)

    Hric, L.; Gális, R.; Leedjärv, L.; Burmeister, M.; Kundra, E.

    2014-09-01

    AG Dra is a well-known bright symbiotic binary with a white dwarf and a pulsating red giant. Long-term photometry monitoring and a new behaviour of the system are presented. A detailed period analysis of photometry as well as spectroscopy was carried out. In the system of AG Dra, two periods of variability are detected. The longer one around 550 d is related to the orbital motion and the shorter one around 355 d was interpreted as pulsations of the red giant in our previous article. In addition, the active stages change distinctively, but the outbursts are repeated with periods from 359-375 d.

  11. RXTE Detection of the Spin Period of Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Kouveliotou, Chryssa; Strohmayer, Tod

    2011-07-01

    RXTE/PCA observed the new source, Swift J1822.3-1606 (Cummings et al. GCN Circ. 12159) on 2011 July 16, for 6.7 ks. We performed a timing analysis on the barycentered data and detected a coherent pulsation at 0.1185149(2) Hz corresponding to 8.4377585 s. Pulsations are clearly visible in the PCA light curve. The peak-to-peak pulsed amplitude in the 2-10 keV band is 0.41. This pulsed fraction is highly unlikely from an SGR source, and very reminiscent of the outburst onset of Swift J1626.6-5156 (Palmer et al.

  12. Optical multichannel monitoring of skin blood pulsations for cardiovascular assessment

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Ozols, Maris

    2004-07-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for cardiovascular assessment. The multichannel PPG concept has been developed and clinically verified in this work. Simultaneous data flow from several body locations allows to study the heartbeat pulse wave propagation in real time and to evaluate the vascular resistance. Portable two- and four-channel PPG monitoring devices and special software have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions.

  13. 21 CFR 886.5200 - Eyelid thermal pulsation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Eyelid thermal pulsation system. 886.5200 Section 886.5200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5200 Eyelid thermal pulsation system...

  14. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  15. Exploring the relative boundaries of the patchy pulsating aurora

    NASA Astrophysics Data System (ADS)

    Carlisle, E.; Donovan, E.; Jackel, B. J.

    2017-12-01

    Pulsating aurora is a common auroral feature that occurs most frequently on the nightside, in the equatorward part of the auroral oval. It is caused by pitch angle scattering of electrons due to wave-particle interactions near the equatorial plane. As such, observations of pulsating aurora provide information about the distribution of the plasma waves in the magnetosphere. Anecdotal evidence suggests that pulsating aurora occur equatorward of the proton aurora, and hence in the largely dipolar region at or inside the inner edge of the plasma sheet. Here we present results of a statistical survey of photometer observations of proton aurora and simultaneous all-sky imager observations of electron aurora. Our objective is to provide a definitive statement regarding the location of pulsating aurora relative to the proton aurora.

  16. A Method to Estimate the Masses of Asymptotic Giant Branch Variable Stars

    NASA Astrophysics Data System (ADS)

    Takeuti, Mine; Nakagawa, Akiharu; Kurayama, Tomoharu; Honma, Mareki

    2013-06-01

    AGB variable stars are at the transient phase between low and high mass-loss rates; estimating the masses of these stars is necessary to study the evolutionary processes and mass-loss processes during the AGB stage. We applied the pulsation constant theoretically derived by Xiong and Deng (2007 MNRAS, 378, 1270) to 15 galactic AGB stars in order to estimate their masses. We found that using the pulsation constant is effective to estimate the mass of a star pulsating with two different pulsation modes, such as S Crt and RX Boo, which provides mass estimates comparable to theoretical results of AGB star evolution. We also extended the use of the pulsation constant to single-mode variables, and analyzed the properties of AGB stars related to their masses.

  17. Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motriuk, R.W.; Harvey, D.P.

    1998-08-01

    High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This papermore » considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.« less

  18. Pulsation damping of the reciprocating compressor with Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zhang, Y.; Zhou, Q.; Peng, X.; Feng, J.; Jia, X.

    2017-08-01

    Research presented in this paper investigated the mounting of a Helmholtz resonator near the valve chamber of a reciprocating compressor to attenuate the gas pulsation in the valve chamber as well as the pipeline downstream. Its attenuation characteristics were simulated with the plane wave theory together with the transfer matrix method, and the damping effect was checked by comparing the pressure pulsation levels before and after mounting the resonator. The results show that the Helmholtz resonator was effective in attenuating the gas pulsation in the valve chamber and piping downstream, and the pulsation level was decreased by 40% in the valve chamber and 30% at maximum in the piping downstream. The damping effect of the resonator was sensitive to its resonant frequency, and various resonators working simultaneously didn’t interfere with each other. When two resonators were mounted in parallel, with resonant frequencies equal to the second and fourth harmonic frequencies, the pressure pulsation components corresponding to the resonant frequencies were remarkably decreased at the same time, while the pulsation levels at other harmonic frequencies kept almost unchanged. After a series of simulations and experiments a design criterion of chock tube and volume parameter has been proposed for the targeted frequencies to be damped. Furthermore, the frequency-adjustable Helmholtz resonator which was applied to the variable speed compressor was investigated.

  19. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  20. Second harmonic Pi2 pulsation observed near the plasmapause by the Asian-Oceanian SuperDARN radars and THEMIS satellites

    NASA Astrophysics Data System (ADS)

    Teramoto, M.; Nishitani, N.; Hori, T.; Devlin, J. C.; Angelopoulos, V.; Glassmeier, K.; Clausen, L.; Baumjohann, W.; Bonnell, J. W.; Mozer, F.

    2012-12-01

    Pi2 pulsations appear on the nightside at substorm onsets. Several studies suggested that transient Alfven waves might contribute to the excitation of Pi2 pulsations at nightside mid and high latitudes. On the other hand, fast mode waves trapped between the ionosphere and plasmapause are responsible for Pi2 pulsations at mid and low latitudes on the nightside. Using the Sweden And Britain auroral Radar Experiment (SABRE) coherent radar at auroral and sub-auroral latitudes, Yeoman et al. [1991] found that the radar could distinguish between these two types of Pi2 pulsations and suggested that the mid latitude region is the transition region of these two types of Pi2 pulsations. We report on one event of Pi2 pulsation starting at 09:12 UT on 19 August 2010 observed simultaneously by the Hokkaido (HOK), Tiger (TIG), and Unwin (UNW) SuperDARN radars and THEMIS-A, -D, -E satellites when they were located in the premidnight sector. The THEMIS satellites observed Pi2 pulsations at 13 mHz predominantly in the compressional and radial components of the magnetic field and the azimuthal component of the electric field when satellites were located at L < 5 inside the plasmasphere. These pulsations had high coherence (~1) with the H-component Pi2 pulsations at a low-latitude ground station, Kakioka (KAK: magnetic latitude 27.47; magnetic longitude 209.2 degrees). The Poynting flux indicates earthward and duskward flux of Pi2 energy. The radars observed oscillations of Doppler velocities at mid latitude while operating in themisscan mode, during which beam 4 of HOK, beam 4 of TIG, and beam 14 of UNW provide 8-s sampling data. These oscillations corresponded to approximately the east-west component of electric field in the ionosphere. Oscillations backscattered form the lower-latitude ionosphere had a predominant frequency at 13 mHz while Pi2 pulsations observed at higher latitude by the radars had predominant frequencies at both 13 and 25 mHz. The power of Doppler velocity oscillations at 25 mHz was greater than that at 13 mHz at 60-65° geomagnetic latitude. These results indicate that a fast mode wave propagating earthward and duskward causes fundamental and second harmonic structures in the plasmasphere. We will present the details of the observation.

  1. Detection of a large sample of γ Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Aerts, C.; Yakushechkin, A.; Debosscher, J.; Degroote, P.; Bloemen, S.; Pápics, P. I.; de Vries, B. L.; Lombaert, R.; Hrudkova, M.; Frémat, Y.; Raskin, G.; Van Winckel, H.

    2013-08-01

    Context. The launches of the MOST, CoRoT, and Kepler missions opened up a new era in asteroseismology, the study of stellar interiors via interpretation of pulsation patterns observed at the surfaces of large groups of stars. These space missions deliver a huge amount of high-quality photometric data suitable to study numerous pulsating stars. Aims: Our ultimate goal is a detection and analysis of an extended sample of γ Dor-type pulsating stars with the aim to search for observational evidence of non-uniform period spacings and rotational splittings of gravity modes in main-sequence stars typically twice as massive as the Sun. This kind of diagnostic can be used to deduce the internal rotation law and to estimate the amount of rotational mixing in the near core regions. Methods: We applied an automated supervised photometric classification method to select a sample of 69 Gamma Doradus (γ Dor) candidate stars. We used an advanced method to extract the Kepler light curves from the pixel data information using custom masks. For 36 of the stars, we obtained high-resolution spectroscopy with the HERMES spectrograph installed at the Mercator telescope. The spectroscopic data are analysed to determine the fundamental parameters like Teff, log g, vsini, and [M/H]. Results: We find that all stars for which spectroscopic estimates of Teff and log g are available fall into the region of the HR diagram, where the γ Dor and δ Sct instability strips overlap. The stars cluster in a 700 K window in effective temperature; log g measurements suggest luminosity class IV-V, i.e. sub-giant or main-sequence stars. From the Kepler photometry, we identify 45 γ Dor-type pulsators, 14 γ Dor/δ Sct hybrids, and 10 stars, which are classified as "possibly γ Dor/δ Sct hybrid pulsators". We find a clear correlation between the spectroscopically derived vsini and the frequencies of independent pulsation modes. Conclusions: We have shown that our photometric classification based on the light curve morphology and colour information is very robust. The results of spectroscopic classification perfectly agree with the photometric classification. We show that the detected correlation between vsini and frequencies has nothing to do with rotational modulation of the stars but is related to their stellar pulsations. Our sample and frequency determinations offer a good starting point for seismic modelling of slow to moderately rotating γ Dor stars. Based on data gathered with NASA Discovery mission Kepler and spectra obtained with the HERMES spectrograph, which is installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany.Tables A.1 and B.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A52

  2. Period locking due to delayed feedback in a laser with saturable absorber.

    PubMed

    Carr, T W

    2003-08-01

    We consider laser with saturable absorber operating in the pulsating regime that is subject to delayed feedback. Alone, both the saturable absorber and delayed feedback cause the clockwise output to become unstable to periodic output via Hopf bifurcations. The delay feedback causes the laser pulse period to lock to an integer fraction of the feedback time. We derive a map from the original model to describe the periodic pulsations of the laser. Equations for the period of the laser predict the occurrence of the different locking states as well as the value of the pump when there is a switch between the locked states.

  3. CFD simulation of pulsation noise in a small centrifugal compressor with volute and resonance tube

    NASA Astrophysics Data System (ADS)

    Wakaki, Daich; Sakuka, Yuta; Inokuchi, Yuzo; Ueda, Kosuke; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2015-02-01

    The rotational frequency tone noise emitted from the automobile turbocharger is called the pulsation noise. The cause of the pulsation noise is not fully understood, but is considered to be due to some manufacturing errors, which is called the mistuning. The effects of the mistuning of the impeller blade on the noise field inside the flow passage of the compressor are numerically investigated. Here, the flow passage includes the volute and duct located downstream of the compressor impeller. Our numerical approach is found to successfully capture the wavelength of the pulsation noise at given rotational speeds by the comparison with the experiments. One of the significant findings is that the noise field of the pulsation noise in the duct is highly one-dimensional although the flow fields are highly three-dimensional.

  4. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  5. Investigating light curve modulation via kernel smoothing. II. New additional modes in single-mode OGLE classical Cepheids

    NASA Astrophysics Data System (ADS)

    Süveges, Maria; Anderson, Richard I.

    2018-04-01

    Detailed knowledge of the variability of classical Cepheids, in particular their modulations and mode composition, provides crucial insight into stellar structure and pulsation. However, tiny modulations of the dominant radial-mode pulsation were recently found to be very frequent, possibly ubiquitous in Cepheids, which makes secondary modes difficult to detect and analyse, since these modulations can easily mask the potentially weak secondary modes. The aim of this study is to re-investigate the secondary mode content in the sample of OGLE-III and -IV single-mode classical Cepheids using kernel regression with adaptive kernel width for pre-whitening, instead of using a constant-parameter model. This leads to a more precise removal of the modulated dominant pulsation, and enables a more complete survey of secondary modes with frequencies outside a narrow range around the primary. Our analysis reveals that significant secondary modes occur more frequently among first overtone Cepheids than previously thought. The mode composition appears significantly different in the Large and Small Magellanic Clouds, suggesting a possible dependence on chemical composition. In addition to the formerly identified non-radial mode at P2 ≈ 0.6…0.65P1 (0.62-mode), and a cluster of modes with near-primary frequency, we find two more candidate non-radial modes. One is a numerous group of secondary modes with P2 ≈ 1.25P1, which may represent the fundamental of the 0.62-mode, supposed to be the first harmonic of an l ∈ {7, 8, 9} non-radial mode. The other new mode is at P2 ≈ 1.46P1, possibly analogous to a similar, rare mode recently discovered among first overtone RR Lyrae stars.

  6. Characterizing the observational properties of δ Sct stars in the era of space photometry from the Kepler mission

    NASA Astrophysics Data System (ADS)

    Bowman, Dominic M.; Kurtz, Donald W.

    2018-05-01

    The δ Sct stars are a diverse group of intermediate-mass pulsating stars located on and near the main sequence within the classical instability strip in the Hertzsprung-Russell diagram. Many of these stars are hybrid stars pulsating simultaneously with pressure and gravity modes that probe the physics at different depths within a star's interior. Using two large ensembles of δ Sct stars observed by the Kepler Space Telescope, the instrumental biases inherent to Kepler mission data and the statistical properties of these stars are investigated. An important focus of this work is an analysis of the relationships between the pulsational and stellar parameters, and their distribution within the classical instability strip. It is found that a non-negligible fraction of main-sequence δ Sct stars exist outside theoretical predictions of the classical instability boundaries, which indicates the necessity of a mass-dependent mixing length parameter to simultaneously explain low and high radial order pressure modes in δ Sct stars within the Hertzsprung-Russell diagram. Furthermore, a search for regularities in the amplitude spectra of these stars is also presented, specifically the frequency difference between pressure modes of consecutive radial order. In this work, it is demonstrated that an ensemble-based approach using space photometry from the Kepler mission is not only plausible for δ Sct stars, but that it is a valuable method for identifying the most promising stars for mode identification and asteroseismic modelling. The full scientific potential of studying δ Sct stars is as yet unrealized. The ensembles discussed in this paper represent a high-quality data set for future studies of rotation and angular momentum transport inside A and F stars using asteroseismology.

  7. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hippke, Michael; Learned, John G.; Zee, A.

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from themore » Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.« less

  8. Pulsational mode fluctuations and their basic conservation laws

    NASA Astrophysics Data System (ADS)

    Borah, B.; Karmakar, P. K.

    2015-01-01

    We propose a theoretical hydrodynamic model for investigating the basic features of nonlinear pulsational mode stability in a partially charged dust molecular cloud within the framework of the Jeans homogenization assumption. The inhomogeneous cloud is modeled as a quasi-neutral multifluid consisting of the warm electrons, warm ions, and identical inertial cold dust grains with partial ionization in a neutral gaseous background. The grain-charge is assumed not to vary in the fluctuation evolution time scale. The active inertial roles of the thermal species are included. We apply a standard multiple scaling technique centered on the gravito-electrostatic equilibrium to understand the fluctuations on the astrophysical scales of space and time. This is found that electrostatic and self-gravitational eigenmodes co-exist as diverse solitary spectral patterns governed by a pair of Korteweg-de Vries (KdV) equations. In addition, all the relevant classical conserved quantities associated with the KdV system under translational invariance are methodologically derived and numerically analyzed. A full numerical shape-analysis of the fluctuations, scale lengths and perturbed densities with multi-parameter variation of judicious plasma conditions is carried out. A correlation of the perturbed densities and gravito-electrostatic spectral patterns is also graphically indicated. It is demonstrated that the solitary mass, momentum and energy densities also evolve like solitary spectral patterns which remain conserved throughout the spatiotemporal scales of the fluctuation dynamics. Astrophysical and space environments significant to our results are briefly highlighted.

  9. Nonlinear Convective Models of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Feuchtinger, M.; Dorfi, E. A.

    The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.

  10. Low-Resolution Radial-Velocity Monitoring of Pulsating sdBs in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Telting, J.; Östensen, R.; Reed, M.; Kiæerad, F.; Farris, L.; Baran, A.; Oreiro, R.; O'Toole, S.

    2014-04-01

    We present preliminary results from an ongoing spectroscopic campaign to uncover the binary status of the 18 known pulsating subdwarf B stars and the one pulsating BHB star observed with the Kepler spacecraft. During the 2010-2012 observing seasons, we have used the KP4m Mayall, NOT, and WHT telescopes to obtain low-resolution (R˜2000-2500) Balmer-line spectroscopy of our sample stars. We applied a standard cross-correlation technique to derive radial velocities, and find clear evidence for binarity in several of the pulsators, some of which were not previously known to be binaries.

  11. [Pulsative hematoma--a penile fracture complication].

    PubMed

    Dorde, Nale; Mićić, Sava

    2007-01-01

    Fracture of the penis is a direct blunt trauma of the erect or semi-erect penis. It can be treated by conservative or surgical means. Retrospective analyses of conservative penile fracture treatment reveal frequent immediate and later complications. We presented a 41-year-old patient with pulsative hematoma caused by an unusual fracture of the penis. Fracture had appeared 40 days before the admittance during a sexual intercourse. The patient was treated surgically. Pulsative hematoma (pulsative diverticulum) is a very rare, early complication of a conservatively treated penile fracture. Surgical treatment has an advantage over surgical one, which was confirmed by our case report.

  12. Finding binaries from phase modulation of pulsating stars with Kepler

    NASA Astrophysics Data System (ADS)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  13. An improved arterial pulsation measurement system based on optical triangulation and its application in the traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Wu, Jih-Huah; Lee, Wen-Li; Lee, Yun-Parn; Lin, Ching-Huang; Chiou, Ji-Yi; Tai, Chuan-Fu; Jiang, Joe-Air

    2011-08-01

    An improved arterial pulsation measurement (APM) system that uses three LED light sources and a CCD image sensor to measure pulse waveforms of artery is presented. The relative variations of the pulses at three measurement points near wrist joints can be determined by the APM system simultaneously. The height of the arterial pulsations measured by the APM system achieves a resolution of better than 2 μm. These pulsations contain useful information that can be used as diagnostic references in the traditional Chinese medicine (TCM) in the future.

  14. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  15. Pulsations of the High-Amplitude δ Scuti star YZ Bootis

    NASA Astrophysics Data System (ADS)

    Yang, Tao-Zhi; Esamdin, Ali; Fu, Jian-Ning; Niu, Hu-Biao; Feng, Guo-Jie; Song, Fang-Fang; Liu, Jin-Zhong; Ma, Lu

    2018-01-01

    We present a study on pulsations of the high-amplitude δ Scuti star YZ Boo based on photometric observations in Johnson V and R bands with both the Nanshan 1-m telescope of Xinjiang AstronomicalObservatory (XAO) and the Xinglong 85-cmtelescope of NationalAstronomical Observatories, Chinese Academy of Sciences (NAOC). Fourier analysis of the light curves reveals the fundamental radial mode and its five harmonics, with the fourth and fifth being newly detected. Thirty-nine new times of maximum light are determined from the light curves, and combined with those in the literature, we construct the O ‑ C diagram, derive a new ephemeris and determine a new value for the updated period of 0.104091579(2). In addition, the O ‑ C diagram reveals an increasing rate of period change for YZ Boo. Theoretical models are calculated and constrained with the observationally determined parameters of YZ Boo. The mass and age of YZ Boo are hence derived as M = 1.61±0.05 M ⊙ and age = (1.44±0.14)×109 yr, respectively.With both the frequency of the fundamental radial mode and the rate of period change, YZ Boo is located at the post main sequence stage.

  16. Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2017-11-01

    The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.

  17. A spectroscopic and photometric investigation of the mercury-manganese star KIC 6128830

    NASA Astrophysics Data System (ADS)

    Hümmerich, Stefan; Niemczura, Ewa; Walczak, Przemysław; Paunzen, Ernst; Bernhard, Klaus; Murphy, Simon J.; Drobek, Dominik

    2018-02-01

    The advent of space-based photometry provides the opportunity for the first precise characterizations of variability in mercury-manganese (HgMn/CP3) stars, which might advance our understanding of their internal structure. We have carried out a spectroscopic and photometric investigation of the candidate CP3 star KIC 6128830. A detailed abundance analysis based on newly acquired high-resolution spectra was performed, which confirms that the star's abundance pattern is fully consistent with its proposed classification. Photometric variability was investigated using 4 yr of archival Kepler data. In agreement with results from the literature, we have identified a single significant and independent frequency f1 = 0.2065424 d-1 with a peak-to-peak amplitude of ˜3.4 mmag and harmonic frequencies up to 5f1. Drawing on the predictions of state-of-the-art pulsation models and information on evolutionary status, we discuss the origin of the observed light changes. Our calculations predict the occurrence of g-mode pulsations at the observed variability frequency. On the other hand, the strictly mono-periodic nature of the variability strongly suggests a rotational origin. While we prefer the rotational explanation, the present data leave some uncertainty.

  18. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  19. Quasi-thermal models

    NASA Technical Reports Server (NTRS)

    Delareza, Ramiro

    1987-01-01

    Non-local thermodynamics equilibrium (LTE) effects in the photosphere; recent research on the chromosphere of the M and C stars; and elementary shock-waves and pulsation theories and their applications to Mira long-period variables are discussed.

  20. Double-temperature ratchet model and current reversal of coupled Brownian motors

    NASA Astrophysics Data System (ADS)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang

    2017-12-01

    On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.

  1. Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure.

    PubMed

    Giezendanner-Thoben, Robert; Meier, Ulrich; Meier, Wolfgang; Heinze, Johannes; Aigner, Manfred

    2005-11-01

    Two-line OH planar laser-induced fluorescence (PLIF) thermometry was applied to a swirling CH4/air flame in a gas turbine (GT) model combustor at atmospheric pressure, which exhibited self-excited combustion instability. The potential and limitations of the method are discussed with respect to applications in GT-like flames. A major drawback of using OH as a temperature indicator is that no temperature information can be obtained from regions where OH radicals are missing or present in insufficient concentration. The resulting bias in the average temperature is addressed and quantified for one operating condition by a comparison with results from laser Raman measurements applied in the same flame. Care was taken to minimize saturation effects by decreasing the spectral laser power density to a minimum while keeping an acceptable spatial resolution and signal-to-noise ratio. In order to correct for the influence of laser light attenuation, absorption measurements were performed on a single-shot basis and a correction procedure was applied. The accuracy was determined to 4%-7% depending on the location within the flame and on the temperature level. A GT model combustor with an optical combustion chamber is described, and phase-locked 2D temperature distributions from a pulsating flame are presented. The temperature variations during an oscillation cycle are specified, and the general flame behavior is described. Our main goals are the evaluation of the OH PLIF thermometry and the characterization of a pulsating GT-like flame.

  2. Case study of a low-reflectivity pulsating microburst: Numerical simulation of the Denver, 8 July 1989, storm

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1994-01-01

    On 8 July 1989, a very strong microburst was detected by the Low-Level Windshear Alert system (LLWAS), within the approach corridor just north of Denver Stapleton Airport. The microburst was encountered by a Boeing 737-200 in a 'go-around' configuration which was reported to have lost considerable air speed and altitude during penetration. Data from LLWAS revealed a pulsating microburst with an estimated peak velocity change of 48 m/s. Wilson et al. reported that the microburst was accompanied by no apparent visible clues such as rain or virga, although blowing dust was present. Weather service hourly reports indicated virga in all quadrants near the time of the event. A National Center for Atmospheric Research (NCAR) research Doppler radar was operating; but according to Wilson et al., meaningful velocity could not be measured within the microburst due to low radar-reflectivity factor and poor siting for windshear detection at Stapleton. This paper presents results from the three-dimensional numerical simulation of this event, using the Terminal Area Simulation System (TASS) model. The TASS model is a three-dimensional nonhydrostatic cloud model that includes parameterizations for both liquid and ice phase microphysics, and has been used in investigations of both wet and dry microburst case studies. The focus of this paper is the pulsating characteristic and the very-low radar reflectivity of this event. Most of the surface outflow contained no precipitation. Such an event may be difficult to detect by radar.

  3. The effect of space weather on human heart diseases in subauroral latitudes

    NASA Astrophysics Data System (ADS)

    Samsonov, S. N.; Kleimenova, N. G.; Kozyreva, O. V.; Petrova, P. G.

    2014-12-01

    In this work the relationship between emergency medical calls for myocardial infarction in Yakutsk (subauroral geomagnetic latitudes) and parameters of the space weather near maximum (1992) and minimum (1998) geomagnetic activity is studied. The comparison of the seasonal behavior of the number of calls with the simultaneous seasonal behavior of deaths from myocardial infarctions at low latitudes (Bulgaria) exhibited significant differences. Namely, in Bulgaria, the maximum and minimum of infarctions were observed in winter and in summer, respectively; in Yakutsk, several observed maximums coincided with the sharp and considerable increase in planetary geomagnetic activity. An analysis of experimental results made it possible to suppose that, in subauroral latitudes, unlike low latitudes, a major role in the increase in the number of infarctions is played by the increase in geomagnetic activity, namely, by the appearance of night magnetospheric substorms, which are also observed in subauroral latitudes in magnetically disturbed times. Substorms are always accompanied by irregular geomagnetic Pi1 pulsations with periods of 0.5-3 Hz. These pulsations can be biotropic, like stable quasi-sinusoidal geomagnetic Pc1 pulsations in middle and low latitudes.

  4. A New Approach in Examining the Influence of Drugs on Pulsation Rates in Blackworms ("Lumbriculus Variegatus")

    ERIC Educational Resources Information Center

    Ryan, Amy B.; Elwess, Nancy L.

    2017-01-01

    This investigative laboratory activity engages students in observing, recording, graphing and analyzing pulsation rates in a commonly used laboratory organism, blackworms. This activity stresses how various drugs can impact the pulsation rate in blackworms at varying concentrations. In addition, we have incorporated two new ways to view the…

  5. International Field Reversible Thermal Connector (RevCon) Challenge

    DTIC Science & Technology

    2016-07-01

    Design ....................................................................... 80 Figure 74: Pulsating - heat - pipe Embedded Design Delivered by MissStateU...University MissStateU finally delivered a pulsating - heat - pipe thermal connector. However, the performance did not amaze the audiences. The size and...We also cannot observe any oscillating dynamics during heating . Figure 74: Pulsating - heat - pipe Embedded Design Delivered by MissStateU

  6. The Very Slow Wind from the Pulsating Semiregular Red Giant, L2 Puppis

    NASA Technical Reports Server (NTRS)

    Jura, M.; Chen, C.; Plavchan, P.

    2002-01-01

    We have obtained 1 1.7 and 17.9 micron images at the Keck I telescope of the circumstellar dust emission from L(sub 2) Pup, which is one of the nearest ( D = 61 pc) mass-losing, pulsating red giants that has a substantial infra-red excess. We propose that the star is losing mass at a rate of approx.3 x 10(exp -7) Solar Mass/yr. Given its relatively low luminosity (approx. 1500 Solar Luminosity), relatively high effective temperature (near 3400 K), relatively short period (approx. 140 days), and inferred gas outflow speed of 3.5 km/s, standard models for dust-driven mass loss do not apply. Instead, the wind may be driven by the stellar pulsations, with radiation pressure on dust being relatively unimportant. as described in some recent calculations. L(sub 2) Pup may serve as the prototype of this phase of stellar evolution, in which a star could lose approx. 15% of its initial main-sequence mass. Subject headings: circumstellar matter - stars: individual (L2 Puppis) - stars: mass loss

  7. The Potential of Multicolor Photometry for Pulsating Subdwarf B Stars

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Fontaine, G.; Brassard, P.; Bergeron, P.

    2005-12-01

    We investigate the potential of multicolor photometry for partial mode identification in both long- and short-period variable subdwarf B stars. The technique presented is based on the fact that the frequency dependence of an oscillation's amplitude and phase bears the signature of the mode's degree index l, among other things. Unknown contributing factors can be eliminated through the evaluation of the amplitude ratios and phase differences arising from the brightness variation in different wavebands, theoretically enabling the inference of the degree index from observations in two or more bandpasses. Employing a designated model atmosphere code, we calculate the brightness variation expected across the visible disk during a pulsation cycle in terms of temperature, radius, and surface gravity perturbations to the emergent flux for representative EC 14026 and PG 1716 star models. Nonadiabatic effects are considered in detail and found to be significant from nonadiabatic pulsation calculations applied to our state-of-the-art models of subdwarf B stars. Our results indicate that the brightness variations observed in subdwarf B stars are caused primarily by changes in temperature and radius, with surface gravity perturbations playing a small role. For PG 1716 stars, temperature effects dominate in the limit of long periods with the result that the oscillatory amplitudes and phases lose their period dependence and nonadiabatic effects become unimportant. Outside this regime, however, their values are strongly influenced by both factors. We find that the phase shifts between brightness variations in different wavebands are generally small but may lie above the experimental detection threshold in certain cases. The prospect of mode discrimination seems much more promising on the basis of the corresponding amplitude ratios. While in EC 14026 stars the amplitude ratios predicted are very similar for modes with l=0, 1, or 2, they are well separated from those of modes with l=3, l=5, and l=4 or 6, each of which form a distinct group. For the case of the PG 1716 stars it should be possible to discriminate between modes with l=1, 2, 4, or 6 and those of degree indices l=3 and l=5. Identifying modes within a given group is challenging for both types of pulsator and requires multicolor photometry of extremely high quality. Nevertheless, we demonstrate that it is feasible using the example of the largest amplitude peak detected for the fast pulsator KPD 2109+4401 by Jeffery et al. Predicted color-amplitude ratios for a series of representative EC 14026 and PG 1716 stars are available upon request. Interested collaborators please contact S. K. Randall or G. Fontaine.

  8. The CoRoT B-type binary HD 50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings⋆

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Michel, E.; Briquet, M.; Pápics, P. I.; Amado, P.; Mathias, P.; Poretti, E.; Rainer, M.; Lombaert, R.; Hillen, M.; Morel, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.

    2012-06-01

    Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims: We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods: To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results: We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations obtained with the HERMES spectrograph, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany.Appendix A is available in electronic form at http://www.aanda.org

  9. The high-resolution spectrum of the pulsating, pre-white dwarf star PG 1159-035 (GW VIR)

    NASA Technical Reports Server (NTRS)

    Liebert, James; Wesemael, F.; Husfeld, D.; Wehrse, R.; Starrfield, S. G.

    1989-01-01

    High-resolution and low-resolution UV spectra and a high-resolution optical spectrum were obtained for PG 1159-035, revealing apparent photospheric absorption features with defined cores from N V 1240 A, N IV 1270 A, O V 1371 A, and C IV 1550 A. The photospheric velocity derived using all of these lines except for C IV is about +35 km/s. Equivalent-width measurements determined for all of the features may provide a tighter constraint on the photospheric temperature in a detailed model atmosphere analysis treating the CNO ions.

  10. Long-Period Variability in o Ceti

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Karovska, Margarita

    2009-02-01

    We carried out a new and sensitive search for long-period variability in the prototype of the Mira class of long-period pulsating variables, o Ceti (Mira A), the closest and brightest Mira variable. We conducted this search using an unbroken light curve from 1902 to the present, assembled from the visual data archives of five major variable star observing organizations from around the world. We applied several time-series analysis techniques to search for two specific kinds of variability: long secondary periods (LSPs) longer than the dominant pulsation period of ~333 days, and long-term period variation in the dominant pulsation period itself. The data quality is sufficient to detect coherent periodic variations with photometric amplitudes of 0.05 mag or less. We do not find evidence for coherent LSPs in o Ceti to a limit of 0.1 mag, where the amplitude limit is set by intrinsic, stochastic, low-frequency variability of approximately 0.1 mag. We marginally detect a slight modulation of the pulsation period similar in timescale to that observed in the Miras with meandering periods, but with a much lower period amplitude of ±2 days. However, we do find clear evidence of a low-frequency power-law component in the Fourier spectrum of o Ceti's long-term light curve. The amplitude of this stochastic variability is approximately 0.1 mag at a period of 1000 days, and it exhibits a turnover for periods longer than this. This spectrum is similar to the red noise spectra observed in red supergiants.

  11. Studies of the Long Secondary Periods in Pulsating Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Deibert, E.

    2016-12-01

    We have used systematic, sustained visual observations from the AAVSO International Database and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the excited pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a time scale of roughly 20-30 LSPs. There is no obvious difference between the carbon (C) stars and the normal oxygen (M) stars. Previous multicolor observations showed that the LSP color variations are similar to those of the pulsation period, and of the LSPs in the Magellanic Clouds, and not like those of eclipsing stars. We note that the LSPs are similar to the estimated rotation periods of the stars, though the latter have large uncertainties. This suggests that the LSP phenomenon may be a form of modulated rotational variability.

  12. Low-Altitude Satellite Measurements of Pulsating Auroral Electrons

    NASA Technical Reports Server (NTRS)

    Samara, M.; Michell, R. G.; Redmon, R. J.

    2015-01-01

    We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.

  13. Researching of the reduction of shock waves intensivity in the “pseudo boiling” layer

    NASA Astrophysics Data System (ADS)

    Pavlov, G. I.; Telyashov, D. A.; Kochergin, A. V.; Nakoryakov, P. V.; Sukhovaya, E. A.

    2017-09-01

    This article applies to the field of acoustics and deals with noise reduction of pulsating combustion chambers, in particular the reduction of the shock waves’ intensity with the help of pseudo boiling layer. In the course of work on a test stand that included a pulsator, a compressor with the receiver and a high pressure fan was simulated gas jet flowing from the chamber pulsating combustion and studied the effect of different types of fluidization on effect of reducing the sound pressure levels. Were obtained the experimental dependence of the sound pressure levels from parameters such as: height of the layer of granules; diameter of the used granules; amplitude of the pressure pulsations in the gas stream at the entrance to the camera; frequency of pressure pulsations. Based on the results of the study, it was concluded that the using of a pseudo boiling layer is promising for reducing shock wave noise.

  14. Dynamical behavior of the random field on the pulsating and snaking solitons in cubic-quintic complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Bakhtiar, Nurizatul Syarfinas Ahmad; Abdullah, Farah Aini; Hasan, Yahya Abu

    2017-08-01

    In this paper, we consider the dynamical behaviour of the random field on the pulsating and snaking solitons in a dissipative systems described by the one-dimensional cubic-quintic complex Ginzburg-Landau equation (cqCGLE). The dynamical behaviour of the random filed was simulated by adding a random field to the initial pulse. Then, we solve it numerically by fixing the initial amplitude profile for the pulsating and snaking solitons without losing any generality. In order to create the random field, we choose 0 ≤ ɛ ≤ 1.0. As a result, multiple soliton trains are formed when the random field is applied to a pulse like initial profile for the parameters of the pulsating and snaking solitons. The results also show the effects of varying the random field of the transient energy peaks in pulsating and snaking solitons.

  15. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    NASA Technical Reports Server (NTRS)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  16. Optical non-invasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spīgulis, Jānis

    2005-08-01

    Time resolved detection and analysis of the skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. The single- and multi-channel PPG concepts are discussed in this work. Simultaneous data flow from several body locations allows one to study the heartbeat pulse wave propagation in real time and evaluate the vascular resistance. Portable single-, dual- and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The clinical studies confirmed their potential in the monitoring of heart arrhythmias, drug tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions.

  17. Optical noninvasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2005-04-01

    Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

  18. ULTIMA: Array of ground-based magnetometer arrays for monitoring magnetospheric and ionospheric perturbations on a global scale

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Chi, P. J.; Angelopoulos, V.; Connors, M. G.; Engebretson, M. J.; Fraser, B. J.; Mann, I. R.; Milling, D. K.; Moldwin, M. B.; Russell, C. T.; Stolle, C.; Tanskanen, E.; Vallante, M.; Yizengaw, E.; Zesta, E.

    2012-12-01

    ULTIMA (Ultra Large Terrestrial International Magnetic Array) is an international consortium that aims at promoting collaborative research on the magnetosphere, ionosphere, and upper atmosphere through the use of ground-based magnetic field observatories. ULTIMA is joined by individual magnetometer arrays in different countries/regions, and the current regular-member arrays are Australian, AUTUMN, CARISMA, DTU Space, Falcon, IGPP-LANL, IMAGE, MACCS, MAGDAS, McMAC, MEASURE, THEMIS, and SAMBA. The Chair of ULTIMA has been K. Yumoto (MAGDAS), and its Secretary has been P. Chi (McMAC, Falcon). In this paper we perform case studies in which we estimate the global patterns of (1) near-Earth currents and (2) magnetic pulsations; these phenomena are observed over wide areas on the ground, thus suitable for the aims of ULTIMA. We analyze these two phenomena during (a) quiet period and (b) magnetic storm period. We compare the differences between these two periods by drawing the global maps of the ionospheric equivalent currents (which include the effects of all the near-Earth currents) and pulsation amplitudes. For ionospheric Sq currents at low latitudes during quiet periods, MAGDAS data covering an entire solar cycle has yielded a detailed statistical model, and we can use it as a reference for the aforementioned comparison. We also estimate the azimuthal wave numbers of pulsations and compare the amplitude distribution of pulsations with the distribution of highly energetic (in MeV range) particles simultaneously observed at geosynchronous satellites.

  19. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.

    PubMed

    Liberzon, Alexander; Harrington, Kyra; Daniel, Nimrod; Gurka, Roi; Harari, Ally; Zilman, Gregory

    2018-01-01

    Some female moths attract male moths by emitting series of pulses of pheromone filaments propagating downwind. The turbulent nature of the wind creates a complex flow environment, and causes the filaments to propagate in the form of patches with varying concentration distributions. Inspired by moth navigation capabilities, we propose a navigation strategy that enables a flier to locate an upwind pulsating odor source in a windy environment using a single threshold-based detection sensor. This optomotor anemotaxis strategy is constructed based on the physical properties of the turbulent flow carrying discrete puffs of odor and does not involve learning, memory, complex decision making or statistical methods. We suggest that in turbulent plumes from a pulsating point source, an instantaneously measurable quantity referred as a "puff crossing time", improves the success rate as compared to the navigation strategies based on temporally regular zigzags due to intermittent contact, or an "internal counter", that do not use this information. Using computer simulations of fliers navigating in turbulent plumes of the pulsating point source for varying flow parameters such as turbulent intensities, plume meandering and wind gusts, we obtained statistics of navigation paths towards the pheromone sources. We quantified the probability of a successful navigation as well as the flight parameters such as the time spent searching and the total flight time, with respect to different turbulent intensities, meandering or gusts. The concepts learned using this model may help to design odor-based navigation of miniature airborne autonomous vehicles.

  20. AN ANALYSIS OF THE PULSATING STAR SDSS J160043.6+074802.9 USING NEW NON-LTE MODEL ATMOSPHERES AND SPECTRA FOR HOT O SUBDWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, M.; Fontaine, G.; Brassard, P.

    2011-06-01

    We first present our new grids of model atmospheres and spectra for hot subdwarf O (sdO) stars: standard non-LTE (NLTE) H+He models with no metals, NLTE line-blanketed models with C+N+O, and NLTE line-blanketed models with C+N+O+Fe. Using hydrogen and helium lines in the optical range, we make detailed comparisons between theoretical spectra of different grids in order to characterize the line-blanketing effects of metals. We find these effects to be dependent on both the effective temperature and the surface gravity. Moreover, we find that the helium abundance also influences in an important way the effects of line blanketing on themore » resulting spectra. We further find that the addition of Fe (solar abundance) leads only to incremental effects on the atmospheric structure as compared with the case where the metallicity is defined by C+N+O (solar abundances). We use our grids to perform fits on a 9 A resolution, high signal-to-noise ratio ({approx}300 blueward of 5000 A) optical spectrum of SDSS J160043.6+074802.9, the only known pulsating sdO star. Our best and most reliable result is based on the fit achieved with NLTE synthetic spectra that include C, N, O, and Fe in solar abundances, leading to the following parameters: T{sub eff} = 68,500 {+-} 1770 K, log g = 6.09 {+-} 0.07, and log N(He)/N(H) = -0.64 {+-} 0.05 (formal fitting errors only). This combination of parameters, particularly the comparatively high helium abundance, implies that line-blanketing effects due to metals are not very large in the atmosphere of this sdO star.« less

  1. A complex approach to the blue-loop problem

    NASA Astrophysics Data System (ADS)

    Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga

    2015-08-01

    The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.

  2. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation.

    PubMed

    Park, Eun-Hyoung; Eide, Per Kristian; Zurakowski, David; Madsen, Joseph R

    2012-12-01

    The pathophysiology of normal pressure hydrocephalus (NPH), and the related problem of patient selection for treatment of this condition, have been of great interest since the description of this seemingly paradoxical condition nearly 50 years ago. Recently, Eide has reported that measurements of the amplitude of the intracranial pressure (ICP) can both positively and negatively predict response to CSF shunting. Specifically, the fraction of time spent in a "high amplitude" (> 4 mm Hg) state predicted response to shunting, which may represent a marker for hydrocephalic pathophysiology. Increased ICP amplitude might suggest decreased brain compliance, meaning a static measure of a pressure-volume ratio. Recent studies of canine data have shown that the brain compliance can be described as a frequency-dependent function. The normal canine brain seems to show enhanced ability to absorb the pulsations around the heart rate, quantified as a cardiac pulsation absorbance (CPA), with properties like a notch filter in engineering. This frequency dependence of the function is diminished with development of hydrocephalus in dogs. In this pilot study, the authors sought to determine whether frequency dependence could be observed in humans, and whether the frequency dependence would be any different in epochs with high ICP amplitude compared with epochs of low ICP amplitude. Systems analysis was applied to arterial blood pressure (ABP) and ICP waveforms recorded from 10 patients undergoing evaluations of idiopathic NPH to calculate a time-varying transfer function that reveals frequency dependence and CPA, the measure of frequency-dependent compliance previously used in animal experiments. The ICP amplitude was also calculated in the same samples, so that epochs with high (> 4 mm Hg) versus low (≤ 4 mm Hg) amplitude could be compared in CPA and transfer functions. Transfer function analysis for the more "normal" epochs with low amplitude exhibits a dip or notch in the physiological frequency range of the heart rate, confirming in humans the pulsation absorber phenomenon previously observed in canine studies. Under high amplitude, however, the dip in the transfer function is absent. An inverse relationship between CPA index and ICP amplitude is evident and statistically significant. Thus, elevated ICP amplitude indicates decreased performance of the human pulsation absorber. The results suggest that the human intracranial system shows frequency dependence as seen in animal experiments. There is an inverse relationship between CPA index and ICP amplitude, indicating that higher amplitudes may occur with a reduced performance of the pulsation absorber. Our findings show that frequency dependence can be observed in humans and imply that reduced frequency-dependent compliance may be responsible for elevated ICP amplitude observed in patients who respond to CSF shunting.

  3. Experimental estimation of convective heat transfer coefficient from pulsating semi-confined impingement air slot jet by using inverse method

    NASA Astrophysics Data System (ADS)

    Farahani, Somayeh Davoodabadi; Kowsary, Farshad

    2017-09-01

    An experimental study on pulsating impingement semi-confined slot jet has been performed. The effect of pulsations frequency was examined for various Reynolds numbers and Nozzle to plate distances. Convective heat transfer coefficient is estimated using the measured temperatures in the target plate and conjugate gradient method with adjoint equation. Heat transfer coefficient in Re < 3000 tended to increase with increasing frequency. The pulsations enhance mixing, which results in an enhancement of mean flow velocity. In case of turbulent jet (Re > 3000), heat transfer coefficient is affected by the pulsation from particular frequency. In this study, the threshold Strouhal number (St) is 0.11. No significant heat transfer enhancement was obtained for St < 0.11. The thermal resistance is smaller each time due to the newly forming thermal boundary layers. Heat transfer coefficient increases due to decrease thermal resistance. This study shows that maximum enhancement in heat transfer due to pulsations occurs in St = 0.169. Results show the configuration geometry has an important effect on the heat transfer performances in pulsed impinging jet. Heat transfer enhancement can be described to reflect flow by the confinement plate.

  4. A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey

    NASA Astrophysics Data System (ADS)

    Boudreaux, Thomas M.; Barlow, Brad N.; Fleming, Scott W.; Vasquez Soto, Alan; Million, Chase; Reichart, Dan E.; Haislip, Josh B.; Linder, Tyler R.; Moore, Justin P.

    2017-08-01

    NASA’s Galaxy Evolution Explorer (GALEX) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX, with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gaps between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV r class of variable stars.

  5. Pulsation phenomena observed in long-duration vlf whistler-mode signals.

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Helliwell, R. A.

    1971-01-01

    Whistler-mode signals from station NAA (14.7 and 17.8 kHz), Cutler, Maine, show periodic fluctuations (?pulsations') in amplitude and bandwidth. The data were recorded at Eights station, Antarctica, during unmodulated (?key-down') transmissions from NAA lasting up to 2 min. In three of four instances, the pulsations consist of a series of moderate enhancements of the amplitude and bandwidth of the signal, each pulsation lasting about 50 msec. The fourth instance, however, was unusual in that the key-down signal exhibited remarkably regular and intense amplitude variations. In all four occurrences, the period of the pulsation was in the range from 0.3 to 0.6 sec. In three occurrences, this period was roughly the same as the one-hop whistler-mode delay along the field-line path; however, no demonstrable mechanism to explain this association could be found. An explanation of pulsations in terms of multipath fading effects could not be supported by the data. More likely explanations include intrinsic oscillation in the emission generation mechanism, natural oscillation in the energetic-particle population, or modulation of the VLF growth rate by Pc 1 micropulsations in the region of wave growth.

  6. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, S. P.; Zhou, L. J.; Wang, Z. W.

    2014-03-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency.

  7. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    DOE PAGES

    Jia, Dening; Cathary, Océane; Peng, Jianghong; ...

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less

  8. The Discovery of Pulsating Hot Subdwarfs in NGC 2808

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Landsman, Wayne B.; Randall, Suzanna K.; Sweigert, Allen V.; Lanz, Thierry

    2013-01-01

    We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of Omega Cen. Both NGC 2808 and ? Cen are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 hot evolved stars has revealed six pulsating subdwarfs with periods ranging from 85 to 149 s and UV amplitudes of 2.0%-6.8%. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous "blue-hook" stars. For three of these six pulsators, we also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, and in contrast to the ? Cen pulsators, the NGC 2808 pulsators do not exhibit the spectroscopic or photometric uniformity one might expect from a well-defined instability strip, although they all fall within a narrow band (0.2 mag) of far-UV luminosity.

  9. Pi2 detection using Empirical Mode Decomposition (EMD)

    NASA Astrophysics Data System (ADS)

    Mieth, Johannes Z. D.; Frühauff, Dennis; Glassmeier, Karl-Heinz

    2017-04-01

    Empirical Mode Decomposition has been used as an alternative method to wavelet transformation to identify onset times of Pi2 pulsations in data sets of the Scandinavian Magnetometer Array (SMA). Pi2 pulsations are magnetohydrodynamic waves occurring during magnetospheric substorms. Almost always Pi2 are observed at substorm onset in mid to low latitudes on Earth's nightside. They are fed by magnetic energy release caused by dipolarization processes. Their periods lie between 40 to 150 seconds. Usually, Pi2 are detected using wavelet transformation. Here, Empirical Mode Decomposition (EMD) is presented as an alternative approach to the traditional procedure. EMD is a young signal decomposition method designed for nonlinear and non-stationary time series. It provides an adaptive, data driven, and complete decomposition of time series into slow and fast oscillations. An optimized version using Monte-Carlo-type noise assistance is used here. By displaying the results in a time-frequency space a characteristic frequency modulation is observed. This frequency modulation can be correlated with the onset of Pi2 pulsations. A basic algorithm to find the onset is presented. Finally, the results are compared to classical wavelet-based analysis. The use of different SMA stations furthermore allows the spatial analysis of Pi2 onset times. EMD mostly finds application in the fields of engineering and medicine. This work demonstrates the applicability of this method to geomagnetic time series.

  10. The Choroid Plexus of the Lateral Ventricle As the Origin of CSF Pulsation Is Questionable.

    PubMed

    Takizawa, Ken; Matsumae, Mitsunori; Hayashi, Naokazu; Hirayama, Akihiro; Sano, Fumiya; Yatsushiro, Satoshi; Kuroda, Kagayaki

    2018-01-15

    The advent of magnetic resonance imaging (MRI) enables noninvasive measurement of cerebrospinal fluid (CSF) motion, and new information about CSF motion has now been acquired. The driving force of the CSF has long been thought to be choroid plexus (CP) pulsation, but to investigate whether this phenomenon actually occurs, CSF motion was observed in the ventricular system and subarachnoid space using MRI. Eleven healthy volunteers, ranging in age from 23 to 58 years, participated in this study. The MRI sequences used were four-dimensional phase-contrast (4D-PC) and time-spatial labeling inversion pulse (t-SLIP). The 4D-PC images included sagittal images in the cranial midline, coronal images focusing on the foramen of Monro (FOM), and oblique coronal images of the trigone to quantify CSF velocity and acceleration. These values were compared and analyzed as non-parametric data using the Kolmogorov-Smirnov test and the Mann-Whitney U test. 4D-PC showed that the median CSF velocity was significantly lower in the posterior part of the lateral ventricle than in other regions. The quantitative analysis of velocity and acceleration showed that they were decreased around the CP in the trigone. Image analysis of both velocity mapping and t-SLIP showed suppressed CSF motion around the CP in the trigone. These findings cast doubt on CP pulsation being the driving force for CSF motion.

  11. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  12. Sweet taste enhancement through pulsatile stimulation depends on pulsation period not on conscious pulse perception.

    PubMed

    Burseg, Kerstin Martha Mensien; Brattinga, Celine; de Kok, Petrus Maria Theresia; Bult, Johannes Hendrikus Franciscus

    2010-06-16

    When aqueous NaCl solutions are tasted at continuously alternating concentrations, overall saltiness ratings exceed those observed for solutions with the same averaged, but non-alternating concentrations. In the present study, this effect is replicated for alternating aqueous sucrose solutions. We tested the hypothesis that enhancement depends on the conscious perception of intensity contrasts. High sucrose pulses were continuously alternated with low sucrose intervals at pulsation periods between 1.5s and 20s. Tastant pulsation enhanced sweetness intensity and this enhancement varied between 8 and 14%, peaking for periods from 4.5s to 6s (Study 1). This range coincided with the average pulsation period at which perceived taste pulses blended into a continuous stimulus, i.e. the taste fusion period (TFP). When comparing intensity ratings of sucrose solutions at individualized pulse periods of 0.5, 1.0 and 2.0 times TFP to ratings for continuous sucrose solutions of the same net concentration, pulsatile stimuli were perceived as significantly sweeter (p<0.01; Study 2). However, sweetness intensity enhancement was the same for all pulsation periods. It was shown that sweet taste enhancement peaks at pulsation periods ranging from 0.5 to 2.0 TFP and that the level of conscious pulsation perception does not affect taste enhancement. The results suggest the introduction of enhancement effects at pre-conscious stages of gustatory processing. Further mechanisms that may account for such pre-conscious effects are discussed. (c) 2010 Elsevier Inc. All rights reserved.

  13. Benefit of pulsation in soft corals

    PubMed Central

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-01-01

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral–water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral’s photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral’s resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis–respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes. PMID:23610420

  14. Benefit of pulsation in soft corals.

    PubMed

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-05-28

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral-water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral's photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral's resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis-respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes.

  15. Monitoring Period and Amplitude Changes in Classical Cepheids

    NASA Astrophysics Data System (ADS)

    Erickson, Mary; Engle, Scott; Guinan, Edward; Wells, Mark

    2018-01-01

    Classical Cepheids are a specific class of radially pulsating variable stars and are fundamentally important to Astronomy and Cosmology. Their pulsations can be used to determine accurate distances, both inside the Milky Way and to other galaxies throughout the Universe, via the well-studied Period-Luminosity Relationship (the Leavitt Law). This makes Cepheids “standard candles,” and they are helping Astronomers refine the expansion rate and age of the Universe.Though Cepheid pulsations were long-theorized to be completely stable, we now know that they undergo small but observable changes in their pulsation periods. The rates of the period change give us invaluable information on the Cepheids themselves, and the advent of reliable all-sky photometry surveys has allowed Cepheid pulsations to be monitored more easily than ever before.Five Cepheids were analyzed for this study – AA Gem, BB Gem, RZ Gem, AD Gem, and DX Gem. Photometric data were obtained from two sources: ASAS (the All-Sky Automated Survey) and the RCT (Robotically Controlled Telescope) at Kitt Peak National Observatory in Arizona, whose consortium Villanova is a member of. This photometry is combined with available data from the literature. The two instruments combined give a longer time span, and increased precision, from which period variations can be monitored. This gives us an excellent look at how the pulsations of these 5 Cepheids are evolving over time. The pulsation behavior of the 5 Cepheids studies will be presented, along with their calculated stellar parameters.

  16. Pulsar-driven Jets in Supernovae, Gamma-ray Bursts, and SS 433

    NASA Astrophysics Data System (ADS)

    Middleditch, John

    2010-05-01

    The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced at many light cylinder radii by a rotating, magnetized body, as would be the case for a neutron star born within any star of more than 1.4 solar masses, will drive pulsations close to the axis of rotation. In SN 1987A, such highly collimated (less than 1 in 10,000) 2.14 ms pulsations, and the similarly collimated jets of particles which they drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light (days 3 - 20), its "Mystery Spot," observed slightly later (days 30 - 50 and after), and still later, in less collimated form, its bipolarity. SLIP also explains why the 2.14 ms pulsations were more or less consistently observed between years 5.0 and 6.5, and why they eventually disappeared after year 9.0. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars, and possibly SS 433. The axially driven pulsations enforce a toroidal geometry onto all early SNRs, rendering even Ia's unsuitable as standard candles. SLIP predicts that almost all pulsars with very sharp single pulses have been detected because the Earth is in a favored direction where their fluxes diminish only as 1/distance, and this has been verified in the laboratory as well as for the Parkes Multibeam Survey. SLIP also specifically predicts that gamma-ray-burst afterglows will be essentially 100% pulsed at 500 Hz in their proper frame. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  17. The very faint X-ray binary IGR J17062-6143: a truncated disc, no pulsations, and a possible outflow

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Pinto, C.; Patruno, A.; Wette, K.; Messenger, C.; Hernández Santisteban, J. V.; Wijnands, R.; Miller, J. M.; Altamirano, D.; Paerels, F.; Chakrabarty, D.; Fabian, A. C.

    2018-04-01

    We present a comprehensive X-ray study of the neutron star low-mass X-ray binary IGR J17062-6143, which has been accreting at low luminosities since its discovery in 2006. Analysing NuSTAR, XMM-Newton, and Swift observations, we investigate the very faint nature of this source through three approaches: modelling the relativistic reflection spectrum to constrain the accretion geometry, performing high-resolution X-ray spectroscopy to search for an outflow, and searching for the recently reported millisecond X-ray pulsations. We find a strongly truncated accretion disc at 77^{+22}_{-18} gravitational radii (˜164 km) assuming a high inclination, although a low inclination and a disc extending to the neutron star cannot be excluded. The high-resolution spectroscopy reveals evidence for oxygen-rich circumbinary material, possibly resulting from a blueshifted, collisionally ionized outflow. Finally, we do not detect any pulsations. We discuss these results in the broader context of possible explanations for the persistent faint nature of weakly accreting neutron stars. The results are consistent with both an ultra-compact binary orbit and a magnetically truncated accretion flow, although both cannot be unambiguously inferred. We also discuss the nature of the donor star and conclude that it is likely a CO or O-Ne-Mg white dwarf, consistent with recent multiwavelength modelling.

  18. Ephyra jellyfish as a new model for ecotoxicological bioassays.

    PubMed

    Faimali, M; Garaventa, F; Piazza, V; Costa, E; Greco, G; Mazzola, V; Beltrandi, M; Bongiovanni, E; Lavorano, S; Gnone, G

    2014-02-01

    The aim of this study was a preliminary investigation on the possibility of using the ephyra of Scyphozoan jellyfish Aurelia aurita (Linnaeus, 1758), the common moon jellyfish, as an innovative model organism in marine ecotoxicology. A series of sequential experiments have been carried out in laboratory in order to investigate the influence of different culturing and methodological parameters (temperature, photoperiod, ephyrae density and age) on behavioural end-points (% of Frequency of Pulsations) and standardize a testing protocol. After that, the organisms have been exposed to two well known reference toxic compounds (Cadmium Nitrate and SDS) in order to analyse the acute and behavioural responses during static exposure. Results of this work indicate that the proposed behavioural end-point, frequency of pulsations (Fp), is an easily measurable one and can be used coupled with an acute one (immobilization) and that ephyrae of jellyfish are very promising model organisms for ecotoxicological investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. On the Origin of Pulsations of Sub-THz Emission from Solar Flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.; Kaufmann, P.

    2014-08-01

    We propose a model to explain fast pulsations in sub-THz emission from solar flares. The model is based on the approach of a flaring loop as an equivalent electric circuit and explains the pulse-repetition rate, the high-quality factor, Q≥103, low modulation depth, pulse synchronism at different frequencies, and the dependence of the pulse-repetition rate on the emission flux, observed by Kaufmann et al. ( Astrophys. J. 697, 420, 2009). We solved the nonlinear equation for electric current oscillations using a Van der Pol method and found the steady-state value for the amplitude of the current oscillations. Using the pulse rate variation during the flare on 4 November 2003, we found a decrease of the electric current from 1.7×1012 A in the flare maximum to 4×1010 A just after the burst. Our model is consistent with the plasma mechanism of sub-THz emission suggested recently by Zaitsev, Stepanov, and Melnikov ( Astron. Lett. 39, 650, 2013).

  20. A motion picture presentation of magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  1. Transition between inverse and direct energy cascades in multiscale optical turbulence

    DOE PAGES

    Malkin, V. M.; Fisch, N. J.

    2018-03-06

    Transition between inverse and direct energy cascades in multiscale optical turbulence. Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a singlemore » scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.« less

  2. Numerical investigation of flow structure and pressure pulsation in the Francis-99 turbine during startup

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Sentyabov, A.; Platonov, D.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.

  3. Generation of Traveling Atmospheric Disturbances During a Pulsating Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Gardner, L. C.; Schunk, R. W.

    2009-12-01

    Traveling Atmospheric Disturbances (TAD’s) are studied with a 3-D high-resolution (1°x3°) global thermosphere/ionosphere model to determine the importance of the high-latitude production mechanisms contained in the model. The possible production mechanisms are the oval size, the precipitating electron characteristic energy and energy flux, and the cross polar cap potential. The production mechanisms are pulsed at a one-hour period, as was observed in a recent long-duration geomagnetic storm. With auroral pulsation a TAD is generated that propagates equatorward away from the high-latitude auroral oval, depositing energy and transporting mass and momentum into the mid- and low-latitude thermosphere system. Depending on the amount of energy input into the high-latitude auroral zone, the TAD may travel to mid-latitudes, low-latitudes, or if sufficient energy is deposited, the TAD may even propagate across the opposite pole. These and other aspects of TAD generation will be shown.

  4. The eclipsing system V404 Lyr: Light-travel times and γ Doradus pulsations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Woo; Kim, Seung-Lee; Hong, Kyeongsoo

    We present the physical properties of V404 Lyr exhibiting eclipse timing variations and multiperiodic pulsations from all historical data including the Kepler and SuperWASP observations. Detailed analyses of 2922 minimum epochs showed that the orbital period has varied through a combination of an upward-opening parabola and two sinusoidal variations, with periods of P {sub 3} = 649 days and P {sub 4} = 2154 days and semi-amplitudes of K {sub 3} = 193 s and K {sub 4} = 49 s, respectively. The secular period increase at a rate of +1.41 × 10{sup –7} days yr{sup –1} could be interpretedmore » as a combination of the secondary to primary mass transfer and angular momentum loss. The most reasonable explanation for both sinusoids is a pair of light-travel-time effects due to two circumbinary objects with projected masses of M {sub 3} = 0.47 M {sub ☉} and M {sub 4} = 0.047 M {sub ☉}. The third-body parameters are consistent with those calculated using the Wilson-Devinney binary code. For the orbital inclinations i {sub 4} ≳ 43°, the fourth component has a mass within the hydrogen-burning limit of ∼0.07 M {sub ☉}, which implies that it is a brown dwarf. A satisfactory model for the Kepler light curves was obtained by applying a cool spot to the secondary component. The results demonstrate that the close eclipsing pair is in a semi-detached, but near-contact, configuration; the primary fills approximately 93% of its limiting lobe and is larger than the lobe-filling secondary. Multiple frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the Kepler data. This revealed that the primary component of V404 Lyr is a γ Dor type pulsating star, exhibiting seven pulsation frequencies in the range of 1.85-2.11 day{sup –1} with amplitudes of 1.38-5.72 mmag and pulsation constants of 0.24-0.27 days. The seven frequencies were clearly identified as high-order low-degree gravity-mode oscillations which might be excited through tidal interaction. Only eight eclipsing binaries have been known to contain γ Dor pulsating components and, therefore, V404 Lyr will be an important test bed for investigating these rare and interesting objects.« less

  5. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.

    PubMed

    Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut

    2013-08-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.

  6. Commentary on fast atmospheric pulsations. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vampola, A.L.

    A recent paper proposed that Fast Atmospheric Light Pulsations (FAPs), which have been observed at L=1.5-2.2 in the northern hemisphere, are optical signatures of >2-MeV electrons associated with Lightning-induced Electron Precipitation (LEP) events produced by lightning strokes in the southern hemisphere. FAPs cannot be produced by >2-MeV electrons in the inner radiation belt because the upper limit for fluxes of such particles is only about 0.2% of the value that was used in the analysis and would lead to an unrealistically short electron lifetime. The discrepancy comes from using an electron model, AE-2, which included the Starfish fission electrons. Latermore » inner-zone electron environment models show the inner-zone to have negligible fluxes of electrons in excess of 2 MeV. The use of a model in which southern hemisphere lightning strokes result in northern hemisphere FAPs via a cyclotron mode interaction between magnetospheric electrons and lightning generated waves is also untenable because it would result in FAP intensities two orders of magnitude greater in the southern hemisphere than in the northern hemisphere, leading to a further two orders of magnitude reduction in estimated inner-zone electron lifetimes. The estimated light intensity of FAPs is within acceptable bounds compared to the lifetime of inner zone electrons if all electrons above 100 keV contribute to the light production, if southern hemisphere FAP intensity is no greater than the FAP intensity observed in the northern hemisphere, and if the light-production efficiency is of the order of .001.« less

  7. Characteristics of low-temperature short heat pipes with a nozzle-shaped vapor channel

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.

    2016-01-01

    This paper presents the results of experimental and numerical studies of heat transfer and swirling pulsating flows in short low-temperature heat pipes whose vapor channels have the form of a conical nozzle. It has been found that as the evaporator of the heat pipe is heated, pressure pulsations occur in the vapor channel starting at a certain threshold value of the heat power, which is due to the start of boiling in the evaporator. The frequency of the pulsations has been measured, and their dependence on the superheat of the evaporator has been determined. It has been found that in heat pipes with a conical vapor channel, pulsations occur at lower evaporator superheats and the pulsation frequency is greater than in heat pipes of the same size with a standard cylindrical vapor channel. It has been shown that the curve of the heat-transfer coefficient versus thermal load on the evaporator has an inflection corresponding to the start of boiling in the capillary porous evaporator of the heat pipe.

  8. Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations. 1: Theory

    NASA Technical Reports Server (NTRS)

    Lockwood, M.; Smith, M. F.

    1994-01-01

    We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the 'pulsating cusp' model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal 'quasi-steady reconnection' (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that 'quasi-steady' in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.

  9. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.

  10. The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B

    2010-11-25

    Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.

  11. On the origin of the 1-hour pulsations in the Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Rusaitis, L.; Walker, R. J.; Khurana, K. K.; Kivelson, M.

    2016-12-01

    The quasi-periodic pulsations of approximately 1-hour periodicity in the magnetic field and particle fluxes have been regularly detected in the outer Saturnian magnetosphere by the Cassini spacecraft since the orbital insertion in 2004 [Palmaerts, 2016; Roussos, 2016]. In this study we focus on the Cassini's magnetometer (MAG) and the Cassini Plasma Spectrometer (CAPS) data from the July 1st, 2004 to June 4th, 2012 (when the CAPS instrument was turned off). Throughout this 8-year period we find over 130 pulsation events in the MAG data, ranging in periodicity from 40 to 90 minutes, and having a typical amplitude of 0.5-1nT in the transverse (φ ) direction. The pulsations typically last 4-6 hours before decaying, and occur both in the dawn and dusk sectors during the crossings of the outer magnetosphere. We study the pulsations in the azimuthal magnetic field as signatures for the periodic enhancements detected in the CAPS data in the plasma temperature and densities. Additionally, we investigate a high temporal resolution 3-D MHD simulation of Saturn's magnetosphere to look for the signatures of these pulsations at the equivalent positions, and use the simulation results to suggest their physical origin and the triggering mechanism by varying the solar wind parameters.

  12. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  13. A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Thomas M.; Barlow, Brad N.; Soto, Alan Vasquez

    NASA’s Galaxy Evolution Explorer ( GALEX ) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX , with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gapsmore » between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV{sub r} class of variable stars.« less

  14. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  15. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes thatmore » are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.« less

  16. VEGA/CHARA interferometric observations of Cepheids. I. A resolved structure around the prototype classical Cepheid δ Cep in the visible spectral range

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Mérand, A.; Mourard, D.; Storm, J.; Gieren, W.; Fouqué, P.; Gallenne, A.; Graczyk, D.; Kervella, P.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Breitfelder, J.; Berio, P.; Challouf, M.; Clausse, J.-M.; Ligi, R.; Mathias, P.; Meilland, A.; Perraut, K.; Poretti, E.; Rainer, M.; Spang, A.; Stee, P.; Tallon-Bosc, I.; ten Brummelaar, T.

    2016-09-01

    Context. The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. The underlying assumption is that the photospheres probed in the infrared and in the visible are located at the same layer in the star whatever the pulsation phase. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. Aims: This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Methods: Observations of δ Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. Results: These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of θCSE = 8.9 ± 3.0 mas and a relative flux contribution of fCSE = 0.07 ± 0.01. A model of visible nebula (a background source filling the field of view of the interferometer) with the same relative flux contribution is also consistent with our data at small spatial frequencies. However, in both cases, we find discrepancies in the squared visibilities at high spatial frequencies (maximum 2σ) with two different regimes over the pulsation cycle of the star, φ = 0.0 - 0.8 and φ = 0.8-1.0. We provide several hypotheses to explain these discrepancies, but more observations and theoretical investigations are necessary before a firm conclusion can be drawn. Conclusions: For the first time we have been able to detect in the visible domain a resolved structure around δ Cep. We have also shown that a simple model cannot explain the observations, and more work will be necessary in the future, both on observations and modelling. The data are available on the Jean-Marie Mariotti Center OiDB service (http://oidb.jmmc.fr) and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A45

  17. Colliding black holes and pulsating compact objects

    NASA Astrophysics Data System (ADS)

    Andrade, Zeferino

    2000-08-01

    This thesis presents a study of two kinds of sources of gravitational waves: black hole collisions and pulsating compact objects (either a black hole or a star) The computational solution of the Einstein field equations for the coalescence of two black holes is of great interest for both theoretical and astrophysical reasons. Despite the strong motivation for results, outstanding mathematical and numerical problems have prevented a complete analysis of two black hole systems. Workers in the field have resorted to approximate techniques that make the study of such systems tractable. In Chapter 2 we use the close limit approximation to compute the gravitational energy radiated, and the recoil velocity acquired, by a system of two unequal mass black holes colliding head-on. A recent independent comparison of our approximate result with a full numerical analysis of the problem shows excellent agreement. Until recently, vibrations even of relativistically compact stars were studied using Newtonian physics and the weak field limit of general relativity. The study of the problem in the framework of general relativity revealed the existence of modes of vibration (w modes) characteristic of the spacetime geometry and therefore modes not predicted by Newtonian physics. Chapter 3 addresses the question of whether these modes can be excited in a natural astrophysical process. A small particle with a given energy and angular momentum is scattered by a compact star or black hole and in the process excites, although weakly, the w modes. Chapter 4 compares the study of pulsating stars in a Newtonian framework and in a fully relativistic setting. To excite the vibrations of the stellar model we use time dependent surface mass density and surface stress in a thin spherical shell surrounding the star. Even for stars as compact as typical neutron stars (radius ~ 5G/ c2 × mass), the two theories predict essentially the same level of excitation of the f (fluid) modes of the star. The w modes are not excited for these stars. All of the chapters in this thesis, except the introductory chapter, have been published or have been submitted for publication.

  18. Long-period intensity pulsations in the solar corona during activity cycle 23

    NASA Astrophysics Data System (ADS)

    Auchère, F.; Bocchialini, K.; Solomon, J.; Tison, E.

    2014-03-01

    We report on the detection (10σ) of 917 events of long-period (3 to 16 h) intensity pulsations in the 19.5 nm passband of the SOHO Extreme ultraviolet Imaging Telescope. The data set spans from January 1997 to July 2010, i.e. the entire solar cycle 23 and the beginning of cycle 24. The events can last for up to six days and have relative amplitudes up to 100%. About half of the events (54%) are found to happen in active regions, and 50% of these have been visually associated with coronal loops. The remaining 46% are localized in the quiet Sun. We performed a comprehensive analysis of the possible instrumental artefacts and we conclude that the observed signal is of solar origin. We discuss several scenarios that could explain the main characteristics of the active region events. The long periods and the amplitudes observed rule out any explanation in terms of magnetohydrodynamic waves. Thermal non-equilibrium could produce the right periods, but it fails to explain all the observed properties of coronal loops and the spatial coherence of the events. We propose that moderate temporal variations of the heating term in the energy equation, so as to avoid a thermal non-equilibrium state, could be sufficient to explain those long-period intensity pulsations. The large number of detections suggests that these pulsations are common in active regions. This would imply that the measurement of their properties could provide new constraints on the heating mechanisms of coronal loops. Movies are available in electronic form at http://www.aanda.org

  19. Asteroseismology of ZZ Ceti stars with full evolutionary white dwarf models. II. The impact of AGB thermal pulses on the asteroseismic inferences of ZZ Ceti stars

    NASA Astrophysics Data System (ADS)

    De Gerónimo, F. C.; Althaus, L. G.; Córsico, A. H.; Romero, A. D.; Kepler, S. O.

    2018-05-01

    Context. The thermally pulsing phase on the asymptotic giant branch (TP-AGB) is the last nuclear burning phase experienced by most low- and intermediate-mass stars. During this phase, the outer chemical stratification above the C/O core of the emerging white dwarf (WD) is built up. The chemical structure resulting from progenitor evolution strongly impacts the whole pulsation spectrum exhibited by ZZ Ceti stars, which are pulsating C/O core white dwarfs located on a narrow instability strip at Teff 12 000 K. Several physical processes occurring during progenitor evolution strongly affect the chemical structure of these stars; those found during the TP-AGB phase are the most relevant for the pulsational properties of ZZ Ceti stars. Aims: We present a study of the impact of the chemical structure built up during the TP-AGB evolution on the stellar parameters inferred from asteroseismological fits of ZZ Ceti stars. Methods: Our analysis is based on a set of carbon-oxygen core white dwarf models with masses from 0.534 to 0.6463 M⊙ derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We computed evolutionary sequences that experience different number of thermal pulses (TP). Results: We find that the occurrence or not of thermal pulses during AGB evolution implies an average deviation in the asteroseimological effective temperature of ZZ Ceti stars of at most 8% and on the order of ≲5% in the stellar mass. For the mass of the hydrogen envelope, however, we find deviations up to 2 orders of magnitude in the case of cool ZZ Ceti stars. Hot and intermediate temperature ZZ Ceti stars show no differences in the hydrogen envelope mass in most cases. Conclusions: Our results show that, in general, the impact of the occurrence or not of thermal pulses in the progenitor stars is not negligible and must be taken into account in asteroseismological studies of ZZ Ceti stars.

  20. Markov model of fatigue of a composite material with the poisson process of defect initiation

    NASA Astrophysics Data System (ADS)

    Paramonov, Yu.; Chatys, R.; Andersons, J.; Kleinhofs, M.

    2012-05-01

    As a development of the model where only one weak microvolume (WMV) and only a pulsating cyclic loading are considered, in the current version of the model, we take into account the presence of several weak sites where fatigue damage can accumulate and a loading with an arbitrary (but positive) stress ratio. The Poisson process of initiation of WMVs is considered, whose rate depends on the size of a specimen. The cumulative distribution function (cdf) of the fatigue life of every individual WMV is calculated using the Markov model of fatigue. For the case where this function is approximated by a lognormal distribution, a formula for calculating the cdf of fatigue life of the specimen (modeled as a chain of WMVs) is obtained. Only a pulsating cyclic loading was considered in the previous version of the model. Now, using the modified energy method, a loading cycle with an arbitrary stress ratio is "transformed" into an equivalent cycle with some other stress ratio. In such a way, the entire probabilistic fatigue diagram for any stress ratio with a positive cycle stress can be obtained. Numerical examples are presented.

Top