Sample records for models tested including

  1. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  2. ITOS meteorological satellite system: TIROS M spacecraft (ITOS 1), volume 3

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The test programs for TIROS M are reported. Test histories reported include: mechanical test models, thermal test models, antenna test models, ETM test program, and flight acceptance. Prelaunch activities and ground station equipment are described.

  3. 76 FR 6523 - Airworthiness Directives; Dornier Luftfahrt GmbH Models Dornier 228-100, Dornier 228-101, Dornier...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... initiated a flight-test campaign including strain measurements as well as finite element modelling and... including strain measurements as well as finite element modelling and fatigue analyses to better understand..., the TC Holder also initiated a flight-test campaign including strain measurements as well as finite...

  4. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  5. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  6. V/STOL wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.

    1984-01-01

    Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.

  7. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  8. Lessons in the Design and Characterization Testing of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    2012-01-01

    This paper focuses on some of the more challenging design processes and characterization tests of the Semi-Span Super-Sonic Transport (S4T)-Active Controls Testbed (ACT). The model was successfully tested in four entries in the National Aeronautics and Space Administration Langley Transonic Dynamics Tunnel to satisfy the goals and objectives of the Fundamental Aeronautics Program Supersonic Project Aero-Propulso-Servo-Elastic effort. Due to the complexity of the S4T-ACT, only a small sample of the technical challenges for designing and characterizing the model will be presented. Specifically, the challenges encountered in designing the model include scaling the Technology Concept Airplane to model scale, designing the model fuselage, aileron actuator, and engine pylons. Characterization tests included full model ground vibration tests, wing stiffness measurements, geometry measurements, proof load testing, and measurement of fuselage static and dynamic properties.

  9. A modified F-test for evaluating model performance by including both experimental and simulation uncertainties

    USDA-ARS?s Scientific Manuscript database

    Experimental and simulation uncertainties have not been included in many of the statistics used in assessing agricultural model performance. The objectives of this study were to develop an F-test that can be used to evaluate model performance considering experimental and simulation uncertainties, an...

  10. An environmental testing facility for Space Station Freedom power management and distribution hardware

    NASA Technical Reports Server (NTRS)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  11. 46 CFR 154.431 - Model test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Model test. 154.431 Section 154.431 Shipping COAST GUARD... Model test. (a) The primary and secondary barrier of a membrane tank, including the corners and joints...(c). (b) Analyzed data of a model test for the primary and secondary barrier of the membrane tank...

  12. Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological review of health technology assessments.

    PubMed

    Shinkins, Bethany; Yang, Yaling; Abel, Lucy; Fanshawe, Thomas R

    2017-04-14

    Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests.

  13. Methods for data reduction and loads analysis of Space Shuttle Solid Rocket Booster model water impact tests

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The methodology used to predict full scale space shuttle solid rocket booster (SRB) water impact loads from scale model test data is described. Tests conducted included 12.5 inch and 120 inch diameter models of the SRB. Geometry and mass characteristics of the models were varied in each test series to reflect the current SRB baseline configuration. Nose first and tail first water entry modes were investigated with full-scale initial impact vertical velocities of 40 to 120 ft/sec, horizontal velocities of 0 to 60 ft/sec., and off-vertical angles of 0 to plus or minus 30 degrees. The test program included a series of tests with scaled atmospheric pressure.

  14. Geotechnical Centrifuge Experiments to Evaluate Piping in Foundation Soils

    DTIC Science & Technology

    2014-05-01

    verifiable results. These tests were successful in design , construction, and execution of a realistic simulation of internal erosion leading to failure...possible “scale effects,” “modeling of models” testing protocol should be included in the test program. Also, the model design should minimize the scale...recommendations for improving the centrifuge tests include the following: • Design improved system for reservoir control to provide definitive and

  15. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  16. 40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...

  17. 40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...

  18. 40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...

  19. 40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...

  20. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE PAGES

    Browning, J. R.; Jonkman, J.; Robertson, A.; ...

    2014-12-16

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  1. Improved animal models for testing gene therapy for atherosclerosis.

    PubMed

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long-term therapy from vascular endothelium without accelerating atherosclerotic disease.

  2. NEXT Single String Integration Test Results

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John

    2010-01-01

    As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.

  3. System Testing of Ground Cooling System Components

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler Steven

    2014-01-01

    This internship focused primarily upon software unit testing of Ground Cooling System (GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) utilized in software verification. Unit tests are used to test the software of necessary components before it is implemented into the hardware. A unit test determines that the control data, usage procedures, and operating procedures of a particular component are tested to determine if the program is fit for use. Three different files are used to make and complete an efficient unit test. These files include the following: Model Test file (.mdl), Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The Simulink SystemTest is a program used to test all of the requirements of the component. The autotest tests that the component passes Model Advisor and System Testing, and puts the results into proper files. Once unit testing is completed on the GCS components they can then be implemented into the GCS Schematic and the software of the GCS model as a whole can be tested using integrated testing. Unit testing is a critical part of software verification; it allows for the testing of more basic components before a model of higher fidelity is tested, making the process of testing flow in an orderly manner.

  4. Structural, Thermal, and Optical Performance (STOP) Modeling and Results for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond

    2016-01-01

    The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.

  5. Initial test results using the GEOS-3 engineering model altimeter

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.; Clary, J. B.

    1977-01-01

    Data from a series of experimental tests run on the engineering model of the GEOS 3 radar altimeter using the Test and Measurement System (TAMS) designed for preflight testing of the radar altimeter are presented. These tests were conducted as a means of preparing and checking out a detailed test procedure to be used in running similar tests on the GEOS 3 protoflight model altimeter systems. The test procedures and results are also included.

  6. DKIST enclosure modeling and verification during factory assembly and testing

    NASA Astrophysics Data System (ADS)

    Larrakoetxea, Ibon; McBride, William; Marshall, Heather K.; Murga, Gaizka

    2014-08-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) is unique as, apart from protecting the telescope and its instrumentation from the weather, it holds the entrance aperture stop and is required to position it with millimeter-level accuracy. The compliance of the Enclosure design with the requirements, as of Final Design Review in January 2012, was supported by mathematical models and other analyses which included structural and mechanical analyses (FEA), control models, ventilation analysis (CFD), thermal models, reliability analysis, etc. During the Enclosure Factory Assembly and Testing the compliance with the requirements has been verified using the real hardware and the models created during the design phase have been revisited. The tests performed during shutter mechanism subsystem (crawler test stand) functional and endurance testing (completed summer 2013) and two comprehensive system-level factory acceptance testing campaigns (FAT#1 in December 2013 and FAT#2 in March 2014) included functional and performance tests on all mechanisms, off-normal mode tests, mechanism wobble tests, creation of the Enclosure pointing map, control system tests, and vibration tests. The comparison of the assumptions used during the design phase with the properties measured during the test campaign provides an interesting reference for future projects.

  7. Transient excitation and data processing techniques employing the fast fourier transform for aeroelastic testing

    NASA Technical Reports Server (NTRS)

    Jennings, W. P.; Olsen, N. L.; Walter, M. J.

    1976-01-01

    The development of testing techniques useful in airplane ground resonance testing, wind tunnel aeroelastic model testing, and airplane flight flutter testing is presented. Included is the consideration of impulsive excitation, steady-state sinusoidal excitation, and random and pseudorandom excitation. Reasons for the selection of fast sine sweeps for transient excitation are given. The use of the fast fourier transform dynamic analyzer (HP-5451B) is presented, together with a curve fitting data process in the Laplace domain to experimentally evaluate values of generalized mass, model frequencies, dampings, and mode shapes. The effects of poor signal to noise ratios due to turbulence creating data variance are discussed. Data manipulation techniques used to overcome variance problems are also included. The experience is described that was gained by using these techniques since the early stages of the SST program. Data measured during 747 flight flutter tests, and SST, YC-14, and 727 empennage flutter model tests are included.

  8. Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.

    2000-01-01

    As a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data sets from the first two tests have been chosen for Test Cases for computational comparisons concentrating on static conditions and cases with harmonically oscillating control surfaces. Several flutter Test Cases from both tests have also been included. Some aerodynamic comparisons with the BACT data have been made using computational fluid dynamics codes at the Navier-Stokes level (and in the accompanying chapter SC). Some mechanical and active control studies have been presented. In this report several Test Cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flow effects. Cases for static angles of attack, static trailing-edge and upper-surface spoiler deflections are included for a range of conditions near those for the oscillation cases. Cases for trailing-edge control and upper-surface spoiler oscillations for a range of Mach numbers, angle of attack, and static control deflections are included. Cases for all three types of flutter instability are selected. In addition some cases are included for dynamic response measurements during forced oscillations of the controls on the flexible mount. An overview of the model and tests is given, and the standard formulary for these data is listed. Some sample data and sample results of calculations are presented. Only the static pressures and the first harmonic real and imaginary parts of the pressures are included in the data for the Test Cases, but digitized time histories have been archived. The data for the Test Cases are also available as separate electronic files.

  9. Parameterization of Model Validating Sets for Uncertainty Bound Optimizations. Revised

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Giesy, D. P.

    2000-01-01

    Given measurement data, a nominal model and a linear fractional transformation uncertainty structure with an allowance on unknown but bounded exogenous disturbances, easily computable tests for the existence of a model validating uncertainty set are given. Under mild conditions, these tests are necessary and sufficient for the case of complex, nonrepeated, block-diagonal structure. For the more general case which includes repeated and/or real scalar uncertainties, the tests are only necessary but become sufficient if a collinearity condition is also satisfied. With the satisfaction of these tests, it is shown that a parameterization of all model validating sets of plant models is possible. The new parameterization is used as a basis for a systematic way to construct or perform uncertainty tradeoff with model validating uncertainty sets which have specific linear fractional transformation structure for use in robust control design and analysis. An illustrative example which includes a comparison of candidate model validating sets is given.

  10. Modeling companion diagnostics in economic evaluations of targeted oncology therapies: systematic review and methodological checklist.

    PubMed

    Doble, Brett; Tan, Marcus; Harris, Anthony; Lorgelly, Paula

    2015-02-01

    The successful use of a targeted therapy is intrinsically linked to the ability of a companion diagnostic to correctly identify patients most likely to benefit from treatment. The aim of this study was to review the characteristics of companion diagnostics that are of importance for inclusion in an economic evaluation. Approaches for including these characteristics in model-based economic evaluations are compared with the intent to describe best practice methods. Five databases and government agency websites were searched to identify model-based economic evaluations comparing a companion diagnostic and subsequent treatment strategy to another alternative treatment strategy with model parameters for the sensitivity and specificity of the companion diagnostic (primary synthesis). Economic evaluations that limited model parameters for the companion diagnostic to only its cost were also identified (secondary synthesis). Quality was assessed using the Quality of Health Economic Studies instrument. 30 studies were included in the review (primary synthesis n = 12; secondary synthesis n = 18). Incremental cost-effectiveness ratios may be lower when the only parameter for the companion diagnostic included in a model is the cost of testing. Incorporating the test's accuracy in addition to its cost may be a more appropriate methodological approach. Altering the prevalence of the genetic biomarker, specific population tested, type of test, test accuracy and timing/sequence of multiple tests can all impact overall model results. The impact of altering a test's threshold for positivity is unknown as it was not addressed in any of the included studies. Additional quality criteria as outlined in our methodological checklist should be considered due to the shortcomings of standard quality assessment tools in differentiating studies that incorporate important test-related characteristics and those that do not. There is a need to refine methods for incorporating the characteristics of companion diagnostics into model-based economic evaluations to ensure consistent and transparent reimbursement decisions are made.

  11. Status of DSMT research program

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.

    1991-01-01

    The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.

  12. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online

    PubMed Central

    Posada, David

    2006-01-01

    ModelTest server is a web-based application for the selection of models of nucleotide substitution using the program ModelTest. The server takes as input a text file with likelihood scores for the set of candidate models. Models can be selected with hierarchical likelihood ratio tests, or with the Akaike or Bayesian information criteria. The output includes several statistics for the assessment of model selection uncertainty, for model averaging or to estimate the relative importance of model parameters. The server can be accessed at . PMID:16845102

  13. Advanced Electronics Technologies: Challenges for Radiation Effects Testing, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    Emerging Electronics Technologies include: 1) Changes in the commercial semiconductor world; 2) Radiation Effects Sources (A sample test constraint); and 3) Challenges to Radiation Testing and Modeling: a) IC Attributes-Radiation Effects Implication b) Fault Isolation c) Scaled Geometry d) Speed e) Modeling Shortfall f) Knowledge Status

  14. The Performance of IRT Model Selection Methods with Mixed-Format Tests

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.

    2012-01-01

    When tests consist of multiple-choice and constructed-response items, researchers are confronted with the question of which item response theory (IRT) model combination will appropriately represent the data collected from these mixed-format tests. This simulation study examined the performance of six model selection criteria, including the…

  15. Multiplex tests to identify gastrointestinal bacteria, viruses and parasites in people with suspected infectious gastroenteritis: a systematic review and economic analysis.

    PubMed

    Freeman, Karoline; Mistry, Hema; Tsertsvadze, Alexander; Royle, Pam; McCarthy, Noel; Taylor-Phillips, Sian; Manuel, Rohini; Mason, James

    2017-04-01

    Gastroenteritis is a common, transient disorder usually caused by infection and characterised by the acute onset of diarrhoea. Multiplex gastrointestinal pathogen panel (GPP) tests simultaneously identify common bacterial, viral and parasitic pathogens using molecular testing. By providing test results more rapidly than conventional testing methods, GPP tests might positively influence the treatment and management of patients presenting in hospital or in the community. To systematically review the evidence for GPP tests [xTAG ® (Luminex, Toronto, ON, Canada), FilmArray (BioFire Diagnostics, Salt Lake City, UT, USA) and Faecal Pathogens B (AusDiagnostics, Beaconsfield, NSW, Australia)] and to develop a de novo economic model to compare the cost-effectiveness of GPP tests with conventional testing in England and Wales. Multiple electronic databases including MEDLINE, EMBASE, Web of Science and the Cochrane Database were searched from inception to January 2016 (with supplementary searches of other online resources). Eligible studies included patients with acute diarrhoea; comparing GPP tests with standard microbiology techniques; and patient, management, test accuracy or cost-effectiveness outcomes. Quality assessment of eligible studies used tailored Quality Assessment of Diagnostic Accuracy Studies-2, Consolidated Health Economic Evaluation Reporting Standards and Philips checklists. The meta-analysis included positive and negative agreement estimated for each pathogen. A de novo decision tree model compared patients managed with GPP testing or comparable coverage with patients managed using conventional tests, within the Public Health England pathway. Economic models included hospital and community management of patients with suspected gastroenteritis. The model estimated costs (in 2014/15 prices) and quality-adjusted life-year losses from a NHS and Personal Social Services perspective. Twenty-three studies informed the review of clinical evidence (17 xTAG, four FilmArray, two xTAG and FilmArray, 0 Faecal Pathogens B). No study provided an adequate reference standard with which to compare the test accuracy of GPP with conventional tests. A meta-analysis (of 10 studies) found considerable heterogeneity; however, GPP testing produces a greater number of pathogen-positive findings than conventional testing. It is unclear whether or not these additional 'positives' are clinically important. The review identified no robust evidence to inform consequent clinical management of patients. There is considerable uncertainty about the cost-effectiveness of GPP panels used to test for suspected infectious gastroenteritis in hospital and community settings. Uncertainties in the model include length of stay, assumptions about false-positive findings and the costs of tests. Although there is potential for cost-effectiveness in both settings, key modelling assumptions need to be verified and model findings remain tentative. No test-treat trials were retrieved. The economic model reflects one pattern of care, which will vary across the NHS. The systematic review and cost-effectiveness model identify uncertainties about the adoption of GPP tests within the NHS. GPP testing will generally correctly identify pathogens identified by conventional testing; however, these tests also generate considerable additional positive results of uncertain clinical importance. An independent reference standard may not exist to evaluate alternative approaches to testing. A test-treat trial might ascertain whether or not additional GPP 'positives' are clinically important or result in overdiagnoses, whether or not earlier diagnosis leads to earlier discharge in patients and what the health consequences of earlier intervention are. Future work might also consider the public health impact of different testing treatments, as test results form the basis for public health surveillance. This study is registered as PROSPERO CRD2016033320. The National Institute for Health Research Health Technology Assessment programme.

  16. Summary of CPAS EDU Testing Analysis Results

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.; Bledsoe, Kristin J.; Davidson, John.; Engert, Meagan E.; Fraire, Usbaldo, Jr.; Galaviz, Fernando S.; Galvin, Patrick J.; Ray, Eric S.; Varela, Jose

    2015-01-01

    The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.

  17. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  18. Experimental study of main rotor/tail rotor/airframe interactions in hover. Volume 1: Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Saccullo, A.; Sheehy, T. W.

    1983-01-01

    To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.

  19. An Evaluation of Three Approximate Item Response Theory Models for Equating Test Scores.

    ERIC Educational Resources Information Center

    Marco, Gary L.; And Others

    Three item response models were evaluated for estimating item parameters and equating test scores. The models, which approximated the traditional three-parameter model, included: (1) the Rasch one-parameter model, operationalized in the BICAL computer program; (2) an approximate three-parameter logistic model based on coarse group data divided…

  20. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... factors as the approved models, are validated by experimental test data, and receive the Administrator's... stage of the MEP involves applying the model against a database of experimental test cases including..., particularly the requirement for validation by experimental test data. That guidance is based on the MEP's...

  1. Using a data base management system for modelling SSME test history data

    NASA Technical Reports Server (NTRS)

    Abernethy, K.

    1985-01-01

    The usefulness of a data base management system (DBMS) for modelling historical test data for the complete series of static test firings for the Space Shuttle Main Engine (SSME) was assessed. From an analysis of user data base query requirements, it became clear that a relational DMBS which included a relationally complete query language would permit a model satisfying the query requirements. Representative models and sample queries are discussed. A list of environment-particular evaluation criteria for the desired DBMS was constructed; these criteria include requirements in the areas of user-interface complexity, program independence, flexibility, modifiability, and output capability. The evaluation process included the construction of several prototype data bases for user assessement. The systems studied, representing the three major DBMS conceptual models, were: MIRADS, a hierarchical system; DMS-1100, a CODASYL-based network system; ORACLE, a relational system; and DATATRIEVE, a relational-type system.

  2. Specification, testing, and interpretation of gene-by-measured-environment interaction models in the presence of gene-environment correlation

    PubMed Central

    Rathouz, Paul J.; Van Hulle, Carol A.; Lee Rodgers, Joseph; Waldman, Irwin D.; Lahey, Benjamin B.

    2009-01-01

    Purcell (2002) proposed a bivariate biometric model for testing and quantifying the interaction between latent genetic influences and measured environments in the presence of gene-environment correlation. Purcell’s model extends the Cholesky model to include gene-environment interaction. We examine a number of closely-related alternative models that do not involve gene-environment interaction but which may fit the data as well Purcell’s model. Because failure to consider these alternatives could lead to spurious detection of gene-environment interaction, we propose alternative models for testing gene-environment interaction in the presence of gene-environment correlation, including one based on the correlated factors model. In addition, we note mathematical errors in the calculation of effect size via variance components in Purcell’s model. We propose a statistical method for deriving and interpreting variance decompositions that are true to the fitted model. PMID:18293078

  3. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  4. Multiple balance tests improve the assessment of postural stability in subjects with Parkinson's disease

    PubMed Central

    Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G

    2006-01-01

    Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639

  5. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2005-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  6. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2004-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  7. Liquid propulsion turbomachinery model testing

    NASA Technical Reports Server (NTRS)

    Mcdaniels, David M.; Snellgrove, Lauren M.

    1992-01-01

    For the past few years an extensive experimental program to understand the fluid dynamics of the Space Shuttle Main Engine hot gas manifold has been in progress. This program includes models of the Phase II and II+ manifolds for each of the air and water flow facilities, as well as two different turbine flow paths and two simulated power levels for each manifold. All models are full-scale (geometric). The water models are constructed partially of acrylic to allow flow visualization. The intent of this paper is to discuss the concept, including the test objectives, facilities, and models, and to summarize the data for an example configuration, including static pressure data, flow visualization, and the solution of a specific flow problem.

  8. Propfan test assessment testbed aircraft flutter model test report

    NASA Technical Reports Server (NTRS)

    Jenness, C. M. J.

    1987-01-01

    The PropFan Test Assessment (PTA) program includes flight tests of a propfan power plant mounted on the left wind of a modified Gulfstream II testbed aircraft. A static balance boom is mounted on the right wing tip for lateral balance. Flutter analyses indicate that these installations reduce the wing flutter stabilizing speed and that torsional stiffening and the installation of a flutter stabilizing tip boom are required on the left wing for adequate flutter safety margins. Wind tunnel tests of a 1/9th scale high speed flutter model of the testbed aircraft were conducted. The test program included the design, fabrication, and testing of the flutter model and the correlation of the flutter test data with analysis results. Excellent correlations with the test data were achieved in posttest flutter analysis using actual model properties. It was concluded that the flutter analysis method used was capable of accurate flutter predictions for both the (symmetric) twin propfan configuration and the (unsymmetric) single propfan configuration. The flutter analysis also revealed that the differences between the tested model configurations and the current aircraft design caused the (scaled) model flutter speed to be significantly higher than that of the aircraft, at least for the single propfan configuration without a flutter boom. Verification of the aircraft final design should, therefore, be based on flutter predictions made with the test validated analysis methods.

  9. Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael

    2000-01-01

    This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.

  10. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  11. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  12. A satellite observation test bed for cloud parameterization development

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suselj, K.

    2015-12-01

    We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.

  13. Computer model to simulate testing at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.

    1995-01-01

    A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

  14. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  15. S-2 stage 1/25 scale model base region thermal environment test. Volume 1: Test results, comparison with theory and flight data

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; French, E. P.; Sexton, H.

    1973-01-01

    A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.

  16. Testing the Grossman model of medical spending determinants with macroeconomic panel data.

    PubMed

    Hartwig, Jochen; Sturm, Jan-Egbert

    2018-02-16

    Michael Grossman's human capital model of the demand for health has been argued to be one of the major achievements in theoretical health economics. Attempts to test this model empirically have been sparse, however, and with mixed results. These attempts so far relied on using-mostly cross-sectional-micro data from household surveys. For the first time in the literature, we bring in macroeconomic panel data for 29 OECD countries over the period 1970-2010 to test the model. To check the robustness of the results for the determinants of medical spending identified by the model, we include additional covariates in an extreme bounds analysis (EBA) framework. The preferred model specifications (including the robust covariates) do not lend much empirical support to the Grossman model. This is in line with the mixed results of earlier studies.

  17. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.

  18. NASA's Evolutionary Xenon Thruster (NEXT) Prototype Model 1R (PM1R) Ion Thruster and Propellant Management System Wear Test Results

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.

    2010-01-01

    The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.

  19. Attention-Modulating Effects of Cognitive Enhancers

    PubMed Central

    Levin, Edward D.; Bushnell, Philip J.; Rezvani, Amir H.

    2011-01-01

    Attention can be readily measured in experimental animal models. Animal models of attention have been used to better understand the neural systems involved in attention, how attention is impaired, and how therapeutic treatments can ameliorate attentional deficits. This review focuses on the ways in which animal models are used to better understand the neuronal mechanism of attention and how to develop new therapeutic treatments for attentional impairment. Several behavioral test methods have been developed for experimental animal studies of attention, including a 5-choice serial reaction time task (5-CSRTT), a signal detection task (SDT), and a novel object recognition (NOR) test. These tasks can be used together with genetic, lesion, pharmacological and behavioral models of attentional impairment to test the efficacy of novel therapeutic treatments. The most prominent genetic model is the spontaneously hypertensive rat (SHR). Well-characterized lesion models include frontal cortical or hippocamapal lesions. Pharmacological models include challenge with the NMDA glutamate antagonist dizocilpine (MK-801), the nicotinic cholinergic antagonist mecamylamine and the muscarinic cholinergic antagonist scopolamine. Behavioral models include distracting stimuli and attenuated target stimuli. Important validation of these behavioral tests and models of attentional impairments for developing effective treatments for attentional dysfunction is the fact that stimulant treatments effective for attention deficit hyperactivity disorder (ADHD), such as methylphenidate (Ritalin®), are effective in the experimental animal models. Newer lines of treatment including nicotinic agonists, α4β2 nicotinic receptor desensitizers, and histamine H3 antagonists, have also been found to be effective in improving attention in these animal models. Good carryover has also been seen for the attentional improvement of nicotine in experimental animal models and in human populations. Animal models of attention can be effectively used for the development of new treatments of attentional impairment in ADHD and other syndromes in which have attentional impairments occur, such as Alzheimer’s disease and schizophrenia. PMID:21334367

  20. High Speed Research (HSR) Multi-Year Summary Report for Calendar Years 1995-1999

    NASA Technical Reports Server (NTRS)

    Baker, Myles; Boyd, William

    1999-01-01

    The Aeroelasticity Task is intended to provide demonstrated technology readiness to predict and improve flutter characteristics of an HSCT configuration. This requires aerodynamic codes that are applicable to the wide range of flight regimes in which the HSCT will operate, and are suitable to provide the higher fidelity required for evaluation of aeroservoelastic coupling effects. Prediction of these characteristics will result in reduced airplane weight and risk associated with a highly flexible, low-aspect ratio supersonic airplane with narrow fuselage, relatively thin wings, and heavy engines. This Task is subdivided into three subtasks. The first subtask includes the design, fabrication, and testing of wind-tunnel models suitable to provide an experimental database relevant to HSCT configurations. The second subtask includes validation of candidate unsteady aerodynamic codes, applicable in the Mach and frequency ranges of interest for the HSCT, through analysis test correlation with the test data. The third subtask includes efforts to develop and enhance these codes for application to HSCT configurations. The wind tunnel models designed and constructed during this program furnished data which were useful for the analysis test correlation work but there were shortcomings. There was initial uncertainty in the proper tunnel configuration for testing, there was a need for higher quality measured model geometry, and there was a need for better measured model displacements in the test data. One of the models exhibited changes in its dynamic characteristics during testing. Model design efforts were hampered by a need for more and earlier analysis support and better knowledge of material properties. Success of the analysis test correlation work was somewhat muted by the uncertainties in the wind tunnel model data. The planned extent of the test data was not achieved, partly due to the delays in the model design and fabrication which could not be extended due to termination of the HSR program.

  1. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  2. Incorporating Probability Models of Complex Test Structures to Perform Technology Independent FPGA Single Event Upset Analysis

    NASA Technical Reports Server (NTRS)

    Berg, M. D.; Kim, H. S.; Friendlich, M. A.; Perez, C. E.; Seidlick, C. M.; LaBel, K. A.

    2011-01-01

    We present SEU test and analysis of the Microsemi ProASIC3 FPGA. SEU Probability models are incorporated for device evaluation. Included is a comparison to the RTAXS FPGA illustrating the effectiveness of the overall testing methodology.

  3. Cost-Effectiveness of POC Coagulation Testing Using Multiple Electrode Aggregometry.

    PubMed

    Straub, Niels; Bauer, Ekaterina; Agarwal, Seema; Meybohm, Patrick; Zacharowski, Kai; Hanke, Alexander A; Weber, Christian F

    2016-01-01

    The economic effects of Point-of-Care (POC) coagulation testing including Multiple Electrode Aggregometry (MEA) with the Multiplate device have not been examined. A health economic model with associated clinical endpoints was developed to calculate the effectiveness and estimated costs of coagulation analyses based on standard laboratory testing (SLT) or POC testing offering the possibility to assess platelet dysfunction using aggregometric measures. Cost estimates included pre- and perioperative costs of hemotherapy, intra- and post-operative coagulation testing costs, and hospitalization costs, including the costs of transfusion-related complications. Our model calculation using a simulated true-to-life cohort of 10,000 cardiac surgery patients assigned to each testing alternative demonstrated that there were 950 fewer patients in the POC branch who required any transfusion of red blood cells. The subsequent numbers of massive transfusions and patients with transfusion-related complications were reduced with the POC testing by 284 and 126, respectively. The average expected total cost in the POC branch was 288 Euro lower for every treated patient than that in the SLT branch. Incorporating aggregometric analyses using MEA into hemotherapy algorithms improved medical outcomes in cardiac surgery patients in the presented health economic model. There was an overall better economic outcome associated with POC testing compared with SLT testing despite the higher costs of testing.

  4. 1/50 Scale Model Of The 80x120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40x80 Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel. Model viewed from the west, mounted on a rotating ground board designed for this test. Ramp leading to ground board includes a generic building placed in front of the 80x120 inlet.

  5. TOPEX Microwave Radiometer - Thermal design verification test and analytical model validation

    NASA Technical Reports Server (NTRS)

    Lin, Edward I.

    1992-01-01

    The testing of the TOPEX Microwave Radiometer (TMR) is described in terms of hardware development based on the modeling and thermal vacuum testing conducted. The TMR and the vacuum-test facility are described, and the thermal verification test includes a hot steady-state segment, a cold steady-state segment, and a cold survival mode segment totalling 65 hours. A graphic description is given of the test history which is related temperature tracking, and two multinode TMR test-chamber models are compared to the test results. Large discrepancies between the test data and the model predictions are attributed to contact conductance, effective emittance from the multilayer insulation, and heat leaks related to deviations from the flight configuration. The TMR thermal testing/modeling effort is shown to provide technical corrections for the procedure outlined, and the need for validating predictive models is underscored.

  6. Crash Certification by Analysis - Are We There Yet?

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.

    2006-01-01

    This paper addresses the issue of crash certification by analysis. This broad topic encompasses many ancillary issues including model validation procedures, uncertainty in test data and analysis models, probabilistic techniques for test-analysis correlation, verification of the mathematical formulation, and establishment of appropriate qualification requirements. This paper will focus on certification requirements for crashworthiness of military helicopters; capabilities of the current analysis codes used for crash modeling and simulation, including some examples of simulations from the literature to illustrate the current approach to model validation; and future directions needed to achieve "crash certification by analysis."

  7. Evidence used in model-based economic evaluations for evaluating pharmacogenetic and pharmacogenomic tests: a systematic review protocol

    PubMed Central

    Peters, Jaime L; Cooper, Chris; Buchanan, James

    2015-01-01

    Introduction Decision models can be used to conduct economic evaluations of new pharmacogenetic and pharmacogenomic tests to ensure they offer value for money to healthcare systems. These models require a great deal of evidence, yet research suggests the evidence used is diverse and of uncertain quality. By conducting a systematic review, we aim to investigate the test-related evidence used to inform decision models developed for the economic evaluation of genetic tests. Methods and analysis We will search electronic databases including MEDLINE, EMBASE and NHS EEDs to identify model-based economic evaluations of pharmacogenetic and pharmacogenomic tests. The search will not be limited by language or date. Title and abstract screening will be conducted independently by 2 reviewers, with screening of full texts and data extraction conducted by 1 reviewer, and checked by another. Characteristics of the decision problem, the decision model and the test evidence used to inform the model will be extracted. Specifically, we will identify the reported evidence sources for the test-related evidence used, describe the study design and how the evidence was identified. A checklist developed specifically for decision analytic models will be used to critically appraise the models described in these studies. Variations in the test evidence used in the decision models will be explored across the included studies, and we will identify gaps in the evidence in terms of both quantity and quality. Dissemination The findings of this work will be disseminated via a peer-reviewed journal publication and at national and international conferences. PMID:26560056

  8. Product assurance technology efforts: Technical accomplishments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Product assurance technology topics addressed include: wafer acceptance procedures, test chips, test structures, test chip methodology, fault models, and the Combined Release and Radiation Effects Satellite test chip.

  9. Gottingen Wind Tunnel for Testing Aircraft Models

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1920-01-01

    Given here is a brief description of the Gottingen Wind Tunnel for the testing of aircraft models, preceded by a history of its development. Included are a number of diagrams illustrating, among other things, a sectional elevation of the wind tunnel, the pressure regulator, the entrance cone and method of supporting a model for simple drag tests, a three-component balance, and a propeller testing device, all of which are discussed in the text.

  10. Developing and upgrading of solar system thermal energy storage simulation models. Technical progress report, March 1, 1979-February 29, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, J K; von Fuchs, G F; Zob, A P

    1980-05-01

    Two water tank component simulation models have been selected and upgraded. These models are called the CSU Model and the Extended SOLSYS Model. The models have been standardized and links have been provided for operation in the TRNSYS simulation program. The models are described in analytical terms as well as in computer code. Specific water tank tests were performed for the purpose of model validation. Agreement between model data and test data is excellent. A description of the limitations has also been included. Streamlining results and criteria for the reduction of computer time have also been shown for both watermore » tank computer models. Computer codes for the models and instructions for operating these models in TRNSYS have also been included, making the models readily available for DOE and industry use. Rock bed component simulation models have been reviewed and a model selected and upgraded. This model is a logical extension of the Mumma-Marvin model. Specific rock bed tests have been performed for the purpose of validation. Data have been reviewed for consistency. Details of the test results concerned with rock characteristics and pressure drop through the bed have been explored and are reported.« less

  11. Herd-of-origin effect on the post-weaning performance of centrally tested Nellore beef cattle.

    PubMed

    de Rezende Neves, Haroldo Henrique; Polin dos Reis, Felipe; Motta Paterno, Flávia; Rocha Guarini, Aline; Carvalheiro, Roberto; da Silva, Lilian Regina; de Oliveira, João Ademir; Aidar de Queiroz, Sandra

    2014-10-01

    The objective of a performance test station is to evaluate the performance of potential breeding bulls earlier in order to decrease the generation interval and increase genetic gain as well. This study evaluates the herd-of-origin influence on end-of-test weight (ETW), average daily weight gain during testing (ADG), average daily weight gain during the adjustment period (ADGadj), rib eye area (REA), marbling (MARB), subcutaneous fat thickness (SFT), conformation (C), early finishing (EF), muscling (M), navel (N) and temperament (T) scores, and scrotal circumference (SC) of Nellore cattle that underwent a performance test. We evaluated 664 animals that participated in the performance tests conducted at the Center for Performance CRV Lagoa between 2007 and 2012. Components of variance for each trait were estimated by an animal model (model 1), using the restricted maximum likelihood method. An alternative animal model (model 2) included, in addition to the fixed effects present in S1, the non-correlated random effect of herd-year (HY). A significant HY effect was observed on ETW, REA, SFT, ADGadj, C, and Cw (p < 0.05). The estimated heritability of all traits decreased when the HY effect was included in the model; also, the bull rank, in deciles, changed significantly for traits ETW, REA, SFT, and C. The adjustment period did not completely remove the environmental effect of herd of origin on ETW, REA, SFT, and C. It is recommended that the herd-of-origin effect should be included in the statistical models used to predict the breeding values of the participants of these performance tests.

  12. Correleation of the SAGE III on ISS Thermal Models in Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Davis, Warren T.; Liles, Kaitlin, A. K.; McLeod, Shawn C.

    2017-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III was launched on February 19, 2017 and mounted to the International Space Station (ISS) to begin its three-year mission. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Correlation of the thermal model is important since the payload will be expected to survive a three-year mission on ISS under varying thermal environments. Three major thermal vacuum (TVAC) tests were completed during the development of the SAGE III Instrument Payload (IP); two subsystem-level tests and a payload-level test. Additionally, a characterization TVAC test was performed in order to verify performance of a system of heater plates that was designed to allow the IP to achieve the required temperatures during payload-level testing; model correlation was performed for this test configuration as well as those including the SAGE III flight hardware. This document presents the methods that were used to correlate the SAGE III models to TVAC at the subsystem and IP level, including the approach for modeling the parts of the payload in the thermal chamber, generating pre-test predictions, and making adjustments to the model to align predictions with temperatures observed during testing. Model correlation quality will be presented and discussed, and lessons learned during the correlation process will be shared.

  13. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization

    NASA Astrophysics Data System (ADS)

    Hvilshøj, S.; Jensen, K. H.; Barlebo, H. C.; Madsen, B.

    1999-08-01

    Inverse numerical modeling was applied to analyze pumping tests of partially penetrating wells carried out in three wells established in an unconfined aquifer in Vejen, Denmark, where extensive field investigations had previously been carried out, including tracer tests, mini-slug tests, and other hydraulic tests. Drawdown data from multiple piezometers located at various horizontal and vertical distances from the pumping well were included in the optimization. Horizontal and vertical hydraulic conductivities, specific storage, and specific yield were estimated, assuming that the aquifer was either a homogeneous system with vertical anisotropy or composed of two or three layers of different hydraulic properties. In two out of three cases, a more accurate interpretation was obtained for a multi-layer model defined on the basis of lithostratigraphic information obtained from geological descriptions of sediment samples, gammalogs, and flow-meter tests. Analysis of the pumping tests resulted in values for horizontal hydraulic conductivities that are in good accordance with those obtained from slug tests and mini-slug tests. Besides the horizontal hydraulic conductivity, it is possible to determine the vertical hydraulic conductivity, specific yield, and specific storage based on a pumping test of a partially penetrating well. The study demonstrates that pumping tests of partially penetrating wells can be analyzed using inverse numerical models. The model used in the study was a finite-element flow model combined with a non-linear regression model. Such a model can accommodate more geological information and complex boundary conditions, and the parameter-estimation procedure can be formalized to obtain optimum estimates of hydraulic parameters and their standard deviations.

  14. Interactive Design and the Mythical "Intuitive User Interface."

    ERIC Educational Resources Information Center

    Bielenberg, Daniel R.

    1993-01-01

    Discusses the design of graphical user interfaces. Highlights include conceptual models, including user needs, content, and what multimedia can do; and tools for building the users' mental models, including metaphor, natural mappings, prompts, feedback, and user testing. (LRW)

  15. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    NASA Astrophysics Data System (ADS)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  16. Force testing manual for the Langley 20-inch Mach 6 tunnel

    NASA Technical Reports Server (NTRS)

    Keyes, J. W.

    1977-01-01

    Data reduction and procedures for conducting force tests in a 20 inch Mach 6 tunnel are described. A discussion of pretest and testing phases are included. Items that are to be checked during model design and construction are outlined as well as safety requirements, starting loads tests, instructions for data acquisition and model installation. Measurement of balance and model misalignment and instructions for calibrating the angle of attack screen are covered. Procedures for making reference pressure, attitude tare, and data runs are included. The 20 inch tunnel force program is examined, and a description of data recording system input and load contrast sheets is given. An appendix presents a description, operating characteristics, and Mach number calibration of the tunnel, as well as tunnel characteristics.

  17. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia

    PubMed Central

    Wahl, Devin; Coogan, Sean CP; Solon-Biet, Samantha M; de Cabo, Rafael; Haran, James B; Raubenheimer, David; Cogger, Victoria C; Mattson, Mark P; Simpson, Stephen J; Le Couteur, David G

    2017-01-01

    Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. PMID:28932108

  18. Large-Scale Wind-Tunnel Tests of an Airplane Model with an Unswept, Tilt Wing of Aspect Ratio 5.5, and with Four Propellers and Blowing Flaps

    NASA Technical Reports Server (NTRS)

    Weiberg, James A.; Holzhauser, Curt A.

    1961-01-01

    Tests were made of a large-scale tilt-wing deflected-slipstream VTOL airplane with blowing-type BLC trailing-edge flaps. The model was tested with flap deflections of 0 deg. without BLC, 50 deg. with and without BLC, and 80 deg. with BLC for wing-tilt angles of 0, 30, and 50 deg. Included are results of tests of the model equipped with a leading-edge flap and the results of tests of the model in the presence of a ground plane.

  19. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994

  20. A single factor underlies the metabolic syndrome: a confirmatory factor analysis.

    PubMed

    Pladevall, Manel; Singal, Bonita; Williams, L Keoki; Brotons, Carlos; Guyer, Heidi; Sadurni, Josep; Falces, Carles; Serrano-Rios, Manuel; Gabriel, Rafael; Shaw, Jonathan E; Zimmet, Paul Z; Haffner, Steven

    2006-01-01

    Confirmatory factor analysis (CFA) was used to test the hypothesis that the components of the metabolic syndrome are manifestations of a single common factor. Three different datasets were used to test and validate the model. The Spanish and Mauritian studies included 207 men and 203 women and 1,411 men and 1,650 women, respectively. A third analytical dataset including 847 men was obtained from a previously published CFA of a U.S. population. The one-factor model included the metabolic syndrome core components (central obesity, insulin resistance, blood pressure, and lipid measurements). We also tested an expanded one-factor model that included uric acid and leptin levels. Finally, we used CFA to compare the goodness of fit of one-factor models with the fit of two previously published four-factor models. The simplest one-factor model showed the best goodness-of-fit indexes (comparative fit index 1, root mean-square error of approximation 0.00). Comparisons of one-factor with four-factor models in the three datasets favored the one-factor model structure. The selection of variables to represent the different metabolic syndrome components and model specification explained why previous exploratory and confirmatory factor analysis, respectively, failed to identify a single factor for the metabolic syndrome. These analyses support the current clinical definition of the metabolic syndrome, as well as the existence of a single factor that links all of the core components.

  1. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Harvey, P. R.

    1992-01-01

    This Final Report covers the activities completed under the optional program of the NASA HOST Contract, NAS3-23288. The initial effort of the optional program was report-in NASA CR189221, which consisted of high temperature strain controlled fatigue tests to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed stresses. The baseline alloy used in the tests included B1900+Hf (with or without coating) and wrought INCO 718. Tests conducted on B1900+Hf included environmental tests using various atmospheres (75 psig oxygen, purified argon, or block exposures) and specimen tests of wrought INCO 718 included tensile, creep, stress rupture, TMF, multiaxial, and mean stress tests. Results of these testings were used to calibrate a CDA model for INCO 718 alloy and to develop modifications or corrections to the CDA model to handle additional failure mechanisms. The Socie parameter was found to provide the best correlation for INCO multiaxial loading. Microstructural evaluations consisting of optical, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) techniques, and surface replication techniques to determine crack initiation lives provided data which were used to develop life prediction models.

  2. Standardized Tests and Froebel's Original Kindergarten Model

    ERIC Educational Resources Information Center

    Jeynes, William H.

    2006-01-01

    The author argues that American educators rely on standardized tests at too early an age when administered in kindergarten, particularly given the original intent of kindergarten as envisioned by its founder, Friedrich Froebel. The author examines the current use of standardized tests in kindergarten and the Froebel model, including his emphasis…

  3. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  4. Benchmark Comparison of Dual- and Quad-Core Processor Linux Clusters with Two Global Climate Modeling Workloads

    NASA Technical Reports Server (NTRS)

    McGalliard, James

    2008-01-01

    This viewgraph presentation details the science and systems environments that NASA High End computing program serves. Included is a discussion of the workload that is involved in the processing for the Global Climate Modeling. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is a system of models integrated using the Earth System Modeling Framework (ESMF). The GEOS-5 system was used for the Benchmark tests, and the results of the tests are shown and discussed. Tests were also run for the Cubed Sphere system, results for these test are also shown.

  5. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  6. Crystallized and fluid intelligence of university students with intellectual disability who are fully integrated versus those who studied in adapted enrichment courses

    PubMed Central

    Verkuilen, Jay; Shnitzer-Meirovich, Shlomit; Altman, Carmit

    2018-01-01

    Background Inclusion of people with intellectual disability (ID) in higher postsecondary academic education is on the rise. However, there are no scientific criteria for determining the eligibility for full inclusion of students with ID in university courses. This study focuses on two models of academic inclusion for students with ID: (a) separate adapted enrichment model: students with ID study in separate enrichment courses adapted to their level; (b) full inclusion model: students with ID are included in undergraduate courses, receive academic credits and are expected to accumulate the amount of credits for a B.A. Aim (a) To examine whether crystallized and fluid intelligence and cognitive tests can serve as screening tests for determining the appropriate placement of students with ID for the adapted enrichment model versus the full inclusion model. (b) To examine the attitudes towards the program of students with ID in the inclusion model. Method/Procedure The sample included 31 adults with ID: students with ID who were fully included (N = 10) and students with ID who participated in the adapted enrichment model (N = 21). Crystallized and fluid intelligence were examined (WAIS-III, Wechsler, 1997) and Hebrew abstract verbal tests (Glanz, 1989). Semi-structured interviews were conducted in order to examine the attitudes of students in the inclusion model towards the program. Outcomes and results The ANOVAs indicate that the most prominent difference between the groups was in vocabulary, knowledge and working memory. ROC analysis, a fundamental tool for diagnostic test evaluation, was used to determine the students’ eligibility for appropriate placement in the two models. Seven tests distinguished between the groups in terms of sensitivity and specificity. The interviews were analyzed according to three phases. Conclusions/Implications The results indicate that students with ID are able to participate in undergraduate courses and achieve academic goals. The general IQ and idioms test seem to be best determiners for appropriate placement of students with ID to one of the two models. The included students with ID are motivated and self-determined in continuing in the program. PMID:29684024

  7. Crystallized and fluid intelligence of university students with intellectual disability who are fully integrated versus those who studied in adapted enrichment courses.

    PubMed

    Lifshitz, Hefziba; Verkuilen, Jay; Shnitzer-Meirovich, Shlomit; Altman, Carmit

    2018-01-01

    Inclusion of people with intellectual disability (ID) in higher postsecondary academic education is on the rise. However, there are no scientific criteria for determining the eligibility for full inclusion of students with ID in university courses. This study focuses on two models of academic inclusion for students with ID: (a) separate adapted enrichment model: students with ID study in separate enrichment courses adapted to their level; (b) full inclusion model: students with ID are included in undergraduate courses, receive academic credits and are expected to accumulate the amount of credits for a B.A. (a) To examine whether crystallized and fluid intelligence and cognitive tests can serve as screening tests for determining the appropriate placement of students with ID for the adapted enrichment model versus the full inclusion model. (b) To examine the attitudes towards the program of students with ID in the inclusion model. The sample included 31 adults with ID: students with ID who were fully included (N = 10) and students with ID who participated in the adapted enrichment model (N = 21). Crystallized and fluid intelligence were examined (WAIS-III, Wechsler, 1997) and Hebrew abstract verbal tests (Glanz, 1989). Semi-structured interviews were conducted in order to examine the attitudes of students in the inclusion model towards the program. The ANOVAs indicate that the most prominent difference between the groups was in vocabulary, knowledge and working memory. ROC analysis, a fundamental tool for diagnostic test evaluation, was used to determine the students' eligibility for appropriate placement in the two models. Seven tests distinguished between the groups in terms of sensitivity and specificity. The interviews were analyzed according to three phases. The results indicate that students with ID are able to participate in undergraduate courses and achieve academic goals. The general IQ and idioms test seem to be best determiners for appropriate placement of students with ID to one of the two models. The included students with ID are motivated and self-determined in continuing in the program.

  8. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Blotzer, Michael J.; Woods, Jody L.

    2009-01-01

    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  9. Extraction of model performance from wall data in a 2-dimensional transonic flexible walled test section

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1982-01-01

    Data obtained from the boundary of a test section provides information on the model contained within it. A method for extracting some of this data in two dimensional testing is described. Examples of model data are included on lift, pitching moment and wake displacement thickness. A FORTRAN listing is also described, having a form suitable for incorporation into the software package used in the running of such a test section.

  10. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L [Alameda, CA

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  11. The 10 micrometer transmitter

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication tests, and engineering model components of a 10.6 mum wideband transceiver system are reported. The effort emphasized the transmitter subsystem, including the development of the laser, the modulator driver, and included productization of both the transmitter and local oscillator lasers. The transmitter subsystem is functionally compatible with the receiver engineering model terminal, and has undergone high data rate communication system testing against that terminal.

  12. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  13. Predicting Cost and Schedule Growth for Military and Civil Space Systems

    DTIC Science & Technology

    2008-03-01

    the Shapiro-Wilk Test , and testing the residuals for constant variance using the Breusch - Pagan test . For logistic models, diagnostics include...the Breusch - Pagan Test . With this test , a p-value below 0.05 rejects the null hypothesis that the residuals have constant variance. Thus, similar...to the Shapiro- Wilk Test , because the optimal model will have constant variance of its residuals, this requires Breusch - Pagan p-values over 0.05

  14. The Random-Effect DINA Model

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    The DINA (deterministic input, noisy, and gate) model has been widely used in cognitive diagnosis tests and in the process of test development. The outcomes known as slip and guess are included in the DINA model function representing the responses to the items. This study aimed to extend the DINA model by using the random-effect approach to allow…

  15. 76 FR 53137 - Bundled Payments for Care Improvement Initiative: Request for Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... (RFA) will test episode-based payment for acute care and associated post-acute care, using both retrospective and prospective bundled payment methods. The RFA requests applications to test models centered around acute care; these models will inform the design of future models, including care improvement for...

  16. Online Testing: The Dog Sat on My Keyboard.

    ERIC Educational Resources Information Center

    White, Jacci

    This paper will highlight some advantages and disadvantages of several online models for student assessment. These models will include: live exams, multiple choice tests, essay exams, and student projects. In addition, real student responses and "problems" will be used as prompts to improve models of authentic online assessment in mathematics.…

  17. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies

    ERIC Educational Resources Information Center

    Smith, Carrie E.; Cribbie, Robert A.

    2013-01-01

    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  18. A Structural Equation Model of Expertise in College Physics

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Carr, Martha

    2009-01-01

    A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…

  19. A Structural Equation Model of Conceptual Change in Physics

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  20. Verification of component mode techniques for flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Wiens, Gloria J.

    1990-01-01

    Investigations were conducted in the modeling aspects of flexible multibodies undergoing large angular displacements. Models were to be generated and analyzed through application of computer simulation packages employing the 'component mode synthesis' techniques. Multibody Modeling, Verification and Control Laboratory (MMVC) plan was implemented, which includes running experimental tests on flexible multibody test articles. From these tests, data was to be collected for later correlation and verification of the theoretical results predicted by the modeling and simulation process.

  1. Modeling of Micro Deval abrasion loss based on some rock properties

    NASA Astrophysics Data System (ADS)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  2. Processing, Properties and Arc Jet Testing of HfB2/SiC

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Beckman, Sarah; Irby, Edward; Ellerby, Don; Gasch, Matt; Gusman, Michael

    2004-01-01

    Contents include the following: Background on Ultra High Temperature Ceramics - UHTCs. Summary UNTC processing: power processing, scale-up. Preliminary material properties: mechanical, thermal. Arc jet testing: flat face models, cone models. Summary.

  3. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  4. Study of emissions from light-duty vehicles in Denver. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-31

    A sample of 300 light-duty vehicles normally operated in the Denver metropolitan area was tested for emissions and fuel economy. The vehicles were from the 1978 through 1982 model years and included both passenger cars and light-duty trucks. One purpose of the program was to gather information for calculations and projections of ambient air quality. Another purpose was to assemble data on current model year vehicles for use in the support of Inspection/Maintenance and other regulatory programs. The vehicles were tested for exhaust emissions utilizing the Federal Test Procedure, the Highway Fuel Economy Test (HFET), and four short mode tests.more » 125 vehicles from the 1980-82 model years received an evaporative emission test using the sealed housing evaporative determination (SHED) technique. Other actions were taken in relation to each vehicle tested. These included an engine and emission control system maladjustment/disablement and status inspection, driveability evaluations, and owner interviews to obtain vehicle maintenance and usage data.« less

  5. WRAP-RIB antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Garcia, N. F.; Iwamoto, H.

    1985-01-01

    The wrap-rib deployable antenna concept development is based on a combination of hardware development and testing along with extensive supporting analysis. The proof-of-concept hardware models are large in size so they will address the same basic problems associated with the design fabrication, assembly and test as the full-scale systems which were selected to be 100 meters at the beginning of the program. The hardware evaluation program consists of functional performance tests, design verification tests and analytical model verification tests. Functional testing consists of kinematic deployment, mesh management and verification of mechanical packaging efficiencies. Design verification consists of rib contour precision measurement, rib cross-section variation evaluation, rib materials characterizations and manufacturing imperfections assessment. Analytical model verification and refinement include mesh stiffness measurement, rib static and dynamic testing, mass measurement, and rib cross-section characterization. This concept was considered for a number of potential applications that include mobile communications, VLBI, and aircraft surveillance. In fact, baseline system configurations were developed by JPL, using the appropriate wrap-rib antenna, for all three classes of applications.

  6. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  7. A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps

    NASA Astrophysics Data System (ADS)

    Brown, Scott

    Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

  8. Research notes : solar powered markers not up to challenge.

    DOT National Transportation Integrated Search

    2008-06-01

    ODOT performed preliminary tests on eight different models of solar powered raised pavement markers. These included environmental tests (extreme temperatures, immersion), optical performance tests, and observation tests. Federal Highway Administratio...

  9. Application of conditional moment tests to model checking for generalized linear models.

    PubMed

    Pan, Wei

    2002-06-01

    Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.

  10. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.

  11. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2015-02-20

    being integrated within MAT, including Granger causality. Granger causality tests whether a data series helps when predicting future values of another...relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438. Granger, C. W. (1980). Testing ... testing dataset. This effort is described in Section 3.2. 3.1. Improvements in Granger Causality User Interface Various metrics of causality are

  12. Price vs. Performance: The Value of Next Generation Fighter Aircraft

    DTIC Science & Technology

    2007-03-01

    forms. Both the semi-log and log-log forms were plagued with heteroskedasticity (according to the Breusch - Pagan /Cook-Weisberg test ). The RDT&E models...from 1949-present were used to construct two models – one based on procurement costs and one based on research, design, test , and evaluation (RDT&E...fighter aircraft hedonic models include several different categories of variables. Aircraft procurement costs and research, design, test , and

  13. Data book for 12.5-inch diameter SRB thermal model water flotation test; 1.29 psia, series P022

    NASA Technical Reports Server (NTRS)

    Allums, S. L.

    1974-01-01

    Data acquired from tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation at a scaled pressure of 1.29 psia are presented. Included are acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB. Nineteen valid tests were conducted. These thermal tests indicated the following basic differences relative to the ambient temperature and pressure model tests: (1) more water was taken on board during penetration and (2) model flotation/sinking was temperature sensitive.

  14. Dataset for Testing Contamination Source Identification Methods for Water Distribution Networks

    EPA Pesticide Factsheets

    This dataset includes the results of a simulation study using the source inversion techniques available in the Water Security Toolkit. The data was created to test the different techniques for accuracy, specificity, false positive rate, and false negative rate. The tests examined different parameters including measurement error, modeling error, injection characteristics, time horizon, network size, and sensor placement. The water distribution system network models that were used in the study are also included in the dataset. This dataset is associated with the following publication:Seth, A., K. Klise, J. Siirola, T. Haxton , and C. Laird. Testing Contamination Source Identification Methods for Water Distribution Networks. Journal of Environmental Division, Proceedings of American Society of Civil Engineers. American Society of Civil Engineers (ASCE), Reston, VA, USA, ., (2016).

  15. Solid rocket booster performance evaluation model. Volume 1: Engineering description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle solid rocket booster performance evaluation model (SRB-II) is made up of analytical and functional simulation techniques linked together so that a single pass through the model will predict the performance of the propulsion elements of a space shuttle solid rocket booster. The available options allow the user to predict static test performance, predict nominal and off nominal flight performance, and reconstruct actual flight and static test performance. Options selected by the user are dependent on the data available. These can include data derived from theoretical analysis, small scale motor test data, large motor test data and motor configuration data. The user has several options for output format that include print, cards, tape and plots. Output includes all major performance parameters (Isp, thrust, flowrate, mass accounting and operating pressures) as a function of time as well as calculated single point performance data. The engineering description of SRB-II discusses the engineering and programming fundamentals used, the function of each module, and the limitations of each module.

  16. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  17. Modelling of LOCA Tests with the BISON Fuel Performance Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Richard L; Pastore, Giovanni; Novascone, Stephen Rhead

    2016-05-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that is under development at Idaho National Laboratory (USA). Recent advances of BISON include the extension of the code to the analysis of LWR fuel rod behaviour during loss-of-coolant accidents (LOCAs). In this work, BISON models for the phenomena relevant to LWR cladding behaviour during LOCAs are described, followed by presentation of code results for the simulation of LOCA tests. Analysed experiments include separate effects tests of cladding ballooning and burst, as well as the Halden IFA-650.2 fuel rod test. Two-dimensional modelling of the experiments is performed, and calculationsmore » are compared to available experimental data. Comparisons include cladding burst pressure and temperature in separate effects tests, as well as the evolution of fuel rod inner pressure during ballooning and time to cladding burst. Furthermore, BISON three-dimensional simulations of separate effects tests are performed, which demonstrate the capability to reproduce the effect of azimuthal temperature variations in the cladding. The work has been carried out in the frame of the collaboration between Idaho National Laboratory and Halden Reactor Project, and the IAEA Coordinated Research Project FUMAC.« less

  18. Constitutive Soil Properties for Mason Sand and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.

    2011-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.

  19. Computer program for Stirling engine performance calculations

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1983-01-01

    The thermodynamic characteristics of the Stirling engine were analyzed and modeled on a computer to support its development as a possible alternative to the automobile spark ignition engine. The computer model is documented. The documentation includes a user's manual, symbols list, a test case, comparison of model predictions with test results, and a description of the analytical equations used in the model.

  20. Childhood Epilepsy and Asthma: A Test of an Extension of the Double ABCX Model.

    ERIC Educational Resources Information Center

    Austin, Joan Kessner

    The Double ABCX Model of Family Adjustment and Adaptation, a model that predicts adaptation to chronic stressors on the family, was extended by dividing it into attitudes, coping, and adaptation of parents and child separately, and by including variables relevant to child adaptation to epilepsy or asthma. The extended model was tested on 246…

  1. 77 FR 74616 - Amendments and Correction to Petitions for Waiver and Interim Waiver for Consumer Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... decision and order must be used for all future testing for any basic models covered by the decision and... require petitioners to: (1) Specify the basic model(s) to which the waiver applies; (2) identify other manufacturers of similar products; (3) include any known alternate test procedures of the basic model, with the...

  2. Environmental Testing Campaign and Verification of Satellite Deimos-2 at INTA

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Vazquez, Mercedes; Anon, Manuel; Olivo, Esperanza; Gallego, Pablo; Morillo, Pablo; Parra, Javier; Capraro; Luengo, Mar; Garcia, Beatriz; Villacorta, Pablo

    2014-06-01

    In this paper the environmental test campaign and verification of the DEIMOS-2 (DM2) satellite will be presented and described. DM2 will be ready for launch in 2014.Firstly, a short description of the satellite is presented, including its physical characteristics and intended optical performances. DEIMOS-2 is a LEO satellite for earth observation that will provide high resolution imaging services for agriculture, civil protection, environmental issues, disasters monitoring, climate change, urban planning, cartography, security and intelligence.Then, the verification and test campaign carried out on the SM and FM models at INTA is described; including Mechanical test for the SM and Climatic, Mechanical and Electromagnetic Compatibility tests for the FM. In addition, this paper includes Centre of Gravity and Moment of Inertia measurements for both models, and other verification activities carried out in order to ensure satellite's health during launch and its in orbit performance.

  3. Development of a tiered and binned genetic counseling model for informed consent in the era of multiplex testing for cancer susceptibility.

    PubMed

    Bradbury, Angela R; Patrick-Miller, Linda; Long, Jessica; Powers, Jacquelyn; Stopfer, Jill; Forman, Andrea; Rybak, Christina; Mattie, Kristin; Brandt, Amanda; Chambers, Rachelle; Chung, Wendy K; Churpek, Jane; Daly, Mary B; Digiovanni, Laura; Farengo-Clark, Dana; Fetzer, Dominique; Ganschow, Pamela; Grana, Generosa; Gulden, Cassandra; Hall, Michael; Kohler, Lynne; Maxwell, Kara; Merrill, Shana; Montgomery, Susan; Mueller, Rebecca; Nielsen, Sarah; Olopade, Olufunmilayo; Rainey, Kimberly; Seelaus, Christina; Nathanson, Katherine L; Domchek, Susan M

    2015-06-01

    Multiplex genetic testing, including both moderate- and high-penetrance genes for cancer susceptibility, is associated with greater uncertainty than traditional testing, presenting challenges to informed consent and genetic counseling. We sought to develop a new model for informed consent and genetic counseling for four ongoing studies. Drawing from professional guidelines, literature, conceptual frameworks, and clinical experience, a multidisciplinary group developed a tiered-binned genetic counseling approach proposed to facilitate informed consent and improve outcomes of cancer susceptibility multiplex testing. In this model, tier 1 "indispensable" information is presented to all patients. More specific tier 2 information is provided to support variable informational needs among diverse patient populations. Clinically relevant information is "binned" into groups to minimize information overload, support informed decision making, and facilitate adaptive responses to testing. Seven essential elements of informed consent are provided to address the unique limitations, risks, and uncertainties of multiplex testing. A tiered-binned model for informed consent and genetic counseling has the potential to address the challenges of multiplex testing for cancer susceptibility and to support informed decision making and adaptive responses to testing. Future prospective studies including patient-reported outcomes are needed to inform how to best incorporate multiplex testing for cancer susceptibility into clinical practice.Genet Med 17 6, 485-492.

  4. Cryogenic Tank Modeling for the Saturn AS-203 Experiment

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D.; Lopez, Alfredo; Chandler, Frank O.; Hastings, Leon J.; Tucker, Stephen P.

    2006-01-01

    A computational fluid dynamics (CFD) model is developed for the Saturn S-IVB liquid hydrogen (LH2) tank to simulate the 1966 AS-203 flight experiment. This significant experiment is the only known, adequately-instrumented, low-gravity, cryogenic self pressurization test that is well suited for CFD model validation. A 4000-cell, axisymmetric model predicts motion of the LH2 surface including boil-off and thermal stratification in the liquid and gas phases. The model is based on a modified version of the commercially available FLOW3D software. During the experiment, heat enters the LH2 tank through the tank forward dome, side wall, aft dome, and common bulkhead. In both model and test the liquid and gases thermally stratify in the low-gravity natural convection environment. LH2 boils at the free surface which in turn increases the pressure within the tank during the 5360 second experiment. The Saturn S-IVB tank model is shown to accurately simulate the self pressurization and thermal stratification in the 1966 AS-203 test. The average predicted pressurization rate is within 4% of the pressure rise rate suggested by test data. Ullage temperature results are also in good agreement with the test where the model predicts an ullage temperature rise rate within 6% of the measured data. The model is based on first principles only and includes no adjustments to bring the predictions closer to the test data. Although quantitative model validation is achieved or one specific case, a significant step is taken towards demonstrating general use of CFD for low-gravity cryogenic fluid modeling.

  5. Comparing Posttraumatic Stress Disorder's Symptom Structure between Deployed and Nondeployed Veterans

    ERIC Educational Resources Information Center

    Engdahl, Ryan M.; Elhai, Jon D.; Richardson, J. Don; Frueh, B. Christopher

    2011-01-01

    We tested two empirically validated 4-factor models of posttraumatic stress disorder (PTSD) symptoms using the PTSD Checklist: King, Leskin, King, and Weathers' (1998) model including reexperiencing, avoidance, emotional numbing, and hyperarousal factors, and Simms, Watson, and Doebbeling's (2002) model including reexperiencing, avoidance,…

  6. Electronic delay ignition module for single bridgewire Apollo standard initiator

    NASA Technical Reports Server (NTRS)

    Ward, R. D.

    1975-01-01

    An engineering model and a qualification model of the EDIM were constructed and tested to Scout flight qualification criteria. The qualification model incorporated design improvements resulting from the engineering model tests. Compatibility with single bridgewire Apollo standard initiator (SBASI) was proven by test firing forty-five (45) SBASI's with worst case voltage and temperature conditions. The EDIM was successfully qualified for Scout flight application with no failures during testing of the qualification unit. Included is a method of implementing the EDIM into Scout vehicle hardware and the ground support equipment necessary to check out the system.

  7. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  8. A Unified Constitutive Model for Subglacial Till, Part II: Laboratory Tests, Disturbed State Modeling, and Validation for Two Subglacial Tills

    NASA Astrophysics Data System (ADS)

    Desai, C. S.; Sane, S. M.; Jenson, J. W.; Contractor, D. N.; Carlson, A. E.; Clark, P. U.

    2006-12-01

    This presentation, which is complementary to Part I (Jenson et al.), describes the application of the Disturbed State Concept (DSC) constitutive model to define the behavior of the deforming sediment (till) underlying glaciers and ice sheets. The DSC includes elastic, plastic, and creep strains, and microstructural changes leading to degradation, failure, and sometimes strengthening or healing. Here, we describe comprehensive laboratory experiments conducted on samples of two regionally significant tills deposited by the Laurentide Ice Sheet: the Tiskilwa Till and Sky Pilot Till. The tests are used to determine the parameters to calibrate the DSC model, which is validated with respect to the laboratory tests by comparing the predictions with test data used to find the parameters, and also comparing them with independent tests not used to find the parameters. Discussion of the results also includes comparison of the DSC model with the classical Mohr-Coulomb model, which has been commonly used for glacial tills. A numerical procedure based on finite element implementation of the DSC is used to simulate an idealized field problem, and its predictions are discussed. Based on these analyses, the unified DSC model is proposed to provide an improved model for subglacial tills compared to other models used commonly, and thus to provide the potential for improved predictions of ice sheet movements.

  9. When the Test of Mediation is More Powerful than the Test of the Total Effect

    PubMed Central

    O'Rourke, Holly P.; MacKinnon, David P.

    2014-01-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. First, a study compared analytical power of the mediated effect to the total effect in a single mediator model to identify the situations in which the inclusion of one mediator increased statistical power. Results from the first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were non-zero and equal across models. Next, a study identified conditions where power was greater for the test of the total mediated effect compared to the test of the total effect in the parallel two mediator model. Results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results found in the first study. Finally, a study assessed analytical power for a sequential (three-path) two mediator model and compared power to detect the three-path mediated effect to power to detect both the test of the total effect and the test of the mediated effect for the single mediator model. Results indicated that the three-path mediated effect had more power than the mediated effect from the single mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed. PMID:24903690

  10. Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.

    2010-01-01

    As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.

  11. A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence.

    PubMed

    Nikoloulopoulos, Aristidis K

    2017-10-01

    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality.

  12. 2000-hour cyclic endurance test of a laboratory model multipropellant resistojet

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Sovey, James S.

    1987-01-01

    The technological readiness of a long-life multipropellant resistojet for space station auxiliary propulsion is demonstrated. A laboratory model resistojet made from grain-stabilized platinum served as a test bed to evaluate the design characteristics, fabrication methods, and operating strategies for an engineering model multipropellant resistojet developed under contract by the Rocketdyne Division of Rockwell International and Technion Incorporated. The laboratory model thruster was subjected to a 2000-hr, 2400-thermal-cycle endurance test using carbon dioxide propellant. Maximum thruster temperatures were approximately 1400 C. The post-test analyses of the laboratory model thruster included an investigation of component microstructures. Significant observations from the laboratory model thruster are discussed as they relate to the design of the engineering model thruster.

  13. A 2000-hour cyclic endurance test of a laboratory model multipropellant resistojet

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Sovey, James S.

    1987-01-01

    The technological readiness of a long-life multipropellant resistojet for space station auxiliary propulsion is demonstrated. A laboratory model resistojet made from grain-stabilized platinum served as a test bed to evaluate the design characteristics, fabrication methods, and operating strategies for an engineering model multipropellant resistojet developed under contract by the Rocketdyne Division of Rockwell International and Technion Incorporated. The laboratory model thruster was subjected to a 2000-hr, 2400-thermal-cycle endurance test using carbon dioxide propellant. Maximum thruster temperatures were approximately 1400 C. The post-test analyses of the laboratory model thruster included an investigation of component microstructures. Significant observations from the laboratory model thruster are discussed as they relate to the design of the engineering model thruster.

  14. Fuel assembly shaker and truck test simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.

    2014-09-30

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revisedmore » model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when traveling down the same road at the same speed. It is recommended that the SNL conveyance system used in testing be characterized through modal analysis and frequency response analysis to provide context and assist in the interpretation of the strain data that was collected during the truck test campaign.« less

  15. Recent Improvements in Semi-Span Testing at the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Tomek, W. G.; Payne, F. M.; Griffiths, R. C.

    2006-01-01

    Three wind tunnel investigations of a commercial transport, high-lift, semi-span configuration have recently been conducted in the National Transonic Facility at the NASA Langley Research Center. Throughout the course of these investigations multiple improvements have been developed in the facility semi-span test capability. The primary purpose of the investigations was to assess Reynolds number scale effects on a modern commercial transport configuration up to full-scale flight test conditions (Reynolds numbers on the order of 27 million). The tests included longitudinal aerodynamic studies at subsonic takeoff and landing conditions across a range of Reynolds numbers from that available in conventional wind tunnels up to flight conditions. The purpose of this paper is to discuss lessons learned and improvements incorporated into the semi-span testing process. Topics addressed include enhanced thermal stabilization and moisture reduction procedures, assessments and improvements in model sealing techniques, compensation of model reference dimensions due to test temperature, significantly improved semi-span model access capability, and assessments of data repeatability.

  16. The Impact of Prior Deployment Experience on Civilian Employment After Military Service

    DTIC Science & Technology

    2013-03-21

    covariates men- tioned. Given the exploratory nature of this study, all defined variables were included. Model diagnostic tests were conducted and we...assessed model fit using the Hosmer–Lemeshow goodness-of-fit test . To identify the existence of collinearity, we examined all variance inflation factors...separation, and reason for separation and service branch were tested . Both interactions were significant at pɘ.10. Three models were built to examine

  17. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.

    2012-01-01

    Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.

  18. Test Cases for Flutter of the Benchmark Models Rectangular Wings on the Pitch and Plunge Apparatus

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.

    2000-01-01

    The supercritical airfoil was chosen as a relatively modem airfoil for comparison. The BOO12 model was tested first. Three different types of flutter instability boundaries were encountered, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9 and for zero angle of attack. This test was made in air and was Transonic Dynamics Tunnel (TDT) Test 468. The BSCW model (for Benchmark SuperCritical Wing) was tested next as TDT Test 470. It was tested using both with air and a heavy gas, R-12, as a test medium. The effect of a transition strip on flutter was evaluated in air. The B64AOlO model was subsequently tested as TDT Test 493. Some further analysis of the experimental data for the BOO12 wing is presented. Transonic calculations using the parameters for the BOO12 wing in a two-dimensional typical section flutter analysis are given. These data are supplemented with data from the Benchmark Active Controls Technology model (BACT) given and in the next chapter of this document. The BACT model was of the same planform and airfoil as the BOO12 model, but with spoilers and a trailing edge control. It was tested in the heavy gas R-12, and was instrumented mostly at the 60 per cent span. The flutter data obtained on PAPA and the static aerodynamic test cases from BACT serve as additional data for the BOO12 model. All three types of flutter are included in the BACT Test Cases. In this report several test cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flutter. Cases are selected for classical and stall flutter for the BSCW model, for classical and plunge for the B64AOlO model, and for classical flutter for the BOO12 model. Test Cases are also presented for BSCW for static angles of attack. Only the mean pressures and the real and imaginary parts of the first harmonic of the pressures are included in the data for the test cases, but digitized time histories have been archived. The data for the test cases are available as separate electronic files. An overview of the model and tests is given, the standard formulary for these data is listed, and some sample results are presented.

  19. Screening Models of Aquifer Heterogeneity Using the Flow Dimension

    NASA Astrophysics Data System (ADS)

    Walker, D. D.; Cello, P. A.; Roberts, R. M.; Valocchi, A. J.

    2007-12-01

    Despite advances in test interpretation and modeling, typical groundwater modeling studies only indirectly use the parameters and information inferred from hydraulic tests. In particular, the Generalized Radial Flow approach to test interpretation infers the flow dimension, a parameter describing the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling.

  20. Redundancy management of electrohydraulic servoactuators by mathematical model referencing

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.

    1971-01-01

    A description of a mathematical model reference system is presented which provides redundancy management for an electrohydraulic servoactuator. The mathematical model includes a compensation network that calculates reference parameter perturbations induced by external disturbance forces. This is accomplished by using the measured pressure differential data taken from the physical system. This technique was experimentally verified by tests performed using the H-1 engine thrust vector control system for Saturn IB. The results of these tests are included in this report. It was concluded that this technique improves the tracking accuracy of the model reference system to the extent that redundancy management of electrohydraulic servosystems may be performed using this method.

  1. Development and verification of an agent-based model of opinion leadership.

    PubMed

    Anderson, Christine A; Titler, Marita G

    2014-09-27

    The use of opinion leaders is a strategy used to speed the process of translating research into practice. Much is still unknown about opinion leader attributes and activities and the context in which they are most effective. Agent-based modeling is a methodological tool that enables demonstration of the interactive and dynamic effects of individuals and their behaviors on other individuals in the environment. The purpose of this study was to develop and test an agent-based model of opinion leadership. The details of the design and verification of the model are presented. The agent-based model was developed by using a software development platform to translate an underlying conceptual model of opinion leadership into a computer model. Individual agent attributes (for example, motives and credibility) and behaviors (seeking or providing an opinion) were specified as variables in the model in the context of a fictitious patient care unit. The verification process was designed to test whether or not the agent-based model was capable of reproducing the conditions of the preliminary conceptual model. The verification methods included iterative programmatic testing ('debugging') and exploratory analysis of simulated data obtained from execution of the model. The simulation tests included a parameter sweep, in which the model input variables were adjusted systematically followed by an individual time series experiment. Statistical analysis of model output for the 288 possible simulation scenarios in the parameter sweep revealed that the agent-based model was performing, consistent with the posited relationships in the underlying model. Nurse opinion leaders act on the strength of their beliefs and as a result, become an opinion resource for their uncertain colleagues, depending on their perceived credibility. Over time, some nurses consistently act as this type of resource and have the potential to emerge as opinion leaders in a context where uncertainty exists. The development and testing of agent-based models is an iterative process. The opinion leader model presented here provides a basic structure for continued model development, ongoing verification, and the establishment of validation procedures, including empirical data collection.

  2. Prediction of biodegradability from chemical structure: Modeling or ready biodegradation test data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loonen, H.; Lindgren, F.; Hansen, B.

    1999-08-01

    Biodegradation data were collected and evaluated for 894 substances with widely varying chemical structures. All data were determined according to the Japanese Ministry of International Trade and Industry (MITI) I test protocol. The MITI I test is a screening test for ready biodegradability and has been described by Organization for Economic Cooperation and Development (OECD) test guideline 301 C and European Union (EU) test guideline C4F. The chemicals were characterized by a set of 127 predefined structural fragments. This data set was used to develop a model for the prediction of the biodegradability of chemicals under standardized OECD and EUmore » ready biodegradation test conditions. Partial least squares (PLS) discriminant analysis was used for the model development. The model was evaluated by means of internal cross-validation and repeated external validation. The importance of various structural fragments and fragment interactions was investigated. The most important fragments include the presence of a long alkyl chain; hydroxy, ester, and acid groups (enhancing biodegradation); and the presence of one or more aromatic rings and halogen substituents (regarding biodegradation). More than 85% of the model predictions were correct for using the complete data set. The not readily biodegradable predictions were slightly better than the readily biodegradable predictions (86 vs 84%). The average percentage of correct predictions from four external validation studies was 83%. Model optimization by including fragment interactions improve the model predicting capabilities to 89%. It can be concluded that the PLS model provides predictions of high reliability for a diverse range of chemical structures. The predictions conform to the concept of readily biodegradable (or not readily biodegradable) as defined by OECD and EU test guidelines.« less

  3. Model verification of large structural systems

    NASA Technical Reports Server (NTRS)

    Lee, L. T.; Hasselman, T. K.

    1977-01-01

    A methodology was formulated, and a general computer code implemented for processing sinusoidal vibration test data to simultaneously make adjustments to a prior mathematical model of a large structural system, and resolve measured response data to obtain a set of orthogonal modes representative of the test model. The derivation of estimator equations is shown along with example problems. A method for improving the prior analytic model is included.

  4. Animal models of contraception: utility and limitations

    PubMed Central

    Liechty, Emma R; Bergin, Ingrid L; Bell, Jason D

    2015-01-01

    Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic considerations impacting preclinical contraceptive testing, including efficacy testing, mechanistic studies, device design, and modeling off-target effects. Emphasis is placed on the use of nonhuman primate models in contraceptive device development. PMID:29386922

  5. Model-based software process improvement

    NASA Technical Reports Server (NTRS)

    Zettervall, Brenda T.

    1994-01-01

    The activities of a field test site for the Software Engineering Institute's software process definition project are discussed. Products tested included the improvement model itself, descriptive modeling techniques, the CMM level 2 framework document, and the use of process definition guidelines and templates. The software process improvement model represents a five stage cyclic approach for organizational process improvement. The cycles consist of the initiating, diagnosing, establishing, acting, and leveraging phases.

  6. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  7. Force on Force Modeling with Formal Task Structures and Dynamic Geometry

    DTIC Science & Technology

    2017-03-24

    task framework, derived using the MMF methodology to structure a complex mission. It further demonstrated the integration of effects from a range of...application methodology was intended to support a combined developmental testing (DT) and operational testing (OT) strategy for selected systems under test... methodology to develop new or modify existing Models and Simulations (M&S) to: • Apply data from multiple, distributed sources (including test

  8. Flight-Test Evaluation of Flutter-Prediction Methods

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Brenner, Marty

    2003-01-01

    The flight-test community routinely spends considerable time and money to determine a range of flight conditions, called a flight envelope, within which an aircraft is safe to fly. The cost of determining a flight envelope could be greatly reduced if there were a method of safely and accurately predicting the speed associated with the onset of an instability called flutter. Several methods have been developed with the goal of predicting flutter speeds to improve the efficiency of flight testing. These methods include (1) data-based methods, in which one relies entirely on information obtained from the flight tests and (2) model-based approaches, in which one relies on a combination of flight data and theoretical models. The data-driven methods include one based on extrapolation of damping trends, one that involves an envelope function, one that involves the Zimmerman-Weissenburger flutter margin, and one that involves a discrete-time auto-regressive model. An example of a model-based approach is that of the flutterometer. These methods have all been shown to be theoretically valid and have been demonstrated on simple test cases; however, until now, they have not been thoroughly evaluated in flight tests. An experimental apparatus called the Aerostructures Test Wing (ATW) was developed to test these prediction methods.

  9. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  10. Capillary device refilling. [liquid rocket propellant tank tests

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Merino, F.; Symons, E. P.

    1980-01-01

    An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile and apparently accurate tool for predicting start basket refilling under actual mission conditions.

  11. An Evaluation of Blood Cholinesterase Testing Methods for Military Health

    DTIC Science & Technology

    2008-05-01

    activity found that only one device has been validated for ChE testing in the field: the Model 400 Test-mate™ ChE kit by EQM Research, Inc. (Cincinnati...OH). Suggested future modifications to the Model 400 Test-mate™ ChE kit include displaying/recording of acetyl-ChE activity uncorrected for...cholinesterase activity , that are routinely monitored by the Department of Defense (DoD). Within DoD, definitive cholinesterase testing is conducted by

  12. Using ABAQUS Scripting Interface for Materials Evaluation and Life Prediction

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Arnold, Steven M.; Baranski, Andrzej

    2006-01-01

    An ABAQUS script has been written to aid in the evaluation of the mechanical behavior of viscoplastic materials. The purposes of the script are to: handle complex load histories; control load/displacement with alternate stopping criteria; predict failure and life; and verify constitutive models. Material models from the ABAQUS library may be used or the UMAT routine may specify mechanical behavior. User subroutines implemented include: UMAT for the constitutive model; UEXTERNALDB for file manipulation; DISP for boundary conditions; and URDFIL for results processing. Examples presented include load, strain and displacement control tests on a single element model. The tests are creep with a life limiting strain criterion, strain control with a stress limiting cycle and a complex interrupted cyclic relaxation test. The techniques implemented in this paper enable complex load conditions to be solved efficiently with ABAQUS.

  13. Lessons Learned During Instrument Testing for the Thermal Infrared Sensor (TIRS)

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.; Otero, Veronica; Neuberger, David

    2013-01-01

    The Themal InfraRed Sensor (TIRS) instrument, set to launch on the Landsat Data Continuity Mission in 2013, features a passively cooled telescope and IR detectors which are actively cooled by a two stage cryocooler. In order to proceed to the instrument level test campaign, at least one full functional test was required, necessitating a thermal vacuum test to sufficiently cool the detectors and demonstrate performance. This was fairly unique in that this test occurred before the Pre Environmental Review, but yielded significant knowledge gains before the planned instrument level test. During the pre-PER test, numerous discrepancies were found between the model and the actual hardware, which were revealed by poor correlation between model predictions and test data. With the inclusion of pseudo-balance points, the test also provided an opportunity to perform a pre-correlation to test data prior to the instrument level test campaign. Various lessons were learned during this test related to modeling and design of both the flight hardware and the Ground Support Equipment and test setup. The lessons learned in the pre-PER test resulted in a better test setup for the nstrument level test and the completion of the final instrument model correlation in a shorter period of time. Upon completion of the correlation, the flight predictions were generated including the full suite of off-nominal cases, including some new cases defined by the spacecraft. For some of these ·new cases, some components now revealed limit exceedances, in particular for a portion of the hardware that could not be tested due to its size and chamber limitations.. Further lessons were learned during the completion of flight predictions. With a correlated detalled instrument model, significant efforts were made to generate a reduced model suitable for observatory level analyses. This proved a major effort both to generate an appropriate network as well as to convert to the final model to the required format and yielded additional lessons learned. In spite of all the challenges encountered by TIRS, the instrument was successfully delivered to the spacecraft and will soon be tested at observatory level in preparation for a successful mission launch.

  14. Evaluation and prediction of long-term environmental effects of nonmetallic materials

    NASA Technical Reports Server (NTRS)

    Papazian, H.

    1985-01-01

    The properties of a number of nonmetallic materials were evaluated experimentally in simulated space environments in order to develop models for accelerated test methods useful for predicting such behavioral changes. Graphite-epoxy composites were exposed to thermal cycling. Adhesive foam tapes were subjected to a vacuum environment. Metal-matrix composites were tested for baseline data. Predictive modeling designed to include strength and aging effects on composites, polymeric films, and metals under such space conditions (including the atomic oxygen environment) is discussed. The Korel 8031-00 high strength adhesive foam tape was shown to be superior to the other two tested.

  15. ForCent model development and testing using the Enriched Background Isotope Study experiment

    Treesearch

    William J. Parton; Paul J. Hanson; Chris Swanston; Margaret Torn; Susan E. Trumbore; William Riley; Robin Kelly

    2010-01-01

    The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could...

  16. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.

  17. Reentry static stability characteristics of a (Model 471) .005479-scale 146-inch solid rocket booster tested in the NASA/MSFC 14 by 14 inch TWT (SA8F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.; Praharaj, S. C.

    1975-01-01

    A force test of a scale model of the Space Shuttle Solid Rocket Booster was conducted in a trisonic wind tunnel. The model was tested with such protuberances as a camera capsule, electrical tunnel, attach rings, aft separation rockets, ET attachment structure, and hold-down struts. The model was also tested with the nozzle at gimbal angles of 0, 2.5, and 5 degrees. The influence of a unique heat shield configuration was also determined. Some photographs of model installations in the tunnel were taken and are included. Schlieren photography was utilized for several angles of attack.

  18. Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1

    NASA Technical Reports Server (NTRS)

    Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.

    1986-01-01

    The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.

  19. Radio-controlled model design and testing techniques for stall/spin evaluation of general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Wilson, C. F., Jr.

    1975-01-01

    A relatively inexpensive radio-controlled model stall/spin test technique was developed. Operational experiences using the technique are presented. A discussion of model construction techniques, spin-recovery parachute system, data recording system, and movie camera tracking system is included. Also discussed are a method of measuring moments of inertia, scaling of engine thrust, cost and time required to conduct a program, and examples of the results obtained from the flight tests.

  20. Comparison of experiment with calculations using curvature-corrected zero and two equation turbulence models for a two-dimensional U-duct

    NASA Astrophysics Data System (ADS)

    Monson, D. J.; Seegmiller, H. L.; McConnaughey, P. K.

    1990-06-01

    In this paper experimental measurements are compared with Navier-Stokes calculations using seven different turbulence models for the internal flow in a two-dimensional U-duct. The configuration is representative of many internal flows of engineering interst that experience strong curvature. In an effort to improve agreement, this paper tests several versions of the two-equation k-epsilon turbulence model including the standard version, an extended version with a production range time scale, and a version that includes curvature time scales. Each is tested in its high and low Reynolds number formulations. Calculations using these new models and the original mixing length model are compared here with measurements of mean and turbulence velocities, static pressure and skin friction in the U-duct at two Reynolds numbers. The comparisons show that only the low Reynolds number version of the extended k-epsilon model does a reasonable job of predicting the important features of this flow at both Reynolds numbers tested.

  1. Experimental analysis and constitutive modelling of steel of A-IIIN strength class

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Janiszewski, Jacek

    2015-09-01

    Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.

  2. Model Test Bed for Evaluating Wave Models and Best Practices for Resource Assessment and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neary, Vincent Sinclair; Yang, Zhaoqing; Wang, Taiping

    A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending onmore » the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.« less

  3. Avian models for toxicity testing

    USGS Publications Warehouse

    Hill, E.F.; Hoffman, D.J.

    1984-01-01

    The use of birds as test models in experimental and environmental toxicology as related to health effects is reviewed, and an overview of descriptive tests routinely used in wildlife toxicology is provided. Toxicologic research on birds may be applicable to human health both directly by their use as models for mechanistic and descriptive studies and indirectly as monitors of environmental quality. Topics include the use of birds as models for study of teratogenesis and embryotoxicity, neurotoxicity, behavior, trends of environmental pollution, and for use in predictive wildlife toxicology. Uses of domestic and wild-captured birds are discussed.

  4. Biases and power for groups comparison on subjective health measurements.

    PubMed

    Hamel, Jean-François; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Roquelaure, Yves; Sébille, Véronique

    2012-01-01

    Subjective health measurements are increasingly used in clinical research, particularly for patient groups comparisons. Two main types of analytical strategies can be used for such data: so-called classical test theory (CTT), relying on observed scores and models coming from Item Response Theory (IRT) relying on a response model relating the items responses to a latent parameter, often called latent trait. Whether IRT or CTT would be the most appropriate method to compare two independent groups of patients on a patient reported outcomes measurement remains unknown and was investigated using simulations. For CTT-based analyses, groups comparison was performed using t-test on the scores. For IRT-based analyses, several methods were compared, according to whether the Rasch model was considered with random effects or with fixed effects, and the group effect was included as a covariate or not. Individual latent traits values were estimated using either a deterministic method or by stochastic approaches. Latent traits were then compared with a t-test. Finally, a two-steps method was performed to compare the latent trait distributions, and a Wald test was performed to test the group effect in the Rasch model including group covariates. The only unbiased IRT-based method was the group covariate Wald's test, performed on the random effects Rasch model. This model displayed the highest observed power, which was similar to the power using the score t-test. These results need to be extended to the case frequently encountered in practice where data are missing and possibly informative.

  5. Testing and Implementation of Advanced Reynolds Stress Models

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1997-01-01

    A research program was proposed for the testing and implementation of advanced turbulence models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to NASA. Turbulence models that are being developed in connection with the Office of Naval Research ARI in Non-equilibrium are provided for implementation and testing in aerodynamic flows at NASA Langley Research Center. Close interactions were established with researchers at Nasa Langley RC and refinements to the models were made based on the results of these tests. The models that have been considered include two-equation models with an anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium corrections to the models have been considered in connection with the ARI on Nonequilibrium Turbulence: conducted for ONR.

  6. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  7. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  8. Circumferential distortion modeling of the TF30-P-3 compression system

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Banks, G. A.

    1977-01-01

    Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.

  9. Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.

    1987-01-01

    A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.

  10. When the test of mediation is more powerful than the test of the total effect.

    PubMed

    O'Rourke, Holly P; MacKinnon, David P

    2015-06-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed.

  11. A Cost Model for Testing Unmanned and Autonomous Systems of Systems

    DTIC Science & Technology

    2011-02-01

    those risks. In addition, the fundamental methods presented by Aranha and Borba to include the complexity and sizing of tests for UASoS, can be expanded...used as an input for test execution effort estimation models (Aranha & Borba , 2007). Such methodology is very relevant to this work because as a UASoS...calculate the test effort based on the complexity of the SoS. However, Aranha and Borba define test size as the number of steps required to complete

  12. More Than Just Accuracy: A Novel Method to Incorporate Multiple Test Attributes in Evaluating Diagnostic Tests Including Point of Care Tests.

    PubMed

    Thompson, Matthew; Weigl, Bernhard; Fitzpatrick, Annette; Ide, Nicole

    2016-01-01

    Current frameworks for evaluating diagnostic tests are constrained by a focus on diagnostic accuracy, and assume that all aspects of the testing process and test attributes are discrete and equally important. Determining the balance between the benefits and harms associated with new or existing tests has been overlooked. Yet, this is critically important information for stakeholders involved in developing, testing, and implementing tests. This is particularly important for point of care tests (POCTs) where tradeoffs exist between numerous aspects of the testing process and test attributes. We developed a new model that multiple stakeholders (e.g., clinicians, patients, researchers, test developers, industry, regulators, and health care funders) can use to visualize the multiple attributes of tests, the interactions that occur between these attributes, and their impacts on health outcomes. We use multiple examples to illustrate interactions between test attributes (test availability, test experience, and test results) and outcomes, including several POCTs. The model could be used to prioritize research and development efforts, and inform regulatory submissions for new diagnostics. It could potentially provide a way to incorporate the relative weights that various subgroups or clinical settings might place on different test attributes. Our model provides a novel way that multiple stakeholders can use to visualize test attributes, their interactions, and impacts on individual and population outcomes. We anticipate that this will facilitate more informed decision making around diagnostic tests.

  13. Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lucia, Frank C. Jr.; Gottfried, Jennifer L.; Munson, Chase A.

    2008-11-01

    A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate themore » importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.« less

  14. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  15. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  16. Footwear Physics.

    ERIC Educational Resources Information Center

    Blaser, Mark; Larsen, Jamie

    1996-01-01

    Presents five interactive, computer-based activities that mimic scientific tests used by sport researchers to help companies design high-performance athletic shoes, including impact tests, flexion tests, friction tests, video analysis, and computer modeling. Provides a platform for teachers to build connections between chemistry (polymer science),…

  17. Adaptive transmission disequilibrium test for family trio design.

    PubMed

    Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning

    2009-01-01

    The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.

  18. Measuring test productivity - The elusive dream

    NASA Astrophysics Data System (ADS)

    Ward, D. T.; Cross, E. J., Jr.

    1983-11-01

    The paper summarizes definitions and terminology relating to measurement of Test and Evaluation productivity before settling on the appropriate criteria for such a measurement model. A productivity measurement scheme suited for use by Test and Evaluation organizations is suggested. This mathematical model is a simplified version of one proposed by the American Productivity Center and applied to an aircraft maintenance facility by Fletcher. It includes only four primary variables: safety, schedule, cost, and deficiencies reported with varying degrees of objectivity and subjectivity involved in quantifying them. A hypothetical example of a fighter aircraft flight test program is used to illustrate the application of the productivity measurement model. The proposed model is intended to serve as a first iteration procedure and should be tested against real test programs to verify and refine it.

  19. Modeling, Analysis, and Optimization Issues for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  20. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  1. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  2. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  3. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  4. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  5. Assessing the role of dopamine in limb and cranial-oromotor control in a rat model of Parkinson’s disease

    PubMed Central

    Kane, Jacqueline R.; Ciucci, Michelle R.; Jacobs, Amber N.; Tews, Nathan; Russell, John A.; Ahrens, Allison M.; Ma, Sean T.; Britt, Joshua M.; Cormack, Lawrence K.; Schallert, Timothy

    2012-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder primarily characterized by sensorimotor dysfunction. The neuropathology of PD includes a loss of dopamine (DA) neurons of the nigrostriatal pathway. Classic signs of the disease include rigidity, bradykinesia, and postural instability. However, as many as 90% of patients also experience significant deficits in speech, swallowing (including mastication), and respiratory control. Oromotor deficits such as these are underappreciated, frequently emerging during the early, often hemi-Parkinson, stage of the disease. In this paper, we review tests commonly used in our labs to model early and hemi-Parkinson deficits in rodents. We have recently expanded our tests to include sensitive models of oromotor deficits. This paper discusses the most commonly used tests in our lab to model both limb and oromotor deficits, including tests of forelimb-use asymmetry, postural instability, vibrissae-evoked forelimb placing, single limb akinesia, dry pasta handling, sunflower seed shelling, and acoustic analyses of ultrasonic vocalizations and pasta biting strength. In particular, we lay new groundwork for developing methods for measuring abnormalities in the acoustic patterns during eating that indicate decreased biting strength and irregular intervals between bites in the hemi-Parkinson rat. Similar to limb motor deficits, oromotor deficits, at least to some degree, appear to be modulated by nigrostriatal DA. Finally, we briefly review the literature on targeted motor rehabilitation effects in PD models. Learning outcomes Readers will: (a) understand how a unilateral lesion to the nigrostriatal pathway affects limb use, (b) understand how a unilateral lesion to the nigrostriatal pathway affects oromotor function, and (c) gain an understanding of how limb motor deficits and oromotor deficits appear to involve dopamine and are modulated by training. PMID:21820129

  6. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  7. Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2009-01-01

    Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.

  8. Analytical and physical modeling program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Deidrich, J. H.; Groeneweg, J. F.; Povinelli, L. A.; Reid, L.; Reinmann, J. J.; Szuch, J. R.

    1985-01-01

    An effort is currently underway at the NASA Lewis Research Center to rehabilitate and extend the capabilities of the Altitude Wind Tunnel (AWT). This extended capability will include a maximum test section Mach number of about 0.9 at an altitude of 55,000 ft and a -20 F stagnation temperature (octagonal test section, 20 ft across the flats). In addition, the AWT will include an icing and acoustic research capability. In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide essential input to the AWT final design process. This paper describes the modeling program, including the rationale and criteria used in program definition, and presents some early program results.

  9. DSN system performance test Doppler noise models; noncoherent configuration

    NASA Technical Reports Server (NTRS)

    Bunce, R.

    1977-01-01

    The newer model for variance, the Allan technique, now adopted for testing, is analyzed in the subject mode. A model is generated (including considerable contribution from the station secondary frequency standard), and rationalized with existing data. The variance model is definitely sound; the Allan technique mates theory and measure. The mean-frequency model is an estimate; this problem is yet to be rigorously resolved. The unaltered defining expressions are noncovergent, and the observed mean is quite erratic.

  10. Status of the KTH-NASA Wind-Tunnel Test for Acquisition of Transonic Nonlinear Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Ringertz, Ulf; Stenfelt, Gloria; Eller, David; Keller, Donald F.; Chwalowski, Pawel

    2016-01-01

    This paper presents a status report on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the design, fabrication, modeling, and testing of a full-span lighter configuration in the Transonic Dynamics Tunnel (TDT). The goal of the test is to acquire transonic limit-cycle- oscillation (LCO) data, including accelerations, strains, and unsteady pressures. Finite element models (FEMs) and aerodynamic models are presented and discussed along with results obtained to date.

  11. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  12. Constitutive Soil Properties for Cuddeback Lake, California and Carson Sink, Nevada

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.

    2008-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material modeling properties for four soil models from two dry lakebeds in the western United States. The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples from the lakebeds. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific only to the two lakebeds discussed in the report. The Cuddeback A and B models represent the softest and hardest soils at Cuddeback Lake. The Carson Sink Wet and Dry models represent different seasonal conditions. It is possible to approximate other clay soils with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.

  13. High Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.

    1982-01-01

    A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  14. 6DOF Testing of the SLS Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Geohagan, Kevin W.; Bernard, William P.; Oliver, T. Emerson; Strickland, Dennis J.; Leggett, Jared O.

    2018-01-01

    The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.

  15. The NASA super pressure balloon - A path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2009-07-01

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.

  16. Large Engine Technology (LET) Short Haul Civil Tiltrotor Contingency Power Materials Knowledge and Lifing Methodologies

    NASA Technical Reports Server (NTRS)

    Spring, Samuel D.

    2006-01-01

    This report documents the results of an experimental program conducted on two advanced metallic alloy systems (Rene' 142 directionally solidified alloy (DS) and Rene' N6 single crystal alloy) and the characterization of two distinct internal state variable inelastic constitutive models. The long term objective of the study was to develop a computational life prediction methodology that can integrate the obtained material data. A specialized test matrix for characterizing advanced unified viscoplastic models was specified and conducted. This matrix included strain controlled tensile tests with intermittent relaxtion test with 2 hr hold times, constant stress creep tests, stepped creep tests, mixed creep and plasticity tests, cyclic temperature creep tests and tests in which temperature overloads were present to simulate actual operation conditions for validation of the models. The selected internal state variable models where shown to be capable of representing the material behavior exhibited by the experimental results; however the program ended prior to final validation of the models.

  17. [Evaluation of accuracy of virtual occlusal definition in Angle class I molar relationship].

    PubMed

    Wu, L; Liu, X J; Li, Z L; Wang, X

    2018-02-18

    To evaluate the accuracy of virtual occlusal definition in non-Angle class I molar relationship, and to evaluate the clinical feasibility. Twenty pairs of models of orthognathic patients were included in this study. The inclusion criteria were: (1) finished with pre-surgical orthodontic treatment and (2) stable final occlusion. The exclusion criteria were: (1) existence of distorted teeth, (2) needs for segmentation, (3) defect of dentition except for orthodontic extraction ones, and (4) existence of tooth space. The tooth-extracted test group included 10 models with two premolars extracted during preoperative orthodontic treatment. Their molar relationships were not Angle class I relationship. The non-tooth-extracted test group included another 10 models without teeth extracted, therefore their molar relationships were Angle class I. To define the final occlusion in virtual environment, two steps were included: (1) The morphology data of upper and lower dentition were digitalized by surface scanner (Smart Optics/Activity 102; Model-Tray GmbH, Hamburg, Germany); (2) the virtual relationships were defined using 3Shape software. The control standard of final occlusion was manually defined using gypsum models and then digitalized by surface scanner. The final occlusion of test group and control standard were overlapped according to lower dentition morphology. Errors were evaluated by calculating the distance between the corresponding reference points of testing group and control standard locations. The overall errors for upper dentition between test group and control standard location were (0.51±0.18) mm in non-tooth-extracted test group and (0.60±0.36) mm in tooth-extracted test group. The errors were significantly different between these two test groups (P<0.05). However, in both test groups, the errors of each tooth in a single dentition does not differ from one another. There was no significant difference between errors in tooth-extracted test group and 1 mm (P>0.05); and the accuracy of non-tooth-extracted group was significantly smaller than 1 mm (P<0.05). The error of virtual occlusal definition of none class I molar relationship is higher than that of class I relationship, with an accuracy of 1 mm. However, its accuracy is still feasible for clinical application.

  18. Benchmarking in pathology: development of an activity-based costing model.

    PubMed

    Burnett, Leslie; Wilson, Roger; Pfeffer, Sally; Lowry, John

    2012-12-01

    Benchmarking in Pathology (BiP) allows pathology laboratories to determine the unit cost of all laboratory tests and procedures, and also provides organisational productivity indices allowing comparisons of performance with other BiP participants. We describe 14 years of progressive enhancement to a BiP program, including the implementation of 'avoidable costs' as the accounting basis for allocation of costs rather than previous approaches using 'total costs'. A hierarchical tree-structured activity-based costing model distributes 'avoidable costs' attributable to the pathology activities component of a pathology laboratory operation. The hierarchical tree model permits costs to be allocated across multiple laboratory sites and organisational structures. This has enabled benchmarking on a number of levels, including test profiles and non-testing related workload activities. The development of methods for dealing with variable cost inputs, allocation of indirect costs using imputation techniques, panels of tests, and blood-bank record keeping, have been successfully integrated into the costing model. A variety of laboratory management reports are produced, including the 'cost per test' of each pathology 'test' output. Benchmarking comparisons may be undertaken at any and all of the 'cost per test' and 'cost per Benchmarking Complexity Unit' level, 'discipline/department' (sub-specialty) level, or overall laboratory/site and organisational levels. We have completed development of a national BiP program. An activity-based costing methodology based on avoidable costs overcomes many problems of previous benchmarking studies based on total costs. The use of benchmarking complexity adjustment permits correction for varying test-mix and diagnostic complexity between laboratories. Use of iterative communication strategies with program participants can overcome many obstacles and lead to innovations.

  19. Prospects for testing Lorentz and CPT symmetry with antiprotons

    NASA Astrophysics Data System (ADS)

    Vargas, Arnaldo J.

    2018-03-01

    A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  20. Effect of Differential Item Functioning on Test Equating

    ERIC Educational Resources Information Center

    Kabasakal, Kübra Atalay; Kelecioglu, Hülya

    2015-01-01

    This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…

  1. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  2. Depression and Delinquency Covariation in an Accelerated Longitudinal Sample of Adolescents

    ERIC Educational Resources Information Center

    Kofler, Michael J.; McCart, Michael R.; Zajac, Kristyn; Ruggiero, Kenneth J.; Saunders, Benjamin E.; Kilpatrick, Dean G.

    2011-01-01

    Objectives: The current study tested opposing predictions stemming from the failure and acting out theories of depression-delinquency covariation. Method: Participants included a nationwide longitudinal sample of adolescents (N = 3,604) ages 12 to 17. Competing models were tested with cohort-sequential latent growth curve modeling to determine…

  3. The Role of Item Models in Automatic Item Generation

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis

    2012-01-01

    Automatic item generation represents a relatively new but rapidly evolving research area where cognitive and psychometric theories are used to produce tests that include items generated using computer technology. Automatic item generation requires two steps. First, test development specialists create item models, which are comparable to templates…

  4. A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.

    1993-01-01

    The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.

  5. Ares I-X Flight Evaluation Tasks in Support of Ares I Development

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Coates, Ralph H., III; Cruit, Wendy D.; Ramsey, Matthew N.

    2010-01-01

    NASA s Constellation Program successfully launched the Ares I-X Flight Test Vehicle on October 28, 2009. The Ares I-X flight was a development flight test that offered a unique opportunity for early engineering data to impact the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office established a set of 33 flight evaluation tasks to correlate fight results with prospective design assumptions and models. Included within these tasks were direct comparisons of flight data with pre-flight predictions and post-flight assessments utilizing models and modeling techniques being applied to design and develop Ares I. A discussion of the similarities and differences in those comparisons and the need for discipline-level model updates based upon those comparisons form the substance of this paper. The benefits of development flight testing were made evident by implementing these tasks that used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. The areas in which partial validation from the flight test was most significant included flight control system algorithms to predict liftoff clearance, ascent, and stage separation; structural models from rollout to separation; thermal models that have been updated based on these data; pyroshock attenuation; and the ability to predict complex flow fields during time-varying conditions including plume interactions.

  6. Regression rate study of porous axial-injection, endburning hybrid fuel grains

    NASA Astrophysics Data System (ADS)

    Hitt, Matthew A.

    This experimental and theoretical work examines the effects of gaseous oxidizer flow rates and pressure on the regression rates of porous fuels for hybrid rocket applications. Testing was conducted using polyethylene as the porous fuel and both gaseous oxygen and nitrous oxide as the oxidizer. Nominal test articles were tested using 200, 100, 50, and 15 micron fuel pore sizes. Pressures tested ranged from atmospheric to 1160 kPa for the gaseous oxygen tests and from 207 kPa to 1054 kPa for the nitrous oxide tests, and oxidizer injection velocities ranged from 35 m/s to 80 m/s for the gaseous oxygen tests and from 7.5 m/s to 16.8 m/s for the nitrous oxide tests. Regression rates were determined using pretest and posttest length measurements of the solid fuel. Experimental results demonstrated that the regression rate of the porous axial-injection, end-burning hybrid was a function of the chamber pressure, as opposed to the oxidizer mass flux typical in conventional hybrids. Regression rates ranged from approximately 0.75 mm/s at atmospheric pressure to 8.89 mm/s at 1160 kPa for the gaseous oxygen tests and 0.21 mm/s at 207 kPa to 1.44 mm/s at 1054 kPa for the nitrous oxide tests. The analytical model was developed based on a standard ablative model modified to include oxidizer flow through the grain. The heat transfer from the flame was primarily modeled using an empirically determined flame coefficient that included all heat transfer mechanisms in one term. An exploratory flame model based on the Granular Diffusion Flame model used for solid rocket motors was also adapted for comparison with the empirical flame coefficient. This model was then evaluated quantitatively using the experimental results of the gaseous oxygen tests as well as qualitatively using the experimental results of the nitrous oxide tests. The model showed agreement with the experimental results indicating it has potential for giving insight into the flame structure in this motor configuration. Results from the model suggested that both kinetic and diffusion processes could be relevant to the combustion depending on the chamber pressure.

  7. A Battery of Motor Tests in a Neonatal Mouse Model of Cerebral Palsy.

    PubMed

    Feather-Schussler, Danielle N; Ferguson, Tanya S

    2016-11-03

    As the sheer number of transgenic mice strains grow and rodent models of pediatric disease increase, there is an expanding need for a comprehensive, standardized battery of neonatal mouse motor tests. These tests can validate injury or disease models, determine treatment efficacy and/or assess motor behaviors in new transgenic strains. This paper presents a series of neonatal motor tests to evaluate general motor function, including ambulation, hindlimb foot angle, surface righting, negative geotaxis, front- and hindlimb suspension, grasping reflex, four limb grip strength and cliff aversion. Mice between the ages of post-natal day 2 to 14 can be used. In addition, these tests can be used for a wide range of neurological and neuromuscular pathologies, including cerebral palsy, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, neurodegenerative diseases, and neuromuscular disorders. These tests can also be used to determine the effects of pharmacological agents, as well as other types of therapeutic interventions. In this paper, motor deficits were evaluated in a novel neonatal mouse model of cerebral palsy that combines hypoxia, ischemia and inflammation. Forty-eight hours after injury, five tests out of the nine showed significant motor deficits: ambulation, hindlimb angle, hindlimb suspension, four limb grip strength, and grasping reflex. These tests revealed weakness in the hindlimbs, as well as fine motor skills such as grasping, which are similar to the motor deficits seen in human cerebral palsy patients.

  8. Tests of Measurement Invariance without Subgroups: A Generalization of Classical Methods

    ERIC Educational Resources Information Center

    Merkle, Edgar C.; Zeileis, Achim

    2013-01-01

    The issue of measurement invariance commonly arises in factor-analytic contexts, with methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and Wald tests. These tests all require advance definition of the number of groups, group membership, and offending model parameters. In this paper, we study tests of measurement…

  9. Development and testing of meteorology and air dispersion models for Mexico City

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.

    Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.

  10. Testing CEV stochastic volatility models using implied volatility index data

    NASA Astrophysics Data System (ADS)

    Kim, Jungmu; Park, Yuen Jung; Ryu, Doojin

    2018-06-01

    We test the goodness-of-fit of stochastic volatility (SV) models using the implied volatility index of the KOSPI200 options (VKOSPI). The likelihood ratio tests reject the Heston and Hull-White SV models, whether or not they include jumps. Our estimation results advocate the unconstrained constant elasticity of variance (CEV) model with return jumps for describing the physical-measure dynamics of the spot index. The sub-period analysis shows that there was a significant increase in the size and frequency of jumps during the crisis period, when compared to those in the normal periods.

  11. A thermal vacuum test optimization procedure

    NASA Technical Reports Server (NTRS)

    Kruger, R.; Norris, H. P.

    1979-01-01

    An analytical model was developed that can be used to establish certain parameters of a thermal vacuum environmental test program based on an optimization of program costs. This model is in the form of a computer program that interacts with a user insofar as the input of certain parameters. The program provides the user a list of pertinent information regarding an optimized test program and graphs of some of the parameters. The model is a first attempt in this area and includes numerous simplifications. The model appears useful as a general guide and provides a way for extrapolating past performance to future missions.

  12. Rotary Engine Friction Test Rig Development Report

    DTIC Science & Technology

    2011-12-01

    fundamental research is needed to understand the friction characteristics of the rotary engine that lead to accelerated wear and tear on the seals...that includes a turbocharger . Once the original GT-Suite model is validated, the turbocharger model will be more accurate. This validation will...prepare for turbocharger and fuel-injector testing, which will lead to further development and calibration of the model. Further details are beyond the

  13. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  14. Preliminary Evaluation of the Low-Speed Stability and Control Characteristics of the McDonnell XP-85 Airplane from Tests of an Unballasted 1/5-Scale Model in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Johnson, Joseph L.

    1947-01-01

    At the request of the Air Material Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a jet propelled, parasite fighter with a 34 deg sweepback at the wing quarter chord. It was designed to be carried in a bomb bay of the B-36 air plane. The first portion of the investigation consists of a preliminary evaluation of the stability and control characteristics of the airplane from force and fight tests of an unballasted 1/5-scale model. The second portion of the investigation consists of test of a properly balasted 1/10-scale model which will include a study of the stability of the Xp-85 when attached to the trapeze for retraction into the B-36 bomb bay. The results of the preliminary test with the 1/5-scale model are presented herein. This portion fo the investigation included tests of the model with various center fin arrangements. Both the design nose flap and a stall control vane were investigated.

  15. Biases and Power for Groups Comparison on Subjective Health Measurements

    PubMed Central

    Hamel, Jean-François; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Roquelaure, Yves; Sébille, Véronique

    2012-01-01

    Subjective health measurements are increasingly used in clinical research, particularly for patient groups comparisons. Two main types of analytical strategies can be used for such data: so-called classical test theory (CTT), relying on observed scores and models coming from Item Response Theory (IRT) relying on a response model relating the items responses to a latent parameter, often called latent trait. Whether IRT or CTT would be the most appropriate method to compare two independent groups of patients on a patient reported outcomes measurement remains unknown and was investigated using simulations. For CTT-based analyses, groups comparison was performed using t-test on the scores. For IRT-based analyses, several methods were compared, according to whether the Rasch model was considered with random effects or with fixed effects, and the group effect was included as a covariate or not. Individual latent traits values were estimated using either a deterministic method or by stochastic approaches. Latent traits were then compared with a t-test. Finally, a two-steps method was performed to compare the latent trait distributions, and a Wald test was performed to test the group effect in the Rasch model including group covariates. The only unbiased IRT-based method was the group covariate Wald’s test, performed on the random effects Rasch model. This model displayed the highest observed power, which was similar to the power using the score t-test. These results need to be extended to the case frequently encountered in practice where data are missing and possibly informative. PMID:23115620

  16. Results of tests performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel: Report on the Modified D.S.M.A. Design

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1996-01-01

    Numerous tests were performed on the original Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel, scaled down from the full-scale plans. Results of tests performed on the original scale model tunnel were reported in April 1995, which clearly showed that this model was lacking in performance. Subsequently this scale model was modified to attempt to possibly improve the tunnel performance. The modifications included: (a) redesigned diffuser; (b) addition of a collector; (c) addition of a Nozzle-Diffuser; (d) changes in location of vent-air. Tests performed on the modified tunnel showed a marked improvement in performance amounting to a nominal increase of pressure recovery in the diffuser from 34 percent to 54 percent. Results obtained in the tests have wider application. They may also be applied to other tunnels operating with an open test section not necessarily having similar geometry as the model under consideration.

  17. Using a web-based application to define the accuracy of diagnostic tests when the gold standard is imperfect.

    PubMed

    Lim, Cherry; Wannapinij, Prapass; White, Lisa; Day, Nicholas P J; Cooper, Ben S; Peacock, Sharon J; Limmathurotsakul, Direk

    2013-01-01

    Estimates of the sensitivity and specificity for new diagnostic tests based on evaluation against a known gold standard are imprecise when the accuracy of the gold standard is imperfect. Bayesian latent class models (LCMs) can be helpful under these circumstances, but the necessary analysis requires expertise in computational programming. Here, we describe open-access web-based applications that allow non-experts to apply Bayesian LCMs to their own data sets via a user-friendly interface. Applications for Bayesian LCMs were constructed on a web server using R and WinBUGS programs. The models provided (http://mice.tropmedres.ac) include two Bayesian LCMs: the two-tests in two-population model (Hui and Walter model) and the three-tests in one-population model (Walter and Irwig model). Both models are available with simplified and advanced interfaces. In the former, all settings for Bayesian statistics are fixed as defaults. Users input their data set into a table provided on the webpage. Disease prevalence and accuracy of diagnostic tests are then estimated using the Bayesian LCM, and provided on the web page within a few minutes. With the advanced interfaces, experienced researchers can modify all settings in the models as needed. These settings include correlation among diagnostic test results and prior distributions for all unknown parameters. The web pages provide worked examples with both models using the original data sets presented by Hui and Walter in 1980, and by Walter and Irwig in 1988. We also illustrate the utility of the advanced interface using the Walter and Irwig model on a data set from a recent melioidosis study. The results obtained from the web-based applications were comparable to those published previously. The newly developed web-based applications are open-access and provide an important new resource for researchers worldwide to evaluate new diagnostic tests.

  18. Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003

    USGS Publications Warehouse

    Sullivan, Annette B.; Rounds, Stewart A.

    2004-01-01

    The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.

  19. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  20. Comparison of ISRU Excavation System Model Blade Force Methodology and Experimental Results

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Wilkinson, R. Allen; Mueller, Robert P.; Schuler, Jason M.; Nick, Andrew J.

    2010-01-01

    An Excavation System Model has been written to simulate the collection and transportation of regolith on the Moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. A prototype lunar vehicle built at the NASA Johnson Space Center (JSC) was tested with a bulldozer type blade developed at the NASA Kennedy Space Center (KSC) attached to the front. This is the initial correlation of actual field test data to the blade forces calculated by the Excavation System Model and the test data followed similar trends with the predicted values. This testing occurred in soils developed at the NASA Glenn Research Center (GRC) which are a mixture of different types of sands and whose soil properties have been well characterized. Three separate analytical models are compared to the test data.

  1. A comprehensive method for preliminary design optimization of axial gas turbine stages. II - Code verification

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1983-01-01

    The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.

  2. Testing the World with Simulations.

    ERIC Educational Resources Information Center

    Roberts, Nancy

    1983-01-01

    Discusses steps involved in model building and simulation: understanding a problem, building a model, and simulation. Includes a mathematical model (focusing on a problem dealing with influenza) written in the DYNAMO computer language, developed specifically for writing simulation models. (Author/JN)

  3. Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.

    2008-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.

  4. Analysis of structural dynamic data from Skylab. Volume 2: Skylab analytical and test model data

    NASA Technical Reports Server (NTRS)

    Demchak, L.; Harcrow, H.

    1976-01-01

    The orbital configuration test modal data, analytical test correlation modal data, and analytical flight configuration modal data are presented. Tables showing the generalized mass contributions (GMCs) for each of the thirty tests modes are given along with the two dimensional mode shape plots and tables of GMCs for the test correlated analytical modes. The two dimensional mode shape plots for the analytical modes and uncoupled and coupled modes of the orbital flight configuration at three development phases of the model are included.

  5. Prospects for testing Lorentz and CPT symmetry with antiprotons.

    PubMed

    Vargas, Arnaldo J

    2018-03-28

    A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).

  6. Does the cognitive reflection test measure cognitive reflection? A mathematical modeling approach.

    PubMed

    Campitelli, Guillermo; Gerrans, Paul

    2014-04-01

    We used a mathematical modeling approach, based on a sample of 2,019 participants, to better understand what the cognitive reflection test (CRT; Frederick In Journal of Economic Perspectives, 19, 25-42, 2005) measures. This test, which is typically completed in less than 10 min, contains three problems and aims to measure the ability or disposition to resist reporting the response that first comes to mind. However, since the test contains three mathematically based problems, it is possible that the test only measures mathematical abilities, and not cognitive reflection. We found that the models that included an inhibition parameter (i.e., the probability of inhibiting an intuitive response), as well as a mathematical parameter (i.e., the probability of using an adequate mathematical procedure), fitted the data better than a model that only included a mathematical parameter. We also found that the inhibition parameter in males is best explained by both rational thinking ability and the disposition toward actively open-minded thinking, whereas in females this parameter was better explained by rational thinking only. With these findings, this study contributes to the understanding of the processes involved in solving the CRT, and will be particularly useful for researchers who are considering using this test in their research.

  7. Some practical turbulence modeling options for Reynolds-averaged full Navier-Stokes calculations of three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1993-01-01

    New turbulence modeling options recently implemented for the 3-D version of Proteus, a Reynolds-averaged compressible Navier-Stokes code, are described. The implemented turbulence models include: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, the Chien k-epsilon model, and the Launder-Sharma k-epsilon model. Features of this turbulence modeling package include: well documented and easy to use turbulence modeling options, uniform integration of turbulence models from different classes, automatic initialization of turbulence variables for calculations using one- or two-equation turbulence models, multiple solid boundaries treatment, and fully vectorized L-U solver for one- and two-equation models. Validation test cases include the incompressible and compressible flat plate turbulent boundary layers, turbulent developing S-duct flow, and glancing shock wave/turbulent boundary layer interaction. Good agreement is obtained between the computational results and experimental data. Sensitivity of the compressible turbulent solutions with the method of y(sup +) computation, the turbulent length scale correction, and some compressibility corrections are examined in detail. The test cases show that the highly optimized one-and two-equation turbulence models can be used in routine 3-D Navier-Stokes computations with no significant increase in CPU time as compared with the Baldwin-Lomax algebraic model.

  8. Binomial test statistics using Psi functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Kimiko o

    2007-01-01

    For the negative binomial model (probability generating function (p + 1 - pt){sup -k}) a logarithmic derivative is the Psi function difference {psi}(k + x) - {psi}(k); this and its derivatives lead to a test statistic to decide on the validity of a specified model. The test statistic uses a data base so there exists a comparison available between theory and application. Note that the test function is not dominated by outliers. Applications to (i) Fisher's tick data, (ii) accidents data, (iii) Weldon's dice data are included.

  9. An Investigation of the Connection between Outdoor Orientation and Thriving

    ERIC Educational Resources Information Center

    Rude, Wally James; Bobilya, Andrew J.; Bell, Brent J.

    2017-01-01

    This study explored the contribution of outdoor orientation experiences to student thriving. Participants included 295 first-year college students from three institutions across North America. A thriving model was tested using structural equation modeling and included the following variables: outdoor orientation, thriving, involvement,…

  10. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Mraz, M. R.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.

  11. Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke

    Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terrimore » URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository.« less

  12. A Comparison Between The NORCAT Rover Test Results and the ISRU Excavation System Model Predictions Results

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Agui, Juan H.; Creager, Colin M.; Oravec, Heather A.

    2012-01-01

    An Excavation System Model has been written to simulate the collection and transportation of regolith on the moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. The Northern Centre for Advanced Technology Inc. rovers were tested at the NASA Glenn Research Center Simulated Lunar Operations facility. This testing was in support of the In-Situ Resource Utilization program Innovative Partnership Program. Testing occurred in soils developed at the Glenn Research Center which are a mixture of different types of sands and whose soil properties have been well characterized. This testing is part of an ongoing correlation of actual field test data to the blade forces calculated by the Excavation System Model. The results from this series of tests compared reasonably with the predicted values from the code.

  13. Suits reflectance models for wheat and cotton - Theoretical and experimental tests

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    Plant canopy reflectance models developed by Suits are tested for cotton and Penjamo winter wheat. Properties of the models are discussed, and the concept of model depth is developed. The models' predicted exchange symmetry for specular irradiance with respect to sun polar angle and observer polar angle agreed with field data for cotton and wheat. Model calculations and experimental data for wheat reflectance vs sun angle disagreed. Specular reflectance from 0.50 to 1.10 micron shows fair agreement between the model and wheat measurements. An Appendix includes the physical and optical parameters for wheat necessary to apply Suits' models.

  14. Growth Models and Teacher Evaluation: What Teachers Need to Know and Do

    ERIC Educational Resources Information Center

    Katz, Daniel S.

    2016-01-01

    Including growth models based on student test scores in teacher evaluations effectively holds teachers individually accountable for students improving their test scores. While an attractive policy for state administrators and advocates of education reform, value-added measures have been fraught with problems, and their use in teacher evaluation is…

  15. A Comparison of Linking and Concurrent Calibration under the Graded Response Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    Applications of item response theory to practical testing problems including equating, differential item functioning, and computerized adaptive testing, require that item parameter estimates be placed onto a common metric. In this study, two methods for developing a common metric for the graded response model under item response theory were…

  16. 77 FR 45530 - Approval and Promulgation of Implementation Plans; New Mexico; Albuquerque/Bernalillo County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... gasoline/electric hybrid vehicles; changes test frequency for some model year vehicles; allows motorists... hybrid vehicle gasoline engines, changing the test frequency for some model year vehicles, revising an... possible. Including the growing number of these hybrid vehicles in the I/M program will result in greater...

  17. Electrophoretic separator for purifying biologicals, part 1

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1978-01-01

    A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.

  18. Testing the Self-Efficacy-Performance Linkage of Social-Cognitive Theory.

    ERIC Educational Resources Information Center

    Harrison, Allison W.; Rainer, R. Kelly, Jr.; Hochwarter, Wayne A.; Thompson, Kenneth R.

    1997-01-01

    Briefly reviews Albert Bandura's Self-Efficacy Performance Model (ability to perform a task is influenced by an individual's belief in their capability). Tests this model with a sample of 776 university employees and computer-related knowledge and skills. Results supported Bandura's thesis. Includes statistical tables and a discussion of related…

  19. The Performance of the Linear Logistic Test Model When the Q-Matrix Is Misspecified: A Simulation Study

    ERIC Educational Resources Information Center

    MacDonald, George T.

    2014-01-01

    A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…

  20. Results from Alloy 600 And Alloy 690 Caustic SCC Model Boiler Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Frederick D.; Thomas, Larry E.

    2009-08-03

    A versatile model boiler test methodology was developed and used to compare caustic stress corrosion cracking (SCC) of mill annealed Alloy 600 and thermally treated Alloy 690. The model boiler included simulated crevice devices that efficiently and consistently concentrated Na2CO3, resulting in volatilization of CO2 with the steam and concentration of NaOH at the tube surfaces. The test methodology also included variation in tube stress, either produced by the primary to secondary side pressure differential, or by a novel method that reproducibly yields a higher stress condition on the tube. The significant effect of residual stress on tube SCC wasmore » also considered. SCC of both Alloy 600 and Alloy 690 were evaluated as a function of temperature and stress. Analytical transmission electron microscopy (ATEM) evaluations of the cracks and the grain boundaries ahead of the cracks were performed, providing insight into the SCC mechanism. This model boiler test methodology may be applicable to a range of bulkwater secondary chemistries that concentrate to produce aggressive crevice environments.« less

  1. Online Calibration of Polytomous Items Under the Generalized Partial Credit Model

    PubMed Central

    Zheng, Yi

    2016-01-01

    Online calibration is a technology-enhanced architecture for item calibration in computerized adaptive tests (CATs). Many CATs are administered continuously over a long term and rely on large item banks. To ensure test validity, these item banks need to be frequently replenished with new items, and these new items need to be pretested before being used operationally. Online calibration dynamically embeds pretest items in operational tests and calibrates their parameters as response data are gradually obtained through the continuous test administration. This study extends existing formulas, procedures, and algorithms for dichotomous item response theory models to the generalized partial credit model, a popular model for items scored in more than two categories. A simulation study was conducted to investigate the developed algorithms and procedures under a variety of conditions, including two estimation algorithms, three pretest item selection methods, three seeding locations, two numbers of score categories, and three calibration sample sizes. Results demonstrated acceptable estimation accuracy of the two estimation algorithms in some of the simulated conditions. A variety of findings were also revealed for the interacted effects of included factors, and recommendations were made respectively. PMID:29881063

  2. Genes and Alcohol Consumption: Studies with Mutant Mice

    PubMed Central

    Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.

    2017-01-01

    In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617

  3. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  4. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    NASA Astrophysics Data System (ADS)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  5. 16 CFR 1212.13 - Certification tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Certification tests. 1212.13 Section 1212.13... STANDARD FOR MULTI-PURPOSE LIGHTERS Certification Requirements § 1212.13 Certification tests. (a) General... include: (A) Qualification tests, which must be performed on surrogates of each model of multi-purpose...

  6. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  7. Fabrication and verification testing of ETM 30 cm diameter ion thrusters

    NASA Technical Reports Server (NTRS)

    Collett, C.

    1977-01-01

    Engineering model designs and acceptance tests are described for the 800 and 900 series 30 cm electron bombardment thrustors. Modifications to the test console for a 1000 hr verification test were made. The 10,000 hr endurance test of the S/N 701 thruster is described, and post test analysis results are included.

  8. Free-flight investigation of the stability and control characteristics of a STOL model with an externally blown jet flap

    NASA Technical Reports Server (NTRS)

    Parlett, L. P.; Emerling, S. J.; Phelps, A. E., III

    1974-01-01

    The stability and control characteristics of a four-engine turbofan STOL transport model having an externally blown jet flap have been investigated by means of the flying-model technique in the Langley full-scale tunnel. The flight characteristics of the model were investigated under conditions of symmetric and asymmetric (one engine inoperative) thrust at lift coefficients up to 9.5 and 5.5, respectively. Static characteristics were studied by conventional power-on force tests over the flight-test angle-of-attack range including the stall. In addition to these tests, dynamic longitudinal and lateral stability calculations were performed for comparison with the flight-test results and for use in correlating the model results with STOL handling-qualities criteria.

  9. Compilation of Test Data on 111 Free-Spinning Airplane Models Tested in the Langley 15-Foot and 20-Foot Free-Spinning Tunnels

    NASA Technical Reports Server (NTRS)

    Malvestuto, Frank S.; Gale, Lawrence J.; Wood, John H.

    1947-01-01

    A compilation of free-spinning-airplane model data on the spin and recovery characteristics of 111 airplanes is presented. These data were previously published in separate memorandum reports and were obtained from free-spinning tests in the Langley 15-foot and the Langley 20-foot free-spinning tunnels. The model test data presented include the steady-spin and recovery characteristics of each model for various combinations of aileron and elevator deflections and for various loadings and dimensional configurations. Dimensional data, mass data, and a three-view drawing of the corresponding free-spinning tunnel model are also presented for each airplane. The data presented should be of value to designers and should facilitate the design of airplanes incorporating satisfactory spin-recovery characteristics.

  10. Future Directions for Space Transportation and Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.

    2005-01-01

    Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.

  11. 40 CFR 51.357 - Test procedures and standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Test procedures and standards. 51.357... Requirements § 51.357 Test procedures and standards. Written test procedures and pass/fail standards shall be established and followed for each model year and vehicle type included in the program. (a) Test procedure...

  12. Development of Test-Analysis Models (TAM) for correlation of dynamic test and analysis results

    NASA Technical Reports Server (NTRS)

    Angelucci, Filippo; Javeed, Mehzad; Mcgowan, Paul

    1992-01-01

    The primary objective of structural analysis of aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A test analysis model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest. Numerous methods for generating TAMs have been developed in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or the test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten bay cantilevered truss structure.

  13. Wind Tunnel Model and Test to Evaluate the Effectiveness of a Passive Gust Alleviation Device for a Flying Wing Aircraft

    DTIC Science & Technology

    2016-10-04

    model of 1.24 m with the PGAD and control surface 3 1.2. Design and manufacture of the gust generator (frame, blades , actuation and control system...Chapter 3, a gust generator with two rotating blades was designed and manufactured to induce a transverse turbulence for wind tunnel test. A CFD...velocity at 8C (eight times of blade chord length) achieved 1.3%. In Chapter 4, the wind tunnel test of the scaled wing model is presented, including the

  14. General Dynamic (GD) Launch Waveform On-Orbit Performance Report

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Shalkhauser, Mary Jo

    2014-01-01

    The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.

  15. Fluorescence Imaging and Streamline Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Alderfer, David W.; Inman, Jennifer A.; Berger, Karen T.; Buck, Gregory M.; Schwartz, Richard J.

    2008-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Only a few of the models survived repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2- inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various model configurations and NO seeding methods were used, including a new streamwise visualization method based on PLIF. Virtual Diagnostics Interface (ViDI) technology, developed at NASA Langley Research Center, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images.

  16. Design, development and test of a capillary pump loop heat pipe

    NASA Technical Reports Server (NTRS)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  17. Overview of NASA MSFC and UAH Space Weather Modeling and Data Efforts

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard

    2016-01-01

    Marshall Space Flight Center, along with its industry and academia neighbors, has a long history of space environment model development and testing. Space weather efforts include research, testing, model development, environment definition, anomaly investigation, and operational support. This presentation will highlight a few of the current space weather activities being performed at Marshall and through collaborative efforts with University of Alabama in Huntsville scientists.

  18. Testing a Technology Integration Education Model for Millennial Preservice Teachers: Exploring the Moderating Relationships of Goals, Feedback, Task Value, and Self-Regulation among Motivation and Technological, Pedagogical, and Content Knowledge Competencies

    ERIC Educational Resources Information Center

    Holland, Denise D.; Piper, Randy T.

    2016-01-01

    The technology integration education model is a 12 construct model that includes 8 primary constructs and 4 moderator constructs. By testing the relationships among two primary constructs (motivation and technological, pedagogical, and content knowledge competencies) and four moderator constructs (goals, feedback, task value, and self-regulation),…

  19. Conducting field studies for testing pesticide leaching models

    USGS Publications Warehouse

    Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.

    1990-01-01

    A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.

  20. Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Gaffney, Richard L., Jr.; Parker, Peter A.; Tedder, Sarah A.; Chelliah, Harsha K.; Cutler, Andrew D.; Bivolaru, Daniel; Givi, Peyman; Hassan, Hassan A.

    2009-01-01

    This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.

  1. Predicting the Effects of Test Media in Ground-Based Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Parker, Peter A.; Chelliah, Harsha K.; Cutler, Andrew D.; Givi, Peyman; Hassan, Hassan, A.

    2006-01-01

    This paper discusses the progress of work which began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program has several components including the development of advance algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that will provide data for the modeling efforts will also be described, along with with the associated nonintrusive diagnostics used to collect the data.

  2. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE PAGES

    Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...

    2017-07-06

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  3. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Shiqi; Zheng, Sheng; Wang, Fei

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  4. Wind tunnel investigation of rotor lift and propulsive force at high speed: Data analysis

    NASA Technical Reports Server (NTRS)

    Mchugh, F.; Clark, R.; Soloman, M.

    1977-01-01

    The basic test data obtained during the lift-propulsive force limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed. Included are the rotor control positions, blade loads and six components of rotor force and moment, corrected for hub tares. Performance and blade loads are presented as the rotor lift limit is approached at fixed levels of rotor propulsive force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient as propulsive force is increased to the maximum obtainable by the model rotor. Test data is also included that defines the effect of stall proximity on rotor control power. The basic test data plots are presented in volumes 2 and 3.

  5. Numerical Modeling of the Lake Mary Road Bridge for Foundation Reuse Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Bojanowski, C.; Lottes, S. A.

    This project uses numerical techniques to assess the structural integrity and capacity of the bridge foundations and, as a result, reduces the risk associated with reusing the same foundation for a new superstructure. Nondestructive test methods of different types were used in combination with the numerical modeling and analysis. The onsite tests included visual inspection, tomography, ground penetrating radar, drilling boreholes and coreholes, and the laboratory tests on recovered samples. The results were utilized to identify the current geometry of the structure with foundation, including the hidden geometry of the abutments and piers, and soil and foundation material properties. Thismore » data was used to build the numerical models and run computational analyses on a high performance computer cluster to assess the structural integrity of the bridge and foundations including the suitability of the foundation for reuse with a new superstructure and traffic that will increase the load on the foundations. Computational analysis is more cost-effective and gives an advantage of getting more detailed knowledge about the structural response. It also enables to go beyond non-destructive testing and find the failure conditions without destroying the structure under consideration.« less

  6. Time series model for forecasting the number of new admission inpatients.

    PubMed

    Zhou, Lingling; Zhao, Ping; Wu, Dongdong; Cheng, Cheng; Huang, Hao

    2018-06-15

    Hospital crowding is a rising problem, effective predicting and detecting managment can helpful to reduce crowding. Our team has successfully proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in the schistosomiasis and hand, foot, and mouth disease forecasting study. In this paper, our aim is to explore the application of the hybrid ARIMA-NARNN model to track the trends of the new admission inpatients, which provides a methodological basis for reducing crowding. We used the single seasonal ARIMA (SARIMA), NARNN and the hybrid SARIMA-NARNN model to fit and forecast the monthly and daily number of new admission inpatients. The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to compare the forecasting performance among the three models. The modeling time range of monthly data included was from January 2010 to June 2016, July to October 2016 as the corresponding testing data set. The daily modeling data set was from January 4 to September 4, 2016, while the testing time range included was from September 5 to October 2, 2016. For the monthly data, the modeling RMSE and the testing RMSE, MAE and MAPE of SARIMA-NARNN model were less than those obtained from the single SARIMA or NARNN model, but the MAE and MAPE of modeling performance of SARIMA-NARNN model did not improve. For the daily data, all RMSE, MAE and MAPE of NARNN model were the lowest both in modeling stage and testing stage. Hybrid model does not necessarily outperform its constituents' performances. It is worth attempting to explore the reliable model to forecast the number of new admission inpatients from different data.

  7. ASTP ranging system mathematical model

    NASA Technical Reports Server (NTRS)

    Ellis, M. R.; Robinson, L. H.

    1973-01-01

    A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.

  8. Flap noise measurements for STOL configurations using external upper surface blowing

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Reshotko, M.; Olsen, W. A.

    1972-01-01

    Screening tests of upper surface blowing on externally blown flaps configurations were conducted. Noise and turning effectiveness data were obtained with small-scale, engine-over-the-wing models. One large model was tested to determine scale effects. Nozzle types included circular, slot, D-shaped, and multilobed. Tests were made with and without flow attachment devices. For STOL applications the particular multilobed mixer and the D-shaped nozzles tested were found to offer little or no noise advantage over the round convergent nozzle. High aspect ratio slot nozzles provided the quietest configurations. In general, upper surface blowing was quieter than lower surface blowing for equivalent EBF models.

  9. Data book for 12.5-inch diameter SRB thermal model water flotation test: 14.7 psia, series P020

    NASA Technical Reports Server (NTRS)

    Allums, S. L.

    1974-01-01

    Data acquired from the initial series of tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation are presented. Acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure are included. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.

  10. Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeni, Lorenzo; Hesselbæk, Bo; Bech, John

    This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.

  11. Airside HVAC BESTEST. Adaptation of ASHRAE RP 865 Airside HVAC Equipment Modeling Test Cases for ASHRAE Standard 140. Volume 1, Cases AE101-AE445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neymark, J.; Kennedy, M.; Judkoff, R.

    This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.

  12. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  13. Measurement of Function Post Hip Fracture: Testing a Comprehensive Measurement Model of Physical Function

    PubMed Central

    Gruber-Baldini, Ann L.; Hicks, Gregory; Ostir, Glen; Klinedinst, N. Jennifer; Orwig, Denise; Magaziner, Jay

    2015-01-01

    Background Measurement of physical function post hip fracture has been conceptualized using multiple different measures. Purpose This study tested a comprehensive measurement model of physical function. Design This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Methods Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living and performance was tested for fit at 2 and 12 months post hip fracture and among male and female participants and validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise and social activities post hip fracture. Findings The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Conclusion Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participant Clinical Implications The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. Practical but useful assessment of function should be considered and monitored over the recovery trajectory post hip fracture. PMID:26492866

  14. Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik; Behroozi, Peter; Diemer, Benedikt; Goldbaum, Nathan J.; Jennings, Elise; Leauthaud, Alexie; Mao, Yao-Yuan; More, Surhud; Parejko, John; Sinha, Manodeep; Sipöcz, Brigitta; Zentner, Andrew

    2017-11-01

    We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution, the conditional luminosity function, abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos or to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population—including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others—allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on http://halotools.readthedocs.io, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.

  15. 40 CFR 86.113-04 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.113-04 Fuel specifications. This section includes text that... exhaust and evaporative emission testing: Table 1 of § 86.113-04—Test Fuel Specifications for Gasoline... method. (2) Manufacturers may use California test fuels, as follows: (i) For model year 2014 and earlier...

  16. The Analysis of Weak Rock Using the Pressuremeter

    NASA Astrophysics Data System (ADS)

    Dafni, Jacob

    The pressuremeter is a versatile in situ testing instrument capable of testing a large range of materials from very soft clay to weak rock. Due to limitations of other testing devices, the pressuremeter is one of the few instruments capable of capturing stiffness and strength properties of weak rock. However, data collected is only useful if the material tested is properly modeled and desirable material properties can be obtained. While constitutive models with various flows rules have been developed for pressuremeter analysis in soil, less research has been directed at model development for pressuremeter tests in weak rock. The result is pressuremeter data collected in rock is typically analyzed using models designed for soil. The aim of this study was to explore constitutive rock models for development into a pressuremeter framework. Three models were considered, with two of those three implemented for pressuremeter analysis. A Mohr-Coulomb model with a tensile cutoff developed by Haberfield (1987) and a Hoek-Brown model initiated by Yang et al (2011) and further developed by the author were implemented and calibrated against a data set of pressuremeter tests from 5 project test sites including a total of 115 pressuremeter tests in a number of different rock formations. Development of a multiscale damage model established by Kondo et al (2008) was explored. However, this model requires further development to be used for pressuremeter data analysis.

  17. Systematic Review of Economic Models Used to Compare Techniques for Detecting Peripheral Arterial Disease.

    PubMed

    Moloney, Eoin; O'Connor, Joanne; Craig, Dawn; Robalino, Shannon; Chrysos, Alexandros; Javanbakht, Mehdi; Sims, Andrew; Stansby, Gerard; Wilkes, Scott; Allen, John

    2018-04-23

    Peripheral arterial disease (PAD) is a common condition, in which atherosclerotic narrowing in the arteries restricts blood supply to the leg muscles. In order to support future model-based economic evaluations comparing methods of diagnosis in this area, a systematic review of economic modelling studies was conducted. A systematic literature review was performed in June 2017 to identify model-based economic evaluations of diagnostic tests to detect PAD, with six individual databases searched. The review was conducted in accordance with the methods outlined in the Centre for Reviews and Dissemination's guidance for undertaking reviews in healthcare, and appropriate inclusion criteria were applied. Relevant data were extracted, and studies were quality assessed. Seven studies were included in the final review, all of which were published between 1995 and 2014. There was wide variation in the types of diagnostic test compared. The majority of the studies (six of seven) referenced the sources used to develop their model, and all studies stated and justified the structural assumptions. Reporting of the data within the included studies could have been improved. Only one identified study focused on the cost-effectiveness of a test typically used in primary care. This review brings together all applied modelling methods for tests used in the diagnosis of PAD, which could be used to support future model-based economic evaluations in this field. The limited modelling work available on tests typically used for the detection of PAD in primary care, in particular, highlights the importance of future work in this area.

  18. Patient-specific model of a scoliotic torso for surgical planning

    NASA Astrophysics Data System (ADS)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-03-01

    A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

  19. Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

    NASA Astrophysics Data System (ADS)

    Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.

    2018-02-01

    The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

  20. Common IED exploitation target set ontology

    NASA Astrophysics Data System (ADS)

    Russomanno, David J.; Qualls, Joseph; Wowczuk, Zenovy; Franken, Paul; Robinson, William

    2010-04-01

    The Common IED Exploitation Target Set (CIEDETS) ontology provides a comprehensive semantic data model for capturing knowledge about sensors, platforms, missions, environments, and other aspects of systems under test. The ontology also includes representative IEDs; modeled as explosives, camouflage, concealment objects, and other background objects, which comprise an overall threat scene. The ontology is represented using the Web Ontology Language and the SPARQL Protocol and RDF Query Language, which ensures portability of the acquired knowledge base across applications. The resulting knowledge base is a component of the CIEDETS application, which is intended to support the end user sensor test and evaluation community. CIEDETS associates a system under test to a subset of cataloged threats based on the probability that the system will detect the threat. The associations between systems under test, threats, and the detection probabilities are established based on a hybrid reasoning strategy, which applies a combination of heuristics and simplified modeling techniques. Besides supporting the CIEDETS application, which is focused on efficient and consistent system testing, the ontology can be leveraged in a myriad of other applications, including serving as a knowledge source for mission planning tools.

  1. Prognostic durability of liver fibrosis tests and improvement in predictive performance for mortality by combining tests.

    PubMed

    Bertrais, Sandrine; Boursier, Jérôme; Ducancelle, Alexandra; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Moal, Valérie; Calès, Paul

    2017-06-01

    There is currently no recommended time interval between noninvasive fibrosis measurements for monitoring chronic liver diseases. We determined how long a single liver fibrosis evaluation may accurately predict mortality, and assessed whether combining tests improves prognostic performance. We included 1559 patients with chronic liver disease and available baseline liver stiffness measurement (LSM) by Fibroscan, aspartate aminotransferase to platelet ratio index (APRI), FIB-4, Hepascore, and FibroMeter V2G . Median follow-up was 2.8 years during which 262 (16.8%) patients died, with 115 liver-related deaths. All fibrosis tests were able to predict mortality, although APRI (and FIB-4 for liver-related mortality) showed lower overall discriminative ability than the other tests (differences in Harrell's C-index: P < 0.050). According to time-dependent AUROCs, the time period with optimal predictive performance was 2-3 years in patients with no/mild fibrosis, 1 year in patients with significant fibrosis, and <6 months in cirrhotic patients even in those with a model of end-stage liver disease (MELD) score <15. Patients were then randomly split in training/testing sets. In the training set, blood tests and LSM were independent predictors of all-cause mortality. The best-fit multivariate model included age, sex, LSM, and FibroMeter V2G with C-index = 0.834 (95% confidence interval, 0.803-0.862). The prognostic model for liver-related mortality included the same covariates with C-index = 0.868 (0.831-0.902). In the testing set, the multivariate models had higher prognostic accuracy than FibroMeter V2G or LSM alone for all-cause mortality and FibroMeter V2G alone for liver-related mortality. The prognostic durability of a single baseline fibrosis evaluation depends on the liver fibrosis level. Combining LSM with a blood fibrosis test improves mortality risk assessment. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  2. Off-Road Soft Soil Tire Model Development and Experimental Testing

    DTIC Science & Technology

    2011-06-29

    Eduardo Pinto 2 , Mr. Scott Naranjo 3 , Dr. Paramsothy Jayakumar 4 , Dr. Archie Andonian 5 , Dr. Dave Hubbell 6 , Dr. Brant Ross 7 1Virginia...The effect of soil charac- teristics on the tire dynamics will be studied. Validation against data collected from full vehicle testing is included in...the proposed future work. Keywords: tire model, soft soil, terramechanics, vehicle dynamics , indoor testing 1 Introduction The goal of this paper is

  3. An empirical comparison of statistical tests for assessing the proportional hazards assumption of Cox's model.

    PubMed

    Ng'andu, N H

    1997-03-30

    In the analysis of survival data using the Cox proportional hazard (PH) model, it is important to verify that the explanatory variables analysed satisfy the proportional hazard assumption of the model. This paper presents results of a simulation study that compares five test statistics to check the proportional hazard assumption of Cox's model. The test statistics were evaluated under proportional hazards and the following types of departures from the proportional hazard assumption: increasing relative hazards; decreasing relative hazards; crossing hazards; diverging hazards, and non-monotonic hazards. The test statistics compared include those based on partitioning of failure time and those that do not require partitioning of failure time. The simulation results demonstrate that the time-dependent covariate test, the weighted residuals score test and the linear correlation test have equally good power for detection of non-proportionality in the varieties of non-proportional hazards studied. Using illustrative data from the literature, these test statistics performed similarly.

  4. Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.

    2010-01-01

    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.

  5. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  6. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  7. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimenmore » are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.« less

  8. Understanding the Alteration of Bentonite Backfill Using Coupled THMC Modeling for a Long Term Heater Test at the Grimsel Underground Research Lab

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Zheng, L.; Xu, H.; Rutqvist, J.

    2017-12-01

    Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of pH, bicarbonate and sulphate were largely determined by chemical reactions. These findings enable more reliable calculation of the time frame and condition of the early unsaturated phase in bentonite, the porosity and permeability after the bentonite becomes fully saturated, and how transport processes interact with reactions.

  9. Modelling of human transplacental transport as performed in Copenhagen, Denmark.

    PubMed

    Mathiesen, Line; Mørck, Thit Aarøe; Zuri, Giuseppina; Andersen, Maria Helena; Pehrson, Caroline; Frederiksen, Marie; Mose, Tina; Rytting, Erik; Poulsen, Marie S; Nielsen, Jeanette K S; Knudsen, Lisbeth E

    2014-07-01

    Placenta perfusion models are very effective when studying the placental mechanisms in order to extrapolate to real-life situations. The models are most often used to investigate the transport of substances between mother and foetus, including the potential metabolism of these. We have studied the relationships between maternal and foetal exposures to various compounds including pollutants such as polychlorinated biphenyls, polybrominated flame retardants, nanoparticles as well as recombinant human antibodies. The compounds have been studied in the human placenta perfusion model and to some extent in vitro with an established human monolayer trophoblast cell culture model. Results from our studies distinguish placental transport of substances by physicochemical properties, adsorption to placental tissue, binding to transport and receptor proteins and metabolism. We have collected data from different classes of chemicals and nanoparticles for comparisons across chemical structures as well as different test systems. Our test systems are based on human material to bypass the extrapolation from animal data. By combining data from our two test systems, we are able to rank and compare the transport of different classes of substances according to their transport ability. Ultimately, human data including measurements in cord blood contribute to the study of placental transport. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  11. Electron Induced Discharge Modeling, Testing, and Analysis for Scatha. Volume I. Phenomenology Study and Model Testing.

    DTIC Science & Technology

    1978-12-31

    Dielectric Discharge. .. ......... 23 3.2.1 Total Emitted Charge .. ........... ........ 26 3.2.2 Emission Time History .. .. ................. 29 3.3...taken to be a rise time of 10 ns and a fall time of 10 to 100 ns. In addition, a physical model of the discharge mechanism has been developed in which...scale model of the P78-2, dubbed the SCATSAT was constructed whose design was chosen to simulate the basic structure of the real satellite, including the

  12. Integrated research in constitutive modelling at elevated temperatures, part 2

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.; Allen, D. H.

    1986-01-01

    Four current viscoplastic models are compared experimentally with Inconel 718 at 1100 F. A series of tests were performed to create a sufficient data base from which to evaluate material constants. The models used include Bodner's anisotropic model; Krieg, Swearengen, and Rhode's model; Schmidt and Miller's model; and Walker's exponential model.

  13. Advanced Rotorcraft Transmission (ART) program status

    NASA Technical Reports Server (NTRS)

    Bossler, Robert; Heath, Gregory

    1991-01-01

    Reported herein is work done on the Advanced Rotorcraft Transmission by McDonnell Douglas Helicopter Company under Army/NASA contract. The novel concept pursued includes the use of face gears for power transmission and a torque splitting arrangement. The design reduces the size and weight of the corner-turning hardware and the next reduction stage. New methods of analyzing face gears have increased confidence in their usefulness. Test gears have been designed and manufactured for power transmission testing on the NASA-Lewis spiral bevel test rig. Transmission design effort has included finite element modeling of the split torque paths to assure equal deflection under load. A finite element model of the Apache main transmission has been completed to substantiate noise prediction methods. A positive engagement overrunning clutch design is described. Test spur gears have been made by near-net-shape forging from five different materials. Three housing materials have been procured for evaluation testing.

  14. The Theory of Planned Behavior as a Model of Heavy Episodic Drinking Among College Students

    PubMed Central

    Collins, Susan E.; Carey, Kate B.

    2008-01-01

    This study provided a simultaneous, confirmatory test of the theory of planned behavior (TPB) in predicting heavy episodic drinking (HED) among college students. It was hypothesized that past HED, drinking attitudes, subjective norms and drinking refusal self-efficacy would predict intention, which would in turn predict future HED. Participants consisted of 131 college drinkers (63% female) who reported having engaged in HED in the previous two weeks. Participants were recruited and completed questionnaires within the context of a larger intervention study (see Collins & Carey, 2005). Latent factor structural equation modeling was used to test the ability of the TPB to predict HED. Chi-square tests and fit indices indicated good fit for the final structural models. Self-efficacy and attitudes but not subjective norms significantly predicted baseline intention, and intention and past HED predicted future HED. Contrary to hypotheses, however, a structural model excluding past HED provided a better fit than a model including it. Although further studies must be conducted before a definitive conclusion is reached, a TPB model excluding past behavior, which is arguably more parsimonious and theory driven, may provide better prediction of HED among college drinkers than a model including past behavior. PMID:18072832

  15. Windfield and trajectory models for tornado-propelled objects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmann, G.H.; Radbill, J.R.; Marte, J.E.

    1983-03-01

    This is the final report of a three-phased research project to develop a six-degree-of-freedom mathematical model to predict the trajectories of tornado-propelled objects. The model is based on the meteorological, aerodynamic, and dynamic processes that govern the trajectories of missiles in a tornadic windfield. The aerodynamic coefficients for the postulated missiles were obtained from full-scale wind tunnel tests on a 12-inch pipe and car and from drop tests. Rocket sled tests were run whereby the 12-inch pipe and car were injected into a worst-case tornado windfield in order to verify the trajectory model. To simplify and facilitate the use ofmore » the trajectory model for design applications without having to run the computer program, this report gives the trajectory data for NRC-postulated missiles in tables based on given variables of initial conditions of injection and tornado windfield. Complete descriptions of the tornado windfield and trajectory models are presented. The trajectory model computer program is also included for those desiring to perform trajectory or sensitivity analyses beyond those included in the report or for those wishing to examine other missiles and use other variables.« less

  16. Confirmation of saturation equilibrium conditions in crater populations

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Gaskell, Robert W.

    1993-01-01

    We have continued work on realistic numerical models of cratered surfaces, as first reported at last year's LPSC. We confirm the saturation equilibrium level with a new, independent test. One of us has developed a realistic computer simulation of a cratered surface. The model starts with a smooth surface or fractal topography, and adds primary craters according to the cumulative power law with exponent -1.83, as observed on lunar maria and Martian plains. Each crater has an ejecta blanket with the volume of the crater, feathering out to a distance of 4 crater radii. We use the model to test the levels of saturation equilibrium reached in naturally occurring systems, by increasing crater density and observing its dependence on various parameters. In particular, we have tested to see if these artificial systems reach the level found by Hartmann on heavily cratered planetary surfaces, hypothesized to be the natural saturation equilibrium level. This year's work gives the first results of a crater population that includes secondaries. Our model 'Gaskell-4' (September, 1992) includes primaries as described above, but also includes a secondary population, defined by exponent -4. We allowed the largest secondary from each primary to be 0.10 times the size of the primary. These parameters will be changed to test their effects in future models. The model gives realistic images of a cratered surface although it appears richer in secondaries than real surfaces are. The effect of running the model toward saturation gives interesting results for the diameter distribution. Our most heavily cratered surface had the input number of primary craters reach about 0.65 times the hypothesized saturation equilibrium, but the input number rises to more than 100 times that level for secondaries below 1.4 km in size.

  17. Nonlinear Modeling of Joint Dominated Structures

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.

    1990-01-01

    The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.

  18. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  19. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    NASA Astrophysics Data System (ADS)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  20. Development of simplified ecosystem models for applications in Earth system studies: The Century experience

    NASA Technical Reports Server (NTRS)

    Parton, William J.; Ojima, Dennis S.; Schimel, David S.; Kittel, Timothy G. F.

    1992-01-01

    During the past decade, a growing need to conduct regional assessments of long-term trends of ecosystem behavior and the technology to meet this need have converged. The Century model is the product of research efforts initially intended to develop a general model of plant-soil ecosystem dynamics for the North American central grasslands. This model is now being used to simulate plant production, nutrient cycling, and soil organic matter dynamics for grassland, crop, forest, and shrub ecosystems in various regions of the world, including temperate and tropical ecosystems. This paper will focus on the philosophical approach used to develop the structure of Century. The steps included were model simplification, parameterization, and testing. In addition, the importance of acquiring regional data bases for model testing and the present regional application of Century in the Great Plains, which focus on regional ecosystem dynamics and the effect of altering environmental conditions, are discussed.

  1. Modeling the language learning strategies and English language proficiency of pre-university students in UMS: A case study

    NASA Astrophysics Data System (ADS)

    Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.

    2015-10-01

    This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.

  2. Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model

    PubMed Central

    Witzenburg, Colleen M.; Dhume, Rohit Y.; Shah, Sachin B.; Korenczuk, Christopher E.; Wagner, Hallie P.; Alford, Patrick W.; Barocas, Victor H.

    2017-01-01

    The ascending thoracic aorta is poorly understood mechanically, especially its risk of dissection. To make better predictions of dissection risk, more information about the multidimensional failure behavior of the tissue is needed, and this information must be incorporated into an appropriate theoretical/computational model. Toward the creation of such a model, uniaxial, equibiaxial, peel, and shear lap tests were performed on healthy porcine ascending aorta samples. Uniaxial and equibiaxial tests showed anisotropy with greater stiffness and strength in the circumferential direction. Shear lap tests showed catastrophic failure at shear stresses (150–200 kPa) much lower than uniaxial tests (750–2500 kPa), consistent with the low peel tension (∼60 mN/mm). A novel multiscale computational model, including both prefailure and failure mechanics of the aorta, was developed. The microstructural part of the model included contributions from a collagen-reinforced elastin sheet and interlamellar connections representing fibrillin and smooth muscle. Components were represented as nonlinear fibers that failed at a critical stretch. Multiscale simulations of the different experiments were performed, and the model, appropriately specified, agreed well with all experimental data, representing a uniquely complete structure-based description of aorta mechanics. In addition, our experiments and model demonstrate the very low strength of the aorta in radial shear, suggesting an important possible mechanism for aortic dissection. PMID:27893044

  3. Virtual sensor models for real-time applications

    NASA Astrophysics Data System (ADS)

    Hirsenkorn, Nils; Hanke, Timo; Rauch, Andreas; Dehlink, Bernhard; Rasshofer, Ralph; Biebl, Erwin

    2016-09-01

    Increased complexity and severity of future driver assistance systems demand extensive testing and validation. As supplement to road tests, driving simulations offer various benefits. For driver assistance functions the perception of the sensors is crucial. Therefore, sensors also have to be modeled. In this contribution, a statistical data-driven sensor-model, is described. The state-space based method is capable of modeling various types behavior. In this contribution, the modeling of the position estimation of an automotive radar system, including autocorrelations, is presented. For rendering real-time capability, an efficient implementation is presented.

  4. Lung function parameters improve prediction of VO2peak in an elderly population: The Generation 100 study.

    PubMed

    Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd

    2017-01-01

    Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.

  5. Testing the Construct Validity of Proposed Criteria for "DSM-5" Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Mandy, William P. L.; Charman, Tony; Skuse, David H.

    2012-01-01

    Objective: To use confirmatory factor analysis to test the construct validity of the proposed "DSM-5" symptom model of autism spectrum disorder (ASD), in comparison to alternative models, including that described in "DSM-IV-TR." Method: Participants were 708 verbal children and young persons (mean age, 9.5 years) with mild to severe autistic…

  6. Examination of Different Item Response Theory Models on Tests Composed of Testlets

    ERIC Educational Resources Information Center

    Kogar, Esin Yilmaz; Kelecioglu, Hülya

    2017-01-01

    The purpose of this research is to first estimate the item and ability parameters and the standard error values related to those parameters obtained from Unidimensional Item Response Theory (UIRT), bifactor (BIF) and Testlet Response Theory models (TRT) in the tests including testlets, when the number of testlets, number of independent items, and…

  7. Structural Test Laboratory | Water Power | NREL

    Science.gov Websites

    Structural Test Laboratory Structural Test Laboratory NREL engineers design and configure structural components can validate models, demonstrate system reliability, inform design margins, and assess , including mass and center of gravity, to ensure compliance with design goals Dynamic Characterization Use

  8. A geochemical examination of humidity cell tests

    USGS Publications Warehouse

    Maest, Ann; Nordstrom, D. Kirk

    2017-01-01

    Humidity cell tests (HCTs) are long-term (20 to >300 weeks) leach tests that are considered by some to be the among the most reliable geochemical characterization methods for estimating the leachate quality of mined materials. A number of modifications have been added to the original HCT method, but the interpretation of test results varies widely. We suggest that the HCTs represent an underutilized source of geochemical data, with a year-long test generating approximately 2500 individual chemical data points. The HCT concentration peaks and valleys can be thought of as a “chromatogram” of reactions that may occur in the field, whereby peaks in concentrations are associated with different geochemical processes, including sulfate salt dissolution, sulfide oxidation, and dissolution of rock-forming minerals, some of which can neutralize acid. Some of these reactions occur simultaneously, some do not, and geochemical modeling can be used to help distinguish the dominant processes. Our detailed examination, including speciation and inverse modeling, of HCTs from three projects with different geology and mineralization shows that rapid sulfide oxidation dominates over a limited period of time that starts between 40 and 200 weeks of testing. The applicability of laboratory tests results to predicting field leachate concentrations, loads, or rates of reaction has not been adequately demonstrated, although early flush releases and rapid sulfide oxidation rates in HCTs should have some relevance to field conditions. Knowledge of possible maximum solute concentrations is needed to design effective treatment and mitigation approaches. Early flush and maximum sulfide oxidation results from HCTs should be retained and used in environmental models. Factors that complicate the use of HCTs include: sample representation, time for microbial oxidizers to grow, sample storage before testing, geochemical reactions that add or remove constituents, and the HCT results chosen for use in modeling the environmental performance at mine sites. Improved guidance is needed for more consistent interpretation and use of HCT results that rely on identifying: the geochemical processes; the mineralogy, including secondary mineralogy; the available surface area for reactions; and the influence of hydrologic processes on leachate concentrations in runoff, streams, and groundwater.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler A; Santhanagopalan, Shriram; Yang, Chuanbo

    Computer models are helping to accelerate the design and validation of next generation batteries and provide valuable insights not possible through experimental testing alone. Validated 3-D physics-based models exist for predicting electrochemical performance, thermal and mechanical response of cells and packs under normal and abuse scenarios. The talk describes present efforts to make the models better suited for engineering design, including improving their computation speed, developing faster processes for model parameter identification including under aging, and predicting the performance of a proposed electrode material recipe a priori using microstructure models.

  10. The Clinical and Economic Benefits of Co-Testing Versus Primary HPV Testing for Cervical Cancer Screening: A Modeling Analysis.

    PubMed

    Felix, Juan C; Lacey, Michael J; Miller, Jeffrey D; Lenhart, Gregory M; Spitzer, Mark; Kulkarni, Rucha

    2016-06-01

    Consensus United States cervical cancer screening guidelines recommend use of combination Pap plus human papillomavirus (HPV) testing for women aged 30 to 65 years. An HPV test was approved by the Food and Drug Administration in 2014 for primary cervical cancer screening in women age 25 years and older. Here, we present the results of clinical-economic comparisons of Pap plus HPV mRNA testing including genotyping for HPV 16/18 (co-testing) versus DNA-based primary HPV testing with HPV 16/18 genotyping and reflex cytology (HPV primary) for cervical cancer screening. A health state transition (Markov) model with 1-year cycling was developed using epidemiologic, clinical, and economic data from healthcare databases and published literature. A hypothetical cohort of one million women receiving triennial cervical cancer screening was simulated from ages 30 to 70 years. Screening strategies compared HPV primary to co-testing. Outcomes included total and incremental differences in costs, invasive cervical cancer (ICC) cases, ICC deaths, number of colposcopies, and quality-adjusted life years for cost-effectiveness calculations. Comprehensive sensitivity analyses were performed. In a simulation cohort of one million 30-year-old women modeled up to age 70 years, the model predicted that screening with HPV primary testing instead of co-testing could lead to as many as 2,141 more ICC cases and 2,041 more ICC deaths. In the simulation, co-testing demonstrated a greater number of lifetime quality-adjusted life years (22,334) and yielded $39.0 million in savings compared with HPV primary, thereby conferring greater effectiveness at lower cost. Model results demonstrate that co-testing has the potential to provide improved clinical and economic outcomes when compared with HPV primary. While actual cost and outcome data are evaluated, these findings are relevant to U.S. healthcare payers and women's health policy advocates seeking cost-effective cervical cancer screening technologies.

  11. Advanced semi-active engine and transmission mounts: tools for modelling, analysis, design, and tuning

    NASA Astrophysics Data System (ADS)

    Farjoud, Alireza; Taylor, Russell; Schumann, Eric; Schlangen, Timothy

    2014-02-01

    This paper is focused on modelling, design, and testing of semi-active magneto-rheological (MR) engine and transmission mounts used in the automotive industry. The purpose is to develop a complete analysis, synthesis, design, and tuning tool that reduces the need for expensive and time-consuming laboratory and field tests. A detailed mathematical model of such devices is developed using multi-physics modelling techniques for physical systems with various energy domains. The model includes all major features of an MR mount including fluid dynamics, fluid track, elastic components, decoupler, rate-dip, gas-charged chamber, MR fluid rheology, magnetic circuit, electronic driver, and control algorithm. Conventional passive hydraulic mounts can also be studied using the same mathematical model. The model is validated using standard experimental procedures. It is used for design and parametric study of mounts; effects of various geometric and material parameters on dynamic response of mounts can be studied. Additionally, this model can be used to test various control strategies to obtain best vibration isolation performance by tuning control parameters. Another benefit of this work is that nonlinear interactions between sub-components of the mount can be observed and investigated. This is not possible by using simplified linear models currently available.

  12. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  13. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  14. Parameter estimation for terrain modeling from gradient data. [navigation system for Martian rover

    NASA Technical Reports Server (NTRS)

    Dangelo, K. R.

    1974-01-01

    A method is developed for modeling terrain surfaces for use on an unmanned Martian roving vehicle. The modeling procedure employs a two-step process which uses gradient as well as height data in order to improve the accuracy of the model's gradient. Least square approximation is used in order to stochastically determine the parameters which describe the modeled surface. A complete error analysis of the modeling procedure is included which determines the effect of instrumental measurement errors on the model's accuracy. Computer simulation is used as a means of testing the entire modeling process which includes the acquisition of data points, the two-step modeling process and the error analysis. Finally, to illustrate the procedure, a numerical example is included.

  15. Genetic analysis of body weights of individually fed beef bulls in South Africa using random regression models.

    PubMed

    Selapa, N W; Nephawe, K A; Maiwashe, A; Norris, D

    2012-02-08

    The aim of this study was to estimate genetic parameters for body weights of individually fed beef bulls measured at centralized testing stations in South Africa using random regression models. Weekly body weights of Bonsmara bulls (N = 2919) tested between 1999 and 2003 were available for the analyses. The model included a fixed regression of the body weights on fourth-order orthogonal Legendre polynomials of the actual days on test (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 84) for starting age and contemporary group effects. Random regressions on fourth-order orthogonal Legendre polynomials of the actual days on test were included for additive genetic effects and additional uncorrelated random effects of the weaning-herd-year and the permanent environment of the animal. Residual effects were assumed to be independently distributed with heterogeneous variance for each test day. Variance ratios for additive genetic, permanent environment and weaning-herd-year for weekly body weights at different test days ranged from 0.26 to 0.29, 0.37 to 0.44 and 0.26 to 0.34, respectively. The weaning-herd-year was found to have a significant effect on the variation of body weights of bulls despite a 28-day adjustment period. Genetic correlations amongst body weights at different test days were high, ranging from 0.89 to 1.00. Heritability estimates were comparable to literature using multivariate models. Therefore, random regression model could be applied in the genetic evaluation of body weight of individually fed beef bulls in South Africa.

  16. A Frequency-Domain Substructure System Identification Algorithm

    NASA Technical Reports Server (NTRS)

    Blades, Eric L.; Craig, Roy R., Jr.

    1996-01-01

    A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.

  17. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    NASA Astrophysics Data System (ADS)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  18. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 4: Summary

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Wallace, H. W.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.

  19. A multi-species reactive transport model to estimate biogeochemical rates based on single-well push-pull test data

    NASA Astrophysics Data System (ADS)

    Phanikumar, Mantha S.; McGuire, Jennifer T.

    2010-08-01

    Push-pull tests are a popular technique to investigate various aquifer properties and microbial reaction kinetics in situ. Most previous studies have interpreted push-pull test data using approximate analytical solutions to estimate (generally first-order) reaction rate coefficients. Though useful, these analytical solutions may not be able to describe important complexities in rate data. This paper reports the development of a multi-species, radial coordinate numerical model (PPTEST) that includes the effects of sorption, reaction lag time and arbitrary reaction order kinetics to estimate rates in the presence of mixing interfaces such as those created between injected "push" water and native aquifer water. The model has the ability to describe an arbitrary number of species and user-defined reaction rate expressions including Monod/Michelis-Menten kinetics. The FORTRAN code uses a finite-difference numerical model based on the advection-dispersion-reaction equation and was developed to describe the radial flow and transport during a push-pull test. The accuracy of the numerical solutions was assessed by comparing numerical results with analytical solutions and field data available in the literature. The model described the observed breakthrough data for tracers (chloride and iodide-131) and reactive components (sulfate and strontium-85) well and was found to be useful for testing hypotheses related to the complex set of processes operating near mixing interfaces.

  20. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.

    1988-01-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  1. Identification of Low Order Equivalent System Models From Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    Identification of low order equivalent system dynamic models from flight test data was studied. Inputs were pilot control deflections, and outputs were aircraft responses, so the models characterized the total aircraft response including bare airframe and flight control system. Theoretical investigations were conducted and related to results found in the literature. Low order equivalent system modeling techniques using output error and equation error parameter estimation in the frequency domain were developed and validated on simulation data. It was found that some common difficulties encountered in identifying closed loop low order equivalent system models from flight test data could be overcome using the developed techniques. Implications for data requirements and experiment design were discussed. The developed methods were demonstrated using realistic simulation cases, then applied to closed loop flight test data from the NASA F-18 High Alpha Research Vehicle.

  2. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, Mark C.; Sham, Sam; Wang, Yanli

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT testmore » results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.« less

  3. Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.

    2015-12-01

    WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).

  4. Effect of Installation of Mixer/Ejector Nozzles on the Core Flow Exhaust of High-Bypass-Ratio Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Harrington, Douglas E.

    1998-01-01

    The aerospace industry is currently investigating the effect of installing mixer/ejector nozzles on the core flow exhaust of high-bypass-ratio turbofan engines. This effort includes both full-scale engine tests at sea level conditions and subscale tests in static test facilities. Subscale model tests are to be conducted prior to full-scale testing. With this approach, model results can be analyzed and compared with analytical predications. Problem areas can then be identified and design changes made and verified in subscale prior to committing to any final design configurations for engine ground tests. One of the subscale model test programs for the integrated mixer/ejector development was a joint test conducted by the NASA Lewis Research Center and Pratt & Whitney Aircraft. This test was conducted to study various mixer/ejector nozzle configurations installed on the core flow exhaust of advanced, high-bypass-ratio turbofan engines for subsonic, commercial applications. The mixer/ejector concept involves the introduction of largescale, low-loss, streamwise vortices that entrain large amounts of secondary air and rapidly mix it with the primary stream. This results in increased ejector pumping relative to conventional ejectors and in more complete mixing within the ejector shroud. The latter improves thrust performance through the efficient energy exchange between the primary and secondary streams. This experimental program was completed in April 1997 in Lewis' CE-22 static test facility. Variables tested included the nozzle area ratio (A9/A8), which ranged from 1.6 to 3.0. This ratio was varied by increasing or decreasing the nozzle throat area, A8. Primary nozzles tested included both lobed mixers and conical primaries. These configurations were tested with and without an outer shroud, and the shroud position was varied by inserting spacers in it. In addition, data were acquired with and without secondary flow.

  5. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2004-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  6. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merion M.

    2002-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  7. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2003-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  8. Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino; Seible, Frieder

    1990-01-01

    Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.

  9. Adsorbent testing and mathematical modeling of a solid amine regenerative CO2 and H2O removal system

    NASA Technical Reports Server (NTRS)

    Jeng, F. F.; Williamson, R. G.; Quellette, F. A.; Edeen, M. A.; Lin, C. H.

    1991-01-01

    The paper examines the design and the construction details of the test bed built for testing a solid-amine-based Regenerable CO2 Removal System (RCRS) built at the NASA/Johnson Space Center for the extended Orbiter missions. The results of tests are presented, including those for the adsorption breakthrough and the adsorption and desorption of CO2 and H2O vapor. A model for predicting the performance of regenerative CO2 and H2O vapor adsorption of the solid amine system under various operating conditions was developed in parallel with the testing of the test stand, using the coefficient of mass transfer calculated from test results. The results of simulations are shown to predict the adsorption performance of the Extended Duration Orbiter test bed fairly well. For the application to the RCRS at various operating conditions the model has to be modified.

  10. Gravitational field modes GEM 3 and 4

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Wagner, C. A.; Putney, B. H.; Sandson, M. L.; Brownd, J. E.; Richardson, J. A.; Taylor, W. A.

    1972-01-01

    A refinement in the satellite geopotential solution for a Goddard Earth Model (GEM 3) was obtained. The solution includes the addition of two low inclination satellites, SAS at 3 deg and PEOLE at 15 deg, and is based upon 27 close earth satellites containing some 400,000 observations of electronic, laser, and optical data. In addition, a new combination satellite/gravimetry solution (GEM 4) was derived. The new model includes 61 center of mass tracking station locations with data from GRARR, Laser, MOTS, Baker-Nunn, and NWL Tranet Doppler tracking sites. Improvement was obtained for the zonal coefficients of the new models and is shown by tests on the long period perturbations of the orbits. Individual zonal coefficients agree very closely among different models that contain low inclination satellites. Tests of models with surface gravity data show that the GEM 3 satellite model has significantly better agreement with the gravimetry data than the GEM 1 satellite model, and that it also has better agreement with the gravimetry data than the 1969 SAO Standard Earth 2 model.

  11. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  12. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia National Laboratories. These tests are designed to validate aeroshell manufacturability using advanced material systems, and to demonstrate the maintenance of bondline integrity at realistically high temperatures and heating rates. Finally, a status is given of ongoing aeroshell modeling and analysis efforts which will be used to correlate with experimental testing, and to provide a reliable means of extrapolating to performance under actual flight conditions. The modeling and analysis effort includes a parallel series of experimental tests to determine TSP thermal expansion and other mechanical properties which are required for input to the analysis models.

  13. Michael Eisenberg and Robert Berkowitz's Big6[TM] Information Problem-Solving Model.

    ERIC Educational Resources Information Center

    Carey, James O.

    2003-01-01

    Reviews the Big6 information problem-solving model. Highlights include benefits and dangers of the simplicity of the model; theories of instruction; testing of the model; the model as a process for completing research projects; and advice for school library media specialists considering use of the model. (LRW)

  14. Benchmarking an Unstructured-Grid Model for Tsunami Current Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Yinglong J.; Priest, George; Allan, Jonathan; Stimely, Laura

    2016-12-01

    We present model results derived from a tsunami current benchmarking workshop held by the NTHMP (National Tsunami Hazard Mitigation Program) in February 2015. Modeling was undertaken using our own 3D unstructured-grid model that has been previously certified by the NTHMP for tsunami inundation. Results for two benchmark tests are described here, including: (1) vortex structure in the wake of a submerged shoal and (2) impact of tsunami waves on Hilo Harbor in the 2011 Tohoku event. The modeled current velocities are compared with available lab and field data. We demonstrate that the model is able to accurately capture the velocity field in the two benchmark tests; in particular, the 3D model gives a much more accurate wake structure than the 2D model for the first test, with the root-mean-square error and mean bias no more than 2 cm s-1 and 8 mm s-1, respectively, for the modeled velocity.

  15. Physical properties of the benchmark models program supercritical wing

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.

    1993-01-01

    The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.

  16. Free Wake Techniques for Rotor Aerodynamic Analylis. Volume 2: Vortex Sheet Models

    NASA Technical Reports Server (NTRS)

    Tanuwidjaja, A.

    1982-01-01

    Results of computations are presented using vortex sheets to model the wake and test the sensitivity of the solutions to various assumptions used in the development of the models. The complete codings are included.

  17. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Amongmore » these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.« less

  18. Parameter identification of material constants in a composite shell structure

    NASA Technical Reports Server (NTRS)

    Martinez, David R.; Carne, Thomas G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  19. 40 CFR 80.59 - General test fleet requirements for vehicle testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the 1990 model year. To be technologically equivalent vehicles at minimum must have closed-loop.... All vehicle maintenance procedures must be reported to the Administrator. (c) Each vehicle in the test fleet shall have no fewer than 4,000 miles of accumulated mileage prior to being included in the test...

  20. Tow Tank Dynamic Test Rig Drawings and Bill of Materials for the Aquantis 2.5 MW Ocean Current Generation Device

    DOE Data Explorer

    Swales, Henry; Banko, Richard; Coakley, David

    2015-06-03

    Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Test Rig Drawings and Bill of Materials. This submission contains information on the equipment for the scaled model tow tank testing. The information includes hardware, test protocols, and plans.

  1. Explanation of Two Anomalous Results in Statistical Mediation Analysis

    ERIC Educational Resources Information Center

    Fritz, Matthew S.; Taylor, Aaron B.; MacKinnon, David P.

    2012-01-01

    Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special…

  2. Historical Increase in the Number of Factors Measured by Commercial Tests of Cognitive Ability: Are We Overfactoring?

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Youngstrom, Eric A.

    2007-01-01

    A historical increase in the number of factors purportedly measured by commercial tests of cognitive ability may result from four distinct pressures including: increasingly complex models of intelligence, test publishers' desires to provide clinically useful assessment instruments with greater interpretive value, test publishers' desires to…

  3. Speededness and Adaptive Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Xiong, Xinhui

    2013-01-01

    Two simple constraints on the item parameters in a response--time model are proposed to control the speededness of an adaptive test. As the constraints are additive, they can easily be included in the constraint set for a shadow-test approach (STA) to adaptive testing. Alternatively, a simple heuristic is presented to control speededness in plain…

  4. High Reynolds number tests of a NASA SC(3)-0712(B) airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.

    1985-01-01

    A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.60 to 0.80. These variables provided a Reynolds number range from 4,400,000 to 40,000,000 based on a 15.24-cm (6.0-in.) airfoil chord. This investigation was designed to test a NASA advanced-technology airfoil from low to flight-equivalent Reynolds numbers, provide experience in cryogenic wind tunnel model design and testing techniques, and demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  5. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  6. Battery of behavioral tests in mice to study postoperative delirium

    PubMed Central

    Peng, Mian; Zhang, Ce; Dong, Yuanlin; Zhang, Yiying; Nakazawa, Harumasa; Kaneki, Masao; Zheng, Hui; Shen, Yuan; Marcantonio, Edward R.; Xie, Zhongcong

    2016-01-01

    Postoperative delirium is associated with increased morbidity, mortality and cost. However, its neuropathogenesis remains largely unknown, partially owing to lack of animal model(s). We therefore set out to employ a battery of behavior tests, including natural and learned behavior, in mice to determine the effects of laparotomy under isoflurane anesthesia (Anesthesia/Surgery) on these behaviors. The mice were tested at 24 hours before and at 6, 9 and 24 hours after the Anesthesia/Surgery. Composite Z scores were calculated. Cyclosporine A, an inhibitor of mitochondria permeability transient pore, was used to determine potential mitochondria-associated mechanisms of these behavioral changes. Anesthesia/Surgery selectively impaired behaviors, including latency to eat food in buried food test, freezing time and time spent in the center in open field test, and entries and duration in the novel arm of Y maze test, with acute onset and various timecourse. The composite Z scores quantitatively demonstrated the Anesthesia/Surgery-induced behavior impairment in mice. Cyclosporine A selectively ameliorated the Anesthesia/Surgery-induced reduction in ATP levels, the increases in latency to eat food, and the decreases in entries in the novel arm. These findings suggest that we could use a battery of behavior tests to establish a mouse model to study postoperative delirium. PMID:27435513

  7. Optical Modeling of the Alignment and Test of the NASA James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Hayden, Bill; Keski-Kuha, Ritva; Feinberg, Lee

    2007-01-01

    Optical modeling challenges of the ground alignment plan and optical test and verification of the NASA James Webb Space Telescope are discussed. Issues such as back-out of the gravity sag of light-weighted mirrors, as well as the use of a sparse-aperture auto-collimating flat system are discussed. A walk-through of the interferometer based alignment procedure is summarized, and sensitivities from the sparse aperture wavefront test are included as examples.'

  8. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  9. Analysis of critical thinking ability of VII grade students based on the mathematical anxiety level through learning cycle 7E model

    NASA Astrophysics Data System (ADS)

    Widyaningsih, E.; Waluya, S. B.; Kurniasih, A. W.

    2018-03-01

    This study aims to know mastery learning of students’ critical thinking ability with learning cycle 7E, determine whether the critical thinking ability of the students with learning cycle 7E is better than students’ critical thinking ability with expository model, and describe the students’ critical thinking phases based on the mathematical anxiety level. The method is mixed method with concurrent embedded. The population is VII grade students of SMP Negeri 3 Kebumen academic year 2016/2017. Subjects are determined by purposive sampling, selected two students from each level of mathematical anxiety. Data collection techniques include test, questionnaire, interview, and documentation. Quantitative data analysis techniques include mean test, proportion test, difference test of two means, difference test of two proportions and for qualitative data used Miles and Huberman model. The results show that: (1) students’ critical thinking ability with learning cycle 7E achieve mastery learning; (2) students’ critical thinking ability with learning cycle 7E is better than students’ critical thinking ability with expository model; (3) description of students’ critical thinking phases based on the mathematical anxiety level that is the lower the mathematical anxiety level, the subjects have been able to fulfil all of the indicators of clarification, assessment, inference, and strategies phases.

  10. Laser-Induced Thermal Acoustics Theory and Expected Experimental Errors when Applied to a Scramjet Isolator Model

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert Jeffrey; Baurle, Robert A.; Wilson, Lloyd G.

    2011-01-01

    A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature.

  11. Comparative evaluation of subgrade resilient modulus from non-destructive, in-situ, and laboratory methods.

    DOT National Transportation Integrated Search

    2007-08-01

    Field and laboratory testing programs were conducted to develop models that predict the resilient modulus of subgrade soils from : the test results of DCP, CIMCPT, FWD, Dynaflect, and soil properties. The field testing program included DCP, CIMCPT, F...

  12. Impaired limb reaction to displacement of center of gravity in rats with unilateral striatal ischemic injury.

    PubMed

    Nobile, Cameron W; Palmateer, Julie M; Kane, Jackie; Hurn, Patricia D; Schallert, Timothy; Adkins, DeAnna L

    2014-10-01

    Clinical stroke often results in impaired balance and increased vulnerability to severe injuries due to falling. To evaluate potential preclinical treatments that might target these deficits, it will be important to include tests capable of assessing these impairments chronically in animal models. Previously, we developed a postural instability test (PIT) that revealed chronic, unilateral impairments in postural stability in rat models of hemi-Parkinson's disease (PD) and of unilateral cervical spinal cord injury. Here, we investigated whether this test was also capable of revealing long-term stroke-induced impairments in postural support in rats. Additionally, we examined the ability of more common tests of sensorimotor function to detect chronic impairments. We found that the PIT detected chronic deficits in postural stability/balance enduring for up to 6 weeks post-stroke, outlasting impairments detected in other tests of forelimb sensorimotor function, including asymmetries in upright postural support (cylinder test) and vibrissae-evoked forelimb placing.

  13. Development, Analysis and Testing of the High Speed Research Flexible Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Spain, Charles V.; Turnock, David L.; Rausch, Russ D.; Hamouda, M-Nabil; Vogler, William A.; Stockwell, Alan E.

    1999-01-01

    This report presents the work performed by Lockheed Martin Engineering and Sciences (LMES) in support of the High Speed Research (HSR) Flexible Semispan Model (FSM) wind-tunnel test. The test was conducted in order to assess the aerodynamic and aeroelastic character of a flexible high speed civil transport wing. Data was acquired for the purpose of code validation and trend evaluation for this type of wing. The report describes a number of activities in preparing for and conducting the wind-tunnel test. These included coordination of the design and fabrication, development of analytical models, analysis/hardware correlation, performance of laboratory tests, monitoring of model safety issues, and wind-tunnel data acquisition and reduction. Descriptions and relevant evaluations associated with the pretest data are given in sections 1 through 6, followed by pre- and post-test flutter analysis in section 7, and the results of the aerodynamics/loads test in section 8. Finally, section 9 provides some recommendations based on lessons learned throughout the FSM program.

  14. Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Keller, Donald F.; Ivanco, Thomas G.

    2010-01-01

    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from the Ares I-X GWL model test was used in the determination of worst-case loads for the analysis of Ares I-X FTV design wind conditions. Finally, this paper includes a brief discussion of the limited full-scale GWL data acquired during the rollout and on-pad stay of the Ares I-X FTV that was launched from KSC on October 28, 2009.

  15. Community-driven demand creation for the use of routine viral load testing: a model to scale up routine viral load testing.

    PubMed

    Killingo, Bactrin M; Taro, Trisa B; Mosime, Wame N

    2017-11-01

    HIV treatment outcomes are dependent on the use of viral load measurement. Despite global and national guidelines recommending the use of routine viral load testing, these policies alone have not translated into widespread implementation or sufficiently increased access for people living with HIV (PLHIV). Civil society and communities of PLHIV recognize the need to close this gap and to enable the scale up of routine viral load testing. The International Treatment Preparedness Coalition (ITPC) developed an approach to community-led demand creation for the use of routine viral load testing. Using this Community Demand Creation Model, implementers follow a step-wise process to capacitate and empower communities to address their most pressing needs. This includes utlizing a specific toolkit that includes conducting a baseline assessment, developing a treatment education toolkit, organizing mobilization workshops for knowledge building, provision of small grants to support advocacy work and conducting benchmark evaluations. The Community Demand Creation Model to increase demand for routine viral load testing services by PLHIV has been delivered in diverse contexts including in the sub-Saharan African, Asian, Latin American and the Caribbean regions. Between December 2015 and December 2016, ITPC trained more than 240 PLHIV activists, and disbursed US$90,000 to network partners in support of their national advocacy work. The latter efforts informed a regional, community-driven campaign calling for domestic investment in the expeditious implementation of national viral load testing guidelines. HIV treatment education and community mobilization are critical components of demand creation for access to optimal HIV treatment, especially for the use of routine viral load testing. ITPC's Community Demand Creation Model offers a novel approach to achieving this goal. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of the International AIDS Society.

  16. Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle

    NASA Technical Reports Server (NTRS)

    Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.

    2015-01-01

    Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.

  17. Bayes factors based on robust TDT-type tests for family trio design.

    PubMed

    Yuan, Min; Pan, Xiaoqing; Yang, Yaning

    2015-06-01

    Adaptive transmission disequilibrium test (aTDT) and MAX3 test are two robust-efficient association tests for case-parent family trio data. Both tests incorporate information of common genetic models including recessive, additive and dominant models and are efficient in power and robust to genetic model specifications. The aTDT uses information of departure from Hardy-Weinberg disequilibrium to identify the potential genetic model underlying the data and then applies the corresponding TDT-type test, and the MAX3 test is defined as the maximum of the absolute value of three TDT-type tests under the three common genetic models. In this article, we propose three robust Bayes procedures, the aTDT based Bayes factor, MAX3 based Bayes factor and Bayes model averaging (BMA), for association analysis with case-parent trio design. The asymptotic distributions of aTDT under the null and alternative hypothesis are derived in order to calculate its Bayes factor. Extensive simulations show that the Bayes factors and the p-values of the corresponding tests are generally consistent and these Bayes factors are robust to genetic model specifications, especially so when the priors on the genetic models are equal. When equal priors are used for the underlying genetic models, the Bayes factor method based on aTDT is more powerful than those based on MAX3 and Bayes model averaging. When the prior placed a small (large) probability on the true model, the Bayes factor based on aTDT (BMA) is more powerful. Analysis of a simulation data about RA from GAW15 is presented to illustrate applications of the proposed methods.

  18. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  19. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.

    PubMed

    Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea

    2014-01-01

    A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration. © 2013 John Wiley & Sons Ltd.

  20. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives, resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  1. Atoll island hydrogeology: flow and freshwater occurrence in a tidally dominated system

    NASA Astrophysics Data System (ADS)

    Oberdorfer, June A.; Hogan, Patrick J.; Buddemeier, Robert W.

    1990-12-01

    A layered-aquifer model of groundwater occurrence in an atoll island was tested with a solute-transport numerical model. The computer model used, SUTRA, incorporates density-dependent flow. This can be significant in freshwater-saltwater interactions associated with the freshwater lens of an atoll island. Boundary conditions for the model included ocean and lagoon tidal variations. The model was calibrated to field data from Enjebi Island, Enewetak Atoll, and tested for sensitivity to a variety of parameters. This resulted in a hydraulic conductivity of 10 m day -1 for the surficial aquifer and 1000 m day -1 for the deeper aquifer; this combination of values gave an excellent reproduction of the tidal response data from test wells. The average salinity distribution was closely reproduced using a dispersivity of 0.02m. The computer simulation quantitatively supports the layered-aquifer model, including under conditions of density-dependent flow, and shows that tidal variations are the predominant driving force for flow beneath the island. The oscillating, vertical flow produced by the tidal variations creates an extensive mixing zone of brackish water. The layered-aquifer model with tidally driven flow is a significant improvement over the Ghyben-Herzberg-Dupuit model as it is conventionally applied to groundwater studies for many Pacific reef islands.

  2. Development of a hydraulic model of the human systemic circulation

    NASA Technical Reports Server (NTRS)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  3. Cleanroom certification model

    NASA Technical Reports Server (NTRS)

    Currit, P. A.

    1983-01-01

    The Cleanroom software development methodology is designed to take the gamble out of product releases for both suppliers and receivers of the software. The ingredients of this procedure are a life cycle of executable product increments, representative statistical testing, and a standard estimate of the MTTF (Mean Time To Failure) of the product at the time of its release. A statistical approach to software product testing using randomly selected samples of test cases is considered. A statistical model is defined for the certification process which uses the timing data recorded during test. A reasonableness argument for this model is provided that uses previously published data on software product execution. Also included is a derivation of the certification model estimators and a comparison of the proposed least squares technique with the more commonly used maximum likelihood estimators.

  4. Methods for evaluating the predictive accuracy of structural dynamic models

    NASA Technical Reports Server (NTRS)

    Hasselman, Timothy K.; Chrostowski, Jon D.

    1991-01-01

    Modeling uncertainty is defined in terms of the difference between predicted and measured eigenvalues and eigenvectors. Data compiled from 22 sets of analysis/test results was used to create statistical databases for large truss-type space structures and both pretest and posttest models of conventional satellite-type space structures. Modeling uncertainty is propagated through the model to produce intervals of uncertainty on frequency response functions, both amplitude and phase. This methodology was used successfully to evaluate the predictive accuracy of several structures, including the NASA CSI Evolutionary Structure tested at Langley Research Center. Test measurements for this structure were within + one-sigma intervals of predicted accuracy for the most part, demonstrating the validity of the methodology and computer code.

  5. Estimation of tunnel blockage from wall pressure signatures: A review and data correlation

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Wilsden, D. J.; Lilley, D. E.

    1979-01-01

    A method is described for estimating low speed wind tunnel blockage, including model volume, bubble separation and viscous wake effects. A tunnel-centerline, source/sink distribution is derived from measured wall pressure signatures using fast algorithms to solve the inverse problem in three dimensions. Blockage may then be computed throughout the test volume. Correlations using scaled models or tests in two tunnels were made in all cases. In many cases model reference area exceeded 10% of the tunnel cross-sectional area. Good correlations were obtained regarding model surface pressures, lift drag and pitching moment. It is shown that blockage-induced velocity variations across the test section are relatively unimportant but axial gradients should be considered when model size is determined.

  6. Mathematical model to predict drivers' reaction speeds.

    PubMed

    Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L

    2012-02-01

    Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.

  7. Geological modeling for methane hydrate reservoir characterization in the eastern Nankai Trough, offshore Japan

    NASA Astrophysics Data System (ADS)

    Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.

    2012-12-01

    The eastern Nankai trough, which is located offshore of central Japan, is considered as an attractive potential resource field of methane hydrates. Japan Oil, Gas and Metals National Corporation is planning to conduct a production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough. The depositional environment of methane hydrate-bearing sediments around the production test site is a deep submarine-fan turbidite system, and it is considered that the reservoir properties should show lateral as well as vertical heterogeneity. Since the variations in the reservoir heterogeneity have an impact on the methane hydrate dissociation and gas production performance, precise geological models describing reservoir heterogeneity would be required for the evaluation of reservoir potentials. In preparation for the production test, 3 wells; two monitoring boreholes (AT1-MC and AT1-MT1) and a coring well (AT1-C), were newly acquired in 2012. In addition to a geotechnical hole drilling survey in 2011 (AT1-GT), totally log data from 2 wells and core data from 2 wells were obtained around the production test site. In this study, we conducted well correlations between AT1 and A1 wells drilled in 2003 and then, 3D geological models were updated including AT1 well data in order to refine hydrate reservoir characterization around the production test site. The results of the well correlations show that turbidite sand layers are characterized by good lateral continuity, and give significant information for the distribution morphology of sand-rich channel fills. We also reviewed previously conducted 3D geological models which consist of facies distributions and petrophysical properties distributions constructed from integration of 3D seismic data and a well data (A1 site) adopting a geostatistical approach. In order to test the practical validity of the previously generated models, cross-validation was conducted using AT1 well data. The results show that geological modeling including AT1 well data is important to reduce the uncertainty of the reservoir properties around the production test site. The geological models including AT1 well data were constructed taking into account for the lateral continuity of turbidite formations based on the well correlations. The concepts of these models are considered to be much more effective for describing reservoir continuity and heterogeneity and predicting upcoming production tests.

  8. Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing

    DTIC Science & Technology

    2016-04-30

    FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament

  9. 42 CFR § 512.210 - Included and excluded services.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... SERVICES (CONTINUED) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS EPISODE PAYMENT MODEL Scope of Episodes...) Certain PBPM payments under models tested under section 1115A of the Act that CMS determines to be... PBPM model payments funded from the Innovation Center appropriation. (c) Updating the exclusion lists...

  10. Data-Logger Interface And Test Controller

    NASA Technical Reports Server (NTRS)

    Burch, Donnie R.

    1995-01-01

    Data-logger interface and test controller developed to enable automation of tests in conjunction with data-acquisition functions performed by data loggers that have output-switching capabilities. Includes relay logic circuits that remain deenergized until out-of-tolerance condition on any data channel discovered. Designed to be connected to Fluke model 2286A (or equivalent) data-logger system, which features 3 control channels with 6 data inputs per channel. Includes elapsed-time counter that keeps track of power outages.

  11. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  12. Geological modeling of submeter scale heterogeneity and its influence on tracer transport in a fluvial aquifer

    NASA Astrophysics Data System (ADS)

    Ronayne, Michael J.; Gorelick, Steven M.; Zheng, Chunmiao

    2010-10-01

    We developed a new model of aquifer heterogeneity to analyze data from a single-well injection-withdrawal tracer test conducted at the Macrodispersion Experiment (MADE) site on the Columbus Air Force Base in Mississippi (USA). The physical heterogeneity model is a hybrid that combines 3-D lithofacies to represent submeter scale, highly connected channels within a background matrix based on a correlated multivariate Gaussian hydraulic conductivity field. The modeled aquifer architecture is informed by a variety of field data, including geologic core sampling. Geostatistical properties of this hybrid heterogeneity model are consistent with the statistics of the hydraulic conductivity data set based on extensive borehole flowmeter testing at the MADE site. The representation of detailed, small-scale geologic heterogeneity allows for explicit simulation of local preferential flow and slow advection, processes that explain the complex tracer response from the injection-withdrawal test. Based on the new heterogeneity model, advective-dispersive transport reproduces key characteristics of the observed tracer recovery curve, including a delayed concentration peak and a low-concentration tail. Importantly, our results suggest that intrafacies heterogeneity is responsible for local-scale mass transfer.

  13. Anomalous Transport in Single-Well Push-Pull Tracer Tests

    NASA Astrophysics Data System (ADS)

    Chen, K.; Zhan, H.

    2016-12-01

    Single-Well Push-Pull (SWPP) tracer test was conducted to estimate the hydraulic and transport properties in a fractured aquifer at Newark basin. A common phenomenon observed for a set of SWPP tests with different incubation time is the heavy tailing of breakthrough curve (BTC) in pumping phase. A novel model with fractional-in-time and (or) -space was developed to interpret the anomalous transport behavior in SWPP tests. The fractal models, including fractional-in-time, fractional-in-space and fractional-in-time-and-space, were solved in radial coordinate using implicit Euler method. A semi-analytical solution of the mobile-immobile (MIM) model was derived as well for comparison purpose. It is found that the fractional-in-space and fractional-in-time-and-space models match the experimental data well. The BTC of the MIM model drops slower than that of the fractional-in-space model at the beginning of pumping and drops much faster at late time. The best match of fractional-in-space model with the experimental data demonstrates that the non-local transport in space plays an important role in SWPP tests conducted in fractured aquifers.

  14. Experimental Data from the Benchmark SuperCritical Wing Wind Tunnel Test on an Oscillating Turntable

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Piatak, David J.

    2013-01-01

    The Benchmark SuperCritical Wing (BSCW) wind tunnel model served as a semi-blind testcase for the 2012 AIAA Aeroelastic Prediction Workshop (AePW). The BSCW was chosen as a testcase due to its geometric simplicity and flow physics complexity. The data sets examined include unforced system information and forced pitching oscillations. The aerodynamic challenges presented by this AePW testcase include a strong shock that was observed to be unsteady for even the unforced system cases, shock-induced separation and trailing edge separation. The current paper quantifies these characteristics at the AePW test condition and at a suggested benchmarking test condition. General characteristics of the model's behavior are examined for the entire available data set.

  15. Taper and volume equations for selected Appalachian hardwood species

    Treesearch

    A. Jeff Martin

    1981-01-01

    Coefficients for five taper/volume models are developed for 18 Appalachian hardwood species. Each model can be used to estimate diameter at any point on the bole, height to any preselected diameter, and cubic-foot volume between any two points on the bole. The resulting equations were tested on six sets of independent data and an evaluation of these tests is included,...

  16. 40 CFR 1054.250 - What records must I keep and what reports must I send to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year, you must send us a report describing information about engines you produced during the model... send us. (2) Any of the information we specify in § 1054.205 that you were not required to include in... certificate of conformity. (c) Keep data from routine emission tests (such as test cell temperatures and...

  17. 40 CFR 1054.250 - What records must I keep and what reports must I send to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year, you must send us a report describing information about engines you produced during the model... send us. (2) Any of the information we specify in § 1054.205 that you were not required to include in... certificate of conformity. (c) Keep data from routine emission tests (such as test cell temperatures and...

  18. 40 CFR 1054.250 - What records must I keep and what reports must I send to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year, you must send us a report describing information about engines you produced during the model... send us. (2) Any of the information we specify in § 1054.205 that you were not required to include in... certificate of conformity. (c) Keep data from routine emission tests (such as test cell temperatures and...

  19. 40 CFR 1054.250 - What records must I keep and what reports must I send to EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year, you must send us a report describing information about engines you produced during the model... send us. (2) Any of the information we specify in § 1054.205 that you were not required to include in... certificate of conformity. (c) Keep data from routine emission tests (such as test cell temperatures and...

  20. Design study of test models of maneuvering aircraft configurations for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Griffin, S. A.; Madsen, A. P.; Mcclain, A. A.

    1984-01-01

    The feasibility of designing advanced technology, highly maneuverable, fighter aircraft models to achieve full scale Reynolds number in the National Transonic Facility (NTF) is examined. Each of the selected configurations are tested for aeroelastic effects through the use of force and pressure data. A review of materials and material processes is also included.

  1. Re-Design and Beat Testing of the Man-Machine Integration Design and Analysis System: MIDAS

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Rutkowski, Michael (Technical Monitor)

    1999-01-01

    The Man-machine Design and Analysis System (MIDAS) is a human factors design and analysis system that combines human cognitive models with 3D CAD models and rapid prototyping and simulation techniques. MIDAS allows designers to ask 'what if' types of questions early in concept exploration and development prior to actual hardware development. The system outputs predictions of operator workload, situational awareness and system performance as well as graphical visualization of the cockpit designs interacting with models of the human in a mission scenario. Recently, MIDAS was re-designed to enhance functionality and usability. The goals driving the redesign include more efficient processing, GUI interface, advances in the memory structures, implementation of external vision models and audition. These changes were detailed in an earlier paper. Two Beta test sites with diverse applications have been chosen. One Beta test site is investigating the development of a new airframe and its interaction with the air traffic management system. The second Beta test effort will investigate 3D auditory cueing in conjunction with traditional visual cueing strategies including panel-mounted and heads-up displays. The progress and lessons learned on each of these projects will be discussed.

  2. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold

    2015-09-01

    Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  3. EMC system test performance on Spacelab

    NASA Astrophysics Data System (ADS)

    Schwan, F.

    1982-07-01

    Electromagnetic compatibility testing of the Spacelab engineering model is discussed. Documentation, test procedures (including data monitoring and test configuration set up) and performance assessment approach are described. Equipment was assembled into selected representative flight configurations. The physical and functional interfaces between the subsystems were demonstrated within the integration and test sequence which culminated in the flyable configuration Long Module plus one Pallet.

  4. Estimating Setup of Driven Piles into Louisiana Clayey Soils

    DOT National Transportation Integrated Search

    2009-11-15

    Two types of mathematical models for pile setup prediction, the Skov-Denver model and the newly developed rate-based model, have been established from all the dynamic and static testing data, including restrikes of the production piles, restrikes, st...

  5. Estimating setup of driven piles into Louisiana clayey soils.

    DOT National Transportation Integrated Search

    2010-11-15

    Two types of mathematical models for pile setup prediction, the Skov-Denver model and the newly developed rate-based model, have been established from all the dynamic and static testing data, including restrikes of the production piles, restrikes, st...

  6. Second Generation Crop Yield Models Review

    NASA Technical Reports Server (NTRS)

    Hodges, T. (Principal Investigator)

    1982-01-01

    Second generation yield models, including crop growth simulation models and plant process models, may be suitable for large area crop yield forecasting in the yield model development project. Subjective and objective criteria for model selection are defined and models which might be selected are reviewed. Models may be selected to provide submodels as input to other models; for further development and testing; or for immediate testing as forecasting tools. A plant process model may range in complexity from several dozen submodels simulating (1) energy, carbohydrates, and minerals; (2) change in biomass of various organs; and (3) initiation and development of plant organs, to a few submodels simulating key physiological processes. The most complex models cannot be used directly in large area forecasting but may provide submodels which can be simplified for inclusion into simpler plant process models. Both published and unpublished models which may be used for development or testing are reviewed. Several other models, currently under development, may become available at a later date.

  7. NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino R.; Seible, Frieder

    1993-01-01

    Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.

  8. Risk-Based, Hypothesis-Driven Framework for Hydrological Field Campaigns with Case Studies

    NASA Astrophysics Data System (ADS)

    Harken, B.; Rubin, Y.

    2014-12-01

    There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration or plume travel time. These predictions often have significant bearing on a decision that must be made. Examples include: how to allocate limited remediation resources between contaminated groundwater sites or where to place a waste repository site. Answering such questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in EPM predictions stems from uncertainty in model parameters, which can be reduced by measurements taken in field campaigns. The costly nature of field measurements motivates a rational basis for determining a measurement strategy that is optimal with respect to the uncertainty in the EPM prediction. The tool of hypothesis testing allows this uncertainty to be quantified by computing the significance of the test resulting from a proposed field campaign. The significance of the test gives a rational basis for determining the optimality of a proposed field campaign. This hypothesis testing framework is demonstrated and discussed using various synthetic case studies. This study involves contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a specified location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical amount of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. The optimality of different field campaigns is assessed by computing the significance of the test resulting from each one. Evaluating the level of significance caused by a field campaign involves steps including likelihood-based inverse modeling and semi-analytical conditional particle tracking.

  9. Comparison of Resource Requirements for a Wind Tunnel Test Designed with Conventional vs. Modern Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Micol, John R.

    2011-01-01

    The factors that determine data volume requirements in a typical wind tunnel test are identified. It is suggested that productivity in wind tunnel testing can be enhanced by managing the inference error risk associated with evaluating residuals in a response surface modeling experiment. The relationship between minimum data volume requirements and the factors upon which they depend is described and certain simplifications to this relationship are realized when specific model adequacy criteria are adopted. The question of response model residual evaluation is treated and certain practical aspects of response surface modeling are considered, including inference subspace truncation. A wind tunnel test plan developed by using the Modern Design of Experiments illustrates the advantages of an early estimate of data volume requirements. Comparisons are made with a representative One Factor At a Time (OFAT) wind tunnel test matrix developed to evaluate a surface to air missile.

  10. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  11. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  12. Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik

    We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution, the conditional luminosity function, abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos or to follow custommore » number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population—including galaxy clustering, galaxy–galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others—allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on http://halotools.readthedocs.io, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.« less

  13. Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.

    PubMed

    Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R

    2018-06-01

    Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.

  14. Heat transfer investigation of Langley Research Center transition models at a Mach number of 8, volume 2

    NASA Technical Reports Server (NTRS)

    Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.; Johnson, C. B.

    1972-01-01

    The results are presented of a wind tunnel test program to determine aerodynamic heat transfer distributions on delta body and straight body transition models of the space shuttle. Heat transfer rates were determined by the phase-change paint technique on Stycast and RTV models using Tempilag as the surface temperature indicator. The nominal test conditions were: Mach 8, length Reynolds numbers of 5 million and 7.4 million, and angles of attack of 20, 40, and 60 deg. Model details, test conditions, and reduced heat transfer data are included. Data reduction of the phase-change paint photographs was performed by utilizing a new technique.

  15. Integrated communications and optical navigation system

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Pajer, G.; Paluszek, M.

    2013-12-01

    The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.

  16. Application of Poisson random effect models for highway network screening.

    PubMed

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A New Real - Time Fault Detection Methodology for Systems Under Test. Phase 1

    NASA Technical Reports Server (NTRS)

    Johnson, Roger W.; Jayaram, Sanjay; Hull, Richard A.

    1998-01-01

    The purpose of this research is focussed on the identification/demonstration of critical technology innovations that will be applied to various applications viz. Detection of automated machine Health Monitoring (BM, real-time data analysis and control of Systems Under Test (SUT). This new innovation using a High Fidelity Dynamic Model-based Simulation (BFDMS) approach will be used to implement a real-time monitoring, Test and Evaluation (T&E) methodology including the transient behavior of the system under test. The unique element of this process control technique is the use of high fidelity, computer generated dynamic models to replicate the behavior of actual Systems Under Test (SUT). It will provide a dynamic simulation capability that becomes the reference truth model, from which comparisons are made with the actual raw/conditioned data from the test elements.

  18. Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, Ronald; Neymark, Joel; Kennedy, Mike D.

    This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area ofmore » modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.« less

  19. Point-of-Care Viral Load Testing for Sub-Saharan Africa: Informing a Target Product Profile.

    PubMed

    Phillips, Andrew N; Cambiano, Valentina; Nakagawa, Fumiyo; Ford, Deborah; Apollo, Tsitsi; Murungu, Joseph; Rousseau, Christine; Garnett, Geoff; Ehrenkranz, Peter; Bansi-Matharu, Loveleen; Vojnov, Lara; Katz, Zachary; Peeling, Rosanna; Revill, Paul

    2016-09-01

    Point-of-care viral load tests are being developed to monitor patients on antiretroviral therapy (ART) in sub-Saharan Africa. Test design involves trade-offs between test attributes, including accuracy, complexity, robustness, and cost. We used a model of the human immunodeficiency virus epidemic and ART program in Zimbabwe and found that the attributes of a viral load testing approach that are most influential for cost effectiveness are avoidance of a high proportion of failed tests or results not received, use of an approach that best facilitates retention on ART, and the ability to facilitate greater use of differentiated care, including through expanding coverage of testing availability.

  20. Point-of-Care Viral Load Testing for Sub-Saharan Africa: Informing a Target Product Profile

    PubMed Central

    Phillips, Andrew N.; Cambiano, Valentina; Nakagawa, Fumiyo; Ford, Deborah; Apollo, Tsitsi; Murungu, Joseph; Rousseau, Christine; Garnett, Geoff; Ehrenkranz, Peter; Bansi-Matharu, Loveleen; Vojnov, Lara; Katz, Zachary; Peeling, Rosanna; Revill, Paul

    2016-01-01

    Point-of-care viral load tests are being developed to monitor patients on antiretroviral therapy (ART) in sub-Saharan Africa. Test design involves trade-offs between test attributes, including accuracy, complexity, robustness, and cost. We used a model of the human immunodeficiency virus epidemic and ART program in Zimbabwe and found that the attributes of a viral load testing approach that are most influential for cost effectiveness are avoidance of a high proportion of failed tests or results not received, use of an approach that best facilitates retention on ART, and the ability to facilitate greater use of differentiated care, including through expanding coverage of testing availability. PMID:27704016

  1. Dynamic Modeling, Controls, and Testing for Electrified Aircraft

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph; Stalcup, Erik

    2017-01-01

    Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.

  2. Properties of Refractory Concrete in Tension and Compression

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey

    2009-01-01

    Refractory concrete on the LC-39A Flame Deflector has been damaged during multiple Space Shuttle launches (e.g. STS-124, STS-126, STS-119, and STS-125, STS-127). These events have prompted a better understanding of the system via an analytical model of the Flame Deflector assembly to include the Fondu Fyre refractory concrete. This model requires test data inputs of the refractory concrete's mechanical properties, which include stress versus strain curves in tension and compression, modulus of elasticity, and Poisson's ratio. Sections of Fondu Fyre refractory concrete removed from the LC-39A Flame Deflector were provided for this testing.

  3. Stress analysis and buckling of J-stiffened graphite-epoxy panel

    NASA Technical Reports Server (NTRS)

    Davis, R. C.

    1980-01-01

    A graphite epoxy shear panel with bonded on J stiffeners was investigated. The panel, loaded to buckling in a picture frame shear test is described. Two finite element models, each of which included the doubler material bonded to the panel skin under the stiffeners and at the panel edges, were used to make a stress analysis of the panel. The shear load distributions in the panel from two commonly used boundary conditions, applied shear load and applied displacement, were compared with the results from one of the finite element models that included the picture frame test fixture.

  4. Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, thereby reducing overall development costs.

  5. Antenatal care trial interventions: a systematic scoping review and taxonomy development of care models.

    PubMed

    Symon, Andrew; Pringle, Jan; Downe, Soo; Hundley, Vanora; Lee, Elaine; Lynn, Fiona; McFadden, Alison; McNeill, Jenny; Renfrew, Mary J; Ross-Davie, Mary; van Teijlingen, Edwin; Whitford, Heather; Alderdice, Fiona

    2017-01-06

    Antenatal care models vary widely around the world, reflecting local contexts, drivers and resources. Randomised controlled trials (RCTs) have tested the impact of multi-component antenatal care interventions on service delivery and outcomes in many countries since the 1980s. Some have applied entirely new schemes, while others have modified existing care delivery approaches. Systematic reviews (SRs) indicate that some specific antenatal interventions are more effective than others; however the causal mechanisms leading to better outcomes are poorly understood, limiting implementation and future research. As a first step in identifying what might be making the difference we conducted a scoping review of interventions tested in RCTs in order to establish a taxonomy of antenatal care models. A protocol-driven systematic search was undertaken of databases for RCTs and SRs reporting antenatal care interventions. Results were unrestricted by time or locality, but limited to English language. Key characteristics of both experimental and control interventions in the included trials were mapped using SPIO (Study design; Population; Intervention; Outcomes) criteria and the intervention and principal outcome measures were described. Commonalities and differences between the components that were being tested in each study were identified by consensus, resulting in a comprehensive description of emergent models for antenatal care interventions. Of 13,050 articles retrieved, we identified 153 eligible articles including 130 RCTs in 34 countries. The interventions tested in these trials varied from the number of visits to the location of care provision, and from the content of care to the professional/lay group providing that care. In most studies neither intervention nor control arm was well described. Our analysis of the identified trials of antenatal care interventions produced the following taxonomy: Universal provision model (for all women irrespective of health state or complications); Restricted 'lower-risk'-based provision model (midwifery-led or reduced/flexible visit approach for healthy women); Augmented provision model (antenatal care as in Universal provision above but augmented by clinical, educational or behavioural intervention); Targeted 'higher-risk'-based provision model (for woman with defined clinical or socio-demographic risk factors). The first category was most commonly tested in low-income countries (i.e. resource-poor settings), particularly in Asia. The other categories were tested around the world. The trials included a range of care providers, including midwives, nurses, doctors, and lay workers. Interventions can be defined and described in many ways. The intended antenatal care population group proved the simplest and most clinically relevant way of distinguishing trials which might otherwise be categorised together. Since our review excluded non-trial interventions, the taxonomy does not represent antenatal care provision worldwide. It offers a stable and reproducible approach to describing the purpose and content of models of antenatal care which have been tested in a trial. It highlights a lack of reported detail of trial interventions and usual care processes. It provides a baseline for future work to examine and test the salient characteristics of the most effective models, and could also help decision-makers and service planners in planning implementation.

  6. AGR-1 Thermocouple Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Einerson

    2012-05-01

    This report documents an effort to analyze measured and simulated data obtained in the Advanced Gas Reactor (AGR) fuel irradiation test program conducted in the INL's Advanced Test Reactor (ATR) to support the Next Generation Nuclear Plant (NGNP) R&D program. The work follows up on a previous study (Pham and Einerson, 2010), in which statistical analysis methods were applied for AGR-1 thermocouple data qualification. The present work exercises the idea that, while recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, results of the numerical simulations can be used in combination with the statistical analysis methods tomore » further improve qualification of measured data. Additionally, the combined analysis of measured and simulation data can generate insights about simulation model uncertainty that can be useful for model improvement. This report also describes an experimental control procedure to maintain fuel target temperature in the future AGR tests using regression relationships that include simulation results. The report is organized into four chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program, AGR-1 test configuration and test procedure, overview of AGR-1 measured data, and overview of physics and thermal simulation, including modeling assumptions and uncertainties. A brief summary of statistical analysis methods developed in (Pham and Einerson 2010) for AGR-1 measured data qualification within NGNP Data Management and Analysis System (NDMAS) is also included for completeness. Chapters 2-3 describe and discuss cases, in which the combined use of experimental and simulation data is realized. A set of issues associated with measurement and modeling uncertainties resulted from the combined analysis are identified. This includes demonstration that such a combined analysis led to important insights for reducing uncertainty in presentation of AGR-1 measured data (Chapter 2) and interpretation of simulation results (Chapter 3). The statistics-based simulation-aided experimental control procedure described for the future AGR tests is developed and demonstrated in Chapter 4. The procedure for controlling the target fuel temperature (capsule peak or average) is based on regression functions of thermocouple readings and other relevant parameters and accounting for possible changes in both physical and thermal conditions and in instrument performance.« less

  7. Screening for Chlamydia trachomatis: a systematic review of the economic evaluations and modelling

    PubMed Central

    Roberts, T E; Robinson, S; Barton, P; Bryan, S; Low, N

    2006-01-01

    Objective To review systematically and critically, evidence used to derive estimates of costs and cost effectiveness of chlamydia screening. Methods Systematic review. A search of 11 electronic bibliographic databases from the earliest date available to August 2004 using keywords including chlamydia, pelvic inflammatory disease, economic evaluation, and cost. We included studies of chlamydia screening in males and/or females over 14 years, including studies of diagnostic tests, contact tracing, and treatment as part of a screening programme. Outcomes included cases of chlamydia identified and major outcomes averted. We assessed methodological quality and the modelling approach used. Results Of 713 identified papers we included 57 formal economic evaluations and two cost studies. Most studies found chlamydia screening to be cost effective, partner notification to be an effective adjunct, and testing with nucleic acid amplification tests, and treatment with azithromycin to be cost effective. Methodological problems limited the validity of these findings: most studies used static models that are inappropriate for infectious diseases; restricted outcomes were used as a basis for policy recommendations; and high estimates of the probability of chlamydia associated complications might have overestimated cost effectiveness. Two high quality dynamic modelling studies found opportunistic screening to be cost effective but poor reporting or uncertainty about complication rates make interpretation difficult. Conclusion The inappropriate use of static models to study interventions to prevent a communicable disease means that uncertainty remains about whether chlamydia screening programmes are cost effective or not. The results of this review can be used by health service managers in the allocation of resources, and health economists and other researchers who are considering further research in this area. PMID:16731666

  8. Marshall Space Flight Center ECLSS technology activities

    NASA Technical Reports Server (NTRS)

    Wieland, Paul

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) technology activities are presented. Topics covered include: analytical development; ECLSS modeling approach; example of water reclamation modeling needs; and hardware development and testing.

  9. Scaled Tank Test Design and Results for the Aquantis 2.5 MW Ocean Current Generation Device

    DOE Data Explorer

    Swales, Henry; Kils, Ole; Coakley, David B.; Sites, Eric; Mayer, Tyler

    2015-06-03

    Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This dataset also includes specific information on drivetrain, roller bearing, blade fabrication, mooring, and rotor characteristics.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, W.S.

    Progress during the period includes completion of the SNAP 7C system tests, completion of safety analysis for the SNAP 7A and C systems, assembly and initial testing of SNAP 7A, assembly of a modified reliability model, and assembly of a 10-W generator. Other activities include completion of thermal and safety analyses for SNAP 7B and D generators and fuel processing for these generators. (J.R.D.)

  11. Bayesian Analysis of Multidimensional Item Response Theory Models: A Discussion and Illustration of Three Response Style Models

    ERIC Educational Resources Information Center

    Leventhal, Brian C.; Stone, Clement A.

    2018-01-01

    Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…

  12. A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Seniderman, Gary; Daniel, Walter K.

    1999-01-01

    The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.

  13. TUTORIAL: Validating biorobotic models

    NASA Astrophysics Data System (ADS)

    Webb, Barbara

    2006-09-01

    Some issues in neuroscience can be addressed by building robot models of biological sensorimotor systems. What we can conclude from building models or simulations, however, is determined by a number of factors in addition to the central hypothesis we intend to test. These include the way in which the hypothesis is represented and implemented in simulation, how the simulation output is interpreted, how it is compared to the behaviour of the biological system, and the conditions under which it is tested. These issues will be illustrated by discussing a series of robot models of cricket phonotaxis behaviour. .

  14. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  15. A new 3D reconstituted human corneal epithelium model as an alternative method for the eye irritation test.

    PubMed

    Jung, Kyoung-Mi; Lee, Su-Hyon; Ryu, Yang-Hwan; Jang, Won-Hee; Jung, Haeng-Sun; Han, Ju-Hee; Seok, Seung-Hyeok; Park, Jae-Hak; Son, Youngsook; Park, Young-Ho; Lim, Kyung-Min

    2011-02-01

    Many efforts are being made to develop new alternative in vitro test methods for the eye irritation test. Here we report a new reconstructed human corneal epithelial model (MCTT HCE model) prepared from primary-cultured human limbal epithelial cells as a new alternative in vitro eye irritation test method. In histological and immunohistochemical observation, MCTT HCE model displayed a morphology and biomarker expressions similar to intact human cornea. Moreover, the barrier function was well preserved as measured by high transepithelial electrical resistance, effective time-50 for Triton X-100, and corneal thickness. To employ the model as a new alternative method for eye irritation test, protocol refinement was performed and optimum assay condition was determined including treatment time, treatment volume, post-incubation time and rinsing method. Using the refined protocol, 25 reference chemicals with known eye irritation potentials were tested. With the viability cut-off value at 50%, chemicals were classified to irritant or non-irritant. When compared with GHS classification, the MCTT HCE model showed the accuracy of 88%, sensitivity of 100% and specificity of 77%. These results suggest that the MCTT HCE model might be useful as a new alternative eye irritation test method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Data for Room Fire Model Comparisons

    PubMed Central

    Peacock, Richard D.; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system. PMID:28184121

  17. The implementation of assessment model based on character building to improve students’ discipline and achievement

    NASA Astrophysics Data System (ADS)

    Rusijono; Khotimah, K.

    2018-01-01

    The purpose of this research was to investigate the effect of implementing the assessment model based on character building to improve discipline and student’s achievement. Assessment model based on character building includes three components, which are the behaviour of students, the efforts, and student’s achievement. This assessment model based on the character building is implemented in science philosophy and educational assessment courses, in Graduate Program of Educational Technology Department, Educational Faculty, Universitas Negeri Surabaya. This research used control group pre-test and post-test design. Data collection method used in this research were observation and test. The observation was used to collect the data about the disciplines of the student in the instructional process, while the test was used to collect the data about student’s achievement. Moreover, the study applied t-test to the analysis of data. The result of this research showed that assessment model based on character building improved discipline and student’s achievement.

  18. Data for Room Fire Model Comparisons.

    PubMed

    Peacock, Richard D; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system.

  19. Cognitive-Perceptual Factors in the Political Alienation Process: A Test of Six Models.

    ERIC Educational Resources Information Center

    Long, Samuel

    The effectiveness of sex research models which measure adolescents' feelings of political alienation is investigated and discussed and a new model is formulated. The six models include life dissatisfaction, personal depreciation, critical perceptions of political reality, irrational beliefs, perceptions of political threat, and cognitive…

  20. Handbook of Polytomous Item Response Theory Models

    ERIC Educational Resources Information Center

    Nering, Michael L., Ed.; Ostini, Remo, Ed.

    2010-01-01

    This comprehensive "Handbook" focuses on the most used polytomous item response theory (IRT) models. These models help us understand the interaction between examinees and test questions where the questions have various response categories. The book reviews all of the major models and includes discussions about how and where the models…

  1. Infrared Imagery of Solid Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  2. Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raynold S.

    2010-01-01

    A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nosecone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1 1 SWT for Schlieren photography and comparison to CFD analysis.

  3. Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2009-01-01

    A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nose cone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1x1 SWT for Schlieren photography and comparison to CFD analysis.

  4. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  5. Finite Element Model Calibration Approach for Ares I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  6. An antenna pointing mechanism for large reflector antennas

    NASA Technical Reports Server (NTRS)

    Heimerdinger, H.

    1981-01-01

    An antenna pointing mechanism for large reflector antennas on direct broadcasting communication satellites was built and tested. After listing the requirements and constraints for this equipment the model is described, and performance figures are given. Futhermore, results of the qualification level tests, including functional, vibrational, thermovacuum, and accelerated life tests are reported. These tests were completed successfully.

  7. Comment on "Social Contagion, Adolescent Sexual Behavior, and Pregnancy: A Nonlinear Dynamic EMOSA Model."

    ERIC Educational Resources Information Center

    Stoolmiller, Mike

    1998-01-01

    Examines the Rodgers, Rowe, and Buster (1998) epidemic model of the onset of social activities for adolescent sexuality. Maintains that its strengths include its theoretical potential to generate new hypotheses for further testing at the individual level. Asserts that its limitations include the lack of a well-developed statistical framework and…

  8. Investigation of aeroelastic stability phenomena of a helicopter by in-flight shake test

    NASA Technical Reports Server (NTRS)

    Miao, W. L.; Edwards, T.; Brandt, D. E.

    1976-01-01

    The analytical capability of the helicopter stability program is discussed. The parameters which are found to be critical to the air resonance characteristics of the soft in-plane hingeless rotor systems are detailed. A summary of two model test programs, a 1/13.8 Froude-scaled BO-105 model and a 1.67 meter (5.5 foot) diameter Froude-scaled YUH-61A model, are presented with emphasis on the selection of the final parameters which were incorporated in the full scale YUH-61A helicopter. Model test data for this configuration are shown. The actual test results of the YUH-61A air resonance in-flight shake test stability are presented. Included are a concise description of the test setup, which employs the Grumman Automated Telemetry System (ATS), the test technique for recording in-flight stability, and the test procedure used to demonstrate favorable stability characteristics with no in-plane damping augmentation (lag damper removed). The data illustrating the stability trend of air resonance with forward speed and the stability trend of ground resonance for percent airborne are presented.

  9. Integrated corridor management initiative : demonstration phase evaluation, San Diego air quality test plan.

    DOT National Transportation Integrated Search

    2000-10-01

    The Phoenix, Arizona Metropolitan Model Deployment was one of four cities included in the Metropolitan Model Deployment Initiative (MMDI). The initiative was set forth in 1996 to serve as model deployments of ITS infrastructure and integration. One o...

  10. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aerodynamic data book 2

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.

  11. 6DOF Testing of the SLS Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Geohagan, Kevin; Bernard, Bill; Oliver, T. Emerson; Leggett, Jared; Strickland, Dennis

    2018-01-01

    The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). Because the navigation architecture for the SLS Block 1 vehicle is a purely inertial system, the accuracy of the achieved orbit relative to mission requirements is very sensitive to initial alignment accuracy. The assessment of this sensitivity and many others via simulation is a part of the SLS Model-Based Design and Model-Based Requirements approach. As a part of the aforementioned, 6DOF Monte Carlo simulation is used in large part to develop and demonstrate verification of program requirements. To facilitate this and the GN&C flight software design process, an SLS-Program-controlled Design Math Model (DMM) of the SLS INS was developed by the SLS Navigation Team. The SLS INS model implements all of the key functions of the hardware-namely, GCA, inertial navigation, and FDIR (Fault Detection, Isolation, and Recovery)-in support of SLS GN&C design requirements verification. Despite the strong sensitivity to initial alignment, GCA accuracy requirements were not verified by test due to program cost and schedule constraints. Instead, the system relies upon assessments performed using the SLS INS model. In order to verify SLS program requirements by analysis, the SLS INS model is verified and validated against flight hardware. In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.

  12. 40 CFR 1037.225 - Amending applications for certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-data vehicle or emission modeling for the vehicle family is not appropriate to show compliance for the new or modified vehicle configuration, include new test data or emission modeling showing that the new...

  13. 40 CFR 1037.225 - Amending applications for certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-data vehicle or emission modeling for the vehicle family is not appropriate to show compliance for the new or modified vehicle configuration, include new test data or emission modeling showing that the new...

  14. 40 CFR 1037.225 - Amending applications for certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-data vehicle or emission modeling for the vehicle family is not appropriate to show compliance for the new or modified vehicle configuration, include new test data or emission modeling showing that the new...

  15. Modelling Per Capita Water Demand Change to Support System Planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2016-12-01

    Water utilities have a number of levers to influence customer water usage. These include levers to proactively slow demand growth over time such as building and landscape codes as well as levers to decrease demands quickly in response to water stress including price increases, education campaigns, water restrictions, and incentive programs. Even actions aimed at short term reductions can result in long term water usage declines when substantial changes are made in water efficiency, as in incentives for fixture replacement or turf removal, or usage patterns such as permanent lawn watering restrictions. Demand change is therefore linked to hydrological conditions and to the effects of past management decisions - both typically included in water supply planning models. Yet, demand is typically incorporated exogenously using scenarios or endogenously using only price, though utilities also use rules and incentives issued in response to water stress and codes specifying standards for new construction to influence water usage. Explicitly including these policy levers in planning models enables concurrent testing of infrastructure and policy strategies and illuminates interactions between the two. The City of Las Vegas is used as a case study to develop and demonstrate this modeling approach. First, a statistical analysis of system data was employed to rule out alternate hypotheses of per capita demand decrease such as changes in population density and economic structure. Next, four demand sub-models were developed including one baseline model in which demand is a function of only price. The sub-models were then calibrated and tested using monthly data from 1997 to 2012. Finally, the best performing sub-model was integrated with a full supply and demand model. The results highlight the importance of both modeling water demand dynamics endogenously and taking a broader view of the variables influencing demand change.

  16. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    NASA Astrophysics Data System (ADS)

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  17. Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators

    NASA Technical Reports Server (NTRS)

    Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.

  18. HIV-1 and HCV viral load cost models for bDNA: 440 Molecular System versus real-time PCR AmpliPrep/TaqMan test.

    PubMed

    Elbeik, Tarek; Dalessandro, Ralph; Loftus, Richard A; Beringer, Scott

    2007-11-01

    Comparative cost models were developed to assess cost-per-reportable result and annual costs for HIV-1 and HCV bDNA and AmpliPrep/TaqMan Test (PCR). Model cost components included kit, disposables, platform and related equipment, equipment service plan, equipment maintenance, equipment footprint, waste and labor. Model assessment was most cost-effective when run by bDNA with 36 or more clinical samples and PCR with 30 or fewer clinical samples. Lower costs are attained with maximum samples (84-168) run daily. Highest cost contributors include kit, platform and PCR proprietary disposables. Understanding component costs and the most economic use of HIV-1 and HCV viral load will aid in attaining lowest costs through selection of the appropriate assay and effective negotiations.

  19. A model of scientific attitudes assessment by observation in physics learning based scientific approach: case study of dynamic fluid topic in high school

    NASA Astrophysics Data System (ADS)

    Yusliana Ekawati, Elvin

    2017-01-01

    This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)

  20. Evaluation of testing strategies to identify infected animals at a single round of testing within dairy herds known to be infected with Mycobacterium avium ssp. paratuberculosis.

    PubMed

    More, S J; Cameron, A R; Strain, S; Cashman, W; Ezanno, P; Kenny, K; Fourichon, C; Graham, D

    2015-08-01

    As part of a broader control strategy within herds known to be infected with Mycobacterium avium ssp. paratuberculosis (MAP), individual animal testing is generally conducted to identify infected animals for action, usually culling. Opportunities are now available to quantitatively compare different testing strategies (combinations of tests) in known infected herds. This study evaluates the effectiveness, cost, and cost-effectiveness of different testing strategies to identify infected animals at a single round of testing within dairy herds known to be MAP infected. A model was developed, taking account of both within-herd infection dynamics and test performance, to simulate the use of different tests at a single round of testing in a known infected herd. Model inputs included the number of animals at different stages of infection, the sensitivity and specificity of each test, and the costs of testing and culling. Testing strategies included either milk or serum ELISA alone or with fecal culture in series. Model outputs included effectiveness (detection fraction, the proportion of truly infected animals in the herd that are successfully detected by the testing strategy), cost, and cost-effectiveness (testing cost per true positive detected, total cost per true positive detected). Several assumptions were made: MAP was introduced with a single animal and no management interventions were implemented to limit within-herd transmission of MAP before this test. In medium herds, between 7 and 26% of infected animals are detected at a single round of testing, the former using the milk ELISA and fecal culture in series 5 yr after MAP introduction and the latter using fecal culture alone 15 yr after MAP introduction. The combined costs of testing and culling at a single round of testing increases with time since introduction of MAP infection, with culling costs being much greater than testing costs. The cost-effectiveness of testing varied by testing strategy. It was also greater at 5 yr, compared with 10 or 15 yr, since MAP introduction, highlighting the importance of early detection. Future work is needed to evaluate these testing strategies in subsequent rounds of testing as well as accounting for different herd dynamics and different levels of herd biocontainment. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Fluorescence Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Alderfer, D. W.; Danehy, P. M.; Inma, J. A.; Berger, K. T.; Buck, G. M.; Schwartz, R J.

    2007-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Most of the models did not survive repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2-inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various configurations were studied including different sting placements relative to the models, different model orientations and attachment angles, and different NO seeding methods. The angle of attack of the models was also varied and the location of the laser sheet was scanned to provide three-dimensional flowfield information. Virtual Diagnostics Interface technology, developed at NASA Langley, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images. Lessons learned and recommendations for future experiments are discussed.

  2. Integrated Site Investigation Methods and Modeling: Recent Developments at the BHRS (Invited)

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Bradford, J. H.; Cardiff, M. A.; Dafflon, B.; Johnson, B. A.; Malama, B.; Thoma, M. J.

    2010-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a field-scale test facility in an unconfined aquifer with the goals of: developing cost-effective, non-invasive methods for quantitative characterization of heterogeneous aquifers using hydrologic and geophysical techniques; understanding fundamental relations and processes at multiple scales; and testing theories and models for groundwater flow and solute transport. The design of the BHRS supports a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrogeophysical experiments. New installations support direct and geophysical monitoring of hydrologic fluxes and states from the aquifer through the vadose zone to the atmosphere, including ET and river boundary behavior. Efforts to date have largely focused on establishing the 1D, 2D, and 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for testing methods to integrate direct and indirect data and invert for “known” parameter distributions, material boundaries, and tracer test or other system state behavior. Aquifer structure at the BHRS is hierarchical and includes layers and lenses that are recognized with geologic, hydrologic, radar, electrical, and seismic methods. Recent advances extend findings and method developments, but also highlight the need to examine assumptions and understand secular influences when designing and modeling field tests. Examples of advances and caveats include: New high-resolution 1D K profiles obtained from multi-level slug tests (inversion improves with priors for aquifer K, wellbore skin, and local presence of roots) show variable correlation with porosity and bring into question a Kozeny-Carman-type relation for much of the system. Modeling of 2D conservative tracer transport through a synthetic BHRS-like heterogeneous system shows the importance of including porosity heterogeneity (rather than assuming constant porosity for an aquifer) in addition to K heterogeneity. Similarly, 3D transient modeling of a conservative tracer test at the BHRS improves significantly with the use of prior geophysical information for layering and parameter structure and with use of both variable porosity and K. Joint inversion of multiple intersecting 2D radar tomograms gives well-resolved and consistent 3D distributions of porosity and unit boundaries that are largely correlated with neutron-porosity log and other site data, but the classic porosity-dielectric relation does not hold for one stratigraphic unit that also is recognized as anomalous with capacitive resistivity logs (i.e., cannot assume one petrophysical relation holds through a given aquifer system). Advances are being made in the new method of hydraulic tomography (2D with coincident electrical geophysics; 3D will be supplemented with priors); caveats here include the importance of boundary conditions and even ET effects. Also integrated data collection and modeling with multiple geophysical and hydrologic methods show promise for high-resolution quantification of vadose zone moisture and parameter distributions to improve variably saturated process models.

  3. The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses

    NASA Astrophysics Data System (ADS)

    Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.

    2008-12-01

    The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.

  4. NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less

  5. The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds

    NASA Astrophysics Data System (ADS)

    Nilles, H. P.; Ramos-Sánchez, S.; Vaudrevange, P. K. S.; Wingerter, A.

    2012-06-01

    The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations. Program summaryProgram title: orbifolder Catalogue identifier: AELR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 145 572 No. of bytes in distributed program, including test data, etc.: 930 517 Distribution format: tar.gz Programming language:C++ Computer: Personal computer Operating system: Tested on Linux (Fedora 15, Ubuntu 11, SuSE 11) Word size: 32 bits or 64 bits Classification: 11.1 External routines: Boost (http://www.boost.org/), GSL (http://www.gnu.org/software/gsl/) Nature of problem: Calculating the low-energy spectrum of heterotic orbifold compactifications. Solution method: Quadratic equations on a lattice; representation theory; polynomial algebra. Running time: Less than a second per model.

  6. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  7. Low-profile heliostat design for solar central receiver systems

    NASA Technical Reports Server (NTRS)

    Fourakis, E.; Severson, A. M.

    1977-01-01

    Heliostat designs intended to reduce costs and the effect of adverse wind loads on the devices were developed. Included was the low-profile heliostat consisting of a stiff frame with sectional focusing reflectors coupled together to turn as a unit. The entire frame is arranged to turn angularly about a center point. The ability of the heliostat to rotate about both the vertical and horizontal axes permits a central computer control system to continuously aim the sun's reflection onto a selected target. An engineering model of the basic device was built and is being tested. Control and mirror parameters, such as roughness and need for fine aiming, are being studied. The fabrication of these prototypes is in process. The model was also designed to test mirror focusing techniques, heliostat geometry, mechanical functioning, and tracking control. The model can be easily relocated to test mirror imaging on a tower from various directions. In addition to steering and aiming studies, the tests include the effects of temperature changes, wind gusting and weathering. The results of economic studies on this heliostat are also presented.

  8. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) data reduction computer program, data item no. 54.16

    NASA Technical Reports Server (NTRS)

    Gaede, A. E.; Platte, W. (Editor)

    1975-01-01

    The data reduction program used to analyze the performance of the Aerothermodynamic Integration Model is described. Routines to acquire, calibrate, and interpolate the test data, to calculate the axial components of the pressure area integrals and the skin function coefficients, and to report the raw data in engineering units are included along with routines to calculate flow conditions in the wind tunnel, inlet, combustor, and nozzle, and the overall engine performance. Various subroutines were modified and used to obtain species concentrations and transport properties in chemical equilibrium at each of the internal and external engine stations. It is recommended that future test plans include the configuration, calibration, and channel assignment data on a magnetic tape generated at the test site immediately before or after a test, and that the data reduction program be designed to operate in a batch environment.

  9. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Prudic, David E.

    1991-01-01

    Removal of ground water by pumping from aquifers may result in compaction of compressible fine-grained beds that are within or adjacent to the aquifers. Compaction of the sediments and resulting land subsidence may be permanent if the head declines result in vertical stresses beyond the previous maximum stress. The process of permanent compaction is not routinely included in simulations of ground-water flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U.S. Geological Survey modular finite-difference ground- water flow model. The new program, the Interbed-Storage Package, is designed to be incorporated into this model. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of the skeletal component of elastic specific storage and the thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the ground-water flow model by adding an additional term to the right-hand side of the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum (preconsolidation) head. Two tests were performed to verify that the package works correctly. The first test compared model-calculated storage and compaction changes to hand-calculated values for a three-dimensional simulation. Model and hand-calculated values were essentially equal. The second test was performed to compare the results of the Interbed-Storage Package with results of the one-dimensional Helm compaction model. This test problem simulated compaction in doubly draining confining beds stressed by head changes in adjacent aquifers. The Interbed-Storage Package and the Helm model computed essentially equal values of compaction. Documentation of the Interbed-Storage Package includes data input instructions, flow charts, narratives, and listings for each of the five modules included in the package. The documentation also includes an appendix describing input instructions and a listing of a computer program for time-variant specified-head boundaries. That package was developed to reduce the amount of data input and output associated with one of the Interbed-Storage Package test problems.

  10. Student Test Scores: How the Sausage Is Made and Why You Should Care. Evidence Speaks Reports, Vol 1, #25

    ERIC Educational Resources Information Center

    Jacob, Brian A.

    2016-01-01

    Contrary to popular belief, modern cognitive assessments--including the new Common Core tests--produce test scores based on sophisticated statistical models rather than the simple percent of items a student answers correctly. While there are good reasons for this, it means that reported test scores depend on many decisions made by test designers,…

  11. Structural and Aerodynamic Optimization of UltraLightweight Technology for Research in Astronomy (ULTRA)

    NASA Astrophysics Data System (ADS)

    Etzel, P. B.; Martin, R.; Romeo, R.; Fesen, R.; Hale, R.; Taghavi, R.; Anthony-Twarog, B. J.; Shawl, S. J.; Twarog, B. A.

    2004-12-01

    The focus of ULTRA (see poster by Twarog et al.) is a three-year plan to develop and test ultralightweight technology for research applications in astronomy. The goal is to demonstrate that a viable alternative exists to traditional glass-mirror technology by designing, fabricating, and testing a research telescope prototype comprising fiber reinforced plastic (CFRP) materials. To date, several mirror designs have been tested. The main goal in the first year has been to develop a 0.4m diameter mirror and OTA that serve as prototypes for the 1m telescope design. Mirrors of 0.4m diameter have been successfully fabricated which yield diffraction limited images. This poster will include a display of the complete OTA (including optics), optics test results, and astronomical images taken with prototype mirrors. Finite element analysis has been used to evaluate the OTA and mirror designs. Preliminary design details were incorporated in a knowledge-based system. Adaptive Modeling Language (AML), an object oriented programming language developed by Technosoft, Inc., was used to develop a parameterized geometric model of the preliminary design. The system can generate mirrors with radials/circumferentials, tube core substructures, as well as modeling the support structure. Computational fluid dynamics analyses were performed for sweep, inclination and ambient wind speed. Finite element analyses were performed for core density and arrangement, skin thickness, back-surface curvature, spider configuration and arrangement of the OTA, while the loading conditions considered thus far are thermal, inertial, and aerodynamic pressure loads. Experimental tests, including ultrasonic nondestructive evaluations, infrared imaging, modal testing, and wind tunnel tests, have been performed on the first prototype mirror, with the primary goal of validating analytical models and identifying potential manufacturing induced variations to be expected among "like" mirrors. Support of this work by NSF grants AST-0320784 and AST-0321247, NASA grant NCC5-600, Kansas University, and San Diego State University is gratefully acknowledged

  12. Density Deconvolution With EPI Splines

    DTIC Science & Technology

    2015-09-01

    effects of various substances on test subjects [11], [12]. Whereas in geophysics, a shot may be fired into the ground, in pharmacokinetics, a signal is...be significant, including medicine, bioinformatics, chemistry, as- tronomy, and econometrics , as well as an extensive review of kernel based methods...demonstrate the effectiveness of our model in simulations motivated by test instances in [32]. We consider an additive measurement model scenario where

  13. Terrain Analysis Research Needs to Support Test and Evaluation at YPG: Workshop Report

    DTIC Science & Technology

    2013-04-12

    hydrology, modeling, geology , civil engineering, soil science), and representatives from the US Military Academy, and Strategic Planning, Test Resource...Other personnel included five DRI staff (representing expertise in hydrology, modeling, geology , civil engineering, soil science), and representatives...Defense The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further

  14. Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.

    PubMed

    Zhou, Lingling; Xia, Jing; Yu, Lijing; Wang, Ying; Shi, Yun; Cai, Shunxiang; Nie, Shaofa

    2016-03-23

    We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby further certifying the reliability of our hybrid model. We used the ARIMA, NARNN and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The modeling time range included was the annual prevalence from 1956 to 2008 while the testing time range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the model performance. We reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. The modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016 demonstrated an initial decreasing trend, followed by an increase. The ARIMA-NARNN model can be well applied to analyze surveillance data for early warning systems for the control and elimination of schistosomiasis.

  15. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode

    NASA Astrophysics Data System (ADS)

    Seibert, P.; Frank, A.

    2003-04-01

    A method for the calculation of source-receptor (s-r) relationships (sensitivity of a trace substance concentration at some place and time to emission at some place and time) with Lagrangian particle models has been derived and presented previously (Air Pollution Modeling and its Application XIV, Proc. of ITM Boulder 2000). Now, the generalisation to any linear s-r relationship, including dry and wet deposition, decay etc., is presented. It was implemented in the model FLEXPART and tested extensively in idealised set-ups. These tests turned out to be very useful for finding minor model bugs and inaccuracies, and can be recommended generally for model testing. Recently, a convection scheme has been integrated in FLEXPART which was also tested. Both source and receptor can be specified in mass mixing ratio or mass units. Properly taking care of this is quite relevant for sources and receptors at different levels in the atmosphere. Furthermore, we present a test with the transport of aerosol-bound Caesium-137 from the areas contaminated by the Chernobyl disaster to Stockholm during one month.

  16. CSEP-Japan: The Japanese node of the collaboratory for the study of earthquake predictability

    NASA Astrophysics Data System (ADS)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2011-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project of earthquake predictability research. The final goal of this project is to have a look for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined the CSEP and started the Japanese testing center called as CSEP-Japan. This testing center constitutes an open access to researchers contributing earthquake forecast models for applied to Japan. A total of 91 earthquake forecast models were submitted on the prospective experiment starting from 1 November 2009. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by the CSEP. The experiments of 1-day, 3-month, 1-year and 3-year forecasting classes were implemented for 92 rounds, 4 rounds, 1round and 0 round (now in progress), respectively. The results of the 3-month class gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space-distribution with most models in some cases where many earthquakes occurred at the same spot. Throughout the experiment, it has been clarified that some properties of the CSEP's evaluation tests such as the L-test show strong correlation with the N-test. We are now processing to own (cyber-) infrastructure to support the forecast experiment as follows. (1) Japanese seismicity has changed since the 2011 Tohoku earthquake. The 3rd call for forecasting models was announced in order to promote model improvement for forecasting earthquakes after this earthquake. So, we provide Japanese seismicity catalog maintained by JMA for modelers to study how seismicity changes in Japan. (2) Now we prepare the 3-D forecasting experiment with a depth range of 0 to 100 km in Kanto region. (3) The testing center improved an evaluation system for 1-day class experiment because this testing class required fast calculation ability to finish forecasting and testing results within one day. This development will make a real-time forecasting system come true. (4) The special issue of 1st part titled Earthquake Forecast Testing Experiment in Japan was published on the Earth, Planets and Space Vol. 63, No.3, 2011 on March, 2011. This issue includes papers of algorithm of statistical models participating our experiment and outline of the experiment in Japan. The 2nd part of this issue, which is now on line, will be published soon. In this presentation, we will overview CSEP-Japan and results of the experiments, and discuss direction of our activity. An outline of the experiment and activities of the Japanese Testing Center are published on our WEB site;

  17. Trends in Mediation Analysis in Nursing Research: Improving Current Practice.

    PubMed

    Hertzog, Melody

    2018-06-01

    The purpose of this study was to describe common approaches used by nursing researchers to test mediation models and evaluate them within the context of current methodological advances. MEDLINE was used to locate studies testing a mediation model and published from 2004 to 2015 in nursing journals. Design (experimental/correlation, cross-sectional/longitudinal, model complexity) and analysis (method, inclusion of test of mediated effect, violations/discussion of assumptions, sample size/power) characteristics were coded for 456 studies. General trends were identified using descriptive statistics. Consistent with findings of reviews in other disciplines, evidence was found that nursing researchers may not be aware of the strong assumptions and serious limitations of their analyses. Suggestions for strengthening the rigor of such studies and an overview of current methods for testing more complex models, including longitudinal mediation processes, are presented.

  18. An Index and Test of Linear Moderated Mediation.

    PubMed

    Hayes, Andrew F

    2015-01-01

    I describe a test of linear moderated mediation in path analysis based on an interval estimate of the parameter of a function linking the indirect effect to values of a moderator-a parameter that I call the index of moderated mediation. This test can be used for models that integrate moderation and mediation in which the relationship between the indirect effect and the moderator is estimated as linear, including many of the models described by Edwards and Lambert ( 2007 ) and Preacher, Rucker, and Hayes ( 2007 ) as well as extensions of these models to processes involving multiple mediators operating in parallel or in serial. Generalization of the method to latent variable models is straightforward. Three empirical examples describe the computation of the index and the test, and its implementation is illustrated using Mplus and the PROCESS macro for SPSS and SAS.

  19. Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanfeng; Illman, Walter A.

    2018-04-01

    Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.

  20. An intervention study to test Locker's conceptual framework of oral health in edentulous elders.

    PubMed

    Yamaga, Eijiro; Sato, Yusuke; Minakuchi, Shunsuke

    2018-06-01

    To test a previously described conceptual framework of oral health in edentulous elders using an intervention study that included complete denture replacement. Confirmatory factor analysis (CFA) was also conducted to substantiate construct validity. To date, the model proposed by Locker has been tested on edentulous elders using structural equation model (SEM) analysis. However, cross-sectional designs and the Short-Form Oral Health Impact Profile (OHIP-14) cannot adequately express cause-effect relationships and distribution in edentulous patients. Accordingly, the authors investigated Locker's model using an interventional design that included complete denture replacement using the OHIP for edentulous subjects (OHIP-EDENT). A total of 265 edentulous participants who visited the Dental Hospital of Tokyo Medical and Dental University (Tokyo, Japan) for new complete dentures were recruited. Locker's model was investigated, and CFA was performed using the change in subscale scores in the Japanese version of the OHIP-EDENT before and after complete denture replacement. CFA demonstrated an excellent model fit after adding several covariates. The Locker model also met the criteria of fit in all indices after 1 nonsignificant path was omitted. All path coefficients were significant. The findings of the present interventional study demonstrated an empirical fit to Locker's model in edentulous elders using SEM analysis, which included complete denture replacement. It is anticipated that clarification of causal mechanisms of oral health-related quality of life will lead to improvement of overall quality of life, thus maintaining or improving the activities of normal daily life for edentulous elders. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  1. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.

    PubMed

    Yhnell, Emma; Dunnett, Stephen B; Brooks, Simon P

    2016-05-31

    Huntington's disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation.

  2. Predictors of recent HIV testing among male street laborers in urban Vietnam.

    PubMed

    Nguyen, Huy V; Dunne, Michael P; Debattista, Joseph

    2014-08-01

    This study assessed the prevalence of and factors associated with HIV testing among male street laborers. In a cross-sectional survey, social mapping was done to recruit and interview 450 men aged 18-59 years in Hanoi. Although many of these men engaged in multiple risk behaviors for HIV, only 19.8 percent had been tested for HIV. A modified theoretical model provided better fit than the conventional Information-Motivation-Behavioral Skills model, as it explained much more variance in HIV testing. This model included three Information-Motivation-Behavioral components and four additional factors, namely, the origin of residence, sexual orientation, the number of sexual partners, and the status of condom use. © The Author(s) 2013.

  3. Concentrator optical characterization using computer mathematical modelling and point source testing

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; John, S. L.; Trentelman, G. F.

    1984-01-01

    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

  4. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various circuit parameters including typical manufacturing dimensional tolerances and support rod permittivity. By varying the circuit parameters of an accurate model using MAFIA, these sensitivities can be computed for manufacturing concerns, and design optimization previous to fabrication, thus eliminating the need for costly experimental iterations. Several variations were made to a standard helical circuit using MAFIA to investigate the effect that variations on helical tape and support rod width, metallized loading height and support rod permittivity, have on TWT cold-test characteristics.

  5. Validation of mesoscale models

    NASA Technical Reports Server (NTRS)

    Kuo, Bill; Warner, Tom; Benjamin, Stan; Koch, Steve; Staniforth, Andrew

    1993-01-01

    The topics discussed include the following: verification of cloud prediction from the PSU/NCAR mesoscale model; results form MAPS/NGM verification comparisons and MAPS observation sensitivity tests to ACARS and profiler data; systematic errors and mesoscale verification for a mesoscale model; and the COMPARE Project and the CME.

  6. Reaping the benefits of an open systems approach: getting the commercial approach right

    NASA Astrophysics Data System (ADS)

    Pearson, Gavin; Dawe, Tony; Stubbs, Peter; Worthington, Olwen

    2016-05-01

    Critical to reaping the benefits of an Open System Approach within Defence, or any other sector, is the ability to design the appropriate commercial model (or framework). This paper reports on the development and testing of a commercial strategy decision support tool. The tool set comprises a number of elements, including a process model, and provides business intelligence insights into likely supplier behaviour. The tool has been developed by subject matter experts and has been tested with a number of UK Defence procurement teams. The paper will present the commercial model framework, the elements of the toolset and the results of testing.

  7. Performance of preproduction model cesium beam frequency standards for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Levine, M. W.

    1978-01-01

    A cesium beam frequency standards for spaceflight application on Navigation Development Satellites was designed and fabricated and preliminary testing was completed. The cesium standard evolved from an earlier prototype model launched aboard NTS-2 and the engineering development model to be launched aboard NTS satellites during 1979. A number of design innovations, including a hybrid analog/digital integrator and the replacement of analog filters and phase detectors by clocked digital sampling techniques are discussed. Thermal and thermal-vacuum testing was concluded and test data are presented. Stability data for 10 to 10,000 seconds averaging interval, measured under laboratory conditions, are shown.

  8. The assessment of function: How is it measured? A clinical perspective

    PubMed Central

    Reiman, Michael P; Manske, Robert C

    2011-01-01

    Testing for outcome or performance can take many forms; including multiple iterations of self-reported measures of function (an assessment of the individual’s perceived dysfunction) and/or clinical special tests (which are primarily assessments of impairments). Typically absent within these testing mechanisms is whether or not one can perform a specific task associated with function. The paper will operationally define function, discuss the construct of function within the disablement model, will overview the multi-dimensional nature of ‘function’ as a concept, will examine the current evidence for functional testing methods, and will propose a functional testing continuum. Limitations of functional performance testing will be discussed including recommendations for future research. PMID:22547919

  9. Alternate methodologies to experimentally investigate shock initiation properties of explosives

    NASA Astrophysics Data System (ADS)

    Svingala, Forrest R.; Lee, Richard J.; Sutherland, Gerrit T.; Benjamin, Richard; Boyle, Vincent; Sickels, William; Thompson, Ronnie; Samuels, Phillip J.; Wrobel, Erik; Cornell, Rodger

    2017-01-01

    Reactive flow models are desired for new explosive formulations early in the development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret due to their 1-D nature, but are expensive to perform and cannot be performed at all explosive test facilities. This work investigates alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These experiments can be performed at a low cost at most explosives testing facilities. This allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.

  10. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis.

    PubMed

    Perotte, Adler; Ranganath, Rajesh; Hirsch, Jamie S; Blei, David; Elhadad, Noémie

    2015-07-01

    As adoption of electronic health records continues to increase, there is an opportunity to incorporate clinical documentation as well as laboratory values and demographics into risk prediction modeling. The authors develop a risk prediction model for chronic kidney disease (CKD) progression from stage III to stage IV that includes longitudinal data and features drawn from clinical documentation. The study cohort consisted of 2908 primary-care clinic patients who had at least three visits prior to January 1, 2013 and developed CKD stage III during their documented history. Development and validation cohorts were randomly selected from this cohort and the study datasets included longitudinal inpatient and outpatient data from these populations. Time series analysis (Kalman filter) and survival analysis (Cox proportional hazards) were combined to produce a range of risk models. These models were evaluated using concordance, a discriminatory statistic. A risk model incorporating longitudinal data on clinical documentation and laboratory test results (concordance 0.849) predicts progression from state III CKD to stage IV CKD more accurately when compared to a similar model without laboratory test results (concordance 0.733, P<.001), a model that only considers the most recent laboratory test results (concordance 0.819, P < .031) and a model based on estimated glomerular filtration rate (concordance 0.779, P < .001). A risk prediction model that takes longitudinal laboratory test results and clinical documentation into consideration can predict CKD progression from stage III to stage IV more accurately than three models that do not take all of these variables into consideration. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  11. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler A; Schimpe, Michael; von Kuepach, Markus Edler

    For reliable lifetime predictions of lithium-ion batteries, models for cell degradation are required. A comprehensive semi-empirical model based on a reduced set of internal cell parameters and physically justified degradation functions for the capacity loss is developed and presented for a commercial lithium iron phosphate/graphite cell. One calendar and several cycle aging effects are modeled separately. Emphasis is placed on the varying degradation at different temperatures. Degradation mechanisms for cycle aging at high and low temperatures as well as the increased cycling degradation at high state of charge are calculated separately.For parameterization, a lifetime test study is conducted including storagemore » and cycle tests. Additionally, the model is validated through a dynamic current profile based on real-world application in a stationary energy storage system revealing the accuracy. The model error for the cell capacity loss in the application-based tests is at the end of testing below 1 % of the original cell capacity.« less

  12. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  13. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive wasmore » emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.« less

  14. Videometric Applications in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Radeztsky, R. H.; Liu, Tian-Shu

    1997-01-01

    Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach number from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blowdown facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.

  15. Parametric study of closed wet cooling tower thermal performance

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  16. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  17. A Parameter Subset Selection Algorithm for Mixed-Effects Models

    DOE PAGES

    Schmidt, Kathleen L.; Smith, Ralph C.

    2016-01-01

    Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less

  18. The Relationship of Item-Level Response Times with Test-Taker and Item Variables in an Operational CAT Environment. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    Swygert, Kimberly A.

    In this study, data from an operational computerized adaptive test (CAT) were examined in order to gather information concerning item response times in a CAT environment. The CAT under study included multiple-choice items measuring verbal, quantitative, and analytical reasoning. The analyses included the fitting of regression models describing the…

  19. Inner ear test battery in guinea pig models - a review.

    PubMed

    Young, Yi-Ho

    2018-06-01

    This study reviewed the development of the inner ear test battery comprising auditory brainstem response (ABR), and caloric, ocular vestibular-evoked myogenic potential (oVEMP), and cervical vestibular-evoked myogenic potential (cVEMP) tests in guinea pig models at our laboratory over the last 20 years. Detailed description of the methodology for testing the small animals is also included. Inner ear disorders, i.e. ototoxicity, noise exposure, or perilymph fistula were established in guinea pig models first. One to four weeks after operation, each animal underwent ABR, oVEMP, cVEMP, and caloric tests. Then, animals were sacrificed for morphological study in the temporal bones. Inner ear endorgans can be comprehensively evaluated in guinea pig models via an inner ear test battery, which provides thorough information on the cochlea, saccule, utricle, and semicircular canal function of guinea pigs. Coupled with morphological study in the temporal bones of the animals may help elucidate the mechanism of inner ear disorders in humans. The inner ear test battery in guinea pig models may encourage young researchers to perform basic study in animals and stimulate the progress of experimental otology which is in evolution.

  20. Summary of the modeling and test correlations of a NASTRAN finite element vibrations model for the AH-1G helicopter, task 1

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.; Dompka, R. V.

    1987-01-01

    The AH-1G NASTRAN finite element model (FEM) is described and the correlations with measured data that were conducted to verify the model are summarized. Comparisons of the AH-1G NASTRAN FEM calculations with measured data include the following: (1) fuselage and tailboom static load deflection (stiffness) testing, (2) airframe ground vibration testing (0-30 H<), (3) airframe flight vibration testing (main rotor, 2,4, and 6/rev), and (4) tailboom effective skin static testing. A description of the modeling rationale and techniques used to develop the NASTRAN FEM is presented in conjunction with all previous correlation work. In general, the correlations show good agreement between analysis and test in stiffness and vibration response through 15 to 20 Hz. For higher frequencies (equal to or greater than 4/rev (21.6 Hz)), the vibration responses generally did not agree well. Also, the lateral (2/rev (10.8 Hz)) flight vibration responses were much lower in the FEM than test, indicating that there is a significant excitation source other than at the main rotor hub that is affecting the lateral vibrations, such as downwash impingement on the vertical tail.

  1. Design and tolerance analysis of a transmission sphere by interferometer model

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Ho, Cheng-Fong; Lin, Wen-Lung; Yu, Zong-Ru; Huang, Chien-Yao; Hsu, Wei-Yao

    2015-09-01

    The design of a 6-in, f/2.2 transmission sphere for Fizeau interferometry is presented in this paper. To predict the actual performance during design phase, we build an interferometer model combined with tolerance analysis in Zemax. Evaluating focus imaging is not enough for a double pass optical system. Thus, we study the interferometer model that includes system error, wavefronts reflected from reference surface and tested surface. Firstly, we generate a deformation map of the tested surface. Because of multiple configurations in Zemax, we can get the test wavefront and the reference wavefront reflected from the tested surface and the reference surface of transmission sphere respectively. According to the theory of interferometry, we subtract both wavefronts to acquire the phase of tested surface. Zernike polynomial is applied to transfer the map from phase to sag and to remove piston, tilt and power. The restored map is the same as original map; because of no system error exists. Secondly, perturbed tolerances including fabrication of lenses and assembly are considered. The system error occurs because the test and reference beam are no longer common path perfectly. The restored map is inaccurate while the system error is added. Although the system error can be subtracted by calibration, it should be still controlled within a small range to avoid calibration error. Generally the reference wavefront error including the system error and the irregularity of the reference surface of 6-in transmission sphere is measured within peak-to-valley (PV) 0.1 λ (λ=0.6328 um), which is not easy to approach. Consequently, it is necessary to predict the value of system error before manufacture. Finally, a prototype is developed and tested by a reference surface with PV 0.1 λ irregularity.

  2. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    USGS Publications Warehouse

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  3. Surface and Flow Field Measurements on the FAITH Hill Model

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  4. NREL and DONG Energy Collaboration for Grid Simulator Controls and Testing: Cooperative Research and Development Final Report, CRADA Number CRD-13-527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan

    The National Renewable Energy Laboratory (NREL) and DONG Energy are interested in collaborating for the development of control algorithms, modeling, and grid simulator testing of wind turbine generator systems involving NWTC's advanced Controllable Grid Interface (CGI). NREL and DONG Energy will work together to develop control algorithms, models, test methods, and protocols involving NREL's CGI, as well as appropriate data acquisition systems for grid simulation testing. The CRADA also includes work on joint publication of results achieved from modeling and testing efforts. Further, DONG Energy will send staff to NREL on a long-term basis for collaborative work including modeling andmore » testing. NREL will send staff to DONG Energy on a short-term basis to visit wind power sites and participate in meetings relevant to this collaborative effort. DOE has provided NREL with over 10 years of support in developing custom facilities and capabilities to enable testing of full-scale integrated wind turbine drivetrain systems in accordance with the needs of the US wind industry. NREL currently operates a 2.5MW dynamometer and is in the processes of commissioning a 5MW dynamometer and a grid simulator (referred to as a 'Controllable Grid Interface' or CGI). DONG Energy is the market leader in offshore wind power development, with currently over 1 GW of on- and offshore wind power in operation, and 1.3 GW under construction. DONG Energy has on-going R&D projects involving high voltage DC (HVDC) transmission.« less

  5. Solving large test-day models by iteration on data and preconditioned conjugate gradient.

    PubMed

    Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A

    1999-12-01

    A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.

  6. The dynamics of life stressors and depressive symptoms in early adolescence: a test of six theoretical models.

    PubMed

    Clements, Margaret; Aber, J Lawrence; Seidman, Edward

    2008-01-01

    Structural equation modeling was used to compare 6 competing theoretically based psychosocial models of the longitudinal association between life stressors and depressive symptoms in a sample of early adolescents (N= 907; 40% Hispanic, 32% Black, and 19% White; mean age at Time 1 = 11.4 years). Only two models fit the data, both of which included paths modeling the effect of depressive symptoms on stressors recall: The mood-congruent cognitive bias model included only depressive symptoms to life stressors paths (DS-->S), whereas the fully transactional model included paths representing both the DS-->S and stressors to depressive symptoms (S-->DS) effects. Social causation models and the stress generation model did not fit the data. Findings demonstrate the importance of accounting for mood-congruent cognitive bias in stressors-depressive symptoms investigations.

  7. Effects of Instructional Design with Mental Model Analysis on Learning.

    ERIC Educational Resources Information Center

    Hong, Eunsook

    This paper presents a model for systematic instructional design that includes mental model analysis together with the procedures used in developing computer-based instructional materials in the area of statistical hypothesis testing. The instructional design model is based on the premise that the objective for learning is to achieve expert-like…

  8. Therapist Personal Agency: A Model for Examining the Training Context

    ERIC Educational Resources Information Center

    Mutchler, Matthew; Anderson, Stephen

    2010-01-01

    This study reviews the creation and testing of a model of Therapist Personal Agency during MFT training. A model including self-efficacy, trainee developmental level, supervisor working alliance, family of origin relationships, and psychological states was supported by data collected from a national sample of MFT students. The model supported by…

  9. A Multiple Deficit Model of Reading Disability and Attention-Deficit/Hyperactivity Disorder: Searching for Shared Cognitive Deficits

    ERIC Educational Resources Information Center

    McGrath, Lauren M.; Pennington, Bruce F.; Shanahan, Michelle A.; Santerre-Lemmon, Laura E.; Barnard, Holly D.; Willcutt, Erik G.; DeFries, John C.; Olson, Richard K.

    2011-01-01

    Background: This study tests a multiple cognitive deficit model of reading disability (RD), attention-deficit/hyperactivity disorder (ADHD), and their comorbidity. Methods: A structural equation model (SEM) of multiple cognitive risk factors and symptom outcome variables was constructed. The model included phonological awareness as a unique…

  10. A Hedonic Approach to Estimating Software Cost Using Ordinary Least Squares Regression and Nominal Attribute Variables

    DTIC Science & Technology

    2006-03-01

    included zero, there is insufficient evidence to indicate that the error mean is 35 not zero. The Breusch - Pagan test was used to test the constant...Multicollinearity .............................................................................. 33 Testing OLS Assumptions...programming styles used by developers (Stamelos and others, 2003:733). Kemerer tested to see how models utilizing SLOC as an independent variable

  11. Impact of Test-Taking Behaviors on Full-Scale IQ Scores from the Wechsler Intelligence Scale for Children-IV Spanish Edition

    ERIC Educational Resources Information Center

    Oakland, Thomas; Harris, Josette G.

    2009-01-01

    Research on children's counterproductive test behavior supports a three-factor model for behaviors: inattentiveness, avoidance, and uncooperative mood. In this study, test behaviors measured by the Guide to the Assessment of Test Session Behaviors (GATSB) are rated on a sample of 110 Hispanic Spanish-speaking children included in the Wechsler…

  12. Utility of arterial blood gas, CBC, biochemistry and cardiac hormones as evaluation parameters of cardiovascular disease in nonhuman primates.

    PubMed

    Nakayama, Shunya; Koie, Hiroshi; Kanayama, Kiichi; Katakai, Yuko; Ito-Fujishiro, Yasuyo; Sankai, Tadashi; Yasutomi, Yasuhiro; Ageyama, Naohide

    2018-06-11

    Cardiovascular disease (CVD) has a tremendous impact on the quality of life of humans. While experimental animals are valuable to medical research as models of human diseases, cardiac systems differ widely across various animal species. Thus, we examined a CVD model in cynomolgus monkeys. Laboratory primates are precious resources, making it imperative that symptoms of diseases and disorders are detected as early as possible. Thus, in this study we comprehensively examined important indicators of CVD in cynomolgus monkeys, including arterial blood gas, complete blood count (CBC), biochemistry, and cardiac hormones. The control group included 20 healthy macaques showing non-abnormal findings in screening tests, whereas the CVD group included 20 macaques with valvular disease and cardiomyopathy. An increase of red blood cell distribution width was observed in the CBC, indicating chronic inflammation related to CVD. An increase of HCO 3 was attributed to the correction of acidosis. Furthermore, development of the CVD model was supported by significant increases in natriuretic peptides. It is suggested that these results indicated a correlation between human CVD and the model in monkeys. Moreover, blood tests including arterial blood gas are non-invasive and can be performed more easily than other technical tests. CVD affected animals easily change their condition by anesthesia and surgical invasion. Pay attention to arterial blood gas and proper respond to their condition are important for research. This data may facilitate human research and aid in the management and veterinary care of nonhuman primates.

  13. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.

    PubMed

    Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar

    2017-10-01

    Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

  14. Evaluation of a 40 to 1 scale model of a low pressure engine

    NASA Technical Reports Server (NTRS)

    Cooper, C. E., Jr.; Thoenes, J.

    1972-01-01

    An evaluation of a scale model of a low pressure rocket engine which is used for secondary injection studies was conducted. Specific objectives of the evaluation were to: (1) assess the test conditions required for full scale simulations; (2) recommend fluids to be used for both primary and secondary flows; and (3) recommend possible modifications to be made to the scale model and its test facility to achieve the highest possible degree of simulation. A discussion of the theoretical and empirical scaling laws which must be observed to apply scale model test data to full scale systems is included. A technique by which the side forces due to secondary injection can be analytically estimated is presented.

  15. Considerations for ex vivo thermal tissue testing exemplified using the fresh porcine longissimus muscle model for endometrial ablation

    NASA Astrophysics Data System (ADS)

    Fugett, James H.; Bennett, Haydon E.; Shrout, Joshua L.; Coad, James E.

    2017-02-01

    Expansions in minimally invasive medical devices and technologies with thermal mechanisms of action are continuing to advance the practice of medicine. These expansions have led to an increasing need for appropriate animal models to validate and quantify device performance. The planning of these studies should take into consideration a variety of parameters, including the appropriate animal model (test system - ex vivo or in vivo; species; tissue type), treatment conditions (test conditions), predicate device selection (as appropriate, control article), study timing (Day 0 acute to more than Day 90 chronic survival studies), and methods of tissue analysis (tissue dissection - staining methods). These considerations are discussed and illustrated using the fresh extirpated porcine longissimus muscle model for endometrial ablation.

  16. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, Stuart A.

    This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined,more » the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.« less

  18. Impact of uncertainty on modeling and testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Brown, Kendall K.

    1995-01-01

    A thorough understanding of the uncertainties associated with the modeling and testing of the Space Shuttle Main Engine (SSME) Engine will greatly aid decisions concerning hardware performance and future development efforts. This report will describe the determination of the uncertainties in the modeling and testing of the Space Shuttle Main Engine test program at the Technology Test Bed facility at Marshall Space Flight Center. Section 2 will present a summary of the uncertainty analysis methodology used and discuss the specific applications to the TTB SSME test program. Section 3 will discuss the application of the uncertainty analysis to the test program and the results obtained. Section 4 presents the results of the analysis of the SSME modeling effort from an uncertainty analysis point of view. The appendices at the end of the report contain a significant amount of information relative to the analysis, including discussions of venturi flowmeter data reduction and uncertainty propagation, bias uncertainty documentations, technical papers published, the computer code generated to determine the venturi uncertainties, and the venturi data and results used in the analysis.

  19. Prospective Tests of Southern California Earthquake Forecasts

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.; Kagan, Y. Y.; Helmstetter, A.; Wiemer, S.; Field, N.

    2004-12-01

    We are testing earthquake forecast models prospectively using likelihood ratios. Several investigators have developed such models as part of the Southern California Earthquake Center's project called Regional Earthquake Likelihood Models (RELM). Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. Here we describe the testing procedure and present preliminary results. Forecasts are expressed as the yearly rate of earthquakes within pre-specified bins of longitude, latitude, magnitude, and focal mechanism parameters. We test models against each other in pairs, which requires that both forecasts in a pair be defined over the same set of bins. For this reason we specify a standard "menu" of bins and ground rules to guide forecasters in using common descriptions. One menu category includes five-year forecasts of magnitude 5.0 and larger. Contributors will be requested to submit forecasts in the form of a vector of yearly earthquake rates on a 0.1 degree grid at the beginning of the test. Focal mechanism forecasts, when available, are also archived and used in the tests. Interim progress will be evaluated yearly, but final conclusions would be made on the basis of cumulative five-year performance. The second category includes forecasts of earthquakes above magnitude 4.0 on a 0.1 degree grid, evaluated and renewed daily. Final evaluation would be based on cumulative performance over five years. Other types of forecasts with different magnitude, space, and time sampling are welcome and will be tested against other models with shared characteristics. Tests are based on the log likelihood scores derived from the probability that future earthquakes would occur where they do if a given forecast were true [Kagan and Jackson, J. Geophys. Res.,100, 3,943-3,959, 1995]. For each pair of forecasts, we compute alpha, the probability that the first would be wrongly rejected in favor of the second, and beta, the probability that the second would be wrongly rejected in favor of the first. Computing alpha and beta requires knowing the theoretical distribution of likelihood scores under each hypothesis, which we estimate by simulations. In this scheme, each forecast is given equal status; there is no "null hypothesis" which would be accepted by default. Forecasts and test results will be archived and posted on the RELM web site. Major problems under discussion include how to treat aftershocks, which clearly violate the variable-rate Poissonian hypotheses that we employ, and how to deal with the temporal variations in catalog completeness that follow large earthquakes.

  20. Performance and Stability Analyses of Rocket Combustion Devices Using Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented programs with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations on these programs. This paper summarizes these analyses. Test and analysis results of impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Several cases with gaseous methane are included for reference. Several different thrust chamber configurations have been modeled, including thrust chambers with multi-element like-on-like and swirl coax element injectors tested at NASA MSFC, and a unielement chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods.

Top