Science.gov

Sample records for moderate folate depletion

  1. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    USDA-ARS?s Scientific Manuscript database

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  2. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    PubMed

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  3. Folate rescues vitamin B12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability.

    PubMed

    Palmer, Ashley M; Kamynina, Elena; Field, Martha S; Stover, Patrick J

    2017-05-16

    Clinical vitamin B12 deficiency can result in megaloblastic anemia, which results from the inhibition of DNA synthesis by trapping folate cofactors in the form of 5-methyltetrahydrofolate (5-methylTHF) and subsequent inhibition of de novo thymidylate (dTMP) biosynthesis. In the cytosol, vitamin B12 functions in the remethylation of homocysteine to methionine, which regenerates THF from 5-methylTHF. In the nucleus, THF is required for de novo dTMP biosynthesis, but it is not understood how 5-methylTHF accumulation in the cytosol impairs nuclear dTMP biosynthesis. The impact of vitamin B12 depletion on nuclear de novo dTMP biosynthesis was investigated in methionine synthase-null human fibroblast and nitrous oxide-treated HeLa cell models. The nucleus was the most sensitive cellular compartment to 5-methylTHF accumulation, with levels increasing greater than fourfold. Vitamin B12 depletion decreased de novo dTMP biosynthesis capacity by 5-35%, whereas de novo purine synthesis, which occurs in the cytosol, was not affected. Phosphorylated histone H2AX (γH2AX), a marker of DNA double-strand breaks, was increased in vitamin B12 depletion, and this effect was exacerbated by folate depletion. These studies also revealed that 5-formylTHF, a slow, tight-binding inhibitor of serine hydroxymethyltransferase (SHMT), was enriched in nuclei, accounting for 35% of folate cofactors, explaining previous observations that nuclear SHMT is not a robust source of one-carbons for de novo dTMP biosynthesis. These findings indicate that a nuclear 5-methylTHF trap occurs in vitamin B12 depletion, which suppresses de novo dTMP biosynthesis and causes DNA damage, accounting for the pathophysiology of megaloblastic anemia observed in vitamin B12 and folate deficiency.

  4. Multiple B-vitamin inadequacy amplifies alterations induced by folate depletion in p53 expression and its downstream effector MDM2

    PubMed Central

    Liu, Zhenhua; Choi, Sang-Woon; Crott, Jimmy W.; Smith, Donald E.; Mason, Joel B.

    2009-01-01

    Folate is required for biological methylation and nucleotide synthesis, aberrations of which are thought to be the mechanisms that enhance colorectal carcinogenesis produced by folate inadequacy. These functions of folate also depend on the availability of other B-vitamins that participate in “one-carbon metabolism,” including B2, B6 and B12. Our study therefore investigated whether combined dietary restriction of these vitamins amplifies aberrations in the epigenetic and genetic integrity of the p53 gene that is induced by folate depletion alone. Ninety-six mice were group pair-fed diets with different combinations of B-vitamin depletion over 10 weeks. DNA and RNA were extracted from epithelial cells isolated from the colon. Within the hypermutable region of p53 (exons 5–8), DNA strand breaks were induced within exons 6 and 8 by folate combined with B2, B6 and B12 restriction (p < 0.05); such effects were not significantly induced by mild folate depletion alone. Similarly, a minor degree of hypomethylation of exon 6 produced by isolated folate depletion was significantly amplified (p ≤ 0.05) by simultaneous depletion of all 4 B-vitamins. Furthermore, the expression of p53 and MDM2 were significantly decreased (p ≤ 0.05) by the combined depletion state but not by folate depletion alone. These data indicate that inadequacies of other 1-carbon vitamins may amplify aberrations of the p53 gene induced by folate depletion alone, implying that concurrent inadequacies in several of these vitamins may have added tumorigenic potential beyond that observed with isolated folate depletion. PMID:18498130

  5. Organ-Specific Gene Expression Changes in the Fetal Liver and Placenta in Response to Maternal Folate Depletion

    PubMed Central

    McKay, Jill A.; Xie, Long; Adriaens, Michiel; Evelo, Chris T.; Ford, Dianne; Mathers, John C.

    2016-01-01

    Growing evidence supports the hypothesis that the in utero environment can have profound implications for fetal development and later life offspring health. Current theory suggests conditions experienced in utero prepare, or “programme”, the fetus for its anticipated post-natal environment. The mechanisms responsible for these programming events are poorly understood but are likely to involve gene expression changes. Folate is essential for normal fetal development and inadequate maternal folate supply during pregnancy has long term adverse effects for offspring. We tested the hypothesis that folate depletion during pregnancy alters offspring programming through altered gene expression. Female C57BL/6J mice were fed diets containing 2 mg or 0.4 mg folic acid/kg for 4 weeks before mating and throughout pregnancy. At 17.5 day gestation, genome-wide gene expression was measured in male fetal livers and placentas. In the fetal liver, 989 genes were expressed differentially (555 up-regulated, 434 down-regulated) in response to maternal folate depletion, with 460 genes expressed differentially (250 up-regulated, 255 down-regulated) in the placenta. Only 25 differentially expressed genes were common between organs. Maternal folate intake during pregnancy influences fetal gene expression in a highly organ specific manner which may reflect organ-specific functions. PMID:27782079

  6. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    PubMed Central

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion. PMID:25009523

  7. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    PubMed

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

  8. Gene promoter DNA methylation patterns have a limited role in orchestrating transcriptional changes in the fetal liver in response to maternal folate depletion during pregnancy

    PubMed Central

    Adriaens, Michiel; Evelo, Chris T.; Ford, Dianne; Mathers, John C.

    2016-01-01

    Scope Early‐life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long‐term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. Methods and results Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5‐day gestation, genome‐wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. Conclusion In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver. PMID:27133805

  9. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    USDA-ARS?s Scientific Manuscript database

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  10. Choice and ego-depletion: the moderating role of autonomy.

    PubMed

    Moller, Arlen C; Deci, Edward L; Ryan, Richard M

    2006-08-01

    The self-regulatory strength model maintains that all acts of self-regulation, self-control, and choice result in a state of fatigue called ego-depletion. Self-determination theory differentiates between autonomous regulation and controlled regulation. Because making decisions represents one instance of self-regulation, the authors also differentiate between autonomous choice and controlled choice. Three experiments support the hypothesis that whereas conditions representing controlled choice would be egodepleting, conditions that represented autonomous choice would not. In Experiment 3, the authors found significant mediation by perceived self-determination of the relation between the choice condition (autonomous vs. controlled) and ego-depletion as measured by performance.

  11. Homocysteine Lowering by Folate-Rich Diet or Pharmacological Supplementations in Subjects with Moderate Hyperhomocysteinemia

    PubMed Central

    Zappacosta, Bruno; Mastroiacovo, Pierpaolo; Persichilli, Silvia; Pounis, George; Ruggeri, Stefania; Minucci, Angelo; Carnovale, Emilia; Andria, Generoso; Ricci, Roberta; Scala, Iris; Genovese, Orazio; Turrini, Aida; Mistura, Lorenza; Giardina, Bruno; Iacoviello, Licia

    2013-01-01

    Background/Objectives: To compare the efficacy of a diet rich in natural folate and of two different folic acid supplementation protocols in subjects with “moderate” hyperhomocysteinemia, also taking into account C677T polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. Subjects/Methods: We performed a 13 week open, randomized, double blind clinical trial on 149 free living persons with mild hyperhomocyteinemia, with daily 200 μg from a natural folate-rich diet, 200 μg [6S]5-methyltetrahydrofolate (5-MTHF), 200 μg folic acid or placebo. Participants were stratified according to their MTHFR genotype. Results: Homocysteine (Hcy) levels were reduced after folate enriched diet, 5-MTHF or folic acid supplementation respectively by 20.1% (p < 0.002), 19.4% (p < 0.001) and 21.9% (p < 0.001), as compared to baseline levels and significantly as compared to placebo (p < 0.001, p < 0.002 and p < 0.001, respectively for enriched diet, 5-MTHF and folic acid). After this enriched diet and the folic acid supplementation, Hcy in both genotype groups decreased approximately to the same level, with higher percentage decreases observed for the TT group because of their higher pre-treatment value. Similar results were not seen by genotype for 5-MTHF. A significant increase in RBC folate concentration was observed after folic acid and natural folate-rich food supplementations, as compared to placebo. Conclusions: Supplementation with natural folate-rich foods, folic acid and 5-MTHF reached a similar reduction in Hcy concentrations. PMID:23698160

  12. The Effect of Implicit Preferences on Food Consumption: Moderating Role of Ego Depletion and Impulsivity.

    PubMed

    Wang, Yan; Zhu, Jinglei; Hu, Yi; Fang, Yuan; Wang, Guosen; Cui, Xianghua; Wang, Lei

    2016-01-01

    Ego depletion has been found to moderate the effect of implicit preferences on food consumption, such that implicit preferences predict consumption only under a depleted state. The present study tested how trait impulsivity impacts the effect of implicit preferences on food consumption in a depleted condition. Trait impulsivity was measured by means of self-report and a stop signal task. Results showed that both self-reported impulsivity and behavioral impulsivity moderated the 'depletion and then eating according to implicit preferences' effect, albeit in different ways. Participants high in self-reported impulsivity and low in behavioral impulsivity were more vulnerable to the effect of depletion on eating. The implications of these results for extant theories are discussed. Future research is needed to verify whether or not trait impulsivity is associated with vulnerability to depletion across different self-control domains.

  13. The Effect of Implicit Preferences on Food Consumption: Moderating Role of Ego Depletion and Impulsivity

    PubMed Central

    Wang, Yan; Zhu, Jinglei; Hu, Yi; Fang, Yuan; Wang, Guosen; Cui, Xianghua; Wang, Lei

    2016-01-01

    Ego depletion has been found to moderate the effect of implicit preferences on food consumption, such that implicit preferences predict consumption only under a depleted state. The present study tested how trait impulsivity impacts the effect of implicit preferences on food consumption in a depleted condition. Trait impulsivity was measured by means of self-report and a stop signal task. Results showed that both self-reported impulsivity and behavioral impulsivity moderated the ‘depletion and then eating according to implicit preferences’ effect, albeit in different ways. Participants high in self-reported impulsivity and low in behavioral impulsivity were more vulnerable to the effect of depletion on eating. The implications of these results for extant theories are discussed. Future research is needed to verify whether or not trait impulsivity is associated with vulnerability to depletion across different self-control domains. PMID:27881966

  14. Ego depletion increases ad-lib alcohol consumption: investigating cognitive mediators and moderators.

    PubMed

    Christiansen, Paul; Cole, Jon C; Field, Matt

    2012-04-01

    When self-control resources are depleted ("ego depletion"), alcohol-seeking behavior becomes closely associated with automatic alcohol-related processing biases (e.g., Ostafin, Marlatt, & Greenwald, 2008). The current study aimed to replicate and extend these findings, and also to investigate whether the effects of ego depletion on drinking behavior would be mediated by temporary impairments in executive function or increases in impulsivity. Eighty heavy social drinkers (46 female) initially completed measures of automatic approach tendencies (stimulus response compatibility [SRC] task) and attentional bias (visual probe task) elicited by alcohol-related cues. Participants were then exposed to either an ego depletion manipulation or a control manipulation, before completing a bogus taste test in order to assess ad-lib alcohol consumption. In a subsequent testing session, we examined effects of the ego depletion manipulation (vs. control manipulation) on 3 aspects of executive function (inhibitory control, phonemic fluency, and delay discounting). Results indicated that the ego depletion manipulation increased ad-lib drinking, relative to the control manipulation. Automatic approach tendencies, but not attentional bias, predicted ad-lib drinking, although this effect was not moderated by ego depletion. Ego depletion had inconsistent effects on measures of executive function and impulsivity, and none of these measures mediated the effect of ego depletion on ad-lib drinking. However, the effect of ego depletion on ad-lib drinking was mediated by self-reported effort in suppressing emotion and thoughts during the manipulation. Implications for the effects of self-control strength on drinking behavior, and cognitive mediators of these effects, are discussed.

  15. From Dust to Planets: The Tale Told by Moderately Volatile Element Depletion (MOVED)

    NASA Technical Reports Server (NTRS)

    Yin, Qing-Zhu

    2004-01-01

    The pronounced depletion of moderately volatile elements (MOVE, that condense or evaporate at temperatures in the range 1350-650K) relative to the average solar composition is a characteristic feature in most primitive chondrites and bulk terrestrial planets. It differs from the composition of the Sun and from the materials further away from the Sun (CI chondrites). None of the remaining planets or even meteorites shows an enrichment of volatile elements that would balance the depletion in the inner Solar System. Whether this depletion occurred in solar nebular stage or in planetary formation stage has been the subject of long lasting debate. The search for mysterite initiated in 1973 continues today in search of lost planets. Here I show that the MOVED patterns demonstrate a clear connection between the rocky materials of the inner solar system and the interstellar dust. The inheritance of interstellar materials by the solar system is not only documented by the presence of presolar grains, various isotopic anomalies, but also expressed in the chemical element distribution in the inner solar system.

  16. Mild depletion of dietary folate combined with other B-vitamins alters multiple components of the Wnt pathway in the mouse colon

    USDA-ARS?s Scientific Manuscript database

    Preclinical and clinical studies suggest that diminished folate status increases the risk of colorectal carcinogenesis. However, many biochemical functions of folate are dependent on the adequate availability of other ‘one-carbon nutrients’, including riboflavin, vitamin B-6 and B-12. Aberrations i...

  17. Self-regulation and personality: how interventions increase regulatory success, and how depletion moderates the effects of traits on behavior.

    PubMed

    Baumeister, Roy F; Gailliot, Matthew; DeWall, C Nathan; Oaten, Megan

    2006-12-01

    Self-regulation is a highly adaptive, distinctively human trait that enables people to override and alter their responses, including changing themselves so as to live up to social and other standards. Recent evidence indicates that self-regulation often consumes a limited resource, akin to energy or strength, thereby creating a temporary state of ego depletion. This article summarizes recent evidence indicating that regular exercises in self-regulation can produce broad improvements in self-regulation (like strengthening a muscle), making people less vulnerable to ego depletion. Furthermore, it shows that ego depletion moderates the effects of many traits on behavior, particularly such that wide differences in socially disapproved motivations produce greater differences in behavior when ego depletion weakens the customary inner restraints.

  18. Choline Intake, Plasma Riboflavin, and the Phosphatidylethanolamine N-Methyltransferase G5465A Genotype Predict Plasma Homocysteine in Folate-Deplete Mexican-American Men with the Methylenetetrahydrofolate Reductase 677TT Genotype12

    PubMed Central

    Caudill, Marie A.; Dellschaft, Neele; Solis, Claudia; Hinkis, Sabrina; Ivanov, Alexandre A.; Nash-Barboza, Susan; Randall, Katharine E.; Jackson, Brandi; Solomita, Gina N.; Vermeylen, Francoise

    2009-01-01

    We previously showed that provision of the folate recommended dietary allowance and either 300, 550, 1100, or 2200 mg/d choline for 12 wk resulted in diminished folate status and a tripling of plasma total homocysteine (tHcy) in men with the methylenetetrahydrofolate reductase (MTHFR) 677TT genotype. However, the substantial variation in tHcy within the 677TT genotype at wk 12 implied that several factors were interacting with this genotype to affect homocysteine. As an extension of this work, the present study sought to identify the main predictors of wk-12 plasma tHcy, alone and together with the MTHFR C677T genotype (29 TT, 31 CC), using linear regression analysis. A basic model explaining 82.5% of the variation (i.e. adjusted R2 = 0.825) was constructed. However, the effects of the variables within this model were dependent upon the MTHFR C677T genotype (P for interaction ≤ 0.021). Within the 677TT genotype, serum folate (P = 0.005) and plasma riboflavin (P = 0.002) were strong negative predictors (inversely related) explaining 12 and 15%, respectively, of the variation in tHcy, whereas choline intake (P = 0.003) and serum creatinine (P < 0.001) were strong positive predictors, explaining 19 and 25% of the variation. None of these variables, except creatinine (P = 0.021), correlated with tHcy within the 677CC genotype. Of the 8 additional polymorphisms tested, none appeared to influence tHcy. However, when creatinine was not in the model, the phosphatidylethanolamine N-methyltransferase 5465G→A variant predicted lower tHcy (P < 0.001); an effect confined to the MTHFR 677TT genotype. Thus, in folate-deplete men, several factors with roles in 1-carbon metabolism interact with the MTHFR C677T genotype to affect plasma tHcy. PMID:19211833

  19. Folate deficiency

    MedlinePlus

    ... micrograms of folate daily. Women who may become pregnant should take folic acid supplements to ensure that they get enough each day. Specific recommendations depend on a person's age, gender, and other factors (such as pregnancy ...

  20. Arsenic-Induced Antioxidant Depletion, Oxidative DNA Breakage, and Tissue Damages are Prevented by the Combined Action of Folate and Vitamin B12.

    PubMed

    Acharyya, Nirmallya; Deb, Bimal; Chattopadhyay, Sandip; Maiti, Smarajit

    2015-11-01

    Arsenic is a grade I human carcinogen. It acts by disrupting one-carbon (1C) metabolism and cellular methyl (-CH3) pool. The -CH3 group helps in arsenic disposition and detoxification of the biological systems. Vitamin B12 and folate, the key promoters of 1C metabolism were tested recently (daily 0.07 and 4.0 μg, respectively/100 g b.w. of rat for 28 days) to evaluate their combined efficacy in the protection from mutagenic DNA-breakage and tissue damages. The selected tissues like intestine (first-pass site), liver (major xenobiotic metabolizer) and lung (major arsenic accumulator) were collected from arsenic-ingested (0.6 ppm/same schedule) female rats. The hemo-toxicity and liver and kidney functions were monitored. Our earlier studies on arsenic-exposed humans can correlate carcinogenesis with DNA damage. Here, we demonstrate that the supplementation of physiological/therapeutic dose of vitamin B12 and folate protected the rodents significantly from arsenic-induced DNA damage (DNA fragmentation and comet assay) and hepatic and renal tissue degeneration (histo-architecture, HE staining). The level of arsenic-induced free-radical products (TBARS and conjugated diene) was significantly declined by the restored actions of several antioxidants viz. urate, thiol, catalase, xanthine oxidase, lactoperoxidase, and superoxide dismutase in the tissues of vitamin-supplemented group. The alkaline phosphatase, transaminases, urea and creatinine (hepatic and kidney toxicity marker), and lactate dehydrogenase (tissue degeneration marker) were significantly impaired in the arsenic-fed group. But a significant protection was evident in the vitamin-supplemented group. In conclusion, the combined action of folate and B12 results in the restitution in the 1C metabolic pathway and cellular methyl pool. The cumulative outcome from the enhanced arsenic methylation and antioxidative capacity was protective against arsenic induced mutagenic DNA breakages and tissue damages.

  1. Folate in oats and its milling fractions.

    PubMed

    Edelmann, Minnamari; Kariluoto, Susanna; Nyström, Laura; Piironen, Vieno

    2012-12-01

    Total folate content in oat varieties from three harvesting years (2006-2008), and in oats milling fractions, was determined using microbiological assay. Furthermore, folate vitamer distribution in milling fractions were examined with the UPLC method, which was taken in use and validated. The total folate content of the cultivars varied moderately within each year. The average content in the 2008 samples was 685ng/gdm. The UPLC method proved fast and sensitive for determining seven folate monoglutamates in cereal samples. Folate content in fractions, which are normally discarded, such as flour from oat cutting and flaking, were 1.5- to 2.5-fold higher than in native grain. The main folate vitamers found in the oat fractions were 5-CH(3)-H(4)folate, 5-HCO-H(4)folate, and 5,10-CH(+)-H(4)folate. The UPLC results more closely matched the microbiological results compared to those that are usually achieved with HPLC methods. This study illustrates that oats and, especially, by-products of milling are good sources of folate.

  2. Increased folate uptake prevents dietary development of folate deficiency in the rat brain

    SciTech Connect

    McMartin, K.E.; Collins, T.D.; Eisenga, B.H.; Bhandari, S.D. )

    1990-02-26

    Folic acid and folate deficiency have been implicated in disorders of the central nervous system. In a study of the mechanism for the effects of chronic ethanol on folate homeostasis, the uptake of {sup 3}H-folic acid by the rat brain has been studied. Male Sprague-Dawley rats were fed sulfonamide-supplemented folate-sufficient and folate-deficient liquid diets containing either ethanol or isoenergic carbohydrate as a control. After 16 weeks, severe folate depletion occurred in tissues (liver, kidney, spleen, lung intestine, testes), but not in the brain. Tissue retention of {sup 3}H-folic acid was increased four-fold in the brain of folate-deficient rats. A smaller increase in uptake was observed in the other tissues, except for the liver, in which the retention of {sup 3}H-folic acid was slightly decreased. Chronic ethanol feeding decreased hepatic folate uptake, but not that by the increase the uptake of folate from the plasma of folate-deficient rats, thereby inhibiting the development of brain folate deficiency.

  3. Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model.

    PubMed

    Saini, R K; Manoj, P; Shetty, N P; Srinivasan, K; Giridhar, P

    2016-01-01

    Moringa oleifera is an affordable and rich source of dietary folate. Quantification of folate by HPLC showed that 5-formyl-5,6,7,8-tetrahydrofolic acid (502.1 μg/100 g DW) and 5,6,7,8-tetrahydrofolic acid (223.9 μg/100 g DW) as the most dominant forms of folate in M. oleifera leaves. The bioavailability of folate and the effects of folate depletion and repletion on biochemical and molecular markers of folate status were investigated in Wistar rats. Folate deficiency was induced by keeping the animals on a folate deficient diet with 1 % succinyl sulfathiazole (w/w). After the depletion period, animals were repleted with different levels of folic acid and M. oleifera leaves as a source of folate. Feeding the animals on a folate deficient diet for 7 weeks caused a significant (3.4-fold) decrease in serum folate content, compared to non-depleted control animals. Relative bioavailability of folate from dehydrated leaves of M. oleifera was 81.9 %. During folate depletion and repletion, no significant changes in liver glycine N-methyl transferase and 5-methyltetrahydrofolate-homocysteine methyltransferase expression were recorded. In RDA calculations, only 50 % of natural folate is assumed to be bioavailable. Therefore, the bioavailability of folate from Moringa is much higher, suggesting that M. oleifera based food can be used as a significant source of folate.

  4. Ego depletion in color priming research: self-control strength moderates the detrimental effect of red on cognitive test performance.

    PubMed

    Bertrams, Alex; Baumeister, Roy F; Englert, Chris; Furley, Philip

    2015-03-01

    Colors have been found to affect psychological functioning. Empirical evidence suggests that, in test situations, brief perceptions of the color red or even the word "red" printed in black ink prime implicit anxious responses and consequently impair cognitive performance. However, we propose that this red effect depends on people's momentary capacity to exert control over their prepotent responses (i.e., self-control). In three experiments (Ns = 66, 78, and 130), first participants' self-control strength was manipulated. Participants were then primed with the color or word red versus gray prior to completing an arithmetic test or an intelligence test. As expected, self-control strength moderated the red effect. While red had a detrimental effect on performance of participants with depleted self-control strength (ego depletion), it did not affect performance of participants with intact self-control strength. We discuss implications of the present findings within the current debate on the robustness of priming results. © 2015 by the Society for Personality and Social Psychology, Inc.

  5. Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay.

    PubMed

    Clifford, A J; Heid, M K; Peerson, J M; Bills, N D

    1991-04-01

    Folate bioavailability of beef liver, lima beans, peas, spinach, mushrooms, collards, orange juice and wheat germ was estimated with a protocol of folate depletion-repletion using growth and liver, serum and erythrocyte folate of weanling male rats. Diets with 125, 250 and 375 micrograms folic acid/kg were standards. Individual foods were incorporated into a folate-free amino acid-based diet alone (250 micrograms folate/kg diet from food) or mixed with folic acid (125 micrograms folate from food + 125 micrograms folic acid) to evaluate folate bioavailability and effects of food matrix. Beef liver and orange juice folates were as available as folic acid, whereas those of wheat germ were less bioavailable. Folates of peas and spinach were also less available than folic acid using liver and serum folate concentrations and total liver folate as response criteria, but they were not lower when based on growth and erythrocyte folate concentrations. Lima bean, mushroom and collard folates were as available as folic acid using four of five response criteria. Folate bioavailability of all foods generally exceeded 70%. All response criteria gave approximately equivalent results, indicating that growth and tissue folate levels are appropriate criteria. No food matrix effects were observed for any food except lima beans. Foods rich in polyglutamyl folates were less bioavailable than those of foods rich in short-chain folates.

  6. Determining bioavailability of food folates in a controlled intervention study.

    PubMed

    Hannon-Fletcher, Mary P; Armstrong, Nicola C; Scott, John M; Pentieva, Kristina; Bradbury, Ian; Ward, Mary; Strain, J J; Dunn, Adele A; Molloy, Anne M; Kerr, Maeve A; McNulty, Helene

    2004-10-01

    The concept of dietary folate equivalents (DFEs) in the United States recognizes the differences in bioavailability between natural food folates and the synthetic vitamin, folic acid. However, many published reports on folate bioavailability are problematic because of several confounding factors. We compared the bioavailability of food folates with that of folic acid under controlled conditions. To broadly represent the extent to which natural folates are conjugated in foods, we used 2 natural sources of folate, spinach (50% polyglutamyl folate) and yeast (100% polyglutamyl folate). Ninety-six men were randomly assigned according to their screening plasma homocysteine (tHcy) concentration to 1 of 4 treatment groups for an intervention period of 30 d. Each subject received (daily under supervision) either a folate-depleted "carrier" meal or a drink plus 1) placebo tablet, 2) 200 microg folic acid in a tablet, 3) 200 microg natural folate provided as spinach, or 4) 200 microg natural folate provided as yeast. Among the subjects who completed the intervention, responses (increase in serum folate, lowering of tHcy) relative to those in the placebo group (n = 18) were significant in the folic acid group (n = 18) but not in the yeast folate (n = 19) or the spinach folate (n = 18) groups. Both natural sources of folate were significantly less bioavailable than was folic acid. Overall estimations of folate bioavailability relative to that of folic acid were found to be between 30% (spinach) and 59% (yeast). Relative bioavailability estimates were consistent with the estimates from the metabolic study that were used as a basis to derive the US DFE value.

  7. The association of folate and depression: A meta-analysis.

    PubMed

    Bender, Ansley; Hagan, Kelsey E; Kingston, Neal

    2017-07-22

    Previous research suggested that folate levels play an important role in the etiology and course of depression. However, the literature has been inconsistent with regard to differences in folate level between individuals with and without depression. The present meta-analysis synthesized the results of previous studies to examine whether individuals with depression had lower levels of folate than individuals without depression. Meta-analytic procedures were conducted in accordance with PRISMA guidelines. Studies evaluating folate levels in individuals with and without depression via red blood cell folate, serum folate, or dietary intake of folate methods were identified via PsycINFO and PubMed. Random-effects meta-analysis was conducted using Hedge's g, and moderation analysis was used for both folate measurement method and population type. Study heterogeneity was assessed with I(2) and publication bias was qualitatively assessed via funnel plot and quantitatively assessed with the trim-and-fill method and Begg's adjusted rank test. We found a significant, small effect size, such that individuals with depression had lower folate levels than those without depression, Hedge's g = -0.24 (95% CI = -0.31, -0.16), p < 0.001. Study heterogeneity was high (I(2) = 84.88%), and neither folate measurement method nor population accounted for study heterogeneity. Individuals with depression have lower serum levels of folate and dietary folate intake than individuals without depression. Given that previous literature suggested folate supplementation improved the efficacy of traditional antidepressant medications, future research on folate supplementation in depression is warranted and clinicians may wish to consider folate supplementation for patients with depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Autism and Folate Deficiency

    DTIC Science & Technology

    2010-05-01

    als. Mouse mo dels of altered intracellular folate transport and metabolism exist (Folr1, Folr 2, Mthfr , and PCFT1). We hypothesized that folate...individuals and others (4). Severa l genetic m ouse models of altered intracellu lar folate transport and metabolism ar e in existen ce (Folr1, Folr2, Mthfr ...out mice to severely limit folate transport into the cell. We a lso utilized th e genetically modified Mthfr knock out mouse as a model of altered

  9. Individual Differences in Approach and Avoidance Inclinations Moderate the Effect of Self-Control Depletion on Ad-Lib Drinking

    PubMed Central

    Schlauch, Robert C.; Christensen, Rita L.; Derrick, Jaye L.; Crane, Cory A.; Collins, R. Lorraine

    2015-01-01

    Background The current study sought to examine how exerting self-control to inhibit stereotype use affects alcohol consumption. In addition, we sought to expand previous findings via examination of how individual differences in motivations to approach or avoid alcohol consumption interact with self-control depletion to determine the regulation of ad-lib drinking behavior. Methods Sixty-one social drinkers (31 female) were recruited to participate in a socially relevant self-control depletion task in which they were randomly assigned to one of two creative writing conditions: 1) the self-control depletion condition with explicit instructions to refrain from using stereotypes, or 2) the non-depletion condition in which no instructions were given regarding the use of stereotypes. Participants then completed an ad-lib drinking task and self-report questionnaires pertaining to their motivation to consume alcohol. Results As predicted, results indicated a significant three-way interaction between depletion condition, approach inclinations, and avoidance inclinations. Specifically, self-control depletion predicted greater drinking disinhibition (i.e., mean sip size, total alcohol consumption) only among participants high in both approach and avoidance. Conclusions Taken together, results from the current study highlight the importance of both approach and avoidance inclinations in the failure to regulate alcohol consumption following a routine, socially relevant form of self-control depletion. Our results also suggest that the high approach / high avoidance motivational profile may predict the greatest risk among those actively trying to regulate their drinking. PMID:26756800

  10. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  11. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  12. Individual Differences in Approach and Avoidance Inclinations Moderate the Effect of Self-Control Depletion on Ad-Lib Drinking.

    PubMed

    Schlauch, Robert C; Christensen, Rita L; Derrick, Jaye L; Crane, Cory A; Collins, R Lorraine

    2015-12-01

    This study sought to examine how exerting self-control to inhibit stereotype use affects alcohol consumption. In addition, we sought to expand previous findings via examination of how individual differences in motivations to approach or avoid alcohol consumption interact with self-control depletion to determine the regulation of ad-lib drinking behavior. Sixty-one social drinkers (31 female) were recruited to participate in a socially relevant self-control depletion task in which they were randomly assigned to 1 of 2 creative writing conditions: (i) the self-control depletion condition with explicit instructions to refrain from using stereotypes, or (ii) the nondepletion condition in which no instructions were given regarding the use of stereotypes. Participants then completed an ad-lib drinking task and self-report questionnaires pertaining to their motivation to consume alcohol. As predicted, results indicated a significant 3-way interaction between depletion condition, approach inclinations, and avoidance inclinations. Specifically, self-control depletion predicted greater drinking disinhibition (i.e., mean sip size, total alcohol consumption) only among participants high in both approach and avoidance. Taken together, results from this study highlight the importance of both approach and avoidance inclinations in the failure to regulate alcohol consumption following a routine, socially relevant form of self-control depletion. Our results also suggest that the high approach/high avoidance motivational profile may predict the greatest risk among those actively trying to regulate their drinking. Copyright © 2015 by the Research Society on Alcoholism.

  13. Chronic ethanol perturbs testicular folate metabolism and dietary folate deficiency reduces sex hormone levels in the Yucatan micropig.

    PubMed

    Wallock-Montelius, Lynn M; Villanueva, Jesus A; Chapin, Robert E; Conley, A J; Nguyen, Hung P; Ames, Bruce N; Halsted, Charles H

    2007-03-01

    Although alcoholism causes changes in hepatic folate metabolism that are aggravated by folate deficiency, male reproductive effects have never been studied. We evaluated changes in folate metabolism in the male reproductive system following chronic ethanol consumption and folate deficiency. Twenty-four juvenile micropigs received folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE or FDE) for 14 wk, and the differences between the groups were determined by ANOVA. Chronic ethanol consumption (FSE and FDE compared with FS and FD groups) reduced testis and epididymis weights, testis sperm concentrations, and total sperm counts and circulating FSH levels. Folate deficiency (FD and FDE compared with FS and FSE groups) reduced circulating testosterone, estradiol and LH levels, and also testicular 17,20-lyase and aromatase activities. There was histological evidence of testicular lesions and incomplete progression of spermatogenesis in all treated groups relative to the FS control, with the FDE group being the most affected. Chronic ethanol consumption increased testis folate concentrations and decreased testis methionine synthase activity, whereas folate deficiency reduced total testis folate levels and increased methionine synthase activity. In all pigs combined, testicular methionine synthase activity was negatively associated with circulating estradiol, LH and FSH, and 17,20-lyase activity after controlling for ethanol, folate deficiency, and their interaction. Thus, while chronic ethanol consumption primarily impairs spermatogenesis, folate deficiency reduces sex hormones, and the two treatments have opposite effects on testicular folate metabolism. Furthermore, methionine synthase may influence the hormonal regulation of spermatogenesis.

  14. Nutritional role of folate.

    PubMed

    Ebara, Shuhei

    2017-09-01

    Folate functions as a coenzyme to transfer one-carbon units that are necessary for deoxythymidylate synthesis, purine synthesis, and various methylation reactions. Ingested folate becomes a functional molecule through intestinal absorption, circulation, transport to cells, and various modifications to its structure. Associations between nutritional folate status and chronic diseases such as cardiovascular disease, cancer, and cognitive dysfunction have been reported. It has also been reported that maternal folate nutritional status is related to the risk of neural tube defects (NTDs) in the offspring. It has also been recommended that folate be consumed in the diet to promote the maintenance of good health. To reduce the risk of NTDs, supplementation with folic acid (a synthetic form of folate) during the periconceptional period has also been recommended. This paper describes the basic features and nutritional role of folate. © 2017 Japanese Teratology Society.

  15. Folate and Colorectal Cancer in Rodents: A Model of DNA Repair Deficiency

    PubMed Central

    Rosati, Rita; Ma, Hongzhi; Cabelof, Diane C.

    2012-01-01

    Fortification of grains has resulted in a positive public health outcome vis-a-vis reduced incidence of neural tube defects. Whether folate has a correspondingly beneficial effect on other disease outcomes is less clear. A role for dietary folate in the prevention of colorectal cancer has been established through epidemiological data. Experimental data aiming to further elucidate this relationship has been somewhat equivocal. Studies report that folate depletion increases DNA damage, mutagenesis, and chromosomal instability, all suggesting inhibited DNA repair. While these data connecting folate depletion and inhibition of DNA repair are convincing, we also present data demonstrating that genetic inhibition of DNA repair is protective in the development of preneoplastic colon lesions, both when folate is depleted and when it is not. The purpose of this paper is to (1) give an overview of the data demonstrating a DNA repair defect in response to folate depletion, and (2) critically compare and contrast the experimental designs utilized in folate/colorectal cancer research and the corresponding impact on tissue folate status and critical colorectal cancer endpoints. Our analysis suggests that there is still an important need for a comprehensive evaluation of the impact of differential dietary prescriptions on blood and tissue folate status. PMID:23093960

  16. Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    PubMed Central

    2010-01-01

    Background Folate (vitamin B9) is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP) and s-adenosylmethionine (AdoMet). The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction. Results We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP) model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM) sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS) revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY) identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion. Conclusions This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with supraphysiological

  17. Nutrition throughout life: folate.

    PubMed

    McNulty, Helene; Pentieva, Kristina; Hoey, Leane; Strain, Jj; Ward, Mary

    2012-10-01

    Scientific evidence supports a number of roles for folate in maintaining health from early life to old age. Folate is required for one-carbon metabolism, including the remethylation of homocysteine to methionine; thus elevated plasma homocysteine reflects functional folate deficiency. Optimal folate status has an established role in preventing NTD and there is strong evidence indicating that it also has a role in the primary prevention of stroke. The most important genetic determinant of homocysteine in the general population is the common 677C → T variant in the gene encoding the folate-metabolising enzyme, MTHFR; homozygous individuals (TT genotype) have reduced enzyme activity and elevated plasma homocysteine concentrations. Meta-analyses indicate that the TT genotype carries a 14 to 21 % increased risk of CVD, but there is considerable geographic variation in the extent of excess CVD risk. A novel interaction between this folate polymorphism and riboflavin (a co-factor for MTHFR) has recently been identified. Intervention with supplemental riboflavin targeted specifically at individuals with the MTHFR 677TT genotype was shown to result in significant lowering of blood pressure in hypertensive people and in patients with CVD. This review considers the established and emerging roles for folate throughout the lifecycle, and some public health issues related to optimising folate status.

  18. Increased synthesis of folate transporters regulates folate transport in conditions of ethanol exposure and folate deficiency.

    PubMed

    Thakur, Shilpa; More, Deepti; Rahat, Beenish; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2016-01-01

    Excessive alcohol consumption and dietary folate inadequacy are the main contributors leading to folate deficiency (FD). The present study was planned to study regulation of folate transport in conditions of FD and ethanol exposure in human embryonic kidney cell line. Also, the reversible nature of effects mediated by ethanol exposure and FD was determined by folate repletion and ethanol removal. For ethanol treatment, HEK293 cells were grown in medium containing 100 mM ethanol, and after treatment, one group of cells was shifted on medium that was free from ethanol. For FD treatment, cells were grown in folate-deficient medium followed by shifting of one group of cells on folate containing medium. FD as well as ethanol exposure resulted in an increase in folate uptake which was due to an increase in expression of folate transporters, i.e., reduced folate carrier, proton-coupled folate transporter, and folate receptor, both at the mRNA and protein level. The effects mediated by ethanol exposure and FD were reversible on removal of treatment. Promoter region methylation of folate transporters remained unaffected after FD and ethanol exposure. As far as transcription rate of folate transporters is concerned, an increase in rate of synthesis was observed in both ethanol exposure and FD conditions. Additionally, mRNA life of folate transporters was observed to be reduced by FD. An increased expression of folate transporters under ethanol exposure and FD conditions can be attributed to enhanced rate of synthesis of folate transporters.

  19. Chronic ethanol exposure and folic acid supplementation: fetal growth and folate status in the maternal and fetal guinea pig.

    PubMed

    Hewitt, Amy J; Knuff, Amber L; Jefkins, Matthew J; Collier, Christine P; Reynolds, James N; Brien, James F

    2011-05-01

    Chronic ethanol exposure (CEE) can produce developmental abnormalities in the CNS of the embryo and developing fetus. Folic acid (FA) is an important nutrient during pregnancy and low folate status exacerbates ethanol-induced teratogenicity. This study tested the hypotheses that (1) CEE depletes folate stores in the mother and fetus; and (2) maternal FA supplementation maintains folate stores. CEE decreased fetal body, brain, hippocampus weights, and brain to body weight ratio but not hippocampus to body weight ratio. These effects of CEE were not mitigated by maternal FA administration. The FA regimen prevented the CEE-induced decrease of term fetal liver folate. However, it did not affect maternal liver folate or fetal RBC folate at term, and did not mitigate the nutritional deficit-induced decrease of term fetal hippocampus folate. This study suggests that maternal FA supplementation may have differential effects on folate status in the mother and the fetus. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Long interspersed nucleotide element-1 hypomethylation in folate-deficient mouse embryonic stem cells.

    PubMed

    Chang, Shaoyan; Wang, Li; Guan, Yunqian; Shangguan, Shaofang; Du, Qingan; Wang, Yang; Zhang, Ting; Zhang, Yu

    2013-07-01

    Folate is thought to contribute to health and development by methylation regulation. Long interspersed nucleotide element-1 (LINE-1), which is regulated by methylation modification, plays an important role in sculpting the structure and function of genomes. Some studies have shown that folate concentration is related to LINE-1 methylation. However, the direct association between LINE-1 methylation and folate deficiency remains unclear. To explore whether folate deficiency directly induced LINE-1 hypomethylation and to analyze the relationship between folate concentration and the LINE-1 methylation level, mouse ESCs were treated with various concentrations of folate which was measured by chemiluminescent immunoassay, and the homocysteine content was detected by ELISA. LINE-1 methylation was examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry at various time points. Concurrently, cell proliferation and differentiation were observed. The result showed that the intracellular folate decreases under folate-deficient condition, conversely, homocysteine content increased gradually and there was a negatively correlated between them. Folate insufficiency induced LINE-1 hypomethylation at the lowest levels in folate-free group and moderate in folate-deficient group, compared with that in the folate-normal group at day 18. Moreover, LINE-1 methylation level was positively correlated with folate content, and negatively correlated with homocysteine content. At corresponding time points, proliferation and differentiation of mouse ESCs showed no alteration in all groups. Our data indicated that folate deficiency affected the homeostasis of folate-mediated one-carbon metabolism, leading to reduced LINE-1 methylation in mouse ESCs. This study provides preliminary evidence of folate deficiency affecting early embryonic development.

  1. Oral contraceptives: effect of folate and vitamin B12 metabolism.

    PubMed Central

    Shojania, A. M.

    1982-01-01

    Women who use oral contraceptives have impaired folate metabolism as shown by slightly but significantly lower levels of folate in the serum and the erythrocytes and an increased urinary excretion of formiminoglutamic acid. The vitamin B12 level in their serum is also significantly lower than that of control groups. However, there is no evidence of tissue depletion of vitamin B12 associated with the use of oral contraceptives. The causes and clinical significance of the impairment of folate and vitamin B12 metabolism in these women is discussed in this review of the literature. Clinicians are advised to ensure that women who shop taking "the pill" because they wish to conceive have adequate folate stores before becoming pregnant. PMID:7037144

  2. Folate content and retention in selected raw and processed foods.

    PubMed

    Bassett, M N; Sammán, N C

    2010-09-01

    Adequate intake of folate reduced the risk of abnormalities in early embryonic brain development such as the risk of malformations of the embryonic brain/spinal cord, collectively referred to as neural tube defects (NTDs). Folate is extremely sensitive to destruction by heat, oxidation and UV light. The purpose of this study was to evaluate the use of different extraction procedures and enzymatic treatment to determine folate concentrations in variety of foods using a microbiological assay (MA) with Lactobacillus rhamnosus as the test organism. This study also aimed to evaluate the retention of folate in foods after using different cooking processes. Nine of the most commonly consumed foods in Argentina and that contain folate were analyzed: broccoli, spinach, potato, lentil, soy (raw and boiled); hen whole egg and yolks (raw, boiled and fried); beef liver (raw and cooked); strawberry (raw) and white bread. For this study, rat plasma (RP) and human plasma (HP) conjugases together with acetate and phosphate buffers were tested. In extraction step for all analyses, RP conjugase was selected since it was easily available in our laboratory and small quantities were required. The acetate buffer was chosen since better growth and more reproducible results were obtained in the different conditions assayed. The results allowed the foods to be grouped into (a) rich sources of folate: hen eggs, yolks, spinach, soybean (raw) and strawberry (100 and 350 microg/100 g fresh weight (FW); (b) good sources of folate: broccoli (raw), soybean (boiled), lentils (raw) and potato (56 to 83 microg/100 g FW) and c) moderate sources of folate: broccoli, lentils (boiled), white breads, onions and beef liver (15 to 30 microg/100g FW). The folate retention was in the range 14-99% according to both type of food and method of processing. Contents and losses of folate vary widely according to type of food and cooking method.

  3. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  4. Short-term nutritional folate deficiency in rats has a greater effect on choline and acetylcholine metabolism in the peripheral nervous system than in the brain, and this effect escalates with age

    PubMed Central

    Crivello, Natalia A.; Blusztajn, Jan K.; Joseph, James A.; Shukitt-Hale, Barbara; Smith, Donald E.

    2010-01-01

    The hypothesis of this study is that a folate-deficient diet (FD) has a greater effect on cholinergic system in the peripheral nervous system than in the brain, and that this effect escalates with age. It was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats fed either control or folate-deficient diets for 10 weeks, starting at age 4 weeks (the young group) or 9 months (the adult group). FD consumption resulted in depletion of plasma folate in both age groups. In young folate-deficient rats, liver and lung choline levels were significantly lower than those in the respective controls. No other significant effects of FD on choline and acetylcholine metabolism were found in young rats. In adult rats, FD consumption markedly decreased choline levels in the liver, kidneys, and heart; furthermore, choline levels in the cortex and striatum were moderately elevated, although hippocampal choline levels were not affected. Acetylcholine levels were higher in the heart, cortex, and striatum but lower in the hippocampus in adult folate-deficient rats, as compared to controls. Higher acetylcholine levels in the striatum in adult folate-deficient rats were also associated with higher dopamine release in the striatal slices. Thus, both age groups showed higher cholinergic metabolic sensitivity to FD in the peripheral nervous system than in the brain. However, compensatory abilities appeared to be better in the young group, implicating the adult group as a preferred model for further investigation of folate-choline-acetylcholine interactions and their role in brain plasticity and cognitive functions. PMID:21056288

  5. Acute effects of ethanol on renal folate clearance in rats

    SciTech Connect

    Eisenga, B.H.; McMartin, K.E.

    1986-03-05

    Studies of the renal clearance of folic acid in primates demonstrate net reabsorption of folate by a saturable system. The acute administration of ethanol to rats causes a significant increase in urinary folate excretion. The mechanism for this effect is unknown and thus the effect of acute administration of ethanol on the renal absorption and urinary clearance of folate was studied in rats. Folic acid was administered to male Sprague-Dawley rats via continuous intravenous infusion in doses ranging from 3-75 micromoles/kg and renal clearance relative to inulin was determined. The effects of various dose levels of ethanol on these parameters were then determined. At a dose of 15 micromoles/kg, the renal clearance of folate relative to that of inulin was about 0.65 mg/min. At a plasma ethanol level about 100 mg/dl, the renal clearance of folate was not markedly altered. These results suggests that there is net reabsorption of folate in the rat kidney and that moderate doses of ethanol have little effect on renal effect on renal folate reabsorption.

  6. The moderating influence of nicotine and smoking on resting-state mood and EEG changes in remitted depressed patients during tryptophan depletion.

    PubMed

    Knott, Verner; Bisserbe, Jean-Claude; Shah, Dhrasti; Thompson, Andrea; Bowers, Hayley; Blais, Crystal; Ilivitsky, Vadim

    2013-12-01

    Comorbidity between depression and tobacco use may reflect self-medication of serotonergically mediated mood dysregulation, which has been associated with aberrant cortical activation and hemispheric asymmetry in patients with major depressive disorders (MDD). This randomized, double-blind study in 28 remitted MDD patients examined the moderating effects of acute nicotine and smoker vs. nonsmoker status on mood and EEG changes accompanying transient reductions in serotonin induced by acute tryptophan depletion (ATD). In smokers, who exhibited greater posterior high alpha power and increased left frontal low alpha power (signs of deactivation) compared to nonsmokers, ATD increased self-ratings of depressed mood and elevated left frontal and right parietal high alpha power (i.e. further cortical deactivation). Smokers were not affected by nicotine administration. In nonsmokers, ATD did not influence depression ratings, but it reduced vigor ratings and increased frontal and posterior theta power; both of which were blocked by acute nicotine. These findings indicate a role for nicotinic receptors in disordered mood.

  7. The role of folate metabolism in orofacial development and clefting.

    PubMed

    Wahl, Stacey E; Kennedy, Allyson E; Wyatt, Brent H; Moore, Alexander D; Pridgen, Deborah E; Cherry, Amanda M; Mavila, Catherine B; Dickinson, Amanda J G

    2015-09-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects.

  8. The role of folate metabolism in orofacial development and clefting

    PubMed Central

    Wahl, Stacey E.; Kennedy, Allyson E.; Wyatt, Brent H.; Moore, Alexander D.; Pridgen, Deborah E.; Cherry, Amanda M.; Mavila, Catherine B.; Dickinson, Amanda J.G.

    2015-01-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects. PMID:26144049

  9. Folate-deficiency anemia

    MedlinePlus

    Symptoms may include: Fatigue Headache Pallor Sore mouth and tongue ... The health care provider will perform a physical exam. Tests that may be done include: Complete blood count (CBC) Red blood cell folate level Rarely, a bone marrow examination may be done.

  10. Folate biofortification in food crops.

    PubMed

    Strobbe, Simon; Van Der Straeten, Dominique

    2017-03-19

    Folates are essential vitamins in the human diet. Folate deficiency is still very common, provoking disorders such as birth defects and anemia. Biofortification via metabolic engineering is a proven powerful means to alleviate folate malnutrition. A variety of metabolic engineering approaches have been successfully implemented in different crops and tissues. Furthermore, ensuring folate stability is crucial for long-term storage of crop products. However, the current strategies, shown to be successful in rice and tomato, will need to be fine-tuned to enable adequate biofortification of other staples such as potato, wheat and cassava. Thus, there is a need to overcome remaining hurdles in folate biofortification. Overall, biofortification, via breeding or metabolic engineering, will be imperative to effectively combat folate deficiency.

  11. Genetics Home Reference: hereditary folate malabsorption

    MedlinePlus

    ... link) Genetic Testing Registry: Congenital defect of folate absorption Other Diagnosis and Management Resources (5 links) GeneReview: ... Names for This Condition congenital defect of folate absorption Congenital folate malabsorption Folic acid transport defect Related ...

  12. Vitamin B12 and Folate Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Vitamin B12 and Folate Share this page: Was this ... as: Cobalamin; Folic Acid; RBC Folate Formal name: Vitamin B12; Folate Related tests: Complete Blood Count , Methylmalonic ...

  13. Serum and red cell folate and serum vitamin B12 levels in hyperthyroidism.

    PubMed

    Ford, H C; Carter, J M; Rendle, M A

    1989-08-01

    Serum and red blood cell folate levels and serum B12 concentration were determined by radioassay in 20 hyperthyroid patients and compared with values obtained when the same patients had been euthyroid for at least 4 months. In hyperthyroidism, the levels of serum and red blood cell folate were significantly (P less than .01) higher than when euthyroidism was achieved. There was no significant change in serum B12 concentration. Declines in serum and red blood cell folate levels between hyperthyroidism and euthyroidism occurred in 15 and 16 of the 20 patients, respectively. Although the explanation for the relative elevations of serum and red blood cell folate levels in hyperthyroid patients is unclear at present, our findings do not support the view that hyperthyroidism in man is associated with depletion of folate stores or subclinical deficiency of the vitamin.

  14. The sweet taste of success: the presence of glucose in the oral cavity moderates the depletion of self-control resources.

    PubMed

    Hagger, Martin S; Chatzisarantis, Nikos L D

    2013-01-01

    According to the resource-depletion model, self-control is a limited resource that is depleted after a period of exertion. Evidence consistent with this model indicates that self-control relies on glucose metabolism and glucose supplementation to depleted individuals replenishes self-control resources. In five experiments, we tested an alternative hypothesis that glucose in the oral cavity counteracts the deleterious effects of self-control depletion. We predicted a glucose mouth rinse, as opposed to an artificially sweetened placebo rinse, would lead to better self-control after depletion. In Studies 1 to 3, participants engaging in a depleting task performed significantly better on a subsequent self-control task after receiving a glucose mouth rinse, as opposed to participants rinsing with a placebo. Studies 4 and 5 replicated these findings and demonstrated that the glucose mouth rinse had no effect on self-control in nondepleted participants. Results are consistent with a neural rather than metabolic mechanism for the effect of glucose supplementation on self-control.

  15. Folate, alcohol, and liver disease.

    PubMed

    Medici, Valentina; Halsted, Charles H

    2013-04-01

    Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of ALD with particular focus on ethanol-induced alterations in methionine metabolism, which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of ALD based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Folate, Alcohol, and Liver Disease

    PubMed Central

    Medici, Valentina; Halsted, Charles H.

    2013-01-01

    Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133

  17. The effects of exercise training and acute exercise duration on plasma folate and vitamin B12.

    PubMed

    Kim, Young-Nam; Hwang, Ji Hyeon; Cho, Youn-Ok

    2016-04-01

    Energy production and the rebuilding and repair of muscle tissue by physical activity require folate and vitamin B12 as a cofactor. Thus, this study investigated the effects of regular moderate exercise training and durations of acute aerobic exercise on plasma folate and vitamin B12 concentrations in moderate exercise trained rats. Fifty rats underwent non-exercise training (NT, n = 25) and regular exercise training (ET, n = 25) for 5 weeks. The ET group performed moderate exercise on a treadmill for 30 min/day, 5 days/week. At the end of week 5, each group was subdivided into 4 groups: non-exercise and 3 exercise groups. The non-exercise group (E0) was sacrificed without exercising and the 3 exercise groups were sacrificed immediately after exercising on a treadmill for 0.5 h (E0.5), 1 h (E1), and 2 h (E2). Blood samples were collected and plasma folate and vitamin B12 were analyzed. After exercise training, plasma folate level was significantly lower and vitamin B12 concentration was significantly higher in the ET group compared with the NT group (P < 0.05). No significant associations were observed between plasma folate and vitamin B12 concentrations. In both the NT and ET groups, plasma folate and vitamin B12 were not significantly changed by increasing duration of aerobic exercise. Plasma folate concentration of E0.5 was significantly lower in the ET group compared with that in the NT group. Significantly higher vitamin B12 concentrations were observed in the E0 and E0.5 groups of the ET group compared to those of the NT group. Regular moderate exercise training decreased plasma folate and increased plasma vitamin B12 levels. However, no significant changes in plasma folate and vitamin B12 concentrations were observed by increasing duration of acute aerobic exercise.

  18. Folate Augmentation of Treatment – Evaluation for Depression (FolATED): protocol of a randomised controlled trial

    PubMed Central

    Roberts, Seren Haf; Bedson, Emma; Hughes, Dyfrig; Lloyd, Keith; Moat, Stuart; Pirmohamed, Munir; Slegg, Gary; Tranter, Richard; Whitaker, Rhiannon; Wilkinson, Clare; Russell, Ian

    2007-01-01

    Background Clinical depression is common, debilitating and treatable; one in four people experience it during their lives. The majority of sufferers are treated in primary care and only half respond well to active treatment. Evidence suggests that folate may be a useful adjunct to antidepressant treatment: 1) patients with depression often have a functional folate deficiency; 2) the severity of such deficiency, indicated by elevated homocysteine, correlates with depression severity, 3) low folate is associated with poor antidepressant response, and 4) folate is required for the synthesis of neurotransmitters implicated in the pathogenesis and treatment of depression. Methods/Design The primary objective of this trial is to estimate the effect of folate augmentation in new or continuing treatment of depressive disorder in primary and secondary care. Secondary objectives are to evaluate the cost-effectiveness of folate augmentation of antidepressant treatment, investigate how the response to antidepressant treatment depends on genetic polymorphisms relevant to folate metabolism and antidepressant response, and explore whether baseline folate status can predict response to antidepressant treatment. Seven hundred and thirty patients will be recruited from North East Wales, North West Wales and Swansea. Patients with moderate to severe depression will be referred to the trial by their GP or Psychiatrist. If patients consent they will be assessed for eligibility and baseline measures will be undertaken. Blood samples will be taken to exclude patients with folate and B12 deficiency. Some of the blood taken will be used to measure homocysteine levels and for genetic analysis (with additional consent). Eligible participants will be randomised to receive 5 mg of folic acid or placebo. Patients with B12 deficiency or folate deficiency will be given appropriate treatment and will be monitored in the 'comprehensive cohort study'. Assessments will be at screening, randomisation

  19. The effect of ethanol on the urinary excretion and differential metabolism of folate compounds

    SciTech Connect

    Eisenga, B.H.

    1989-01-01

    In rats chronically fed ethanol and folate-containing diets for 12 weeks, urinary folate excretion was increased. However, no significant tissue depletion was noted unless rats were fed folate deficient diets. In rats fed folate-deficient diets urinary folate excretion was dramatically decreased at two weeks, when tissue folate stores were replete. After 16 weeks of diet treatment, the urinary excretion of an intraperitoneal dose of {sup 3}H-PteGlu was not altered in folate-deficient rats. Although acute ethanol administration (oral or intravenous) increased endogenous folate excretion that of {sup 3}H-PteGlu was not significantly altered, nor was the fractional excretion of {sup 3}H-label. To clarify this effect, the metabolism of {sup 3}H-PteGlu was studied. HPLC analysis of urine showed extensive metabolism of {sup 3}H-PteGlu to other folate substrates. Oral ethanol-treatment increased the fractional excretion of endogenous 5-CH{sub 3}-H{sub 4}PteGlu with no increase in urinary excretion or fractional excretion of other {sup 3}H-labeled derivatives. After infusion of tritium labeled 5-CH{sub 3}-H{sub 4}PteGlu, ethanol treatment increased the fractional excretion of endogenous and {sup 3}H-5-CH{sub 3}-H{sub 4}PteGlu, but not that of other folates. There was rapid uptake of {sup 3}H-label by the kidney with only 10% of the urinary {sup 3}H-label as {sup 3}H-5-CH{sub 3}-H{sub 4}PteGlu.

  20. Does self-affirmation following ego depletion moderate restrained eaters' explicit preferences for, and implicit associations with, high-calorie foods?

    PubMed

    Storr, Scarlett Marie; Sparks, Paul

    2016-07-01

    The difficulty for chronic dieters (i.e. restrained eaters) in regulating their food intake is a conflict between two apparently incompatible goals: eating enjoyment and weight control. The latter goal consistently relies on the deployment of cognitive resources, and very often on a significant amount of self-control. This study investigated whether self-affirmation might counteract the effect of ego depletion on restrained eaters' motivation to consume high-calorie foods. Participants (N = 183) were assigned to one of four conditions in a 2 × 2 (Ego depletion × Self-Affirmation) experimental design and were subsequently exposed to images of high- and low-calorie foods. Participants completed tasks assessing their implicit and explicit preferences for high vs. low-calorie foods, along with a measure of the perceived self-control required to resist foods. Results indicated that, following ego depletion, self-affirmation facilitated restrained eaters' perceptions of self-control and led to lower explicit preferences for high-calorie foods. This pattern was not apparent for implicit preferences. Self-affirmation interventions may be capable of restoring self-control resources among restrained eaters. Pointers for future research and practical applications are discussed.

  1. Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model.

    PubMed

    Castorena-Torres, Fabiola; Ramos-Parra, Perla A; Hernández-Méndez, Rogelio V; Vargas-García, Andrés; García-Rivas, Gerardo; de la Garza, Rocío I Díaz

    2014-03-01

    Folate deficiency is a global health problem related to neural tube defects, cardiovascular disease, dementia, and cancer. Considering that folic acid (FA) supply through industrialized foods is the most successful intervention, limitations exist for its complete implementation worldwide. Biofortification of plant foods, on the other hand, could be implemented in poor areas as a complementary alternative. A biofortified tomato fruit that accumulates high levels of folates was previously developed. In this study, we evaluated short-term folate bioavailability in rats infused with this folate-biofortified fruit. Fruit from tomato segregants hyperaccumulated folates during an extended ripening period, ultimately containing 3.7-fold the recommended dietary allowance in a 100-g portion. Folate-depleted Wistar rats separated in three groups received a single dose of 1 nmol of folate/g body weight in the form of lyophilized biofortified tomato fruit, FA, or synthetic 5-CH3-THF. Folate bioavailability from the biofortified tomato was comparable to that of synthetic 5-CH3-THF, with areas under the curve (AUC(0-∞)) of 2,080 ± 420 and 2,700 ± 220 pmol · h/mL, respectively (P = 0.12). Whereas, FA was less bioavailable with an AUC(0-∞) of 750 ± 10 pmol · h/mL. Fruit-supplemented animals reached maximum levels of circulating folate in plasma at 2 h after administration with a subsequent steady decline, while animals treated with FA and synthetic 5-CH3-THF reached maximum levels at 1 h. Pharmacokinetic parameters revealed that biofortified tomato had slower intestinal absorption than synthetic folate forms. This is the first study that demonstrates the bioavailability of folates from a biofortified plant food, showing its potential to improve folate deficiency.

  2. Update on cobalamin, folate, and homocysteine.

    PubMed

    Carmel, Ralph; Green, Ralph; Rosenblatt, David S; Watkins, David

    2003-01-01

    mild to moderate reductions in MTHFR activity but no direct clinical manifestations. The MTHFR polymTHFR polymorphisms, especially the 677C-->T mutation, may contribute to vascular and birth defect risks, while reducing the risk of certain malignancies, such as colon cancer. These polymorphisms and those of genes for other enzymes and proteins related to cobalamin, folate, and homocysteine metabolism may be important role players in frequent interactions between genes and the environment.

  3. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability.

    PubMed

    Saini, Ramesh Kumar; Nile, Shivraj Hariram; Keum, Young-Soo

    2016-11-01

    Folates (Vitamin B9) include both naturally occurring folates and synthetic folic acid used in fortified foods and dietary supplements. Folate deficiency causes severe abnormalities in one-carbon metabolism can result chronic diseases and developmental disorders, including neural tube defects. Mammalian cells cannot synthesize folates de novo; therefore, diet and dietary supplements are the only way to attain daily folate requirements. In the last decade, significant advancements have been made to enhance the folate content of rice, tomato, common bean and lettuce by using genetic engineering approaches. Strategies have been developed to improve the stability of folate pool in plants. Folate deglutamylation through food processing and thermal treatment has the potential to enhance the bioavailability of folate. This review highlights the recent developments in biosynthesis, composition, bioavailability, enhanced production by elicitation and metabolic engineering, and methods of analysis of folate in food. Additionally, future perspectives in this context are identified. Detailed knowledge of folate biosynthesis, degradation and salvage are the prime requirements to efficiently engineer the plants for the enhancement of overall folate content. Similarly, consumption of a folate-rich diet with enhanced bioavailability is the best way to maintain optimum folate levels in the body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Interaction between cytotoxic effects of gamma-radiation and folate deficiency in relation to choline reserves.

    PubMed

    Batra, Vipen; Devasagayam, Thomas Paul Asir

    2009-01-08

    The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.

  5. Folate metabolic pathways in Leishmania

    PubMed Central

    Vickers, Tim J.; Beverley, Stephen M.

    2012-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for ‘repurposing’ of compounds developed originally for treatment of human cancers or other infectious agents. PMID:22023442

  6. Folate metabolic pathways in Leishmania.

    PubMed

    Vickers, Tim J; Beverley, Stephen M

    2011-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.

  7. Folate bioavailability from foods rich in folates assessed in a short term human study using stable isotope dilution assays.

    PubMed

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2015-01-01

    Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of

  8. Intake and blood concentrations of folate and their association with health-related behaviors in Korean college students.

    PubMed

    Jang, Han-Byul; Han, Young-Hee; Piyathilake, Chandrika J; Kim, Heon; Hyun, Taisun

    2013-06-01

    The purpose of this study is to assess folate intake, and serum and red blood cell (RBC) folate concentrations, and investigate the association between folate status and health-related behaviors among Korean college students. A total of 169 students, aged between 18 and 27 years, participated in this study. Dietary intake data were collected by trained interviewers using a 24-hour recall method for three non-consecutive days in 2009. Information on health-related behaviors was obtained by a self-administered questionnaire. Serum and RBC folate concentrations were measured by microbiological assay. The average intakes of folate were 456 µgDFE and 347 µgDFE in male and female students, respectively. While the average serum folate concentration was significantly lower in male students (8.9 ng/mL) compared to female students (12.5 ng/mL), RBC concentrations were not significantly different between male (398.6 ng/mL) and female students (405.3 ng/mL). In male students, low serum folate concentrations were associated with total folate intake less than the Estimated Average Requirement, non-use of folic acid supplements, smoking, alcohol drinking at least once a week and low physical activity. In female students, low serum folate concentrations were associated with smoking and alcohol drinking at least two drinks at a time and BMI ≥ 25. Alcohol drinking and low physical activity were also associated with low RBC folate concentrations in both male and female students. In order to improve folate nutritional status of college students, the practice of desirable health-related behaviors, such as non-smoking, moderate alcohol drinking, regular physical activity, and maintenance of healthy BMI should be encouraged along with consumption of folate-rich foods and supplements.

  9. Intake and blood concentrations of folate and their association with health-related behaviors in Korean college students

    PubMed Central

    Jang, Han-Byul; Han, Young-Hee; Piyathilake, Chandrika J; Kim, Heon

    2013-01-01

    The purpose of this study is to assess folate intake, and serum and red blood cell (RBC) folate concentrations, and investigate the association between folate status and health-related behaviors among Korean college students. A total of 169 students, aged between 18 and 27 years, participated in this study. Dietary intake data were collected by trained interviewers using a 24-hour recall method for three non-consecutive days in 2009. Information on health-related behaviors was obtained by a self-administered questionnaire. Serum and RBC folate concentrations were measured by microbiological assay. The average intakes of folate were 456 µgDFE and 347 µgDFE in male and female students, respectively. While the average serum folate concentration was significantly lower in male students (8.9 ng/mL) compared to female students (12.5 ng/mL), RBC concentrations were not significantly different between male (398.6 ng/mL) and female students (405.3 ng/mL). In male students, low serum folate concentrations were associated with total folate intake less than the Estimated Average Requirement, non-use of folic acid supplements, smoking, alcohol drinking at least once a week and low physical activity. In female students, low serum folate concentrations were associated with smoking and alcohol drinking at least two drinks at a time and BMI ≥ 25. Alcohol drinking and low physical activity were also associated with low RBC folate concentrations in both male and female students. In order to improve folate nutritional status of college students, the practice of desirable health-related behaviors, such as non-smoking, moderate alcohol drinking, regular physical activity, and maintenance of healthy BMI should be encouraged along with consumption of folate-rich foods and supplements. PMID:23766883

  10. FOLATE CONTENT IN SELECT DRY BEAN GENOTYPES

    USDA-ARS?s Scientific Manuscript database

    Dry edible beans are a good natural source of folate (½-cup serving of cooked beans provide 35% daily value of folate). Recognized healthful benefits of folate in the human diet include reduced birth defects, decreased plasma homocysteine level which is a risk factor in cardiovascular disease, reduc...

  11. Selenium, Folate, and Colon Cancer

    PubMed Central

    Connelly-Frost, Alexandra; Poole, Charles; Satia, Jessie A.; Kupper, Lawrence L.; Millikan, Robert C.; Sandler, Robert S.

    2009-01-01

    Background Selenium is an essential trace element which has been implicated in cancer risk; however, study results have been inconsistent with regard to colon cancer. Our objectives were to 1) investigate the association between selenium and colon cancer 2) evaluate possible effect measure modifiers and 3) evaluate potential biases associated with the use of post-diagnostic serum selenium measures Methods The North Carolina Colon Cancer Study is a large population-based, case-control study of colon cancer in North Carolina between 1996 and 2000 (n=1,691). Nurses interviewed patients about diet and lifestyle and drew blood specimens which were used to measure serum selenium. Results Individuals who had both high serum selenium (>140 mcg/L) and high reported folate (>354 mcg/day), had a reduced relative risk of colon cancer (OR=0.5, 95% CI=0.4,0.8). The risk of colon cancer for those with high selenium and low folate was approximately equal to the risk among those with low selenium and low folate (OR=1.1, 95% CI=0.7,1.5) as was the risk for those with low selenium and high folate (OR=0.9, 95% CI=0.7–1.2). We did not find evidence of bias due to weight loss, stage at diagnosis, or time from diagnosis to selenium measurement. Conclusion High levels of serum selenium and reported folate jointly were associated with a substantially reduced risk of colon cancer. Folate status should be taken into account when evaluating the relation between selenium and colon cancer in future studies. Importantly, weight loss, stage at diagnosis, or time from diagnosis to blood draw did not appear to produce strong bias in our study. PMID:19235033

  12. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase.

    PubMed

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H; Jaenisch, Rudolf; Endres, Matthias

    2008-07-09

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.

  13. Folate supplementation in people with sickle cell disease.

    PubMed

    Dixit, Ruchita; Nettem, Sowmya; Madan, Simerjit S; Soe, Htoo Htoo Kyaw; Abas, Adinegara B L; Vance, Leah D; Stover, Patrick J

    2016-02-16

    Sickle cell disease is a group of disorders that affects haemoglobin, which causes distorted sickle- or crescent-shaped red blood cells. It is characterized by anaemia, increased susceptibility to infections and episodes of pain. The disease is acquired by inheriting abnormal genes from both parents, the combination giving rise to different forms of the disease. Due to increased erythropoiesis in people with sickle cell disease, it is hypothesized that they are at an increased risk for folate deficiency. For this reason, children and adults with sickle cell disease, particularly those with sickle cell anaemia, commonly take 1 mg of folic acid orally every day on the premise that this will replace depleted folate stores and reduce the symptoms of anaemia. It is thus important to evaluate the role of folate supplementation in treating sickle cell disease. To analyse the efficacy and possible adverse effects of folate supplementation (folate occurring naturally in foods, provided as fortified foods or additional supplements such as tablets) in people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also conducted additional searches in both electronic databases and clinical trial registries.Date of last search: 07 December 2015. Randomised, placebo-controlled trials of folate supplementation for sickle cell disease. Four review authors assessed the eligibility and risk of bias of the included trials and extracted and analysed the data included in the review. We used the standard Cochrane-defined methodological procedures. One trial, undertaken in 1983, was eligible for inclusion in the review. This was a double-blind placebo-controlled quasi-randomised triaI of supplementation of folic acid in people with sickle cell

  14. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig.

    PubMed

    Halsted, Charles H; Villanueva, Jesus A; Devlin, Angela M; Niemelä, Onni; Parkkila, Seppo; Garrow, Timothy A; Wallock, Lynn M; Shigenaga, Mark K; Melnyk, Stepan; James, S Jill

    2002-07-23

    Alcoholic liver disease is associated with abnormal hepatic methionine metabolism and folate deficiency. Because folate is integral to the methionine cycle, its deficiency could promote alcoholic liver disease by enhancing ethanol-induced perturbations of hepatic methionine metabolism and DNA damage. We grouped 24 juvenile micropigs to receive folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE and FDE) for 14 wk, and the significance of differences among the groups was determined by ANOVA. Plasma homocysteine levels were increased in all experimental groups from 6 wk onward and were greatest in FDE. Ethanol feeding reduced liver methionine synthase activity, S-adenosylmethionine (SAM), and glutathione, and elevated plasma malondialdehyde (MDA) and alanine transaminase. Folate deficiency decreased liver folate levels and increased global DNA hypomethylation. Ethanol feeding and folate deficiency acted together to decrease the liver SAM/S-adenosylhomocysteine (SAH) ratio and to increase liver SAH, DNA strand breaks, urinary 8-oxo-2'-deoxyguanosine [oxo(8)dG]/mg of creatinine, plasma homocysteine, and aspartate transaminase by more than 8-fold. Liver SAM correlated positively with glutathione, which correlated negatively with plasma MDA and urinary oxo(8)dG. Liver SAM/SAH correlated negatively with DNA strand breaks, which correlated with urinary oxo(8)dG. Livers from ethanol-fed animals showed increased centrilobular CYP2E1 and protein adducts with acetaldehyde and MDA. Steatohepatitis occurred in five of six pigs in FDE but not in the other groups. In summary, folate deficiency enhances perturbations in hepatic methionine metabolism and DNA damage while promoting alcoholic liver injury.

  15. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig

    PubMed Central

    Halsted, Charles H.; Villanueva, Jesus A.; Devlin, Angela M.; Niemelä, Onni; Parkkila, Seppo; Garrow, Timothy A.; Wallock, Lynn M.; Shigenaga, Mark K.; Melnyk, Stepan; James, S. Jill

    2002-01-01

    Alcoholic liver disease is associated with abnormal hepatic methionine metabolism and folate deficiency. Because folate is integral to the methionine cycle, its deficiency could promote alcoholic liver disease by enhancing ethanol-induced perturbations of hepatic methionine metabolism and DNA damage. We grouped 24 juvenile micropigs to receive folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE and FDE) for 14 wk, and the significance of differences among the groups was determined by ANOVA. Plasma homocysteine levels were increased in all experimental groups from 6 wk onward and were greatest in FDE. Ethanol feeding reduced liver methionine synthase activity, S-adenosylmethionine (SAM), and glutathione, and elevated plasma malondialdehyde (MDA) and alanine transaminase. Folate deficiency decreased liver folate levels and increased global DNA hypomethylation. Ethanol feeding and folate deficiency acted together to decrease the liver SAM/S-adenosylhomocysteine (SAH) ratio and to increase liver SAH, DNA strand breaks, urinary 8-oxo-2′-deoxyguanosine [oxo(8)dG]/mg of creatinine, plasma homocysteine, and aspartate transaminase by more than 8-fold. Liver SAM correlated positively with glutathione, which correlated negatively with plasma MDA and urinary oxo(8)dG. Liver SAM/SAH correlated negatively with DNA strand breaks, which correlated with urinary oxo(8)dG. Livers from ethanol-fed animals showed increased centrilobular CYP2E1 and protein adducts with acetaldehyde and MDA. Steatohepatitis occurred in five of six pigs in FDE but not in the other groups. In summary, folate deficiency enhances perturbations in hepatic methionine metabolism and DNA damage while promoting alcoholic liver injury. PMID:12122204

  16. Computerized Counseling for Folate Knowledge and Use

    PubMed Central

    Schwarz, Eleanor Bimla; Sobota, Mindy; Gonzales, Ralph; Gerbert, Barbara

    2008-01-01

    Background Periconception folate supplementation significantly reduces the risk of neural-tube defects, but few U.S. women start folate supplementation before pregnancy, and the amount of clinician time available to counsel patients about folate is limited. This study evaluated whether computer-assisted counseling and the provision of free folate tablets increases women’s knowledge and use of folate supplements. Design Randomized controlled trial; follow-up began 6 months after enrollment and was completed on average 7 months after enrollment. Setting/participants A total of 446 women, aged 18-45 years, were recruited from two urgent care clinics in San Francisco from March to July 2005 (data collection was completed in 2006; data were analyzed in 2007). Intervention Participants received a 15-minute computerized educational session and 200 folate tablets. Main outcome measures The primary outcome was the knowledge that folate can prevent birth defects; secondary outcomes included the self-reported use of a folate supplement at follow-up. Results At follow-up, women in the intervention group were more likely to know that folate prevents birth defects (46% vs 27%, relative risk [RR]=1.72, 95% CI=1.32, 2.23); to know that folate is most important in early pregnancy (36% vs 17%, RR=2.11, 95% CI=1.50, 2.97); and to report the recent use of a folate supplement (32% vs 21%, RR=1.54, 95% CI=1.12, 2.13). Conclusions A one-time, brief, computerized counseling session about folate with the provision of free folate tablets increased the knowledge and use of folate supplements among women ≥6 months later. PMID:19000845

  17. Characterization of Folate in Peanuts

    USDA-ARS?s Scientific Manuscript database

    The folate levels in a group of raw and roasted samples selected from the 2007 and the 2008 Uniform Peanut Performance Trials (UPPT) and from a set of raw samples from the Core of the Core of the Peanut Germplasm collection grown in 2006 and 2008 were determined. The samples were digested in protea...

  18. Folate and nutrients involved in the 1-carbon cycle in the pretreatment of patients for colorectal cancer.

    PubMed

    Ferrari, Ariana; de Carvalho, Aline Martins; Steluti, Josiane; Teixeira, Juliana; Marchioni, Dirce Maria Lobo; Aguiar, Samuel

    2015-06-02

    To assess the ingestion of folate and nutrients involved in the 1-carbon cycle in non-treated patients with colorectal adenocarcinoma in a reference center for oncology in southeastern Brazil. In total, 195 new cases with colorectal adenocarcinoma completed a clinical evaluation questionnaire and a Food Frequency Questionnaire (FFQ). Blood samples from 161 patients were drawn for the assessment of serum folate. A moderate correlation was found between serum concentrations of folate, folate intake and the dietary folate equivalent (DFE) of synthetic supplements. Mulatto or black male patients with a primary educational level had a higher intake of dietary folate. Of patients obtaining folate from the diet alone or from dietary supplements, 11.00% and 0.10%, respectively, had intake below the recommended level. Of the patients using dietary supplements, 35% to 50% showed high levels of folic acid intake. There was a prevalence of inadequacy for vitamins B2, B6 and B12, ranging from 12.10% to 20.18%, while 13.76% to 22.55% of patients were likely to have adequate choline intake. The considerable percentage of patients with folate intake above the recommended levels deserves attention because of the harmful effects that this nutrient may have in the presence of established neoplastic lesions.

  19. Folate and Nutrients Involved in the 1-Carbon Cycle in the Pretreatment of Patients for Colorectal Cancer

    PubMed Central

    Ferrari, Ariana; de Carvalho, Aline Martins; Steluti, Josiane; Teixeira, Juliana; Marchioni, Dirce Maria Lobo; Aguiar, Samuel

    2015-01-01

    To assess the ingestion of folate and nutrients involved in the 1-carbon cycle in non-treated patients with colorectal adenocarcinoma in a reference center for oncology in southeastern Brazil. In total, 195 new cases with colorectal adenocarcinoma completed a clinical evaluation questionnaire and a Food Frequency Questionnaire (FFQ). Blood samples from 161 patients were drawn for the assessment of serum folate. A moderate correlation was found between serum concentrations of folate, folate intake and the dietary folate equivalent (DFE) of synthetic supplements. Mulatto or black male patients with a primary educational level had a higher intake of dietary folate. Of patients obtaining folate from the diet alone or from dietary supplements, 11.00% and 0.10%, respectively, had intake below the recommended level. Of the patients using dietary supplements, 35% to 50% showed high levels of folic acid intake. There was a prevalence of inadequacy for vitamins B2, B6 and B12, ranging from 12.10% to 20.18%, while 13.76% to 22.55% of patients were likely to have adequate choline intake. The considerable percentage of patients with folate intake above the recommended levels deserves attention because of the harmful effects that this nutrient may have in the presence of established neoplastic lesions. PMID:26043032

  20. Folate receptor alpha is more than just a folate transporter.

    PubMed

    Mohanty, Vineet; Siddiqui, M Rizwan; Tomita, Tadanori; Mayanil, Chandra Shekhar

    2017-01-01

    Until recently folate receptor alpha (FRα) has only been considered as a folate transporter. However, a novel role of FRα as a transcription factor was reported by our lab. More recently our lab showed a novel pleiotropic role of FRα: (a) direct transcriptional activation of Oct4, Sox2, and Klf4 genes; and (b) repression of biogenesis of miRNAs that target these genes or their effector molecules. These observations beg a question: "Can a simple molecule such as folate be used to manipulate the production and/or differentiation of endogenous neural stem cells (NSCs), which may hold promise for future therapies?" Conditions such as spinal cord injury, motor neuron diseases, Alzheimer's disease and multiple sclerosis may benefit from increasing stem cell pool and promoting specific pathways of differentiation. On the flip-side, these NSCs may also contribute to some CNS tumors therefore promoting differentiation could prove more beneficial. FRα may hold promises for both since it has the potential to remodel chromatin in a context dependent manner. In this commentary we discuss our previous data and new questions arising in the context of the new role for FRα.

  1. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  2. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  3. Homocysteine, folate and pregnancy outcomes.

    PubMed

    Kim, M W; Hong, S-C; Choi, J S; Han, J-Y; Oh, M-J; Kim, H J; Nava-Ocampo, A; Koren, G

    2012-08-01

    The purpose of this study is to evaluate the relationship between maternal and/or cord blood folate/homocysteine concentrations and adverse pregnancy outcomes. The study population included a random sample of singleton pregnant women in whom we measured total homocysteine and folic acid in maternal or cord blood at deliveries. A total of 227 pregnant women were enrolled. The concentration of folate in maternal blood tended to be significantly lower in pre-term birth than in full-term delivery group (median (95% CI), 14.4 (3.6-73) vs 25 (7.3-105.5) p < 0.01). The total homocysteine in maternal and cord blood was significantly higher in the pre-eclampsia than in the normotensive group (7.9 (1.7-28.2) vs 5.9 (1.8-14.6) μmol/ml, p < 0.05; and 5.8 (2.6-14.4) vs 4.2 (0.7-7.9) ng/ml, p < 0.05, respectively). Lower maternal serum folate concentration is associated with pre-term delivery and higher maternal plasma homocysteine concentration with pre-eclampsia.

  4. Mathematical Modelling of Folate Metabolism

    PubMed Central

    Panetta, John C.; Paugh, Steven W.

    2013-01-01

    Folate metabolism is a complex biological process that is influenced by many variables including transporters, co-factors and enzymes. Mathematical models provide a useful tool to evaluate this complex system and to elucidate hypotheses that would be otherwise untenable to test in vitro or in vivo. Forty years of model development and refinement along with enhancements in technology have led to systematic improvement in our biological understanding from these models. However, increased complexity does not always lead to increased understanding, and a balanced approach to modelling the system is often advantageous. This approach should address questions about sensitivity of the model to variation and incorporate genomic data. The folate model is a useful platform for investigating the effects of antifolates on the folate pathway. The utility of the model is demonstrated through interrogation of drug resistance, drug-drug interactions, drug selectivity, and drug doses and schedules. Mathematics can be used to create models with the ability to design and improve rationale therapeutic interventions. PMID:23703958

  5. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine and DNA uracil concentrations

    USDA-ARS?s Scientific Manuscript database

    Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...

  6. Premarital screening of 466 Mediterranean women for serum ferritin, vitamin B12, and folate concentrations.

    PubMed

    Karabulut, Aysun; Güler, Ömer Tolga; Karahan, Hatice Tuba; Özkan, Sevgi; Koyuncu, Hasan; Demirciler, Ibrahim

    2015-01-01

    Iron, folate, and vitamin B12 serum levels are closely related with dietary habits and have an essential role in the healthy development of a fetus. We aimed to investigate hemoglobin, ferritin, folate, and vitamin B12 levels in preconceptional women in an area where a plant-based diet referred to as Mediterranean cuisine is commonly used. The study population included 466 women between the ages of 18 and 45 years admitted for thalassemia screening. Sociodemographic variables and history of menometrorrhagia, pica, and dietary habits were collected. Serum vitamin B12, folate, ferritin, and hemoglobin levels were measured. Ferritin of <12µg/L, vitamin B12 of <200 pg/mL, and folate of <4 ng/mL were accepted as deficiencies. Hemoglobin level of <12 g/dL was classified as anemia. Polymenorrhea was present in 11.7% and hypermenorrhea in 24.8% of women. Anemia was detected in 24.9% and thalassemia trait in 3.0% of women. Low ferritin levels were observed in 46.1%, vitamin B12 in 21.6%, and folate in 3.4% of women. In the group with low vitamin B12, decreased meat consumption was more prevalent (27.5% vs. 16.9%; P = 0.019). Vitamin B12 and iron are the main micronutrients depleted in our community. This necessitates implementing a public health program for women consuming a Mediterranean diet.

  7. Folate-receptor-targeted radionuclide imaging agents.

    PubMed

    Ke, Chun-Yen; Mathias, Carla J; Green, Mark A

    2004-04-29

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including delivery of radiolabeled folate-chelate conjugates for diagnostic imaging. This review surveys the growing literature on tumor imaging with radionuclide agents targeted to the folate receptor. Successful folate-receptor targeting has been reported, both in vitro and in vivo, using a variety of radionuclides that are suitable for clinical diagnostic imaging (67Ga, 111In, 99mTc, 66Ga, and 64Cu). While none of these agents has, to date, been demonstrated to have clinical efficacy as a diagnostic tool, existing data indicates that it is feasible to noninvasively assess (at least qualitatively) tissue folate receptor levels by external radionuclide imaging.

  8. Folate supplementation in people with sickle cell disease

    PubMed Central

    Dixit, Ruchita; Nettem, Sowmya; Madan, Simerjit S; Soe, Htoo Htoo Kyaw; Abas, Adinegara BL; Vance, Leah D; Stover, Patrick J

    2017-01-01

    Background Sickle cell disease is a group of disorders that affects haemoglobin, which causes distorted sickle- or crescent-shaped red blood cells. It is characterized by anaemia, increased susceptibility to infections and episodes of pain. The disease is acquired by inheriting abnormal genes from both parents, the combination giving rise to different forms of the disease. Due to increased erythropoiesis in people with sickle cell disease, it is hypothesized that they are at an increased risk for folate deficiency. For this reason, children and adults with sickle cell disease, particularly those with sickle cell anaemia, commonly take 1 mg of folic acid orally every day on the premise that this will replace depleted folate stores and reduce the symptoms of anaemia. It is thus important to evaluate the role of folate supplementation in treating sickle cell disease. Objectives To analyse the efficacy and possible adverse effects of folate supplementation (folate occurring naturally in foods, provided as fortified foods or additional supplements such as tablets) in people with sickle cell disease. Search methods We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group’s Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also conducted additional searches in both electronic databases and clinical trial registries. Date of last search: 07 December 2015. Selection criteria Randomised, placebo-controlled trials of folate supplementation for sickle cell disease. Data collection and analysis Four review authors assessed the eligibility and risk of bias of the included trials and extracted and analysed the data included in the review. We used the standard Cochrane-defined methodological procedures. Main results One trial, undertaken in 1983, was eligible for inclusion in the review. This was a double

  9. Validation of Folate-Enriched Eggs as a Functional Food for Improving Folate Intake in Consumers.

    PubMed

    Altic, Leslie; McNulty, Helene; Hoey, Leane; McAnena, Liadhan; Pentieva, Kristina

    2016-11-30

    Functional foods enriched with folate may be beneficial as a means of optimizing folate status in consumers. We recently developed novel eggs enriched with folate through folic acid supplementation of the hen's feed, but their potential to influence consumer folate status is unknown because the natural folate forms incorporated into the eggs may not necessarily be retained during storage and cooking. This study aimed to determine the stability of natural folates in folate-enriched eggs under typical conditions of storage and cooking. Total folate was determined by microbiological assay following tri-enzyme treatment in folate-enriched eggs and un-enriched (barn and free-range) on the day they were laid, after storage (up to 27 days) and after using four typical cooking methods (boiling, poaching, frying, scrambling) for different durations. On the day of laying, the folate content of enriched eggs was found to be significantly higher than that of un-enriched barn or free-range eggs (mean ± SD; 123.2 ± 12.4 vs. 41.2 ± 2.8 vs. 65.6 ± 18.5 µg/100 g; p < 0.001). Storage at refrigerator and room temperature for periods up to the Best Before date resulted in no significant losses to the folate content of folate-enriched eggs. Furthermore, folate in enriched eggs remained stable when cooked by four typical methods for periods up to the maximum cooking time (e.g., 135 ± 22.5, 133.9 ± 23.0 and 132.5 ± 35.1; p = 0.73, for raw, scrambled for 50 s and scrambled for 2 min, respectively). Thus, natural folates in folate-enriched eggs remain highly stable with little or no losses following storage and cooking. These findings are important because they demonstrate the feasibility of introducing folate-enriched eggs into the diet of consumers as functional foods with enriched folate content. Further studies will confirm their effectiveness in optimizing the biomarker folate status of consumers.

  10. Validation of Folate-Enriched Eggs as a Functional Food for Improving Folate Intake in Consumers

    PubMed Central

    Altic, Leslie; McNulty, Helene; Hoey, Leane; McAnena, Liadhan; Pentieva, Kristina

    2016-01-01

    Functional foods enriched with folate may be beneficial as a means of optimizing folate status in consumers. We recently developed novel eggs enriched with folate through folic acid supplementation of the hen’s feed, but their potential to influence consumer folate status is unknown because the natural folate forms incorporated into the eggs may not necessarily be retained during storage and cooking. This study aimed to determine the stability of natural folates in folate-enriched eggs under typical conditions of storage and cooking. Total folate was determined by microbiological assay following tri-enzyme treatment in folate-enriched eggs and un-enriched (barn and free-range) on the day they were laid, after storage (up to 27 days) and after using four typical cooking methods (boiling, poaching, frying, scrambling) for different durations. On the day of laying, the folate content of enriched eggs was found to be significantly higher than that of un-enriched barn or free-range eggs (mean ± SD; 123.2 ± 12.4 vs. 41.2 ± 2.8 vs. 65.6 ± 18.5 µg/100 g; p < 0.001). Storage at refrigerator and room temperature for periods up to the Best Before date resulted in no significant losses to the folate content of folate-enriched eggs. Furthermore, folate in enriched eggs remained stable when cooked by four typical methods for periods up to the maximum cooking time (e.g., 135 ± 22.5, 133.9 ± 23.0 and 132.5 ± 35.1; p = 0.73, for raw, scrambled for 50 s and scrambled for 2 min, respectively). Thus, natural folates in folate-enriched eggs remain highly stable with little or no losses following storage and cooking. These findings are important because they demonstrate the feasibility of introducing folate-enriched eggs into the diet of consumers as functional foods with enriched folate content. Further studies will confirm their effectiveness in optimizing the biomarker folate status of consumers. PMID:27916895

  11. Folate Metabolism and Human Reproduction

    PubMed Central

    Thaler, C. J.

    2014-01-01

    Folate metabolism affects ovarian function, implantation, embryogenesis and the entire process of pregnancy. In addition to its well-established effect on the incidence of neural tube defects, associations have been found between reduced folic acid levels and increased homocysteine concentrations on the one hand, and recurrent spontaneous abortions and other complications of pregnancy on the other. In infertility patients undergoing IVF/ICSI treatment, a clear correlation was found between plasma folate concentrations and the incidence of dichorionic twin pregnancies. In patients supplemented with 0.4 mg/d folic acid undergoing ovarian hyperstimulation and oocyte pick-up, carriers of the MTHFR 677T mutation were found to have lower serum estradiol concentrations at ovulation and fewer oocytes could be retrieved from them. It appears that these negative effects can be compensated for in full by increasing the daily dose of folic acid to at least 0.8 mg. In carriers of the MTHFR 677TT genotype who receive appropriate supplementation, AMH concentrations were found to be significantly increased, which could indicate a compensatory mechanism. AMH concentrations in homozygous carriers of the MTHFR 677TT genotype could even be overestimated, as almost 20 % fewer oocytes are retrieved from these patients per AMH unit compared to MTHFR 677CC wild-type individuals. PMID:25278626

  12. Experimental maternal and neonatal folate status relationships in nonhuman primates.

    PubMed

    Blocker, D E; Ausman, L M; Meadows, C A; Thenen, S W

    1989-07-01

    The influence of maternal dietary folic acid intake on folate status was studied in Cebus albifrons monkeys by feeding 10 or 250 micrograms/100 kcal dietary folic acid during pregnancy and 4 wk postpartum. Maternal, infant, and nonpregnant hematologic indices; blood and liver folate concentrations; and urinary formiminoglutamic acid excretion all varied with dietary folate intake and pregnancy status as did milk folate concentration in lactating dams. Maternal folate status, determined by plasma, red blood cell, and milk folate concentrations, as well as urinary formiminoglutamic acid excretion, all were correlated significantly with liver folate concentrations in neonates (r = 0.740, r = 0.919, r = 0.936, and r = -0.851, respectively). Results in these primates showed that neonatal folate status was related significantly to the dietary folate intake and folate status of the mother during pregnancy and lactation.

  13. Regulation of Folate-Mediated One-Carbon Metabolism by Glycine N-Methyltransferase (GNMT) and Methylenetetrahydrofolate Reductase (MTHFR).

    PubMed

    Wang, Yi-Cheng; Wu, Ming-Tsung; Lin, Yan-Jun; Tang, Feng-Yao; Ko, Hsin-An; Chiang, En-Pei

    2015-01-01

    Folate-mediated one-carbon metabolism is an important therapeutic target of human diseases. We extensively investigated how gene-nutrient interactions may modulate human cancer risk in 2 major folate metabolic genes, MTHFR and GNMT. The biochemical impacts of MTHFR and GNMT on methyl group supply, global DNA methylation, nucleotide biosynthesis, DNA damage, and partitioning of the folate dependent 1-carbon group were carefully studied. The distinct model systems used included: EB virus-transformed lymphoblasts expressing human MTHFR polymorphic genotypes; liver-derived GNMT-null cell-lines with and without GNMT overexpression; and HepG2 cells with stabilized inhibition of MTHFR using shRNA, GNMT wildtype, heterozygotous (GNMT(het)) and knockout (GNMT(nul)) mice. We discovered that the MTHFR TT genotype significantly reduces folate-dependent remethylation under folate restriction, but it assists purine synthesis when folate is adequate. The advantage of de novo purine synthesis found in the MTHFR TT genotype may account for the protective effect of MTHFR in human hematological malignancies. GNMT affects transmethylation kinetics and S-adenosylmethionine (adoMet) synthesis, and facilitates the conservation of methyl groups by limiting homocysteine remethylation fluxes. Restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Loss of GNMT impairs nucleotide biosynthesis. Over-expression of GNMT enhances nucleotide biosynthesis and improves DNA integrity by reducing uracil misincorporation in DNA both in vitro and in vivo. The systematic series of studies gives new insights into the underlying mechanisms by which MTHFR and GNMT may participate in human tumor prevention.

  14. Folate status and neural tube defects.

    PubMed

    Molloy, A M; Mills, J L; Kirke, P N; Weir, D G; Scott, J M

    1999-01-01

    Periconceptional folic acid supplementation prevents approximately 70% of neural tube defects (NTDs). While most women carrying affected fetuses do not have deficient blood folate levels, the risk of having an NTD affected child is inversely correlated with pregnancy red cell folate levels. Current research is focused on the discovery of genetic abnormalities in folate related enzymes which might explain the role of folate in NTD prevention. The first candidate gene to emerge was the C677T variant of 5,10-methylenetetrahydrofolate reductase. Normal subjects who are homozygous for the mutation (TT) have red cell folate status some 20% lower than expected. It is now established that the prevalence of the TT genotype is significantly higher among spina bifida cases and their parents. Nevertheless, our studies show that the variant does not account for the reduced blood folate levels in many NTD affected mothers. We conclude that low maternal folate status may in itself be the most important risk factor for NTDs and that food fortification may be the only population strategy of benefit in the effort to eliminate NTDs.

  15. Folate and homocysteine levels in pregnancy.

    PubMed

    Megahed, M A; Taher, I M

    2004-01-01

    This study aims to determine serum folate and plasma homocysteine levels in healthy pregnant women following a live birth and compare them with healthy non-pregnant women. Fifty healthy gravid multiparous women are included in the study and 25 normal non-pregnant female subjects act as controls (group I). The pregnant women are divided into two groups according to interpregnancy interval: group II (six months or less); group III (18-24 months). Venous blood samples are analysed for red blood cell folate and homocysteine, vitamin B12, serum folate and albumin, and serum aminotransferases (ALT and AST). There was a significant decrease in red cell folate and serum folate in group II compared to the control group (P<0.001). Serum vitamin B12 showed no significant difference. Plasma homocysteine and serum albumin showed significant decreases in both groups II and III compared to the control group. (P<0.001) There was significant positive correlation between homocysteine and serum albumin in the three studied groups. (r=0.42, P<0.001; r=0.45, P<0.001; r=0.51, P<0.001, respectively). There was significant negative correlation between red cell folate and homocysteine in the three studied groups. (r=-0.48, P<0.001; r=-0.53, P<0.001; r=-0.49, P<0.001, respectively). Two cases in group II showed signs of intrauterine growth retardation. The results suggest that pregnant females with short interpregnancy intervals are more likely to develop folate deficiency. Educational strategies are required to increase folate awareness among women to promote the benefits of folic acid supplementation. Mandatory folate fortification of foods should be defined and monitored.

  16. Questionable Reliability of Homocysteine as the Metabolic Marker for Folate and Vitamin B12 Deficiency in Patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Beletić, Anđelo; Mirković, Duško; Dudvarski-Ilić, Aleksandra; Milenković, Branislava; Nagorni-Obradović, Ljudmila; Đorđević, Valentina; Ignjatović, Svetlana; Majkić-Singh, Nada

    2015-01-01

    Summary Background An increased homocysteine (Hcy) concentration may represent a metabolic marker of folate and vitamin B12 deficiency, both significant public health problems. For different reasons, patients with chronic obstructive pulmonary disease (COPD) are prone to these deficiencies. The study evaluates the reliability of Hcy concentration in predicting folate or vitamin B12 deficiency in these patients. Methods A group of 50 COPD patients (28 males/22 females, age (χ̄±SD=49.0±14.5) years was enrolled. A chemiluminescent microparticle immunoassay was applied for homocysteine, folate and vitamin B12 concentration. Kolmogorov-Smirnov, Mann-Whitney U and χ2 tests, Spearman’s correlation and ROC analysis were included in the statistical analysis, with the level of significance set at 0.05. Results Average (SD) concentrations of folate and vitamin B12 were 4.13 (2.16) μg/L and 463.6 (271.0) ng/L, whereas only vitamin B12 correlated with the Hcy level (P=−0.310 (R=0.029)). Gender related differences were not significant and only a borderline significant correlation between age and folate was confirmed (R=0.279 (P=0.047)). The incidence of folate and vitamin B12 deficiency differed significantly (P=0.000 and P<0.000 for folate and vitamin B12 respectively), depending on the cutoff used for classification (4.4, 6.6 and 8.0 μg/L – folate; 203 and 473 ng/L – vitamin B12). ROC analyses failed to show any significance of hyperhomocysteinemia as a predictor of folate or vitamin B12 deficiency. Conclusion Reliability of the Hcy concentration as a biomarker of folate or vitamin B12 depletion in COPD patients is not satisfactory, so their deficiency cannot be predicted by the occurrence of HHcy. PMID:28356857

  17. Questionable Reliability of Homocysteine as the Metabolic Marker for Folate and Vitamin B12 Deficiency in Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Beletić, Anđelo; Mirković, Duško; Dudvarski-Ilić, Aleksandra; Milenković, Branislava; Nagorni-Obradović, Ljudmila; Đorđević, Valentina; Ignjatović, Svetlana; Majkić-Singh, Nada

    2015-10-01

    An increased homocysteine (Hcy) concentration may represent a metabolic marker of folate and vitamin B12 deficiency, both significant public health problems. For different reasons, patients with chronic obstructive pulmonary disease (COPD) are prone to these deficiencies. The study evaluates the reliability of Hcy concentration in predicting folate or vitamin B12 deficiency in these patients. A group of 50 COPD patients (28 males/22 females, age (χ̄±SD=49.0±14.5) years was enrolled. A chemiluminescent microparticle immunoassay was applied for homocysteine, folate and vitamin B12 concentration. Kolmogorov-Smirnov, Mann-Whitney U and χ(2) tests, Spearman's correlation and ROC analysis were included in the statistical analysis, with the level of significance set at 0.05. Average (SD) concentrations of folate and vitamin B12 were 4.13 (2.16) μg/L and 463.6 (271.0) ng/L, whereas only vitamin B12 correlated with the Hcy level (P=-0.310 (R=0.029)). Gender related differences were not significant and only a borderline significant correlation between age and folate was confirmed (R=0.279 (P=0.047)). The incidence of folate and vitamin B12 deficiency differed significantly (P=0.000 and P<0.000 for folate and vitamin B12 respectively), depending on the cutoff used for classification (4.4, 6.6 and 8.0 μg/L - folate; 203 and 473 ng/L - vitamin B12). ROC analyses failed to show any significance of hyperhomocysteinemia as a predictor of folate or vitamin B12 deficiency. Reliability of the Hcy concentration as a biomarker of folate or vitamin B12 depletion in COPD patients is not satisfactory, so their deficiency cannot be predicted by the occurrence of HHcy.

  18. Inhibition studies of sulfonamide-containing folate analogs in yeast.

    PubMed

    Patel, Onisha; Satchell, Jacqueline; Baell, Jonathan; Fernley, Ross; Coloe, Peter; Macreadie, Ian

    2003-01-01

    In the folate biosynthetic pathway, sulfa drugs (sulfonamides and sulfones) compete with the natural substrate, para-aminobenzoate (pABA) causing depletion of dihydrofolate (DHF) and subsequent growth inhibition. The sulfa drugs condense with 2-amino-4-hydroxy-6-hydroxymethyl-7,8 dihydropteridine pyrophosphate (DHPPP) forming sulfa-dihydropteroate (sulfa-DHP). Here evidence is presented using yeast that such dihydropteroate (DHP) analogs are inhibitory through competition with DHF. Two folate synthesis mutants, with respective dihydrofolate synthase (DHFS) and dihydropteroate synthase (DHPS) deletions and requiring DHF for growth were exposed to sulfa drugs. The DHFS knockout mutant was inhibited, but the DHPS knockout mutant that was incapable of forming sulfa-DHP was insensitive. Such sulfa-DHP compounds were chemically synthesized and shown to be inhibitory in vivo by competing with DHF, but in vitro assays with double the concentration of the sulfa-DHP to DHF showed no inhibition of dihydrofolate reductase (DHFR). Sequence analysis of resistant mutants obtained in the presence of sulfa drugs showed no changes in DHFR, or DHPS, unlike previously found antifolate-resistant mutants. The diamino derivatives, which are precursors of the sulfa-DHP, were found to be DHFR inhibitors. These results suggest that a new class of drugs, based on DHP analogs, could be investigated.

  19. Thiamine metabolism in folate deficient rats

    SciTech Connect

    Walzem, R.L.

    1987-01-01

    Folate status (FS) and resultant alterations in thiamine status (TS) were evaluated in weanling rats fed either 17% amino acids (RHAA); 14% amino acids (LOGLU); 20% Vitamin Free casein (VFC) + 8% gelatin (HICG); 10% VFC + 4% gelatin + 0.3% methionine (CGM); or 10% VFC + 4 % gelatin (LOCG). Diets were fed with and without 8 mg FA/kg diet. HICG diet contained 54 ug/kg endogenous folate, the CGM and LOCG, 27 ug/kg, RHAA and LOGLU were folate free. FS was assessed by growth rate, hematology, formiminoglutamic acid excretion following a histidine load and tissue folate levels. TS was assessed by determining the fate of oral /sup 3/H-labeled and intravenous /sup 14/C-labeled thiamine over a six hour test period and by measurement of blood transketolase activity (TKA) and TPP effect (TPPE). TKA and TPPE were measured by an enzymatic single-point assay developed during these investigations.

  20. Compilation of a standardised international folate database for EPIC.

    PubMed

    Nicolas, Geneviève; Witthöft, Cornelia M; Vignat, Jérôme; Knaze, Viktoria; Huybrechts, Inge; Roe, Mark; Finglas, Paul; Slimani, Nadia

    2016-02-15

    This paper describes the methodology applied for compiling an "international end-user" folate database. This work benefits from the unique dataset offered by the European Prospective Investigation into Cancer and Nutrition (EPIC) (N=520,000 subjects in 23 centres). Compilation was done in four steps: (1) identify folate-free foods then find folate values for (2) folate-rich foods common across EPIC countries, (3) the remaining "common" foods, and (4) "country-specific" foods. Compiled folate values were concurrently standardised in terms of unit, mode of expression and chemical analysis, using information in national food composition tables (FCT). 43-70% total folate values were documented as measured by microbiological assay. Foods reported in EPIC were either matched directly to FCT foods, treated as recipes or weighted averages. This work has produced the first standardised folate dataset in Europe, which was used to calculate folate intakes in EPIC; a prerequisite to study the relation between folate intake and diseases.

  1. Hereditary folate malabsorption with extensive intracranial calcification.

    PubMed

    Ahmad, Ikhlas; Mukhtar, Gousia; Iqbal, Javed; Ali, Syed Wajid

    2015-01-01

    Anemia is a common accompaniment of cerebral palsy, mental retardation and neurodegenerative disorders. A 4-year-old boy with chronic megaloblastic anemia, global developmental delay, seizures, intracranial calcification and new onset neuro-regression. A diagnosis of hereditary folate malabsorption was made, and he was put on oral and injectable folinic acid. Marked improvement at 6 month follow up. Hereditary folate malabsorption should be suspected in any child having megaloblastic anemia and neuro degeneration disorder.

  2. Methotrexate modulates folate phenotype and inflammatory profile in EA.hy 926 cells.

    PubMed

    Summers, Carolyn M; Hammons, Andrea L; Arora, Jasbir; Zhang, Suhong; Jochems, Jeanine; Blair, Ian A; Whitehead, Alexander S

    2014-06-05

    EA.hy 926 cells grown under low folate conditions adopt a "pro-atherosclerotic" morphology and biochemical phenotype. Pharmacologically relevant doses of the antifolate drug methotrexate (MTX) were applied to EA.hy 926 cells maintained in normal (Hi) and low (Lo) folate culture media. Under both folate conditions, MTX caused inhibition of cell proliferation without significantly compromising metabolic activity. MTX treated Hi cells were depleted of folate derivatives, which were present in altered proportions relative to untreated cells. Transcript profiling using microarrays indicated that MTX treatment modified the transciptome in similar ways for both Hi and Lo cells. Many inflammation-related genes, most prominently those encoding C3 and IL-8, were up-regulated, whereas many genes involved in cell division were down-regulated. The results for C3 and IL-8 were confirmed by quantitative RT-PCR and ELISA. MTX appears to modify the inflammatory potential of EA.hy 926 cells such that its therapeutic properties may, at least under some conditions, be accompanied by the induction of a subset of gene products that promote and/or maintain comorbid pathologies.

  3. Importance of low serum vitamin B12 and red cell folate concentrations in elderly hospital inpatients.

    PubMed

    Blundell, E L; Matthews, J H; Allen, S M; Middleton, A M; Morris, J E; Wickramasinghe, S N

    1985-10-01

    To determine the functional importance of the low B12 and red cell folate concentrations repeatedly observed in the elderly 200 consecutive patients admitted to a geriatric unit were studied. Forty six of the patients had low serum concentrations of B12 (15), red cell folate (26), or both (five). Serum B12 and red cell folate concentrations correlated with mean cell volume, and serum B12 correlated with the neutrophil lobe count. Bone marrow deoxyuridine suppression was abnormal in 35% of the patients with low vitamin concentrations, but 55% of those with abnormal deoxyuridine suppression had morphologically normal bone marrow, and 73% had a normal mean cell volume. In patients with low vitamin values the deoxyuridine suppressed value correlated with the haemoglobin concentration and neutrophil lobe count. Thus synthesis of thymidylate was impaired by vitamin B12 or folate deficiency in at least 8% of newly admitted elderly patients, many of whom had normal blood counts despite the biochemical disturbance affecting haemopoiesis. A nutritionally depleted diet may have been responsible for many of the low vitamin values.

  4. Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells.

    PubMed

    Ashokkumar, Balasubramaniem; Mohammed, Zainab M; Vaziri, Nosratola D; Said, Hamid M

    2007-07-01

    Folic acid [corrected] plays an essential role in cellular metabolism. Its deficiency can lead to neural tube defects. However, optimization of body folate homeostasis can reduce the incidence of neural tube defects and may decrease the risk of Alzheimer and cardiovascular diseases and cancer. Hence, food fortification and intake of supplemental folate are widespread. We examined the effects of long-term folate oversupplementation on the physiologic markers of intestinal and renal folate uptake processes. Human-derived intestinal Caco-2 and renal HK-2 epithelial cells were maintained (5 generations) in a growth medium oversupplemented (100 micromol folic acid/L) or maintained under sufficient conditions (0.25 and 9 micromol folic acid/L). Carrier-mediated uptake of (3)H-folic acid (2 micromol/L) at buffer pH 5.5 (but not buffer pH 7.4) by Caco-2 and HK-2 cells maintained under the folate-oversupplemented condition was significantly (P<0.01) and specifically lower than in cells maintained under the folate-sufficient condition. This reduction in folic acid uptake was associated with a significant decrease in the protein and mRNA levels of the human reduced-folate carrier (hRFC) and a decrease in the activity of the hRFC promoter. It was also associated with a decrease in mRNA levels of the proton-coupled folate transporter/heme carrier protein 1 (PCFT/HCP1) and folate receptor (FR). Long-term oversupplementation with folate leads to a specific and significant down-regulation in intestinal and renal folate uptake, which is associated with a decrease in message levels of hRFC, PCFT/HCP1, and FR. This regulation appears to be mediated via a transcriptional mechanism, at least for the hRFC system.

  5. Steatosis in mice is associated with gender, folate intake, and expression of genes of one-carbon metabolism.

    PubMed

    Christensen, Karen E; Wu, Qing; Wang, Xiaoling; Deng, Liyuan; Caudill, Marie A; Rozen, Rima

    2010-10-01

    Disrupted choline metabolism may affect hepatic lipid metabolism and lead to steatosis. Because folate and the choline metabolite betaine independently serve as methyl donors for homocysteine (Hcy) remethylation to methionine, we assessed the impact of folate deficiency on steatosis, choline metabolism, and expression of 9 genes involved in folate-mediated one-carbon metabolism. Liver histology, choline metabolites, and mRNA and protein expression were examined in mice fed control (CD; 2 mg/kg folic acid) or folate-deficient diets (FD; 0.3 mg/kg folic acid) for 12 mo. Females fed CD were not steatotic (0/6), whereas males were mildly to moderately steatotic (5/6). Steatosis was observed in FD-fed males and females; it was more severe and more frequent in males (7/7) than in females (4/10) (P = 0.005). Hepatic betaine was lower in males (P = 0.014) and FD-fed mice (P < 0.001) and negatively correlated with steatosis severity in mice fed CD (r = -0.87; P = 0.001). Gender differences in the expression of 6 enzymes may contribute to increased steatosis susceptibility in males. Males relied more on betaine-dependent (folate-independent) Hcy remethylation [72% more betaine-Hcy methyltransferase (P < 0.001) and 28% less folate-dependent methionine synthase (MTR) (P < 0.001)]. FD-fed mice of both genders appeared to shift to betaine-dependent remethylation by reducing MTR expression 70% (P < 0.001) and increasing betaine demand; there was a correlation between MTR expression and betaine levels (r = 0.50; P = 0.031). Our work demonstrates that chronic folate insufficiency leads to steatosis in mice. Increased utilization of betaine for Hcy remethylation in males and in both genders during folate deficiency may lead to steatosis by disrupting choline metabolism.

  6. The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis.

    PubMed

    Ifergan, Ilan; Jansen, Gerrit; Assaraf, Yehuda G

    2008-07-25

    The reduced folate carrier (RFC), a bidirectional anion transporter, is the major uptake route of reduced folates essential for a spectrum of biochemical reactions and thus cellular proliferation. However, here we show that ectopic overexpression of the RFC, but not of folate receptor alpha, a high affinity unidirectional folate uptake route serving here as a negative control, resulted in an approximately 15-fold decline in cellular viability in medium lacking folates but not in folate-containing medium. Moreover to explore possible mechanisms of adaptation to folate deficiency in various cell lines that express the endogenous RFC, we first determined the gene expression status of the following genes: (a) RFC, (b) ATP-driven folate exporters (i.e. MRP1, MRP5, and breast cancer resistance protein), and (c) folylpoly-gamma-glutamate synthetase and gamma-glutamate hydrolase (GGH), enzymes catalyzing folate polyglutamylation and hydrolysis, respectively. Upon 3-7 days of folate deprivation, semiquantitative reverse transcription-PCR analysis revealed a specific approximately 2.5-fold decrease in RFC mRNA levels in both breast cancer and T-cell leukemia cell lines that was accompanied by a consistent fall in methotrexate influx, serving here as an RFC transport activity assay. Likewise a 2.4-fold decrease in GGH mRNA levels and approximately 19% decreased GGH activity was documented for folate-deprived breast cancer cells. These results along with those of a novel mathematical biomodeling devised here suggest that upon severe short term (i.e. up to 7 days) folate deprivation RFC transport activity becomes detrimental as RFC, but not ATP-driven folate exporters, efficiently extrudes folate monoglutamates out of cells. Hence down-regulation of RFC and GGH may serve as a novel adaptive response to severe folate deficiency.

  7. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  8. Exogenous folates stimulate growth and budding of Candida glabrata

    PubMed Central

    Porzoor, Afsaneh; Macreadie, Ian G.

    2015-01-01

    Folate, vitamin B9, is well recognized as being essential for cell growth. The utilization of folate is common to all cells, but the source of it may be quite different. For example, mammalian cells depend on exogenous uptake of folates, while plants and microbes can synthesize them. There has been little consideration of uptake of folate in microbial cells, and studies on the effects of folates in mammalian cells, where conditions are restricted. This study shows that exogenous folates (folic acid or folinic acid), causes Candida glabrata cells suspended in water alone to undergo two cycles of cell division and to form multiple buds. The effect was limited to cells in the stationary phase and more profound in quiescent cells. These data indicate a novel response of yeast to folates that may increase the utility of yeast as a model to study folate transport and signaling. PMID:28357288

  9. Folate receptors and neural tube closure.

    PubMed

    Saitsu, Hirotomo

    2017-02-28

    Neural tube defects (NTD) are among the most common human congenital malformations, affecting 0.5-8/1000 of live births. Human clinical trials have shown that periconceptional folate supplementation significantly decreases the occurrence of NTD in offspring. However, the mechanism by which folate acts on NTD remains largely unknown. Folate receptor (Folr) is one of the three membrane proteins that mediate cellular uptake of folates. Recent studies suggest that mouse Folr1 (formerly referred to as Fbp1) is essential for neural tube closure. Therefore, we examined spatial and temporal expression patterns of Folr1 in developing mouse embryos, showing a close association between Folr1 and anterior neural tube closure. Transient transgenic analysis was performed using lacZ as a reporter; we identified a 1.1-kb enhancer that directs lacZ expression in the neural tube and optic vesicle in a manner that is similar to endogenous Folr1. The 1.1-kb enhancer sequences were highly conserved between humans and mice, suggesting that human FOLR1 is associated with anterior neural tube closure in humans. Several experimental studies in mice and human epidemiological and genetics studies have suggested that folate receptor abnormalities are involved in a portion of human NTDs, although the solo defect of FOLR1 did not cause NTD.

  10. Diagnosis and management of cerebral folate deficiency

    PubMed Central

    Al-Baradie, Raidah S.; Chudary, Mohammed W.

    2014-01-01

    Folinic acid-responsive seizures (FARS) are a rare treatable cause of neonatal epilepsy. They have characteristic peaks on CSF monoamine metabolite analysis, and have mutations in the ALDH7A1 gene, characteristically found in pyridoxine-dependent epilepsy. There are case reports of patients presenting with seizures at a later age, and with folate deficiency due to different mechanisms with variable response to folinic acid supplementation. Here, we report 2 siblings who presented with global developmental delay and intractable seizures who responded clinically to folinic acid therapy. Their work-up included metabolic and genetic testing. The DNA sequencing was carried out for the ALDH7A1 gene, and the folate receptor 1 (FOLR1) gene. They had very low 5-methyltetrahydrofolate (5-MTHF) in CSF with no systemic folate deficiency and no characteristic peaks on neurotransmitter metabolite chromatogram. A novel mutation in the FOLR1 gene was found. The mutation in this gene is shown to affect CSF folate transport leading to cerebral folate deficiency. The response to treatment with folinic acid was dramatic with improvement in social interaction, mobility, and complete seizure control. We should consider the possibility of this treatable condition in appropriate clinical circumstances early, as diagnosis with favorable outcome depends on the specialized tests. PMID:25274592

  11. Folates in Plants: Research Advances and Progress in Crop Biofortification

    PubMed Central

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-01-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore, strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today's knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  12. Folates in Plants: Research Advances and Progress in Crop Biofortification.

    PubMed

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-01-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore, strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today's knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  13. Folates in plants: research advances and progress in crop biofortification

    NASA Astrophysics Data System (ADS)

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-03-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today’s knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  14. Quantitative description of the interaction between folate and the folate-binding protein from cow's milk

    PubMed Central

    2004-01-01

    A detailed study has been carried out on the dependence of folate binding on the concentration of FBP (folate-binding protein) at pH 5.0, conditions selected to prevent complications arising from the pre-existing self-association of the acceptor. In contrast with the mandatory requirement that reversible interaction of ligand with a single acceptor site should exhibit a unique, rectangular hyperbolic binding curve, results obtained by ultrafiltration for the FBP–folate system required description in terms of (i) a sigmoidal relationship between concentrations of bound and free folate and (ii) an inverse dependence of affinity on FBP concentration. These findings have been attributed to the difficulties in determining the free ligand concentration in the FBP–folate mixtures for which reaction is essentially stoichiometric. This explanation also accounts for the similar published behaviour of the FBP–folate system at neutral pH, which had been attributed erroneously to acceptor self-association, a phenomenon incompatible with the experimental findings because of its prediction of a greater affinity for folate with increasing FBP concentration. PMID:15142039

  15. Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate.

    PubMed

    Klee, G G

    2000-08-01

    Vitamin B(12) and folate are two vitamins that have interdependent roles in nucleic acid synthesis. Deficiencies of either vitamin can cause megaloblastic anemia; however, inappropriate treatment of B(12) deficiency with folate can cause irreversible nerve degeneration. Inadequate folate nutrition during early pregnancy can cause neural tube defects in the developing fetus. In addition, folate and vitamin B(12) deficiency and the compensatory increase in homocysteine are a significant risk factor for cardiovascular disease. Laboratory support for the diagnosis and management of these multiple clinical entities is controversial and somewhat problematic. Automated ligand binding measurements of vitamin B(12) and folate are easiest to perform and widely used. Unfortunately, these tests are not the most sensitive indicators of disease. Measurement of red cell folate is less dependent on dietary fluctuations, but these measurements may not be reliable. Homocysteine and methylmalonic acid are better metabolic indicators of deficiencies at the tissue level. There are no "gold standards" for the diagnosis of these disorders, and controversy exists regarding the best diagnostic approach. Healthcare strategies that consider the impact of laboratory tests on the overall costs and quality of care should consider the advantages of including methylmalonic acid and homocysteine in the early evaluation of patients with suspected deficiencies of vitamin B(12) and folate.

  16. Abnormal folate metabolism in foetuses affected by neural tube defects.

    PubMed

    Dunlevy, Louisa P E; Chitty, Lyn S; Burren, Katie A; Doudney, Kit; Stojilkovic-Mikic, Taita; Stanier, Philip; Scott, Rosemary; Copp, Andrew J; Greene, Nicholas D E

    2007-04-01

    Folic acid supplementation can prevent many cases of neural tube defects (NTDs), whereas suboptimal maternal folate status is a risk factor, suggesting that folate metabolism is a key determinant of susceptibility to NTDs. Despite extensive genetic analysis of folate cycle enzymes, and quantification of metabolites in maternal blood, neither the protective mechanism nor the relationship between maternal folate status and susceptibility are understood in most cases. In order to investigate potential abnormalities in folate metabolism in the embryo itself, we derived primary fibroblastic cell lines from foetuses affected by NTDs and subjected them to the dU suppression test, a sensitive metabolic test of folate metabolism. Significantly, a subset of NTD cases exhibited low scores in this test, indicative of abnormalities in folate cycling that may be causally linked to the defect. Susceptibility to NTDs may be increased by suppression of the methylation cycle, which is interlinked with the folate cycle. However, reduced efficacy in the dU suppression test was not associated with altered abundance of the methylation cycle intermediates, s-adenosylmethionine and s-adenosylhomocysteine, suggesting that a methylation cycle defect is unlikely to be responsible for the observed abnormality of folate metabolism. Genotyping of samples for known polymorphisms in genes encoding folate-associated enzymes did not reveal any correlation between specific genotypes and the observed abnormalities in folate metabolism. These data suggest that as yet unrecognized genetic variants result in embryonic abnormalities of folate cycling that may be causally related to NTDs.

  17. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  18. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  19. Natural variation in folate levels among tomato (Solanum lycopersicum) accessions.

    PubMed

    Upadhyaya, Pallawi; Tyagi, Kamal; Sarma, Supriya; Tamboli, Vajir; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2017-02-15

    Folate content was estimated in tomato (Solanum lycopersicum) accessions using microbiological assay (MA) and by LC-MS. The MA revealed that in red-ripe fruits folate levels ranged from 4 to 60μg/100g fresh weight. The LC-MS estimation of red-ripe fruits detected three folate forms, 5-CH3-THF, 5-CHO-THF, 5,10-CH(+)THF and folate levels ranged from 14 to 46μg/100g fresh weight. In mature green and red ripe fruit, 5-CH3-THF was the most abundant folate form. Comparison of LC-MS with MA revealed that MA inaccurately estimates folate levels. The accumulation of folate forms and their distribution varied among accessions. The single nucleotide polymorphism was examined in the key genes of the folate pathway to understand its linkage with folate levels. Despite the significant variation in folate levels among tomato accessions, little polymorphism was found in folate biosynthesis genes. Our results indicate that variation in folate level is governed by a more complex regulation at cellular homeostasis level.

  20. Association of reduced folate carrier-1 (RFC-1) polymorphisms with ischemic stroke and silent brain infarction.

    PubMed

    Cho, Yunkyung; Kim, Jung O; Lee, Jeong Han; Park, Hye Mi; Jeon, Young Joo; Oh, Seung Hun; Bae, Jinkun; Park, Young Seok; Kim, Ok Joon; Kim, Nam Keun

    2015-01-01

    Stroke is the second leading cause of death in the world and in South Korea. Ischemic stroke and silent brain infarction (SBI) are complex, multifactorial diseases influenced by multiple genetic and environmental factors. Moderately elevated plasma homocysteine levels are a major risk factor for vascular diseases, including stroke and SBI. Folate and vitamin B12 are important regulators of homocysteine metabolism. Reduced folate carrier (RFC), a bidirectional anion exchanger, mediates folate delivery to a variety of cells. We selected three known RFC-1 polymorphisms (-43C>T, 80A>G, 696T>C) and investigated their relationship to cerebral infarction in the Korean population. We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to analyze associations between the three RFC-1 polymorphisms, disease status, and folate and homocysteine levels in 584 ischemic stroke patients, 353 SBI patients, and 505 control subjects. The frequencies of the RFC-1 -43TT, 80GG, and 696CC genotypes differed significantly between the stroke and control groups. The RFC-1 80A>G substitution was also associated with small artery occlusion and SBI. In a gene-environment analysis, the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms in the ischemic stroke group had combined effects with all environmental factors. In summary, we found that the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms may be risk factors for ischemic stroke.

  1. Folate intake, serum folate, serum total homocysteine levels and methylenetetrahydrofolate reductase C677T polymorphism in young Japanese women.

    PubMed

    Hiraoka, Mami

    2004-08-01

    Various factors influence folate status and requirements. To investigate the folate status in young Japanese women (n=340, 20-22 y), I determined the serum folate and total homocysteine (tHcy), and examined the influence of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on folate status in a subgroup of 252 of the women. I calculated folate consumption based on records of food intake weighed over 3 d using the standard Tables of Food Composition in Japan (5th revised edition) and the US Food Composition Table based on the USDA nutrient database excluding fortification. Serum folate and total homocysteine (tHcy) levels were determined by chemiluminescent-competitive protein binding assay and HPLC, respectively. The mean intake of folate was 323+/-133 and 196+/-71 microg/d, and 86.5% and 42.1% of the participants consumed more than the RDA of 200 microg of folate, according to the Japanese and US tables, respectively. The main sources of dietary folate were vegetables, green tea and bread. Serum folate levels were significantly correlated with folate intake (r=0.249, p<0.001). Serum tHcy levels were above 15 micromol/L in four participants. I found significant negative correlations between serum tHcy and folate intake (r=-0.175, p<0.05), and between serum tHcy and serum folate (r=-0.297, p<0.0001). The frequencies of the CC, CT and TT genotypes of the MTHFR gene were 32.9, 51.6 and 15.5%, respectively. Among individuals with the TT genotype, serum folate and tHcy levels were lower and higher, respectively, than in those with the other genotypes, regardless of folate intake above RDA. These data suggest that the current RDA of folate estimated based on foreign data might not be sufficient for Japanese and that this value might require reassessment.

  2. Folate Intake and Markers of Folate Status in Women of Reproductive Age, Pregnant and Lactating Women: A Meta-Analysis

    PubMed Central

    Berti, Cristiana; Fekete, Katalin; Dullemeijer, Carla; Trovato, Monica; Souverein, Olga W.; Cavelaars, Adriënne; Dhonukshe-Rutten, Rosalie; Massari, Maddalena; Decsi, Tamás; van't Veer, Pieter; Cetin, Irene

    2012-01-01

    Background. Pregnant and breastfeeding women are at risk for folate deficiency. Folate supplementation has been shown to be associated with enhanced markers of folate status. However, dose-response analyses for adult women are still lacking. Objective. To assess the dose-response relationship between total folate intake (folic acid plus dietary folate) and markers of folate status (plasma/serum folate, red blood cell folate, and plasma homocysteine); to evaluate potential differences between women in childbearing age, pregnant and lactating women. Methods. Electronic literature searches were carried out on three databases until February 2010. The overall pooled regression coefficient (β) and SE(β) were calculated using meta-analysis on a double-log scale. Results. The majority of data was based on nonpregnant, nonlactating women in childbearingage. The pooled estimate of the relationship between folate intake and serum/plasma folate was 0.56 (95% CI = 0.40–0.72, P < 0.00001); that is, the doubling of folate intake increases the folate level in serum/plasma by 47%. For red blood cell folate, the pooled-effect estimate was 0.30 (95% CI = 0.22–0.38, P < 0.00001), that is, +23% for doubling intake. For plasma-homocysteine it was –0.10 (95% = –0.17 to –0.04, P = 0.001), that is, –7% for doubling the intake. Associations tended to be weaker in pregnant and lactating women. Conclusion. Significant relationships between folate intake and serum/plasma folate, red blood cell folate, and plasma homocysteine were quantified. This dose-response methodology may be applied for setting requirements for women in childbearing age, as well as for pregnant and lactating women. PMID:23024859

  3. Neuronal injury: folate to the rescue?

    PubMed Central

    Kronenberg, Golo; Endres, Matthias

    2010-01-01

    Strong epidemiological evidence indicates that derangement of single-carbon metabolism has detrimental effects for proper CNS functioning. Conversely, a role for folate supplementation in the treatment and prevention of neurodegenerative and neuropsychiatric disorders remains to be established. In this issue of the JCI, in an elegant series of experiments in rodents, Iskandar and colleagues demonstrate a crucial role of folate in the regeneration of afferent spinal neurons after injury. Probing sequential steps in folate metabolism, from cellular entry to DNA methylation, the authors show that axonal regeneration relies upon the integrity of DNA methylation pathways. These findings provide the first demonstration of an epigenetic mechanism contributing to neurorepair and suggest that manipulation of the methylation milieu may offer promising new therapeutic avenues to promote regeneration. PMID:20424316

  4. Neuronal injury: folate to the rescue?

    PubMed

    Kronenberg, Golo; Endres, Matthias

    2010-05-01

    Strong epidemiological evidence indicates that derangement of single-carbon metabolism has detrimental effects for proper CNS functioning. Conversely, a role for folate supplementation in the treatment and prevention of neurodegenerative and neuropsychiatric disorders remains to be established. In this issue of the JCI, in an elegant series of experiments in rodents, Iskandar and colleagues demonstrate a crucial role of folate in the regeneration of afferent spinal neurons after injury. Probing sequential steps in folate metabolism, from cellular entry to DNA methylation, the authors show that axonal regeneration relies upon the integrity of DNA methylation pathways. These findings provide the first demonstration of an epigenetic mechanism contributing to neurorepair and suggest that manipulation of the methylation milieu may offer promising new therapeutic avenues to promote regeneration.

  5. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  6. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  7. Thiamine absorption is not compromised in folate-deficient rats

    SciTech Connect

    Walzem, R.L.; Clifford, A.J.

    1988-11-01

    Thiamine absorption and excretion were assessed in rats with severe folate deficiency (FD) by determining the fate of oral TH-labeled and intravenous UC-labeled thiamine over a 6-h test period. Thiamine status was evaluated in these same rats by measuring transketolase activity levels of blood before (TKA) and after (TPPE) addition of thiamine pyrophosphate to the incubation mixture of the assay procedure. Two additional experiments assessed active transport of thiamine and the effect of dietary succinylsulfathiazole (SST) on TKA and TPPE in rats with moderate FD. Intestinal absorption in general and thiamine absorption in particular and thiamine status were unaltered in rats with severe FD. Inanition associated with severe FD may impair thiamine status. Thiamine absorption by active transport was not compromised in FD, and dietary succinylsulfathiazole did not affect thiamine status.

  8. Interaction between γ-radiation and dietary folate starvation metabolically reprograms global hepatic histone H3 methylation at lysine 4 and lysine 27 residues.

    PubMed

    Batra, Vipen; Devasagayam, Thomas Paul Asir

    2012-03-01

    The objective of the present study was to investigate the regulatory control of histone H3 methylation at lysine 4 (H3K4) and lysine 27 (H3K27) residues in response to the effect of folate deficiency and gamma (γ)-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 2-4 Gy total body γ-irradiation. There was a significant decrease in liver folate levels with concomitant depletion of S-adenosylmethionine (SAM) reserves. Folate deficiency and γ-radiation together induced H3K4 histone methyltransferase (H3K4HMTase) and suppressed H3K27 histone methyltransferase (H3K27HMTase) activities in a dose and time dependent manner. Our studies suggested radiation induced metabolic reprogramming of H3K4/H3K27 methylation patterns in FFD animals. We showed that radiation toxicity diverted one-carbon (C1) flux in FFD fed animals towards H3K4 methylation. Present work on methylation pattern of histone lysine residues gains particular importance as methylation of H3K4 residues is associated with euchromatin while methylated H3K27 residues promote gene silencing. In conclusion, our study suggests that maintenance of genomic histone methylation under γ-radiation stress might be a very dynamic, progressive process that could be modulated by dietary folate deficiency leading to formation of epigenetically reprogrammed cells.

  9. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Strobbe, Simon; Kiekens, Filip; Storozhenko, Sergei; De Steur, Hans; Gellynck, Xavier; Lambert, Willy; Stove, Christophe; Van Der Straeten, Dominique

    2015-10-01

    Biofortification of staple crops could help to alleviate micronutrient deficiencies in humans. We show that folates in stored rice grains are unstable, which reduces the potential benefits of folate biofortification. We obtain folate concentrations that are up to 150 fold higher than those of wild-type rice by complexing folate to folate-binding proteins to improve folate stability, thereby enabling long-term storage of biofortified high-folate rice grains.

  10. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  11. Folates in Asian noodles: III. Fortification, impact of processing, and enhancement of folate intakes.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    Asian noodles, a widely consumed staple food, were evaluated as potential vehicles for fortification with folic acid. Samples of white salted, yellow alkaline, and instant noodles, prepared under controlled laboratory conditions, were fortified and folates were measured at each stage of processing using a microbiological assay. Although the 3 styles showed differing patterns of retention, overall losses were slightly more than 40% and were similar for all styles. White salted and yellow alkaline noodles showed no significant decrease in total folate content during production. In contrast, significant losses occurred for instant noodles during steaming and deep-frying of the noodle strands. In all cases, substantial losses occurred during subsequent cooking of the dried noodles. Fortification at a rate of 50% of the reference value per serving resulted in retention of folate at levels corresponding to 30% following cooking, whereas unfortified noodles contributed less than 4% per serving. It is concluded that fortifying Asian noodles provides an effective means for enhancing folate intake.

  12. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption.

    PubMed

    Kishimoto, Kenji; Kobayashi, Ryoji; Sano, Hirozumi; Suzuki, Daisuke; Maruoka, Hayato; Yasuda, Kazue; Chida, Natsuko; Yamada, Masafumi; Kobayashi, Kunihiko

    2014-07-01

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder. Severe folate deficiency in HFM can result in immunodeficiency. We describe a female infant with HFM who acquired severe Pneumocystis pneumonia. The objective of the present study was to elucidate her immunological phenotype and to examine the time course of immune recovery following parenteral folate therapy. The patient demonstrated a combined immunodeficiency with an impaired T cell proliferation response, pan-hypogammaglobulinemia, and an imbalanced pro-inflammatory cytokine profile. She had normal white blood cell count, normal lymphocyte subsets, and normal complement levels. Two novel mutations were identified within the SLC46A1 gene to produce a compound heterozygote. We confirmed full recovery of her immunological and neurophysiological status with parenteral folate replacement. The time course of recovery of her immunological profile varied widely, however. HFM should be recognized as a unique form of immunodeficiency.

  13. Influence of maternal folate status on human fetal growth parameters.

    PubMed

    van Uitert, Evelyne M; Steegers-Theunissen, Régine P M

    2013-04-01

    Worldwide periconceptional folic acid supplement use is recommended to prevent neural tube defects. This also stimulated research on maternal folate status in association with fetal growth, an important predictor of perinatal and future development and health. We provide an overview of literature on associations between maternal folate status during pregnancy determined by folate biomarker concentrations in blood, folic acid supplement use and dietary folate intake, and fetal growth parameters. Literature was searched in PubMed up to November 2011. Some studies suggest inverse associations between serum folate, folic acid supplement use and dietary folate intake and risk of a low birth weight or small for gestational age infant. The strongest evidence, however, revealed positive associations between birth weight and red blood cell folate, folic acid supplement use and dietary folate intake. Red blood cell folate appeared to be most consistently associated with other fetal growth parameters. These findings contribute to the knowledge of the impact of maternal folate status on fetal growth, and subsequently perinatal health and disease risks in later life. Future research is recommended to examine effects of windows, duration and dose of folic acid supplement use and use of folate-rich dietary patterns in different populations on fetal growth parameters. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Subcellular distribution of folate and folate binding protein in renal proximal tubules

    SciTech Connect

    Sharkey, C.; Hjelle, J.T.; Selhub, J.

    1986-03-01

    High affinity folate binding protein (FBP) found in brush border membranes derived from renal cortices is thought to be involved in the renal conservation of folate. To examine the mechanisms of folate recovery, the subcellular distribution of FBP and /sup 3/H-folate in rabbit renal proximal tubules (PT) was examined using analytical cell fractionation techniques. Tubules contain 3.41 +/- 0.32 picomoles FBP/mg protein (X +/- S.D.; n = 5). Postnuclear supernates (PNS) of PT were layered atop Percoll-sucrose gradients, centrifuged, fractions collected and assayed for various marker enzymes and FBP. Pooled fractions from such gradients were subsequently treated with digitonin and centrifuged in a stoichiometric manner with the activity of the microvillar enzyme, alanylaminopeptidase (AAP); excess FBP distributed with more buoyant particles. Infusion of /sup 3/H-folate into rabbit kidneys followed by tubule isolation and fractionation revealed a time dependent shift in distribution of radiolabel from the AAP-rich gradient fractions to a region containing more buoyant particles; radiolevel was not associated with lysosomal markers. EM-radioautography revealed grains over intracellular vesicles. These results are consistent with the hypothesis that folate is recovered by a process involving receptor-mediated endocytosis or transcytosis.

  15. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition.

    PubMed

    Wibowo, Ardian S; Singh, Mirage; Reeder, Kristen M; Carter, Joshua J; Kovach, Alexander R; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E

    2013-09-17

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.

  16. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition

    PubMed Central

    Wibowo, Ardian S.; Singh, Mirage; Reeder, Kristen M.; Carter, Joshua J.; Kovach, Alexander R.; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E.

    2013-01-01

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases. PMID:23934049

  17. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  18. Folate, vitamin B12 and human health

    USDA-ARS?s Scientific Manuscript database

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared func...

  19. UK Policy on Folate Fortification of Foods

    ERIC Educational Resources Information Center

    Malcolm, Alan

    2004-01-01

    The UK Food Standards Agency has decided not to recommend fortification of foods with folate, the family of vitamins associated with the prevention of neural tube defects in babies. This is a change in attitude from previous recommendations made by a series of committees and reports in the UK. Notably, it differs from US policy on the matter. The…

  20. Exploring the folate pathway in Plasmodium falciparum.

    PubMed

    Hyde, John E

    2005-06-01

    As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, the antifolates have the best defined molecular targets, namely the enzymes dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), which function in the folate metabolic pathway. The products of this pathway, reduced folate cofactors, are essential for DNA synthesis and the metabolism of certain amino acids. Moreover, their formation and interconversions involve a number of other enzymes that have not as yet been exploited as drug targets. Antifolates are of major importance as they currently represent the only inexpensive regime for combating chloroquine-resistant malaria, and are now first-line drugs in a number of African countries. Aspects of our understanding of this pathway and antifolate drug resistance are reviewed here, with a particular emphasis on approaches to analysing the details of, and balance between, folate biosynthesis by the parasite and salvage of pre-formed folate from exogenous sources.

  1. Folate and neurological function: epidemiology perspective

    USDA-ARS?s Scientific Manuscript database

    This book chapter reviews and summarizes published literature on the relationship between folate status and Alzheimer’s disease, age-related cognitive impairment, and depression. Much of this research was motivated by the hypothesis that high circulating levels of the sulfur-containing amino acid ho...

  2. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  3. UK Policy on Folate Fortification of Foods

    ERIC Educational Resources Information Center

    Malcolm, Alan

    2004-01-01

    The UK Food Standards Agency has decided not to recommend fortification of foods with folate, the family of vitamins associated with the prevention of neural tube defects in babies. This is a change in attitude from previous recommendations made by a series of committees and reports in the UK. Notably, it differs from US policy on the matter. The…

  4. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    SciTech Connect

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael; Leamon, Christopher P.; Low, Philip S.

    2008-06-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm{sup 3} before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm{sup 3} subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon {alpha}) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm{sup 3}. More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  5. Ex-ante evaluation of biotechnology innovations: the case of folate biofortified rice in China.

    PubMed

    De Steur, Hans; Blancquaert, Dieter; Gellynck, Xavier; Lambert, Willy; Van Der Straeten, Dominique

    2012-12-01

    In order to valorize novel biotechnology innovations, there is a need to evaluate ex-ante their market potential. A case in point is biofortification, i.e. the enhancement of the micronutrient content of staple crops through conventional or genetic breeding techniques. In a recent article in Nature Biotechnology, for example, De Steur et al. (2010) demonstrated the large potential consumer health benefits of folate biofortified rice as a means to reduce folate deficiency and Neural-Tube Defects. By focusing on a Chinese high-risk region of Neural-Tube Defects, the current study defines the potential cost-effectiveness of this genetically modified crop where the need to improve folate intake levels is highest. Building on the Disability-Adjusted Life Years (DALY) approach, both the potential health impacts and costs of its implementation are measured and benchmarked against similar innovations. The results show that this transgenic crop could be a highly cost-effective product innovation (US$ 120.34 - US$ 40.1 per DALY saved) to alleviate the large health burden of folate deficiency and reduce the prevalence of neural-tube birth defects. When compared with other biofortified crops and target regions, folate biofortified rice in China has a relatively high health impact and moderate cost-effectiveness. This research further supports the need for, and importance of ex-ante evaluation studies in order to adequately market and, thus, valorize biotechnology innovations. Although the cost-effectiveness analysis enables to illustrate the market potential of innovative agricultural biotechnology research, further research is required to address policy issues on transgenic biofortification, such as biosafety regulatory requirements.

  6. Method of assay of red cell folate activity and the value of the assay as a test for folate deficiency

    PubMed Central

    Hoffbrand, A. V.; Newcombe, Beverley F. A.; Mollin, D. L.

    1966-01-01

    A simplified microbiological assay for determining the folate content of red cells is described. As in previously reported methods Lactobacillus casei is used as test organism but two modifications are introduced. First, haemolysis is carried out in water containing 1 g.% of ascorbic acid; secondly, haemolysates are not incubated before the assay. Using this assay, recovery of pteroylglutamic acid added in two different concentrations to five different whole blood samples was 97·0 ± 1·9 S.E. % and 106·1 ± 4·7 S.E. % respectively. The coefficient of variation of the assay was between 11·2 and 15·0%. Haemolysates were best stored deep frozen, showing no significant loss of L. casei activity for three to five months at −20°C. On the other hand, non-haemolysed blood samples were best stored at 4°C. when there was no loss of activity for seven to 10 days. Experiments confirmed that plasma is necessary for the maximum release of red cell L. casei activity, and showed that only small amounts of plasma are necessary; folate- and B12-deficient plasma released slightly lower L. casei activities from red cells than did normal plasma. The red cell folate levels of 40 healthy normal subjects ranged from 160 to 640 mμg. per ml. of packed red cells. One hundred and twenty patients with subnormal serum folate levels due to idiopathic steatorrhoea, nutritional folate deficiency and Crohn's disease, partial gastrectomy, myelosclerosis, and polycythaemia vera were studied. Red cell folate levels were subnormal (range from 7 to 143 mμg. per ml.) in 40 patients with megaloblastic anaemia, the lowest levels occurring in the most anaemic patients. Subnormal red cell folate levels also occurred in 23 (29%) of the 80 non-anaemic patients. There was a good correlation between red cell folate level and severity of folate deficiency assessed by polymorph nuclear lobe counts, and, in the non-anaemic patients bone marrow morphology. It is concluded that, in the absence of B12

  7. Folate, colorectal cancer and the involvement of DNA methylation.

    PubMed

    Williams, Elizabeth A

    2012-11-01

    Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.

  8. Action orientation overcomes the ego depletion effect.

    PubMed

    Dang, Junhua; Xiao, Shanshan; Shi, Yucai; Mao, Lihua

    2015-04-01

    It has been consistently demonstrated that initial exertion of self-control had negative influence on people's performance on subsequent self-control tasks. This phenomenon is referred to as the ego depletion effect. Based on action control theory, the current research investigated whether the ego depletion effect could be moderated by individuals' action versus state orientation. Our results showed that only state-oriented individuals exhibited ego depletion. For individuals with action orientation, however, their performance was not influenced by initial exertion of self-control. The beneficial effect of action orientation against ego depletion in our experiment results from its facilitation for adapting to the depleting task. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  9. Development and preclinical evaluation of new (124)I-folate conjugates for PET imaging of folate receptor-positive tumors.

    PubMed

    AlJammaz, I; Al-Otaibi, B; Al-Rumayan, F; Al-Yanbawi, S; Amer, S; Okarvi, S M

    2014-07-01

    In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers, we have synthesized [(124)I]-SIB- and [(124)I]-SIP-folate conjugates using a straightforward and two-step simple reactions. Radiochemical yields for [(124)I]-SIB- and [(124)I]-SIP-folate conjugates were greater than 90 and 60% respectively, with total synthesis time of 30-40min. Radiochemical purities were always greater than 98% without HPLC purification. These synthetic approaches hold considerable promise as rapid and simple method for (124)I-folate conjugate preparation with high radiochemical yield in short synthesis time. In vitro tests on KB cell line showed that the significant amounts of the radioconjugates were associated with cell fractions. In vivo characterization in normal Balb/c mice revealed rapid blood clearance of these radioconjugates and favorable biodistribution profile for [(124)I]-SIP-folate conjugate over [(124)I]-SIB-folate conjugate. Biodistribution studies of [(124)I]-SIP-folate conjugate in nude mice bearing human KB cell line xenografts, demonstrated significant tumor uptake. The uptake in the tumors was blocked by excess injection of folic acid, suggesting a receptor-mediated process. These results demonstrate that [(124)I]-SIP-folate conjugate may be useful as a molecular probe for detecting and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis as well as monitoring tumor response to treatment.

  10. Folate bioavailability: UK Food Standards Agency workshop report.

    PubMed

    Sanderson, Peter; McNulty, Helene; Mastroiacovo, Pierpaolo; McDowell, Ian F W; Melse-Boonstra, Alida; Finglas, Paul M; Gregory, Jess F

    2003-08-01

    The UK Food Standards Agency convened a group of expert scientists to review current research investigating folate bioavailability. The workshop aimed to overview current research and establish priorities for future research. Discrepancies were observed in the evidence base for folate bioavailability, especially with regard to the relative bioavailability of natural folates compared with folic acid. A substantial body of evidence shows folic acid to have superior bioavailability relative to food folates; however, the exact relative bioavailability still needs to be determined, and in particular with regard to mixed diets. The bioavailability of folate in a mixed diet is probably not a weighted average of that in the various foods consumed; thus the workshop considered that assessment of folate bioavailability of whole diets should be a high priority for future research.

  11. Iron and folate in fortified cereals.

    PubMed

    Whittaker, P; Tufaro, P R; Rader, J I

    2001-06-01

    Fortification of cereal-grain products was introduced in 1941 when iron and three vitamins were added to flour and bread. Ready-to-eat cereals were fortified at about the same time. These fortifications have contributed to increased dietary iron intake and reductions in iron deficiency anemia in the US. In 1996, FDA finalized rules for fortification of specific enriched cereal-grain products with folic acid. This measure was instituted to increase the folate intakes of women of child-bearing age and thereby reduce the risk of having a pregnancy affected with a neural tube birth defect. However, with recent increases in fortification, public health officials in the US are concemed that excess intake of specific nutrients such as iron and folic acid may result in toxic manifestations. Our objective was to measure iron and total folate content in breakfast cereals and compare assay to label values for % Daily Value. We also determined by weight the amount of a ready-to-eat breakfast cereal adults would eat and compared this to the labeled serving size, for which the reference amount for this cereal per eating occasion was 1 cup or 30 g. Twenty-nine breakfast cereals were analyzed for iron content using the bathophenanthroline reaction. Twenty-eight cereals were analyzed for total folate, utilizing a microbiological assay with tri-enzyme digestion. Serving size quantities were estimated in seventy-two adults who regularly ate breakfast cereal and were asked to fill a 16 or 22 cm round bowl with the amount of cereal that they would consume for breakfast. When the labeled value was compared to the assayed value for iron content 21 of the 29 breakfast cereals were 120% or more of the label value and 8 cereals were 150% or more of the label value. Overall, analyzed values for iron ranged from 80% to 190% of label values. Analyzed values for folate ranged from 98% to 320% of label values. For 14 of 28 cereals, analyzed values exceeded label declarations by more than 150

  12. Cryptophane-Folate Biosensor for 129Xe NMR

    DTIC Science & Technology

    2014-12-01

    Cryptophane-Folate Biosensor for 129Xe NMR Najat S. Khan, Brittany A. Riggle, Garry K. Seward, Yubin Bai, and Ivan J. Dmochowski* Department of...cryptophane biosensor was synthesized in 20 nonlinear steps, which included functionalization with folate recognition moiety, solubilizing peptide, and...Cy3 fluorophore. Hyperpolarized 129Xe NMR studies confirmed xenon binding to the folate-conjugated cryptophane. Cellular internalization of biosensor

  13. [Folate, vitamin B12 and human health].

    PubMed

    Brito, Alex; Hertrampf, Eva; Olivares, Manuel; Gaitán, Diego; Sánchez, Hugo; Allen, Lindsay H; Uauy, Ricardo

    2012-11-01

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared functions and intertwined metabolic pathways that define the size of the "methyl donor" pool utilized in multiple metabolic pathways; these include DNA methylation and synthesis of nucleic acids. In Chile, folate deficiency is virtually nonexistent, while vitamin B12 deficiency affects approximately 8.5-51% depending on the cut-off value used to define deficiency. Folate is found naturally mainly in vegetables or added as folic acid to staple foods. Vitamin B12 in its natural form is present only in foods of animal origin, which is why deficit is more common among strict vegetarians and populations with a low intake of animal foods. Poor folate status in vulnerable women of childbearing age increases the risk of neural tube birth defects, so the critical time for the contribution of folic acid is several months before conception since neural tube closure occurs during the first weeks of life. The absorption of vitamin B12 from food is lower in older adults, who are considered to have higher risk of gastric mucosa atrophy, altered production of intrinsic factor and acid secretion. Deficiency of these vitamins is associated with hematological disorders. Vitamin B12 deficiency can also induce clinical and sub-clinical neurological and of other disorders. The purpose of this review is to provide an update on recent advances in the basic and applied knowledge of these vitamins relative to human health.

  14. Clinical studies of intestinal folate conjugases.

    PubMed

    Halsted, C H; Beer, W H; Chandler, C J; Ross, K; Wolfe, B M; Bailey, L; Cerda, J J

    1986-03-01

    Clinical differences between the two human intestinal mucosal folate conjugases were assessed by measurement of their activities in normal individuals and in patients with chronic diarrhea of differing causes. Intracellular folate conjugase (ICFC) was 15-fold more active than brush border folate conjugase (BBFC) in jejunal mucosa from seven obese patients undergoing elective gastric bypass surgery. The activity of ICFC was similar among normal volunteers and patients with diarrhea of unknown origin (DUO), gluten-sensitive enteropathy (GSE), inflammatory bowel disease (IBD), and the short bowel syndrome (IBD-SBS). By contrast, BBFC, sucrase, and lactase were decreased significantly in GSE, and BBFC was increased in IBD-SBS. The activity of BBFC correlated with lactase and with sucrase in the normal subjects and in patients with DUO, whereas no correlations were found with the activity of ICFC in any group. Our clinical studies confirm that ICFC and BBFC are different enzymes. ICFC is not affected by intestinal disease, whereas the activity of jejunal BBFC, like that of other brush border enzymes, is decreased by mucosal injury and is also capable of adapting to distal small intestinal disease or surgical resection.

  15. The human proton-coupled folate transporter

    PubMed Central

    Desmoulin, Sita Kugel; Hou, Zhanjun; Gangjee, Aleem; Matherly, Larry H.

    2012-01-01

    This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the PCFT protein, many of which were identified as mutated in HFM patients, and in characterizing transcriptional control of the human PCFT gene. With the recognition that PCFT is abundantly expressed in human tumors and is active at pHs characterizing the tumor microenvironment, attention turned to exploiting PCFT for delivering novel cytotoxic antifolates for solid tumors. The finding that pemetrexed is an excellent PCFT substrate explains its demonstrated clinical efficacy for mesothelioma and non-small cell lung cancer, and prompted development of more PCFT-selective tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine antifolates that derive their cytotoxic effects by targeting de novo purine nucleotide biosynthesis. PMID:22954694

  16. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  17. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice.

    PubMed

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-08-04

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  18. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-03

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement.

  19. Hepatic folate metabolism in the chronic alcoholic monkey

    SciTech Connect

    Tamura, T.; Romero, J.J.; Watson, J.E.; Gong, E.J.; Halsted, C.H.

    1981-05-01

    To assess the role of altered hepatic folate metabolism in the pathogenesis of the folate deficiency of chronic alcoholism, the hepatic metabolism of a tracer dose of /sup 3/H-PteGlu was compared in monkeys given 50% of energy as ethanol for 2 years and in control monkeys. Long-term ethanol feeding resulted in mild hepatic injury, with a significant decrease in hepatic folate levels. Chromatographic studies of liver biopsies obtained after the tracer dose indicated that the processes of reduction, methylation, and formylation of reduced folate and the synthesis of polyglutamyl folates were not affected by long-term ethanol feeding. Hepatic tritium levels were significantly decreased in the ethanol-fed group. These studies suggest that the decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decreased ability to retain folates in the liver, whereas reduction and further metabolism of folates is not affected.

  20. Lentils (Lens culinaris L.), a rich source of folates.

    PubMed

    Sen Gupta, Debjyoti; Thavarajah, Dil; Knutson, Phil; Thavarajah, Pushparajah; McGee, Rebecca J; Coyne, Clarice J; Kumar, Shiv

    2013-08-14

    The potential for genetic biofortification of U.S.-grown lentils ( Lens culinaris L.) with bioavailable folate has not been widely studied. The objectives of this study were (1) to determine the folate concentration of 10 commercial lentil cultivars grown in Minot and McLean counties, North Dakota, USA, in 2010 and 2011, (2) to determine the genotype (G) × environmental (E) interactions for folate concentration in lentil cultivars, and (3) to compare the folate concentration of other pulses [field peas ( Pisum sativum L.) and chickpea ( Cicer arietinum L.)] grown in the United States. Folate concentration in lentil cultivars ranged from 216 to 290 μg/100 g with a mean of 255 μg/100 g. In addition, lentil showed higher folate concentration compared to chickpea (42-125 μg/100 g), yellow field pea (41-55 μg/100 g), and green field pea (50-202 μg/100 g). A 100 g serving of lentils could provide a significant amount of the recommended daily allowance of dietary folates (54-73%) for adults. A significant year × location interaction on lentil folate concentration was observed; this indicates that possible location sourcing may be required for future lentil folate research.

  1. Dietary folate and related micronutrients, folate-metabolising genes, and ovarian cancer survival.

    PubMed

    Dixon, S C; Ibiebele, T I; Protani, M M; Beesley, J; deFazio, A; Crandon, A J; Gard, G B; Rome, R M; Webb, P M; Nagle, C M

    2014-03-01

    Folate is essential for DNA synthesis and methylation and is implicated in tumour progression. Few studies have examined its role in ovarian cancer survival. Our objective was to determine relationships between intake of folate, related one-carbon nutrients, single nucleotide polymorphisms (SNPs) in folate-metabolising genes and survival following ovarian cancer diagnosis. This analysis included 1270 women with invasive epithelial ovarian cancer diagnosed in 2002-2006. Pre-diagnostic and some post-diagnostic lifestyle, dietary, and sociodemographic information was collected via self-administered questionnaires. DNA samples were genotyped for SNPs in methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR) genes. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox regression. Multivariate analyses did not identify associations between higher pre-diagnostic intake of folate, folic acid, vitamins B2, B6, and B12, methionine, betaine or choline and survival overall. In stratified analyses, higher folic acid and folate intake was associated with significantly worse survival among women with mucinous tumours (HRs per 100 μg 1.30 and 1.43, respectively) and smokers (HRs per 100 μg 1.23 and 1.16 respectively). There was also a suggestion that higher supplemental folic acid use post-diagnosis was associated with worse survival (HR per 100 μg 1.03, 95%CI 1.00-1.05). MTHFR SNP rs2066470 was significantly associated with survival (per allele HR 0.81, 95%CI 0.67-0.98). Our data provide little evidence that folate intake affects ovarian cancer survival. However, combined effects with smoking, and findings within the mucinous subtype and for post-diagnosis folic acid, warrant further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Diet folate, DNA methylation and genetic polymorphisms of MTHFR C677T in association with the prognosis of esophageal squamous cell carcinoma.

    PubMed

    Lu, Cheng; Xie, Hui; Wang, Fengliang; Shen, Hongbing; Wang, Jianming

    2011-03-05

    Folic acid may affect the development of human cancers. However, few studies have evaluated the consumption of diet folate in the prognosis of patients with esophageal squamous cell carcinoma (ESCC). One hundred and twenty five ESCC patients underwent esophagectomy between January 2005 and March 2006 in the Yangzhong People's Hospital were recruited and followed up. The effects of diet folate, aberrant DNA methylation of selected genes and methylenetetrahydrofolate reductase (MTHFR) C677T genetic polymorphisms on the prognosis of ESCC were evaluated by using Cox proportional hazard regression models. Our analysis showed an inverse association between diet folate intake and the risk of death after esophagectomy. The median survival time was 3.06 years for low or moderate folate consumption and over 4.59 years for high folate consumption. After adjusting for potential confounders, the hazard ratios (95% confidence interval) [HRs (95% CI)] were 0.72 (0.36-1.46) for moderate and 0.39 (0.20-0.78) for high folate intake, respectively (P for trend = 0.007). This preventive effect was more evident in patients carrying MTHFR 677CC genotype. No significant relation was observed between aberrant DNA methylation of P16, MGMT and hMLH1 gene, as well as MTHFR C677T genetic polymorphisms and the prognosis of ESCC. Our research indicated that diet folate intake may have benefits on the prognosis of ESCC after esophagectomy. From a practical viewpoint, the findings of our study help to establish practical intervention and surveillance strategies for managements of ESCC patients and can finally decrease the disease burden.

  3. [Folic acid reduces risks of having fetus affected with neural tube defects: dietary food folate and plasma folate concentration].

    PubMed

    Kondo, Atsuo; Kimura, Kyousuke; Isobe, Yasuaki; Kamihira, Osamu; Matsuura, Osamu; Gotoh, Momokazu; Okai, Ikuyo

    2003-07-01

    Risk of having fetus affected with neural tube defects can be reduced by maternal periconceptional folic acid supplementation. The purpose of the present study is to investigate how folate is taken from diets and to measure plasma folate concentrations. A total of 222 women comprising 5 groups, i.e., healthy women, mothers of myelodysplastic patients, pregnant women, myelodysplastic patients, nurse students, participated in our study. Food frequency questionnaires kept 3 days were analyzed based on the 5th standard table of food composition in Japan. Plasma folate concentrations were measured by means of chemiluminescent immunoassay method. Changes in plasma folate concentrations and possible adverse effects following the folic acid supplementation for 16 weeks were also investigated. The dietary intake of folate, plasma folate concentration and energy intake averaged 293 micrograms/day, 8.1 ng/ml and 1,857 Kcal, respectively, among the subjects. Pregnant women took the largest amount of folate from diets and demonstrated the highest plasma folate concentration among the groups. The dietary folate in myelodysplastic patients and nurse students was significantly lower compared to that of healthy women. The Recommended Dietary Allowance of folate was not fulfilled in 22% of non-pregnant adult women and 72% of pregnant women. The dietary folate was mainly taken from the 3rd food group but the 4th group of food was consumed most. Mean folate intake was significantly correlated with circulating concentrations of serum folate (p = 0.012 r = 0.186). The consecutive administration of 400 micrograms supplements for 16 weeks increased a baseline plasma value of 8.7 ng/ml to 32.6 but fell down rapidly to 17.3 24 hours later without any adverse effects. The dietary folate and serum folate concentrations averaged 293 micrograms/day and 8.1 ng/ml, respectively. The former is the first report based on the 5th standard table of food composition in Japan. Majority of pregnant women

  4. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  5. Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1

    PubMed Central

    2010-01-01

    Background Using a functional genomics approach we addressed the impact of folate overproduction on metabolite formation and gene expression in Lactobacillus plantarum WCFS1. We focused specifically on the mechanism that reduces growth rates in folate-overproducing cells. Results Metabolite formation and gene expression were determined in a folate-overproducing- and wild-type strain. Differential metabolomics analysis of intracellular metabolite pools indicated that the pool sizes of 18 metabolites differed significantly between these strains. The gene expression profile was determined for both strains in pH-regulated chemostat culture and batch culture. Apart from the expected overexpression of the 6 genes of the folate gene cluster, no other genes were found to be differentially expressed both in continuous and batch cultures. The discrepancy between the low transcriptome and metabolome response and the 25% growth rate reduction of the folate overproducing strain was further investigated. Folate production per se could be ruled out as a contributing factor, since in the absence of folate production the growth rate of the overproducer was also reduced by 25%. The higher metabolic costs for DNA and RNA biosynthesis in the folate overproducing strain were also ruled out. However, it was demonstrated that folate-specific mRNAs and proteins constitute 8% and 4% of the total mRNA and protein pool, respectively. Conclusion Folate overproduction leads to very little change in metabolite levels or overall transcript profile, while at the same time the growth rate is reduced drastically. This shows that Lactobacillus plantarum WCFS1 is unable to respond to this growth rate reduction, most likely because the growth-related transcripts and proteins are diluted by the enormous amount of gratuitous folate-related transcripts and proteins. PMID:21167023

  6. A Candidate Gene Study of Folate-Associated One Carbon Metabolism Genes and Colorectal Cancer Risk

    PubMed Central

    Levine, A. Joan; Figueiredo, Jane C.; Lee, Won; Conti, David V.; Kennedy, Kathleen; Duggan, David J; Poynter, Jenny N.; Campbell, Peter T.; Newcomb, Polly; Martinez, Maria Elena; Hopper, John L.; Le Marchand, Loic; Baron, John A.; Limburg, Paul J.; Ulrich, Cornelia M.; Haile, Robert W.

    2010-01-01

    Background Folate-associated one carbon metabolism (FOCM) may play an important role in colorectal carcinogenesis. Variation in FOCM genes may explain some of the underlying risk of colorectal cancer. Methods This study utilized data from 1,805 population-based colorectal cancer cases and 2,878 matched sibling controls from the Colon Cancer Family Registry (C-CFR). We used a comprehensive tagSNP approach to select 395 tagSNPs in 15 genes involved in folate and vitamin B12 metabolism. Genotyping was performed using the Illumina GoldenGate or Sequenom platforms. Risk factor and dietary data were collected using self-completed questionnaires. MSI status was determined using standard techniques and tumor subsite was obtained from pathology reports. The association between SNPs and colorectal cancer was assessed using conditional logistic regression with sibships as the matching factor and assuming a log additive or co-dominant model. Results In the log additive model, two linked (r2=0.99) tagSNPs in the DHFR gene (rs1677693 and rs1643659) were associated with a significant decrease in CRC risk after correction for multiple testing (OR=0.87; 95% CI=0.71 – 0.94; P=0.029 and OR=0.87 95% CI=0.71 – 0.95, P=0.034 for rs1677693 and rs1643659 respectively. These two linked (r2=0.99) tagSNPs and one tagSNP in the MTR gene (rs4659744) were significantly associated with reduced CRC risk only among individuals not using multivitamin supplements. Conclusions Overall, we found only moderate evidence that genetic variation in 15 folate pathway genes may affect CRC risk except in non multivitamin users. Impact This study suggests that multivitamin supplement use may modify the association between folate pathway genes and CRC risk in a post folic acid supplemented population. PMID:20615890

  7. Folate contents in human milk and casein-based and soya-based formulas, and folate status in Korean infants.

    PubMed

    Han, Young-Hee; Yon, Miyong; Han, Heon-Seok; Kim, Kwang-Yup; Tamura, Tsunenobu; Hyun, Taisun H

    2009-06-01

    We assessed folate nutritional status from birth to 12 months in fifty-one infants who were fed human milk (HM; n 20), casein-based formula (CBF; n 12) or soya-based formula (SBF; n 19). Folate contents in ninety-five HM samples obtained from twenty mothers for the first 6-month period and twelve CBF and nineteen SBF samples were measured by bioassay after trienzyme extraction. Folate intake was estimated by weighing infants before and after feeding in the HM group and by collecting formula intake records in the formula-fed groups. After solid foods were introduced, all foods consumed were included to estimate folate intake. Serum folate and total homocysteine (tHcy) concentrations were determined at 5 and 12 months of age, and infant growth was monitored for the first 12 months. Mean HM folate contents ranged from 201 to 365 nmol/l with an overall mean of 291 nmol/l, and the contents peaked at 2 months postpartum. HM folate contents were higher than those reported in North America. Folate contents in CBF and SBF were markedly higher than those in HM and those claimed on the product labels. The overall folate intakes in formula-fed infants were significantly higher than those in HM-fed infants, and this was associated with significantly higher folate and lower tHcy in formula-fed infants than HM-fed infants at 5 months. At 12 months, serum folate was significantly higher in the SBF group than the other groups, whereas serum tHcy and overall growth were similar among all groups.

  8. Nutrigenetics in cancer research--folate metabolism and colorectal cancer.

    PubMed

    Ulrich, Cornelia M

    2005-11-01

    The B vitamin folate is essential for one-carbon transfer reactions, including those related to the methylation of DNA or other substrates and nucleotide synthesis. Epidemiologic and experimental studies implicate low-folate intakes in elevated risk of colorectal neoplasia and suggest that biologic mechanisms underlying this relation include disturbances in DNA methylation patterns or adverse effects on DNA synthesis and repair. With the completion of the Human Genome Project, a vast amount of data on inherited genetic variability has become available. This genetic information can be used in studies of molecular epidemiology to provide information on multiple aspects of folate metabolism. First, studies linking polymorphisms in folate metabolism to an altered risk of cancer provide evidence for a causal link between this pathway and colorectal carcinogenesis. Second, studies on genetic characteristics can help clarify whether certain individuals may benefit from higher or lower intakes of folate or nutrients relevant to folate metabolism. Third, studies on genetic polymorphisms can generate hypotheses regarding possible biologic mechanisms that connect this pathway to carcinogenesis. Last, genetic variability in folate metabolism may predict survival after a cancer diagnosis, possibly via pharmacogenetic effects. To solve the puzzle of the folate-cancer relation, a transdisciplinary approach is needed that integrates knowledge from epidemiology, clinical studies, experimental nutrition, and mathematical modeling. This review illustrates knowledge that can be gained from molecular epidemiology in the context of nutrigenetics, and the questions that this approach can answer or raise.

  9. Lentils (Lens culinaris L.), a rich source of folates

    USDA-ARS?s Scientific Manuscript database

    Pulses contain folates in the form of reduced tetrahydrofolate which is the biologically active form absorbed in the jejunum. Genetic biofortification potential of US-grown lentils (Lens culinaris L.) with the bioavailable form of folate has not been widely studied. The objectives of this study wer...

  10. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  11. Genetic defects in folate and cobalamin pathways affecting the brain.

    PubMed

    Kirsch, Susanne H; Herrmann, Wolfgang; Obeid, Rima

    2013-01-01

    Folate and cobalamin are necessary for early brain development and function. Deficiency of folate or cobalamin during pregnancy can cause severe malformation in the central nervous system such as neural tube defects. After birth, folate and cobalamin deficiency can cause anemia, failure to thrive, recurrent infections, psychiatric and neurological symptoms. The folate and the homocysteine metabolic pathways interact at a central step where 5-methyltetrahydrofolate donates its methyl group to homocysteine to produce methionine and tetrahydrofolate. Methyl cobalamin and folate interact at this critical step. Both nutrients have a crucial role in DNA synthesis and in delivering S-adenosylmethionine, the universal methyl donor. Severe and mild inherited disorders in folate and cobalamin pathways have been described. The two groups of disorders share some similarities, but differ in the molecular mechanism, metabolic dysregulation, and disease management. This review summarizes selected disorders, including rare and common mutations that affect folate and cobalamin absorption, transport, or dependent enzymes. When the mutations are discovered early enough, many of the described disorders are easily treatable by B vitamin supplementation, which often prevents or reverses the manifestation of the disease. Therefore, the screening for mutations is recommended and should be carried out as early as possible: after occurrence of the first symptoms or when a certain constellations of the folate and cobalamin related markers are measured, such as elevated homocysteine and/or methylmalonic acid.

  12. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  13. Characterisation of exogenous folate transport in Plasmodium falciparum.

    PubMed

    Wang, Ping; Wang, Qi; Sims, Paul F G; Hyde, John E

    2007-07-01

    Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5-7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H(+) ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters.

  14. Clinical utility of folate-containing oral contraceptives

    PubMed Central

    Lassi, Zohra S; Bhutta, Zulfiqar A

    2012-01-01

    Folate is a generic term for a water-soluble B-complex vitamin which plays an important role in protein synthesis and metabolism and other processes related to cell multiplication and tissue growth. Pregnant and lactating women are at increased risk of folic acid deficiency because generally their dietary folate is insufficient to meet their physiological requirements and the metabolic demands of the growing fetus. The evidence pertaining to the reduction of the risk of neural tube defects (NTDs) due to folate is so compelling that supplementation with 400 μg of folic acid to all women trying to conceive until 12 weeks of pregnancy has been recommended by every relevant authority. A recent Cochrane review has also found protective effects of folate supplementation in occurrence and reoccurrence of NTDs. Despite food fortification and targeted public health campaigns promoting folic acid supplementation, 4,300,000 new cases occur each year worldwide resulting in an estimated 41,000 deaths and 2.3 million disability-adjusted life years (DALYS). This article will review the burden and risk factors of NTDS, and the role of folate in preventing NTDs. It will also describe different modes of supplementing folate and the newer evidence of the effectiveness of adding folate in oral contraceptives for raising serum and red blood cell folate levels. PMID:22570577

  15. Neural tube defects: pathogenesis and folate metabolism.

    PubMed

    Pulikkunnel, Scaria T; Thomas, S V

    2005-02-01

    Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex aetio-pathogenesis. Animal studies indicate that there may be four sites of initiation of neural tube closure (NTC). Selective involvement of these sites may lead to defects varying from anencephaly to spina bifida. The NTC involves formation of medial and dorsolateral hinge points, convergent extension and a zipper release process. Proliferation and migration of neuroectodermal cells and its morphological changes brought about by microfilaments and other cytoskeletal proteins mediate NTC. Genetic, nutritional and teratogenic mechanisms have been implicated in the pathogenesis of NTDs. Folate is an important component in one carbon metabolism that provides active moieties for synthesis of nucleic acids and proteins. Several gene defects affecting enzymes and proteins involved in transport and metabolism of folate have been associated with NTDs. It may be possible in future, to identify individuals at higher risk of NTDs by genetic studies. Epidemiological and clinical studies have shown that dietary supplementation or food fortification with folic acid would reduce the incidence of NTDs. The protective effect of folic acid may be by overcoming these metabolic blocks through unidentified mechanisms. Genetic and biochemical studies on foetal cells may supplement currently available prenatal tests to diagnose NTDs. Antiepileptic drugs (AEDs), particularly valproate and carbamazepine have been shown to increase the risk of NTDs by possibly increasing the oxidative stress and deranging the folate metabolism. Accordingly, it is recommended that all women taking AEDs may use 1-5 mg folic acid daily in the pre conception period and through pregnancy.

  16. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  17. Folate intake, serum folate levels and esophageal cancer risk: an overall and dose-response meta-analysis.

    PubMed

    Zhao, Yan; Guo, Chenyang; Hu, Hongtao; Zheng, Lin; Ma, Junli; Jiang, Li; Zhao, Erjiang; Li, Hailiang

    2017-02-07

    Previously reported findings on the association between folate intake or serum folate levels and esophageal cancer risk have been inconsistent. This study aims to summarize the evidence regarding these relationships using a dose-response meta-analysis approach. We performed electronic searches of the Pubmed, Medline and Cochrane Library electronic databases to identify studies examining the effect of folate on the risk of esophageal cancer. Ultimately, 19 studies were included in the meta-analysis. Summary odds ratios (ORs) were estimated using a random effects model. A linear regression analysis of the natural logarithm of the OR was carried out to assess the possible dose-response relationship between folate intake and esophageal cancer risk. The pooled ORs for esophageal cancer in the highest vs. lowest levels of dietary folate intake and serum folate were 0.63 (95% CI: 0.56-0.71) and 0.71 (95% CI: 0.55-0.92), respectively. The dose-response meta-analysis indicated that a 100 μg/day increment in dietary folate intake reduced the estimate risk of esophageal cancer by 12%. These findings suggest that dietary and serum folate exert a protective effect against esophageal carcinogenesis.

  18. Complex interaction between serum folate levels and genetic polymorphisms in folate pathway genes: biomarkers of prostate cancer aggressiveness.

    PubMed

    Jackson, Maria D; Tulloch-Reid, Marshall K; McFarlane-Anderson, Norma; Watson, Alexis; Seers, Vestra; Bennett, Franklyn I; Egleston, Brian; Ragin, Camille

    2013-03-01

    Little is known about the role of folate and polymorphisms associated with folate metabolism on prostate cancer risk in populations of African origin. We examined the relationship between serum folate and prostate cancer and whether any association was modified by genetic polymorphisms for folate metabolism. The study was case-control in design and consisted of 218 men 40-80 years old with newly diagnosed, histologically confirmed prostate cancer and 236 cancer-free men attending the same urology clinics in Jamaica, March 2005-July 2007. Serum folate was measured by an immunoassay method and genomic DNA evaluated for MTHR (C677T and A1298C), MTRR A66G, and MTR A2756G polymorphisms. Mean serum folate concentration was higher among cases (12.3 ± 4.1 nmol/L) than controls (9.7 ± 4.2 nmol/L). Serum folate concentration showed a positive association with prostate cancer (OR, 4.41; CI, 2.52-7.72 per 10 nmol/L) regardless of grade. No interactions were observed between genotype and folate concentration, but a weak gene effect was observed for MTHFR A1298C and low-grade prostate cancer. Larger studies to investigate the role of gene-gene/gene-diet interactions in Black men are needed.

  19. Assessing the Association between Natural Food Folate Intake and Blood Folate Concentrations: A Systematic Review and Bayesian Meta-Analysis of Trials and Observational Studies

    PubMed Central

    Marchetta, Claire M.; Devine, Owen J.; Crider, Krista S.; Tsang, Becky L.; Cordero, Amy M.; Qi, Yan Ping; Guo, Jing; Berry, Robert J.; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C.

    2015-01-01

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992–3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12–49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ≥450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births. PMID:25867949

  20. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit

    USDA-ARS?s Scientific Manuscript database

    Little is known about how plants regulate their folate content, including whether the expression of folate biosynthesis genes is orchestrated during development or modulated by folate levels. Nor is much known about how folate levels impact the expression of other genes. These points were addressed ...

  1. Impact of methylenetetrahydrofolate reductase polymorphisms and folate intake on the risk of gastric cancer and their association with Helicobacter pylori infection and tumor site.

    PubMed

    Chen, J; Yuan, L; Duan, Y Q; Jiang, J Q; Zhang, R; Huang, Z J; Xiao, X R

    2014-01-24

    Folic acid and methylenetetrahydrofolate reductase (MTHFR) may both affect the development of human cancer. We conducted a population-based case-control study in a Chinese population to investigate the potential role of folate intake and MTHFR gene polymorphisms in gastric cancer, and their interaction with infection by Helicobacter pylori and tumor location. A total of 767 patients with newly diagnosed gastric cancer and 775 controls were selected for this study. Genotyping of MTHFR C677T and A1298C was conducted by TaqMan assays using the ABI Prism 7911HT Sequence Detection System, and information on folate intake was collected by questionnaire. Compared with the CC genotype of MTHFR C677T, the TT genotype was significantly associated with a decreased risk of gastric cancer when the analysis was adjusted for other potential risk factors. We found a marginal significantly decreased risk of gastric cancer for individuals carrying the T allele [adjusted odds ratio (OR) = 0.83; 95% confidence interval (CI) = 0.65-1.01]. We detected an inverse relationship between folate intake and risk of gastric cancer, and the adjusted ORs (95%CI) for moderate and high folate intake were 0.97 (0.74-1.25) and 0.64 (0.49-0.87), respectively. Moreover, H. pylori infection, folate intake, and location of the tumor showed a significant interaction with the MTHFR C677T polymorphism. Our study suggests a protective role of MTHFR 677TT and high folate intake against gastric cancer, and the effect of the MTHFR C677T genotype may differ by H. pylori infection, folate consumption, and tumor site.

  2. Relative and biomarker-based validity of a food frequency questionnaire that measures the intakes of vitamin B(12), folate, iron, and zinc in young women.

    PubMed

    Fayet, Flavia; Flood, Victoria; Petocz, Peter; Samman, Samir

    2011-01-01

    Folate, vitamin B(12), iron, and zinc are particularly important nutrients for women of childbearing age. We tested the hypothesis that an electronic, 235-item, semiquantitative food frequency questionnaire (FFQ) is a valid measure of dietary intake when compared with repeat dietary 24-hour recalls. Biomarkers of folate, vitamin B(12), iron, and zinc were determined because their measurement errors are unrelated to errors in dietary questionnaires. Female adults (N = 256) aged 18 to 35 years completed the FFQ, and a representative subset (n = 53) completed repeat dietary 24-hour recalls. The FFQ estimates (mean ± SD) were 315 ± 132 μg for folate, 3.1 ± 2.1 μg for vitamin B(12), 15.4 ± 5.6 mg for iron, and 15.1 ± 6.4 mg for zinc. The percentage of women classified within the same ±1 quartile for energy intake by the 2 methods was 77.3%. There was moderate agreement between the 2 dietary methods, and no systematic bias was noted for energy, folate, vitamin B(12), and zinc. The deattenuated energy-adjusted correlation coefficients ranged from 0.41 (dietary folate equivalents) to 0.60 (folate). Significant correlations between biomarker and nutrient intakes were found for folate (r = 0.37, P < .01) and vitamin B(12) (r = 0.27, P < .01). The electronic FFQ developed in the present study is a relatively valid tool that was able to adequately assess and rank individuals according to their nutrient intakes.

  3. Correspondence of folate dietary intake and biomarker data.

    PubMed

    Bailey, Regan L; Fulgoni, Victor L; Taylor, Christine L; Pfeiffer, Christine M; Thuppal, Sowmyanarayanan V; McCabe, George P; Yetley, Elizabeth A

    2017-06-01

    Background: Public health concerns with regard to both low and high folate status exist in the United States. Recent publications have questioned the utility of self-reported dietary intake data in research and monitoring.Objectives: The purpose of this analysis was to examine the relation between self-reported folate intakes and folate status biomarkers and to evaluate their usefulness for several types of applications.Design: We examined usual dietary intakes of folate by using the National Cancer Institute method to adjust two 24-h dietary recalls (including dietary supplements) for within-person variation and then compared these intakes with serum and red blood cell (RBC) folate among 4878 men and nonpregnant, nonlactating women aged ≥19 y in NHANES 2011-2012, a nationally representative, cross-sectional survey, with respect to consistency across prevalence estimates and rank order comparisons.Results: There was a very low prevalence (<1%) of folate deficiency when serum (<7 nmol/L) and RBC (<305 nmol/L) folate were considered, whereas a higher proportion of the population reported inadequate total dietary folate intakes (6%). Similar patterns of change occurred between intakes and biomarkers of folate status when distributions were examined (i.e., dose response), particularly when diet was expressed in μg. Intakes greater than the Tolerable Upper Intake Level greatly increased the odds of having high serum folate (OR: 17.6; 95% CI: 5.5, 56.0).Conclusions: When assessing folate status in the United States, where fortification and supplement use are common, similar patterns in the distributions of diet and biomarkers suggest that these 2 types of status indicators reflect the same underlying folate status; however, the higher prevalence estimates for inadequate intakes compared with biomarkers suggest, among other factors, a systematic underestimation bias in intake data. Caution is needed in the use of dietary folate data to estimate the prevalence of

  4. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  5. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  6. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing.

  7. Potential role of folate in pre-eclampsia.

    PubMed

    Singh, Mansi Dass; Thomas, Philip; Owens, Julie; Hague, William; Fenech, Michael

    2015-10-01

    Dietary deficiencies of folate and other B vitamin cofactors involved in one-carbon metabolism, together with genetic polymorphisms in key folate-methionine metabolic pathway enzymes, are associated with increases in circulating plasma homocysteine, reduction in DNA methylation patterns, and genome instability events. All of these biomarkers have also been associated with pre-eclampsia. The aim of this review was to explore the literature and identify potential knowledge gaps in relation to the role of folate at the genomic level in either the etiology or the prevention of pre-eclampsia. A systematic search strategy was designed to identify citations in electronic databases for the following terms: folic acid supplementation AND pre-eclampsia, folic acid supplementation AND genome stability, folate AND genome stability AND pre-eclampsia, folic acid supplementation AND DNA methylation, and folate AND DNA methylation AND pre-eclampsia. Forty-three articles were selected according to predefined selection criteria. The studies included in the present review were not homogeneous, which made pooled analysis of the data very difficult. The present review highlights associations between folate deficiency and certain biomarkers observed in various tissues of women at risk of pre-eclampsia. Further investigation is required to understand the role of folate in either the etiology or the prevention of pre-eclampsia. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. [Serum homocysteine, folate and vitamin B12 in venezuelan elderly].

    PubMed

    Meertens, Lesbia; Díaz, Nayka; Solano, Liseti; Baron, Maria Adela; Rodríguez, Adelmo

    2007-03-01

    The anatomical and physiological changes of aging make elderly people a vulnerable group to malnutrition and specific deficiencies of nutrients such as vitamin B12 and folate. This study was aimed to establish relationships among serum vitamin B12, folate, homocysteine concentrations and dietary intake and adequacy. Fifty five male and female elderly (60 and more years), free-living, were assessed. Measurements were: serum vitamin B12 and folate by radioimmunoanalysis (RIA), homocysteine by polarized fluorescence immunoassay, nutrient intake by three 24 hours recalls and food frequency questionnaire. Nutritional status was determined by Body Mass Index (BMI). Serum vitamin B12 and folate were at normal range (423,3+/-227,6 pmol/l and 6,4 +/- 4,5 mg/ml), but 17,5% of elderly had B12 deficiency and 12% had folate deficiency. Serum homocysteine was higher than reference values (15,8+/-4,4 mmol/l), but 47,5% showed concentrations above 15 mmol/L, male population showed higher mean value (p: 0,01). Nutrient intake was inadequate by deficiency. BMI indicated 11,8% of undernutrition, 29,4% of overweight and 20,6% of obesity A negative and inverse correlation between homocysteine and serum folate was found. Results suggest a biochemical deficiency of B12 and folate that is expressed as elevated homocysteine levels. These finding represent a high cardiovascular risk factor for this elderly group.

  9. Effects of alcohol on folate metabolism: implications for carcinogenesis.

    PubMed

    Mason, Joel B; Choi, Sang-Woon

    2005-04-01

    Epidemiologic observations implicate excess ethanol ingestion as well as low dietary folate intake as risk factors for several cancers. Moreover, the epidemiologic observations support the concept of a synergistic effect between these two factors. Such a relation is biologically plausible because ethanol impedes the bioavailability of dietary folate and is known to inhibit select folate-dependent biochemical reactions. For example, alcohol ingestion in animals is known to inhibit folate-mediated methionine synthesis and thereby may interrupt critical methylation processes that are mediated by the activated form of methionine that provides substrate for biologic methylation, S-adenosylmethionine. Consistent with this observed inhibition of methionine synthesis is the observation that chronic alcohol ingestion in laboratory animals is known to produce hypomethylation of DNA in the colonic mucosa, a constant feature of early colorectal neoplasia. Inhibition of methionine synthase also creates a "methylfolate trap," analogous to what occurs in vitamin B12 deficiency. In addition, some evidence indicates that alcohol may redirect the utilization of folate toward serine synthesis and thereby may interfere with a critical function of methylenetetrahydrofolate, thymidine synthesis. Although a mechanistic link between alcohol and impaired folate metabolism in the genesis of cancer is still not definitively established, such a link should be pursued in future studies because of the intimate metabolic relation between alcohol and folate metabolism.

  10. Depleted Uranium: Technical Brief

    EPA Pesticide Factsheets

    This technical brief provides accepted data and references to additional sources for radiological and chemical characteristics, health risks and references for both the monitoring and measurement, and applicable treatment techniques for depleted uranium.

  11. Battery depletion monitor

    SciTech Connect

    Lee, Y.S.

    1982-01-26

    A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

  12. Addressing Ozone Layer Depletion

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  13. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Storozhenko, Sergei; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique

    2013-11-01

    Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes.

  14. Natural variation of folate content and composition in spinach (Spinacia oleracea) germplasm.

    PubMed

    Shohag, M J I; Wei, Yan-yan; Yu, Ning; Zhang, Jie; Wang, Kai; Patring, Johan; He, Zhen-li; Yang, Xiao-e

    2011-12-14

    Breeding to increase folate levels in edible parts of plants, termed folate biofortification, is an economical approach to fight against folate deficiency in humans, especially in the developing world. Germplasm with elevated folates are a useful genetic source for both breeding and direct use. Spinach is one of the well-know vegetables that contains a relatively high amount of folate. Currently, little is known about how much folate, and their composition varies in different spinach accessions. The aim of this study was to investigate natural variation in the folate content and composition of spinach genotypes grown under controlled environmental conditions. The folate content and composition in 67 spinach accessions were collected from the United States Department of Agriculture (USDA) and Asian Vegetable Research and Development Center (AVRDC) germplasm collections according to their origin, grown under control conditions to screen for natural diversity. Folates were extracted by a monoenzyme treatment and analyzed by a validated liquid chromatography (LC) method. The total folate content ranged from 54.1 to 173.2 μg/100 g of fresh weight, with 3.2-fold variation, and was accession-dependent. Four spinach accessions (PI 499372, NSL 6095, PI 261787, and TOT7337-B) have been identified as enriched folate content over 150 μg/100 g of fresh weight. The folate forms found were H(4)-folate, 5-CH(3)-H(4)-folate, and 5-HCO-H(4)-folate, and 10-CHO-folic acid also varied among different accessions and was responsible for variation in the total folate content. The major folate vitamer was represented by 5-CH(3)-H(4)-folate, which on average accounted for up to 52% of the total folate pool. The large variation in the total folate content and composition in diverse spinach accessions demonstrates the great genetic potential of diverse genotypes to be exploited by plant breeders.

  15. Folate Receptor-α (FOLR1) Expression and Function in Triple Negative Tumors

    PubMed Central

    Necela, Brian M.; Crozier, Jennifer A.; Andorfer, Cathy A.; Lewis-Tuffin, Laura; Kachergus, Jennifer M.; Geiger, Xochiquetzal J.; Kalari, Krishna R.; Serie, Daniel J.; Sun, Zhifu; Aspita, Alvaro Moreno; O’Shannessy, Daniel J.; Maltzman, Julia D.; McCullough, Ann E.; Pockaj, Barbara A.; Cunliffe, Heather E.; Ballman, Karla V.; Thompson, E. Aubrey; Perez, Edith A.

    2015-01-01

    Folate receptor alpha (FOLR1) has been identified as a potential prognostic and therapeutic target in a number of cancers. A correlation has been shown between intense overexpression of FOLR1 in breast tumors and poor prognosis, yet there is limited examination of the distribution of FOLR1 across clinically relevant breast cancer subtypes. To explore this further, we used RNA-seq data from multiple patient cohorts to analyze the distribution of FOLR1 mRNA across breast cancer subtypes comprised of estrogen receptor positive (ER+), human epidermal growth factor receptor positive (HER2+), and triple negative (TNBC) tumors. FOLR1 expression varied within breast tumor subtypes; triple negative/basal tumors were significantly associated with increased expression of FOLR1 mRNA, compared to ER+ and HER2+ tumors. However, subsets of high level FOLR1 expressing tumors were observed in all clinical subtypes. These observations were supported by immunohistochemical analysis of tissue microarrays, with the largest number of 3+ positive tumors and highest H-scores of any subtype represented by triple negatives, and lowest by ER+ tumors. FOLR1 expression did not correlate to common clinicopathological parameters such as tumor stage and nodal status. To delineate the importance of FOLR1 overexpression in triple negative cancers, RNA-interference was used to deplete FOLR1 in overexpressing triple negative cell breast lines. Loss of FOLR1 resulted in growth inhibition, whereas FOLR1 overexpression promoted folate uptake and growth advantage in low folate conditions. Taken together, our data suggests patients with triple negative cancers expressing high FOLR1 expression represent an important population of patients that may benefit from targeted anti-FOLR1 therapy. This may prove particularly helpful for a large number of patients who would typically be classified as triple negative and who to this point have been left without any targeted treatment options. PMID:25816016

  16. Folate receptor-α (FOLR1) expression and function in triple negative tumors.

    PubMed

    Necela, Brian M; Crozier, Jennifer A; Andorfer, Cathy A; Lewis-Tuffin, Laura; Kachergus, Jennifer M; Geiger, Xochiquetzal J; Kalari, Krishna R; Serie, Daniel J; Sun, Zhifu; Moreno-Aspitia, Alvaro; Aspita, Alvaro Moreno; O'Shannessy, Daniel J; Maltzman, Julia D; McCullough, Ann E; Pockaj, Barbara A; Cunliffe, Heather E; Ballman, Karla V; Thompson, E Aubrey; Perez, Edith A

    2015-01-01

    Folate receptor alpha (FOLR1) has been identified as a potential prognostic and therapeutic target in a number of cancers. A correlation has been shown between intense overexpression of FOLR1 in breast tumors and poor prognosis, yet there is limited examination of the distribution of FOLR1 across clinically relevant breast cancer subtypes. To explore this further, we used RNA-seq data from multiple patient cohorts to analyze the distribution of FOLR1 mRNA across breast cancer subtypes comprised of estrogen receptor positive (ER+), human epidermal growth factor receptor positive (HER2+), and triple negative (TNBC) tumors. FOLR1 expression varied within breast tumor subtypes; triple negative/basal tumors were significantly associated with increased expression of FOLR1 mRNA, compared to ER+ and HER2+ tumors. However, subsets of high level FOLR1 expressing tumors were observed in all clinical subtypes. These observations were supported by immunohistochemical analysis of tissue microarrays, with the largest number of 3+ positive tumors and highest H-scores of any subtype represented by triple negatives, and lowest by ER+ tumors. FOLR1 expression did not correlate to common clinicopathological parameters such as tumor stage and nodal status. To delineate the importance of FOLR1 overexpression in triple negative cancers, RNA-interference was used to deplete FOLR1 in overexpressing triple negative cell breast lines. Loss of FOLR1 resulted in growth inhibition, whereas FOLR1 overexpression promoted folate uptake and growth advantage in low folate conditions. Taken together, our data suggests patients with triple negative cancers expressing high FOLR1 expression represent an important population of patients that may benefit from targeted anti-FOLR1 therapy. This may prove particularly helpful for a large number of patients who would typically be classified as triple negative and who to this point have been left without any targeted treatment options.

  17. Synthesis and Preclinical Evaluation of Folate-NOTA-Al(18)F for PET Imaging of Folate-Receptor-Positive Tumors.

    PubMed

    Chen, Qingshou; Meng, Xiangjun; McQuade, Paul; Rubins, Daniel; Lin, Shu-An; Zeng, Zhizhen; Haley, Hyking; Miller, Patricia; González Trotter, Dinko; Low, Philip S

    2016-05-02

    Folate-receptor-targeted PET radiotracers can potentially serve as versatile imaging agents for the diagnosis, staging, and prediction of response to therapy of patients with folate-receptor (FR)-expressing cancers. Because current FR-targeted PET reagents can be compromised by complex labeling procedures, low specific activities, poor radiochemical yields, or unwanted accumulation in FR negative tissues, we have undertaken to design an improved folate-PET agent that might be more amenable for clinical development. For this purpose, we have synthesized a folate-NOTA-Al(18)F radiotracer and examined its properties both in vitro and in vivo. Radiochemical synthesis of folate-NOTA-Al(18)F was achieved by incubating (18)F(-) with AlCl3 for 2 min followed by heating in the presence of folate-NOTA for 15 min at 100 °C. Binding of folate-NOTA-Al(18)F to FR was quantitated in homogenates of KB and Cal51 tumor xenografts in the presence and absence of excess folic acid as a competitor. In vivo imaging was performed on nu/nu mice bearing either FR+ve (KB cell) or FR-ve (A549 cell) tumor xenografts, and specific accumulation of the radiotracer in tumor and other tissues was assessed by high-resolution micro-PET and ex vivo biodistribution in the presence and absence of excess folic acid. Image quality of folate-NOTA-Al(18)F was compared with that of (99m)Tc-EC20, a clinically established folate-targeted SPECT imaging agent. Total radiochemical synthesis and purification of folate-NOTA-Al(18)F was completed within 37 min, yielding a specific activity of 68.82 ± 18.5 GBq/μmol, radiochemical yield of 18.6 ± 4.5%, and radiochemical purity of 98.3 ± 2.9%. Analysis of FR binding revealed a Kd of ∼1.0 nM, and micro-PET imaging together with ex vivo biodistribution analyses demonstrated high FR-mediated uptake in an FR+ tumor and the kidneys. Folate-NOTA-Al(18)F constitutes an easily prepared FR-targeted PET imaging agent with improved radiopharmaceutical properties and high

  18. [Folate and iron in fertile age women from a Venezuelan community affected by incidence of neural tube defects].

    PubMed

    Mariela, Montilva; Jham, Papale; Nieves, García-Casal María; Yelitza, Berné; Yudith, Ontiveros; Lourdes, Durán

    2010-06-01

    The objective of this transversal study was to determine folate and iron nutritional status of women in fertile age from Municipio Jiménez, Lara State, Venezuela. The sampling was probabilistic by conglomerates from the urban and rural areas, selecting 15 conglomerates from which women between 12 and 45 years (269), were studied. After signing informed consent, participating were interviewed for personal data, antecedents related to folate and iron, socioeconomic data (Graffar-Mendez Castellano method and unsatisfied basic needs). In blood sample was determined Hemoglobin, and Erythrocytic Folate (FE). Serum was obtained to determine Ferritin and Serum Folate (FS). 53.53% of the sample presented low FS levels, 10.78% were FS deficient. Severe FE deficiency was present in 80.7% of the cases, moderate deficiency affected 5.9%. For both tests, median was higher for women in treatment with Acido Fólico or pregnant (p = 0.000), median for FE was higher for adults (p = 0.001) and in non poor women (p = 0.011). There were no significant differences for coffee, alcohol, anticonceptive consumption, urban or rural resident or socioeconomic strata. The prevalence of anemia was 11.2% being significantly more frequent in adults than in adolescents (p = 0.029) and in urban women (p = 0.042). Low ferritin were found in 37.3% of the sample, the effect of different variables was not statistically significant. In conclusion, there is a high prevalence of iron and folate deficiencies in women of fertile age from Municipio Jiménez, which could constitute a conditioning factor for the appearance of neural tube defects.

  19. Serum folate and homocysteine and the incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study.

    PubMed

    Voutilainen, Sari; Virtanen, Jyrki K; Rissanen, Tiina H; Alfthan, Georg; Laukkanen, Jari; Nyyssönen, Kristiina; Mursu, Jaakko; Valkonen, Veli-Pekka; Tuomainen, Tomi-Pekka; Kaplan, George A; Salonen, Jukka T

    2004-08-01

    Several, but not all, prospective studies have shown that low folate intakes, low circulating folate concentrations, or high plasma total homocysteine (tHcy) concentrations are associated with an increased risk of coronary artery disease (CAD). We examined the relations of both serum folate and serum tHcy concentrations with acute coronary events in middle-aged men from eastern Finland who had no CAD at baseline. In a population-based prospective cohort study, 1027 men aged 46-64 y were examined in 1991-1993 as part of the Kuopio Ischaemic Heart Disease Risk Factor Study. During an average follow-up of 7.7 y (7900 person-years of follow-up), 114 acute coronary events were observed in 61 men who had no previous history of CAD (n = 810). In a Cox model, compared with men whose serum folate concentrations were in the lowest tertile, those whose concentrations were in the highest tertile had a risk factor-adjusted relative risk of acute coronary events of 0.35 (95% CI: 0.17, 0.73; P = 0.005). Serum tHcy concentrations were not significantly associated with the risk of acute coronary events (for the highest tertile compared with the lowest, adjusted relative risk = 1.03; 95% CI: 0.57, 1.87; P = 0.932). The results of this prospective cohort study do not support the hypothesis that a high circulating tHcy concentration is a risk factor for acute coronary events in a male population free of prior heart disease. However, they do suggest that moderate-to-high serum folate concentrations are associated with a greatly reduced incidence of acute coronary events.

  20. Dietary habits, nutrient intake and biomarkers for folate, vitamin D, iodine and iron status among women of childbearing age in Sweden

    PubMed Central

    Becker, Wulf; Lindroos, Anna Karin; Nälsén, Cecilia; Warensjö Lemming, Eva; Öhrvik, Veronica

    2016-01-01

    Background Dietary intake and nutritional status are important for pregnancy and pregnancy outcomes. Dietary advice on folate, targeted to women of childbearing age, aims at preventing neural tube defects in the offspring. Aim To describe food and nutrient intake and nutritional status among women of childbearing age in Sweden in relation to current nutrition recommendations. Methods Dietary intake was assessed using a web-based four-day consecutive food record among adults aged 18–80 years—‘Riksmaten 2010–11 adults’. In a subsample, biomarkers of folate, vitamin D, iodine, and iron status were assessed. Results Women of childbearing age had lower intakes of fruit and vegetables, fish, and whole grains, but higher intakes of soft drinks. Macronutrient composition was generally in line with the Nordic Nutrition Recommendations, except for a lower intake of fibre, a higher intake of saturated fatty acids, and added sugars. Mean intakes of vitamin D, folate, and iron were below recommended intakes (RI). Median urinary iodine concentration (UIC) was 74 μg/L, 20% had insufficient vitamin D status, and 3% low folate concentrations with no age differences. Furthermore, 29% of women 18–44 years of age had depleted iron stores. Conclusions The dietary pattern among women of childbearing age (18–44 years) was less favourable compared to older women. Intakes of some micronutrients were below RI, but no differences in vitamin D, folate, or iodine status between age groups were observed. However, improvements of folate and iodine status among women of childbearing age are warranted. This can be achieved by following dietary guidelines including use of folic acid-containing supplements. PMID:27560303

  1. Dietary folate and APC mutations in sporadic colorectal cancer.

    PubMed

    de Vogel, Stefan; van Engeland, Manon; Lüchtenborg, Margreet; de Bruïne, Adriaan P; Roemen, Guido M J M; Lentjes, Marjolein H F M; Goldbohm, R Alexandra; van den Brandt, Piet A; de Goeij, Anton F P M; Weijenberg, Matty P

    2006-12-01

    Folate deficiency has been associated with colorectal cancer risk and may be involved in colorectal carcinogenesis through increased chromosome instability, gene mutations, and aberrant DNA methylation. Within the Netherlands Cohort Study on diet and cancer, we investigated the associations between dietary folate intake and colorectal cancer risk with (APC(+)) and without (APC(-)) truncating APC mutations, accounting for hMLH1 expression and K-ras mutations. In total, 528 cases and 4200 subcohort members were available for data analyses of the study cohort (n = 120,852) from a follow-up period between 2.3 and 7.3 y after baseline. Adjusted gender-specific incidence rate ratios (RR) over tertiles of folate intake were calculated in case-cohort analyses for colon and rectal cancer. Although relatively high folate intake was not associated with overall colorectal cancer risk, it reduced the risk of APC(-)colon tumors in men (RR 0.58, 95% CI 0.32-1.05, P(trend) = 0.06 for the highest vs. lowest tertile of folate intake). In contrast, it was positively associated with APC(+) colon tumors in men (highest vs. lowest tertile: RR 2.77, 95% CI 1.29-5.95, P(trend) = 0.008) and was even stronger when the lack of hMLH1 expression and K-ras mutations were excluded (RR 3.99, 95% CI 1.43-11.14, P(trend) = 0.007). Such positive associations were not observed among women; nor was folate intake associated with rectal cancer when APC mutation status was taken into account. Relatively high folate consumption reduced the risk of APC(-) colon tumors, but folate intake was positively associated with APC(+) colon tumors among men. These opposite results may indicate that folate enhances colorectal carcinogenesis through a distinct APC mutated pathway.

  2. Folate during reproduction: the Canadian experience with folic acid fortification

    PubMed Central

    Lindzon, Gillian

    2007-01-01

    Folate has received international attention regarding its role in the risk-reduction of birth defects, specifically neural tube defects (NTDs). In 1998, health officials in Canada, like the United States, mandated the addition of folic acid to white flour and select grain products to increase the folate intake of reproductive-aged women. Subsequent to this initiative there has been an increase in blood folate concentrations in Canada and a 50% reduction in NTDs. Many countries, including Korea, have not mandated folic acid fortification of their food supply. Reasons vary but often include concern over the masking of vitamin B12 deficiency, a belief that folate intakes among womenare adequate, low priority relative to other domestic issues, and the philosophy that individuals have the right not to consume supplemental folic acid if they so choose. Prior to folic acid fortification of the food supply in Canada, the folate intakes of women were low, and their blood folate concentrations while not sufficiently low to produce overt signs of folate deficiency (eg. anemia) were inconsistent with a level known to reduce the risk of an NTD-affected pregnancy. The purpose of this article is to describe the role of folate during the periconceptional period, pregnancy, and during lactation. The rationale for, and history of recommending folic acid-containing supplements during the periconceptional period and pregnancy is described as is folic acid fortification of the food supply. The impact of folic acid fortification in Canada is discussed, and unresolved issues associated with this policy described. While the incidence of NTDs in Canada pre-folic acid fortification were seemingly higherthan that of Korea today, blood folate levels of Korean women are strikingly similar. We will briefly explore these parallels in an attempt to understand whether folic acid fortification of the food supply in Korea might be worth consideration PMID:20368933

  3. Red cell or serum folate: what to do in clinical practice?

    PubMed

    Farrell, Christopher-John L; Kirsch, Susanne H; Herrmann, Markus

    2013-03-01

    Folate deficiency has been linked to diverse clinical manifestations and despite the importance of accurate assessment of folate status, the best test for routine use is uncertain. Both serum and red cell folate assays are widely available in clinical laboratories; however, red cell folate is the more time-consuming and costly test. This review sought to evaluate whether the red cell assay demonstrated superior performance characteristics to justify these disadvantages. Red cell folate, but not serum folate, measurements demonstrated analytical variation due to sample pre-treatment parameters, oxygen saturation of haemoglobin and haematocrit. Neither marker was clearly superior in characterising deficiency but serum folate more frequently showed the higher correlation with homocysteine, a sensitive marker of deficiency. Similarly, both serum and red cell folate were shown to increase in response to folic acid supplementation. However, serum folate generally gave the greater response and was able to distinguish different supplementation doses. The C677T polymorphism of methylenetetrahydrofolate reductase alters the distribution of folate forms in red cells and may thereby cause further analytical variability in routine red cell folate assays. Overall, serum folate is cheaper and faster to perform than red cell folate, is influenced by fewer analytical variables and provides an assessment of folate status that may be superior to red cell folate.

  4. Synthesis and biological assessment of folate-accepted developer (99m)Tc-DTPA-folate-polymer.

    PubMed

    Chen, Fei; Shao, Kejing; Zhu, Bao; Jiang, Mengjun

    2016-05-15

    A novel cancer-targetable folate-poly(2-hydroxyethyl methacrylate) (PFDH) copolymer containing DTPA segment was prepared by conventional chemical synthesis and labeled with (99m)Tc subsequently. The (99m)Tc-labled PFDH could be produced easily with high radiochemical yield of 91% and radiochemical purity of 95%. The LogP octanol-water value for the (99m)Tc-labled PFDH was -2.19 and the radiotracer was stable in phosphate-buffered saline and human serum for 2h (>95% in PBS or ∼90% in human serum). To investigate (99m)Tc-labled PFDH tumor targeting, the in vitro and in vivo stability, cell uptake, in vivo biodistribution, and SPECT imaging were evaluated, respectively. These preliminary results strongly suggest that the novel folate conjugated dendrimer maybe developed to be potential for delivery of therapeutic radionuclides.

  5. Population-Wide Folic Acid Fortification and Preterm Birth: Testing the Folate Depletion Hypothesis

    PubMed Central

    Auger, Nathalie

    2015-01-01

    Objectives. We assess whether population-wide folic acid fortification policies were followed by a reduction of preterm and early-term birth rates in Québec among women with short and optimal interpregnancy intervals. Methods. We extracted birth certificate data for 1.3 million births between 1981 and 2010 to compute age-adjusted preterm and early-term birth rates stratified by short and optimal interpregnancy intervals. We used Joinpoint regression to detect changes in the preterm and early term birth rates and assess whether these changes coincide with the implementation of population-wide folic acid fortification. Results. A change in the preterm birth rate occurred in 2000 among women with short (95% confidence interval [CI] = 1994, 2005) and optimal (95% CI = 1995, 2008) interpregnancy intervals. Changes in early term birth rates did not coincide with the implementation of folic acid fortification. Conclusions. Our results do not indicate a link between folic acid fortification and early term birth but suggest an improvement in preterm birth rates after implementation of a nationwide folic acid fortification program. PMID:25713974

  6. Intestinal folate binding protein (FBP) and folate absorption in the suckling rat

    SciTech Connect

    Mason, J.B.; Selhub, J.

    1986-03-01

    The folate in milk is bound to high affinity FBPs but it is unknown whether this binding affects intestinal transport of milk folate in the suckling rat. The authors examined the FBP activity of segments of the GI tract in fed and fasting states. Under fed conditions, the FBP activity in the mucosa of the stomach and proximal small intestine were similar (0.28 and 0.32 pMole folic acid binding/mg protein, N.S.). Both demonstrated less activity than the mucosa of the distal small intestine (1.31 pMole/mg protein, P < .001). A 6 hr fast produced no change in the FBP activity in the stomach or proximal small intestine but resulted in a 42% decrease in the distal small intestine (p < .01). Intestinal transport of unbound and FB-bound H/sup 3/pteryolmonoglutamate (H/sup 3/PGA) was examined in suckling rats by the intestinal loop model. Unbound H/sup 3/PGA demonstrated greater lumenal disappearance in the proximal segment of the small intestine compared to the distal segment (79% vs. 56%, P < .001) whereas the bound H/sup 3/PGA demonstrated greater lumenal disappearance in the distal segment (36% vs. 21%, p < .005). That porton of FBP activity in the distal small intestine that disappears with fasting may represent FBP absorbed from the lumen of the intestine. The FBP-bound folate in milk appears to be absorbed in the suckling rat by a mechanism that favors the distal small intestine and is different from the mechanism responsible for absorption of the unbound folate.

  7. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism.

    PubMed

    Wani, Nissar Ahmad; Kaur, Jyotdeep

    2011-03-01

    We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism.

  8. Nonflowering Plants Possess a Unique Folate-Dependent Phenylalanine Hydroxylase That Is Localized in Chloroplasts[W

    PubMed Central

    Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.

    2010-01-01

    Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559

  9. Quantification of isotope-labeled and unlabeled folates and folate catabolites in urine samples by stable isotope dilution assay.

    PubMed

    Büttner, Barbara E; Ohrvik, Veronica E; Köhler, Peter; Witthöft, Cornelia M; Rychlik, Michael

    2013-01-01

    Dual-label stable isotope dilution assays for the simultaneous quantification of isotopologic folates in clinical samples offer the perspective for differentiating between unlabeled folates from endogenous body pools and administered [13C5]-labeled folates from a test dose when performing bioavailability trials. In contrast to intact folates, this methodology could hitherto not be applied to the quantification of the folate catabolites, p-aminobenzoyl glutamate and p-acetamidobenzoyl glutamate. In this study, [2H4]-p-aminobenzoyl glutamate, [2H4]-p-acetamidobenzoyl glutamate, and unlabeled p-acetamidobenzoyl glutamate were synthesized. The synthesis of the [2H4]-labeled compounds started at unlabeled p-aminobenzoic acid. For the formation of p-acetamidobenzoyl glutamate, p-aminobenzoyl glutamate was acetylated. The new substances were applied successfully in stable isotope dilution assays for the simultaneous quantification of the [13C5]-labeled and unlabeled folate catabolites, p-aminobenzoyl glutamate and p-acetamidobenzoyl glutamate, along with the predominant folate vitamers in urine. The assays were based on clean-up by strong anion exchange followed by liquid chromatography-tandem mass spectrometry detection. Assay sensitivity was sufficient to detect the folate catabolites in physiologic concentrations. The limit of detection was below 0.4 and 0.3 nmol/100 g for p-aminobenzoyl glutamate isotopologues and p-acetamidobenzoyl glutamate isotopologues in urine, respectively. The successful synthesis of [2H4]-p-aminobenzoyl glutamate, [2H4]-p-acetamidobenzoyl glutamate, and unlabeled p-acetamidobenzoyl glutamate and the implementation of these substances in stable isotope dilution assays allows dual-label designs that provide a more detailed insight into human folate metabolism.

  10. Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.

    PubMed

    Niesser, Mareile; Demmelmair, Hans; Weith, Thea; Moretti, Diego; Rauh-Pfeiffer, Astrid; van Lipzig, Marola; Vaes, Wouter; Koletzko, Berthold; Peissner, Wolfgang

    2013-01-01

    Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics.

  11. Targeting folate receptor alpha for cancer treatment

    PubMed Central

    Josephs, Debra H.; Ilieva, Kristina M.; Pellizzari, Giulia; Opzoomer, James; Bloomfield, Jacinta; Fittall, Matthew; Grigoriadis, Anita; Figini, Mariangela; Canevari, Silvana; Spicer, James F.; Tutt, Andrew N.; Karagiannis, Sophia N.

    2016-01-01

    Promising targeted treatments and immunotherapy strategies in oncology and advancements in our understanding of molecular pathways that underpin cancer development have reignited interest in the tumor-associated antigen Folate Receptor alpha (FRα). FRα is a glycosylphosphatidylinositol (GPI)-anchored membrane protein. Its overexpression in tumors such as ovarian, breast and lung cancers, low and restricted distribution in normal tissues, alongside emerging insights into tumor-promoting functions and association of expression with patient prognosis, together render FRα an attractive therapeutic target. In this review, we summarize the role of FRα in cancer development, we consider FRα as a potential diagnostic and prognostic tool, and we discuss different targeted treatment approaches with a specific focus on monoclonal antibodies. Renewed attention to FRα may point to novel individualized treatment approaches to improve the clinical management of patient groups that do not adequately benefit from current conventional therapies. PMID:27248175

  12. Neural tube defects, folate, and immune modulation.

    PubMed

    Denny, Kerina J; Jeanes, Angela; Fathe, Kristin; Finnell, Richard H; Taylor, Stephen M; Woodruff, Trent M

    2013-09-01

    Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored.

  13. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival

    PubMed Central

    Ongaro, Alessia; De Mattei, Monica; Della Porta, Matteo Giovanni; Rigolin, GianMatteo; Ambrosio, Cristina; Di Raimondo, Francesco; Pellati, Agnese; Masieri, Federica Francesca; Caruso, Angelo; Catozzi, Linda; Gemmati, Donato

    2009-01-01

    Background The antifolate agent methotrexate is an important component of maintenance therapy in acute lymphoblastic leukemia, although methotrexate-related toxicity is often a reason for interruption of chemotherapy. Prediction of toxicity is difficult because of inter-individual variability susceptibility to antileukemic agents. Methotrexate interferes with folate metabolism leading to depletion of reduced folates. Design and Methods The aim of this study was to investigate the influence of polymorphisms for folate metabolizing enzymes with respect to toxicity and survival in adult patients with acute lymphoblastic leukemia treated with methotrexate maintenance therapy. To this purpose, we evaluated possible associations between genotype and hematologic and non-hematologic toxicity and effects on survival at 2 years of follow-up in patients with acute lymphoblastic leukemia. Results Polymorphisms in the genes encoding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and in dihydrofolate reductase (DHFR 19 bp deletion) significantly increased the risk of hepatotoxicity in single (odds ratio 5.23, 95% confidence interval 1.13–21.95 and odds ratio 4.57, 95% confidence interval 1.01–20.77, respectively) and in combined analysis (odds ratio 6.82, 95% confidence interval 1.38–33.59). MTHFR 677C>T also increased the risk of leukopenia and gastrointestinal toxicity, whilst thymidylate synthase 28 bp repeat polymorphism increased the risk of anemia (odds ratio 8.48, 95% confidence interval 2.00–36.09). Finally, patients with MTHFR 677TT had a decreased overall survival rate (hazard ratio 2.37, 95% confidence interval 1.46–8.45). Conclusions Genotyping of folate polymorphisms might be useful in adult acute lymphoblastic leukemia to optimize methotrexate therapy, reducing the associated toxicity with possible effects on survival. PMID:19648163

  14. Folate-Dependent Purine Nucleotide Biosynthesis in Humans1

    PubMed Central

    Baggott, Joseph E; Tamura, Tsunenobu

    2015-01-01

    Purine nucleotide biosynthesis de novo (PNB) requires 2 folate-dependent transformylases—5′-phosphoribosyl-glycinamide (GAR) and 5′-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR) transformylases—to introduce carbon 8 (C8) and carbon 2 (C2) into the purine ring. Both transformylases utilize 10-formyltetrahydrofolate (10-formyl-H4folate), where the formyl-carbon sources include ring-2-C of histidine, 3-C of serine, 2-C of glycine, and formate. Our findings in human studies indicate that glycine provides the carbon for GAR transformylase (exclusively C8), whereas histidine and formate are the predominant carbon sources for AICAR transformylase (C2). Contrary to the previous notion, these carbon sources may not supply a general 10-formyl-H4folate pool, which was believed to equally provide carbons to C8 and C2. To explain these phenomena, we postulate that GAR transformylase is in a complex with the trifunctional folate-metabolizing enzyme (TFM) and serine hydroxymethyltransferase to channel carbons of glycine and serine to C8. There is no evidence for channeling carbons of histidine and formate to AICAR transformylase (C2). GAR transformylase may require the TFM to furnish 10-formyl-H4folate immediately after its production from serine to protect its oxidation to 10-formyldihydrofolate (10-formyl-H2folate), whereas AICAR transformylase can utilize both 10-formyl-H2folate and 10-formyl-H4folate. Human liver may supply AICAR to AICAR transformylase in erythrocytes/erythroblasts. Incorporation of ring-2-C of histidine and formate into C2 of urinary uric acid presented a circadian rhythm with a peak in the morning, which corresponds to the maximum DNA synthesis in the bone marrow, and it may be useful in the timing of the administration of drugs that block PNB for the treatment of cancer and autoimmune disease. PMID:26374178

  15. Epigenetic Mechanisms of Folate Nutrition in Breast Cancer

    DTIC Science & Technology

    2011-04-01

    decrease the incidence of neural tube defects (NTDs). While this action was successful in lowering NTD incidence, recent epidemiological studies are...much easier to target folate and one carbon metabolism in different ways such as inhibiting key enzymes with either miRNA or drugs. This is the...4 1     Introduction: This training grant focuses on one carbon and folate metabolism and the effects of perturbing one

  16. Characterisation of exogenous folate transport in Plasmodium falciparum

    PubMed Central

    Wang, Ping; Wang, Qi; Sims, Paul F.G.; Hyde, John E.

    2007-01-01

    Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5–7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H+ ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters. PMID:17509698

  17. Epigenetic Mechanisms of Folate Nutrition in Breast Cancer

    DTIC Science & Technology

    2012-04-01

    unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be...10-1-0235 Epigenetic Mechanisms of Folate Nutrition in Breast Cancer Rebecca Lobo University of California, Davis Davis, CA 95618 The most...and MDA-MB-231 (human) and Met1 and DB-7 (mouse). We are currently working in the two human cell lines MCF7 and MDA-MB- 231. Making cells folate

  18. Present and future of folate biofortification of crop plants.

    PubMed

    Blancquaert, Dieter; De Steur, Hans; Gellynck, Xavier; Van Der Straeten, Dominique

    2014-03-01

    Improving nutritional health is one of the major socio-economic challenges of the 21st century, especially with the continuously growing and ageing world population. Folate deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. More and more countries are adapting policies to fight folate deficiency, mostly by fortifying foods with folic acid. However, there is growing concern about this practice, calling for alternative or complementary strategies. In addition, fortification programmes are often inaccessible to remote and poor populations where folate deficiency is most prevalent. Enhancing folate content in staple crops by metabolic engineering is a promising, cost-effective strategy to eradicate folate malnutrition worldwide. Over the last decade, major progress has been made in this field. Nevertheless, engineering strategies have thus far been implemented on a handful of plant species only and need to be transferred to highly consumed staple crops to maximally reach target populations. Moreover, successful engineering strategies appear to be species-dependent, hence the need to adapt them in order to biofortify different staple crops with folate.

  19. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  20. [Folates and fetal programming: role of epigenetics and epigenomics].

    PubMed

    Guéant, Jean-Louis; Daval, Jean-Luc; Vert, Paul; Nicolas, Jean-Pierre

    2012-12-01

    Folates are needed for synthesis of methionine, the precursor of S-adenosyl methionine (SAM). They play therefore a key role in nutrition and epigenomics by fluxing monocarbons towards synthesis or methylation of DNA and RNA, and methylation of gene transregulators, respectively. The deficiency produces intrauterine growth retardation and birth dejects. Folate deficiency deregulates epigenomic mechanisms related to fetal programming through decreased cellular availability of SAM. Epigenetic mechanisms of folate deficiency are illustrated by inheritance of coat colour of agouti mice model and altered expression of Igf2/H19 imprinting genes. Dietary exposure to fumonisin FB1 acts synergistically with folate deficiency on alterations of heterochromatin assembly. Deficiency in folate and vitamin B12 produces impaired fatty acid oxidation in liver and heart through imbalanced methylation and acetylation of PGC1-alpha and decreased expression of SIRT1, and long-lasting cognitive disabilities through impaired hippocampal cell proliferation, differentiation and plasticity and atrophy of hippocampal CA1. Deciphering these mechanisms will help understand the discordances between experimental models and population studies on folate supplementation.

  1. LRP2 mediates folate uptake in the developing neural tube.

    PubMed

    Kur, Esther; Mecklenburg, Nora; Cabrera, Robert M; Willnow, Thomas E; Hammes, Annette

    2014-05-15

    The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) is a multifunctional cell-surface receptor expressed in the embryonic neuroepithelium. Loss of LRP2 in the developing murine central nervous system (CNS) causes impaired closure of the rostral neural tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs) have previously been attributed to impaired folate metabolism in mice. We therefore asked whether LRP2 might be required for the delivery of folate to neuroepithelial cells during neurulation. Uptake assays in whole-embryo cultures showed that LRP2-deficient neuroepithelial cells are unable to mediate the uptake of folate bound to soluble folate receptor 1 (sFOLR1). Consequently, folate concentrations are significantly reduced in Lrp2(-/-) embryos compared with control littermates. Moreover, the folic-acid-dependent gene Alx3 is significantly downregulated in Lrp2 mutants. In conclusion, we show that LRP2 is essential for cellular folate uptake in the developing neural tube, a crucial step for proper neural tube closure.

  2. Dietary strategies for improving folate status in institutionalized elderly persons.

    PubMed

    Bermejo, Laura M; Aparicio, Aránzazu; Rodríguez-Rodríguez, Elena; López-Sobaler, M; Andrés, Pedro; Ortega, Rosa M

    2009-06-01

    The aim of this work was to compare the efficacy of two strategies designed to improve folate status: increasing the intake of vegetables, and the consumption of a folic acid-fortified food. Residents (126) from three old people's homes in the Madrid region (Spain) were studied. To each centre a dietary intervention was assigned to be followed for 6 months: (1) the consumption of margarine fortified with 200 microg folic acid/10 g portion (centre M), (2) increasing the consumption of vegetables to three servings per day (centre V), (3) control (centre C). At the beginning and end of the intervention period the subjects' intakes, serum and erythrocyte concentrations of folate were measured. The use of fortified margarine (centre M) led to a significant increase in folate intake (260.9 microg/d), serum concentration (10.3 (sd 8.3) nmol/l) and erythrocyte concentration (638.4 nmol/l). At centre V the increase in total vegetable intake achieved was very poor; these foods met with very poor acceptance, although the intake of certain vegetables particularly rich in folate improved. Therefore, the intake of this vitamin increased a little (26.7 (sd 33.0) microg/d); erythrocyte folate concentration also increased somewhat (460.5 nmol/l), althought less than centre M. The daily consumption of margarine fortified with folic acid was the more effective strategy for improving the folate status of the study subjects.

  3. Folate and alcohol consumption and the risk of lung cancer

    SciTech Connect

    Bandera, E.V.; Graham, S.; Freudenheim, J.L.; Marshall, J.R.; Haughey, B.P.; Swanson, M.; Brasure, J.; Wilkinson, G. )

    1991-03-11

    Because both folate deficiency and alcohol intake have been hypothesized to be lung cancer risk factors, the authors examined the effect of folate and alcohol consumption on risk of lung cancer in a case-control study conducted 1980-1984. Usual dietary intake of 450 histologically confirmed lung cancer cases and 902 controls, all Western New York residents, was ascertained using a modified food frequency questionnaire. Folate intake was not associated with lung cancer risk. After adjusting for age, cigarette smoking, education, and carotene intake, the odds ratio (OR) for the highest category of folate intake was 1.59 in males and 1.34 in females. There was some indication of a protective effect of folate only among women who never smoked. There was a suggestion of a positive association of alcohol intake with lung cancer risk in males, independent of age, education, cigarette smoking, and carotene. Consumers of more than 9 beers per month had an OR of 1.51 compared to non-drinkers. In both sexes, there was an indication of an interaction between beer ingestion and cigarette smoking. While folate intake did not appear to affect risk of lung cancer, the association of alcohol intake with risk independent of cigarette smoking deserves further inquiry.

  4. An unusual role of folate in the self-assembly of heparin-folate conjugates into nanoparticles.

    PubMed

    Wang, Jianquan; Ma, Daoshuang; Lu, Qian; Wu, Shaoxiong; Lee, Gee Young; Lane, Lucas A; Li, Bin; Quan, Li; Wang, Yiqing; Nie, Shuming

    2015-10-07

    Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging.

  5. Folate Transporters in Placentas from Preterm Newborns and Their Relation to Cord Blood Folate and Vitamin B12 Levels

    PubMed Central

    Castaño, Erika; Caviedes, Lorena; Hirsch, Sandra; Llanos, Miguel; Iñiguez, Germán; Ronco, Ana María

    2017-01-01

    Folate deficiency during pregnancy has been related to low birth weight, preterm (PT) birth and other health risks in the offspring; however, it is unknown whether prematurity is related to low folate transport through the placenta due to altered expression of specific folate transporters. We determined placental expression (mRNA and protein concentrations by RT-qPCR and WB respectively) of specific folate transporters: RFC, PCFT/HCP1 and FOLR1 in chorionic (fetal) and basal (maternal) plates of placentas of PT pregnancies (PT, 32–36 weeks, n = 51). Term placentas were used as controls (T, 37–41 weeks, n = 47). Folates and vitamin B12 levels were measured by electrochemiluminescence in umbilical cord blood of newborns. FOLR1 mRNA expression was lower and protein concentration higher in PT placentas (both plates) relative to the control group (p <0.05). In addition, gestational age was positively correlated with mRNA expression (Rho = 0.7), and negatively with protein concentration (Rho = -0.7 for chorionic and -0.43 for basal plate). PCFT/HCP1 mRNA was lower in PT placentas, without changes in protein levels. RFC did not differ in PT placentas compared to controls. PT newborns presented higher cord blood folate level (p = 0.049) along with lower vitamin B12 concentration compared to controls (p = 0.037).In conclusion, placental FOLR1 mRNA was positively associated with gestational age. Conversely, FOLR1 protein concentrations along with folate/vitamin B12 ratio in cord blood were negatively associated with gestational age. Placental FOLR1 is likely the main placental folate transporter to the fetus in newborns. PMID:28103309

  6. An unusual role of folate in the self-assembly of heparin-folate conjugates into nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jianquan; Ma, Daoshuang; Lu, Qian; Wu, Shaoxiong; Lee, Gee Young; Lane, Lucas A.; Li, Bin; Quan, Li; Wang, Yiqing; Nie, Shuming

    2015-09-01

    Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging.Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging. Electronic supplementary information (ESI) available: NMR spectra and fluorescent images of HF-488 with cancer

  7. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  8. 99mTc-Tetraethylenepentamine-Folate--a new 99mTc-based folate derivative for the detection of folate receptor positive tumors: synthesis and biological evaluation.

    PubMed

    Panwar, Puja; Shrivastava, Vibha; Tandon, Vibha; Mishra, Pushpa; Chuttani, Krishna; Sharma, Rakesh Kumar; Chandra, Ramesh; Mishra, Anil K

    2004-10-01

    A new radiopharmaceutical, 99mTc-Tetraethylenepentamine(TEPA)-Folate has been synthesized introducing TEPA to the gamma-carboxyl group of folic acid. This binds with 99mTc high efficiency at ambient temperature. The resulting 99mTc-N5-Folate is stable under physiological conditions at least for 24 h after radiocomplexation. TEPA is a known open chain pentamine (N5) chelator, its four-nitrogen act as the binding site for 99mTc. The folate membrane receptor binding of the 99mTc-TEPA-Folate by established human tumor cell lines (KB, U-87MG and MDA-MB-468) showed Kd in microM range in normal DMEM (10% serum, 10 microM folic acid). The blood kinetic studies showed more than 70% clearance within five minutes from the circulation. The KB cell line tumors in mice were readily identifiable in the gamma images and revealed major accumulation of radiotracer in liver, kidneys and intestines. High tumor uptake was shown in the tumor bearing nude mice; tumorto-blood ratios reached 2.68 +/- 0.52 and 5.5 +/- 1.47 at 1 and 4 h after post injection respectively. Surviving fractions as obtained in clonogenic assay were 1.02 +/- 0.07 and 1.03 +/- 0.05 in U-87MG and MDA-MB-468 cell lines respectively. The 99mTc-N5-Folate conjugate have promising utility as a receptor specific radiopharmaceutical for imaging neoplastic tissues known to over express folate-binding protein.

  9. Some nutritional effects of folate-binding protein in bovine milk on the bioavailability of folate to rats

    SciTech Connect

    Tani, M.; Iwai, K.

    1984-04-01

    The excretions of folate compounds into both the urine and bile were investigated in rats after the administration of pteroylglutamic acid (PteGlu) with or without the folate-binding protein (FBP) prepared from bovine milk. When the sample solution, containing either free or bound (/sup 3/H)PteGlu (i.e., bound to the FBP from milk), was delivered to rats intragastrically via oral intubation, the amounts of (/sup 3/H)PteGlu excreted into the feces did not change. On the other hand, the urinary excretion of /sup 3/H-labeled folate compounds, especially (/sup 3/H)5-methyltetrahydrofolic acid (5-CH/sub 3/-H/sub 4/PteGlu), after the administration of bound (/sup 3/H)PteGlu was significantly lower (P less than 0.01) than that after the administration of free (/sup 3/H)PteGlu. The urinary excretion of (/sup 3/H)5-CH/sub 3/-H/sub 4/PteGlu was directly proportional to the initial amount of free (/sup 3/H)PteGlu administered. The similar effect of FBP was also observed when the biliary excretion of /sup 3/H-labeled folate compounds was investigated in situ. Furthermore, the incorporation of (/sup 3/H)PteGlu into folate-requiring intestinal microorganisms was considerably reduced when it was bound to FBP. These results suggest that milk FBP has some nutritional effects on the bioavailability of folate in vivo.

  10. A Comparison of Iron and Folate with Folate Alone in Hematologic Recovery of Children Treated for Acute Malaria

    PubMed Central

    Gara, Samuel N.; Madaki, Aboi J. K.; Thacher, Tom D.

    2010-01-01

    Concern has been raised that iron supplementation for treatment of acute malaria may worsen the severity of malaria. We compared the effect of iron and folate with folate alone on hematologic recovery in children treated for acute malaria. We randomized 82 children 6–60 months of age from Nigeria with smear-positive malaria and anemia (hematocrit < 33%) to receive iron (2 mg/kg/day) plus folate (5 mg/day) or folate alone in addition to antimalarial drugs. The mean ± SD hematocrit at baseline was 28.5% ± 2.9%. At four weeks, the mean hematocrit increased by 2.5% ± 1.6% in the iron plus folate group and by 1.4% ± 1.0% in the folate alone group (P = 0.001). Baseline hematocrit, iron supplementation, weight for height, and weekly meat intake were significant predictors of final hematocrit. The effect of iron was not significantly modified by baseline hematocrit, weekly meat intake, nutritional status, mother's education, sex, or age of the child. Iron supplementation improved hematologic recovery in children with malarial anemia. PMID:20889877

  11. Association between dietary intake of folate and MTHFR and MTR genotype with risk of breast cancer.

    PubMed

    He, J M; Pu, Y D; Wu, Y J; Qin, R; Zhang, Q J; Sun, Y S; Zheng, W W; Chen, L P

    2014-10-31

    We investigated the association between dietary intake of folate, vitamin B6, and the 5,10-methylenetetrahydrofolate reductase (MTHFR) genotype with breast cancer. A matched case-control study was conducted, and 413 patients with newly diagnosed and histologically confirmed breast cancer and 436 controls were recruited. Folate intake, vitamin B6, and vitamin B12 levels were calculated, and the MTHFR C677T and A1298C and MTR A2756G polymorphisms were analyzed by polymerase chain reaction-restriction fragment length polymorphism. Breast cancer cases were generally older, older at first live birth, and younger at menarche, had a higher body mass index, were smokers, had higher energy intake, and more first-degree relatives with breast cancer as well as more live births compared to controls. With respect to energy intake, we found that higher energy intake were more likely to increase the risk of breast cancer. The MTHFR 667TT genotype was associated with a moderately increased risk of breast cancer when compared with the CC genotype, and a significant odds ratio (OR; 95% confidence interval, CI) was found (OR = 1.70, 95%CI = 1.06-2.73). Individuals carrying T allele were associated with higher risk of breast cancer when compared with C allele (OR = 1.34, 95%CI = 1.06-1.70). We did not find a significant effect of the MTHFR A1298C and MTR A2756G on the risk of breast cancer. We did not find any association between folate intake and MTHFR C677T polymorphisms. In conclusion, we found that the MTHFR C667T polymorphism is associated with the risk of breast cancer, indicating that this genotype plays a role in breast cancer development.

  12. Anaemia, folate, zinc and copper deficiencies among adolescent schoolgirls in eastern Sudan.

    PubMed

    Abdelrahim, Ishraga I; Mahgoub, Hyder M; Mohamed, Ayoub A; Ali, Naji I; Elbashir, Mustafa I; Adam, I

    2009-12-01

    Anaemia is a widespread problem especially in the tropics. Among adolescent girls, it has negative consequences on growth, school performance, morbidity and reproductive performance. A cross-sectional study was conducted to investigate the prevalence of anaemia, iron, folate, zinc and copper deficiencies amongst adolescent schoolgirls in New Halfa, eastern Sudan, and to examine the relationship of these micronutrients with haemoglobin (Hb) levels. Out of 187 adolescent schoolgirls, 181 (96.8%) had anaemia (Hb<12 g/dl); 21% had mild anaemia (Hb 11.0-11.9 g/dl); 66.8.1% had moderate anaemia (Hb 8.0-10.9 g/dl), and 12.1% had severe anaemia (Hb<8 g/dl), respectively. Iron deficiency (S-ferritin<12 μg/l), iron deficiency anaemia (<12 m/dl and S- ferritin<12 μg/l) and folate deficiency (S-folate<3 ng/ml) were prevalent in 17.6%, 16.5% and 69% of these girls, respectively. Nine percent and 5.9% of these girls had zinc (<75 μg/ml) and copper deficiency (<75 μg/ml), respectively. Twenty-six (14%) girls had ≥ 2 micronutrient deficiencies. S-ferritin and zinc were significantly lower in patients with severe anaemia. Haemoglobin levels were significantly positively correlated with zinc levels (r=0.161, P=0.03) and with copper levels (r=0.151, P=0.03). Thus, interventions are required to prevent and control anaemia in this setting. Further research is needed.

  13. Association studies of genetic scores of serum vitamin B12 and folate levels with symptoms of depression and anxiety in two danish population studies.

    PubMed

    Møllehave, L T; Skaaby, T; Simonsen, K S; Thuesen, B H; Mortensen, E L; Sandholt, C H; Pedersen, O; Grarup, N; Hansen, T; Linneberg, A

    2017-09-01

    Observational studies have suggested low serum levels of vitamin B12 or folate to be risk factors of depression and anxiety. However, these results may be biased by confounding and reverse causation. Mendelian randomization studies are not subject to these limitations. The aim was to examine the association of genetic scores of vitamin B12 and folate-associated alleles with depression and anxiety. The study included 4126 participants from two Danish population-based studies. Serum vitamin B12 and folate were measured. Weighed allele scores were calculated as the sum of weights (genetic effect sizes) for 12 and two variants increasing circulating levels of vitamin B12 and folate, respectively. Symptoms of depression and anxiety were assessed by the Symptom Check List (SCL)-90-R, and self-reported doctor-diagnosed depression and anxiety. An increased weighed allele score for serum vitamin B12 was associated with decreased odds of a SCL-90-R score above the 90th percentile (OR 0.540 (95%CI 0.302-0.967)) in Health2006 but not in Inter99, in the pooled analysis (OR 0.817 (95%CI 0.331-2.018)) or with other outcomes. The weighed allele score for serum folate was not associated with any of the measured outcome variables: SCL-90-R scores of depression (pooled OR 0.603 (95%CI 0.101-3.602)), anxiety (pooled OR 0.619 (95%CI 0.110-3.495)), combined score or history of doctor-diagnosed depression or anxiety. Our results do not provide evidence for a causal effect of circulating folate or vitamin B12 on the risk of depression or anxiety. However, we cannot rule out small to moderate effects, and thus large scale studies are needed.

  14. Prospects in Folate Receptor-Targeted Radionuclide Therapy

    PubMed Central

    Müller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD < 10−9 M) the vitamin folic acid has emerged as an almost ideal targeting agent. Therefore, a variety of folic acid radioconjugates for nuclear imaging have been developed. However, in spite of the large number of cancer patients who could benefit of a folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic

  15. Biomarkers of folate status in NHANES: a roundtable summary123456

    PubMed Central

    Pfeiffer, Christine M; Phinney, Karen W; Fazili, Zia; Lacher, David A; Bailey, Regan L; Blackmore, Sheena; Bock, Jay L; Brody, Lawrence C; Carmel, Ralph; Curtin, L Randy; Durazo-Arvizu, Ramón A; Eckfeldt, John H; Green, Ralph; Gregory, Jesse F; Hoofnagle, Andrew N; Jacobsen, Donald W; Jacques, Paul F; Molloy, Anne M; Massaro, Joseph; Mills, James L; Nexo, Ebba; Rader, Jeanne I; Selhub, Jacob; Sempos, Christopher; Shane, Barry; Stabler, Sally; Stover, Patrick; Tamura, Tsunenobu; Tedstone, Alison; Thorpe, Susan J; Johnson, Clifford L; Picciano, Mary Frances

    2011-01-01

    A roundtable to discuss the measurement of folate status biomarkers in NHANES took place in July 2010. NHANES has measured serum folate since 1974 and red blood cell (RBC) folate since 1978 with the use of several different measurement procedures. Data on serum 5-methyltetrahydrofolate (5MTHF) and folic acid (FA) concentrations in persons aged ≥60 y are available in NHANES 1999–2002. The roundtable reviewed data that showed that folate concentrations from the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA; used in NHANES 1991–1994 and NHANES 1999–2006) were, on average, 29% lower for serum and 45% lower for RBC than were those from the microbiological assay (MA), which was used in NHANES 2007–2010. Roundtable experts agreed that these differences required a data adjustment for time-trend analyses. The roundtable reviewed the possible use of an isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) measurement procedure for future NHANES and agreed that the close agreement between the MA and LC-MS/MS results for serum folate supported conversion to the LC-MS/MS procedure. However, for RBC folate, the MA gave 25% higher concentrations than did the LC-MS/MS procedure. The roundtable agreed that the use of the LC-MS/MS procedure to measure RBC folate is premature at this time. The roundtable reviewed the reference materials available or under development at the National Institute of Standards and Technology and recognized the challenges related to, and the scientific need for, these materials. They noted the need for a commutability study for the available reference materials for serum 5MTHF and FA. PMID:21593502

  16. Decreased plasma folate concentration in young and elderly healthy subjects after a short-term supplementation with isotretinoin.

    PubMed

    Chanson, A; Cardinault, N; Rock, E; Martin, J F; Souteyrand, P; D'Incan, M; Brachet, P

    2008-01-01

    In the last two decades, there has been an increasing use of isotretinoin (13-cis-retinoic acid or 13-CRA) for treatment of severe, and recently mild and moderate, acne in Westernized populations. Recent human and animal studies emphasized alterations caused by 13-CRA administration on folate-dependent, one-carbon metabolism. Folate deficiency and subsequent hyperhomocysteinemia increase the risk of degenerative diseases. We determine whether a short-term supplementation with 13-CRA alters folate status and homocysteinemia in young and elderly healthy human subjects. Twenty young and 20 elderly (age mean, 26.1 and 65.4 years, respectively) healthy male volunteers were supplemented with approximately 0.5 mg/kg/day of 13-CRA for 28 days. Fasting plasma concentrations of 13-CRA, 5-methyltetrahydrofolate (5-mTHF) as the main circulating form of folate, and homocysteine (Hcy), as well as haematologic parameters and biochemical markers of liver and renal function, were measured at baseline and at the end of supplementation. Statistical analyses were carried out using two-way anova and standard tests. In both groups, isotretinoin supplementation caused a dramatic increase in the circulating concentration of 13-CRA and its derivatives. It also led to significant increases in serum triglyceride (P < 0.0001) and creatinine (P = 0.002) concentrations and gamma-glutamyltranspeptidase activity (P = 0.0001) and decrease in serum level of urea (P = 0.027). However, the latter four parameters remained within normal ranges. These changes were accompanied by a 17.7% and 13.5% decrease in the plasma level of 5-mTHF (P = 0.001) in the young and elderly volunteers, respectively. Supplementation with 13-CRA did not cause significant variations in their plasma Hcy concentration. However, the latter parameter seemed to respond differently in each group of age (P = 0.046). Our data indicate that a 28-day supplementation with isotretinoin alters the plasma folate in young and old healthy

  17. Depletion of Intense Fields

    NASA Astrophysics Data System (ADS)

    Seipt, D.; Heinzl, T.; Marklund, M.; Bulanov, S. S.

    2017-04-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multiphoton Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multiphoton nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude a0˜1 03 and electron bunches with charges of the order of 10 nC.

  18. [High plasma folate in patients with phenylketonuria].

    PubMed

    Zielińska, Magdalena; Żółkowska, Joanna; Przybylska-Kruszewska, Amanda; Gładysz, Dominika; Korycińska-Chaaban, Dorota; Nowacka, Maria; Hozyasz, Kamil K

    2016-04-01

    Phenylketonuria is an inborn error of metabolism treated with a closely monitored low phenylalanine diet. Protein substitutes used for treatment are supplemented with vitamins and micronutrients. The aim of this study was to investigate plasma folic acid concentrations in children with phenylketonuria. Retrospective analysis of medical records of 73 patients with phenylketonuria and 28 with mild hyperphenylalaninemia (on normal diet) was carried out. Intake of folic acid was calculated on the basis of protein substitute intake. Folate concentrations were analyzed according to their intake, and concentration of homocysteine and phenylalanine. In 76.7% patients with phenylketonuria intake of folic acid exceeded recommended dietary allowance. Serum folic acid concentrations above upper reference level were detected in 75.3% patients with phenylketonuria and only in 25% patients with hyperphenylalaninemia (p<0.0001). Strong positive correlation between daily intake of folic acid (with protein substitute) and concentration plasma folic acid (corr=0.55, p<0.0001) has been observed. Low phenylalanine diet using protein substitutes currently available in Poland predisposes to high concentration of plasma folic acid. The security of folic acid hipersupplementation in patients with phenylketonuria requires further detailed research. © 2016 MEDPRESS.

  19. Biocompatibility of folate-modified chitosan nanoparticles

    PubMed Central

    Chakraborty, Subhankari Prasad; Sahu, Sumanta Kumar; Pramanik, Panchanan; Roy, Somenath

    2012-01-01

    Objective To evaluate the acute toxicity of carboxymethyl chitosan-2, 2′ ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) and as well as possible effect on microbial growth and in vitro cell cyto-toxicity. Methods CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2′ ethylenedioxy bis-ethylamine. In vivo acute toxicity, in vitro cyto-toxicity and antimicrobial activity of CMC-EDBE-FA nanoparticle were determined. Results Vancomycin exhibited the antibacterial activity against vancomycin sensitive Staphylococcus aureus, but CMC-EDBE-FA nanoparticle did not give any antibacterial activity as evidenced by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), disc agar diffusion (DAD) and killing kinetic assay. Further, the CMC-EDBE-FA nanoparticle showed no signs of in vivo acute toxicity up to a dose level of 1 000 mg/kg p.o., and as well as in vitro cyto-toxicity up to 250 µg/mL. Conclusions These findings suggest that CMC-EDBE-FA nanoparticle is expected to be safe for biomedical applications. PMID:23569900

  20. [Homocysteine, folate therapy and outcome in hemodialysis: results from a prospective study].

    PubMed

    Campo, A; Goia, F; Cottino, R; Musso, M; Viglino, G

    2003-01-01

    Despite the well-known effectiveness of folate therapy on hyperhomocysteinemia in hemodialysis, its benefits on outcome are still unclear. Sixty-five patients on thrice-weekly maintenance hemodialysis lasting more than 3 months were followed up for 1 year after stratification by predialysis homocysteine level (tHcy). Parenteral folate (25 mg quarterly) and cobalamine (1 mg quarterly) therapy was started only if the tHcy levels were > 30 uM/L at baseline or at scheduled retests (every 7 months). End points were overall mortality and new ischemic events (affecting heart, brain, or lower extremities). 58.5% of patients received treatment at baseline and achieved a 60% reduction of tHcy. 38.1% progressed to levels of over 30 tHcy at 6 months and were placed on treatment. No other major changes occurred until the end of the study. An excess of both overall mortality (30.8% versus 12.1%; p = 0.075) and vascular morbidity (38.5% versus 12.1%; p = 0.03) occurred in initially untreated patients,those presenting without baseline intermediate to severe hyperhomocysteinemia. In undertaking hemodialysis, it appears that treating intermediate to severe hyperhomocysteinemia carries better prognosis for outcome than untreated moderate or absent hyperhomocysteinemia. It is uncertain if the benefit of therapy is valid, or if it is confounded by an association between lower tHhy and hidden malnutrition or concomitant diseases.

  1. Controlled release of folic acid through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Katyal, Henna; Mohanty, Sanat

    2014-11-01

    The present study explores folate nanoparticles as nano-carriers for controlled drug delivery. Cross-linked nanoparticles of liquid crystalline folates are composed of ordered stacks. This paper shows that the folate nanoparticles can be made with less than 5% loss in folate ions. In addition, this study shows that folate nanoparticles can disintegrate in a controlled fashion resulting in controlled release of the folate ions. Release can be controlled by the size of nanoparticles, the extent of cross-linking and the choice of cross-linking cation. The effect of different factors like agitation, pH, and temperature on folate release was also studied. Studies were also carried out to show the effect of release medium and role of ions in the release medium on disruption of folate assembly.

  2. Association of methylenetetrahydrofolate reductase and methionine synthase polymorphisms with breast cancer risk and interaction with folate, vitamin B6, and vitamin B 12 intakes.

    PubMed

    Jiang-Hua, Qiao; De-Chuang, Jiao; Zhen-Duo, Lu; Shu-de, Cui; Zhenzhen, Liu

    2014-12-01

    We assessed the association between dietary intake of folate and the MTHFR genotype with breast cancer in a Chinese population, with additional analysis of the interactions of gene polymorphisms and dietary intake of folate, vitamin B6, and vitamin B12. A case-control study was performed, and 535 patients with newly diagnosed breast cancer and 673 controls were enrolled into this study. The MTHFR 667TT genotype (odds ratio (OR) = 1.82, 95 % confidence interval (CI) = 1.24-2.97) and T allele (OR 0= 1.48, 95 % CI = 1.15-1.78) were correlated with a moderately significant increased risk of breast cancer when compared with the CC genotype. Individuals carrying the MTR 2756GG genotype (OR = 1.66, 95 % CI = 1.16-2.56) and G allele (OR = 1.42, 95 % CI = 1.26-1.81) had a higher risk of breast cancer when compared with subjects with the AA genotype. The MTHFR 667 T allele and MTR 2756 G allele were associated with a higher risk of breast cancer in individuals with low folate intake, vitamin B6, and vitamin B12, but the association disappeared among subjects with moderate and high intake of folate, vitamin B6, and vitamin B12. This case-control study found that the MTHFR C677T and MTR A2756G polymorphisms are associated with risk of breast cancer, and folate, vitamin B6, and vitamin B12 intakes influence these associations.

  3. Moderate Alcohol Consumption and Colorectal Cancer Risk.

    PubMed

    Klarich, DawnKylee S; Brasser, Susan M; Hong, Mee Young

    2015-08-01

    Heavy alcohol drinking is a risk factor for colorectal cancer (CRC); previous studies have shown a linear dose-dependent association between alcohol intake and CRC. However, some studies suggest that moderate alcohol consumption may have a protective effect, similar to that seen in cardiovascular disease. Other factors may interact with alcohol and contribute additional risk for CRC. We aimed to determine the association between moderate alcohol consumption, limited to 30 g of alcohol per day, by beverage type on CRC risk and to assess the effects of other factors that interact with alcohol to influence CRC risk. The PubMed database was used to find articles published between 2008 and 2014 related to alcohol and CRC. Twenty-one relevant articles were evaluated and summarized, including 11 articles reporting on CRC risk associated with moderate intake and 10 articles focusing on genetic interactions associated with alcohol and CRC risk. The association between alcohol and increased risk for CRC was found when intakes exceeded 30 g/d alcohol. Nonsignificant results were consistently reported for intakes <30 g/d. Additional risks for CRC were found to be related to obesity and folate status for regular alcohol consumers. Some significant results suggest that the development of CRC is dependent on the interaction of gene and environment. The association between the amount of alcohol consumed and the incidence of CRC was not significant at moderate intake levels. Moderate alcohol consumption was associated with a reduced CRC risk in study populations with greater adherence to a Mediterranean diet, where wine contributed substantially to the alcoholic beverage consumed. Other factors such as obesity, folate deficiency, and genetic susceptibility may contribute additional CRC risk for those consuming alcohol. To minimize CRC risk, appropriate recommendations should encourage intakes below 30 g of alcohol each day. Copyright © 2015 by the Research Society on

  4. Aspects of Weak Interactions between Folate and Glycine Betaine.

    PubMed

    Bhojane, Purva P; Duff, Michael R; Bafna, Khushboo; Rimmer, Gabriella P; Agarwal, Pratul K; Howell, Elizabeth E

    2016-11-15

    Folate, or vitamin B9, is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor-pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (μ23/RT value). This value is concentration-dependent as folate dimerizes. The μ23/RT value also tracks the deprotonation of folate's N3-O4 keto-enol group, yielding a pKa of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the μ23/RT values into α values for atom types was achieved. This allows prediction of μ23/RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess μ23/RT values from -0.18 to 0.09 m(-1), where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate μ23/RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small molecule, the

  5. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells.

    PubMed

    Siafaka, P; Betsiou, M; Tsolou, A; Angelou, E; Agianian, B; Koffa, M; Chaitidou, S; Karavas, E; Avgoustakis, K; Bikiaris, D

    2015-12-01

    The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5%) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor.

  6. Biomarkers of Nutrition for Development—Folate Review12345

    PubMed Central

    Bailey, Lynn B; Stover, Patrick J; McNulty, Helene; Fenech, Michael F; Gregory, Jesse F; Mills, James L; Pfeiffer, Christine M; Fazili, Zia; Zhang, Mindy; Ueland, Per M; Molloy, Anne M; Caudill, Marie A; Shane, Barry; Berry, Robert J; Bailey, Regan L; Hausman, Dorothy B; Raghavan, Ramkripa; Raiten, Daniel J

    2015-01-01

    The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate’s history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development. PMID:26451605

  7. Synthesis of folate receptor-targeted photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fang, Yanyan; Wang, Xiaopu; Zou, Qianli; Zhao, Yuxia; Wu, Feipeng

    2014-11-01

    A series of amphiphilic benzylidene cycloalkanes ketone photosensitizers C1-C4 with or without folate receptor-targeted agent were designed and synthesized. Their photophysical properties and in vitro photodynamic therapy (PDT) effects were studied. The results showed that all compounds exhibited appropriate lipid-water partition coefficients and high reactive oxygen yields. The introduction of the folate receptor-targeted agent had no obvious influence on the basic photophysical & photochemical properties of C2 and C4 compared to those of their corresponding prototype compounds (C1 and C3). In vitro studies were carried out using MCF-7 cells (FR+), Hela cells (FR+) and A549 cells (FR-), which represented different levels of folate receptor (FR) expression. All of C1-C4 showed low dark toxicity and superior PDT effects compared with the clinical drug PSD-007 (a mixture of porphyrins). What's more, folate receptor-targeted photosensitizers (C2 and C4) achieved higher accumulation and more excellent PDT effects in MCF-7 cells (FR+) and Hela cells (FR+) than photosensitizers (C1 and C3) without folate receptor-targeted agent and PSD-007. The photocytotoxicity of these photosensitizers showed no obvious differences in A549 cells (FR-).

  8. N-acetyltransferase 2 activity and folate levels

    PubMed Central

    Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.

    2010-01-01

    Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120

  9. Folate status and socio-demographic predictors of folate status, among a national cohort of women aged 26-36 in Australia, 2004-2006.

    PubMed

    Gall, Seana; Seal, Judy; Taylor, Roscoe; Dwyer, Terry; Venn, Alison

    2012-10-01

    To describe serum folate status and the socio-demographic correlates of serum folate status in a national sample of women aged 26-36 years in Australia, 2004-2006. Stored serum samples from 1,046 women, collected as part of the Childhood Determinants of Adult Health study, were analysed for serum folate. Median (IQR) serum folate was 27.1 nmol/L (18.8-35.0 nmol/L) with only 7.0% of samples below 11 nmol/L. Serum folate was positively associated with supplement use, educational level, occupational status and urban dwelling. In this population-based sample, most women had folate levels in the normal range with few having low serum folate. Those of lower socioeconomic position or with poorer health behaviours had lower folate levels, though most were still within the normal range. In the absence of comprehensive national survey data on the folate status of women of child-bearing age, these data provide a valuable baseline for evaluating the impact of mandatory folic acid fortification in Australia, which commenced in 2009. It is likely that mandatory fortification of the food supply with folic acid will reduce the disparities in folate status between socioeconomic groups and in people with poorer health behaviours. © 2012 The Authors. ANZJPH © 2012 Public Health Association of Australia.

  10. Folate and Thiamine Transporters mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors

    PubMed Central

    Zhao, Rongbao; Goldman, I. David

    2013-01-01

    The reduced folate carrier (RFC,SLC19A1), thiamine transporter-1 (ThTr1,SLC19A2) and thiamine transporter-2 (ThTr2,SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT,SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  11. Exploring folate diversity in wild and primitive potatoes for modern crop improvement

    USDA-ARS?s Scientific Manuscript database

    Malnutrition is one of the world’s largest health concerns. Folate (a.k.a. vitamin B9) is essential in the human diet and without adequate folate intake several serious health concerns such as congenital birth defects and an increased risk of stroke and heart disease can occur. Most people’s folate ...

  12. Rodent intestinal folate transporters (SLC46A1): secondary structure, functional properties, and response to dietary folate restriction.

    PubMed

    Qiu, Andong; Min, Sang Hee; Jansen, Michaela; Malhotra, Usha; Tsai, Eugenia; Cabelof, Diane C; Matherly, Larry H; Zhao, Rongbao; Akabas, Myles H; Goldman, I David

    2007-11-01

    This laboratory recently identified a human gene that encodes a novel folate transporter [Homo sapiens proton-coupled folate transporter (HsPCFT); SLC46A1] required for intestinal folate absorption. This study focused on mouse (Mus musculus) PCFT (MmPCFT) and rat (Rattus norvegicus) PCFT (RnPCFT) and addresses their secondary structure, specificity, tissue expression, and regulation by dietary folates. Both rodent PCFT proteins traffic to the cell membrane with the NH(2)- and COOH-termini accessible to antibodies targeted to these domains only in permeabilized HeLa cells. This, together with computer-based topological analyses, is consistent with a model in which rodent PCFT proteins likely contain 12 transmembrane domains. Transport of [(3)H]folates was optimal at pH 5.5 and decreased with increasing pH due to an increase in K(m) and a decrease in V(max). At pH 7.0, folic acid and methotrexate influx was negligible, but there was residual (6S)5-methyltetrahydrofolate transport. Uptake of folates in PCFT-injected Xenopus oocytes was electrogenic and pH dependent. Folic acid influx K(m) values of MmPCFT and RnPCFT, assessed electrophysiologically, were 0.7 and 0.3 microM at pH 5.5 and 1.1 and 0.8 microM at pH 6.5, respectively. Rodent PCFTs were highly specific for monoglutamyl but not polyglutamyl methotrexate. MmPCFT mRNA was highly expressed in the duodenum, proximal jejunum, liver, and kidney with lesser expression in the brain and other tissues. MmPCFT protein was localized to the apical brush-border membrane of the duodenum and proximal jejunum. MmPCFT mRNA levels increased approximately 13-fold in the proximal small intestine in mice fed a folate-deficient vesus folate-replete diet, consistent with the critical role that PCFT plays in intestinal folate absorption.

  13. Biofortification of riboflavin and folate in idli batter, based on fermented cereal and pulse, by Lactococcus lactis N8 and Saccharomyces boulardii SAA655.

    PubMed

    Chandrasekar Rajendran, S C; Chamlagain, B; Kariluoto, S; Piironen, V; Saris, P E J

    2017-06-01

    Lactococcus lactis N8 and Saccharomyces boulardii SAA655 were investigated for their ability to synthesize B-vitamins (riboflavin and folate) and their functional role as microbial starters in idli fermentation. In this study, ultra-high performance liquid chromatography and microbiological assay were used to determine the total riboflavin and folate content respectively. Increased levels of folate were evident in both L. lactis N8 and S. boulardii SAA655 cultivated medium. Enhanced riboflavin levels were found only in S. boulardii SAA655 grown medium, whereas decreased riboflavin level was found in L. lactis N8 cultivated medium. To evaluate the functional role of microbial starter strains, L. lactis N8 and S. boulardii SAA655 were incorporated individually and in combination into idli batter, composed of wet grounded rice and black gram. For the experiments, naturally fermented idli batter was considered as control. The results indicated that natural idli fermentation did not enhance the riboflavin level and depleted folate levels by half. In comparison with control, L. lactis N8 and S. boulardii SAA655 incorporated idli batter (individually and in combination) increased riboflavin and folate levels by 40-90%. Apart from compensating the folate loss caused by natural fermentation, S. boulardii SAA655 fermented idli batter individually and in combination with L. lactis N8 also showed the highest leavening character. Moreover, the microbial starter incorporation did not significantly influence the pH of idli batter. Incorporation of L. lactis N8 and S. boulardii SAA655 can evidently enhance the functional and technological characteristics of idli batter. UN General Assembly declared 2016 the International Year of pulses emphasizing the importance of legumes as staple food. Furthermore, this is the first experimental report of in situ biofortifcation of riboflavin and folate using microbes in pulse based fermented staple food. The current study suggests possible

  14. Too Depleted to Try? Testing the Process Model of Ego Depletion in the Context of Unhealthy Snack Consumption.

    PubMed

    Haynes, Ashleigh; Kemps, Eva; Moffitt, Robyn

    2016-11-01

    The process model proposes that the ego depletion effect is due to (a) an increase in motivation toward indulgence, and (b) a decrease in motivation to control behaviour following an initial act of self-control. In contrast, the reflective-impulsive model predicts that ego depletion results in behaviour that is more consistent with desires, and less consistent with motivations, rather than influencing the strength of desires and motivations. The current study sought to test these alternative accounts of the relationships between ego depletion, motivation, desire, and self-control. One hundred and fifty-six undergraduate women were randomised to complete a depleting e-crossing task or a non-depleting task, followed by a lab-based measure of snack intake, and self-report measures of motivation and desire strength. In partial support of the process model, ego depletion was related to higher intake, but only indirectly via the influence of lowered motivation. Motivation was more strongly predictive of intake for those in the non-depletion condition, providing partial support for the reflective-impulsive model. Ego depletion did not affect desire, nor did depletion moderate the effect of desire on intake, indicating that desire may be an appropriate target for reducing unhealthy behaviour across situations where self-control resources vary. © 2016 The International Association of Applied Psychology.

  15. Folate nutrition and blood-brain barrier dysfunction.

    PubMed

    Stover, Patrick J; Durga, Jane; Field, Martha S

    2017-04-01

    Mammals require essential nutrients from dietary sources to support normal metabolic, physiological and neuronal functions, to prevent diseases of nutritional deficiency as well as to prevent chronic disease. Disease and/or its treatment can modify fundamental biological processes including cellular nutrient accretion, stability and function in cells. These effects can be isolated to a specific diseased organ in the absence of whole-body alterations in nutrient status or biochemistry. Loss of blood-brain barrier function, which occurs in in-born errors of metabolism and in chronic disease, can cause brain-specific folate deficiency and contribute to disease co-morbidity. The role of brain folate deficiency in neuropsychiatric disorders is reviewed, as well as emerging diagnostic and nutritional strategies to identify and address brain folate deficiency in blood-brain barrier dysfunction.

  16. Periconceptional Folate Deficiency and Implications in Neural Tube Defects

    PubMed Central

    Safi, J.; Joyeux, L.; Chalouhi, G. E.

    2012-01-01

    Nutritional deficiencies are preventable etiological and epigenetic factors causing congenital abnormalities, first cause of infant mortality. Folate deficiency has a well-established teratogenic effect, leading to an increasing risk of neural tube defects. This paper highlights the most recent medical literature about folate deficiency, be it maternal or paternal. It then focuses on associated deficiencies as nutritional deficiencies are multiple and interrelated. Observational and interventional studies have all been consistent with a 50–70% protective effect of adequate women consumption of folates on neural tube defects. Since strategies to modify women's dietary habits and vitamin use have achieved little progress, scientific as well as political effort is mandatory in order to implement global preventive public health strategies aimed at improving the alimentation of women in reproductive age, especially folic acid supplementation. Even with the recent breakthrough of fetal surgery for myelomeningocele, the emphasis should still be on prevention as the best practice rather than treatment of neural tube defects. PMID:22900183

  17. Detergent activation of the binding protein in the folate radioassay

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  18. Clinical recognition and aspects of the cerebral folate deficiency syndromes.

    PubMed

    Ramaekers, Vincent; Sequeira, Jeffrey M; Quadros, Edward V

    2013-03-01

    We characterized cerebral folate deficiency (CFD) as any neuro-psychiatric condition associated with low spinal fluid (CSF) N5-methyltetrahydrofolate (MTHF) but normal folate status outside the central nervous system (CNS). The commonest cause underlying CFD syndromes is the presence of serum autoantibodies of the blocking type directed against folate receptor-α (FRα) attached to the plasma-side of choroid plexus epithelial cells. Blocking FR antibodies inhibit MTHF transport across the choroid plexus. Serum titers of FR antibodies may fluctuate significantly over time. Less frequent causes of CFD are FOLR-1 mutations, mitochondrial disorders and inborn errors affecting folate metabolism. Maternal FR antibodies have been associated with neural tube defects while the presence of FR antibodies in either one or both parents increases the risk of an offspring with infantile autism. Recognizable CFD syndromes attributed to FR-antibodies in childhood are infantile-onset CFD presenting 4-6 months after birth, infantile autism with neurological deficits, and a spastic ataxic syndrome from the age of 1 year, while progressive dystonic or schizophrenic syndromes develop during adolescence. FR autoantibodies are frequently found in autism spectrum disorders, in an Aicardi-Goutières variant and in Rett syndrome. The heterogeneous phenotype of CFD syndromes might be determined by different ages of onset and periods when FR autoantibodies are generated with consequent CNS folate deficiency. Folate deficiency during various critical stages of fetal and infantile development affects structural and functional refinement of the brain. Awareness of CFD syndromes should lead to early detection, diagnosis and improved prognosis of these potentially treatable group of autoimmune and genetically determined conditions.

  19. Depleted uranium management alternatives

    SciTech Connect

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  20. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  1. Interaction between excess folate and low vitamin B12 status.

    PubMed

    Paul, Ligi; Selhub, Jacob

    2017-02-01

    Current epidemiological evidence suggests that an imbalance of high folate status and low vitamin B12 status is associated with negative health outcomes in older adults and children. Such an imbalance during pregnancy also predisposes women to diabetes and their offspring to insulin resistance and adiposity and low birthweight. In older adults, vitamin B12 status can remain low despite adequate intake due to age-related decline in vitamin B12 absorption. Pregnant women are exposed to folic acid at varying doses depending on the prenatal care prescribed in different countries. This review summarizes the current knowledge on the interaction between folate and vitamin B12 and the associated health outcomes.

  2. Depletion of intense fields

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Seipt, D.; Heinzl, T.; Marklund, M.

    2017-03-01

    The problem of backreaction of quantum processes on the properties of the background field still remains on the list of outstanding questions of high intensity particle physics. Usually, photon emission by an electron or positron, photon decay into electron-positron pairs in strong electromagnetic fields, or electron-positron pair production by such fields are described in the framework of the external field approximation. It is assumed that the external field has infinite energy and is not affected by these processes. However, the above-mentioned processes have a multi-photon nature, i.e., they occur with the absorption of a significant number of field photons. As a result, the interaction of an intense electromagnetic field with either a highly charged electron bunch or a fast growing population of electrons, positrons, and gamma photons (as in the case of an electromagnetic cascade) may lead to a depletion of the field energy, thus making the external field approximation invalid. Taking the multi-photon Compton process as an example, we estimate the threshold of depletion and find it to become significant at field strengths (a0˜103) and electron bunch charge of about tens of nC.

  3. Molecular cloning and tissue distribution of reduced folate carrier and effect of dietary folate supplementation on the expression of reduced folate carrier in laying hens.

    PubMed

    Jing, M; Tactacan, G B; Rodriguez-Lecompte, J C; Kroeker, A; House, J D

    2009-09-01

    The reduced folate carrier (RFC) has been postulated to be a major entity for folate transport activity in humans and other mammals. However, there are limited reports of the importance of RFC in an avian system. In the current study, therefore, the molecular cloning and tissue distribution of RFC, as well as the effect of dietary folate supplementation on the expression of this transporter, were investigated in the chicken. Shaver White laying hens (n=8 per diet) received 3 wheat-based diets containing the following: 1) no supplemental folate, 2) folic acid (10.00 mg/kg), or 3) 5-methyltetrahydrofolate (11.30 mg/kg) for 21 d. The mRNA expression levels were analyzed by quantitative real-time PCR. The results showed that the cloned partial RFC cDNA containing the full coding region from duodenum was 99% homologous to the reference gene available in GenBank. A broad expression profile of RFC transcripts was observed, with RFC mRNA detected in the brain, liver, kidney, spleen, lung, intestine, ovary, and testis, as well as other tissues. Real-time PCR analysis revealed that no significant differences (P>0.05) due to diet were found in the mRNA levels of RFC in the duodenum and cecum. However, compared with the basal diet, jejunal mRNA levels of RFC were decreased (P<0.05) in hens fed with the 5-methyltetrahydrofolate diet, but the reduction did not reach significance (P=0.077) in the hens fed the folic acid diet. Overall, the current study demonstrated that the RFC cDNA containing the full coding region was successfully cloned from the duodenum of laying hens. The wide tissue distribution of RFC transcripts is suggestive of an important role of RFC in the process of folate transport in the chicken. Moreover, dietary folate supplementation could downregulate the jejunal mRNA expression of RFC. Such findings will lay the foundation of future work involving the RFC in avian systems, including laying hens.

  4. Increased chromosome fragility as a consequence of blood folate levels, smoking status, and coffee consumption

    SciTech Connect

    Chen, A.T.L.; Reidy, J.A.; Annest, J.L.; Welty, T.K.; Zhou, H. )

    1989-01-01

    Chromosome fragility in 96 h, low-folate cultures was found to be associated with smoking status, coffee consumption, and blood folate level. The higher proportion of cells with chromosome aberrations in cigarette smokers was attributable to lower red cell folate levels in smokers compared with nonsmokers. There was a positive linear relationship between the average cups of coffee consumed per day and the proportion of cells with aberrations. This association was independent of the effects of smoking and red cell folate level. These data suggest that smoking history, coffee consumption, and red cell folate level are important considerations for the design and interpretation of fragile site studies in cancer cytogenetics.

  5. Folate deficiency and an abnormal lymphocyte deoxyuridine suppression test in monkeys.

    PubMed

    Thenen, S W; Hwang, S M; Blocker, D E; Meadows, C A

    1991-01-01

    Cebus albifrons were fed folate-deficient diets in order to assess folate status at the cellular level with the deoxyuridine suppression test. Plasma and red blood cell folates were significantly lower at 2 months, compared to control values. Hematologic signs of megaloblastic anemia occurred after 6 months, with significantly lower hematocrit, hemoglobin and red blood cell number values and increased polymorphonuclear leukocyte lobe counts. Urinary formiminoglutamic acid excretion also was elevated significantly. Whole blood lymphocyte cultures exhibited abnormal deoxyuridine suppression of [3H]-thymidine incorporation into DNA with folate deficiency. Thus this deoxyuridine suppression test can be used in isolated whole blood lymphocytes of these nonhuman primates to document folate deficiency.

  6. Examining Moderate Volatile Loss through Lunar History

    NASA Astrophysics Data System (ADS)

    Saxena, Prabal; Killen, Rosemary M.; Airapetian, Vladimir; Petro, Noah; Mandell, Avi

    2017-06-01

    While the Moon and bulk silicate earth (BSE) share many compositional similarities, a notable difference is the apparent depletion of moderate volatiles in lunar samples. Depletion of elements such as sodium and potassium relative to BSE composition has been observed in Apollo samples. The source of these depletions is poorly understood but may be a result of preferential accretion of volatile-rich melt in the inner disk to the Earth during Moon formation.However, recent Kepler data has indicated that stellar analogues to our Sun experience enhanced flare activity early in their evolution. This implies that the Sun may have had a higher frequency and energy of flares and associated Coronal Mass Ejections (CME) in its distant past. We examine the potential impacts of this increased activity on lunar exosphere generation and specifically on potential loss of moderate volatiles including sodium and potassium.We use a surface bounded exosphere model that incorporates multiple processes including photon stimulated desorption, kinetic sputtering and impact vaporization in order to study potential moderate volatile loss under a variety of different conditions. This model is informed by appropriate solar wind and CME properties, which includes CMEs of different energies. We also incorporate regolith overturn to determine ranges of potential bulk depletion of moderate volatiles from the lunar regolith.Our work is aimed at determining the potential impact of solar activity on the depletion of moderate volatiles in the lunar regolith. Such a contribution is important to ascertain in order to isolate the depletion of volatiles due to disk processes and may thus help constrain details of the Moon's formation. Finally, we also examine the potential of lunar abundances of moderate volatiles as an observational tracer of past solar activity.

  7. Synthesis and in vitro evaluation of defined HPMA folate conjugates: influence of aggregation on folate receptor (FR) mediated cellular uptake.

    PubMed

    Barz, Matthias; Canal, Fabiana; Koynov, Kaloian; Zentel, R; Vicent, María J

    2010-09-13

    In this article we report the synthesis and in vitro evaluation of well-defined, folate functionalized and fluorescently labeled polymers based on the clinically approved N-(2-hydroxypropyl)-methacrylamide (HPMA). The polymers were prepared applying the RAFT polymerization method as well as the reactive ester approach. The molecular weights of the polymers synthesized were around 15 and 30 kDa. The total content of conjugated folate varied from 0, 5, and 10 mol %. The cellular uptake of these polymers was investigated in the folate receptor (FR)-positive human nasopharyngeal epidermal carcinoma (KB-3-1) and FR-negative human lung epithelial carcinoma (A549) cancer cell lines. In FR-positive cells, the cellular uptake of polymers depended strongly on the folate content. The conjugates with the highest folate content led to the highest level of cell-associated fluorescence. Regarding influence of molecular weight, nonsignificant differences were observed when total cell uptake was analyzed. The cellular uptake is related to the aggregate formation of the polymer conjugates, which were studied by fluorescence correlation spectroscopy (FCS). For the conjugates, we found aggregates with a diameter ranging from 11-18 nm. Much to our surprise, we found aggregates of the same size for the 30 kDa polymer bearing 5 mol % folate and for the 15 and 30 kDa conjugates with a folate content of 10 mol %. Consequently, a different conformation in solution for the different conjugates was expected. By live cell confocal fluorescence microscopy the receptor-mediated endocytosis process was observed, as colocalization with lysosomal markers was achieved. In addition, cellular uptake was not observed in FR-negative cells (A549) and can be dramatically reduced by blocking the FR with free folic acid. Our findings clearly underline the need for a minimum amount of accessible folate units to target the FR that triggers specific cellular uptake. Furthermore, it has been demonstrated that

  8. Quantification of Total Folate, Folate Species and Polyglutamyl Folate Distribution in Winged Beans (Psophocarus tetragonolobus (L) DC) from Different Cultivars and Growth Stages by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    Luo, Shuangyan; Duan, Hanying; Zou, Yuchen; Qiu, Ruixia; Wang, Chao

    2017-01-01

    Winged beans are an important natural source of some micronutrients. This paper presents the first complete characterization of folate derivatives including polyglutamyl 5-methyltetrahydrofolate (5-CH3-H4PteGlun), folate species and total folate accumulating in pods and immature seeds of winged beans from 9 cultivars and 7 growth stages. 5-CH3-H4PteGlun and folate species were determined with a UHPLC-MS/MS method. Accurate determination of 5-CH3-H4PteGlun and folate species was optimized and validated according to EMA guidelines including method selectivity, sensitivity, linearity, accuracy, precision, matrix effect and carry-over. The level of total folate is in the range of 73-200 μg/100 g in the pods and 33-61 μg/100 g in the immature seeds. The predominant folate species in winged beans is 5-CH3-H4PteGlu1. 5-CH3-H4PteGlu5 is the major polyglutamyl folate derivative. The level of total folate is increased about 4 fold with advancing maturity. For pods, the chain length is increased with growth which shifts from 5-CH3-H4PteGlu1 in the early stage to 5-CH3-H4PteGlu5 and 5-CH3-H4PteGlu6 in the 7th stage. Our findings demonstrate that winged beans are good source of folate. The validated UHPLC-MS/MS method allows for the determination of 5-CH3-H4PteGlun and folate species from other vegetable matrices.

  9. The metabolic basis for developmental disorders due to defective folate transport.

    PubMed

    Desai, Ankuri; Sequeira, Jeffrey M; Quadros, Edward V

    2016-07-01

    Folates are essential in the intermediary metabolism of amino acids, synthesis of nucleotides and for maintaining methylation reactions. They are also linked to the production of neurotransmitters through GTP needed for the synthesis of tetrahydrobiopterin. During pregnancy, folate is needed for fetal development. Folate deficiency during this period has been linked to increased risk of neural tube defects. Disturbances of folate metabolism due to genetic abnormalities or the presence of autoantibodies to folate receptor alpha (FRα) can impair physiologic processes dependent on folate, resulting in a variety of developmental disorders including cerebral folate deficiency syndrome and autism spectrum disorders. Overall, adequate folate status has proven to be important during pregnancy as well as neurological development and functioning in neonates and children. Treatment with pharmacologic doses of folinic acid has led to reversal of some symptoms in many children diagnosed with cerebral folate deficiency syndrome and autism, especially in those positive for autoantibodies to FRα. Thus, as the brain continues to develop throughout fetal and infant life, it can be affected and become dysfunctional due to a defective folate transport contributing to folate deficiency. Treatment and prevention of these disorders can be achieved by identification of those at risk and supplementation with folinic acid.

  10. Folate and MMA predict cognitive impairment in elderly stroke survivors: A cross sectional study.

    PubMed

    Pascoe, Michaela C; Linden, Thomas

    2016-09-30

    Elderly stroke survivors are at risk of malnutrition and long-term cognitive impairment. Vitamin B-related metabolites, folate and methylmalonic acid, have been implicated in cognitive function. We conducted a study exploring the relationship between blood folate, methylmalonic acid and post-stroke cognitive impairment. This is a cross sectional study of elderly Swedish patients (n=149) 20 months post-stroke, assessed using the Mini Mental State Examination, serum blood levels of methylmalonic acid and red blood cell levels of folate. Linear modeling indicated that low levels of blood folate and elevated methylmalonic acid significantly contributed to cognitive impairment in stroke survivors. Half of the stroke survivors were shown to have folate deficiency at 20 months after stroke. Folate deficiency is common long term after stroke and both low folate and elevated methylmalonic acid appear to be associated with long term cognitive impairment, in elderly Swedish stroke survivors.

  11. Folate and neural tube defects: The role of supplements and food fortification

    PubMed Central

    Ami, Noam; Bernstein, Mark; Boucher, François; Rieder, Michael; Parker, Louise

    2016-01-01

    Periconceptional folic acid significantly reduces the risk of neural tube defects. It is difficult to achieve optimal levels of folate by diet alone, even with fortification of flour, especially because flour consumption in Canada is slightly decreasing. Intermittent concerns have been raised concerning possible deleterious effects of folate supplementation, including the masking of symptoms of vitamin B12 deficiency and an association with cancer, especially colorectal cancer. Both concerns have been disproved. The Canadian Paediatric Society endorses the following steps to enhance folate intake in women of child-bearing age: encouraging the consumption of folate-rich foods such as leafy vegetables, increasing the level of folate food fortification, taking a supplement containing folate and B12, and providing free folate supplementation to disadvantaged women of child-bearing age. These recommendations are consistent with those of the Society of Obstetricians and Gynaecologists of Canada. PMID:27398055

  12. Folate and neural tube defects: The role of supplements and food fortification.

    PubMed

    Ami, Noam; Bernstein, Mark; Boucher, François; Rieder, Michael; Parker, Louise

    2016-04-01

    Periconceptional folic acid significantly reduces the risk of neural tube defects. It is difficult to achieve optimal levels of folate by diet alone, even with fortification of flour, especially because flour consumption in Canada is slightly decreasing. Intermittent concerns have been raised concerning possible deleterious effects of folate supplementation, including the masking of symptoms of vitamin B12 deficiency and an association with cancer, especially colorectal cancer. Both concerns have been disproved. The Canadian Paediatric Society endorses the following steps to enhance folate intake in women of child-bearing age: encouraging the consumption of folate-rich foods such as leafy vegetables, increasing the level of folate food fortification, taking a supplement containing folate and B12, and providing free folate supplementation to disadvantaged women of child-bearing age. These recommendations are consistent with those of the Society of Obstetricians and Gynaecologists of Canada.

  13. Stimulated Emission Depletion Microscopy.

    PubMed

    Blom, Hans; Widengren, Jerker

    2017-06-14

    Despite its short history, diffraction-unlimited fluorescence microscopy techniques have already made a substantial imprint in the biological sciences. In this review, we describe how stimulated emission depletion (STED) imaging originally evolved, how it compares to other optical super-resolution imaging techniques, and what advantages it provides compared to previous golden-standards for biological microscopy, such as diffraction-limited optical microscopy and electron microscopy. We outline the prerequisites for successful STED imaging experiments, emphasizing the equally critical roles of instrumentation, sample preparation, and photophysics, and describe major evolving strategies for how to push the borders of STED imaging even further in life science. Finally, we provide examples of how STED nanoscopy can be applied, within three different fields with particular potential for STED imaging experiments: neuroscience, plasma membrane biophysics, and subcellular clinical diagnostics. In these areas, and in many more, STED imaging can be expected to play an increasingly important role in the future.

  14. Ozone Depletion by Hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Hurwitz, M.; Fleming, E. L.; Newman, P. A.; Li, F.; Mlawer, E. J.; Cady-Pereira, K. E.; Bailey, R.

    2015-12-01

    Hydrofluorocarbons (HFCs) are second-generation replacements for the chlorofluorocarbons (CFCs), halons and other substances that caused the 'ozone hole'. Atmospheric concentrations of HFCs are projected to increase dramatically in the coming decades. Coupled chemistry-climate simulations forced by these projections show that HFCs will impact the global atmosphere in 2050. As strong radiative forcers, HFCs modulate atmospheric temperature, thereby changing ozone-destroying catalytic cycles and enhancing the stratospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Sensitivity simulations with the NASA Goddard Space Flight Center (GSFC) 2D model show that HFC-125 is the most important contributor to atmospheric change in 2050, as compared with HFC-23, HFC-32, HFC-134a and HFC-143a. Incorporating the interactions between chemistry, radiation and dynamics, for a likely 2050 climate, ozone depletion potentials (ODPs) for HFCs range from 4.3x10-4 to 3.5x10-2; previously HFCs were assumed to have negligible ODPs since these species lack chlorine or bromine atoms. The ozone impacts of HFCs are further investigated with the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). The GEOSCCM is a three-dimensional, fully coupled ocean-atmosphere model with interactive stratospheric chemistry. Sensitivity simulations in which CO2, CFC-11 and HCFC-22 are enhanced individually are used as proxies for the atmospheric response to the HFC concentrations expected by the mid-21st century. Sensitivity simulations provide quantitative estimates of the impacts of these greenhouse gases on global total ozone, and can be used to assess their effects on the recovery of Antarctic ozone.

  15. Updated folate data in the Dutch Food Composition Database and implications for intake estimates.

    PubMed

    Westenbrink, Susanne; Jansen-van der Vliet, Martine; van Rossum, Caroline

    2012-01-01

    Nutrient values are influenced by the analytical method used. Food folate measured by high performance liquid chromatography (HPLC) or by microbiological assay (MA) yield different results, with in general higher results from MA than from HPLC. This leads to the question of how to deal with different analytical methods in compiling standardised and internationally comparable food composition databases? A recent inventory on folate in European food composition databases indicated that currently MA is more widely used than HPCL. Since older Dutch values are produced by HPLC and newer values by MA, analytical methods and procedures for compiling folate data in the Dutch Food Composition Database (NEVO) were reconsidered and folate values were updated. This article describes the impact of this revision of folate values in the NEVO database as well as the expected impact on the folate intake assessment in the Dutch National Food Consumption Survey (DNFCS). The folate values were revised by replacing HPLC with MA values from recent Dutch analyses. Previously MA folate values taken from foreign food composition tables had been recalculated to the HPLC level, assuming a 27% lower value from HPLC analyses. These recalculated values were replaced by the original MA values. Dutch HPLC and MA values were compared to each other. Folate intake was assessed for a subgroup within the DNFCS to estimate the impact of the update. In the updated NEVO database nearly all folate values were produced by MA or derived from MA values which resulted in an average increase of 24%. The median habitual folate intake in young children was increased by 11-15% using the updated folate values. The current approach for folate in NEVO resulted in more transparency in data production and documentation and higher comparability among European databases. Results of food consumption surveys are expected to show higher folate intakes when using the updated values.

  16. Quantification of Niacin and Folate Contents in Peanuts

    USDA-ARS?s Scientific Manuscript database

    Peanuts (Arachis hypogaea L.) are known to be sources of several important B-vitamins, including niacin and folate. Recent research has shown that therapeutic doses of niacin are beneficial for vascular health; therefore, determination of the concentrations found in current varieties in production ...

  17. Sustained release of methotrexate through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2014-09-01

    To make chemotherapy more effective, sustained release of the drug is desirable. By controlling the release rates, constant therapeutic levels can be achieved which can avoid re-administration of drug. This helps to combat tumors more effectively with minimal side effects. The present study reports the control release of methotrexate through liquid-crystalline folate nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate methotrexate molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming methotrexate encapsulated folate nanoparticles as well as the release of methotrexate through these nanoparticles. It has been demonstrated that methotrexate release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on methotrexate release rates was also studied.

  18. Folate status and colorectal cancer risk: a 2016 update

    USDA-ARS?s Scientific Manuscript database

    The consensus of epidemiologic evidence indicates that an abundant intake of foodstuffs rich in folate conveys protection against the development of colorectal cancer, and perhaps some other common cancers as well. Pre-clinical models substantiate that the relationship is a genuinely causal one. Pre...

  19. Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice.

    PubMed

    Nogueira, Eugénia; Lager, Franck; Le Roux, Delphine; Nogueira, Patrícia; Freitas, Jaime; Charvet, Celine; Renault, Gilles; Loureiro, Ana; Almeida, Catarina R; Ohradanova-Repic, Anna; Machacek, Christian; Bernardes, Gonçalo J L; Moreira, Alexandra; Stockinger, Hannes; Burnet, Michael; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Bismuth, Georges; Cavaco-Paulo, Artur

    2015-12-01

    Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor β present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor β was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor β. These liposomal formulations also significantly increase the clinical benefit of the encapsulated methotrexate in vivo in arthritic mice, together with reduced expression of CD39 and CD73 ectonucleotidases by joint-infiltrating macrophages. Thus, our formulation might be a promising cost effective way to treat rheumatoid arthritis and delay or reduce methotrexate intolerance.

  20. Causes of Vitamin B12 and Folate Deficiency

    USDA-ARS?s Scientific Manuscript database

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetar...

  1. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  2. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  3. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  4. Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies.

    PubMed

    Ramaekers, V T; Thöny, B; Sequeira, J M; Ansseau, M; Philippe, P; Boemer, F; Bours, V; Quadros, E V

    2014-12-01

    Auto-antibodies against folate receptor alpha (FRα) at the choroid plexus that block N(5)-methyltetrahydrofolate (MTHF) transfer to the brain were identified in catatonic schizophrenia. Acoustic hallucinations disappeared following folinic acid treatment. Folate transport to the CNS prevents homocysteine accumulation and delivers one-carbon units for methyl-transfer reactions and synthesis of purines. The guanosine derivative tetrahydrobiopterin acts as common co-factor for the enzymes producing dopamine, serotonin and nitric oxide. Our study selected patients with schizophrenia unresponsive to conventional treatment. Serum from these patients with normal plasma homocysteine, folate and vitamin B12 was tested for FR autoantibodies of the blocking type on serial samples each week. Spinal fluid was analyzed for MTHF and the metabolites of pterins, dopamine and serotonin. The clinical response to folinic acid treatment was evaluated. Fifteen of 18 patients (83.3%) had positive serum FR auto-antibodies compared to only 1 in 30 controls (3.3%) (χ(2)=21.6; p<0.0001). FRα antibody titers in patients fluctuated over time varying between negative and high titers, modulating folate flux to the CNS, which explained low CSF folate values in 6 and normal values in 7 patients. The mean±SD for CSF MTHF was diminished compared to previously established controls (t-test: 3.90; p=0.0002). A positive linear correlation existed between CSF MTHF and biopterin levels. CSF dopamine and serotonin metabolites were low or in the lower normal range. Administration of folinic acid (0.3-1mg/kg/day) to 7 participating patients during at least six months resulted in clinical improvement. Assessment of FR auto-antibodies in serum is recommended for schizophrenic patients. Clinical negative or positive symptoms are speculated to be influenced by the level and evolution of FRα antibody titers which determine folate flux to the brain with up- or down-regulation of brain folate intermediates

  5. [MTHFR polymorphisms, dietary folate intake and risks to breast cancer].

    PubMed

    Gao, Chang-Ming; Kazuo, Tajima; Tang, Jin-Hai; Cao, Hai-Xia; Ding, Jian-Hua; Wu, Jian-Zhong; Wang, Jie; Liu, Yan-Ting; Li, Su-Ping; Su, Ping; Keitaro, Matsuo; Toshiro, Takezaki

    2009-07-01

    To evaluate the relationship between dietary folate intake and genetic polymorphisms of 5, 10-methylenetetrahydrofolate reductase (MTHFR) with reference to breast cancer risk. A case-control study was conducted with 669 cases and 682 population-based controls in Jiangsu province of China. MTHFR C677T and A1298C genotypes were identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. Dietary folate intake was assessed by using an 83-item food frequency questionnaire. Odds ratios (OR) were estimated with an unconditional logistic model. The frequencies of MTHFR C677T C/C, C/T and T/T genotypes were 32.37% (202/624), 48.88% (305/624) and 18.75% (117/624) in cases and 37.66% (235/624), 48.24% (301/624) and 14. 10% (88/624) in controls, respectively. The difference in distribution was significant (chi2 = 6.616, P = 0.037), the T/T genotype being associated with an elevated OR for breast cancer (1.62, 95% CI: 1.14 -2.30). The frequencies of MTHFR A1298C A/A, A/C and C/C were 71.47% (446/624), 27.08% (169/624) and 1.44% (9/624) in cases and 68.11%(425/624), 30.13% (188/624) and 1.76% (11/624)in controls,with no significant differences found (chi2 = 1.716, P= 0.424). Folate intake of cases [(263.00 +/- 137.38) microg/d] was significantly lower than that of controls [(285.12 +/- 149.61) microg/d] (t = -2. 830, P =0.005). Compared with the lowest tertile (< or = 199.08 microg/d) of folate intake, the adjusted OR for breast cancer in the top tertile (> or = 315.11 microg/d) was 0.70 (95% CI: 0.53 -0.92). Among individuals with the MTHFR A1298C A/A genotype,adjusted OR for breast cancer were 0.89 (95% CI: 0.62 - 1.27) and 1.69 (95% CI: 1.20 - 2.36) for the second to the third tertile of folate intake compared with the highest folate intake group (X2trend = 11.372, P = 0.001). The findings of the present study suggest that MTHFR genetic polymorphisms,and dietary intake of folate may modify susceptibility to breast cancer.

  6. A Novel Approach to Evaluating the Iron and Folate Status of Women of Reproductive Age in Uzbekistan after 3 Years of Flour Fortification with Micronutrients

    PubMed Central

    Hund, Lauren; Northrop-Clewes, Christine A.; Nazario, Ronald; Suleymanova, Dilora; Mirzoyan, Lusine; Irisova, Munira; Pagano, Marcello; Valadez, Joseph J.

    2013-01-01

    Background The Uzbekistan 1996 Demographic Health Survey reported 60.4% of women of reproductive age (WRA) had low hemoglobin concentrations (<120 g/L), and anemia was an important public health problem. Fortification of wheat flour was identified as an appropriate intervention to address anemia due to the ubiquitous consumption of wheat flour. A National Flour Fortification Program (NFFP) was implemented in 2005. Methodology/Principal Findings After 3-years of the NFFP, a national survey using large country-lot quality assurance sampling was carried out to assess iron, folate, hemoglobin and inflammation status of WRA; the coverage and knowledge of the fortified first grade UzDonMakhsulot (UDM) flour/grey loaf program; and consumption habits of women to investigate the dietary factors associated with anemia. Estimated anemia prevalence was 34.4% (95% CI: 32.0, 36.7), iron depletion 47.5% (95% CI: 45.1, 49.9) and folate deficiency 28.8% (95% CI: 26.8, 30.8); the effect of inflammation was minimal (4% with CRP >5 mg/L). Severe anemia was more prevalent among folate deficient than iron depleted WRA. Presence of UDM first grade flour or the grey loaf was reported in 71.3% of households. Among WRA, 32.1% were aware of UDM fortification; only 3.7% mentioned the benefits of fortification and 12.5% understood causes of anemia. Consumption of heme iron-containing food (91%) and iron absorption enhancers (97%) was high, as was the consumption of iron absorption inhibitors (95%). Conclusions/Significance The NFFP coincided with a substantial decline in the prevalence of anemia. Folate deficiency was a stronger predictor of severe anemia than iron depletion. However, the prevalence of iron depletion was high, suggesting that women are not eating enough iron or iron absorption is inhibited. Fortified products were prevalent throughout Uzbekistan, though UDM flour must be adequately fortified and monitored in the future. Knowledge of fortification and anemia was low, suggesting

  7. Nature gives us strength: exposure to nature counteracts ego-depletion.

    PubMed

    Chow, Jason T; Lau, Shun

    2015-01-01

    Previous research rarely investigated the role of physical environment in counteracting ego-depletion. In the present research, we hypothesized that exposure to natural environment counteracts ego-depletion. Three experiments were conducted to test this hypothesis. In Experiment 1, initially depleted participants who viewed pictures of nature scenes showed greater persistence on a subsequent anagram task than those who were given a rest period. Experiment 2 expanded upon this finding by showing that natural environment enhanced logical reasoning performance after ego-depleting task. Experiment 3 adopted a two- (depletion vs. no-depletion) -by-two (nature exposure vs. urban exposure) factorial design. We found that nature exposure moderated the effect of depletion on anagram task performance. Taken together, the present studies offer a viable and novel strategy to mitigate the negative impacts of ego-depletion.

  8. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  9. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  10. Endocytosis of GPI-linked membrane folate receptor-alpha.

    PubMed

    Rijnboutt, S; Jansen, G; Posthuma, G; Hynes, J B; Schornagel, J H; Strous, G J

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36-38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100-resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae.

  11. Endocytosis of GPI-linked membrane folate receptor-alpha

    PubMed Central

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36- 38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100- resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae. PMID:8567728

  12. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles.

    PubMed Central

    Schron, C M; Washington, C; Blitzer, B L

    1985-01-01

    In rabbit jejunal, but not ileal brush border membrane vesicles, an outwardly directed OH- gradient (pH 7.7 inside, pH 5.5 outside) markedly stimulated the initial velocity of folate (0.1 microM) uptake compared with uptake in the absence of a pH gradient. Under pH gradient conditions, folate was transiently accumulated at a concentration four times that found at equilibrium (over-shoot), implying uphill transport of the vitamin. Equilibrium folate uptake was inversely proportional to medium osmolality, suggesting uptake into an osmotically sensitive space. pH gradient-stimulated folate uptake was markedly reduced by inhibitors of anion exchange (4,4'-diisothiocyano-2,2'-disulfonic acid stilbene; 4-acetamido-4-isothiocyanostilbene-2,2'-disulfonic acid; furosemide), and was saturable (folate Km = 0.19 +/- 0.02 microM; Vmax = 12.8 +/- 0.4 pmol X mg protein-1 X min-1). Imposition of an inside-positive electrical potential did not stimulate folate uptake, suggesting that stimulation by a pH gradient was not due to an induced electrical potential. In contrast, an inwardly directed Na+ or K+ gradient did not stimulate folate uptake. These findings provide evidence for a carrier on the jejunal brush border membrane that mediates folate/OH- exchange (or H+/folate co-transport), and are consonant with the known presence of an outwardly directed OH- gradient in vivo (brush border acid microclimate), an acidic pH optimum for intestinal folate uptake, and the primary role of the jejunum in folate absorption. PMID:4056063

  13. Nutritional status of iron, vitamin B12, folate, retinol and anemia in children 1 to 11 years old: Results of the Ensanut 2012.

    PubMed

    Villalpando, Salvador; Cruz, Vanessa de la; Shamah-Levy, Teresa; Rebollar, Rosario; Contreras-Manzano, Alejandra

    2015-01-01

    To describe the frequency of anemia, iron, vitamin B12, folate, retinol and predictors of anemia among Mexican children from Ensanut 2012. Hemoglobin, ferritin, CRP, vitamin B12, retinol and folate concentrations were measured in 2 678 children aged 1-4 y and 4 275 children aged 5-11 y. Adjusted logistic regression models were constructed to assess the risk for anemia and micronutrient deficiencies. In preschoolers and scholars, the overall prevalence of anemia was 20.4 and 9.7%, iron deficiency 14 and 9.3%, low vitamin B12 (LB12S) 1.9 and 2.6%; Folate 0.30 and 0%, and retinol depletion (VADp) 15.7 and 2.3%, respectively. ID and VADp were negatively associated with Hb (coefficient: -0.38 and -0.45, p<0.05); a higher log-CRP was associated with higher risk for anemia and VADp (OR=1.13 and OR=2.1, p<0.05, respectively). Iron deficiency, anemia and VADp are some of the main nutritional problems among Mexican infants.

  14. 12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM CASTING OPERATIONS CEASED IN 1988. (11/14/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  15. Associations between Folate and Vitamin B12 Levels and Inflammatory Bowel Disease: A Meta-Analysis.

    PubMed

    Pan, Yun; Liu, Ya; Guo, Haizhuo; Jabir, Majid Sakhi; Liu, Xuanchen; Cui, Weiwei; Li, Dong

    2017-04-13

    Inflammatory bowel disease (IBD) patients may be at risk of vitamin B12 and folate insufficiencies, as these micronutrients are absorbed in the small intestine, which is affected by IBD. However, a consensus has not been reached on the association between IBD and serum folate and vitamin B12 concentrations. In this study, a comprehensive search of multiple databases was performed to identify studies focused on the association between IBD and serum folate and vitamin B12 concentrations. Studies that compared serum folate and vitamin B12 concentrations between IBD and control patients were selected for inclusion in the meta-analysis. The main outcome was the mean difference in serum folate and vitamin B12 concentrations between IBD and control patients. Our findings indicated that the average serum folate concentration in IBD patients was significantly lower than that in control patients, whereas the mean serum vitamin B12 concentration did not differ between IBD patients and controls. In addition, the average serum folate concentration in patients with ulcerative colitis (UC) but not Crohn's disease (CD) was significantly lower than that in controls. This meta-analysis identified a significant relationship between low serum folate concentration and IBD. Our findings suggest IBD may be linked with folate deficiency, although the results do not indicate causation. Thus, providing supplements of folate and vitamin B12 to IBD patients may improve their nutritional status and prevent other diseases.

  16. Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement

    PubMed Central

    Robinson, Bruce R.; Sathuvalli, Vidyasagar; Bamberg, John; Goyer, Aymeric

    2015-01-01

    Malnutrition is one of the world’s largest health concerns. Folate (also known as vitamin B9) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people’s folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent an appropriate organism for biofortification through traditional breeding based on their worldwide consumption and the fact that modern cultivars only contain about 6% of the daily recommended intake of folate. To start breeding potatoes with enhanced folate content, high folate potato material must be identified. In this study, 250 individual plants from 77 accessions and 10 Solanum species were screened for their folate content using a tri-enzyme extraction and microbial assay. There was a 10-fold range of folate concentrations among individuals. Certain individuals within the species Solanum tuberosum subsp. andigenum, Solanum vernei and Solanum boliviense have the potential to produce more than double the folate concentrations of commercial cultivars, such as Russet Burbank. Our results show that tapping into the genetic diversity of potato is a promising approach to increase the folate content of this important crop. PMID:26670256

  17. Folates as adjuvants to anticancer agents: Chemical rationale and mechanism of action.

    PubMed

    Danenberg, Peter V; Gustavsson, Bengt; Johnston, Patrick; Lindberg, Per; Moser, Rudolf; Odin, Elisabeth; Peters, Godefridus J; Petrelli, Nicholas

    2016-10-01

    Folates have been used with cytotoxic agents for decades and today they are used in hundreds of thousands of patients annually. Folate metabolism is complex. In the treatment of cancer with 5-fluorouracil, the administration of folates mechanistically leads to the formation of [6R]-5,10-methylene-tetrahydrofolate, and the increased concentration of this molecule leads to stabilization of the ternary complex comprising thymidylate synthase, 2'-deoxy-uridine-5'-monophosphate, and [6R]-5,10-methylene-tetrahydrofolate. The latter is the only natural folate that can bind directly in the ternary complex, with other folates requiring metabolic activation. Modulation of thymidylate synthase activity became central in the study of folate/cytotoxic combinations and, despite wide use, research into the folate component was neglected, leaving important questions unanswered. This article revisits the mechanisms of action of folates and evaluates commercially available folate derivatives in the light of current research. Better genomic insight and availability of new analytical techniques and stable folate compounds may open new avenues of research and therapy, ultimately bringing increased clinical benefit to patients.

  18. In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices.

    PubMed

    Kariluoto, Susanna; Edelmann, Minnamari; Nyström, Laura; Sontag-Strohm, Tuula; Salovaara, Hannu; Kivelä, Reetta; Herranen, Mirkka; Korhola, Matti; Piironen, Vieno

    2014-04-17

    The objective was to study folate production of yeast strains, bacteria isolated from oat bran, and selected lactic acid bacteria as well as one propionibacterium in oat and barley based models. Simultaneously, we aimed at sustaining the stability of viscosity, representing the physicochemical state of beta-glucan. Total folate contents were determined microbiologically and vitamers for selected samples by UHPLC. Folate in yeast cells comprised mainly 5-methyltetrahydrofolate and tetrahydrofolate. Folate production by microbes in YPD medium was different to that in cereal fermentations where vitamers included 5-methyltetrahydrofolate, 5,10-methenyltetrahydrofolate and formylated derivatives. Microbes producing significant amounts of folate without affecting viscosity were Saccharomyces cerevisiae ALKO743 and Candida milleri ABM4949 among yeasts and Pseudomonas sp. ON8 and Janthinobacterium sp. RB4 among bacteria. Net folate production was up to 120 ng/g after 24 h fermentation and could increase during 2-week storage. Glucose addition increased the proportion of 5-methyltetrahydrofolate. Streptococcus thermophilus ABM5097, Lactobacillus reuteri, and Propionibacterium sp. ABM5378 produced folate but in lower concentrations. Both endogenous and added microbes contribute to folate enhancement. Selection of microbes with folate producing capability and limited hydrolytic activity will enable the development of products rich in folate and beta-glucan. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice.

    PubMed

    Eckart, S; Hörtnagl, H; Kronenberg, G; Gertz, K; Hörster, H; Endres, M; Hellweg, R

    2013-08-15

    Folate deficiency has been linked to neurodegenerative and stress-related diseases such as stroke, dementia and depression. The role of the neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) in stress-related disorders and neurodegeneration has garnered increasing attention in recent years. Uracil misincorporation is involved in the neuropsychiatric dysfunction induced by experimental folate deprivation. However, the effects of folate deficiency on the expression of NGF and NT-3 in brain tissue have not yet been investigated. In a 2×2 design, aged mice lacking uracil-DNA N-glycosylase (Ung(-/-)) versus wild-type (Ung(+/+)) controls were subjected to a folate-deficient diet versus a regular diet for three months. Independent of genotype, folate deficiency led to decreased NGF protein levels in the frontal cortex and amygdala. In the hippocampus, NGF levels were increased in UNG(-/-) mice on the normal diet, but not under folate deficiency, while in UNG(+/+) mice, folate deprivation did not affect hippocampal NGF content. NT-3 protein concentrations were neither affected by genotype nor by folate deficiency. Altogether, the results of our study show that folate deficiency affects NGF levels in the frontal cortex, amygdala and hippocampus. The decrease in NGF content in the hippocampus in response to folate deficiency in Ung(-/-) mice may contribute to their phenotype of enhanced anxiety and despair-like behavior as well as to selective hippocampal neurodegeneration. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. The distribution of serum folate concentration and red blood cell indices in alcoholics.

    PubMed

    Cylwik, Bogdan; Naklicki, Marcin; Gruszewska, Ewa; Szmitkowski, Maciej; Chrostek, Lech

    2013-01-01

    Chronic alcohol consumption leads to malnutrition and to the deficiency of many vitamins. One of the most important is folate deficiency. Folate deficiency disrupts the process of hematopoiesis, which can be evaluated by the changes of red cell indices. The aim of this study was to determine the hematological disturbances by the measurement of red blood cell indices in a Polish population of chronic alcoholics according to folate status. We studied 80 consecutive chronic alcoholic men and 30 healthy controls. Patients were divided into 2 groups according to the folate concentration. The serum folate and vitamin B12 concentration and the blood count were determined. We have shown that the serum folate concentration was decreased in 40% of alcoholics, but there was no folate deficiency and the level of vitamin B12 was normal. There was no correlation between folate, vitamin B12 and hematological indices. We have observed that most hematological parameters (Hb, RBCs, and Hct) in alcoholics were decreased and only two of them (MCV and MCHC) were increased in comparison with the controls. We observed no significant correlation between the RBCs indices and the weekly alcohol intake, but the correlation between RBCs, Hb, Hct and the duration of dependence have been shown. We concluded that, there is no folate deficiency in the Polish alcoholic population but the abusers with low folate levels may already have some RBCs indices affected. It means that the Polish alcoholic population consumes a sufficient amount of vitamins, which prevents the occurrence of hematological disturbances.

  1. Individual differences in dopamine level modulate the ego depletion effect.

    PubMed

    Dang, Junhua; Xiao, Shanshan; Liu, Ying; Jiang, Yumeng; Mao, Lihua

    2016-01-01

    Initial exertion of self-control impairs subsequent self-regulatory performance, which is referred to as the ego depletion effect. The current study examined how individual differences in dopamine level, as indexed by eye blink rate (EBR), would moderate ego depletion. An inverted-U-shaped relationship between EBR and subsequent self-regulatory performance was found when participants initially engaged in self-control but such relationship was absent in the control condition where there was no initial exertion, suggesting individuals with a medium dopamine level may be protected from the typical ego depletion effect. These findings are consistent with a cognitive explanation which considers ego depletion as a phenomenon similar to "switch costs" that would be neutralized by factors promoting flexible switching. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Depleted Uranium in Repositories

    SciTech Connect

    Haire, M.J.; Croff, A.G.

    1997-12-31

    For uranium to be useful in most fission nuclear reactors, it must be enriched (i.e. the concentration of the fissile isotope 235U must be increased). Therefore, depleted uranium (DU)-uranium which has less than naturally occurring concentrations of 235U-is a co-product of the enrichment process. Four to six tons of DU exist for every ton of fresh light water reactor fuel. There were 407,006 MgU 407,000 metric tons (t) of DU stored on U.S. Department of Energy (DOE) sites as of July 1993. If this DU were to be declared surplus, converted to a stable oxide form, and emplaced in a near surface disposal facility, the costs are estimated to be several billion dollars. However, the U.S. Nuclear Regulatory Commission has stated that near surface disposal of large quantities of DU tails is not appropriate. Thus, there is the possibility that disposition via disposal will be in a deep geological repository. One alternative that may significantly reduce the cost of DU disposition is to use it beneficially. In fact, DOE has begun the Beneficial Uses of DU Project to identify large scale uses of DU and to encourage its reuse. Several beneficial uses, many of which involve applications in the repository per se or in managing the wastes to go into the repository, are discussed in this report.

  3. Genetic and Environmental Determinants of Plasma Total Homocysteine Levels: Impact of Population-wide Folate Fortification

    PubMed Central

    Nagele, Peter; Meissner, Konrad; Francis, Amber; Födinger, Manuela; Saccone, Nancy L.

    2011-01-01

    Objectives Folate metabolism is an important target for drug therapy. Drug-induced inhibition of folate metabolism often causes an elevation of plasma total homocysteine (tHcy). Plasma tHcy levels are influenced by several non-genetic (e.g., folate intake, age, smoking) as well as genetic factors. Over the last decade, several countries have implemented a nation-wide folate fortification program of all grain products. This investigation sought to determine the impact of folate fortification on the relative contribution of environmental and genetic factors to the variability of plasma tHcy. Methods Two cohorts were compared in this study, one from the U.S. (with folate fortification, n=281), and one from Austria (without folate fortification, n=139). Several environmental factors as well as previously identified gene variants important for tHcy levels (MTHFR C677T, MTHFR A1298C, MTRR A66G) were examined for their ability to predict plasma tHcy in a multiple linear regression model. Results Non-genetic, environmental factors had a comparable influence on plasma tHcy between the two cohorts (R2 ~ 0.19). However, after adjusting for other covariates, the tested gene variants had a substantially smaller impact among patients from the folate fortified cohort (R2= 0.021) compared to the non-folate fortified cohort (R2= 0.095). The MTHFR C677T polymorphism was the single most important genetic factor. Male gender, smoking and folate levels were important predictors for non-folate fortified patients; age for folate fortified. Conclusions Population-wide folate fortification had a significant effect on the variability of plasma tHcy and reduced the influence of genetic factors, most importantly the MTHFR 677TT genotype, and may be an important confounder for a personalized drug therapy. PMID:21597397

  4. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  5. Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Cabreiro, Filipe; Gustavsson, Peter; Copp, Andrew J; Greene, Nicholas D E

    2013-06-01

    Folates act as co-factors for transfer of one-carbon units for nucleotide production, methylation and other biosynthetic reactions. Comprehensive profiling of multiple folates can be achieved using liquid chromatography tandem mass spectrometry, enabling determination of their relative abundance that may provide an indication of metabolic differences between cell types. For example, cell lines exposed to methotrexate showed a dose-dependent elevation of dihydrofolate, consistent with inhibition of dihydrofolate reductase. We analysed the folate profile of E. coli sub-types as well as cell lines and embryonic tissue from both human and mouse. The folate profile of bacteria differed markedly from those of all the mammalian samples, most notably in the greater abundance of formyl tetrahydrofolate. The overall profiles of mouse and human fibroblasts and mid-gestation mouse embryos were broadly similar, with specific differences. The major folate species in these cell types was 5-methyl tetrahydrofolate, in contrast to lymphoblastoid cell lines in which the predominant form was tetrahydrofolate. Analysis of embryonic human brain revealed a shift in folate profile with increasing developmental stage, with a decline in relative abundance of dihydrofolate and increase in 5-methyl tetrahydrofolate. These cell type-specific and developmental changes in folate profile may indicate differential requirements for the various outputs of folate metabolism.

  6. Development and pre-clinical evaluation of new 68Ga-NOTA-folate conjugates for PET imaging of folate receptor-positive tumors.

    PubMed

    Aljammaz, Ibrahim; Al-Otaibi, Basim; Al-Hokbany, Nourah; Amer, Suad; Okarvi, Subhani

    2014-11-01

    In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers, we synthesized 68Ga-NOTA- and 68Ga-NOTAM-folate conjugates using a straightforward and a one-step simple reaction. Radiochemical yields were greater than 95% (decay-corrected) with total synthesis time of less than 20 min. Radiochemical purities were always greater than 98% without high-performance liquid chromatography (HPLC) purification. These synthetic approaches hold considerable promise as a rapid and simple method for 68Ga-folate conjugate preparation with high radiochemical yield in a short synthesis time. In vitro tests on the KB cell line showed that significant amounts of the radioconjugates were associated with cell fractions. Biodistribution studies in nude mice bearing human KB xenografts, demonstrated a significant tumor uptake and favorable biodistribution profile for 68Ga-NOTA-folate over the 68Ga-NOTAM-folate conjugate. The uptake in the tumors was blocked by excess injection of folic acid, suggesting a receptor-mediated process. These results demonstrate that the 68Ga-NOTA-folate conjugate may be useful as a molecular probe for detection and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis, as well as monitoring tumor response to treatment. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Mammalian folylpoly-. gamma. -glutamate synthetase. 4. In vitro and in vivo metabolism of folates and analogues and regulation of folate homeostasis

    SciTech Connect

    Cook, J.D.; Cichowicz, D.J.; George, S.; Lawler, Ann; Shane, B.

    1987-01-27

    The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B/sub 12/ status, can be mimicked in vitro by using purified enzyme. (/sup 3/H)Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B/sub 12/ deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly.

  8. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta.

    PubMed

    Nagai, Taku; Tanaka, Masashi; Tsuneyoshi, Yasuhiro; Xu, Baohui; Michie, Sara A; Hasui, Kazuhisa; Hirano, Hirofumi; Arita, Kazunori; Matsuyama, Takami

    2009-10-01

    Tumor-associated macrophages (TAMs) are frequently found in glioblastomas and a high degree of macrophage infiltration is associated with a poor prognosis for glioblastoma patients. However, it is unclear whether TAMs in glioblastomas promote tumor growth. In this study, we found that folate receptor beta (FR beta) was expressed on macrophages in human glioblastomas and a rat C6 glioma implanted subcutaneously in nude mice. To target FR beta-expressing TAMs, we produced a recombinant immunotoxin consisting of immunoglobulin heavy and light chain Fv portions of an anti-mouse FR beta monoclonal antibody and Pseudomonas exotoxin A. Injection of the immunotoxin into C6 glioma xenografts in nude mice significantly depleted TAMs and reduced tumor growth. The immunotoxin targeting FR beta-expressing macrophages will provide a therapeutic tool for human glioblastomas.

  9. Cobalamin inactivation by nitrous oxide produces severe neurological impairment in fruit bats: protection by methionine and aggravation by folates

    SciTech Connect

    van der Westhuyzen, J.; Fernandes-Costa, F.; Metz, J.

    1982-11-01

    Nitrous oxide, which inactivates cobalamin when administered to fruit bats, results in severe neurological impairment leading to ataxia, paralysis and death. This occurs after about 6 weeks in animals depleted of cobalamin by dietary restriction, and after about 10 weeks in cobalamin replete bats. Supplementation of the diet with pteroylglutamic acid caused acceleration of the neurological impairment--the first unequivocal demonstration of aggravation of the neurological lesion in cobalamin deficiency by pteroylglutamic acid. The administration of formyltetrahydropteroylglutamic acid produced similar aggravation of the neurological lesion. Supplementation of the diet with methionine protected the bats from neurological impairment, but failed to prevent death. Methionine supplementation protected against the exacerbating effect of folate, preventing the development of neurological changes. These findings lend support to the hypothesis that the neurological lesion in cobalamin deficiency may be related to a deficiency in the methyl donor S-adenosylmethionine which follows diminished synthesis of methionine.

  10. The Toxicity of Depleted Uranium

    PubMed Central

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447

  11. Ego depletion impairs implicit learning.

    PubMed

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  12. A Humanized Mouse Model for the Reduced Folate Carrier

    PubMed Central

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H.

    2008-01-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by 5 major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5’ untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776 bp coding sequence. The 5’ non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5’UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5’UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5’UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered

  13. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize.

    PubMed

    Marasas, Walter F O; Riley, Ronald T; Hendricks, Katherine A; Stevens, Victoria L; Sadler, Thomas W; Gelineau-van Waes, Janee; Missmer, Stacey A; Cabrera, Julio; Torres, Olga; Gelderblom, Wentzel C A; Allegood, Jeremy; Martínez, Carolina; Maddox, Joyce; Miller, J David; Starr, Lois; Sullards, M Cameron; Roman, Ana Victoria; Voss, Kenneth A; Wang, Elaine; Merrill, Alfred H

    2004-04-01

    Fumonisins are a family of toxic and carcinogenic mycotoxins produced by Fusarium verticillioides (formerly Fusarium moniliforme), a common fungal contaminant of maize. Fumonisins inhibit ceramide synthase, causing accumulation of bioactive intermediates of sphingolipid metabolism (sphinganine and other sphingoid bases and derivatives) as well as depletion of complex sphingolipids, which interferes with the function of some membrane proteins, including the folate-binding protein (human folate receptor alpha). Fumonisin causes neural tube and craniofacial defects in mouse embryos in culture. Many of these effects are prevented by supplemental folic acid. Recent studies in LMBc mice found that fumonisin exposure in utero increases the frequency of developmental defects and administration of folate or a complex sphingolipid is preventive. High incidences of neural tube defects (NTD) occur in some regions of the world where substantial consumption of fumonisins has been documented or plausibly suggested (Guatemala, South Africa, and China); furthermore, a recent study of NTD in border counties of Texas found a significant association between NTD and consumption of tortillas during the first trimester. Hence, we propose that fumonisins are potential risk factors for NTD, craniofacial anomalies, and other birth defects arising from neural crest cells because of their apparent interference with folate utilization.

  14. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.

  15. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  16. The Effect of Folate and Folate Plus Zinc Supplementation on Endocrine Parameters and Sperm Characteristics in Sub-Fertile Men: A Systematic Review and Meta-Analysis.

    PubMed

    Irani, Morvarid; Amirian, Malihe; Sadeghi, Ramin; Lez, Justine Le; Latifnejad Roudsari, Robab

    2017-08-29

    To evaluate the effect of folate and folate plus zinc supplementation on endocrine parameters and sperm characteristics in sub fertile men. We conducted a systematic review and meta-analysis. Electronic databases of Medline, Scopus , Google scholar and Persian databases (SID, Iran medex, Magiran, Medlib, Iran doc) were searched from 1966 to December 2016 using a set of relevant keywords including "folate or folic acid AND (infertility, infertile, sterility)".All available randomized controlled trials (RCTs), conducted on a sample of sub fertile men with semen analyses, who took oral folic acid or folate plus zinc, were included. Data collected included endocrine parameters and sperm characteristics. Statistical analyses were done by Comprehensive Meta-analysis Version 2. In total, seven studies were included. Six studies had sufficient data for meta-analysis. "Sperm concentration was statistically higher in men supplemented with folate than with placebo (P < .001)". However, folate supplementation alone did not seem to be more effective than the placebo on the morphology (P = .056) and motility of the sperms (P = .652). Folate plus zinc supplementation did not show any statistically different effect on serum testosterone (P = .86), inhibin B (P = .84), FSH (P = .054), and sperm motility (P = .169) as compared to the placebo. Yet, folate plus zinc showed statistically higher effect on the sperm concentration (P < .001), morphology (P < .001), and serum folate level (P < .001) as compared to placebo. Folate plus zinc supplementation has a positive effect on sperm characteristics in sub fertile men. However, these results should be interpreted with caution due to the important heterogeneity of the studies included in this meta-analysis. Further trials are still needed to confirm the current findings.

  17. Antifolate-Induced Depletion of Intracellular Glycine and Purines Inhibits Thymineless Death in E. coli

    PubMed Central

    Kwon, Yun Kyung; Higgins, Meytal B.; Rabinowitz, Joshua D.

    2010-01-01

    Despite the therapeutic importance of antifolates, the links between their direct antimetabolite activity and downstream consequences remain incompletely understood. Here we employ metabolomics to examine the complete metabolic effects of the antibiotic trimethoprim in E. coli. In rich media, trimethoprim treatment causes thymineless death. In minimal media, in contrast, trimethoprim addition results in rapid stoppage of cell growth and stable cell stasis. We show that initial impairment of cell growth is due to rapid depletion of glycine and associated activation of the stringent response. Long-term stasis is due to purine insufficiency. Thus, E. coli has dual systems for surviving folate depletion and avoiding thymineless death: a short-term response based on sensing of amino acids and a long-term response based on sensing of nucleotides. PMID:20553049

  18. No relation between folate and homocysteine levels and depression in early pregnant women.

    PubMed

    Watanabe, Hiroko; Suganuma, Nobuhiko; Hayashi, Ayako; Hirowatari, Yumiko; Hirowatari, Tsuneharu; Ohsawa, Masami

    2010-12-01

    The objective in this study was to evaluate the association between folate and homocysteine (Hcy) levels and depressive symptoms in early pregnancy. A cross-sectional study was conducted with 86 pregnant women in the first trimester. A Japanese version of the Center for Epidemiologic Studies Depression (CES-D) scale was used to screen for depression. Non-fasting blood samples were collected from the women to measure folate and Hcy levels. Fifty-three (61.6%) women scored at or above a clinical cut-off of 16, and were classified with depression. In logistic regression analyses, no significant associations were observed between the incidence of depression in the first trimester and elevated Hcy and deficiencies of serum folate, folate intake, vitamin B6 intake and vitamin B12 intake. Folate and Hcy concentrations, and folate consumption, may not be protective against depression in early pregnancy.

  19. Serum Vitamin B12 and Folate Levels in Women Taking Oral Contraceptives

    PubMed Central

    Mountifield, J. A.

    1986-01-01

    Serum vitamin B12 and erythrocyte folate levels were determined in a group of healthy women eating a balanced diet. Approximately 50% were using oral contraceptives. Vitamin B12 levels were lower in the oral contraceptive users. However, their folate levels were no different from those of non-users. Age had no effect on either vitamin B12 or folate levels. Oral contraceptive users taking multiple vitamin tablets containing vitamin B12 and folate had slightly higher folate levels, but their vitamin B12 levels were no different from those of OC users who were not taking vitamin tablets. Hemoglobin and hematocrit levels were not affected by oral contraceptive steroids. No case of megaloblastosis was found. Regular folate supplementation is not required for OC users. In fact, such supplementation may be dangerous. PMID:21267137

  20. Testing fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  1. Regulation of Reduced Folate Carrier (RFC) by Vitamin D Receptor at the Blood-Brain Barrier.

    PubMed

    Alam, Camille; Hoque, Md Tozammel; Finnell, Richard H; Goldman, I David; Bendayan, Reina

    2017-09-08

    Folates are essential for brain development and function. Folate transport in mammalian tissues is mediated by three major folate transport systems, i.e., reduced folate carrier (RFC), proton-coupled folate transporter (PCFT) and folate receptor alpha (FRα), known to be regulated by ligand-activated nuclear receptors such as vitamin D receptor (VDR). Folate uptake at the choroid plexus, which requires the actions of both FRα and PCFT, is critical to cerebral folate delivery. Inactivating FRα or PCFT mutations cause severe cerebral folate deficiency resulting in early childhood neurodegeneration. The objective of this study was to investigate the role of RFC in folate uptake at the level of the blood-brain barrier (BBB) and its potential regulation by VDR. We detected robust expression of RFC in different in vitro BBB model systems, particularly in immortalized cultures of human cerebral microvascular endothelial cells (hCMEC/D3) and isolated mouse brain capillaries. [(3)H]-methotrexate uptake by hCMEC/D3 cells at pH 7.4 was inhibited by PT523 and pemetrexed, antifolates with high affinity for RFC. We also showed that activation of VDR through calcitriol (1,25-dihydroxyvitamin D3) exposure up-regulates RFC mRNA and protein expression as well as function in hCMEC/D3 cells and isolated mouse brain capillaries. We further demonstrated that RFC expression could be down-regulated by VDR-targeting siRNA, further confirming the role of VDR in the direct regulation of this folate transporter. Together, these data suggest that augmenting RFC functional expression could constitute a novel strategy for enhancing brain folate delivery for the treatment of neurometabolic disorders caused by loss of FRα or PCFT function.

  2. Quantification of folate in fruits and vegetables: A fluorescence-based homogeneous assay.

    PubMed

    Martin, Harry; Comeskey, Daniel; Simpson, Robert M; Laing, William A; McGhie, Tony K

    2010-07-15

    A high-throughput, homogeneous, fluorescence polarization, and fluorescence intensity assay has been developed for the measurement of folate in fruits and vegetables. This assay is based on the competitive displacement of the fluorescent folate ligands Alexa Fluor (Alexa) 594-folate and Alexa 660-folate from bovine milk folate-binding protein by folates in fruit and vegetable extracts. These fluorescent ligands are employed because their excitation and emission maxima are in regions of the spectrum with minimal autofluorescence in many extracts. Folate-binding protein and Alexa-folate were typically used at concentrations of 0.5 microg/ml and 5nM, respectively, in 20-microl volumes in 384-well microplates. The assay is complete within 100 min. The folate estimate is unaffected by the heterogeneity of polyglutamyl residues that complicates the liquid chromatography-mass spectrometry (LC-MS)-based methods of quantification. In this assay, folic acid had an apparent affinity 2.5-fold greater than 5-methyltetrahydrofolate (5MTHF); therefore, it cannot be used to quantify folate when both natural and synthetic folate are present. 5MTHF-equivalent values were measured in broccoli (240 microg/100g), strawberry (113 microg/100g), white grape (32 microg/100g), orange (44 microg/100g), tomato (12 microg/100g), raspberry (31 microg/100g), banana (29 microg/g), and kiwifruit (36 microg/100g). These data are similar to published values. However, the assay will not detect 5-formyltetrahydrofolate which is a significant constituent of the total folate in lettuce, spinach, carrot, and peppers. 2010 Elsevier Inc. All rights reserved.

  3. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    PubMed

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  4. Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis

    PubMed Central

    Chen, P; Li, C; Li, X; Li, J; Chu, R; Wang, H

    2014-01-01

    Background: Many epidemiological studies have investigated the association between folate intake, circulating folate level and risk of breast cancer; however, the findings were inconsistent between the studies. Methods: We searched the PubMed and MEDLINE databases updated to January, 2014 and performed the systematic review and meta-analysis of the published epidemiological studies to assess the associations between folate intake level, circulating folate level and the overall risk of breast cancer. Results: In all, 16 eligible prospective studies with a total of 744 068 participants and 26 205 breast cancer patients and 26 case–control studies with a total of 16 826 cases and 21 820 controls that have evaluated the association between folate intake and breast cancer risk were identified. Pooled analysis of the prospective studies and case–control studies suggested a potential nonlinearity relationship for dietary folate intake and breast cancer risk. Prospective studies indicated a U-shaped relationship for the dietary folate intake and breast cancer risk. Women with daily dietary folate intake between 153 and 400 μg showed a significant reduced breast cancer risk compared with those <153 μg, but not for those >400 μg. The case–control studies also suggested a significantly negative correlation between the dietary folate intake level and the breast cancer risk. Increased dietary folate intake reduced breast cancer risk for women with higher alcohol intake level, but not for those with lower alcohol intake. No significant association between circulating folate level and breast cancer risk was found when the results of 8 identified studies with 5924 participants were pooled. Conclusions: Our studies suggested that folate may have preventive effects against breast cancer risk, especially for those with higher alcohol consumption level; however, the dose and timing are critical and more studies are warranted to further elucidate the questions

  5. Moderately volatile elements. [in meteorites

    NASA Technical Reports Server (NTRS)

    Palme, H.; Larimer, J. W.; Lipschutz, M. E.

    1988-01-01

    That the fractionation of moderately volatile and highly volatile elements was a major process in the early solar system is reflected in the variable concentrations of Rb and associated variations in initial Sr-isotopic ratios in chondritic meteorites. Greater knowledge of processes leading to volatile depletion would place stronger constraints on the formation conditions of solid material in the solar system. It will especially become possible to ascertain whether evaporation or incomplete condensation was the major process in establishing the elemental abundance patterns observed in primitive meteorites and planets.

  6. Transequatorial Propagation and Depletion Precursors

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Bust, G. S.; Kaeppler, S. R.; Frissell, N. A.; Paxton, L. J.

    2014-12-01

    The bottomside equatorial ionosphere in the afternoon and evening sector frequently evolves rapidly from smoothly stratified to violently unstable with large wedges of depleted plasma growing through to the topside on timescales of a few tens of minutes. These depletions have numerous practical impacts on radio propagation, including amplitude scintillation, field-aligned irregularity scatter, HF blackouts, and long-distance transequatorial propagation at frequencies above the MUF. Practical impacts notwithstanding, the pathways and conditions under which depletions form remain a topic of vigorous inquiry some 80 years after their first report. Structuring of the pre-sunset ionosphere---morphology of the equatorial anomalies and long-wavelength undulations of the isodensity contours on the bottomside---are likely to hold some clues to conditions that are conducive to depletion formation. The Conjugate Depletion Experiment is an upcoming transequatorial forward-scatter HF/VHF experiment to investigate pre-sunset undulations and their connection with depletion formation. We will present initial results from the Conjugate Depletion Experiment, as well as a companion analysis of a massive HF propagation data set.

  7. Polymorphisms in genes involved in folate metabolism modify the association of dietary and circulating folate and vitamin B-6 with cervical neoplasia.

    PubMed

    Tomita, Luciana Y; D'Almeida, Vania; Villa, Luisa L; Franco, Eduardo L; Cardoso, Marly A

    2013-12-01

    High folate intake has been suggested as an important factor in cancer prevention; however, previous studies on the relation among folate intake, serum folate, and plasma homocysteine (hcy) are controversial. We conducted a hospital-based, case-control study in Brazil investigating associations between dietary and circulating vitamins B-6 and B-12 and folate, hcy, genotypes of folate-metabolizing enzyme methylenetetrahydrofolate reductase (MTHFR C677T, A1298C), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR A2756G), methionine synthase reductase (MTRR A66G), and reduced folate carrier (RFC1 G80A) and risk of cervical intraepithelial neoplasia (CIN) grades 1 (CIN1), 2 (CIN2), and 3 (CIN3). The study was composed by 453 controls, 140 CIN1, 126 CIN2, and 231 CIN3. We investigated the joint effects of genetic variants of folate-related genes using genetic risk scores (GRSs) by summing the number of risk alleles for CIN1 and CIN2+ (CIN2 and CIN3 cases). The OR (95% CI) for CIN1 and CIN2+ per each risk allele were 1.29 (1.01, 1.65) and 1.22 (1.01, 1.46), respectively. An association between folate intake and CIN2+ was observed only after stratification according to GRS: crude OR (95% CI) for lower folate intake and GRS ≥ 4 was 1.67 (0.92, 3.04) (P-trend < 0.001) compared with higher folate intake (above the median) and GRS ≤ 3. The CIN2+ risk of lower serum vitamin B-6 and GRS ≥ 4 was 2.14 (0.92, 5.02) (P-trend = 0.05) and lower serum folate (below the median) and GRS ≥ 4 was 0.49 (0.20, 1.17) (P-trend = 0.05) after adjustment for confounding variables and human papillomavirus infection. Our data suggest that polymorphisms in genes related to folate metabolism modify the association of dietary and circulating folate and vitamin B-6 with cervical neoplasia.

  8. The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet.

    PubMed

    McKillop, Derek J; Pentieva, Kristina; Daly, Donna; McPartlin, Joseph M; Hughes, Joan; Strain, J J; Scott, John M; McNulty, Helene

    2002-12-01

    Folate intake is strongly influenced by various methods of cooking that can degrade the natural forms of the vitamin in foods. The aim of the present study was to determine the effect of different cooking methods on folate retention in various foods that contribute to folate intake in the UK diet. Typical purchasing and cooking practices of representative food folate sources were determined from a questionnaire survey of local shoppers (n 100). Total folate was determined by microbiological assay (Lactobacillus casei NCIMB 10463) following thermal extraction and tri-enzyme (alpha-amylase, protease and conjugase) treatment in raw foods and after typical methods of cooking. Boiling for typical time periods resulted in only 49 % retention of folate in spinach (191.8 and 94.4 microg/100 g for raw and boiled spinach respectively; P<0.005), and only 44 % in broccoli (177.1 and 77.0 microg/100 g for raw and boiled broccoli respectively, P<0.0001). Steaming of spinach or broccoli, in contrast, resulted in no significant decrease in folate content, even for the maximum steaming periods of 4.5 min (spinach) and 15.0 min (broccoli). Prolonged grilling of beef for the maximum period of 16.0 min did not result in a significant decrease in folate content (54.3 and 51.5 microg/100 g for raw and grilled beef respectively). Compared with raw values, boiling of whole potatoes (skin and flesh) for 60.0 min did not result in a significant change in folate content (125.1 and 102.8 microg/100 g for raw and boiled potato respectively), nor was there any effect on folate retention whether or not skin was retained during boiling. These current results show that the retention of folate in various foods is highly dependent both on the food in question and the method of cooking. Thus, public health efforts to increase folate intake in order to improve folate status should incorporate practical advice on cooking.

  9. A novel splice variant of folate receptor 4 predominantly expressed in regulatory T cells

    PubMed Central

    2012-01-01

    Background Regulatory T cells (Tregs) are required for proper maintenance of immunological self-tolerance and immune homeostasis. Folate receptor 4 (FR4) is expressed at high levels in transforming growth factor-beta (TGF-β)-induced Tregs and natural Tregs. Moreover, antibody-mediated targeting of FR4 is sufficient to mediate Treg depletion. Results In this study, we describe a novel FR4 transcript variant, FR4D3, in which exon 3 is deleted. The mRNA of FR4D3 encodes a FR4 variant truncated by 189 bp. FR4D3 was found to be predominantly expressed in CD4+CD25+ Treg cells. Overexpression of FR4D3 in CD4+CD25+ Treg cells in vitro stimulated proliferation, which may modulate the ability of these cells to bind and incorporate folic acid. Conclusions Our results suggested that high levels of FR4D3 may be critical to support the substantial proliferative capacity of Treg cells. PMID:22694797

  10. [Folate and folic acid intake estimation and food enrichment requirements].

    PubMed

    Olivares Martínez, Ana Belén; Ros Berruezo, Gaspar; Bernal Cava, M José; Martínez Graciá, Carmen; Periago Castón, M Jesús

    2005-03-01

    The term "folate" is a generic way to name the different forms derived from folic acid, one of the B vitamins (specifically B9 vitamin). They are essential in the metabolism when they act as cofactors in the transfer reactions of one carbon. However, only plants and microorganisms are able to synthesize them de novo, in such a way that both animals and human beings have to intake them through their diet. Folic acid is widely spread in nature, mainly in vegetables, liver ans cereals. However, nowadays, the lack of folates in the diet is one of the most common nutritional deficiencies in the world, and it has serious consequences on human health. There is evidence that even in developed countries folate intake is usually low; and even, is some cases, below optima levels. The authorities in several countries have adapted different norms related to folic acid, fortifying staple food such as dairy products or cereals, mandatory (U.S.A., Canada or Chile) or voluntary (most of the European countries).

  11. Professor John Scott, folate and neural tube defects.

    PubMed

    Hoffbrand, A Victor

    2014-02-01

    John Scott (1940-2013) was born in Dublin where he was to spend the rest of his career, both as an undergraduate and subsequently Professor of Biochemistry and Nutrition at Trinity College. His research with the talented group of scientists and clinicians that he led has had a substantial impact on our understanding of folate metabolism, mechanisms of its catabolism and deficiency. His research established the leading theory of folate involvement with vitamin B12 in the pathogenesis of vitamin B12 neuropathy. He helped to establish the normal daily intake of folate and the increased requirements needed either in food or as a supplement before and during pregnancy to prevent neural tube defects. He also suggested a dietary supplement of vitamin B12 before and during pregnancy to reduce the risk of neural tube defects. It would be an appropriate epitaph if fortification of food with folic acid became mandatory in the UK and Ireland, as it is in over 70 other countries.

  12. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    PubMed Central

    Müller, Cristina; Reber, Josefine; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice. PMID:24633429

  13. Endothelial function, folate pharmacogenomics, and neurocognition in psychotic disorders.

    PubMed

    Grove, Tyler; Taylor, Stephan; Dalack, Gregory; Ellingrod, Vicki

    2015-05-01

    Cardiovascular disease (CVD) is a well-described complication of schizophrenia, however, mechanisms connecting CVD with other facets of psychotic disorders, such as neurocognition, are not understood. The current study examined folate metabolism as a potential mechanism of CVD and neurocognitive deficits by: 1) using endothelial dysfunction as a biomarker of CVD, and 2) comparing enzymes associated with neurocognition, CVD, and critical to folate metabolism, methylenetetrahydrofolate reductase (MTHFR) and catechol-o-methyl transferase (COMT). Endothelial function was assessed in 147 participants with schizophrenia, schizoaffective disorder, and psychotic disorder not otherwise specified grouped by MTHFR and COMT allele status. Regression models were used to compare neurocognitive performance based on the Brief Assessment of Cognition in Schizophrenia (BACS). Overall, endothelial function predicted BACS composite z-scores after controlling for age, race, level of education, serum folate levels, and MTHFR/COMT risk allele status. Participants with at least one or more MTHFR and/or COMT risk alleles had lower BACS Composite and BACS Symbol Coding adjusted mean z-scores than those with both MTHFR CC and COMT Met/Met genotypes. Thus, endothelial dysfunction may contribute to the neurocognitive deficits seen in psychotic disorders. CVD interventions may not only reduce CVD-related morbidity, but also lessen progressive neurocognitive deficits reported in psychotic disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Folates and S-adenosylmethionine for major depressive disorder.

    PubMed

    Papakostas, George I; Cassiello, Clair F; Iovieno, Nadia

    2012-07-01

    Interest in nonpharmaceutical supplements for treating major depressive disorder (MDD) has increased significantly, both among patients and among clinicians during the past decades. Despite the large array of antidepressants (ADs) available, many patients continue to experience relatively modest response and remission rates, in addition to a burden of side effects that can hinder treatment compliance and acceptability. In this article, we review the literature on folates and S-adenosylmethionine (SAMe), 2 natural compounds linked in the 1-carbon cycle metabolic pathway, for which substantial evidence supports their involvement in mood disorders. Background information, efficacy data, proposed mechanisms of action, and side effects are reviewed. Based on existing data, supplementation with SAMe, as well as with various formulations of folates, appears to be efficacious and well tolerated in reducing depressive symptoms. Compared with other forms of folates, 5-methyltetrahydrofolate (L-methylfolate or 5-MTHF) may represent a preferable treatment option for MDD given its greater bioavailability in patients with a genetic polymorphism, and the lower risk of specific side effects associated with folic acid. Although further randomized controlled trials in this area appear warranted, SAMe and L-methylfolate may represent a useful addition to the AD armamentarium.

  15. Folate intake of older adults before and after fortification of grain products.

    PubMed

    DeWolfe, Judy

    2007-01-01

    To determine whether fortification allowed older adults in the Kingston, Frontenac, and Lennox & Addington (KFL&A) Public Health area to obtain adequate amounts of food folate, and the proportion at risk of consuming more than the upper limit (UL) of folic acid (1,000 mcg). Dietary intake of a convenience sample of 103 healthy, active older adults (age range: 65 to 95 years) was measured using three 24-hour recalls. Dietary folate pre- and post-fortification was estimated. Mean dietary folate increased from pre- to post-fortification, but 43.4% of women and 20% of men still consumed less than the Estimated Average Requirement of 320 mcg dietary folate equivalent. No intakes exceeded the UL. Participants whose diet met grain products and vegetable and fruit recommendations of Canada's Food Guide to Healthy Eating consumed significantly more folate. Despite fortification, some older adults in the KFL&A area may not be obtaining enough folate to meet their nutritional needs, and may be at risk for health problems associated with folate deficiency. However, without concomitant serum folate measurements, the proportion is not known. Dietitians need to continue promoting foods naturally rich in folate, along with folic acid-fortified foods. While none of the older adults consumed more than the UL, some could exceed this amount if folic acid supplements were added to a folic acid-rich diet.

  16. Folates stability in two types of rye breads during processing and frozen storage.

    PubMed

    Gujska, Elzbieta; Michalak, Joanna; Klepacka, Joanna

    2009-06-01

    High-performance liquid chromatography was used to study the stability of folate vitamers in two types of rye breads after baking and 16 weeks of frozen storage. Bread made using sourdough seeds contained less total folate (74.6 microg/100 g dry basis, expressed as folic acid) than the whole rye flour (79.8 microg/100 g dry basis) and bread leavened only with baker's yeast (82.8 microg/100 g dry basis). Most importantly, it was generated by a significant decrease in 5-CH3-H4folate form. The baking process caused some changes in folate distribution. Storage of breads at -18 degrees C for 2 weeks did not have a significant effect (p < 0.05) on total folates compared to the content directly after baking. After a 5-weeks storage period, a significant decrease (p < 0.05) in the content of total folates was recorded and it dropped on average by 14% for both type of breads. After a longer period of storage (16 weeks), a 25% loss of folates in the bread made with baker's yeast and a 38% loss in the bread fermented with sourdough seeds was found. Retention of 5-CH3-H4folate and 10-HCO-H2folate forms were much lower in the bread made with a sourdough addition than with baker's yeast only.

  17. Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts.

    PubMed

    Laiño, Jonathan Emiliano; Leblanc, Jean Guy; Savoy de Giori, Graciela

    2012-05-01

    Folate is a B-group vitamin that cannot be synthesized by humans and must be obtained exogenously. Although some species of lactic acid bacteria (LAB) can produce folates, little is known about the production of this vitamin by yogurt starter cultures. Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were isolated from artisanal Argentinean yogurts and were grown in folate-free culture medium (FACM) and nonfat milk after which intracellular and extracellular folate production were evaluated. From the initial 92 isolated LAB strains, 4 L. delbrueckii subsp. bulgaricus and 32 S. thermophilus were able to grow in the absence of folate. Lactobacillus delbrueckii subsp. bulgaricus CRL 863 and S. thermophilus CRL 415 and CRL 803 produced the highest extracellular folate levels (from 22.3 to 135 µg/L) in FACM. In nonfat milk, these strains were able to increase the initial folate concentrations by almost 190%. This is the first report where native strains of L. delbrueckii subsp. bulgaricus were shown to produce natural folate. The LAB strains identified in this study could be used in developing novel fermented products bio-enriched in natural folates that could in turn be used as an alternative to fortification with the controversial synthetic chemical folic acid.

  18. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing.

    PubMed

    Scaglione, Francesco; Panzavolta, Giscardo

    2014-05-01

    1. Folate, an essential micronutrient, is a critical cofactor in one-carbon metabolism. Mammals cannot synthesize folate and depend on supplementation to maintain normal levels. Low folate status may be caused by low dietary intake, poor absorption of ingested folate and alteration of folate metabolism due to genetic defects or drug interactions. 2. Folate deficiency has been linked with an increased risk of neural tube defects, cardiovascular disease, cancer and cognitive dysfunction. Most countries have established recommended intakes of folate through folic acid supplements or fortified foods. External supplementation of folate may occur as folic acid, folinic acid or 5-methyltetrahydrofolate (5-MTHF). 3. Naturally occurring 5-MTHF has important advantages over synthetic folic acid - it is well absorbed even when gastrointestinal pH is altered and its bioavailability is not affected by metabolic defects. Using 5-MTHF instead of folic acid reduces the potential for masking haematological symptoms of vitamin B12 deficiency, reduces interactions with drugs that inhibit dihydrofolate reductase and overcomes metabolic defects caused by methylenetetrahydrofolate reductase polymorphism. Use of 5-MTHF also prevents the potential negative effects of unconverted folic acid in the peripheral circulation. 4. We review the evidence for the use of 5-MTHF in preventing folate deficiency.

  19. [Evaluation of folate substitution in women with epilepsy. Determination of erythrocyte folic acid concentrations].

    PubMed

    Bauer, J; Bös, M; Rück, J; Stoffel-Wagner, B

    2011-04-01

    Insufficient maternal folate concentrations appear to be a fetal risk factor for neural tube defects (NTD). Erythrocyte folate concentrations are widely accepted as an indicator of tissue folate storage. We retrospectively evaluated erythrocyte folate concentrations to examine if a recommended daily dosage of 5 mg folic acid is sufficient to balance the impact of antiepileptic drugs (AED) on folate metabolism in women with epilepsy. Data of 48 women (mean age 30.3 years) with idiopathic epilepsy with generalized seizures (n=12) or symptomatic epilepsy with focal seizures (n=36) were available, 43 women submitted to further analysis and 30 women received AED monotherapy. Duration of folic acid supplementation varied between 0.5 and 12 months. The daily dosage of folic acid ranged from 0.4 to 15 mg and 32 women received 5 mg/day. Erythrocyte folate concentrations ranged from 282 to 1596 ng/ml (mean 780 ng/ml). In 29 out of the 32 women (90.6%) on 5 mg folic acid per day, red cell folate was ≥400 ng/ml. In previous studies the risk for NTD was estimated to be 0.8‰ if red cell folate was ≥400 ng/ml. Our results suggest that 5 mg/day folic acid as preconception supplementation in women with epilepsy is effective to balance the impact of AEDs on folate metabolism in women with epilepsy.

  20. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats.

    PubMed

    Xue, J; Zempleni, J

    2013-11-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.

  1. Folate intakes from diet and supplements may place certain Canadians at risk for folic acid toxicity.

    PubMed

    Mudryj, Adriana N; de Groh, Margaret; Aukema, Harold M; Yu, Nancy

    2016-10-01

    To examine the prevalence of folate inadequacy and toxicity based on usual intakes from food and supplements, as well as biomarkers of folate, secondary data analyses were performed using cross-sectional, nationally representative data from the Canadian Community Health Survey, Cycle 2.2 (n 32 776), as well as biomarker data from the Canadian Health Measures Survey, Cycles 1, 2 and 3 (n 15 754). On the basis of unfortified food sources, Canadians would struggle to consume adequate amounts of folate. When folate intakes from all food sources were considered, the overall prevalence of folate inadequacy was low across all age/sex groups, with the exception of females >70 years. However, >10 % of supplement users were above the tolerable upper intake level, increasing to almost 18 % when overage factors were accounted for. In addition, between 20 and 52 % of supplement users had elevated erythrocyte folate concentrations, depending on the cut-off used. Results from this study suggest that insufficient dietary intakes of folate in Canadians have been ameliorated because of the fortification policy, although folate inadequacy still exists across all age groups. However, supplement users appear to be at an increased risk of folic acid (FA) overconsumption as well as elevated erythrocyte folate. As such, the general population should be informed of the potential risks of FA overconsumption resulting from supplement use. This study suggests a need for more careful assessment of the risks and benefits of food fortification, particularly fortification above mandated levels, and FA supplement use in the general population.

  2. Urinary folate excretion in chronic ethanol- and diet-treated rats

    SciTech Connect

    Collins, T.D.; McMartin, K.E.; Bairnsfather, L.

    1986-03-05

    Acute ethanol treatment of rats produces a marked increase in urinary folate excretion, which accumulates in correlation with the duration of ethanol treatment. In order to study the role of excess urinary folate excretion in the development of folate deficiency by chronic ethanol feeding, groups of male Sprague-Dawley rats were maintained for four months on one of the following liquid diets: ethanol, pair-fed control, ethanol minus folic acid, and pair-fed control minus folic acid. A fifth group was provided a control chow diet ad libitum. Blood ethanol levels were generally maintained between 80-150 mg/dl at various times of the day. Decrease in plasma and tissue folate levels occurred within four weeks in all liquid diet groups compared to chow rats and within two weeks for urinary folate levels. Greater effects were generally observed in both folate-deficient groups than in the control or ethanol group. Acute ethanol treatment of rats from the various diet groups produced increases in urinary folate excretion in all groups except the ethanol minus folic acid diet group. When the folate system of rats are compromised by dietary deprivation and/or chronic ethanol treatment, these results suggest that urinary folate excretion is greatly reduced as a conservation measure.

  3. Dietary folate and vitamin B12 supplementation and consequent vitamin deposition in chicken eggs.

    PubMed

    Bunchasak, Chaiyapoom; Kachana, Sompong

    2009-10-01

    We determined the effects of dietary supplementation with folate and vitamin B(12) on lipid metabolism and the deposition of these vitamins in eggs of laying hens (age 64-72 weeks). Four levels of folate (0, 0.5, 4 and 10 mg/kg) and three levels of vitamin B(12) (0, 0.01 and 0.08 mg/kg) were added to the basal diet for 8 weeks in a 4 x 3 factorial completely randomized design study. No significant physiological interaction between folate and vitamin B(12) was evident under our experimental conditions. There was no effect of vitamins supplementation on egg production or feed intake. Supplementation with folate significantly elevated serum (p < 0.01) and yolk (p < 0.05) folate levels. Supplementation with vitamin B(12) did not significantly affect serum or egg yolk vitamin B(12) levels. Supplementation with folate or vitamin B(12) did not significantly affect triglyceride or total phospholipid levels in serum or egg yolk although a positive relationship was observed between dietary folate supplementation and total serum phospholipid (r(2) = 0.68, p < 0.05). The study showed that it is possible to produce folate-enriched eggs. An increase in serum total phospholipids due to dietary supplementation with folate may provide physiological benefits to hens, although we did not observe any strong effects of these vitamins on lipid composition.

  4. Effect of freezing technology and storage conditions on folate content in selected vegetables.

    PubMed

    Czarnowska, Marta; Gujska, Elzbieta

    2012-12-01

    Folates (B vitamins) are essential for the proper function of many bodily processes. Although a rich natural source are vegetables, the literature lacks data on the effect of the pre-treatment and freezing technologies used in vegetable processing and frozen storage time on the folate content in these materials. Moreover, since folates are very unstable nutrients, the amount available in processed and stored foods can be significantly lower than in raw products. In tested vegetables (green beans, yellow beans, peas, cauliflower, broccoli and spinach), one folate form was identified, 5-methyltetrahydrofolate (5-CH₃-H₄folate). It was observed that pre-treatment and freezing technology significantly (p < 0.05) decreased 5-CH₃-H₄folate content only in vegetables with the largest degree of fragmentation (cut and briquetted spinach) and the smallest size (peas). In all analyzed samples, the 5-CH₃-H₄folate content decreased with the time of frozen storage. In frozen cauliflower, the 5-CH₃-H₄folate loss exceeded 95 % compared to the fresh product just after the third month of frozen storage. Meanwhile, in green and yellow beans, significant 5-CH₃-H₄folate losses (at the level of 75 % and 95 %, respectively) were observed no earlier than after the 9th month of frozen storage.

  5. Folate content in strawberries (Fragaria x ananassa): effects of cultivar, ripeness, year of harvest, storage, and commercial processing.

    PubMed

    Strålsjö, Lena M; Witthöft, Cornelia M; Sjöholm, Ingegerd M; Jägerstad, Margaretha I

    2003-01-01

    Folate concentrations in strawberries and folate retention during storage and commercial processing of strawberries were investigated. No previous study has focused on the effects of cultivar, ripeness, and year of harvest of strawberries with respect to the folate content. This study showed the folate concentration in strawberries to significantly depend on all of these different factors. Total folate was quantified using a modified and validated radioprotein-binding assay with external calibration (5-CH(3)-H(4)folate). Folate content in 13 different strawberry cultivars varied from 335 microg/100 g of dry matter (DM) for cv. Senga Sengana to 644 microg/100 g of DM for cv. Elsanta. Swedish harvests from 1999 and 2001 yielded higher folate concentrations than did the harvest from 2000, and the grade of ripeness affected the folate content in strawberries. This study indicated high folate retention in intact berries during storage until 3 or 9 days at 4 degrees C (71-99%) and also in most tested commercial products (79-103%). On the basis of these data fresh strawberries as well as processed strawberry products are recommended to be good folate sources. For instance, 250 g (fresh weight) of strawberries ( approximately 125 microg of folate) supplies approximately 50% of the recommended daily folate intake in various European countries (200-300 microg/day) or 30% of the U.S. recommendation (400 microg/day).

  6. Mutation at the folate receptor 4 locus modulates gene expression profiles in the mouse uterus in response to preconceptual folate supplementation

    PubMed Central

    Salbaum, J. michael; Kruger, Claudia; Kappen, Claudia

    2013-01-01

    Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has lead to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a preconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanisms of gene regulation in this model. PMID:23651732

  7. Chemical synthesis of deuterated folate monoglutamate and in vivo assessment of urinary excretion of deuterated folates in man

    SciTech Connect

    Gregory, J.F. III; Toth, J.P.

    1988-04-01

    The synthesis and in vivo application of stable-isotopically labeled folic acid was investigated to devise methods suitable for studies of folate metabolism in human subjects. Glutamate-labeled tetradeutero-pteroylglutamic acid (d4-folic acid) was prepared by mixed anhydride coupling of N10-trifluoroacetylpteroic acid and dimethyl L-(3,3,4,4-2H4)glutamic acid, saponification in sodium deuteroxide, and chromatographic purification. Retention of the isotopic label was verified by proton NMR and mass spectrometry of the para-aminobenzoylglutamic acid product of C9-N10 bond cleavage. A method was devised for determination of of isotopic enrichment of urinary d4-folates derived from orally administered d4-folic acid using affinity chromatographic purification, chemical cleavage of the C9-N10 bond, HPLC isolation of the p-(2H4)aminobenzoylglutamate product, followed by negative-ion chemical-ionization gas chromatography/mass spectrometry. Data concerning the urinary excretion of d4-folates derived from an oral dose of d4-folic acid in an adult human are presented.

  8. Ego Depletion Impairs Implicit Learning

    PubMed Central

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  9. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies.

    PubMed

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter; Rychlik, Michael

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5-25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency.

  10. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies

    PubMed Central

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5–25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  11. A novel deletion mutation in the proton-coupled folate transporter (PCFT; SLC46A1) in a Nicaraguan child with hereditary folate malabsorption.

    PubMed

    Diop-Bove, N; Jain, M; Scaglia, F; Goldman, I D

    2013-09-25

    Hereditary folate malabsorption (OMIM 229050) is a rare autosomal recessive disorder caused by loss-of-function mutations in the proton-coupled folate transporter gene (pcft/SLC46A1) resulting in impaired folate transport across the intestine and into the central nervous system. We report a novel, homozygous, deletion mutation in a child of Nicaraguan descent in exon 2 (c.558-588 del, ss778190447) at amino acid position I188 resulting in a frameshift with a premature stop. © 2013 Elsevier B.V. All rights reserved.

  12. Alcohol consumption, genetic variants in the alcohol- and folate metabolic pathways and colorectal cancer risk: the JPHC Study

    PubMed Central

    Svensson, Thomas; Yamaji, Taiki; Budhathoki, Sanjeev; Hidaka, Akihisa; Iwasaki, Motoki; Sawada, Norie; Inoue, Manami; Sasazuki, Shizuka; Shimazu, Taichi; Tsugane, Shoichiro

    2016-01-01

    The association between alcohol intake and colorectal cancer (CRC) may vary secondary to single nucleotide polymorphisms (SNPs) in two pathways related to alcohol intake. 375 cases of CRC were identified among 38 373 Japan Public Health Center-based prospective Study (JPHC Study) participants who had returned a baseline questionnaire, reported no diagnosis of any cancer and provided blood samples. For each case, two controls were selected on matching variables. Logistic regression models were used to determine matched Odds Ratios (OR) and 95% Confidence Intervals (CI) for the association between alcohol consumption, genetic polymorphisms of enzymes in the alcohol- and folate metabolic pathways (e.g. methylenetetrahydrofolate reductase (MTHFR) rs1801133) and CRC risk. Compared to never/occasional alcohol intake, moderate to heavy alcohol intake was associated with CRC (OR = 2.12, 95% CI, 1.34–3.36). When compared to the CC genotype, the MTHFR rs1801133 CT/TT genotype was inversely associated with CRC (OR = 0.72, 95% CI, 0.54–0.97). Never/occasional consumers of alcohol with the MTHFR rs1801133 CT/TT genotype were also at a reduced risk of CRC compared to never/occasional drinkers with the CC genotype (OR = 0.68, 95% CI, 0.47–0.98) (P for interaction = 0.27). The results indicate that the folate pathway is likely to be involved in alcohol-related CRC development. PMID:27827401

  13. Alcohol consumption, genetic variants in the alcohol- and folate metabolic pathways and colorectal cancer risk: the JPHC Study.

    PubMed

    Svensson, Thomas; Yamaji, Taiki; Budhathoki, Sanjeev; Hidaka, Akihisa; Iwasaki, Motoki; Sawada, Norie; Inoue, Manami; Sasazuki, Shizuka; Shimazu, Taichi; Tsugane, Shoichiro

    2016-11-09

    The association between alcohol intake and colorectal cancer (CRC) may vary secondary to single nucleotide polymorphisms (SNPs) in two pathways related to alcohol intake. 375 cases of CRC were identified among 38 373 Japan Public Health Center-based prospective Study (JPHC Study) participants who had returned a baseline questionnaire, reported no diagnosis of any cancer and provided blood samples. For each case, two controls were selected on matching variables. Logistic regression models were used to determine matched Odds Ratios (OR) and 95% Confidence Intervals (CI) for the association between alcohol consumption, genetic polymorphisms of enzymes in the alcohol- and folate metabolic pathways (e.g. methylenetetrahydrofolate reductase (MTHFR) rs1801133) and CRC risk. Compared to never/occasional alcohol intake, moderate to heavy alcohol intake was associated with CRC (OR = 2.12, 95% CI, 1.34-3.36). When compared to the CC genotype, the MTHFR rs1801133 CT/TT genotype was inversely associated with CRC (OR = 0.72, 95% CI, 0.54-0.97). Never/occasional consumers of alcohol with the MTHFR rs1801133 CT/TT genotype were also at a reduced risk of CRC compared to never/occasional drinkers with the CC genotype (OR = 0.68, 95% CI, 0.47-0.98) (P for interaction = 0.27). The results indicate that the folate pathway is likely to be involved in alcohol-related CRC development.

  14. Genetic and environmental determinants of plasma total homocysteine levels: impact of population-wide folate fortification.

    PubMed

    Nagele, Peter; Meissner, Konrad; Francis, Amber; Födinger, Manuela; Saccone, Nancy L

    2011-07-01

    Folate metabolism is an important target for drug therapy. Drug-induced inhibition of folate metabolism often causes an elevation of plasma total homocysteine (tHcy). Plasma tHcy levels are influenced by several nongenetic (e.g. folate intake, age, smoking) as well as genetic factors. Over the last decade, several countries have implemented a nationwide folate fortification program of all grain products. This investigation sought to determine the impact of folate fortification on the relative contribution of environmental and genetic factors to the variability of plasma tHcy. Two cohorts were compared in this study, one from the United States (with folate fortification, n=281) and one from Austria (without folate fortification, n=139). Several environmental factors as well as previously identified gene variants important for tHcy levels (MTHFR C677T, MTHFR A1298C, MTRR A66G) were examined for their ability to predict plasma tHcy in a multiple linear regression model. Nongenetic, environmental factors had a comparable influence on plasma tHcy between the two cohorts (R: approximately 0.19). However, after adjusting for other covariates, the tested gene variants had a substantially smaller impact among patients from the folate-fortified cohort (R=0.021) compared with the nonfolate-fortified cohort (R=0.095). The MTHFR C677T polymorphism was the single most important genetic factor. Male sex, smoking, and folate levels were important predictors for nonfolate-fortified patients; age was for folate-fortified patients. Population wide folate fortification had a significant effect on the variability of plasma tHcy and reduced the influence of genetic factors, most importantly the MTHFR 677TT genotype, and may be an important confounder for a personalized drug therapy.

  15. [Determination of folate content in ready-to-eat food products].

    PubMed

    Fajardo Martín, Violeta; Alonso-Aperte, Elena; Varela-Moreiras, Gregorio

    2013-01-01

    In the last years, the consumption of ready-to-eat foods has become an increasing part of the current Spanish diet. Accordingly, the nutritional composition of these food categories should be investigated in order to estimate its contribution to vitamin and nutrient intakes, in particular its folate content. The broad lack of folate data in food composition tables and databases justifies this approach. The aim of this work was to screen the current availability and to supply new folate data in ready-to-eat commercial products in the Spanish market. Seventeen ready-to-eat foods, including mainly vegetable ingredients, were analysed for total folate content using a validated method that relies on Lactobacillus casei ssp. rhamnosus chloramphenicol-resistant folate dependent growth. The accuracy of the analytical procedure was checked using a certified reference material and by a recovery test. Mean TF content ranged from 13.6 to 103.8 μg/100 g in different food matrices on a fresh weight basis. Higher TF quantity was found for vegetable hamburguers, recipes including chickpeas, peas or artichockes. Selected precooked products were also analysed after a soft heat treatment as recommended by the manufacter before its consumption. No significant differences were found in the folate content after processing. The coefficient of variation for the duplicates of the same product was less than 15%. Folate content in ready-to-eat products indicates the potential to considerably increase folate intake by choosing folate-rich foods. There have been no previous reports on folate data in chilled ready-to-eat meals. The present data will assist dietary studies to estimate and evaluate the adequacy of population folate intakes. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  16. Folate status of young Canadian women after folic acid fortification of grain products.

    PubMed

    Shuaibi, Aysheh M; House, James D; Sevenhuysen, Gustaaf P

    2008-12-01

    Women of childbearing age are advised to consume folic acid-containing supplements. Whether this remains necessary after folic acid fortification of the food supply in North America has yet to be determined. The objectives of this study were to assess folate intakes and the contribution of folic acid to the diets of women of childbearing age in the post-folic acid fortification era. Using a cross-sectional study design, fasting blood samples were obtained from 95 women (aged 18 to 25 years), and the samples were analyzed for serum and red blood cell folate, as well for total homocysteine. Dietary and supplemental folate intakes were assessed. The biochemical evidence showed that no women were folate deficient, but only 14% reached red blood cell folate concentrations associated with significant reductions in neural tube defect risk. Mean dietary intake of food folic acid was 96+/-64 microg/day, supplemental folic acid was 94+/-189 microg/day, natural folate was 314+/-134 microg/day, and the total intake, as dietary folate equivalents, was 646+/-368 microg dietary folate equivalents/day. Therefore, intakes of folic acid from fortified foods are within the level originally predicted for the fortification efforts; however, only 17% of participants met the special recommendation for women capable of becoming pregnant (400 microg folic acid daily from supplements, fortified foods, or both in addition to consuming food folate from a varied diet). These data suggest that women of childbearing age are achieving positive folate status in the postfortification era, but it may not be sufficient to achieve red blood cell folate concentrations associated with a significant reduction in neural tube defect risk. Even with food fortification, women of childbearing age should be advised to take a folic acid-containing supplement on a daily basis.

  17. Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.).

    PubMed

    Ramírez Rivera, Naty G; García-Salinas, Carolina; Aragão, Francisco J L; Díaz de la Garza, Rocío Isabel

    2016-10-01

    Folate (vitamin B9) deficiency causes several health problems globally. However, folate biofortification of major staple crops is one alternative that can be used to improve vitamin intakes in populations at risk. We increased the folate levels in common bean by engineering the pteridine branch required for their biosynthesis. GTP cyclohydrolase I from Arabidopsis (AtGchI) was stably introduced into three common bean Pinto cultivars by particle bombardment. Seed-specific overexpression of AtGCHI caused significant increases of up to 150-fold in biosynthetic pteridines in the transformed lines. The pteridine boost enhanced folate levels in raw desiccated seeds by up to threefold (325 μg in a 100 g portion), which would represent 81% of the adult recommended daily allowance. Unexpectedly, the engineering also triggered a general increase in PABA levels, the other folate precursor. This was not observed in previous engineering studies and was probably caused by a feedforward mechanism that remains to be elucidated. Results from this work also show that common bean grains accumulate considerable amounts of oxidized pteridines that might represent products of folate degradation in desiccating seeds. Our study uncovers a probable different regulation of folate homoeostasis in these legume grains than that observed in other engineering works. Legumes are good sources of folates, and this work shows that they can be engineered to accumulate even greater amounts of folate that, when consumed, can improve folate status. Biofortification of common bean with folates and other micronutrients represents a promising strategy to improve the nutritional status of populations around the world. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Validity of the Food Frequency Questionnaire Assessing the Folate Intake in Women of Reproductive Age Living in a Country without Food Fortification: Application of the Method of Triads

    PubMed Central

    Zekovic, Milica; Djekic-Ivankovic, Marija; Nikolic, Marina; Gurinovic, Mirjana; Krajnovic, Dusanka; Glibetic, Marija

    2017-01-01

    The study aimed to examine the external validity of the Folate Food Frequency Questionnaire (F-FFQ) designed for assessing the folate intake in Serbian women of reproductive age. The F-FFQ was tested against repeated 24 h dietary recalls and correspondent nutritional biomarkers (red blood cells (RBC) and serum folate concentrations) using the method of triads. In a cross sectional study, 503 women aged 18–49 years completed dietary questionnaires and representative validation subsample (n = 50) provided fasting blood samples for biomarker analyses. Correlation coefficients were calculated between each of the dietary methods and three pair-wise correlations were applied for the calculation of validity coefficients. Correlation coefficients observed between F-FFQ and three 24 h recalls were r = 0.56 (p < 0.001) and r = 0.57 (p < 0.001) for total sample and validation group, respectively. Bland–Altman plot and cross-classification analyses indicated good agreement between methods. High validity coefficients were determined between the true intake (I) and dietary assessment methods, F-FFQ (Q) and 24 h dietary recalls (R) (ρQIrbc = 0.871 and ρQIser = 0.814; ρRIrbc = 0.652 and ρRIser = 0.698), and moderate ones for biomarkers (B) (ρBIrbc = 0.428 and ρBIser = 0.421). The F-FFQ is valid instrument for the assessment of dietary folate intake in women living in Serbia, a country without mandatory folic acid food fortification. PMID:28208817

  19. Depleting depletion: Polymer swelling in poor solvent mixtures

    NASA Astrophysics Data System (ADS)

    Mukherji, Debashish; Marques, Carlos; Stuehn, Torsten; Kremer, Kurt

    A polymer collapses in a solvent when the solvent particles dislike monomers more than the repulsion between monomers. This leads to an effective attraction between monomers, also referred to as depletion induced attraction. This attraction is the key factor behind standard polymer collapse in poor solvents. Strikingly, even if a polymer exhibits poor solvent condition in two different solvents, it can also swell in mixtures of these two poor solvents. This collapse-swelling-collapse scenario is displayed by poly(methyl methacrylate) (PMMA) in aqueous alcohol. Using molecular dynamics simulations of a thermodynamically consistent generic model and theoretical arguments, we unveil the microscopic origin of this phenomenon. Our analysis suggests that a subtle interplay of the bulk solution properties and the local depletion forces reduces depletion effects, thus dictating polymer swelling in poor solvent mixtures.

  20. How Ego Depletion Affects Sexual Self-Regulation: Is It More Than Resource Depletion?

    PubMed

    Nolet, Kevin; Rouleau, Joanne-Lucine; Benbouriche, Massil; Carrier Emond, Fannie; Renaud, Patrice

    2015-12-21

    Rational thinking and decision making are impacted when in a state of sexual arousal. The inability to self-regulate arousal can be linked to numerous problems, like sexual risk taking, infidelity, and sexual coercion. Studies have shown that most men are able to exert voluntary control over their sexual excitation with various levels of success. Both situational and dispositional factors can influence self-regulation achievement. The goal of this research was to investigate how ego depletion, a state of low self-control capacity, interacts with personality traits-propensities for sexual excitation and inhibition-and cognitive absorption, to cause sexual self-regulation failure. The sexual responses of 36 heterosexual males were assessed using penile plethysmography. They were asked to control their sexual arousal in two conditions, with and without ego depletion. Results suggest that ego depletion has opposite effects based on the trait sexual inhibition, as individuals moderately inhibited showed an increase in performance while highly inhibited ones showed a decrease. These results challenge the limited resource model of self-regulation and point to the importance of considering how people adapt to acute and high challenging conditions.

  1. The folate hydrolase 1561 C>T polymorphism is associated with depressive symptoms in Puerto Rican adults

    USDA-ARS?s Scientific Manuscript database

    Low plasma folate has been associated with depression. Variants of genes involved in the uptake, retention and metabolism of folate have been linked with plasma folate and homocysteine concentrations. It remains unclear whether such variants are also associated with depressive symptoms, directly or ...

  2. Effects of dietary folic acid level and symbiotic folate production on fitness and development in the fruit fly Drosophila melanogaster.

    PubMed

    Blatch, Sydella A; Meyer, Kyle W; Harrison, Jon F

    2010-01-01

    Folic acid is a vitamin for probably all animals. When converted to folate forms, it is used in DNA synthesis and amino acid metabolism. Literature suggests insects must consume folates, folates do not affect others, is a toxin for some, and that a few insects synthesize it. It has been reported that Drosophila melanogaster does not consistently need dietary folate because it can synthesize it. This seems unlikely since animals generally lack this ability. More likely, folates thought to have been made by the fly came from microbial symbionts. We aimed to clarify how dietary folic acid affects fitness and development in fruit flies and whether flies may receive folates from microbial symbionts. We found larvae were more viable and developed faster with increasing dietary folic acid, with the surprising exception that larvae fed nearly-zero folic acid developed faster. Their body folate levels did not significantly differ from those that consumed up to 600 times more folic acid. However, these flies fed little folate only achieved normal body folate levels and development times when antibiotics were excluded from the diet. When flies consumed near-zero folates with antibiotics, their body folate levels decreased and development was prolonged. An assay for the endosymbiont Wolbachia in flies used to generate the experimental flies did not show presence of these bacteria. Our data suggest D. melanogaster can harbor unknown bacterial symbiont(s) that provide essential folates to their host when it is scarce in the diet, allowing the fruit fly to maintain growth and development.

  3. Application of the Key Events Dose-response Framework to Folate Metabolism.

    PubMed

    Hu, Jing; Wang, Bing; Sahyoun, Nadine R

    2016-06-10

    Folate is a vitamin that plays a role as a cofactor and coenzyme in many essential reactions. These reactions are interrelated and any change in folate homeostasis could affect other reactions. With food fortified with folic acid, and use of multivitamin, unmetabolized folic acid (UMFA) has been detected in blood circulation, particularly among older adults. This has raised concern about the potential harmful effect of high folic acid intake and UMFA on health conditions such as cognitive dysfunction and cancer. To examine what is known about folate metabolism and the release of circulating UMFA, the Key Events Dose-Response Framework (KEDRF) was used to review each of the major key events, dose-response characteristics and homeostatic mechanisms of folate metabolism. The intestine, liver and kidneys each play essential roles in regulating body folate homeostasis. But the determining event in folate metabolism leading to the release of UMFA in circulation appears to be the saturation of dihydrofolate reductase in the liver. However, at each of the key events in folate metabolism, limited information is available on threshold, homeostatic regulation and intracellular effects of folic acid. More studies are needed to fill in the knowledge gaps for quantitatively characterizing the dose-effect relationship especially in light of the call for extending folate fortification to other foods.

  4. Association of Folate Level in Blood with the Risk of Schizophrenia.

    PubMed

    Ding, Yujie; Ju, Mingliang; He, Lin; Chen, Wenzhong

    2017-01-01

    The aim of this study was to evaluate the association between folate level and the risk of schizophrenia and to identify possible biomarker for schizophrenia. Data about folate were extracted from 16 high quality studies. The association of folate level in blood and schizophrenia was evaluated using standardized mean difference (SMD) and 95% confidence interval (CI). Totally 1183 (52.1%) cases and 1089 (47.9%) controls were included in the current metaanalysis. Folate level in schizophrenia patients was significantly lower than that in healthy controls (SMD= -0.65; 95% CI: [-0.86, -0.45]; P <0.00001). Subgroup analysis demonstrated that the decreased folate level was found in both Asian and European patients (SMD=-0.86, P<0.00001; SMD=-0.44, P<0.00001, respectively), while there were no significant differences in patients from other areas (P>0.05). Sensitivity analysis confirmed that these results were stable and reliable, no publication bias existed in our meta-analysis based on Egger's and Begg's tests (P=0.48 and 0.30, respectively). These results suggest that decreased folate may be a risk factor for schizophrenia. More epidemiological and biochemistry studies are required to describe how folate or folate supplementation play roles in the progress of schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Folate supplementation differently affects uracil content in DNA in the mouse colon and liver

    USDA-ARS?s Scientific Manuscript database

    High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C5...

  6. Folate composition of ten types of mushrooms determined by liquid chromatography-mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    White button, crimini, shiitake, maitake, enoki, oyster, chanterelle, morel, portabella, and uv-treated portabella mushrooms were sampled from U.S. retail outlets and major producers. Folate (5-methyltetrahydrofolate [5MTHF], 10-formyl folate [10FF], 5-formyltetrahydrofolate [5FTHF]) was analyzed u...

  7. Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor

    NASA Astrophysics Data System (ADS)

    Miller, Steven C.; Beviglia, Lucia; Yeung, Pete; Bhattacharyya, Sukanta; Sobek, Daniel

    2012-03-01

    New in vivo imaging reagents with increased sensitivity and penetration depth are needed to advance our understanding of metastases and accelerate the development of therapeutics. The folate receptor (FR) is a promising imaging target that is up-regulated in many human carcinomas, including cancers of the ovary, breast, pancreas, endometrium, lungs, kidneys, colon, brain, and myeloid cells. Zymera has developed a self-illuminating Bioluminescence Resonance Energy Transfer Quantum Dot (BRET-Qdot) nanoprobe conjugated with folate (BQ-Folate) for in vivo imaging of cancers overexpressing FR. BQ-Folate is a novel nanoprobe formed by co-conjugating Renilla reniformis luciferase enzyme and folate to near-infrared (NIR) emitting quantum dots. The luciferase substrate, coelenterazine, activates the BQ-Folate nanoprobe generating luminescence emission in the near-infrared (NIR) region (655 nm) for increased sensitivity and penetration depth. Because BQ-Folate requires no external light source for light emission, it has significant advantages for challenging in vivo preclinical optical imaging applications, such as the detection of early stage metastases. Zymera and OncoMed Pharmaceuticals have demonstrated that in vivo imaging with the BQ-Folate nanoprobe detected the primary tumor and early stage metastases in an orthotopic NOD/SCID mouse model of human pancreatic cancer.

  8. Folate and vitamin B12 status in Latin America and the Caribbean: An update

    USDA-ARS?s Scientific Manuscript database

    Background: The current magnitude of folate and vitamin B12 deficiency in Latin America and the Caribbean is uncertain. Objective: To summarize data on plasma or serum vitamin B12 and folate concentrations in Latin America and the Caribbean reported since 1990, a period that covers the era before an...

  9. Nutrient Intake Values for Folate during Pregnancy and Lactation Vary Widely around the World

    PubMed Central

    Stamm, Rosemary A.; Houghton, Lisa A.

    2013-01-01

    Folate is a B-vitamin with particular importance during reproduction due to its role in the synthesis and maintenance of DNA. Folate is well known for its role in preventing neural tube defects (NTDs) during the periconceptional period. There is also an increased need for folate throughout pregnancy to support optimal growth and development of the fetus and blood volume expansion and tissue growth of the mother. During lactation, women are at risk of folate deficiency due to increased demands to accommodate milk folate levels. Nutrient Intake Values (NIVs) for folate have been calculated to take into account additional needs during pregnancy and lactation. However, these values vary widely between countries. For example, the folate requirement that is set to meet the needs of almost all healthy women during pregnancy varies from 300 µg/day in the United Kingdom to 750 µg/day in Mexico. Currently, there is no accepted standardized terminology or framework for establishing NIVs. This article reviews country-specific NIVs for folate during pregnancy and lactation and the basis for setting these reference values. PMID:24084052

  10. Folate receptor alpha is necessary for neural plate cell apical constriction during Xenopus neural tube formation.

    PubMed

    Balashova, Olga A; Visina, Olesya; Borodinsky, Laura N

    2017-03-02

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor-α (FRα) impairs neural tube formation and leads to NTDs. FRα knockdown in neural plate cells only is necessary and sufficient to induce NTDs. FRα-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model for folate receptor interacting with cell adhesion molecules, thus regulating apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism may unveil novel cellular and molecular events mediated by folate and lead to new means for preventing NTDs.

  11. Folates in Asian noodles: II. A comparison of commercial samples and the impact of cooking.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    The folate contents of 26 commercial noodle samples were investigated. The impact of ingredients, pH, and cooking on folate content was studied for the 3 predominant styles of noodles: white salted, yellow alkaline, and instant. Some variability was found in the proportion of folate present in the free form and the noodles generally had low total folate contents. The pH values of the samples covered a wide range, varying from 3.7 to 10.3; however, the results did not provide strong evidence for a relationship between pH and folate content for any of the noodle styles studied. Higher folate levels were typically found in yellow alkaline samples compared to white salted and instant noodles. The storage of noodles in dry or moist forms did not appear to influence total folate contents, and subsequent losses during cooking depended upon the time of exposure to elevated temperatures. The enzymatic treatment of samples was particularly important for cooked noodles, indicating that folates were bound or entrapped during this process.

  12. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    PubMed

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  14. Folate and Breast Cancer: Role of Intake, Blood Levels and Metabolic Gene Polymorphisms

    DTIC Science & Technology

    2003-06-01

    those with MTHFR , MTR, and MTRR polymorphisms. The specific aims of this postdoctoral training proposal are 1) further methodological training in the...analysis of gene-gene and gene-environment interactions by studying folate intake and folate metabolic gene polymorphisms ( MTHFR , MTR, MTRR) using data

  15. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  16. Concentration of folate in colorectal tissue biopsies predicts prevalence of adenomatous polyps

    USDA-ARS?s Scientific Manuscript database

    Background and aims: Folate has been implicated as a potential aetiological factor for colorectal cancer. Previous research has not adequately exploited concentrations of folate in normal colonic mucosal biopsies to examine the issue. Methods: Logistic regression models were used to estimate ORs ...

  17. Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women

    USDA-ARS?s Scientific Manuscript database

    Background: B vitamins such as folate, vitamin B-6, and vitamin B-12 are coenzymes that are important for DNA integrity and stability. Deficiency in these B vitamins may promote tumor carcinogenesis. Objective: We prospectively evaluated plasma concentrations of folate, pyridoxal 5'-phosphate (PLP; ...

  18. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model

    PubMed Central

    2012-01-01

    Background Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. Results Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. Conclusions In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects. PMID:22849329

  19. Folate and vitamin B12: function and importance in cognitive development.

    PubMed

    Troen, Aron M

    2012-01-01

    The importance of the B vitamins folate and vitamin B12 for healthy neurological development and function is unquestioned. Folate and vitamin B12 are required for biological methylation and DNA synthesis. Vitamin B12 also participates in the mitochondrial catabolism of odd-chain fatty acids and some amino acids. Inborn errors of their metabolism and severe nutritional deficiencies cause serious neurological and hematological pathology. Poor folate and vitamin B12 status short of clinical deficiency is associated with increased risk of cognitive impairment, depression, Alzheimer's disease and stroke among older adults and increased risk of neural tube defects among children born to mothers with low folate status. Folate supplementation and food fortification are known to reduce incident neural tube defects, and B vitamin supplementation may have cognitive benefit in older adults. Less is known about folate and vitamin B12 requirements for optimal brain development and long-term cognitive health in newborns, children and adolescents. While increasing suboptimal nutritional status has observed benefits, the long-term effects of high folate intake are uncertain. Several observations of unfavorable health indicators in children and adults exposed to high folic acid intake make it imperative to achieve a more precise definition of folate and B12 requirements for brain development and function.

  20. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  1. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  2. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  3. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.

    PubMed

    Samadian, Hadi; Hosseini-Nami, Samira; Kamrava, Seyed Kamran; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2016-11-01

    Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on "gold nanoparticles" and "folate targeting," there are a few reports on "folate-conjugated gold nanoparticles" in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles.

  4. Immediate pigment darkening: its evolutionary roles may include protection against folate photosensitization.

    PubMed

    Moan, Johan; Nielsen, Kristian Pagh; Juzeniene, Asta

    2012-03-01

    The evolution of dark human skin colors in tropical areas is possibly related to photoprotection of folates. However, natural folates absorb mainly UVB radiation, and too little UVB can penetrate down to folates in dermal vessels to cause serious damage. However, endogenous photosensitizers, like riboflavin and uroporphyrin, absorbing UVA and visible light, can cause photosensitization of folates. Immediate pigment darkening (IPD), generated by UVA, has an absorption spectrum covering those of the endogenous photosensitizers. IPD is most prominent for darker skin types, which were typical for populations living under tropical solar fluences. We here propose that the biological role of IPD is protection of folates against photodegradation, which would be of large evolutionary importance for early hominids.

  5. Ego depletion and the strength model of self-control: a meta-analysis.

    PubMed

    Hagger, Martin S; Wood, Chantelle; Stiff, Chris; Chatzisarantis, Nikos L D

    2010-07-01

    According to the strength model, self-control is a finite resource that determines capacity for effortful control over dominant responses and, once expended, leads to impaired self-control task performance, known as ego depletion. A meta-analysis of 83 studies tested the effect of ego depletion on task performance and related outcomes, alternative explanations and moderators of the effect, and additional strength model hypotheses. Results revealed a significant effect of ego depletion on self-control task performance. Significant effect sizes were found for ego depletion on effort, perceived difficulty, negative affect, subjective fatigue, and blood glucose levels. Small, nonsignificant effects were found for positive affect and self-efficacy. Moderator analyses indicated minimal variation in the effect across sphere of depleting and dependent task, frequently used depleting and dependent tasks, presentation of tasks as single or separate experiments, type of dependent measure and control condition task, and source laboratory. The effect size was moderated by depleting task duration, task presentation by the same or different experimenters, intertask interim period, dependent task complexity, and use of dependent tasks in the choice and volition and cognitive spheres. Motivational incentives, training on self-control tasks, and glucose supplementation promoted better self-control in ego-depleted samples. Expecting further acts of self-control exacerbated the effect. Findings provide preliminary support for the ego-depletion effect and strength model hypotheses. Support for motivation and fatigue as alternative explanations for ego depletion indicate a need to integrate the strength model with other theories. Findings provide impetus for future investigation testing additional hypotheses and mechanisms of the ego-depletion effect.

  6. Conjugation Dependent Interaction of Folic Acid with Folate Binding Protein.

    PubMed

    Merzel, Rachel L; Frey, Carolina; Chen, Junjie; Garn, Rachel; van Dongen, Mallory; Dougherty, Casey A; Kandaluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2017-09-20

    Serum proteins play a critical role in the transport, uptake, and efficacy of targeted drug therapies, and here we investigate the interactions between folic acid-polymer conjugates and serum folate binding protein (FBP), the soluble form of the cellular membrane-bound folate receptor. We demonstrate that both choice of polymer and method of ligand conjugation affect the interactions between folic acid-polymer conjugates and serum FBP, resulting in changes in the folic acid-induced protein aggregation process. We have previously demonstrated that individual FBP molecules self-aggregate into nanoparticles at physiological concentrations. When poly(amidoamine) dendrimer-folic acid conjugates bound to FBP, the distribution of nanoparticles was preserved. However, the dendritic conjugates produced larger nanoparticles than those formed in the presence of physiologically normal human levels of folic acid, and the conjugation method affected particle size distribution. In contrast, poly(ethylene glycol)-folic acid conjugates demonstrated substantially reduced binding to FBP, did not cause folic acid-induced aggregation, and fully disrupted FBP self-aggregation. On the basis of these results, we discuss the potential implications for biodistribution, trafficking, and therapeutic efficacy of targeted nanoscale therapeutics, especially considering the widespread clinical use of poly(ethylene glycol) conjugates. We highlight the importance of considering specific serum protein interactions in the rational design of similar nanocarrier systems. Our results suggest that prebinding therapeutic nanocarriers to serum FBP may allow folate-specific metabolic pathways to be exploited for delivery while also affording benefits of utilizing an endogenous protein as a vector.

  7. Vitamin B12 and folate deficiency in chronic heart failure.

    PubMed

    van der Wal, Haye H; Comin-Colet, Josep; Klip, Ijsbrand T; Enjuanes, Cristina; Grote Beverborg, Niels; Voors, Adriaan A; Banasiak, Waldemar; van Veldhuisen, Dirk J; Bruguera, Jordi; Ponikowski, Piotr; Jankowska, Ewa A; van der Meer, Peter

    2015-02-01

    To determine the prevalence, clinical correlates and the effects on outcome of vitamin B12 and folic acid levels in patients with chronic heart failure (HF). We studied an international pooled cohort comprising 610 patients with chronic HF. The main outcome measure was all-cause mortality. Mean age of the patients was 68±12 years and median serum N-terminal prohormone brain natriuretic peptide level was 1801 pg/mL (IQR 705-4335). Thirteen per cent of the patients had an LVEF >45%. Vitamin B12 deficiency (serum level <200 pg/mL), folate deficiency (serum level <4.0 ng/mL) and iron deficiency (serum ferritin level <100 µg/L, or 100-299 µg/L with a transferrin saturation <20%) were present in 5%, 4% and 58% of the patients, respectively. No significant correlation between mean corpuscular volume and vitamin B12, folic acid or ferritin levels was observed. Lower folate levels were associated with an impaired health-related quality of life (p=0.029). During a median follow-up of 2.10 years (1.31-3.60 years), 254 subjects died. In multivariable proportional hazard models, vitamin B12 and folic acid levels were not associated with prognosis. Vitamin B12 and folate deficiency are relatively rare in patients with chronic HF. Since no significant association was observed between mean corpuscular volume and neither vitamin B12 nor folic acid levels, this cellular index should be used with caution in the differential diagnosis of anaemia in patients with chronic HF. In contrast to iron deficiency, vitamin B12 and folic acid levels were not related to prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  9. Charge depletion in organic heterojunction

    NASA Astrophysics Data System (ADS)

    Ng, T. W.; Lo, M. F.; Lee, S. T.; Lee, C. S.

    2012-03-01

    Until now two types of organic-organic heterojunction (OHJ) have been observed in P-N junctions formed between undoped-organic semiconductors. Charge-transfers across OHJs are either negligible or showing electron transfer from P-type to N-type materials, leading to charges accumulation near the interface. Here, we observed that junction of 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA)/bathocuproine (BCP) show the third-behavior. Electrons in BCP (N-type) transfer to m-MTDATA (P-type), leading to depletion of mobile majority carriers near the junction. While "depletion junctions" are typical in inorganic semiconductors, there are no reports in undoped-OHJ. Formation mechanism of depletion OHJs and fundamental differences between inorganic and organic HJs are discussed.

  10. High folate levels in Aboriginal children after subsidised fruit and vegetables and mandatory folic acid fortification.

    PubMed

    Black, Andrew P; Vally, Hassan; Morris, Peter; Daniel, Mark; Esterman, Adrian; Smith, Fiona; O'Dea, Kerin

    2014-06-01

    To evaluate the impact of a fruit and vegetable (F&V) subsidy program for disadvantaged Aboriginal children in Australia, implemented alongside the introduction of mandatory folic acid fortification of bread-making flour. A before-and-after evaluation was undertaken of a F&V subsidy program at three Aboriginal community-controlled health services in New South Wales. The program provided a weekly box of subsidised F&V linked to preventive health services and nutrition promotion for families. In this analysis, red blood cell (RBC) folate was assessed together with self-reported dietary intake at baseline and 12 months later in a cohort of 125 children (aged 0-17 years). No children had low RBC folate at baseline or at follow-up; however, 33 children (26%) exceeded the reference range of RBC folate at baseline and 38 children (30%) exceeded the reference range at follow-up. Mean RBC folate levels increased substantially in children at follow-up (mean RBC folate z-score increased +0.55 (95%CI 0.36-0.74). Change in F&V intake (p=0.196) and mean bread intake (p=0.676) were not statistically significant predictors for change in RBC folate levels. RBC folate levels increased among these disadvantaged Aboriginal children following mandatory folic acid fortification and participation in a subsidised F&V program. Even before mandatory folic acid fortification, none of these children had low RBC folate. The effect on health of mandatory fortification of foods with folate is not clear, hence, ongoing population-based monitoring of folate levels to assess the impact of mandatory folic acid fortification is important. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  11. Citrus pectin and oligofructose improve folate status and lower serum total homocysteine in rats.

    PubMed

    Thoma, Christian; Green, Timothy J; Ferguson, Lynnette R

    2003-11-01

    Low folate status leads to increased total homocysteine (tHcy) concentration, and this has been associated with an increased risk of several diseases. Many colonic bacteria are capable of synthesizing folate, and certain dietary fibers may enhance this effect. We assessed the ability of non-fermentable (cellulose) and fermentable (citrus pectin and oligofructose) fibers to improve folate status and lower tHcy in rats. Weanling Sprague-Dawley rats were fed a folate-deficient diet with 5% cellulose for four weeks. Rats were then randomly assigned to one of five folate-adequate (400 micrograms/kg diet) test diets for 24 days. Diets were as follows: Basal; Basal + Sulfa Drug (succinylsulfathiazole); Cellulose; Citrus Pectin; and Oligofructose. High-fiber diets were formulated by diluting the basal diet such that the final diets contained 10% of the added fiber. Twenty-one days later, 3H-p-aminobenzoic acid was injected into the cecum, and rats were terminated three days later. Rats receiving the Citrus Pectin diet had significantly higher plasma (p = 0.011), erythrocyte (p = 0.035), and colonic tissue folate concentrations (p = 0.013) and lower tHcy (p = 0.003) than rats given the Cellulose diet. Rats receiving the Oligofructose had significantly higher plasma folate (p < 0.001) and lower tHcy (p = 0.032) concentrations than rats receiving the Cellulose diet. 3H-folate was detected in the livers of all rats except those receiving Sulfa Drug. Our study indicates that Citrus Pectin and Oligofructose, but not Cellulose, can significantly increase indices of folate status in rats and lower tHcy. It also confirms the ability of the large bowel to absorb folate.

  12. Reference Interval and Status for Serum Folate and Serum Vitamin B12 in a Norwegian Population.

    PubMed

    Schwettmann, Lutz; Berbu, Siw

    2015-01-01

    Deficiencies of folate and vitamin B12 lead to an elevated serum concentration of homocysteine which has been associated with many diseases including cardiovascular disease. Laboratory algorithms often include initial testing of serum folate and vitamin B12. Reference intervals for these vitamins can vary significantly among populations for which dietary intakes may be different. The aim of this study was to establish reference intervals in a Norwegian population and to assess the folate and vitamin B12 status related to reference intervals. Blood samples were taken from 144 healthy volunteers aged 18 - 65 years. A questionnaire provided data of medication, medical history, vitamin supplementation, alcohol consumption, and use of oral contraceptives and others. Serum folate and vitamin B12 concentrations were measured on the Abbott Architect i2000. Reference values were calculated using the bootstrap method. Results of serum folate, vitamin B12, and homocysteine from 1190 individuals from regional primary health care centers were evaluated related to reference values and the proportion of individuals with deficiency was estimated. Mean serum concentrations of folate and vitamin B12 were 11.9 nmol/L and 328 pmol/L, respectively. Men were found to have statistically significant higher vitamin B12 concentrations than women. 95%-reference intervals were calculated to 5.2 - 29.2 nmol/L for folate and 133 - 595 pmol/L for vitamin B12. 1.1% of the study population has serum vitamin B12-concentrations < 133 pmol/L and 3.4% has serum folate concentrations < 5.2 nmoI/L. The serum reference intervals for folate and vitamin B12 for a healthy, not vitamin-supplemented adult population were determined from 144 subjects. The application of these intervals will assist in the evaluation of folate and vitamin status.

  13. Maternal serum folate species in early pregnancy and risk of preterm birth123

    PubMed Central

    Himes, Katherine P; Venkataramanan, Raman; Chen, Jia-Yuh; Evans, Rhobert W; Meyer, Jennifer L; Simhan, Hyagriv N

    2010-01-01

    Background: Poor maternal folate status has been associated with an increased risk of preterm birth. However, major gaps remain in our understanding of how individual folate species relate to preterm birth. Objective: Our objective was to assess the association between maternal folate status as measured by 5-methyltetrahydrofolate (5MeTHF), 5-formyltetrahydrofolate (5FoTHF), and folic acid concentrations, which are the 3 primary folate species in serum, and the risk of preterm birth and spontaneous preterm birth (sPTB). Design: A cohort of 313 pregnant women who received care at resident antepartum clinics at Magee-Womens Hospital (Pittsburgh, PA) (2003–2007) was enrolled at <16 wk gestation. We analyzed nonfasting blood samples that were drawn from subjects at enrollment for the 3 folate species by using HPLC–tandem mass spectrometry. Results: Serum 5MeTHF and 5FoTHF concentrations comprised 65% and 33% of total folate concentrations, respectively. In confounder-adjusted, multivariable, log-binomial regression models, 1-SD increases in serum total folate and serum 5MeTHF concentrations were associated with significant reductions in the risk of sPTB (P < 0.05). There was a significant interaction between serum 5MeTHF and 5FoTHF concentrations and risk of preterm birth (P = 0.01). When serum 5MeTHF concentrations were low, there was a positive linear relation between 5FoTHF and risk of preterm birth. When 5MeTHF concentrations were high, there was a strong negative relation between 5FoTHF and preterm birth. Conclusions: Our results imply that the relative concentrations of folate species may be more critical than total folate in preventing preterm birth. An improved understanding of folate metabolism during pregnancy may lead to targeted intervention strategies that decrease the rate of preterm birth. PMID:20739422

  14. The Folate-Vitamin B12 Interaction, Low Hemoglobin, and the Mortality Risk from Alzheimer's Disease.

    PubMed

    Min, Jin-Young; Min, Kyoung-Bok

    2016-03-21

    Abnormal hemoglobin levels are a risk factor for Alzheimer's disease (AD). Although the mechanism underlying these associations is elusive, inadequate micronutrients, particularly folate and vitamin B12, may increase the risk for anemia, cognitive impairment, and AD. In this study, we investigated whether the nutritional status of folate and vitamin B12 is involved in the association between low hemoglobin levels and the risk of AD mortality. Data were obtained from the 1999-2006 National Health and Nutrition Examination Survey (NHANES) and the NHANES (1999-2006) Linked Mortality File. A total of 4,688 participants aged ≥60 years with available baseline data were included in this study. We categorized three groups based on the quartiles of folate and vitamin B12 as follows: Group I (low folate and vitamin B12); Group II (high folate and low vitamin B12 or low folate and high vitamin B12); and Group III (high folate and vitamin B12). Of 4,688 participants, 49 subjects died due to AD. After adjusting for age, sex, ethnicity, education, smoking history, body mass index, the presence of diabetes or hypertension, and dietary intake of iron, significant increases in the AD mortality were observed in Quartile1 for hemoglobin (HR: 8.4, 95% CI: 1.4-50.8), and the overall risk of AD mortality was significantly reduced with increases in the quartile of hemoglobin (p for trend = 0.0200), in subjects with low levels of both folate and vitamin B12 at baseline. This association did not exist in subjects with at least one high level of folate and vitamin B12. Our finding shows the relationship between folate and vitamin B12 levels with respect to the association between hemoglobin levels and AD mortality.

  15. Mechanism and regulation of folate uptake by pancreatic acinar cells: effect of chronic alcohol consumption.

    PubMed

    Said, Hamid M; Mee, Lisa; Sekar, V Thillai; Ashokkumar, Balasubramaniem; Pandol, Stephen J

    2010-06-01

    Folate plays an essential role in one-carbon metabolism, and a relationship exists between methyl group metabolism and pancreatic exocrine function. Little, however, is known about the mechanism(s) and regulation of folate uptake by pancreatic acinar cells and the effect of chronic alcohol use on the process. We addressed these issues using the rat-derived pancreatic acinar cell line AR42J and freshly isolated primary rat pancreatic acinar cells as models. We found [(3)H]folic acid uptake to be 1) temperature and pH dependent with a higher uptake at acidic than at neutral/alkaline pH; 2) saturable as a function of substrate concentration at both buffer pH 7.4 and 6.0; 3) inhibited by folate structural analogs and by anion transport inhibitors at both buffer pH 7.4 and 6.0; 4) trans-stimulated by unlabeled folate; 5) adaptively regulated by the prevailing extracellular folate level, and 6) inhibited by modulators of the cAMP/PKA-mediated pathway. Both the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT) were found to be expressed in AR42J and in primary pancreatic acinar cells, as well as in native human pancreas with expression of RFC being higher than PCFT. Chronic alcohol feeding of rats (4 wk; 36% of calories from ethanol) led to a significant decrease in folate uptake by freshly isolated primary pancreatic acinar cells compared with cells from pair-fed controls; this effect was associated with a parallel decrease in the level of expression of RFC and PCFT. These studies reveal that folate uptake by pancreatic acinar cells is via a regulated carrier-mediated process which may involve RFC and PCFT. In addition, chronic alcohol feeding leads to a marked inhibition in folate uptake by pancreatic acinar cells, an effect that is associated with reduction in level of expression of RFC and PCFT.

  16. Depletion-induced structure and dynamics in bimodal colloidal suspensions.

    SciTech Connect

    Sikorski, M.; Sandy, A. R.; Narayanan, S.

    2011-05-03

    Combined small angle x-ray scattering and x-ray photon correlation spectroscopy studies of moderately concentrated bimodal hard-sphere colloidal suspensions in the fluid phase show that depletion-induced demixing introduces spatially heterogeneous dynamics with two distinct time scales. The adhesive nature, as well as the mobility, of the large particles is determined by the level of interaction within the monomodal domains. This interaction is driven by osmotic forces, which are governed by the relative concentration of the constituents.

  17. Polymorphism of SLC25A32, the folate transporter gene, is associated with plasma folate levels and bone fractures in Japanese postmenopausal women.

    PubMed

    Urano, Tomohiko; Shiraki, Masataka; Saito, Mitsuru; Sasaki, Noriko; Ouchi, Yasuyoshi; Inoue, Satoshi

    2014-10-01

    Elevation of homocysteine is associated with an increased risk for bone fractures. We previously reported that the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with homocysteine levels and fracture. The association between the fracture and folate levels or their related gene polymorphisms is not completely clear. We speculated that the SLC25A32 gene, the mitochondrial inner membrane folate transporter, also could be implicated in the regulation of folate metabolism and fracture. A total of 851 Japanese postmenopausal women participated in the association study between the single nucleotide polymorphism genotype and plasma homocysteine or folate. We also tested the association between the candidate single nucleotide polymorphism and 663 postmenopausal women. The AA genotype of rs2241777 single nucleotide polymorphism at the 3'UTR region in the SLC25A32 gene was associated with lower plasma folate concentration compared with the other genotypes in 851 postmenopausal women. A total of 674 postmenopausal ambulatory Japanese women were followed up for 5.5 ± 0.1 years (mean ± SE). The AA genotype groups also showed an apparently higher rate and earlier onset of incident fractures than the other genotypes. A total of 407 participants had >70% young-adult mean bone mineral density at the start of the observation. These results show that the SLC25A32 gene polymorphism could be a risk factor for lower folate concentration and future fracture. © 2013 Japan Geriatrics Society.

  18. Assay of whole blood (6S)-5-CH3-H4folate using ultra performance liquid chromatography tandem mass spectrometry.

    PubMed

    Kirsch, Susanne H; Herrmann, Wolfgang; Geisel, Jürgen; Obeid, Rima

    2012-08-01

    Folates act as essential coenzymes in many biological pathways, including the synthesis and methylation of DNA. Low folate concentration in serum and whole blood (WB) is associated with several disease conditions. We describe a stable-isotope-dilution ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantification of (6S)-5-CH(3)-H(4)folate (where H(4)folate is tetrahydrofolate) and non-CH(3)-H(4)folate [sum of HCO-H(4)folate, (6R)-5,10-CH(+)-H(4)folate, (6R)-5,10-CH(2)-H(4)folate, (6S)-H(4)folate, dihydrofolate, and folic acid] in WB. The assay includes a solid-phase extraction procedure after the hemolysis and deconjugation. The method was linear over the concentration range from 0.2 to 200 nmol/L. The limits of detection were 0.40 nmol/L or lower for the folate forms. The interassay coefficients of variation were 7.4% for (6S)-5-CH(3)-H(4)folate and 15.4% for non-CH(3)-H(4)folate. For the folate forms, the recoveries were between 97.1% and 102.7%. Sample preparation caused the generation of artificial folic acid in WB and serum in a dose-dependent manner, which can lead to misinterpretation of the results. The use of antioxidants could not prevent the formation of folic acid. The median fasting WB folate concentrations from 42 nonsupplemented and nonfortified adults were 576 nmol/L (6S)-5-CH(3)-H(4)folate and 73.6 nmol/L non-CH(3)-H(4)folate, and 1,206 nmol/L (6S)-5-CH(3)-H(4)folate and 155 nmol/L non-CH(3)-H(4)folate for 35 adults who had taken 500 μg of folic acid, 50 mg of vitamin B(6), and 500 μg of vitamin B(12) per day orally for 6 months. In conclusion, the UPLC-MS/MS method is fast and has a good sensitivity and selectivity for WB folates. We observed a dose-dependent oxidation of (6S)-H(4)folate, which resulted in the formation of artificial folic acid in serum and WB. To minimize this effect, we recommend a fast sample preparation.

  19. Ego depletion decreases trust in economic decision making

    PubMed Central

    Ainsworth, Sarah E.; Baumeister, Roy F.; Vohs, Kathleen D.; Ariely, Dan

    2014-01-01

    Three experiments tested the effects of ego depletion on economic decision making. Participants completed a task either requiring self-control or not. Then participants learned about the trust game, in which senders are given an initial allocation of $10 to split between themselves and another person, the receiver. The receiver receives triple the amount given and can send any, all, or none of the tripled money back to the sender. Participants were assigned the role of the sender and decided how to split the initial allocation. Giving less money, and therefore not trusting the receiver, is the safe, less risky response. Participants who had exerted self-control and were depleted gave the receiver less money than those in the non-depletion condition (Experiment 1). This effect was replicated and moderated in two additional experiments. Depletion again led to lower amounts given (less trust), but primarily among participants who were told they would never meet the receiver (Experiment 2) or who were given no information about how similar they were to the receiver (Experiment 3). Amounts given did not differ for depleted and non-depleted participants who either expected to meet the receiver (Experiment 2) or were led to believe that they were very similar to the receiver (Experiment 3). Decreased trust among depleted participants was strongest among neurotics. These results imply that self-control facilitates behavioral trust, especially when no other cues signal decreased social risk in trusting, such as if an actual or possible relationship with the receiver were suggested. PMID:25013237

  20. A cross-sectional study to find out the relationship of methylenetetrahydrofolate reductase (MTHFR) C677T genotype with plasma levels of folate and total homocysteine by daily folate intake in Japanese.

    PubMed

    Fukuda, Nana; Hamajima, Nobuyuki; Wakai, Kenji; Suzuki, Koji

    2014-01-01

    In those with the methylenetetrahydrofolate reductase (MTHFR) 677TT genotype, enzyme activity is lowered. Therefore, these individuals might require an increased intake of folate to maintain or control blood levels of plasma folate or total homocysteine (tHcy). We examined associations of dietary folate intake with fasting plasma folate and total homocysteine (tHcy) according to genotype among 554 Japanese (207 men and 347 women aged 39-89 y) recruited in 2009. Intake of folate was estimated with a food frequency questionnaire. The MTHFR polymorphism was genotyped by a polymerase chain reaction with confronting two-pair primers. The log-transformed concentration of folate or tHcy was regressed on energy-adjusted folate intake in a linear regression analysis. Higher folate intake was associated with higher plasma folate among those with the CC (β=0.165, p=0.066) or CT (β=0.248, p<0.001) genotypes, and with lower tHcy levels only among those with the CC (β=-0.141, p=0.013) genotype. Plasma folate was significantly and inversely associated with tHcy, irrespective of MTHFR genotype. When the analysis was restricted to those with tHcy levels higher than the reference range (≥13.5 nmol/mL, n=20), these significant associations were not found. The interaction between folate intake or plasma folate and genotype was not significant in any analysis. In conclusion, dietary folate intake was positively associated with plasma folate among those with the CC or CT genotypes and inversely associated with tHcy among those with the CC genotype, but the associations were not clear among those with higher levels of tHcy.

  1. Streptococcus pneumoniae folate biosynthesis responds to environmental CO2 levels.

    PubMed

    Burghout, Peter; Zomer, Aldert; van der Gaast-de Jongh, Christa E; Janssen-Megens, Eva M; Françoijs, Kees-Jan; Stunnenberg, Hendrik G; Hermans, Peter W M

    2013-04-01

    Although carbon dioxide (CO2) is known to be essential for Streptococcus pneumoniae growth, it is poorly understood how this respiratory tract pathogen adapts to the large changes in environmental CO2 levels it encounters during transmission, host colonization, and disease. To identify the molecular mechanisms that facilitate pneumococcal growth under CO2-poor conditions, we generated a random S. pneumoniae R6 mariner transposon mutant library representing mutations in 1,538 different genes and exposed it to CO2-poor ambient air. With Tn-seq, we found mutations in two genes that were involved in S. pneumoniae adaptation to changes in CO2 availability. The gene pca, encoding pneumococcal carbonic anhydrase (PCA), was absolutely essential for S. pneumoniae growth under CO2-poor conditions. PCA catalyzes the reversible hydration of endogenous CO2 to bicarbonate (HCO3(-)) and was previously demonstrated to facilitate HCO3(-)-dependent fatty acid biosynthesis. The gene folC that encodes the dihydrofolate/folylpolyglutamate synthase was required at the initial phase of bacterial growth under CO2-poor culture conditions. FolC compensated for the growth-phase-dependent decrease in S. pneumoniae intracellular long-chain (n > 3) polyglutamyl folate levels, which was most pronounced under CO2-poor growth conditions. In conclusion, S. pneumoniae adaptation to changes in CO2 availability involves the retention of endogenous CO2 and the preservation of intracellular long-chain polyglutamyl folate pools.

  2. Other relevant components of nuts: phytosterols, folate and minerals.

    PubMed

    Segura, Ramon; Javierre, Casimiro; Lizarraga, M Antonia; Ros, Emilio

    2006-11-01

    Nuts contain significant amounts of essential micronutrients that are associated with an improved health status when consumed at doses beyond those necessary to prevent deficiency states. Nuts do not contain cholesterol, but they are rich in chemically related phytosterols, a class of compounds that interfere with intestinal cholesterol absorption and thus help lower blood cholesterol. Nuts also contain folate, a B-vitamin necessary for normal cellular function that plays an important role in detoxifying homocysteine, a sulphur-containing amino acid with atherothrombotic properties that accumulates in plasma when folate status is subnormal. Compared to other common foodstuffs, nuts have an optimal nutritional density with respect to healthy minerals, such as calcium, magnesium and potassium. Like that of most vegetables, the sodium content of nuts is very low. A high intake of calcium, magnesium and potassium, together with a low sodium intake, is associated with protection against bone demineralisation, arterial hypertension, insulin resistance, and overall cardiovascular risk. Phytosterols might justify part of the cholesterol-lowering effect of nut intake beyond that attributable to fatty acid exchange, while the mineral richness of nuts probably contributes to the prevention of diabetes and coronary heart disease observed in epidemiological studies in association with frequent nut consumption.

  3. Dendronized nanoconjugates of lysine and folate for treatment of cancer.

    PubMed

    Jain, Keerti; Gupta, Umesh; Jain, Narendra K

    2014-08-01

    Poly-L-lysine (PLL) dendrimers are currently being investigated as antiangiogenic agent for therapy of cancer. In this study, we report folate conjugated poly-l-lysine dendrimers (FPLL) as an efficient carrier for model anticancer drug, doxorubicin hydrochloride (Dox); for pH sensitive drug release, selective targeting to cancer cells, anticancer activity and antiangiogenic activity. This nanoconjugate of Dox showed initial rapid in vitro release followed by gradual slow release, and the drug release was found to be pH sensitive with greater release at acidic pH. In the CAM assay and tubule formation assay with HUVEC, Dox-FPLL formulation showed the significant antiangiogenic activity confirming that activity of PLL was not compromised by the presence of Dox and folic acid. The ex vivo investigations with human breast cancer cell lines MCF-7 showed enhanced cytotoxicity of Dox-FPLL with significantly enhanced intracellular uptake (p<0.001). The in vivo therapeutic potential of nanoconjugate was determined in MCF-7 breast cancer xenograft model in tumor-bearing mice. Dox-FPLL increased the concentration of Dox in tumor by 121.5-fold after 24 h in comparison with free Dox formulation. The folate conjugated dendrimeric Dox showed superior anti-tumor activity in tumor xenograft model with significantly prolonged survival determined by Kaplan Meier survival analysis (p<0.001).

  4. How I treat anemia in pregnancy: iron, cobalamin, and folate.

    PubMed

    Achebe, Maureen M; Gafter-Gvili, Anat

    2017-02-23

    Anemia of pregnancy, an important risk factor for fetal and maternal morbidity, is considered a global health problem, affecting almost 50% of pregnant women. In this article, diagnosis and management of iron, cobalamin, and folate deficiencies, the most frequent causes of anemia in pregnancy, are discussed. Three clinical cases are considered. Iron deficiency is the most common cause. Laboratory tests defining iron deficiency, the recognition of developmental delays and cognitive abnormalities in iron-deficient neonates, and literature addressing the efficacy and safety of IV iron in pregnancy are reviewed. An algorithm is proposed to help clinicians diagnose and treat iron deficiency, recommending oral iron in the first trimester and IV iron later. Association of folate deficiency with neural tube defects and impact of fortification programs are discussed. With increased obesity and bariatric surgery rates, prevalence of cobalamin deficiency in pregnancy is rising. Low maternal cobalamin may be associated with fetal growth retardation, fetal insulin resistance, and excess adiposity. The importance of treating cobalamin deficiency in pregnancy is considered. A case of malarial anemia emphasizes the complex relationship between iron deficiency, iron treatment, and malaria infection in endemic areas; the heightened impact of combined etiologies on anemia severity is highlighted. © 2017 by The American Society of Hematology.

  5. Hyperbranched amphiphilic polymer with folate mediated targeting property.

    PubMed

    Zhang, Lei; Hu, Chao-Hua; Cheng, Si-Xue; Zhuo, Ren-Xi

    2010-09-01

    Hyperbranched amphiphilic polymer PG6-PLA-PEG was synthesized through grafting hydrophobic poly(D,L-lactide) (PLA) segments and hydrophilic poly(ethylene glycol) (PEG) blocks to hydrophilic hyperbranched polyglycerol core (PG6), subsequently. To achieve cell targeting property, folic acid (FA) was further incorporated to the hyperbranched polymer to obtain PG6-PLA-PEG-FA. The polymers were characterized by (1)H NMR, UV-vis spectroscopy and combined size-exclusion chromatography and multiangle laser light scattering (SEC-MALLS) analysis. Due to the amphiphilicity, PG6-PLA-PEG and PG6-PLA-PEG-FA could self-assemble to form nanoparticles in aqueous solutions. Antineoplastic drug, paclitaxel (PTX), was encapsulated into the nanoparticles. The nanoparticles were observed by transmission electron microscopy (TEM). The targeting property of PG6-PLA-PEG-FA was evaluated in vitro. The results showed that the PTX loaded PG6-PLA-PEG-FA nanoparticles exhibited enhanced inhibition on folate receptor positive tumor cells due to the folate mediated targeting.

  6. Structural basis for recognition of polyglutamyl folates by thymidylate synthase.

    PubMed

    Kamb, A; Finer-Moore, J; Calvert, A H; Stroud, R M

    1992-10-20

    Thymidylate synthase (TS) catalyzes the final step in the de novo synthesis of thymidine. In vivo TS binds a polyglutamyl cofactor, polyglutamyl methylenetetrahydrofolate (CH2-H4folate), which serves as a carbon donor. Glutamate residues on the cofactor contribute as much as 3.7 kcal to the interaction between the cofactor, substrate, and enzyme. Because many ligand/receptor interactions appear to be driven largely by hydrophobic forces, it is surprising that the addition of hydrophilic, soluble groups such as glutamates increases the affinity of the cofactor for TS. The structure of a polyglutamyl cofactor analog bound in ternary complex with deoxyuridine monophosphate (dUMP) and Escherichia coli TS reveals how the polyglutamyl moiety is positioned in TS and accounts in a qualitative way for the binding contributions of the different individual glutamate residues. The polyglutamyl moiety is not rigidly fixed by its interaction with the protein except for the first glutamate residue nearest the p-aminobenzoic acid ring of folate. Each additional glutamate is progressively more disordered than the previous one in the chain. The position of the second and third glutamate residues on the protein surface suggests that the polyglutamyl binding site could be utilized by a new family of inhibitors that might fill the binding area more effectively than polyglutamate.

  7. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  8. Protective effect of mesoporous silica particles on encapsulated folates.

    PubMed

    Ruiz-Rico, María; Daubenschüz, Hanna; Pérez-Esteve, Édgar; Marcos, María D; Amorós, Pedro; Martínez-Máñez, Ramón; Barat, José M

    2016-08-01

    Mesoporous silica particles (MSPs) are considered suitable supports to design gated materials for the encapsulation of bioactive molecules. Folates are essential micronutrients which are sensitive to external agents that provoke nutritional deficiencies. Folates encapsulation in MSPs to prevent degradation and to allow their controlled delivery is a promising strategy. Nevertheless, no information exists about the protective effect of MSPs encapsulation to prevent their degradation. In this work, 5-formyltetrahydrofolate (FO) and folic acid (FA) were entrapped in MSPs functionalized with polyamines, which acted as pH-dependent molecular gates. The stability of free and entrapped vitamins after acidic pH, high temperature and light exposure was studied. The results showed the degradation of FO after high temperature and acidic pH, whereas entrapped FO displayed enhanced stability. Free FA was degraded by light, but MSPs stabilized the vitamin. The obtained results point toward the potential use of MSPs as candidates to enhance stability and to improve the bioavailability of functional biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Folate content in tomato ( Lycopersicon esculentum ). influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures.

    PubMed

    Iniesta, M Dolores; Pérez-Conesa, Darío; García-Alonso, Javier; Ros, Gaspar; Periago, M Jesús

    2009-06-10

    The effects of cultivar, on-vine ripening, and year of harvest on the folate content of raw tomatoes were studied. Folate content in hot-break tomato puree (HTP) subjected to pasteurization at different temperatures and its evolution during the shelf life of tomato juice were also investigated. 5-Methyltetrahydrofolate (5-CH(3)-H(4)-folate) was the only folate compound identified in raw tomatoes and HTP, but tetrahydrofolate (H(4)-folate) was 10% of the folate detected in tomato juice. The content of folates in raw tomatoes ranged from 4.1 to 35.3 microg/100 g of fresh weight and was highly influenced by all of the factors studied. No clear trend of folate content with ripening stage was observed. The extractability of 5-CH(3)-H(4)-folate from HTP increased significantly after pasteurization at 98 degrees C for 40 s, but higher temperatures decreased its content. Tomato juice showed folate losses during storage independent of the storage temperature. Folate losses were higher when tomato juice was packed in glass bottles than in Tetra Pak.

  10. Intravenous infusion of iron and tetrahydrofolate does not influence intrauterine uteroferrin and secreted folate-binding protein content in swine.

    PubMed

    Vallet, J L; Christenson, R K; Klemcke, H G; Pearson, P L

    2001-01-01

    The effect of exogenous iron and folate on reproductive performance in swine is equivocal. However, the effect of exogenous iron and folate on secretion of their respective uterine transport proteins has never been reported. Twenty gilts were infused (n = 5 per treatment) with either 1) saline, 2) alpha-tocopherol, 3) alpha-tocopherol plus iron citrate, or 4) alpha-tocopherol plus tetrahydrofolate on d 11 to 14 of pregnancy. Intravenous infusion of iron citrate and tetrahydrofolate increased (P < 0.05) plasma iron and folate, respectively, for 6 to 8 h after treatment. Treatments had no effect on uterine content of uteroferrin or secreted folate-binding protein in uterine flushings obtained on d 15 of pregnancy. These data suggest that uterine secretion of uteroferrin and secreted folate-binding protein are not influenced by plasma levels of iron and folate, respectively, and may provide an explanation for the equivocal effect of iron and folate treatment on reproductive performance in gilts.

  11. Folate and vitamin B-12 biomarkers in NHANES: history of their measurement and use12345

    PubMed Central

    Johnson, Clifford L

    2011-01-01

    NHANES measured folate and vitamin B-12 status biomarkers, starting with serum folate from NHANES I (1974–1975) through 2010. Subsequent NHANES measured additional biomarkers [eg, red blood cell folate, serum vitamin B-12, total homocysteine (tHcy), methylmalonic acid, serum folic acid, and 5-methyltetrahydrofolic acid]. Examples of the uses of these data are wide ranging and include public policy applications, the derivation of reference intervals, and research. Periodically, the National Center for Health Statistics and its federal partners convene expert panels to review the use of the folate- and vitamin B-12–related biomarkers in NHANES. These panels have evaluated the need for results to be comparable across time and with published data and the use of crossover studies and adjustment equations to ensure comparability. With the recent availability of reference methods and materials for serum folate and tHcy, NHANES has started to use traceability approaches to enhance the accuracy and comparability of its results. A major user concern over the years has been the use of cutoffs to estimate the prevalence of inadequate folate and vitamin B-12 status. Because these cutoffs depend on the measurement procedure, several expert panels suggested approaches for dealing with cutoff challenges. This review summarizes the history and use of folate- and vitamin B-12–related biomarkers beginning with NHANES I (1974–1975) through 2010. PMID:21593508

  12. Functional coating of liposomes using a folate– polymer conjugate to target folate receptors

    PubMed Central

    Watanabe, Kazuo; Kaneko, Makoto; Maitani, Yoshie

    2012-01-01

    Folate-polymer-coated liposomes were developed for targeted chemotherapy using doxorubicin (DXR) as a model drug. Folate-poly(L-lysine) (F–PLL) conjugates with a folate modification degree of 16.7 mol% on epsilon amino groups of PLL were synthesized. DXR-loaded anionic liposomes were coated with F–PLL, and the cellular association of F–PLL-coated liposomes was evaluated by flow cytometry, and confocal microscopy in human nasopharyngeal carcinoma KB cells overexpressing folate receptors (FRs), and human lung adenocarcinoma A549 cells [FR (−)]. The existence of a polymer layer on the surface of F–PLL-coated liposomes was confirmed by zeta potential analysis. The KB cellular association of F–PLL-coated liposomal DXR was increased compared with that of PLL-coated liposomes and was inhibited in the presence of free folic acid. Twofold higher cytotoxicity of F–PLL-coated liposomal DXR was observed compared with that of the PLL-coated liposomal DXR in KB cells, but not in A549 cells, suggesting the presence of FR-mediated endocytosis. These results indicated that folate-targeted liposomes were prepared successfully by coating the folate–polymer conjugate F–PLL. This novel preparation method of folate-targeted liposomes is expected to provide a powerful tool for the development of a folate-targeting drug nanodevice as coating with ligand–polymer conjugates can be applicable to many kinds of particles, as well as to lipid-based particles. PMID:22888227

  13. Effect of Tea Catechins on Folate Analysis in Green Tea by Microbiological Assay.

    PubMed

    Umegaki, Keizo; Sekine, Yuki; Sato, Yoko; Chiba, Tsuyoshi; Sonoda, Masaru

    2016-01-01

    Green tea is thought to be a primary source of folate in the Japanese diet, based on folate content analyzed by a microbiological assay. Green tea also contains high amount of catechins, in particular, epigallocatechin gallate (EGCg), which was demonstrated to be able to inhibit the digestive enzyme activities and microbial growth in the folate assay. In the present study, we examined whether tea catechins interfered with components of the folate assay for green tea. A marked inhibitory effect of EGCg on microbial growth was observed at an inhibitory concentration of higher than 10 μg/mL. Tea catechins without the galloyl moiety did not show an inhibitory effect. EGCg inhibited the activity of the three enzymes used for assay sample preparation at an inhibitory concentration of higher than 750 μg/mL for α-amylase, 1,000 μg/mL for protease, and 50 μg/mL for conjugase. However, with each step of the assay, the actual concentration of EGCg was decreased to below the inhibitory concentration of each analytical step. Lack of influence of EGCg on green tea folate assay was confirmed by an addition of folate standard in tea infusion. These results suggested that tea catechins have no practical impact on folate analysis in green tea, using the general microbiological assay.

  14. Gene expression profiling in the fetal cardiac tissue after folate and low dose trichloroethylene exposure

    PubMed Central

    Caldwell, Patricia T.; Manziello, Ann; Howard, Jamie; Palbykin, Brittany; Runyan, Raymond B.; Selmin, Ornella

    2014-01-01

    Background Previous studies show gene expression alterations in rat embryo hearts and cell lines that correspond to the cardio-teratogenic effects of trichloroethylene (TCE) in animal models. One potential mechanism of TCE teratogenicity may be through altered regulation of calcium homeostatic genes with a corresponding inhibition of cardiac function. It has been suggested that TCE may interfere with the folic acid/methylation pathway in liver and kidney and alter gene regulation by epigenetic mechanisms. According to this hypothesis, folate supplementation in the maternal diet should counteract TCE effects on gene expression in the embryonic heart. Approach To identify transcriptional targets altered in the embryonic heart after exposure to TCE, and possible protective effects of folate, we used DNA microarray technology to profile gene expression in embryonic mouse hearts with maternal TCE exposure and dietary changes in maternal folate. Results Exposure to low doses of TCE (10ppb) caused extensive alterations in transcripts encoding proteins involved in transport, ion channel, transcription, differentiation, cytoskeleton, cell cycle and apoptosis. Exogenous folate did not offset the effects of TCE exposure on normal gene expression and both high and low levels of folate produced additional significant changes in gene expression. Conclusions A mechanism where TCE induces a folate deficiency does not explain altered gene expression patterns in the embryonic mouse heart. The data further suggest that use of folate supplementation, in the presence of this toxin, may be detrimental and non-protective of the developing embryo. PMID:19813261

  15. Subjective well-being in older adults: folate and vitamin B12 independently predict positive affect.

    PubMed

    Edney, Laura C; Burns, Nicholas R; Danthiir, Vanessa

    2015-10-28

    Vitamin B12, folate and homocysteine have long been implicated in mental illness, and growing evidence suggests that they may play a role in positive mental health. Elucidation of these relationships is confounded due to the dependence of homocysteine on available levels of vitamin B12 and folate. Cross-sectional and longitudinal relationships between vitamin B12, folate, homocysteine and subjective well-being were assessed in a sample of 391 older, community-living adults without clinically diagnosed depression. Levels of vitamin B12, but not folate, influenced homocysteine levels 18 months later. Vitamin B12, folate and their interaction significantly predicted levels of positive affect (PA) 18 months later, but had no impact on the levels of negative affect or life satisfaction. Cross-sectional relationships between homocysteine and PA were completely attenuated in the longitudinal analyses, suggesting that the cross-sectional relationship is driven by the dependence of homocysteine on vitamin B12 and folate. This is the first study to offer some evidence of a causal link between levels of folate and vitamin B12 on PA in a large, non-clinical population.

  16. The Role of Folate Transport in Antifolate Drug Action in Trypanosoma brucei*

    PubMed Central

    Dewar, Simon; Sienkiewicz, Natasha; Ong, Han B.; Wall, Richard J.; Horn, David

    2016-01-01

    The aim of this study was to identify and characterize mechanisms of resistance to antifolate drugs in African trypanosomes. Genome-wide RNAi library screens were undertaken in bloodstream form Trypanosoma brucei exposed to the antifolates methotrexate and raltitrexed. In conjunction with drug susceptibility and folate transport studies, RNAi knockdown was used to validate the functions of the putative folate transporters. The transport kinetics of folate and methotrexate were further characterized in whole cells. RNA interference target sequencing experiments identified a tandem array of genes encoding a folate transporter family, TbFT1–3, as major contributors to antifolate drug uptake. RNAi knockdown of TbFT1–3 substantially reduced folate transport into trypanosomes and reduced the parasite's susceptibly to the classical antifolates methotrexate and raltitrexed. In contrast, knockdown of TbFT1–3 increased susceptibly to the non-classical antifolates pyrimethamine and nolatrexed. Both folate and methotrexate transport were inhibited by classical antifolates but not by non-classical antifolates or biopterin. Thus, TbFT1–3 mediates the uptake of folate and classical antifolates in trypanosomes, and TbFT1–3 loss-of-function is a mechanism of antifolate drug resistance. PMID:27703008

  17. Folate, vitamin B12 and postmenopausal breast cancer in a prospective study of French women

    PubMed Central

    Lajous, Martin; Romieu, Isabelle; Sabia, Severine; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Françoise

    2006-01-01

    Objective Adequate folate intake may be important for breast cancer prevention. Its protective effect may be influenced by factors associated with folate metabolism. We sought to evaluate folate intake in relation to breast cancer risk and examine whether the relation is affected by alcohol and intake of vitamin B2 and B12. Methods A prospective cohort analysis of folate intake was conducted among 62,739 postmenopausal women in the French E3N cohort who had completed a validated food frequency questionnaire in 1993. During nine years’ follow-up, 1,812 cases of pathology-confirmed breast cancer were documented through follow-up questionnaires. Nutrients were categorized in quintiles and energy-adjusted using the regression-residual method. Cox model-derived relative risks (RRs) were adjusted for known breast cancer determinants. Results The multivariate RR for extreme quintiles of folate intake was was 0.78 (95% CI: 0.67–0.90; p-trend = 0.001) [Median intake for Q1 = 296 μg/day and Q5 = 522 μg/day]. There was no evidence to support effect modification by alcohol or B2 intake. The decreasing trend was most marked in women with higher folate and vitamin B12 intake. However, test for interaction was not statistically significant (p = 0.29) Conclusions High folate intake was associated with decreased breast cancer risk. Vitamin B12 intake may modify this association. PMID:17006726

  18. Effects of testosterone on the metabolism of folate coenzymes in the rat

    PubMed Central

    Rovinetti, C.; Bovina, C.; Tolomelli, B.; Marchetti, M.

    1972-01-01

    1. The effects of castration and testosterone treatment on enzymic activities involved in folate coenzyme metabolism in the liver and in accessory sex organs of male adult rats were studied. 2. In the liver of castrated rats the concentration of 10-formyltetrahydrofolate (10-HCO-H4folate) synthetase and tetrahydrofolate (H4folate) dehydrogenase were significantly decreased whereas that of 5,10-methylenetetrahydrofolate dehydrogenase increased; the treatment with five doses of testosterone caused a return to normal values of these activities. 3. In the prostate of castrated rats a pronounced decrease in H4folate dehydrogenase, serine hydroxymethyltransferase and 10-HCO-H4folate synthetase activities was observed. The administration of testosterone restored the enzymic activities to normal values. 4. In the seminal vesicles of castrated rats only 10-HCO-H4folate synthetase was markedly depressed; testosterone treatment not only restored activity to normal values but raised it to higher than normal values. The slight changes observed in other enzymic activities also returned to normal values with the hormone treatment. 5. These results are discussed in relation to a possible control mechanism of folate metabolism by testosterone. PMID:5071175

  19. Blood levels of folate at birth and risk of childhood leukemia

    PubMed Central

    Chokkalingam, Anand P.; Chun, Danielle S.; Noonan, Emily J.; Pfeiffer, Christine M.; Zhang, Mindy; Month, Stacy R.; Taggart, Denah R.; Wiemels, Joseph L.; Metayer, Catherine; Buffler, Patricia A.

    2013-01-01

    Background A role for folate in cancer etiology has long been suspected due to folate’s function as a cofactor in DNA methylation and maintenance of DNA synthesis. Previous case-control studies examining the association between risk of childhood acute lymphoblastic leukemia (ALL) and mothers’ self-reported folate intake and supplementation have been inconclusive. Materials and Methods We utilized a quantitative microbiologic assay to measure newborn folate concentrations in archived dried bloodspots collected at birth from 313 incident ALL cases, 44 incident acute myeloid leukemia (AML) cases, and 405 matched population-based controls. Results Overall, we found no difference in hemoglobin-normalized newborn folate concentrations (HbFol, nmol/g) between ALL cases and controls (2.76 vs. 2.77, p=0.97) or between AML cases and controls (2.93 vs. 2.76, p=0.32). Null results persisted after stratification by both birth period (1982-94, 1995-98, and 1999-2002) to account for the start of folate fortification of grain products in the US, and by self-reported maternal pre-pregnancy supplement use. Similarly, no association was observed for major ALL subgroups. Conclusions Our results do not support an association between birth folate concentrations and risk of childhood AML or major ALL subgroups. Impact However, they do not rule out a role for folate through exposures after birth or in early stages of fetal development. PMID:23576692

  20. Relative bioavailability of deuterium-labeled monoglutamyl and hexaglutamyl folates in human subjects

    SciTech Connect

    Gregory, J.F. III; Bhandari, S.D.; Bailey, L.B.; Toth, J.P.; Baumgartner, T.G.; Cerda, J.J. )

    1991-03-01

    The bioavailability of orally administered mono- and polyglutamyl folates was examined in humans by using stable-isotope methods. (3',5'-2H2)Folic acid (d2-FA) and (3',5'-2H2)pteroylhexaglutamate (d2-PteGlu6) were prepared for oral administration and (glu-2H4)folic acid (d4-FA) was prepared for intravenous (iv) injection. In two trials, adult males (n = 7) on a folate saturation regimen (2 mg/d) were given a single 677-nmol oral dose of either d2-FA or d2-PteGlu6 in apple juice along with an iv injection of 502 nmol d4-FA as a control. Urine was collected for 48 h and the isotope labeling of urinary folates determined by mass spectrometry. The excretion ratio of urinary folates (% of d2-folate dose/% of d4-folate dose) resulting from oral d2-FA and iv d4-FA was 1.45 +/- 0.10 (mean +/- SEM) whereas the ratio for oral d2-PteGlu6 and iv d4-FA was 0.67 +/- 0.04. These results indicate that the d2-PteGlu6 is available to humans as a source of folate although its bioavailability is substantially less than that of d2-FA under these conditions.

  1. Effects of chronic ethanol ingestion and folate deficiency on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver.

    PubMed

    Min, Hyesun; Im, Eun-Sun; Seo, Jung-Sook; Mun, Ju Ae; Burri, Betty J

    2005-12-01

    We recently observed that ethanol feeding impairs 10-formyltetrahydrofolate (10-FTHF) dehydrogenase (EC 1.5.1.6.) and 10-FTHF hydrolase activity in rats. In the present study, we explored the effects of folate deficiency or sufficiency combined with alcoholic intake on 10-FTHF and possible mechanisms by which chronic ethanol ingestion produces folate deficiency. Sprague-Dawley rats were fed either folate-sufficient (FS) or folate-deficient (FD) diets; with or without ethanol (E) for four weeks. Hepatic 10-FTHF dehydrogenase and hydrolase activity, plasma folate and homocysteine were measured at baseline and after feeding experimental diets. Liver weight increased slightly with either folate deficiency or ethanol consumption. In rats fed the folate-sufficient diet with ethanol (FSE), plasma folate was decreased slightly (p<0.05) and plasma homocysteine elevated compared to rats fed the FS diet without ethanol. Ethanol did not affect plasma folate and plasma homocysteine in FD rats. Red-blood cell (RBC) folate was increased similarly in rats by ethanol feeding (FSE and FDE>FS and FD). Feeding folate deficient or ethanol (FSE, FD and FDE) diets depressed hepatic activities of 10-FTHF dehydrogenase, which catalyzes the oxidative deformylation of 10-FTHF to tetrahydrofolate (THF) and carbon dioxide. Rats consuming the FDE diet had the lowest enzyme activities of the experimental groups, implying that folate deficiency and ethanol consumption each affect enzyme activity. We confirm that ethanol decreases hepatic 10-FTHF dehydrogenase activity and show that this decrease occurs irrespective of folate status. This shows that modulation of 10-FTHF is one possible mechanism by which ethanol intake decreases folate status and affects one-carbon metabolism.

  2. Self-assembled liquid-crystalline folate nanoparticles for in vitro controlled release of doxorubicin.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2015-02-01

    Liquid-crystalline folate nanoparticles are ordered in structure which offers several advantages like high encapsulation of drugs, controlled release rates, biocompatible in nature. Moreover, it facilitates the cellular uptake of nanodrugs without any extra step of folate ligand based targeting. The size of these nanocarriers as well as the release profiles of drugs from these nano-carriers can be controlled precisely. Folate molecules self-assemble in ordered stacks and columns even at low concentration of 0.1wt%. Doxorubicin molecules get intercalated within the folate stacks and are developed into nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate doxorubicin molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming doxorubicin encapsulated folate nanoparticles as well as the parameters to control the release rates of doxorubicin through liquid-crystalline folate nanoparticles. It has been demonstrated that doxorubicin release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on doxorubicin release rates was also studied. Moreover, this study also addresses the comparative in vitro cytotoxic performance of Doxorubicin loaded folate nanoparticles and cellular uptake of nano-carriers on cancer and normal cell line. Copyright © 2014. Published by Elsevier Masson SAS.

  3. Genetic and nutritional deficiencies in folate metabolism influence tumorigenicity in Apcmin/+ mice.

    PubMed

    Lawrance, Andrea K; Deng, Liyuan; Brody, Lawrence C; Finnell, Richard H; Shane, Barry; Rozen, Rima

    2007-05-01

    Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse model of colon cancer, the Apc(min/+) mouse. Apc(min/+) mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1(+/-)) developed significantly fewer adenomas compared to Rfc1(+/+)Apc(min/+) mice [30.3+/-4.6 vs. 60.4+/-9.4 on a control diet (CD) and 42.6+/-4.4 vs. 55.8+/-7.6 on a folate-deficient diet, respectively]. Rfc1(+/-)Apc(min/+) mice also carried a lower tumor load, an indicator of tumor size as well as of tumor number. In contrast, there were no differences in adenoma formation between Apc(min/+) mice carrying a knockout allele for methionine synthase (Mtr(+/-)), an enzyme that catalyzes folate-dependent homocysteine remethylation, and Mtr(+/+)Apc(min/+) mice. However, in both Mtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3+/-3.8 on a CD to 48.1+/-4.2 on a folate-deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can have distinct influences on tumorigenesis in Apc(min/+) mice; altered levels of homocysteine, global DNA methylation and apoptosis may contribute mechanistically to dietary influence.

  4. Advanced age as a risk factor for folate-associated functional cobalamin deficiency.

    PubMed

    Solomon, Lawrence R

    2013-04-01

    To determine whether high serum folate levels contribute to metabolite changes in elderly subjects with normal cobalamin levels. Case series. Outpatient clinic at a university-based staff model health maintenance organization. Two hundred thirty-three ambulatory individuals without diabetes mellitus with normal renal function and normal cobalamin levels evaluated for cobalamin deficiency. Cobalamin, serum folate, methylmalonic acid (MMA), and homocysteine. Older individuals (≥60) with low-normal cobalamin levels (201-300 pg/mL) had higher MMA and lower homocysteine levels when serum folate levels were high (>20 ng/mL) than when serum folate levels were normal (P < .02), but serum folate levels within the normal range were not a determinant of either metabolite. In younger subjects with low-normal cobalamin levels, high serum folate levels were not associated with significant differences in either metabolite. At mid-normal cobalamin levels (301-600 pg/mL), high serum folate levels were associated with lower homocysteine levels in older adults (P < .001) but not with differences in MMA in either age group. Cobalamin therapy decreased or normalized MMA and homocysteine in 89% or more of participants even at pretherapy cobalamin levels greater than 600 pg/mL. High serum folate levels are associated with higher MMA levels when cobalamin levels are low-normal, and this effect is age dependent, not progressive within the normal serum folate range (suggesting a threshold effect), and reversed by cobalamin therapy. Because MMA may be neurotoxic, these findings suggest caution in the use of folic acid supplements in elderly adults. © 2013, Copyright the Author Journal compilation © 2013, The American Geriatrics Society.

  5. Lifestyle and genetic determinants of folate and vitamin B12 levels in a general adult population.

    PubMed

    Thuesen, Betina H; Husemoen, Lise Lotte N; Ovesen, Lars; Jørgensen, Torben; Fenger, Mogens; Linneberg, Allan

    2010-04-01

    Danish legislation regarding food fortification has been very restrictive resulting in few fortified food items on the Danish market. Folate and vitamin B12 deficiency is thought to be common due to inadequate intakes but little is known about the actual prevalence of low serum folate and vitamin B12 in the general population. The aim of the present study was to evaluate the folate and vitamin B12 status of Danish adults and to investigate associations between vitamin status and distinct lifestyle and genetic factors. The study included a random sample of 6784 individuals aged 30-60 years. Information on lifestyle factors was obtained by questionnaires and blood samples were analysed for serum folate and vitamin B12 concentrations and several genetic polymorphisms. The overall prevalence of low serum folate ( < 6.8 nmol/l) was 31.4 %. Low serum folate was more common among men than women and the prevalence was lower with increasing age. Low serum folate was associated with smoking, low alcohol intake, high coffee intake, unhealthy diet, and the TT genotype of the methylenetetrahydrofolate reductase (MTHFR)-C677T polymorphism. The overall prevalence of low serum vitamin B12 ( < 148 pmol/l) was 4.7 %. Low serum vitamin B12 was significantly associated with female sex, high coffee intake, low folate status, and the TT genotype of the MTHFR-C677T polymorphism. In conclusion, low serum folate was present in almost a third of the adult population in the present study and was associated with several lifestyle factors whereas low serum concentrations of vitamin B12 were less common and only found to be associated with a few lifestyle factors.

  6. Folate Deficiency, Atopy, and Severe Asthma Exacerbations in Puerto Rican Children

    PubMed Central

    Blatter, Joshua; Brehm, John M.; Sordillo, Joanne; Forno, Erick; Boutaoui, Nadia; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Weiss, Scott T.; Litonjua, Augusto A.; Canino, Glorisa

    2016-01-01

    Background: Little is known about folate and atopy or severe asthma exacerbations. We examined whether folate deficiency is associated with number of positive skin tests to allergens or severe asthma exacerbations in a high-risk population and further assessed whether such association is explained or modified by vitamin D status. Methods: Cross-sectional study of 582 children aged 6 to 14 years with (n = 304) and without (n = 278) asthma in San Juan, Puerto Rico. Folate deficiency was defined as plasma folate less than or equal to 20 ng/ml. Our outcomes were the number of positive skin tests to allergens (range, 0–15) in all children and (in children with asthma) one or more severe exacerbations in the previous year. Logistic and negative binomial regression models were used for the multivariate analysis. All multivariate models were adjusted for age, sex, household income, residential proximity to a major road, and (for atopy) case/control status; those for severe exacerbations were also adjusted for use of inhaled corticosteroids and vitamin D insufficiency (a plasma 25[OH]D < 30 ng/ml). Measurements and Main Results: In a multivariate analysis, folate deficiency was significantly associated with an increased degree of atopy and 2.2 times increased odds of at least one severe asthma exacerbation (95% confidence interval for odds ratio, 1.1–4.6). Compared with children who had normal levels of both folate and vitamin D, those with both folate deficiency and vitamin D insufficiency had nearly eightfold increased odds of one or more severe asthma exacerbation (95% confidence interval for adjusted odds ratio, 2.7–21.6). Conclusions: Folate deficiency is associated with increased degree of atopy and severe asthma exacerbations in school-aged Puerto Ricans. Vitamin D insufficiency may further increase detrimental effects of folate deficiency on severe asthma exacerbations. PMID:26561879

  7. Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.).

    PubMed

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2012-06-01

    Folate (vitamin B₉) content was evaluated in 10 varieties of coriander with the aim of enhancing its concentration and stability, because of three reasons: 1) coriander is among a few widely used greens in the world and suits many cuisines, 2) folate deficiency is prevalent in developing countries causing anaemia, infant mortality and neural tube closure defects, and 3) natural folate is preferred due to doubts about health risks associated with the synthetic form. In C. sativum, the highest folate content of 1,577 μg/100 g DW was found in var. GS4 Multicut foliage of mature plants (marketable stage) with an insignificantly higher content (1,599.74 μg/100 g DW) at flowering, which is a stage not preferred in markets. In callus cultures treated with plant growth regulators (GRs) (6-benzylaminopurine, kinetin and abscisic acid) substantial increase in folate occurred after 6 h, whereas elicitors (methyl jasmonate and salicylic acid) caused rapid 2-fold increase of folate, particularly in response to salicylic acid. Based on these observations, foliar applications were done for in vivo plants, where salicylic acid (250 μM, 24 h) also enhanced folate level by 2-folds (3,112.33 μg/100 g DW), although the content varied with diurnal rhythms. Stability of folates in treated coriander foliage was 10 % higher than in untreated foliage when stored at 25 °C and 4 °C. This study has established for the first time that coriander foliage is rich in folates, which can be doubled by elicitation and impart 10 % more stability than control during processing and storage.

  8. Folate Deficiency, Atopy, and Severe Asthma Exacerbations in Puerto Rican Children.

    PubMed

    Blatter, Joshua; Brehm, John M; Sordillo, Joanne; Forno, Erick; Boutaoui, Nadia; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Weiss, Scott T; Litonjua, Augusto A; Canino, Glorisa; Celedón, Juan C

    2016-02-01

    Little is known about folate and atopy or severe asthma exacerbations. We examined whether folate deficiency is associated with number of positive skin tests to allergens or severe asthma exacerbations in a high-risk population and further assessed whether such association is explained or modified by vitamin D status. Cross-sectional study of 582 children aged 6 to 14 years with (n = 304) and without (n = 278) asthma in San Juan, Puerto Rico. Folate deficiency was defined as plasma folate less than or equal to 20 ng/ml. Our outcomes were the number of positive skin tests to allergens (range, 0-15) in all children and (in children with asthma) one or more severe exacerbations in the previous year. Logistic and negative binomial regression models were used for the multivariate analysis. All multivariate models were adjusted for age, sex, household income, residential proximity to a major road, and (for atopy) case/control status; those for severe exacerbations were also adjusted for use of inhaled corticosteroids and vitamin D insufficiency (a plasma 25[OH]D < 30 ng/ml). In a multivariate analysis, folate deficiency was significantly associated with an increased degree of atopy and 2.2 times increased odds of at least one severe asthma exacerbation (95% confidence interval for odds ratio, 1.1-4.6). Compared with children who had normal levels of both folate and vitamin D, those with both folate deficiency and vitamin D insufficiency had nearly eightfold increased odds of one or more severe asthma exacerbation (95% confidence interval for adjusted odds ratio, 2.7-21.6). Folate deficiency is associated with increased degree of atopy and severe asthma exacerbations in school-aged Puerto Ricans. Vitamin D insufficiency may further increase detrimental effects of folate deficiency on severe asthma exacerbations.

  9. Effect of chronic alcohol exposure on folate uptake by liver mitochondria.

    PubMed

    Biswas, Arundhati; Senthilkumar, Sundar Rajan; Said, Hamid M

    2012-01-01

    Mammalian cells obtain folate, a water-soluble vitamin, from their surroundings via transport across cell membrane. Intracellular folate is compartmentalized between the cytoplasm and the mitochondria. Transport of folate from the cytoplasm into the mitochondria is via a specific carrier-mediated process involving the mitochondrial folate transporter (MFT). Chronic alcohol use negatively impacts folate homeostasis, but its effect on mitochondrial folate uptake is not clear. We addressed this issue using mitochondrial preparations isolated from the liver of rats chronically fed an alcohol liquid diet and from human liver HepG2 cells chronically exposed to alcohol. The results showed that chronic alcohol feeding of rats leads to a significant inhibition in mitochondrial carrier-mediated folate uptake. This inhibition was associated with a significant reduction in the level of expression of the MFT protein, mRNA, and heterogenous nuclear RNA (hnRNA). Similarly, chronic alcohol exposure (96 h) of HepG2 cells led to significant inhibition in mitochondrial carrier-mediated folate uptake, which was associated with a marked reduction in the level of expression of the human MFT (hMFT). To determine whether the latter effect is, in part, being exerted at the transcriptional level, we cloned the 5'-regulatory region of the human SLC25A32 gene (which encodes the hMFT) and showed that chronic alcohol exposure of HepG2 cells leads to a significant inhibition in its promoter activity. These studies show for the first time that chronic alcohol feeding/exposure leads to a significant inhibition in mitochondrial carrier-mediated folate uptake and that the inhibition is, in part, being exerted at the level of transcription of the SLC25A32 gene.

  10. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter.

    PubMed

    Nakai, Yasuhiro; Inoue, Katsuhisa; Abe, Naoki; Hatakeyama, Mai; Ohta, Kin-ya; Otagiri, Masaki; Hayashi, Yayoi; Yuasa, Hiroaki

    2007-08-01

    The functional characteristics of human proton coupled folate transporter (hPCFT)/heme carrier protein (HCP) 1 were investigated. hPCFT/HCP1 expressed transiently in human embryonic kidney 293 cells mediated the transport of folate at an acidic extracellular pH of 5.5 in a manner independent of Na(+) and insensitive to membrane potential, but its transport activity was absent at near-neutral pH. Folate transport mediated by hPCFT/hHCP1 at pH 5.5 was saturable with a K(m) of 1.67 microM and extensively inhibited by reduced folates, such as folinate, 5-methyltetrahydrofolate, and methotrexate (MTX). Sulfobro-mophthalein and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid were also found to be potent inhibitors of hPCFT/hHCP1, but hemin was found to exhibit only minimal inhibitory effect. When expressed stably as a protein fused with green fluorescent protein (GFP-hPCFT/HCP1) in MDCKII cells, GFP-hPCFT/HCP1 was mainly localized at the apical membrane, and the cellular accumulation of MTX was higher from the apical side than from the basal side. These functional features of hPCFT/HCP1 are consistent with those of the well characterized carrier-mediated folate transport system in the small intestine, suggesting that hPCFT/HCP1 is responsible for the intestinal absorption of folate and also MTX. We also found that sulfasalazine is a potent inhibitor of hPCFT/HCP1, which would interfere with the intestinal absorption of MTX when coadministered in therapy for rheumatoid arthritis as well as folate.

  11. Preservation of folate transport activity with a low-pH optimum in rat IEC-6 intestinal epithelial cell lines that lack reduced folate carrier function.

    PubMed

    Wang, Yanhua; Rajgopal, Arun; Goldman, I David; Zhao, Rongbao

    2005-01-01

    Intestinal folate transport has been well characterized, and rat small intestinal epithelial (IEC-6) cells have been used as a model system for the study of this process on the cellular level. The major intestinal folate transport activity has a low-pH optimum, and the current paradigm is that this process is mediated by the reduced folate carrier (RFC), despite the fact that this carrier has a neutral pH optimum in leukemia cells. The current study addressed the question of whether constitutive low-pH folate transport activity in IEC-6 cells is mediated by RFC. Two independent IEC-6 sublines, IEC-6/A4 and IEC-6/PT1, were generated by chemical mutagenesis followed by selective pressure with antifolates. In IEC-6/A4 cells, a premature stop resulted in truncation of RFC at Gln(420). A green fluorescent protein (GFP) fusion with the truncated protein was not stable. In IEC-6/PT1 cells, Ser(135) was deleted, and this alteration resulted in the failure of localization of the GFP fusion protein in the plasma membrane. In both cell lines, methotrexate (MTX) influx at neutral pH was markedly decreased compared with wild-type IEC-6 cells, but MTX influx at pH 5.5 was not depressed. Transient transfection of the GFP-mutated RFC constructs into RFC-null HeLa cells confirmed their lack of transport function. These results indicate that in IEC-6 cells, folate transport at neutral pH is mediated predominantly by RFC; however, the folate transport activity at pH 5.5 is RFC independent. Hence, constitutive folate transport activity with a low-pH optimum in this intestinal cell model is mediated by a process entirely distinct from that of RFC.

  12. Folate intake in a Swedish adult population: Food sources and predictive factors

    PubMed Central

    Monteagudo, Celia; Scander, Henrik; Nilsen, Bente; Yngve, Agneta

    2017-01-01

    ABSTRACT Introduction: Folate plays an important role in cell metabolism, but international studies show that intake is currently below recommendations, especially among women. The study objective was to identify folate food sources by food group, gender, and age group, and to identify factors influencing folate intake, based on food consumption data for Swedish adults in the 2010–11 Riksmaten study. Methods: The sample included a representative Swedish population aged 18–80 years (n = 1657; 56.3% female). Food and nutrient intakes were estimated from self-reported food records during 4 consecutive days. Food consumption was categorized into 26 food groups. Stepwise regression was used to analyze food groups as folate sources for participants. Factors predicting the highest folate intake (third tertile) were determined by logistic regression analysis. Results: Vegetables and pulses represented the most important folate source for all age groups and both genders, especially in women aged 45–64 years (49.7% of total folate intake). The next folate source in importance was dairy products for the youngest group (18–30 years), bread for men, and fruit and berries for women. The likelihood of being in the highest tertile of folate intake (odds ratio = 1.69, 95% confidence interval 1.354–2.104) was higher for men. Influencing factors for folate intake in the highest tertile were low body mass index and high educational level in the men, and high educational level, vegetarian diet, organic product consumption, non-smoking, and alcohol consumption within recommendations in the women. Conclusion: This study describes the folate intake per food group of Swedish adults according to the 2010–11 Riksmaten survey, identifying vegetables and pulses as the most important source. Data obtained on factors related to folate consumption may be useful for the development of specific nutrition education programs to increase the intake of this vitamin in high

  13. Effects of vitamin B12 and folate deficiency on brain development in children

    PubMed Central

    Black, Maureen M.

    2011-01-01

    Folate deficiency in the periconceptional period contributes to neural tube defects; deficits in vitamin B12 (cobalamin) have negative consequences on the developing brain during infancy; and deficits of both vitamins are associated with a greater risk of depression during adulthood. This review examines two mechanisms linking folate and vitamin B12 deficiency to abnormal behavior and development in infants: disruptions to myelination and inflammatory processes. Future investigations should focus on the relationship between the timing of deficient and marginal vitamin B12 status and outcomes such as infant growth, cognition, social development, and depressive symptoms, along with prevention of folate and vitamin B12 deficiency. PMID:18709887

  14. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies.

    PubMed

    Stover, Patrick J

    2011-01-01

    Folate-mediated 1-carbon metabolism is a network of interconnected metabolic pathways necessary for the synthesis of purine nucleotides, thymidylate and the remethylation of homocysteine to methionine. Disruptions in this pathway influence both DNA synthesis and stability and chromatin methylation, and result from nutritional deficiencies and common gene variants. The mechanisms underlying folate-associated pathologies and developmental anomalies have yet to be established. This review focuses on the relationships among folate-mediated 1-carbon metabolism, chromatin methylation and human disease, and the role of gene-nutrient interactions in modifying epigenetic processes. Copyright © 2012 S. Karger AG, Basel.

  15. Urinary excretion of [2H4]folate by nonpregnant women following a single oral dose of [2H4]folic acid is a functional index of folate nutritional status.

    PubMed

    Gregory, J F; Williamson, J; Bailey, L B; Toth, J P

    1998-11-01

    In a 10-wk study with nonpregnant women (21-27 y, n = 5-6 per group), subjects were fed a diet containing approximately 68 nmol/d (30 microg/d) folate from food that was supplemented with folic acid in apple juice to yield a constant intake of 454, 680 or 907 nmol/d (200, 300 or 400 microg/d) to evaluate folate status and long-term in vivo kinetics. Reported here is an additional phase of this protocol conducted to determine the relationship between short-term urinary excretion after a single isotopically labeled dose and various measures of folate nutritional status. It was hypothesized that urinary excretion from a single [glutamate-2H4]folic acid ([2H4]folic acid) dose would increase in proportion to folate nutritional status due to saturable cellular uptake and retention processes along with saturation of renal reabsorption. Each subject was given 1.13 micromol (500 microg) of [2H4]folic acid orally on the morning of d 70 of the study, followed by a complete 24-h urine collection. Urine was analyzed to determine the isotopic enrichment of urinary folate by gas chromatography-mass spectrometry and the concentration of urinary folate by HPLC. Urinary excretion of [2H4]folate was greatest at the 907 nmol/d intake and was positively correlated with serum folate concentration but was not correlated with erythrocyte folate. Excretion of [2H4]folate tended to be greatest when plasma homocysteine concentrations were low (<8 micromol/L), although this relation was not significant. These results suggest that 24-h urinary excretion after a single oral dose of isotopically labeled folate is a functional indicator of folate nutritional status that complements other measures of folate nutriture.

  16. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  17. Ozone depletion, paradigms, and politics

    SciTech Connect

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  18. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion

    PubMed Central

    Lee, Jae-Seon; Nam, Boas; Seong, Tae Wha; Son, Jaekyoung; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Kim, Soo-Youl

    2016-01-01

    Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin. PMID:27384481

  19. Identification of novel mutations in the proton-coupled folate transporter (PCFT-SLC46A1) associated with hereditary folate malabsorption

    PubMed Central

    Shin, Daniel Sanghoon; Mahadeo, Kris; Min, Sang Hee; Diop-Bove, Ndeye; Clayton, Peter; Zhao, Rongbao; Goldman, I. David

    2011-01-01

    Hereditary folate malabsorption (HFM) is an autosomal recessive disorder, recently shown to be due to loss-of-function mutations of the proton-coupled folate transporter (PCFT-SLC46A1), resulting in systemic and central nervous system folate deficiency. Data is emerging on the spectrum of PCFT mutations associated with this disorder. In this report, novel mutations are described in three subjects with HFM: A335D/N68Kfs (c.1004C>A/ c.204-205delCC), a compound heterozygous mutation, and two homozygous PCFT mutations, G338R (c.1012G>C) and E9Gfs (c.17-18insC). Functional assessment of A335D and G338R PCFT mutants transfected into folate transporter-deficient HeLa R1-11 cells indicated a complete loss of transport activity. There were neurological deficiencies in two of the families reported; in particular, late-onset seizures. The importance of early diagnosis and treatment to achieve physiological cerebrospinal fluid folate levels is emphasized. PMID:21333572

  20. Translational upregulation of folate receptors is mediated by homocysteine via RNA-heterogeneous nuclear ribonucleoprotein E1 interactions

    PubMed Central

    Antony, Aśok C.; Tang, Ying-Sheng; Khan, Rehana A.; Biju, Mangatt P.; Xiao, Xiangli; Li, Qing-Jun; Sun, Xin-Lai; Jayaram, Hiremagalur N.; Stabler, Sally P.

    2004-01-01

    Cellular acquisition of folate is mediated by folate receptors (FRs) in many malignant and normal human cells. Although FRs are upregulated in folate deficiency and downregulated following folate repletion, the mechanistic basis for this relationship is unclear. Previously we demonstrated that interaction of an 18-base cis-element in the 5′-untranslated region of FR mRNA and a cystolic trans-factor (heterogeneous nuclear ribonucleoprotein E1 [hnRNP E1]) is critical for FR synthesis. However, the molecular mechanisms controlling this interaction, especially within the context of FR regulation and folate status, have remained obscure. Human cervical carcinoma cells exhibited progressively increasing upregulation of FRs after shifting of folate-replete cells to low-folate media, without a proportionate rise in FR mRNA or rise in hnRNP E1. Translational FR upregulation was accompanied by a progressive accumulation of the metabolite homocysteine within cultured cells, which stimulated interaction of the FR mRNA cis-element and hnRNP E1 as well as FR biosynthesis in a dose-dependent manner. Abrupt reversal of folate deficiency also led to a rapid parallel reduction in homocysteine and FR biosynthesis to levels observed in folate-replete cells. Collectively, these results suggest that homocysteine is the key modulator of translational upregulation of FRs and establishes the linkage between perturbed folate metabolism and coordinated upregulation of FRs. PMID:14722620

  1. Intakes of Folate and Vitamin B12 and Biomarkers of Status in the Very Old: The Newcastle 85+ Study.

    PubMed

    Mendonça, Nuno; Mathers, John C; Adamson, Ashley J; Martin-Ruiz, Carmen; Seal, Chris J; Jagger, Carol; Hill, Tom R

    2016-09-28

    Very old adults are at increased risk of folate and vitamin B12 deficiencies due to reduced food intake and gastrointestinal absorption. The main aim was to determine the association between folate and vitamin B12 intake from total diets and food groups, and status. Folate or vitamin B12 intakes (2 × 24 h multiple pass recalls) and red blood cell (RBC) folate or plasma vitamin B12 (chemiluminescence immunoassays) concentrations were available at baseline for 731 participants aged 85 from the Newcastle 85+ Study (North-East England). Generalized additive and binary logistic models estimated the associations between folate and vitamin B12 intakes from total diets and food groups, and RBC folate and plasma B12. Folate intake from total diets and cereal and cereal products was strongly associated with RBC folate (p < 0.001). Total vitamin B12 intake was weakly associated with plasma vitamin B12 (p = 0.054) but those with higher intakes from total diets or meat and meat products were less likely to have deficient status. Women homozygous for the FUT2 G allele had higher concentrations of plasma vitamin B12. Cereals and cereal products are a very important source of folate in the very old. Higher intakes of folate and vitamin B12 lower the risk of "inadequate" status.

  2. Intakes of Folate and Vitamin B12 and Biomarkers of Status in the Very Old: The Newcastle 85+ Study

    PubMed Central

    Mendonça, Nuno; Mathers, John C.; Adamson, Ashley J.; Martin-Ruiz, Carmen; Seal, Chris J.; Jagger, Carol; Hill, Tom R.

    2016-01-01

    Very old adults are at increased risk of folate and vitamin B12 deficiencies due to reduced food intake and gastrointestinal absorption. The main aim was to determine the association between folate and vitamin B12 intake from total diets and food groups, and status. Folate or vitamin B12 intakes (2 × 24 h multiple pass recalls) and red blood cell (RBC) folate or plasma vitamin B12 (chemiluminescence immunoassays) concentrations were available at baseline for 731 participants aged 85 from the Newcastle 85+ Study (North-East England). Generalized additive and binary logistic models estimated the associations between folate and vitamin B12 intakes from total diets and food groups, and RBC folate and plasma B12. Folate intake from total diets and cereal and cereal products was strongly associated with RBC folate (p < 0.001). Total vitamin B12 intake was weakly associated with plasma vitamin B12 (p = 0.054) but those with higher intakes from total diets or meat and meat products were less likely to have deficient status. Women homozygous for the FUT2 G allele had higher concentrations of plasma vitamin B12. Cereals and cereal products are a very important source of folate in the very old. Higher intakes of folate and vitamin B12 lower the risk of “inadequate” status. PMID:27690091

  3. Ego depletion--is it all in your head? implicit theories about willpower affect self-regulation.

    PubMed

    Job, Veronika; Dweck, Carol S; Walton, Gregory M

    2010-11-01

    Much recent research suggests that willpower--the capacity to exert self-control--is a limited resource that is depleted after exertion. We propose that whether depletion takes place or not depends on a person's belief about whether willpower is a limited resource. Study 1 found that individual differences in lay theories about willpower moderate ego-depletion effects: People who viewed the capacity for self-control as not limited did not show diminished self-control after a depleting experience. Study 2 replicated the effect, manipulating lay theories about willpower. Study 3 addressed questions about the mechanism underlying the effect. Study 4, a longitudinal field study, found that theories about willpower predict change in eating behavior, procrastination, and self-regulated goal striving in depleting circumstances. Taken together, the findings suggest that reduced self-control after a depleting task or during demanding periods may reflect people's beliefs about the availability of willpower rather than true resource depletion.

  4. Issues in Stratospheric Ozone Depletion.

    NASA Astrophysics Data System (ADS)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  5. Use of a novel genetic mouse model to investigate the role of folate in colitis-associated colon cancer.

    PubMed

    Chapkin, Robert S; Kamen, Barton A; Callaway, Evelyn S; Davidson, Laurie A; George, Nysia I; Wang, Naisyin; Lupton, Joanne R; Finnell, Richard H

    2009-08-01

    Inflammatory bowel disease (IBD) patients are at high risk for developing folate deficiency and colon cancer. Since it is difficult to study the subtle global and gene-specific epigenetic mechanisms involved in folate-mediated tumor initiation and promotion, we have generated genetically modified mouse models by targeting the reduced folate carrier (RFC1) and folate-binding protein (Folbp1) genes. The transgenic mice were fed semi-purified diets for 8 weeks containing either normal (2 mg) or deficient (0.1 mg folate/kg diet) levels of folate. Compound heterozygous mice (Folbp1(+/-); RFC1(+/-)) fed an adequate folate diet exhibited a reduction in plasma folate concentrations compared to heterozygous (Folbp1(+/-)) and littermate wild-type mice (P<.05). In contrast, no differences were observed in colonic mucosa. Consumption of a low folate diet significantly reduced (three- to fourfold) plasma and tissue folate levels in all animal models, although plasma homocysteine levels were not altered. In order to elucidate the relationship between folate status and inflammation-associated colon cancer, animals were injected with azoxymethane followed by dextran sodium sulphate treatment in the drinking water. Mice were fed a normal folate diet and were terminated 5 weeks after carcinogen injection. The number of high multiplicity aberrant crypt foci per centimeter of colon was significantly elevated (P<.05) in compound Folbp1(+/-); RFC1(+/-) (3.5+/-0.4) mice as compared to Folbp1(+/-) (1.9+/-0.3) and wild-type control mice (1.1+/-0.1). These data demonstrate that the ablation of two receptor/carrier-mediated pathways for folate transport increases the risk for developing inflammation-associated colon cancer.

  6. Use of a Novel Genetic Mouse Model to Investigate the Role of Folate in Colitis-Associated Colon Cancer

    PubMed Central

    Chapkin, Robert S.; Kamen, Barton A.; Callaway, Evelyn S.; Davidson, Laurie A.; George, Nysia I.; Wang, Naisyin; Lupton, Joanne R.; Finnell, Richard H.

    2009-01-01

    Inflammatory bowel disease (IBD) patients are at high risk for developing folate deficiency and colon cancer. Since it is difficult to study the subtle global and gene-specific epigenetic mechanisms involved in folate-mediated tumor initiation and promotion, we have generated genetically modified mouse models by targeting the reduced folate carrier (RFC1) and folate binding protein (Folbp1) genes. The transgenic mice were fed semi-purified diets for 8 wk containing either normal (2 mg) or deficient (0.1 mg folate/kg diet) levels of folate. Compound heterozygous mice (Folbp1+/−RFC1+/−) mice fed an adequate folate diet exhibited a reduction in plasma folate concentrations compared to heterozygous (Folbp1+/−) and littermate wild-type mice (p<0.05). In contrast, no differences were observed in colonic mucosa. Consumption of a low folate diet significantly reduced (3–4 fold) plasma and tissue folate levels in all animal models, although plasma homocysteine levels were not altered. In order to elucidate the relationship between folate status and inflammation-associated colon cancer, animals were injected with azoxymethane followed by dextran sodium sulphate treatment in the drinking water. Mice were fed a normal folate diet and were terminated 5 wks after carcinogen injection. The number of high multiplicity aberrant crypt foci per cm of colon was significantly elevated (p<0.05) in compound Folbp1+/− RFC1+/− (3.5±0.4) mice as compared to Folbp1+/− (1.9±0.3) and wild-type control mice (1.1±0.1). These data demonstrate that the ablation of two receptor/carrier-mediated pathways for folate transport increases the risk for developing inflammation-associated colon cancer. PMID:18926688

  7. Red cell folate concentrations in patients with Crohn's disease on parenteral nutrition.

    PubMed Central

    Tominaga, M.; Iida, M.; Aoyagi, K.; Kohrogi, N.; Matsui, T.; Fujishima, M.

    1989-01-01

    To examine changes in the folate concentrations in red cell during relatively long-term total parenteral nutrition (TPN), 10 Japanese patients with Crohn's disease (7 males), the mean Crohn's disease activity index on admission being 211, were given folic acid in a dose of 400 micrograms/day (AMA-FDA formulation) or 800 micrograms/day for 6-16 weeks (mean 10.5). The red cell folate concentrations were determined before TPN and once every week or 2-4 weeks thereafter. The folate concentrations were very low even after TPN with folic acid of 400 micrograms/day. In those given 800 micrograms of daily folic acid, the folate levels tended to increase, but did not reach the normal range. We propose that folic acid over 800 micrograms/day or a double dose of AMA-FDA formulation should be prescribed for Crohn's disease treated with long-term TPN. PMID:2515529

  8. Effect of genetic polymorphisms in the folate pathway on methotrexate therapy in rheumatic diseases.

    PubMed

    Stamp, Lisa K; Roberts, Rebecca L

    2011-10-01

    Methotrexate (MTX) is the first-line treatment for rheumatoid arthritis and is frequently used in the management of other forms of inflammatory arthritis. It is currently challenging to predict which patients will achieve adequate disease control and which patients will develop adverse effects while taking MTX. As an analog of dihydrofolic acid, MTX enters cells through the reduced folate carrier-1 protein, and is polyglutamated. MTX polyglutamates inhibit key enzymes in the folate pathway to produce an anti-inflammatory effect. It has been suggested that genetic polymorphisms in the folate pathway may influence intracellular folate and MTX polyglutamates pools, and thus MTX response. However, studies to identify genetic predictors have yielded inconclusive results. Nonreplication across studies has been attributed to insufficient statistical power as well as pharmacological and clinical confounders. Prospective studies, standardizing the definitions of response and toxicity, and application of genome-wide approaches may advance the search for genetic predictors of MTX response.

  9. Maternal folate exposure in pregnancy and childhood asthma and allergy: a systematic review.

    PubMed

    Brown, Susan B; Reeves, Katherine W; Bertone-Johnson, Elizabeth R

    2014-01-01

    Adequate folate status in early pregnancy is critical to prevent congenital malformations, yet little is known about whether exposure to folate, specifically folic acid supplementation beyond the recommended dose, influences chronic health outcomes. The link between maternal folate levels and risk of childhood asthma and allergic disease has been investigated in 10 large prospective cohort studies that reported conflicting results. While the majority of studies reported no association, those supporting a positive relationship found a small increase in risk that was generally transient in nature, confined to early childhood, and associated with folic acid supplementation in late pregnancy. This systematic review presents background information on maternal folate exposure and childhood asthma, synthesizes the current epidemiologic evidence in the context of the methodological differences among studies and their potential limitations, and offers direction for future research.

  10. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes

    PubMed Central

    Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S.

    2013-01-01

    Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health. PMID:24326934

  11. Effect of folate supplement on pregnant women with beta-thalassaemia minor.

    PubMed

    Leung, C F; Lao, T T; Chang, A M

    1989-12-01

    The effect of folate supplement on the haemoglobin concentration and outcome of pregnancy was studied in a group of Chinese women with uncomplicated beta-thalassaemia minor who delivered in our hospital between 1984-1987. The patients who received 5 mg folate daily showed a significant increase in the predelivery haemoglobin concentration, which was significantly higher than that in patients who received 0.25 mg daily. When the effect of parity was analysed we found that: multiparas were significantly older, had lower haemoglobin before delivery, and more of them required transfusion. Folate 5 mg daily significantly increased the predelivery haemoglobin concentration in both nulliparas and multiparas. It is concluded that folate 5 mg daily improves the haemoglobin concentration in pregnant women with beta-thalassaemia minor and that this should be prescribed.

  12. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.

    PubMed

    Kim, Jisu; Tung, Ching-Hsuan; Choi, Yongdoo

    2014-09-21

    A smart dual-targeted theranostic agent becomes highly fluorescent and phototoxic only when its linker is cleaved by tumor-associated lysosomal enzyme cathepsin B after internalization into folate receptor-positive cancer cells.

  13. Folate and Prevention of Neural Tube Defects: New Insights from a Bayesian Model.

    PubMed

    Ströhle, Alexander; Bohn, Torsten

    2015-01-01

    Maternal folate status before and during pregnancy influences a woman's risk of having a pregnancy affected by congenital malformations of the neural tube (neural tube defects, NTD). For NTD prevention, it is recommended that women use periconceptional supplementation of folic acid. However, the recommended dose varies considerably (400 - 800 µg folic acid/day). Insufficient data exists on the relation between folate status and the risk of NTD. A recent study published in the British Medical Journal provides evidence for a generalizable dose-response relation between folate status and risk of NTD. The lowest risk of having a child with NTD was related to red blood cell (RBC) folate concentrations of ≥ 1000 nmol/L.

  14. Cancer targeting potential of folate targeted nanocarrier under comparative influence of tretinoin and dexamethasone.

    PubMed

    Dhakad, Raghvendra Singh; Tekade, Rakesh Kumar; Jain, Narendra Kumar

    2013-08-01

    The objective of this investigation was aimed to explore the cancer targeting potential of folate conjugated dendrimer (polypropylene imine, PPI) under strategic influence of folate receptor up-regulators (all trans Retinoic acid, ATRA and Dexamethasone, DEXA). The folate conjugated dendrimer nanoconjugate (FPPI) was synthesized and characterized by FTIR, and (1)H-NMR spectroscopy. The cell line studies investigations were performed on MCF-7 cells. ATRA and DEXA caused 2.17 and 1.65 folds selective up-regulation of folate receptor respectively, when compared with untreated control, after 48 h of pretreatment. ATRA caused 50.47±2.11% more up regulation of folate receptor, than DEXA treated cell. Both up regulators showed a lag phase of 12 h in up-regulating the folate receptors. After 48 h, the IC50 values of naked docetaxel (DTX) and DTX loaded dendrimer (PPI-DTX) were found to be 678.93±11.99 nM and 663.51±15.23 nM, respectively, while DTX loaded folate-anchored dendrimer (FPPI-DTX) showed a selectively lowered IC50 value of 468.56±20.86 nM. FPPI-DTX further showed a significant reduction in IC50 value in ATRA and DEXA pretreated cells, wherein IC50 values of 184.21 nM and 290.40±14.05 nM, respectively were observed. The study also concludes ATRA to be a superior receptor up-regulator as well as promoter of folate based targeting compared to DEXA.

  15. Association of serum vitamin B12 and folate with mortality in incident hemodialysis patients.

    PubMed

    Soohoo, Melissa; Ahmadi, Seyed-Foad; Qader, Hemn; Streja, Elani; Obi, Yoshitsugu; Moradi, Hamid; Rhee, Connie M; Kim, Tae Hee; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2017-06-01

    Vitamin B12 (B12) and folate are essential vitamins that play important roles in physiological processes. In the general population, many studies have evaluated the association of these vitamins with clinical outcomes, yet this association in hemodialysis (HD) patients remains unclear. We examined the association of serum folate and B12 with mortality in a 5-year cohort of 9517 (folate) and 12 968 (B12) HD patients using Cox models with hierarchical adjustment for sociodemographics, comorbidities, and laboratory variables associated with the malnutrition and inflammation complex syndrome. The associations of baseline B12 and folate (separately) with all-cause mortality were evaluated across five categories of B12 [<400 (reference), 400-<550, 550-<650, 650-<750 and ≥750 pg/mL] and folate [<6.2, 6.2-<8.4, 8.4-<11 (reference), 11-<14.3 and ≥14.3 ng/mL]. The study cohort with B12 measurements had a mean ± standard deviation age of 63 ± 15 years, among whom 43% were female, 33% were African-American, and 57% were diabetic. Higher B12 concentrations ≥550 pg/mL were associated with a higher risk of mortality after adjusting for sociodemographic and laboratory variables. However, only lower serum folate concentrations <6.2 ng/mL were associated with a higher risk of all-cause mortality when adjusted for sociodemographic variables [adjusted hazard ratio (95% confidence-interval): 1.18 (1.03-1.35)]. Higher B12 concentrations are associated with higher all-cause mortality in HD patients independent of sociodemographics and laboratory variables, whereas lower folate concentrations were associated with higher all-cause mortality after accounting for sociodemographic variables. Further studies are warranted to determine the optimal B12 and folate level targets in this population.

  16. Association between serum folate and vitamin B-12 and outcomes of assisted reproductive technologies.

    PubMed

    Gaskins, Audrey J; Chiu, Yu-Han; Williams, Paige L; Ford, Jennifer B; Toth, Thomas L; Hauser, Russ; Chavarro, Jorge E

    2015-10-01

    Preconceptional folate and vitamin B-12 have been linked to beneficial reproductive outcomes in both natural pregnancies and those after assisted reproductive technology (ART) treatment. The objective of the study was to evaluate the associations of serum folate and vitamin B-12 with ART outcomes. This analysis included a random sample of 100 women (154 ART cycles) participating in a prospective cohort study [Environment and Reproductive Health (EARTH)] at the Massachusetts General Hospital Fertility Center (2007-2013). Serum folate and vitamin B-12 were measured in blood samples collected between days 3 and 9 of treatment. Generalized estimating equations with adjustment for age, BMI, and race were used to evaluate the association of serum folate and vitamin B-12 with ART outcomes. Women in the highest quartile of serum folate (>26.3 ng/mL) had 1.62 (95% CI: 0.99, 2.65) times the probability of live birth compared with women in the lowest quartile (<16.6 ng/mL). Women in the highest quartile of serum vitamin B-12 (>701 pg/mL) had 2.04 (95% CI: 1.14, 3.62) times the probability of live birth compared with women in the lowest quartile (<439 pg/mL). Suggestive evidence of an interaction was observed; women with serum folate and vitamin B-12 concentrations greater than the median had 1.92 (95% CI: 1.12, 3.29) times the probability of live birth compared with women with folate and vitamin B-12 concentrations less than or equal to the median. This translated into an adjusted difference in live birth rates of 26% (95% CI: 10%, 48%; P = 0.02). Higher serum concentrations of folate and vitamin B-12 before ART treatment were associated with higher live birth rates among a population exposed to folic acid fortification. This trial was registered at clinicaltrials.gov as NCT00011713. © 2015 American Society for Nutrition.

  17. Alcohol-folate interactions in women's oral cancer risk: A prospective cohort study

    PubMed Central

    Shanmugham, Jayapriyaa Ranjini; Zavras, Athanasios I.; Rosner, Bernard; Giovannucci, Edward

    2010-01-01

    Background The aim of this cohort study was to quantify the effect of alcohol in the risk of oral cancer in different strata of folate intake, controlling for known confounders. Methods A cohort of 87,621 women in the Nurses' Health Study was followed up from 1980 to 2006, and 147 incident oral cancer cases were reported and confirmed. Data on alcohol intake and diet was obtained via self-reported Food Frequency Questionnaires every 4 years. Cox Proportional Regression analysis was conducted to estimate the adjusted risk ratios (RR) and 95% confidence intervals (CI). Results When compared to non-drinkers, the adjusted relative risks (95% CI) for alcohol intake were 0.59 (0.39-0.87) for 0.1-14.9 g/day; 1.15 (0.67-1.97) for 15-29.9 g/day; and 1.92 (1.08-3.40) for >30 g/day. We observed a significant interaction between alcohol and folate intake (p-value = 0.02). The cancer risk for subjects with high alcohol drinking (>30 g/day) and low folate intake (<350 μg/day) was significantly elevated (RR: 3.36; 95% CI: 1.57-7.20) as compared to non-drinkers with low folate. The risk associated with high alcohol (>30 g/day) was reduced to 0.98 (0.35-2.70) in the high folate (>350 μg/day) group, as compared to non-drinkers with high folate. Conclusions High alcohol intake is associated with significantly increased oral cancer risk, especially in women with low folate intake. Impact Statement A significant interaction between alcohol and folate intake seems to affect oral cancer risk in women, a finding with potential public health utility. PMID:20841386

  18. Superparamagnetic folate-immobilized dye labeled microspheres for oral cancer screening

    NASA Astrophysics Data System (ADS)

    Liesenfeld, Bernd

    A design concept is presented and developed for a screening test for oral cancer. The application is based on generating specific binding between microspheres and receptors known to be expressed specifically on malignant cells. Quantification of the test is derived from a ratiometric determination of test microspheres immobilized with folate against control microspheres. Microspheres were suspension copolymerized polymethyl methacrylate and aminoethyl methacrylate, and were doped with superparamagnetic iron oxide to permit magnetic separation of microspheres from testing suspension. Magnetic separation was demonstrated. Specific binding was provided by folic acid that was immobilized on the microsphere surface by carbodiimide chemistry. Microsphere labeling was performed by covalent bonding of fluorophores to monomers prior to polymerization, permitting spatial imaging of microspheres by fluorescence microscopy. Testing of specific binding of folate to tumorous cell lines was performed using cell lines known to overexpress folate receptors. Cell lines used included NCI-H23 human lung adenocarcinoma, with controls provided by normal human dermal fibroblasts. It was found that the folate-immobilized microspheres were preferentially retained by the tumourous cell line, relative to control microspheres (p = 0.0074). There was no significant difference between the retention of folate-immobilized microspheres by the cancerous cell line as compared to the control cell line (p = 0.90) as determined by pooled data. Testing of specific binding to relevant tissue was performed using excised oral cancer tissue that had been frozen and sectioned onto slides. It was found that the folate immobilized microspheres were retained by the cancerous tissue at a higher rate than the control microspheres (p = 0.037). Controls performed with normal tissue shows that the folate-immobilized microspheres were retained by normal tissue at a higher rate than the cancerous tissue. Both cell