Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT.
Kim, Young Kook; Ha, Ahnul; Lee, Won June; Jeoung, Jin Wook; Park, Ki Ho
2017-12-01
To introduce the measurement method of optic disc cup surface depth using spectral-domain optical coherence tomography (SD-OCT) and then evaluate the rates of cup surface depression at 3 different stages of glaucoma. We retrospectively identified 52 eyes with preperimetric glaucoma, 56 with mild-or-moderate glaucoma and 50 with severe glaucoma and followed them for at least 48 months. Eyes were imaged using SD-OCT (Cirrus HD-OCT) at 12-month intervals. The mean cup surface depth was calculated using the following formula: Cup volume/(disc area×average cup-to-disc ratio)-200 μm. The rates of mean cup surface depression (μm/y) were significantly greater in mild-or-moderate glaucoma (-7.96±1.03) than in preperimetric (-3.11±0.61) and severe glaucoma (-0.70±0.12; all P<0.001). The percentile rates of mean cup surface depression (%/y) were significantly greater than those of average of retinal nerve fiber layer (RNFL) thinning (%/y) in preperimetric glaucoma (-1.64±0.12 vs. -1.11±0.07; P<0.001) and mild-or-moderate glaucoma (-4.20±0.33 vs. -3.14±0.19; P<0.001); and conversely, in severe glaucoma, mean cup surface depth changed slower than did average RNFL thickness (-0.64±0.06 vs. -0.75±0.08%/y; P<0.001). In early-to-moderate glaucoma, the cup surface depth changed faster than did the RNFL thickness. These results signify the possibility that SD-OCT-based estimation of cup surface depth might be useful for monitoring of glaucoma development and progression.
Robust calibration of an optical-lattice depth based on a phase shift
NASA Astrophysics Data System (ADS)
Cabrera-Gutiérrez, C.; Michon, E.; Brunaud, V.; Kawalec, T.; Fortun, A.; Arnal, M.; Billy, J.; Guéry-Odelin, D.
2018-04-01
We report on a method to calibrate the depth of an optical lattice. It consists of triggering the intrasite dipole mode of the cloud by a sudden phase shift. The corresponding oscillatory motion is directly related to the interband frequencies on a large range of lattice depths. Remarkably, for a moderate displacement, a single frequency dominates the oscillation of the zeroth and first orders of the interference pattern observed after a sufficiently long time of flight. The method is robust against atom-atom interactions and the exact value of the extra weak external confinement superimposed to the optical lattice.
NASA Technical Reports Server (NTRS)
Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent
2005-01-01
The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.
NASA Technical Reports Server (NTRS)
Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.
2010-01-01
CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.
Novel optical waveguides by in-depth controlled electronic damage with swift ions
NASA Astrophysics Data System (ADS)
Olivares, J.; García-Navarro, A.; Méndez, A.; Agulló-López, F.; García, G.; García-Cabañes, A.; Carrascosa, M.
2007-04-01
We review recent results on a novel method to modify crystalline dielectric materials and fabricate optical waveguides and integrated optics devices. It relies on irradiation with medium-mass high-energy ions (2-50 MeV) where the electronic stopping power is dominant over that one associated to nuclear collisions. By exploiting the processing capabilities of the method, novel optical structures can be achieved at moderate (1014 cm-2) and even low and ultralow (1012 cm-2) fluences. In particular, step-like waveguides with a high index jump Δn ∼ 0.1-0.2, guiding both ordinary and extraordinary modes, have been prepared with F and O ions (20 MeV) at moderate fluences. They present good non-linear and electrooptic perfomance and low losses. (1 dB/cm). Moreover, useful optical waveguiding has been also achieved at ultralow frequencies (isolated track regime), using Cl and Si ions (40-45 MeV). In this latter case, the individual amorphous nanotracks, whose radius increases with depth, create an effective optical medium causing optical trapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey
Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar
2006-06-01
angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar
Validation of MODIS Aerosol Optical Depth Retrieval Over Land
NASA Technical Reports Server (NTRS)
Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)
2001-01-01
Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.
NASA Astrophysics Data System (ADS)
Vant-Hull, Brian; Li, Zhanqing; Taubman, Brett F.; Levy, Robert; Marufu, Lackson; Chang, Fu-Lung; Doddridge, Bruce G.; Dickerson, Russell R.
2005-05-01
In July 2002 Canadian forest fires produced a major smoke episode that blanketed the east coast of the United States. Properties of the smoke aerosol were measured in situ from aircraft, complementing operational Aerosol Robotic Network (AERONET), and Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2-16% lower than those directly measured by AERONET. The use of in situ-derived optical properties resulted in optical depths 22-43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and top of atmosphere. Comparisons to surface (Surface Radiation Budget Network (SURFRAD) and ISIS) and to satellite (Clouds and Earth Radiant Energy System CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET-derived optical properties produced better fits to optical depth measurements, while in situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.
Multimodal properties and dynamics of gradient echo quantum memory.
Hétet, G; Longdell, J J; Sellars, M J; Lam, P K; Buchler, B C
2008-11-14
We investigate the properties of a recently proposed gradient echo memory (GEM) scheme for information mapping between optical and atomic systems. We show that GEM can be described by the dynamic formation of polaritons in k space. This picture highlights the flexibility and robustness with regards to the external control of the storage process. Our results also show that, as GEM is a frequency-encoding memory, it can accurately preserve the shape of signals that have large time-bandwidth products, even at moderate optical depths. At higher optical depths, we show that GEM is a high fidelity multimode quantum memory.
Aerosol Optical Depth Changes in Version 4 CALIPSO Level 2 Product
NASA Technical Reports Server (NTRS)
Kim, Man-Hae; Omar, Ali H.; Tackett, Jason L.; Vaughan, Mark A.; Winker, David M.; Trepte, Charles R.; Hu, Yongxiang; Liu, Zhaoyan
2017-01-01
The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 4.10 (V4) products were released in November 2016 with substantial enhancements. There have been improvements in the V4 CALIOP level 2 aerosol optical depth (AOD) compared to V3 (version 3) due to various factors. AOD change from V3 to V4 is investigated by separating factors. CALIOP AOD was compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) for both V3 and V4.
Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.
2016-01-01
Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.
Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia
NASA Astrophysics Data System (ADS)
Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.
2014-02-01
Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.
Satellite remote sensing of air quality in winter of Lanzhou
NASA Astrophysics Data System (ADS)
Wang, Dawei; Han, Tao; Jiang, Youyan; Li, Lili; Ren, Shuyuan
2018-03-01
Fine particulate matter (aerodynamic diameters of less than 2.5 μm, PM2.5) air pollution has become one of the global environmental problem, endangering the existence of residents living, climate, and public health. Estimation Particulate Matter (aerodynamic diameters of less than 10 μm, PM10) concentration and aerosol absorption was the key point in air quality and climate studies. In this study, we retrieve the Aerosol Optical Depth (AOD) from the Earth Observing System (EOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and PM2.5, PM10 in winter on 2014 and 2015, using Extended Dense Dark Vegetation Algorithm and 6S radiation model to analysis the correlation. The result showed that at the condition of non-considering the influence of primary pollutants, the correlation of two Polynomials between aerosol optical depth and PM2.5 and PM10 was poor; taking the influence of the primary pollutants into consideration, the aerosol optical depth has a good correlation with PM2.5 and PM10. The version of PM10 by aerosol optical depth is higher than that of PM2.5, so the model can be used to realize the high precision inversion of winter PM10 in Lanzhou.
Climatology analysis of cirrus cloud in ARM site: South Great Plain
NASA Astrophysics Data System (ADS)
Olayinka, K.
2017-12-01
Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)
MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias
2014-08-01
Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.
Circumstellar Dust in Symbiotic Novae
NASA Astrophysics Data System (ADS)
Jurkic, T.; Kotnik-Karuza, D.
2015-12-01
We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the near-IR photometry, ISO spectra and mid-IR interferometry. The dust properties were determined using the DUSTY code. A compact circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel shows the presence of an equatorially enhanced dust density during minimum obscuration. Obscuration events are explained by an increase in optical depth caused by the newly condensed dust. The mass loss rates are significantly higher than in intermediate-period single Miras but in agreement with longer-period O-rich AGB stars.
Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.
Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen
2009-01-20
We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.
2016-05-01
Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.
The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
NASA Astrophysics Data System (ADS)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
2017-06-01
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.
Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E
2014-12-15
In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.
NASA Astrophysics Data System (ADS)
Asmat, A.; Jalal, K. A.; Ahmad, N.
2018-02-01
The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.
THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008
NASA Technical Reports Server (NTRS)
Smith, Michael D.
2009-01-01
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330 ) and December 2008 (MY 29, Ls=183). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at approximately 5:00 PM local time than in the TES retrievals at approximately 2:00 PM, suggestive of possible local time variation of clouds.
NASA Astrophysics Data System (ADS)
Berk, Alexander
2013-03-01
Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.
The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( ηmore » < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.« less
NASA Astrophysics Data System (ADS)
Bodenschatz, Nico; Poh, Catherine F.; Lam, Sylvia; Lane, Pierre; Guillaud, Martial; MacAulay, Calum E.
2017-08-01
Dual-mode endomicroscopy is a diagnostic tool for early cancer detection. It combines the high-resolution nuclear tissue contrast of fluorescence endomicroscopy with quantified depth-dependent epithelial backscattering as obtained by diffuse optical microscopy. In an in vivo pilot imaging study of 27 oral lesions from 21 patients, we demonstrate the complementary diagnostic value of both modalities and show correlations between grade of epithelial dysplasia and relative depth-dependent shifts in light backscattering. When combined, the two modalities provide diagnostic sensitivity to both moderate and severe epithelial dysplasia in vivo.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.
2000-01-01
The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.
NASA Astrophysics Data System (ADS)
Arifler, Dizem; MacAulay, Calum; Follen, Michele; Guillaud, Martial
2013-06-01
Dysplastic progression is known to be associated with changes in morphology and internal structure of cells. A detailed assessment of the influence of these changes on cellular scattering response is needed to develop and optimize optical diagnostic techniques. In this study, we first analyzed a set of quantitative histopathologic images from cervical biopsies and we obtained detailed information on morphometric and photometric features of segmented epithelial cell nuclei. Morphometric parameters included average size and eccentricity of the best-fit ellipse. Photometric parameters included optical density measures that can be related to dielectric properties and texture characteristics of the nuclei. These features enabled us to construct realistic three-dimensional computational models of basal, parabasal, intermediate, and superficial cell nuclei that were representative of four diagnostic categories, namely normal (or negative for dysplasia), mild dysplasia, moderate dysplasia, and severe dysplasia or carcinoma in situ. We then employed the finite-difference time-domain method, a popular numerical tool in electromagnetics, to compute the angle-resolved light scattering properties of these representative models. Results indicated that a high degree of variability can characterize a given diagnostic category, but scattering from moderately and severely dysplastic or cancerous nuclei was generally observed to be stronger compared to scattering from normal and mildly dysplastic nuclei. Simulation results also pointed to significant intensity level variations among different epithelial depths. This suggests that intensity changes associated with dysplastic progression need to be analyzed in a depth-dependent manner.
Characterization of Surface Reflectance Variation Effects on Remote Sensing
NASA Technical Reports Server (NTRS)
Pearce, W. A.
1984-01-01
The use of Monte Carlo radiative transfer codes to simulate the effects on remote sensing in visible and infrared wavelengths of variables which affect classification is examined. These variables include detector viewing angle, atmospheric aerosol size distribution, aerosol vertical and horizontal distribution (e.g., finite clouds), the form of the bidirectional ground reflectance function, and horizontal variability of reflectance type and reflectivity (albedo). These simulations are used to characterize the sensitivity of observables (intensity and polarization) to variations in the underlying physical parameters both to improve algorithms for the removal of atmospheric effects and to identify techniques which can improve classification accuracy. It was necessary to revise and validate the simulation codes (CTRANS, ARTRAN, and the Mie scattering code) to improve efficiency and accommodate a new operational environment, and to build the basic software tools for acquisition and off-line manipulation of simulation results. Initial calculations compare cases in which increasing amounts of aerosol are shifted into the stratosphere, maintaining a constant optical depth. In the case of moderate aerosol optical depth, the effect on the spread function is to scale it linearly as would be expected from a single scattering model. Varying the viewing angle appears to provide the same qualitative effect as modifying the vertical optical depth (for Lambertian ground reflectance).
Seasonal variability of aerosol optical depth over Indian subcontinent
Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.
2005-01-01
Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.
NASA Astrophysics Data System (ADS)
Safarpour, S.; Abdullah, K.; Lim, H. S.; Dadras, M.
2017-09-01
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.
Optical coherence tomography to evaluate variance in the extent of carious lesions in depth.
Park, Kyung-Jin; Schneider, Hartmut; Ziebolz, Dirk; Krause, Felix; Haak, Rainer
2018-05-03
Evaluation of variance in the extent of carious lesions in depth at smooth surfaces within the same ICDAS code group using optical coherence tomography (OCT) in vitro and in vivo. (1) Verification/validation of OCT to assess non-cavitated caries: 13 human molars with ICDAS code 2 at smooth surfaces were imaged using OCT and light microscopy. Regions of interest (ROI) were categorized according to the depth of carious lesions. Agreement between histology and OCT was determined by unweighted Cohen's Kappa and Wilcoxon test. (2) Assessment of 133 smooth surfaces using ICDAS and OCT in vitro, 49 surfaces in vivo. ROI were categorized according to the caries extent (ICDAS: codes 0-4, OCT: scoring based on lesion depth). A frequency distribution of the OCT scores for each ICDAS code was determined. (1) Histology and OCT agreed moderately (κ = 0.54, p ≤ 0.001) with no significant difference between both methods (p = 0.25). The lesions (76.9% (10 of 13)) _were equally scored. (2) In vitro, OCT revealed caries in 42% of ROI clinically assessed as sound. OCT detected dentin-caries in 40% of ROIs visually assessed as enamel-caries. In vivo, large differences between ICDAS and OCT were observed. Carious lesions of ICDAS codes 1 and 2 vary largely in their extent in depth.
Cloud and aerosol optical depths
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Ackerman, Thomas P.; Colburn, D. C.; Wrigley, R. C.; Spanner, M. A.; Livingston, J. M.
1988-01-01
An airborne Sun photometer was used to measure optical depths in clear atmospheres between the appearances of broken stratus clouds, and the optical depths in the vicinity of smokes. Results show that (human) activities can alter the chemical and optical properties of background atmospheres to affect their spectral optical depths. Effects of water vapor adsorption on aerosol optical depths are apparent, based on data of the water vapor absorption band centered around 940 nm. Smoke optical depths show increases above the background atmosphere by up to two orders of magnitude. When the total optical depths measured through clouds were corrected for molecular scattering and gaseous absorption by subtracting the total optical depths measured through the background atmosphere, the resultant values are lower than those of the background aerosol at short wavelengths. The spectral dependence of these cloud optical depths is neutral, however, in contrast to that of the background aerosol or the molecular atmosphere.
Characterizing error distributions for MISR and MODIS optical depth data
NASA Astrophysics Data System (ADS)
Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.
2008-12-01
The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.
Global trends in visibility: Implications for dust sources
Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.
2007-01-01
There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 359 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility derived variables and AERONET optical depths indicate a moderate correlation (???0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with visibility, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974-2003.
Nicolela, Marcelo T; Soares, Adael S; Carrillo, Monica M; Chauhan, Balwantray C; LeBlanc, Raymond P; Artes, Paul H
2006-05-01
To evaluate optic disc topography changes after intraocular pressure (IOP) modulation in patients with glaucoma. Twenty-three patients with glaucoma were studied. Three mean optic disc topography images were obtained with the Heidelberg Retina Tomograph II at baseline and weeks 1, 2, 4, and 8 (visits 1, 2, 3, 4, and 5, respectively). Topical medications were discontinued in the study eye after visit 1 and resumed after visit 4 but maintained in the contralateral control eye. Central corneal thickness was measured at the last visit. Topographic changes were determined by stereometric parameters (rim area and mean cup depth) and at discrete topographic locations using the Topographic Change Analysis program (from the Heidelberg Retina Tomograph II). In the study eyes, IOP increased significantly (5.4 mm Hg at visit 4; P<.001) after withdrawal of topical medications but returned to baseline levels after resuming medications; no statistically significant topographic changes, however, were observed. Moreover, no relationship between change in IOP and stereometric parameters was observed. Central corneal thickness was not associated with changes in optic disc topography induced by IOP modulation. In patients with glaucoma, significant but relatively moderate IOP increases and decreases on the order of 5 mm Hg did not appear to have an effect on optic disc topography.
Comparison of Sunphotometric Measurements During the Fall 1997 ARM Intensive Observation Period
NASA Technical Reports Server (NTRS)
Michalsky, J. J.; Schmid, B.; Halthore, R. N.; Pavloski, C. F.; Ackerman, T. P.; Beauharnois, M. C.; Harrison, L. C.; Livingston, J. M.; Russell, P. B.
2000-01-01
In the Fall of 1997 the Atmospheric Radiation Measurement (ARM) program held an intensive observation period (IOP) to study atmospheric aerosols using in situ and remote sensing techniques at its Southern Great Plains (SGP) site near Lamont, Oklahoma. As part of this experiment five automated, tracking sunphotometers were present to measure total column aerosol optical depth over the three-week period. which included many clear days or parts of days that were clear. The World Meteorological Organization (WMO 1993) has recommended a comparison of tracking sunphotometers to assess the ability of different instruments to arrive at similar aerosol optical depths. It was further recommended that the comparison be staged at a clean mountain site. In fact, this comparison has not occurred, but the comparison that we describe in this paper is representative of what contemporary instruments may accomplish in an environment more typical of sites where aerosols measurements will be required. The measurements were made over the period 15 September to 5 October 1997. The aerosol loading varied from extremely clean to moderately turbid conditions. In the next section the instruments will be described along with a brief explanation of the calibration techniques. The third section contains the results compared graphically on moderately turbid and fairly clean days and in a table representing the whole period. The paper ends with a section of discussion and a summary of the results.
NASA Technical Reports Server (NTRS)
Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.;
2002-01-01
During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).
Kim, Minho; Zhang, Xingyou; Holt, James B.; Liu, Yang
2015-01-01
Recent studies have explored the relationship between aerosol optical depth (AOD) measurements by satellite sensors and concentrations of particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5). However, relatively little is known about spatial and temporal patterns in this relationship across the contiguous United States. In this study, we investigated the relationship between US Environmental Protection Agency estimates of PM2.5 concentrations and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD measurements provided by two NASA satellites (Terra and Aqua) across the contiguous United States during 2005. We found that the combined use of both satellite sensors provided more AOD coverage than the use of either satellite sensor alone, that the correlation between AOD measurements and PM2.5 concentrations varied substantially by geographic location, and that this correlation was stronger in the summer and fall than that in the winter and spring. PMID:26336576
NASA Astrophysics Data System (ADS)
Tsai, M. T.; Lee, J. D.; Lee, Y. J.; Lee, C. K.; Jin, H. L.; Chang, F. Y.; Hu, K. Y.; Wu, C. P.; Chiang, C. P.; Yang, C. C.
2013-04-01
Optical coherence tomography (OCT) has been demonstrated to be a powerful tool for noninvasive, real-time oral cancer diagnosis. However, in previous reports, OCT has still been found to be difficult to use in the diagnosis of oral precancerous stages, including mild dysplasia and moderate dysplasia. In clinical applications, early diagnosis and treatment of oral cancer can greatly improve the survival rate. Therefore, in this study, we propose a new approach to differentiate the oral precancerous stages based on the evaluation of the optical scattering properties of the epithelial layer, which is where the dysplastic cells start to develop in the precancerous stages. Instead of using exponential decay fitting to evaluate the scattering properties of mucosal tissues based on the Beer-Lambert law, linear fitting of the OCT depth intensity is used to evaluate the scattering properties of normal and dysplastic cells. From the statistical results of the linear fitting, the slope, a, can be an effective indicator to discriminate healthy mucosa and moderate dysplasia when an a value equal to zero is the threshold value, and the intercept, b, can be used to differentiate healthy and dysplastic mucosae, as well as mild and moderate dysplasia, when b values of 0.15 and 0.18 are used as the threshold values, respectively. Furthermore, this approach is also applied to the determination of the safe margin between normal and abnormal mucosae, making it possible to provide real-time, in vivo inspection during oral maxillofacial surgery.
Enhanced blue responses in nanostructured Si solar cells by shallow doping
NASA Astrophysics Data System (ADS)
Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho
2018-03-01
Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.
NASA Technical Reports Server (NTRS)
Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki
2016-01-01
Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction, indicating its representativeness level.
Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W
2013-09-01
Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.
Comparison of seven optical clearing methods for mouse brain
NASA Astrophysics Data System (ADS)
Wan, Peng; Zhu, Jingtan; Yu, Tingting; Zhu, Dan
2018-02-01
Recently, a variety of tissue optical clearing techniques have been developed to reduce light scattering for imaging deeper and three-dimensional reconstruction of tissue structures. Combined with optical imaging techniques and diverse labeling methods, these clearing methods have significantly promoted the development of neuroscience. However, most of the protocols were proposed aiming for specific tissue type. Though there are some comparison results, the clearing methods covered are limited and the evaluation indices are lack of uniformity, which made it difficult to select a best-fit protocol for clearing in practical applications. Hence, it is necessary to systematically assess and compare these clearing methods. In this work, we evaluated the performance of seven typical clearing methods, including 3DISCO, uDISCO, SeeDB, ScaleS, ClearT2, CUBIC and PACT, on mouse brain samples. First, we compared the clearing capability on both brain slices and whole-brains by observing brain transparency. Further, we evaluated the fluorescence preservation and the increase of imaging depth. The results showed that 3DISCO, uDISCO and PACT posed excellent clearing capability on mouse brains, ScaleS and SeeDB rendered moderate transparency, while ClearT2 was the worst. Among those methods, ScaleS was the best on fluorescence preservation, and PACT achieved the highest increase of imaging depth. This study is expected to provide important reference for users in choosing most suitable brain optical clearing method.
Aerosol-cloud interaction determined by satellite data over the Baltic Sea countries
NASA Astrophysics Data System (ADS)
Saponaro, Giulia; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit
2015-04-01
The present study investigates the use of long-term satellite data to assess the influence of aerosols upon cloud parameters over the Baltic Sea region. This particular area offers the contrast of a very clean environment (Fennoscandia) against a more polluted one (Germany, Poland). The datasets consists of Collection 6 Level 3 daily observations from 2002 to 2014 collected by the NASA's Moderate-Resolution Imaging Spectrometer (MODIS) instrument on-board the Aqua platform. The MODIS aerosol optical depth (AOD) product is used as a proxy for the number concentration of aerosol particles while the cloud effective radius (CER) and cloud optical thickness (COT) describe cloud microphysical and optical properties respectively. Satellite data have certain limitations, such as the restriction to summer season due to solar zenith angle restrictions and the known problem of the ambiguity of the aerosol-cloud interface, for instance. Through the analysis of a 12-years dataset, distribution maps provide information on a regional scale about the first aerosol indirect effect (AIE) by determining the aerosol-cloud interaction (ACI). The ACI is defined as the change in cloud optical depth or effective radius as a function of aerosol load for a fixed liquid water path (LWP). The focusing point of the current study is the evaluation of regional trends of ACI over the observed area of the Baltic Sea.
NASA Astrophysics Data System (ADS)
Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.
2017-10-01
The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.
NASA Technical Reports Server (NTRS)
Kahn, Ralph
1999-01-01
Variations in the top-of-atmosphere reflected solar radiation flux, and in the factors that determine its value, are among the most important diagnostic indicators of changes in Earth's energy balance. Data from the MISR (Multi-angle Imaging SpectroRadiometer), MODIS (Moderate-resolution Imaging Spectroradiometer), SAGE-3 (Stratospheric Aerosol and Gas Experiment), and CERES (Clouds and Earth's Radiant Energy System), all of which are spacecraft instruments scheduled for launch in 1999, will each constrain pieces of the RSRF budget. Prior to launch, we are performing studies to determine the sensitivity of these instruments to key factors that influence the cloud-free RSRF: aerosol optical depth, aerosol scattering properties, and surface visible bidirectional reflectance distribution function (BRDF). We are also assessing the ability of the aggregate of instruments to constrain the overall RSRF budget under natural conditions over the globe. Consider the MISR retrieval of aerosols: according to simulations over cloud-free, calm ocean, for pure particles with natural ranges of optical depth, particle size, and indices of refraction, MISR can retrieve column aerosol optical depth for all but the darkest particles, to an uncertainty of at most 0.05 or 20%, whichever is larger, even if the particle properties are poorly known. For one common particle type, soot, constraints on the optical depth over dark ocean are very poor. The simulated measurements also allow us to distinguish spherical from non-spherical particles, to separate two to four compositional groups based on indices of refraction, and to identify three to four distinct size groups between 0. 1 and 2.0 microns characteristic radius at most latitudes. Based on these results, we expect to distinguish air masses containing different aerosol types, routinely and globally, with multiangle remote sensing data. Such results far exceed current satellite aerosol retrieval capabilities, which provide only total optical depth for assumed particle properties; the new information will complement in situ data, which give details about aerosol size and composition locally. In addition, our team is using climatologies that reflect the constraints each instrument is expected to provide, along with ERBE (Earth Radiation Budget Experiment) data and a radiative transfer code, to study overall sensitivity to RSRF, helping us prepare for similar studies with new data from the EOS-era instruments.
Smoke optical depths - Magnitude, variability, and wavelength dependence
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.
1988-01-01
An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.
Global trends in visibility: Implications for dust sources
Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.
2007-01-01
There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. We did this by looking at time series of visibility derived variables and their correlations with precipitation, drought, winds, land use and grazing. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 357 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility-derived variables and AERONET optical depths indicate a moderate correlation (0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility-derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the Palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility-derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with VIS5 or EXT, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974-2003.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Waquet, Fabien; Chand, Duli; Hu, Yongxiang
2014-01-01
We intercompare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from A-train sensors, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Polarization and Directionality of Earth Reflectances (POLDER), and Ozone Monitoring Instrument (OMI). These sensors have shown independent capabilities to retrieve aerosol loading above marine boundary layer clouds-a kind of situation often found over the southeast Atlantic Ocean during dry burning season. A systematic comparison reveals that all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532 nm ACAOD retrieved by CALIOP operational algorithm is underestimated. The retrieved 1064 nm AOD however shows closer agreement with passive sensors. Given the different types of measurements processed with different algorithms, the reported close agreement between them is encouraging. Due to unavailability of direct measurements above cloud, the validation of satellite-based ACAOD remains an open challenge. The intersatellite comparison however can be useful for the relative evaluation and consistency check
NASA Astrophysics Data System (ADS)
Xu, Xiaoguang; Wang, Jun; Wang, Yi; Zeng, Jing; Torres, Omar; Yang, Yuekui; Marshak, Alexander; Reid, Jeffrey; Miller, Steve
2017-07-01
We presented an algorithm for inferring aerosol layer height (ALH) and optical depth (AOD) over ocean surface from radiances in oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) orbiting at Lagrangian-1 point. The algorithm was applied to EPIC imagery of a 2 day dust outbreak over the North Atlantic Ocean. Retrieved ALHs and AODs were evaluated against counterparts observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer, and Aerosol Robotic Network. The comparisons showed 71.5% of EPIC-retrieved ALHs were within ±0.5 km of those determined from CALIOP and 74.4% of EPIC AOD retrievals fell within a ± (0.1 + 10%) envelope of MODIS retrievals. This study demonstrates the potential of EPIC measurements for retrieving global aerosol height multiple times daily, which are essential for evaluating aerosol profile simulated in climate models and for better estimating aerosol radiative effects.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-11-01
To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.
Improved evaluation of optical depth components from Langley plot data
NASA Technical Reports Server (NTRS)
Biggar, S. F.; Gellman, D. I.; Slater, P. N.
1990-01-01
A simple, iterative procedure to determine the optical depth components of the extinction optical depth measured by a solar radiometer is presented. Simulated data show that the iterative procedure improves the determination of the exponent of a Junge law particle size distribution. The determination of the optical depth due to aerosol scattering is improved as compared to a method which uses only two points from the extinction data. The iterative method was used to determine spectral optical depth components for June 11-13, 1988 during the MAC III experiment.
Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity.
Lemmon, M T; Wolff, M J; Smith, M D; Clancy, R T; Banfield, D; Landis, G A; Ghosh, A; Smith, P H; Spanovich, N; Whitney, B; Whelley, P; Greeley, R; Thompson, S; Bell, J F; Squyres, S W
2004-12-03
A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 +/- 0.62 kilometers. The dust's cross section weighted mean radius was 1.47 +/- 0.21 micrometers (mm) at Gusev and 1.52 +/- 0.18 mm at Meridiani. Comparison of visible optical depths with 9-mm optical depths shows a visible-to-infrared optical depth ratio of 2.0 +/- 0.2 for comparison with previous monitoring of infrared optical depths.
Balch, William M; Bowler, Bruce C; Drapeau, David T; Lubelczyk, Laura C; Lyczkowski, Emily
2018-01-01
Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m -3 ) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.
Bowler, Bruce C.; Drapeau, David T.; Lubelczyk, Laura C.; Lyczkowski, Emily
2018-01-01
Abstract Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m−3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained‐variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone. PMID:29576683
Ground truth spectrometry and imagery of eruption clouds to maximize utility of satellite imagery
NASA Technical Reports Server (NTRS)
Rose, William I.
1993-01-01
Field experiments with thermal imaging infrared radiometers were performed and a laboratory system was designed for controlled study of simulated ash clouds. Using AVHRR (Advanced Very High Resolution Radiometer) thermal infrared bands 4 and 5, a radiative transfer method was developed to retrieve particle sizes, optical depth and particle mass involcanic clouds. A model was developed for measuring the same parameters using TIMS (Thermal Infrared Multispectral Scanner), MODIS (Moderate Resolution Imaging Spectrometer), and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). Related publications are attached.
Uncertainty in cloud optical depth estimates made from satellite radiance measurements
NASA Technical Reports Server (NTRS)
Pincus, Robert; Szczodrak, Malgorzata; Gu, Jiujing; Austin, Philip
1995-01-01
The uncertainty in optical depths retrieved from satellite measurements of visible wavelength radiance at the top of the atmosphere is quantified. Techniques are briefly reviewed for the estimation of optical depth from measurements of radiance, and it is noted that these estimates are always more uncertain at greater optical depths and larger solar zenith angles. The lack of radiometric calibration for visible wavelength imagers on operational satellites dominates the uncertainty retrievals of optical depth. This is true for both single-pixel retrievals and for statistics calculated from a population of individual retrievals. For individual estimates or small samples, sensor discretization can also be significant, but the sensitivity of the retrieval to the specification of the model atmosphere is less important. The relative uncertainty in calibration affects the accuracy with which optical depth distributions measured by different sensors may be quantitatively compared, while the absolute calibration uncertainty, acting through the nonlinear mapping of radiance to optical depth, limits the degree to which distributions measured by the same sensor may be distinguished.
NASA Astrophysics Data System (ADS)
Kylafis, N. D.; Trümper, J. E.; Ertan, Ü.
2014-02-01
Context. In the fallback disk model for the persistent emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), the hard X-ray emission arises from bulk- and thermal Comptonization of bremsstrahlung photons, which are generated in the accretion column. The relatively low X-ray luminosity of these sources implies a moderate transverse optical depth to electron scattering, with photons executing a small number of shock crossings before escaping sideways. Aims: We explore the range of spectral shapes that can be obtained with this model and characterize the most important parameter dependencies. Methods: We use a Monte Carlo code to study the crisscrossing of photons in a radiative shock in an accretion column and compute the resulting spectrum. Results: As expected, high-energy power-law X-ray spectra are produced in radiative shocks with photon-number spectral index Γ ≳ 0.5. We find that the required transverse optical depth is 1 ≲ τ⊥ ≲ 7. Such spectra are observed in low-luminosity X-ray pulsars. Conclusions: We demonstrate here with a simple model that Compton upscattering in the radiative shock in the accretion column can produce hard X-ray spectra similar to those seen in the persistent and transient emission of AXPs and SGRs. In particular, one can obtain a high-energy power-law spectrum, with photon-number spectral-index Γ ~ 1 and a cutoff at 100 - 200 keV, with a transverse Thomson optical depth of ~5, which is shown to be typical in AXPs/SGRs.
El-Shazly, Amany A; Farweez, Yousra A; ElSebaay, Marwa E; El-Zawahry, Walid M A
2017-08-30
To assess the choroidal thickness in different degrees of myopia using enhanced depth imaging optical coherence tomography (EDI-OCT) compared with healthy subjects. We included 240 patients with myopia and 60 emmetropes as controls. Participants underwent full ophthalmologic examination, axial length measurement, and EDI-OCT imaging of the choroid. Choroidal thickness (CT) was measured at 5 locations, including subfoveal (SFCT), 2 mm nasal, temporal, upper, and lower to fovea. Choroidal thickness was significantly lower in myopic eyes compared to controls. Regardless of the degree of myopia, nasal regions showed the lowest CT with decremental pattern with advance of myopia (low myopia 279.00 ± 24.50 µm, moderate myopia 269.58 ± 20.69 µm, high myopia 189.58 ± 25.95 µm, advanced myopia 96.75 ± 24.83 µm). Highest CT was variable according to the degree of myopia with decremental pattern with advance of myopia (low myopia in subfoveal region 354.40 ± 35.14 µm, moderate myopia in temporal region 337.87 ± 35.75 µm, high myopia in lower region 312.15 ± 38.90 µm, and advanced myopia in upper region 201.25 ± 18.27 µm). Axial length showed significant negative correlation with SFCT and CT in different studied regions. Different degrees of myopia showed thinner choroidal thickness than that of normal control eyes with decremental thinning with progress of myopia. This might be secondary to the longer axial length, which was the determining factor in some locations such as subfoveal, nasal, and upper CT.
Micro-optical system based 3D imaging for full HD depth image capturing
NASA Astrophysics Data System (ADS)
Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan
2012-03-01
20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.
Siddiqui, Meena; Vakoc, Benjamin J.
2012-01-01
Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon. PMID:23038343
NASA Astrophysics Data System (ADS)
vant-Hull, B.; Li, Z.; Taubman, B.; Marufu, L.; Levy, R.; Chang, F.; Doddridge, B.; Dickerson, R.
2004-12-01
In July 2002 Canadian forest fires produced a major smoke episode that blanketed the U.S. East Coast. Properties of the smoke aerosol were measured in-situ from aircraft, complementing operational AERONET and MODIS remote sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in-situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2% to 16% lower than those directly measured by AERONET. The use of in-situ derived optical properties resulted in optical depths 22% to 43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in-situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and TOA. Comparisons to surface (SurfRad and ISIS) and to satellite (CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET derived optical properties produced better fits to optical depth measurements, while in-situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.
Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates
NASA Astrophysics Data System (ADS)
Zheng, Chenglong; Zang, Huaping; Du, Yanli; Tian, Yongzhi; Ji, Ziwen; Zhang, Jing; Fan, Quanping; Wang, Chuanke; Cao, Leifeng; Liang, Erjun
2018-05-01
We provide a methodology to realize an optical vortex with arbitrarily long focus-depth. With a technique of varying each zone area of a phase spiral zone plate one can obtain optics capable of generating ultra-long focus-depth optical vortex from a plane wave. The focal property of such optics was analysed using the Fresnel diffraction theory, and an experimental demonstration was performed to verify its effectiveness. Such optics may bring new opportunity and benefits for optical vortex application such as optical manipulation and lithography.
Terai, C. R.; Klein, S. A.; Zelinka, M. D.
2016-08-26
The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terai, C. R.; Klein, S. A.; Zelinka, M. D.
The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less
Aerosol spectral optical depths - Jet fuel and forest fire smokes
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Livingston, J. M.
1990-01-01
The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.
NASA Astrophysics Data System (ADS)
Bochkarev, N. N.; Kabanov, A. M.; Stepanov, A. N.
2008-02-01
Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained of threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Lary, D. J.; Gencaga, D.; Albayrak, A.; Wei, J.
2013-08-01
Measurements made by satellite remote sensing, Moderate Resolution Imaging Spectroradiometer (MODIS), and globally distributed Aerosol Robotic Network (AERONET) are compared. Comparison of the two datasets measurements for aerosol optical depth values show that there are biases between the two data products. In this paper, we present a general framework towards identifying relevant set of variables responsible for the observed bias. We present a general framework to identify the possible factors influencing the bias, which might be associated with the measurement conditions such as the solar and sensor zenith angles, the solar and sensor azimuth, scattering angles, and surface reflectivity at the various measured wavelengths, etc. Specifically, we performed analysis for remote sensing Aqua-Land data set, and used machine learning technique, neural network in this case, to perform multivariate regression between the ground-truth and the training data sets. Finally, we used mutual information between the observed and the predicted values as the measure of similarity to identify the most relevant set of variables. The search is brute force method as we have to consider all possible combinations. The computations involves a huge number crunching exercise, and we implemented it by writing a job-parallel program.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
NASA Astrophysics Data System (ADS)
Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R. J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J. W.; Kinne, S.; Mangold, A.; Razinger, M.; Simmons, A. J.; Suttie, M.
2009-07-01
This study presents the new aerosol assimilation system, developed at the European Centre for Medium-Range Weather Forecasts, for the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The aerosol modeling and analysis system is fully integrated in the operational four-dimensional assimilation apparatus. Its purpose is to produce aerosol forecasts and reanalyses of aerosol fields using optical depth data from satellite sensors. This paper is the second of a series which describes the GEMS aerosol effort. It focuses on the theoretical architecture and practical implementation of the aerosol assimilation system. It also provides a discussion of the background errors and observations errors for the aerosol fields, and presents a subset of results from the 2-year reanalysis which has been run for 2003 and 2004 using data from the Moderate Resolution Imaging Spectroradiometer on the Aqua and Terra satellites. Independent data sets are used to show that despite some compromises that have been made for feasibility reasons in regards to the choice of control variable and error characteristics, the analysis is very skillful in drawing to the observations and in improving the forecasts of aerosol optical depth.
NASA Astrophysics Data System (ADS)
Chen, Yi-Lun; Fu, Yun-Fei; Yang, Yuan-Jian; Zhang, Ao-Qi
2014-11-01
As we know, China is the largest developing country and the United State (US) is one of the most developed countries of the world. Due to significant differences of the developmental levels between China and the US, different pollutants emissions may be performed. It is found that aerosol optical depth (AOD) over China is much higher than that over America. Since China and the US locate in westerly wind belts, it is feasible to examine the relationship between different AOD and cloud parameters over land and offshore area of the two countries. In this paper, cloud effective radius (CER), liquid water path (LWP) and AOD derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and circulations supplied by NCEP/NCAR reanalysis data from 2000 to 2013 are employed to explore the relationships between AOD and CER under different LWP levels. Results indicate that there is a clear negative relationship between AOD and CER in different LWP levels over the offshore area contrary to the insignificant relationship over land or the open sea. It suggests that aerosol indirect effects are more obvious over the offshore area.
Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.
2016-01-01
An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.
Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals
NASA Astrophysics Data System (ADS)
Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui
2018-04-01
Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (<0.3 aerosol optical depth) and decrease with further aerosol increase. For in situ formed ice clouds, however, these cloud properties increase monotonically and more sharply with aerosol loadings. An increase in loading of smoke aerosols generally reduces cloud optical thickness of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution aerosols. These relationships between different cloud/aerosol types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.
Testing the MODIS Satellite Retrieval of Aerosol Fine-Mode Fraction
NASA Technical Reports Server (NTRS)
Anderson, Theodore L.; Wu, Yonghua; Chu, D. Allen; Schmid, Beat; Redemann, Jens; Dubovik, Oleg
2005-01-01
Satellite retrievals of the fine-mode fraction (FMF) of midvisible aerosol optical depth, tau, are potentially valuable for constraining chemical transport models and for assessing the global distribution of anthropogenic aerosols. Here we compare satellite retrievals of FMF from the Moderate Resolution Imaging Spectroradiometer (MODIS) to suborbital data on the submicrometer fraction (SMF) of tau. SMF is a closely related parameter that is directly measurable by in situ techniques. The primary suborbital method uses in situ profiling of SMF combined with airborne Sun photometry both to validate the in situ estimate of ambient extinction and to take into account the aerosol above the highest flight level. This method is independent of the satellite retrieval and has well-known accuracy but entails considerable logistical and technical difficulties. An alternate method uses Sun photometer measurements near the surface and an empirical relation between SMF and the Angstrom exponent, A, a measure of the wavelength dependence of optical depth or extinction. Eleven primary and fifteen alternate comparisons are examined involving varying mixtures of dust, sea salt, and pollution in the vicinity of Korea and Japan. MODIS ocean retrievals of FMF are shown to be systematically higher than suborbital estimates of SMF by about 0.2. The most significant cause of this discrepancy involves the relationship between 5 and fine-mode partitioning; in situ measurements indicate a systematically different relationship from what is assumed in the satellite retrievals. Based on these findings, we recommend: (1) satellite programs should concentrate on retrieving and validating since an excellent validation program is in place for doing this, and (2) suborbital measurements should be used to derive relationships between A and fine-mode partitioning to allow interpretation of the satellite data in terms of fine-mode aerosol optical depth.
Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey
2013-01-01
A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.
Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.
2014-05-01
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zheng; Prochaska, J. Xavier; Lau, Marie Wingyee
Modern cosmology predicts that a galaxy overdensity (e.g., protocluster) will be associated with a large intergalactic medium gas reservoir, which can be traced by Ly α forest absorption. We have undertaken a systematic study of the relation between Coherently Strong intergalactic Ly α Absorption systems (CoSLAs), which have the highest optical depth ( τ ) in the τ distribution, and mass overdensities on the scales of ∼10–20 h {sup −1} comoving Mpc. On such large scales, our cosmological simulations show a strong correlation between the effective optical depth ( τ {sub eff}) of the CoSLAs and the three-dimensional mass overdensity.more » In spectra with moderate signal-to-noise ratio, however, the profiles of CoSLAs can be confused with individual high column density absorbers. For z > 2.6, where the corresponding Ly β is redshifted to the optical, we have developed a selection technique to distinguish between these two alternatives. We have applied this technique to ∼6000 sight lines provided by Sloan Digital Sky Survey III quasar survey at z = 2.6–3.3 with a continuum-to-noise ratio greater than 8, and we present a sample of five CoSLA candidates with τ {sub eff} on 15 h {sup −1} Mpc greater than 4.5× the mean optical depth. At lower redshifts of z < 2.6, where the background quasar density is higher, the overdensity can be traced by intergalactic absorption groups using multiple sight lines with small angular separations. Our overdensity searches fully use the current and next generation of Ly α forest surveys, which cover a survey volume of >1 ( h {sup −1} Gpc){sup 3}. Systems traced by CoSLAs will yield a uniform sample of the most massive overdensities at z > 2 to provide stringent constraints to models of structure formation.« less
Stratospheric aerosol optical depths, 1850-1990
NASA Technical Reports Server (NTRS)
Sato, Makiko; Hansen, James E.; Mccormick, M. Patrick; Pollack, James B.
1993-01-01
A global stratospheric aerosol database employed for climate simulations is described. For the period 1883-1990, aerosol optical depths are estimated from optical extinction data, whose quality increases with time over that period. For the period 1850-1882, aerosol optical depths are more crudely estimated from volcanological evidence for the volume of ejecta from major known volcanoes. The data set is available over Internet.
NASA Astrophysics Data System (ADS)
Nimnuan, P.; Janjai, S.; Nunez, M.; Pratummasoot, N.; Buntoung, S.; Charuchittipan, D.; Chanyatham, T.; Chantraket, P.; Tantiplubthong, N.
2017-08-01
This paper presents an algorithm for deriving the effective droplet radius and optical depth of liquid water clouds using ground-based measurements, aircraft observations and an adiabatic model of cloud liquid water. The algorithm derives cloud effective radius and cloud optical depth over a tropical site at Omkoi (17.80°N, 98.43°E), Thailand. Monthly averages of cloud optical depth are highest in April (54.5), which is the month with the lowest average cloud effective radius (4.2 μm), both occurring before the start of the rainy season and at the end of the high contamination period. By contrast, the monsoon period extending from May to October brings higher cloud effective radius and lower cloud optical depth to the region on average. At the diurnal scale there is a gradual increase in average cloud optical depth and decrease in cloud effective radius as the day progresses.
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.
2016-05-01
Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty ˜25-50% (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty ˜10-20%, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.
Modelling of influence of spherical aberration coefficients on depth of focus of optical systems
NASA Astrophysics Data System (ADS)
Pokorný, Petr; Šmejkal, Filip; Kulmon, Pavel; Mikš, Antonín.; Novák, Jiří; Novák, Pavel
2017-06-01
This contribution describes how to model the influence of spherical aberration coefficients on the depth of focus of optical systems. Analytical formulas for the calculation of beam's caustics are presented. The conditions for aberration coefficients are derived for two cases when we require that either the Strehl definition or the gyration radius should be the identical in two symmetrically placed planes with respect to the paraxial image plane. One can calculate the maximum depth of focus and the minimum diameter of the circle of confusion of the optical system corresponding to chosen conditions. This contribution helps to understand how spherical aberration may affect the depth of focus and how to design such an optical system with the required depth of focus. One can perform computer modelling and design of the optical system and its spherical aberration in order to achieve the required depth of focus.
An optical fiber expendable seawater temperature/depth profile sensor
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan
2017-10-01
Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.
Application of simple all-sky imagers for the estimation of aerosol optical depth
NASA Astrophysics Data System (ADS)
Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Nikitidou, Efterpi; Salamalikis, Vasileios; Wilbert, Stefan; Prahl, Christoph
2017-06-01
Aerosol optical depth is a key atmospheric constituent for direct normal irradiance calculations at concentrating solar power plants. However, aerosol optical depth is typically not measured at the solar plants for financial reasons. With the recent introduction of all-sky imagers for the nowcasting of direct normal irradiance at the plants a new instrument is available which can be used for the determination of aerosol optical depth at different wavelengths. In this study, we are based on Red, Green and Blue intensities/radiances and calculations of the saturated area around the Sun, both derived from all-sky images taken with a low-cost surveillance camera at the Plataforma Solar de Almeria, Spain. The aerosol optical depth at 440, 500 and 675nm is calculated. The results are compared with collocated aerosol optical measurements and the mean/median difference and standard deviation are less than 0.01 and 0.03 respectively at all wavelengths.
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
Circumstellar dust in symbiotic novae
NASA Astrophysics Data System (ADS)
Jurkic, Tomislav; Kotnik-Karuza, Dubravka
2015-08-01
Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use of the CLOUDY code, we have showed that a high-density gas region can effectively stop most of the UV flux from the white dwarf and provide the observed dust shielding.
NASA Astrophysics Data System (ADS)
Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.
2014-12-01
A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.
NASA Astrophysics Data System (ADS)
Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.
2015-05-01
A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.
Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.
2016-01-01
Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Kondragunta, S.
2013-01-01
Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS data
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
Precipitable water vapor and 212 GHz atmospheric optical depth correlation at El Leoncito site
NASA Astrophysics Data System (ADS)
Cassiano, Marta M.; Cornejo Espinoza, Deysi; Raulin, Jean-Pierre; Giménez de Castro, Carlos G.
2018-03-01
Time series of precipitable water vapor (PWV) and 212 GHz atmospheric optical depth were obtained in CASLEO (Complejo Astronómico El Leoncito), at El Leoncito site, Argentinean Andes, for the period of 2011-2013. The 212 GHz atmospheric optical depth data were derived from measurements by the Solar Submillimeter Telescope (SST) and the PWV data were obtained by the AERONET CASLEO station. The correlation between PWV and 212 GHz optical depth was analyzed for the whole period, when both parameters were simultaneously available. A very significant correlation was observed. Similar correlation was found when data were analyzed year by year. The results indicate that the correlation of PWV versus 212 GHz optical depth could be used as an indirect estimation method for PWV, when direct measurements are not available.
Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging
NASA Astrophysics Data System (ADS)
Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan
2012-06-01
The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.
NASA Astrophysics Data System (ADS)
Tosca, M. G.; Diner, D. J.; Garay, M. J.; Kalashnikova, O.
2013-12-01
Anthropogenic fires in Southeast Asia and Central America emit smoke that affects cloud dynamics, meteorology, and climate. We measured the cloud response to direct and indirect forcing from biomass burning aerosols using aerosol retrievals from the Multi-angle Imaging SpectroRadiometer (MISR) and non-synchronous cloud retrievals from the MODerate resolution Imaging Spectroradiometer (MODIS) from collocated morning and afternoon overpasses. Level 2 data from thirty-one individual scenes acquired between 2006 and 2010 were used to quantify changes in cloud fraction, cloud droplet size, cloud optical depth and cloud top temperature from morning (10:30am local time) to afternoon (1:30pm local time) in the presence of varying aerosol burdens. We accounted for large-scale meteorological differences between scenes by normalizing observed changes to the mean difference per individual scene. Elevated AODs reduced cloud fraction and cloud droplet size and increased cloud optical depths in both Southeast Asia and Central America. In mostly cloudy regions, aerosols significantly reduced cloud fraction and cloud droplet sizes, but in clear skies, cloud fraction, cloud optical thickness and cloud droplet sizes increased. In clouds with vertical development, aerosols reduced cloud fraction via semi-direct effects but spurred cloud growth via indirect effects. These results imply a positive feedback loop between anthropogenic burning and cloudiness in both Central America and Southeast Asia, and are consistent with previous studies linking smoke aerosols to both cloud reduction and convective invigoration.
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2017-08-01
Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.
NASA Astrophysics Data System (ADS)
Dhalla, Al-Hafeez Zahir
Optical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use. The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment. In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.
1977-01-01
By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.
Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers
NASA Technical Reports Server (NTRS)
Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino
2012-01-01
Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).
A Verification of Aerosol Optical Depth Retrieval Using the Terra Satellite
2012-06-01
of the signal which can be used to calculate total optical depth (from Vincent 2006).............................................................5... signals isolates the direct transmission component of the signal which can be used to calculate total optical depth (from Vincent 2006). 6 2...fully backscattered condition to fully forward scattered, respectively. Values fro the single scatter albedo and the asymmetry parameter can be
ERIC Educational Resources Information Center
Ferran, C.; Bosch, S.; Carnicer, A.
2012-01-01
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…
Research of detection depth for graphene-based optical sensor
NASA Astrophysics Data System (ADS)
Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong
2018-03-01
Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.
2016-01-01
Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty approximately 25-50 percent (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty approximately10-20 percent, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.
Aerosol optical depth trend over the Middle East
NASA Astrophysics Data System (ADS)
Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos
2016-04-01
We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.
NASA Technical Reports Server (NTRS)
Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.
2004-01-01
Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.
NASA Technical Reports Server (NTRS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-01-01
To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).
NASA Astrophysics Data System (ADS)
Tang, Jinping; Wang, Pucai; Mickley, Loretta J.; Xia, Xiangao; Liao, Hong; Yue, Xu; Sun, Li; Xia, Junrong
2014-02-01
Correlations between water cloud effective radius (CER) and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) are examined over seven sub-regions in Eastern China for 2003-2012. Water phase cloud is defined as having a cloud top pressure greater than 800 hPa. Significant negative correlation coefficients (r = -0.79 ˜ -0.94) between AOD and CER are derived over the East Sea and the South China Sea for grid cells with AOD < 0.3. However, positive correlations (r = 0.01-0.91) are calculated for cells with AOD > 0.3. In contrast, significant positive correlations (r = 0.67-0.95) are derived over the Eastern China mainland and Yellow Sea. Further analysis for North China Plain shows that variations in wind speed and relative humidity may account for such positive correlations. Southerly winds carry high levels of pollutants and abundant water vapor, resulting in coincident increases in both AOD and CER in North China Plain, while the northerly winds transport dry and clean air from high latitudes, leading to decreases in AOD and CER. Both processes contribute to the positive correlations between AOD and CER over Eastern China, suggesting that the influence of background weather conditions need to be considered when studying the interactions between aerosol and cloud.
Can MODIS detect trends in aerosol optical depth over land?
NASA Astrophysics Data System (ADS)
Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin
2018-02-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.
High Spectral Resolution Lidar Data
Eloranta, Ed
2004-12-01
The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.
Role of optics in the accuracy of depth-from-defocus systems: comment.
Blendowske, Ralf
2007-10-01
In their paper "Role of optics in the accuracy of depth-from-defocus systems" [J. Opt. Soc. Am. A24, 967 (2007)] the authors Blayvas, Kimmel, and Rivlin discuss the effect of optics on the depth reconstruction accuracy. To this end they applied an approach in Fourier space. An alternative derivation of their result in the spatial domain, based on geometrical optics, is presented and compared with their outcome. A better agreement with experimental data is achieved if some unclarities are refined.
The visual ecology of a deep-sea fish, the escolar Lepidocybium flavobrunneum (Smith, 1843)†
Landgren, Eva; Fritsches, Kerstin; Brill, Richard; Warrant, Eric
2014-01-01
Escolar (Lepidocybium flavobrunneum, family Gempylidae) are large and darkly coloured deep-sea predatory fish found in the cold depths (more than 200 m) during the day and in warm surface waters at night. They have large eyes and an overall low density of retinal ganglion cells that endow them with a very high optical sensitivity. Escolar have banked retinae comprising six to eight layers of rods to increase the optical path length for maximal absorption of the incoming light. Their retinae possess two main areae of higher ganglion cell density, one in the ventral retina viewing the dorsal world above (with a moderate acuity of 4.6 cycles deg−1), and the second in the temporal retina viewing the frontal world ahead. Electrophysiological recordings of the flicker fusion frequency (FFF) in isolated retinas indicate that escolar have slow vision, with maximal FFF at the highest light levels and temperatures (around 9 Hz at 23°C) which fall to 1–2 Hz in dim light or cooler temperatures. Our results suggest that escolar are slowly moving sit-and-wait predators. In dim, warm surface waters at night, their slow vision, moderate dorsal resolution and highly sensitive eyes may allow them to surprise prey from below that are silhouetted in the downwelling light. PMID:24395966
NASA Astrophysics Data System (ADS)
Vincent, D. A.; Nielsen, K. E.; Durkee, P. A.; Reid, J. S.
2005-12-01
The advancement and proliferation of high-resolution commercial imaging satellites presents a new opportunity for overland aerosol characterization. Current aerosol optical depth retrieval methods typically fail over areas with high surface reflectance, such as urban areas and deserts, since the upwelling radiance due to scattering by aerosols is small compared to the radiance resulting from surface reflection. The method proposed here uses shadows cast on the surface to exploit the differences between radiance from the adjacent shaded and unshaded areas of the scene. Shaded areas of the scene are primarily illuminated by diffuse irradiance that is scattered downward from the atmosphere, while unshaded areas are illuminated by both diffuse and direct solar irradiance. The first-order difference between the shaded and unshaded areas is the direct component. Given uniform surface reflectance for the shaded and unshaded areas, the difference in reflected radiance measured by a satellite sensor is related to the direct transmission of solar radiation and inversely proportional to total optical depth. Using an iterative approach, surface reflectance and mean aerosol reflectance can be partitioned to refine the retrieved total optical depth. Aerosol optical depth can then be determined from its contribution to the total atmospheric optical depth (following correction for molecular Rayleigh scattering). Intitial results based on QuickBird imagery and AERONET data collected during the United Arab Emirates Unified Aerosol Experiment (UAE2) indicate that aerosol optical depth retrievals are possible in the visible and near-infrared region with an accuracy of ~0.04.
NASA Astrophysics Data System (ADS)
Gogoi, Mukunda M.; Babu, S. Suresh
2016-05-01
In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.
Speckle reduction of OCT images using an adaptive cluster-based filtering
NASA Astrophysics Data System (ADS)
Adabi, Saba; Rashedi, Elaheh; Conforto, Silvia; Mehregan, Darius; Xu, Qiuyun; Nasiriavanaki, Mohammadreza
2017-02-01
Optical coherence tomography (OCT) has become a favorable device in the dermatology discipline due to its moderate resolution and penetration depth. OCT images however contain grainy pattern, called speckle, due to the broadband source that has been used in the configuration of OCT. So far, a variety of filtering techniques is introduced to reduce speckle in OCT images. Most of these methods are generic and can be applied to OCT images of different tissues. In this paper, we present a method for speckle reduction of OCT skin images. Considering the architectural structure of skin layers, it seems that a skin image can benefit from being segmented in to differentiable clusters, and being filtered separately in each cluster by using a clustering method and filtering methods such as Wiener. The proposed algorithm was tested on an optical solid phantom with predetermined optical properties. The algorithm was also tested on healthy skin images. The results show that the cluster-based filtering method can reduce the speckle and increase the signal-to-noise ratio and contrast while preserving the edges in the image.
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan
2008-06-01
The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.
NASA Technical Reports Server (NTRS)
Clarke, Antony D.; Porter, John N.
1997-01-01
Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).
NASA Astrophysics Data System (ADS)
Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.
2017-02-01
Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.
Albedo of an irradiated plane-parallel atmosphere with finite optical depth
NASA Astrophysics Data System (ADS)
Fukue, Jun
2018-03-01
We analytically derive albedo for a plane-parallel atmosphere with finite optical depth, irradiated by an external source, under the local thermodynamic equilibrium approximation. Albedo is expressed as a function of the photon destruction probability ɛ and optical depth τ, with several parameters such as dilution factors of the external source. In the particular case of the infinite optical depth, albedo A is expressed as A=[1 + (1-W_J/W_H)√{3ɛ}/3]/(1+√{3ɛ}), where WJ and WH are the dilution factors for the mean intensity and Eddington flux, respectively. An example of a model atmosphere is also presented under a gray approximation.
NASA Astrophysics Data System (ADS)
Enfield, Joey; McGrath, James; Daly, Susan M.; Leahy, Martin
2016-08-01
Changes within the microcirculation can provide an early indication of the onset of a plethora of ailments. Various techniques have thus been developed that enable the study of microcirculatory irregularities. Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique, which enables mapping of vasculature networks at the capillary level in a noninvasive and noncontact manner. This technique is an extension of conventional optical coherence tomography (OCT) and is therefore likewise limited in the penetration depth of ballistic photons in biological media. Optical clearing has previously been demonstrated to enhance the penetration depth and the imaging capabilities of OCT. In order to enhance the achievable maximum imaging depth, we propose the use of optical clearing in conjunction with the cmOCT technique. We demonstrate in vivo a 13% increase in OCT penetration depth by topical application of a high-concentration fructose solution, thereby enabling the visualization of vessel features at deeper depths within the tissue.
NASA Astrophysics Data System (ADS)
Reddy, Patrick J.; Kreiner, Fred W.; Deluisi, John J.; Kim, Young
1990-09-01
Aerosol optical depths and values for the Angstrom exponent, alpha, were retrieved from carefully calibrated sunphotometer measurements which were made during the Global Change Expedition (GCE) of the NOAA ship Mt. Mitchell in July, August, and September 1988. Sunphotometer observations were acquired at wavelengths of 380, 500, 675, and 778 nm. Optical depths and alphas have been segregated into five categories associated with probable air mass source regions determined through back trajectories at the 1000-, 850-, 700-, and 500-mbar levels. The results for the three most distinct air mass types are summarized here. The mean 500- nm aerosol optical depth for North American air is 0.56 (±0.32), the mean for Atlantic air is 0.16 (±0.02), and the mean for Saharan air is 0.39 (±0.12). Alpha for mean GCE aerosol optical depth data for predominantly North American air masses is 1.15 (± 0.11), alpha for Atlantic air is 1.00 (±0.40), and for Saharan air, alpha is 0.37 (±0.18). There is a significant difference between alpha for Saharan air and alpha for North American or Atlantic air. There is also a significant difference between the mean 500-nm optical depth for North American aerosols and Atlantic aerosols.
Comparison of the optical depth of total ozone and atmospheric aerosols in Poprad-Gánovce, Slovakia
NASA Astrophysics Data System (ADS)
Hrabčák, Peter
2018-06-01
The amount of ultraviolet solar radiation reaching the Earth's surface is significantly affected by atmospheric ozone along with aerosols. The present paper is focused on a comparison of the total ozone and atmospheric aerosol optical depth in the area of Poprad-Gánovce, which is situated at the altitude of 706 m a. s. l. in the vicinity of the highest mountain in the Carpathian mountains. The direct solar ultraviolet radiation has been measured here continuously since August 1993 using a Brewer MKIV ozone spectrophotometer. These measurements have been used to calculate the total amount of atmospheric ozone and, subsequently, its optical depth. They have also been used to determine the atmospheric aerosol optical depth (AOD) using the Langley plot method. Results obtained by this method were verified by means of comparison with a method that is part of the Brewer operating software, as well as with measurements made by a Cimel sun photometer. Diffuse radiation, the stray-light effect and polarization corrections were applied to calculate the AOD using the Langley plot method. In this paper, two factors that substantially attenuate the flow of direct ultraviolet solar radiation to the Earth's surface are compared. The paper presents results for 23 years of measurements, namely from 1994 to 2016. Values of optical depth were determined for the wavelengths of 306.3, 310, 313.5, 316.8 and 320 nm. A statistically significant decrease in the total optical depth of the atmosphere was observed with all examined wavelengths. Its root cause is the statistically significant decline in the optical depth of aerosols.
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun
2016-12-01
We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.
Depth-sensitive optical spectroscopy for layered tissue measurements (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Wei; Yu, Xiaojun; Liu, Quan; Liu, Linbo; Ong, Yi Hong
2017-02-01
Disease diagnosis based on the visual inspection of the pathological presentations or symptoms on the epithelial tissue such as the skin are subjective and highly depend on the experience of the doctors. Vital diagnostic information for the accurate identification of diseases is usually located underneath the surface and its depth distribution is known to be related to disease progression. Although optical spectroscopic measurements are fast and non-invasive, the accurate retrieval of the depth-specific diagnostic information is complicated by the heterogeneous nature of epithelial tissues. The optical signal measured from a tissue is often the result of averaging from a large tissue volume that mixes information from the region of interest and the surrounding tissue region, especially from the overlaying layers. Our group has developed a series of techniques for depth sensitive optical measurements from such layered tissues. We will first review the earlier development of composite fiber-optic probe, in which the source-detector separation and the angles of source and detector fibers are varied to achieve depth sensitive measurements. Then the more recent development of non-contact axicon lens based probes for depth sensitive fluorescence measurements and the corresponding numerical methods for optimization will be introduced. Finally, the most recently developed snapshot axicon lens based probe that can measure Raman spectra from five different depths at the same time will be discussed. Results from tissue phantoms, ex vivo pork samples and in vivo fingernail measurements will be presented, which indicates the great potential of depth sensitive optical spectroscopy for clinical tissue diagnosis.
NASA Astrophysics Data System (ADS)
Stamnes, Snorre; Fan, Yongzhen; Chen, Nan; Li, Wei; Tanikawa, Tomonori; Lin, Zhenyi; Liu, Xu; Burton, Sharon; Omar, Ali; Stamnes, Jakob J.; Cairns, Brian; Stamnes, Knut
2018-05-01
A simple but novel study was conducted to investigate whether an imager-type spectroradiometer instrument like MODIS, currently flying on board the Aqua and Terra satellites, or MERIS, which flew on board Envisat, could detect absorbing aerosols if they could measure the Q Stokes parameter in addition to the total radiance I, that is if they could also measure the linear polarization of the light. Accurate radiative transfer calculations were used to train a fast neural network forward model, which together with a simple statistical optimal estimation scheme was used to retrieve three aerosol parameters: aerosol optical depth at 869 nm, optical depth fraction of fine mode (absorbing) aerosols at 869 nm, and aerosol vertical location. The aerosols were assumed to be bimodal, each with a lognormal size distribution, located either between 0 and 2 km or between 2 and 4 km in the Earth's atmosphere. From simulated data with 3% random Gaussian measurement noise added for each Stokes parameter, it was found that by itself the total radiance I at the nine MODIS VIS channels was generally insufficient to accurately retrieve all three aerosol parameters (˜ 15% to 37% successful), but that together with the Q Stokes component it was possible to retrieve values of aerosol optical depth at 869 nm to ± 0.03, single-scattering albedo at 869 nm to ± 0.04, and vertical location in ˜ 65% of the cases. This proof-of-concept retrieval algorithm uses neural networks to overcome the computational burdens of using vector radiative transfer to accurately simulate top-of-atmosphere (TOA) total and polarized radiances, enabling optimal estimation techniques to exploit information from multiple channels. Therefore such an algorithm could, in concept, be readily implemented for operational retrieval of aerosol and ocean products from moderate or hyperspectral spectroradiometers.
Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro, Ricardo
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.
Compact light-emitting-diode sun photometer for atmospheric optical depth measurements.
Acharya, Y B; Jayaraman, A; Ramachandran, S; Subbaraya, B H
1995-03-01
A new compact light-emitting diode (LED) sun photometer, in which a LED is used as a spectrally selective photodetector as well as a nonlinear feedback element in the operational amplifier, has been developed. The output voltage that is proportional to the logarithm of the incident solar intensity permits the direct measurement of atmospheric optical depths in selected spectral bands. Measurements made over Ahmedabad, India, show good agreement, within a few percent, of optical depths derived with a LED as a photodetector in a linear mode and with a LED as both a photodetector and a feedback element in an operational amplifier in log mode. The optical depths are also found to compare well with those obtained simultaneously with a conventional filter photometer.
Optical cryptography with biometrics for multi-depth objects.
Yan, Aimin; Wei, Yang; Hu, Zhijuan; Zhang, Jingtao; Tsang, Peter Wai Ming; Poon, Ting-Chung
2017-10-11
We propose an optical cryptosystem for encrypting images of multi-depth objects based on the combination of optical heterodyne technique and fingerprint keys. Optical heterodyning requires two optical beams to be mixed. For encryption, each optical beam is modulated by an optical mask containing either the fingerprint of the person who is sending, or receiving the image. The pair of optical masks are taken as the encryption keys. Subsequently, the two beams are used to scan over a multi-depth 3-D object to obtain an encrypted hologram. During the decryption process, each sectional image of the 3-D object is recovered by convolving its encrypted hologram (through numerical computation) with the encrypted hologram of a pinhole image that is positioned at the same depth as the sectional image. Our proposed method has three major advantages. First, the lost-key situation can be avoided with the use of fingerprints as the encryption keys. Second, the method can be applied to encrypt 3-D images for subsequent decrypted sectional images. Third, since optical heterodyning scanning is employed to encrypt a 3-D object, the optical system is incoherent, resulting in negligible amount of speckle noise upon decryption. To the best of our knowledge, this is the first time optical cryptography of 3-D object images has been demonstrated in an incoherent optical system with biometric keys.
NASA Astrophysics Data System (ADS)
Lee, Jaeyul; Song, Jaewon; Jeon, Mansik; Kim, Jeehyun
2017-02-01
In this study, we monitored the optical clearing effects by immersing ex vivo guinea pig cochlea samples in ethylenediaminetetraacetic acid (EDTA) to study the internal microstructures in the morphology of guinea pig cochlea. The imaging limitations due to the guinea pig cochlea structures were overcome by optical clearing technique. Subsequently, the study was carried out to confirm the required approximate immersing duration of cochlea in EDTA-based optical clearing to obtain the best optimal depth visibility for guinea pig cochlea samples. Thus, we implemented a decalcification-based optical clearing effect to guinea pig cochlea samples to enhance the depth visualization of internal microstructures using swept source optical coherence tomography (OCT). The obtained nondestructive two-dimensional OCT images successfully illustrated the feasibility of the proposed method by providing clearly visible microstructures in the depth direction as a result of decalcification. The most optimal clearing outcomes for the guinea pig cochlea were obtained after 14 consecutive days. The quantitative assessment results verified the increase of the intensity as well as the thickness measurements of the internal microstructures. Following this method, difficulties in imaging of internal cochlea microstructures of guinea pigs could be avoided. The obtained results verified that the depth visibility of the decalcified ex vivo guinea pig cochlea samples was enhanced. Therefore, the proposed EDTA-based optical clearing method for guinea pig can be considered as a potential application for depth-enhanced OCT visualization.
NASA Astrophysics Data System (ADS)
Brubaker, Timothy R.; Ishikawa, Kenji; Takeda, Keigo; Oh, Jun-Seok; Kondo, Hiroki; Hashizume, Hiroshi; Tanaka, Hiromasa; Knecht, Sean D.; Bilén, Sven G.; Hori, Masaru
2017-12-01
The liquid-phase chemical kinetics of a cell culture basal medium during treatment by an argon-fed, non-equilibrium atmospheric-pressure plasma source were investigated using real-time ultraviolet absorption spectroscopy and colorimetric assays. Depth- and time-resolved NO2- and NO3- concentrations were strongly inhomogeneous and primarily driven by convection during and after plasma-liquid interactions. H2O2 concentrations determined from deconvolved optical depth spectra were found to compensate for the optical depth spectra of excluded reactive species and changes in dissolved gas content. Plasma-activated media remained weakly basic due to NaHCO3 buffering, preventing the H+-catalyzed decomposition of NO2- seen in acidic plasma-activated water. An initial increase in pH may indicate CO2 sparging. Furthermore, the pH-dependency of UV optical depth spectra illustrated the need for pH compensation in the fitting of optical depth data.
Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.
2017-01-01
Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.
Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.
2012-01-01
This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.
Tracing gas and magnetic field with dust : lessons from Planck & Herschel
NASA Astrophysics Data System (ADS)
Guillet, Vincent
2015-08-01
Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.
NASA Technical Reports Server (NTRS)
Pilewski, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.
2000-01-01
Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under-cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.
NASA Technical Reports Server (NTRS)
Pilewskie, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.
2000-01-01
Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm(exp -2) per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.
Ehlers, Justis P.; Tao, Yuankai K.; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A.
2011-01-01
Purpose. To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. Methods. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board–approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. Results. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). Conclusions. High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon. PMID:21282565
Ehlers, Justis P; Tao, Yuankai K; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A; Toth, Cynthia A
2011-05-16
To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board-approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon.
NASA Astrophysics Data System (ADS)
Aklesso, Mangamana; Kumar, K. Raghavendra; Bu, Lingbing; Boiyo, Richard
2018-06-01
In the present study, the spatial-temporal distribution and estimation of trends of different aerosol optical properties, and related impact factors were investigated over three countries: Ghana, Togo, and Benin along the Gulf of Guinea Coast in Southern West Africa (SWA). For this purpose, long-term satellite derived aerosol optical properties (aerosol optical depth at 550 nm; AOD550, Ångström exponent at 470-660 nm; AE470-660, and absorption aerosol index; AAI) retrieved from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) during January 2005-December 2015 were utilized. The annual mean spatial distribution of AOD550 was found to be high (>0.55) over the southern coastal area, moderate-to-high (0.35-0.55) over the central, and low (<0.35) over northern parts of the study domain. The seasonal mean variations showed high (low) values of AOD550 and AAI during the Harmattan or dry (wet) season. Whereas, low (high) AE470-660 values were characterized during the Harmattan (wet) season. Linear trend analysis revealed a decreasing trend in AOD550 and AAI, and increasing trend in AE470-660. Further, an investigation on the potential drivers to AOD distribution over the SWA revealed that precipitation, NDVI, and terrain were negatively correlated with AOD. Finally, the HYSPLIT derived back trajectory analyses revealed diverse transport pathways originated from the North Atlantic Ocean, Sahara Desert, and Nigeria along with locally generated aerosols.
Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.
2007-01-01
Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.
NASA Astrophysics Data System (ADS)
Fabritius, T.; Alarousu, E.; Prykäri, T.; Hast, J.; Myllylä, Risto
2006-02-01
Due to the highly light scattering nature of paper, the imaging depth of optical methods such as optical coherence tomography (OCT) is limited. In this work, we study the effect of refractive index matching on improving the imaging depth of OCT in paper. To this end, four different refractive index matching liquids (ethanol, 1-pentanol, glycerol and benzyl alcohol) with a refraction index between 1.359 and 1.538 were used in experiments. Low coherent light transmission was studied in commercial copy paper sheets, and the results indicate that benzyl alcohol offers the best improvement in imaging depth, while also being sufficiently stable for the intended purpose. Constructed cross-sectional images demonstrate visually that the imaging depth of OCT is considerably improved by optical clearing. Both surfaces of paper sheets can be detected along with information about the sheet's inner structure.
Tian, Peifang; Devor, Anna; Sakadžić, Sava; Dale, Anders M.; Boas, David A.
2011-01-01
Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as “depth sensitivity.” Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 μm for NA ≤0.2 or focal plane depth ≤300 μm. (ii) More than 97% of the signal comes from the top 500 μm of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and∕or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation. PMID:21280912
LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskot, A. E.; Oey, M. S.
2014-08-20
We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originatesmore » from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.« less
NASA Astrophysics Data System (ADS)
Liu, Ping; Hall-Aquitania, Moorea; Hermens, Erma; Groves, Roger M.
2017-07-01
Optical diagnostics techniques are becoming important for technical art history (TAH) as well as for heritage conservation. In recent years, optical coherence tomography (OCT) has been increasingly used as a novel technique for the inspection of artwork, revealing the stratigraphy of paintings. It has also shown to be an effective tool for vanish layer inspection. OCT is a contactless and non-destructive technique for microstructural imaging of turbid media, originally developed for medical applications. However current OCT instruments have difficulty in paint layer inspection due to the opacity of most pigments. This paper explores the potential of OCT for the investigation of paintings with coloured grounds. Depth scans were processed to determine the light penetration depth at the optical wavelength based on a 1/e light attenuation calculation. The variation in paint opacity was mapped based on the microstructural images and 3D penetration depth profiles was calculated and related back to the construction of the artwork. By determining the light penetration depth over a range of wavelengths the 3D depth perception of a painting with coloured grounds can be characterized optically.
NASA Astrophysics Data System (ADS)
Chatterjee, R. S.; Saha, S. K.; Suresh Kumar; Sharika Mathew; Lakhera, R. C.; Dadhwal, V. K.
In recent years, the problem of ravine erosion with consequent loss of usable land has received much attention worldwide. The Chambal ravine zone in India is well known for being an extremely intricate, deeply incised network of ravines in a 10 km wide zone on the flanks of the Chambal River. It occupies an area of ˜0.5 million hectares at the expense of fertile agricultural land of the Chambal Valley. The broad grouping of the ravines considering their reclamation potential, as carried out by previous workers based on visual interpretation of optical remote sensing data, is mostly descriptive in nature. In the present study, characterization of the ravines as a function of their erosion potential expressed through ravine density, ravine depth, and ravine surface cover was made in quantitative terms exploiting the preferential characteristics of side-looking, long-wavelength, coherent SAR signal and precision measurements associated with the InSAR technique. The outlines of ravines appear remarkably prominent in SAR backscattered amplitude images due to the high sensitivity of the SAR signal to terrain ruggedness. Using local statistics-based meso and macro textural information of SAR backscattered amplitude images in 7×7 pixel windows (the pixel size being 20 m×20 m), the ravine-affected area has been classified into three density classes, namely low, moderate, and high density ravine classes. C-band InSAR digital elevation models (DEMs) of sparsely vegetated ravine areas essentially give the terrain height. From the pixel-by-pixel terrain height, the ravine depth was calculated by differencing the maximum and minimum terrain heights of the pixels in a 100 m distance range. Considering the vertical precision of the ERS InSAR DEMs of ˜5 m and ravine depth classification by previous workers [Sharma, H.S., 1968. Genesis and pattern of ravines of the Lower Chambal Valley, India. Special Issue. 21st International Geographical Union Congress 30(4), 14-24; Seth, S.P., Bhatnagar, R.K., Chauhan, S.S., 1969. Reclamability classification and nature of ravines of Chambal Command Areas. Journal of Soil and Water Conservation in India 17 (3-4), 39-44.], three depth classes, namely shallow (<5 m), moderately deep (5-20 m), and deep (>20 m) ravines, were made. Using the temporal decorrelation property of the close time interval InSAR data pair, namely the ERS SAR tandem pair, four ravine surface cover classes, namely barren land, grass/scrub/crop land, sparse vegetation, and wet land/dense vegetation, could be delineated, which was corroborated by the spectral signatures in the optical range and selective ground truths.
Thermal emission from interstellar dust in and near the Pleiades
NASA Technical Reports Server (NTRS)
White, Richard E.
1989-01-01
IRAS survey coadds for a 8.7 deg x 4.3 deg field near the Pleiades provide evidence for dynamical interaction between the cluster and the surrounding interstellar medium. The far-infrared images show large region of faint emission with bright rims east of the cluster, suggestive of a wake. Images of the far-infrared color temperature and 100 micron optical depth reveal temperature maxima and optical depth minima near the bright cluster stars, as well as a strong optical depth peak at the core of the adjacent CO cloud. Models for thermal dust emission near the stars indicate that most of the apparent optical depth minima near stars are illusory, but also provide indirect evidence for small interaction between the stars and the encroaching dust cloud.
LASER METHODS IN MEDICINE: Light absorption in blood during low-intensity laser irradiation of skin
NASA Astrophysics Data System (ADS)
Barun, V. V.; Ivanov, A. P.
2010-06-01
An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis.
AirMSPI ORACLES Cloud Droplet Data V001
Atmospheric Science Data Center
2018-05-05
AirMSPI_ORACLES_Cloud_Droplet_Size_and_Cloud_Optical_Depth L2 Derived Geophysical Parameters ... Order: Earthdata Search Parameters: Cloud Optical Depth Cloud Droplet Effective Radius Cloud Droplet ...
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick
2008-01-01
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki
2014-12-01
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hydrodynamic effects in laser cutting of biological tissue phantoms
NASA Astrophysics Data System (ADS)
Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.
2017-11-01
We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.
NASA Astrophysics Data System (ADS)
Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.
2014-10-01
The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.
NASA Astrophysics Data System (ADS)
Patadia, Falguni; Levy, Robert C.; Mattoo, Shana
2018-06-01
Retrieving aerosol optical depth (AOD) from top-of-atmosphere (TOA) satellite-measured radiance requires separating the aerosol signal from the total observed signal. Total TOA radiance includes signal from the underlying surface and from atmospheric constituents such as aerosols, clouds and gases. Multispectral retrieval algorithms, such as the dark-target (DT) algorithm that operates upon the Moderate Resolution Imaging Spectroradiometer (MODIS, on board Terra and Aqua satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP) sensors, use wavelength bands in window
regions. However, while small, the gas absorptions in these bands are non-negligible and require correction. In this paper, we use the High-resolution TRANsmission (HITRAN) database and Line-By-Line Radiative Transfer Model (LBLRTM) to derive consistent gas corrections for both MODIS and VIIRS wavelength bands. Absorptions from H2O, CO2 and O3 are considered, as well as other trace gases. Even though MODIS and VIIRS bands are similar
, they are different enough that applying MODIS-specific gas corrections to VIIRS observations results in an underestimate of global mean AOD (by 0.01), but with much larger regional AOD biases of up to 0.07. As recent studies have been attempting to create a long-term data record by joining multiple satellite data sets, including MODIS and VIIRS, the consistency of gas correction has become even more crucial.
Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves
NASA Astrophysics Data System (ADS)
Morishima, Ryuji; Turner, Neal J.; Spilker, Linda
2017-10-01
We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light.
NASA Astrophysics Data System (ADS)
Nayak, Kali P.; Sadgrove, Mark; Yalla, Ramachandrarao; Le Kien, Fam; Hakuta, Kohzo
2018-07-01
Recent advances in the coherent control of single quanta of light, photons, is a topic of prime interest, and is discussed under the banner of quantum photonics. In the last decade, the subwavelength diameter waist of a tapered optical fiber, referred to as an optical nanofiber, has opened promising new avenues in the field of quantum optics, paving the way toward a versatile platform for quantum photonics applications. The key feature of the technique is that the optical field can be tightly confined in the transverse direction while propagating over long distances as a guided mode and enabling strong interaction with the surrounding medium in the evanescent region. This feature has led to surprising possibilities to manipulate single atoms and fiber-guided photons, e.g. the efficient channeling of emission from single atoms and solid-state quantum emitters into the fiber-guided modes, high optical depth with a few atoms around the nanofiber, trapping atoms around a nanofiber, and atomic memories for fiber-guided photons. Furthermore, implementing a moderate longitudinal confinement in nanofiber cavities has enabled the strong coupling regime of cavity quantum electrodynamics to be reached, and the long-range dipole–dipole interaction between quantum emitters mediated by the nanofiber offers a platform for quantum nonlinear optics with an ensemble of atoms. In addition, the presence of a longitudinal component of the guided field has led to unique capabilities for chiral light–matter interactions on nanofibers. In this article, we review the key developments of the nanofiber technology toward a vision for quantum photonics on an all-fiber interface.
Depth Profilometry via Multiplexed Optical High-Coherence Interferometry
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289
Depth profilometry via multiplexed optical high-coherence interferometry.
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.
NASA Astrophysics Data System (ADS)
Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.
2016-12-01
We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.
Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.
Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin
2018-02-09
Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.
An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications
Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard
2017-01-01
A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727
Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.
Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas
2017-03-01
We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.
NASA Astrophysics Data System (ADS)
Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin
2017-12-01
In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.
Roy, Gilles; Roy, Nathalie
2008-03-20
A multiple-field-of-view (MFOV) lidar is used to characterize size and optical depth of low concentration of bioaerosol clouds. The concept relies on the measurement of the forward scattered light by using the background aerosols at various distances at the back of a subvisible cloud. It also relies on the subtraction of the background aerosol forward scattering contribution and on the partial attenuation of the first-order backscattering. The validity of the concept developed to retrieve the effective diameter and the optical depth of low concentration bioaerosol clouds with good precision is demonstrated using simulation results and experimental MFOV lidar measurements. Calculations are also done to show that the method presented can be extended to small optical depth cloud retrieval.
Validation of an In-Water, Tower-Shading Correction Scheme
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Doyle, John P.; Zibordi, Giuseppe; vanderLinde, Dirk
2003-01-01
Large offshore structures used for the deployment of optical instruments can significantly perturb the intensity of the light field surrounding the optical measurement point, where different portions of the visible spectrum are subject to different shadowing effects. These effects degrade the quality of the acquired optical data and can reduce the accuracy of several derived quantities, such as those obtained by applying bio-optical algorithms directly to the shadow-perturbed data. As a result, optical remote sensing calibration and validation studies can be impaired if shadowing artifacts are not fully accounted for. In this work, the general in-water shadowing problem is examined for a particular case study. Backward Monte Carlo (MC) radiative transfer computations- performed in a vertically stratified, horizontally inhomogeneous, and realistic ocean-atmosphere system are shown to accurately simulate the shadow-induced relative percent errors affecting the radiance and irradiance data profiles acquired close to an oceanographic tower. Multiparameter optical data processing has provided adequate representation of experimental uncertainties allowing consistent comparison with simulations. The more detailed simulations at the subsurface depth appear to be essentially equivalent to those obtained assuming a simplified ocean-atmosphere system, except in highly stratified waters. MC computations performed in the simplified system can be assumed, therefore, to accurately simulate the optical measurements conducted under more complex sampling conditions (i.e., within waters presenting moderate stratification at most). A previously reported correction scheme, based on the simplified MC simulations, and developed for subsurface shadow-removal processing of in-water optical data taken close to the investigated oceanographic tower, is then validated adequately under most experimental conditions. It appears feasible to generalize the present tower-specific approach to solve other optical sensor shadowing problems pertaining to differently shaped deployment platforms, and also including surrounding structures and instrument casings.
T.F. Eck; B.N. Holben; J.S. Reid; A. Sinyuk; E.J. Hyer; N.T. O' Neill; G.E. Shaw; J.R. Vande Castle; F.S. Chapin; O. Dubovik; A. Smirnov; E. Vermote; J.S. Schafer; D. Giles; I. Slutsker; M. Sorokine; W.W. Newcomb
2009-01-01
Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter), Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels while 2004 and 2005 had August monthly means similar in magnitude to peak months at major...
Asian Dust Weather Categorization with Satellite and Surface Observations
NASA Technical Reports Server (NTRS)
Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen
2011-01-01
This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.
Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph
2015-07-15
We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.
NASA Technical Reports Server (NTRS)
Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2015-01-01
A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.
NASA Technical Reports Server (NTRS)
Kent, G. S.; Mccormick, M. P.; Wang, P.-H.
1994-01-01
The stratospheric aerosol measurement 2, stratospheric aerosol and gas experiment (SAGE) 1, and SAGE 2 series of solar occultation satellite instruments were designed for the study of stratospheric aerosols and gases and have been extensively validated in the stratosphere. They are also capable, under cloud-free conditions, of measuring the extinction due to aerosols in the troposphere. Such tropospheric extinction measurements have yet to be validated by appropriate lidar and in situ techniques. In this paper published atmospheric aerosol optical depth measurements, made from high-altitude observatories during volcanically quiet periods, have been compared with optical depths calculated from local SAGE 1 and SAGE 2 extinction profiles. Surface measurements from three such observatories have been used, one located in Hawaii and two within the continental United States. Data have been intercompared on a seasonal basis at wave-lenths between 0.5 and 1.0 micron and found to agree within the range of measurement errors and expected atmospheric variation. The mean rms difference between the optical depths for corresponding satellite and surface measured data sets is 29%, and the mean ratio of the optical depths is 1.09.
Cloud Optical Depths and Liquid Water Paths at the NSA CART
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doran, J C.; Barnard, James C.; Zhong, Shiyuan
2000-03-14
Cloud optical depths have been measured using multifilter rotating shadowband radiometers (MFRSRs) at Barrow and Atqasuk, and liquid water paths have been measured at Barrow using a microwave radiometer (MWR) during the warm season (June-September) in 1999. Comparisons have been made between these quantities and the corresponding ones determined from the ECMWF GCM. Hour-by-hour comparisons of cloud optical depths show considerable scatter. The scatter is reduced, but is still substantial, when the averaging period is increased to ''daily'' averages, i.e., the time period each day over which the MFRSR can make measurements. This period varied between 18 hours in Junemore » and 6 hours in September. Preliminary results indicate that, for measured cloud optical depths less than approximately 25, the ECMWF has a low bias in its predictions, consistent with a low bias in predicted liquid water path. Based on a more limited set of data, the optical depths at Atqasuk were found to be generally lower than those at Barrow, a trend at least qualitatively captured by the ECMWF model. Analyses to identify the cause of the biases and the considerable scatter in the predictions are continuing.« less
An analysis of haze effects on LANDSAT multispectral scanner data
NASA Technical Reports Server (NTRS)
Johnson, W. R.; Sestak, M. L. (Principal Investigator)
1981-01-01
Early season changes in optical depth change brightness, primarily along the soil line; and during crop development, changes in optical depth change both greenness and brightness. Thus, the existence of haze in the imagery could cause an unsuspecting analyst to interpret the spectral appearance as indicating an episodal event when, in fact, haze was present. The techniques for converting LANDSAT-3 data to simulate LANDSAT-2 data are in error. The yellowness and none such computations are affected primarily. Yellowness appears well correlated to optical depth. Experimental evidence with variable background and variable optical depth is needed, however. The variance of picture elements within a spring wheat field is related to its equivalent in optical depth changes caused by haze. This establishes the sensitivity of channel 1 (greenness) pixels to changes in haze levels. The between field picture element means and variances were determined for the spring wheat fields. This shows the variability of channel data on two specific dates, emphasizing that crop development can be influenced by many factors. The atmospheric correction program ATCOR reduces segment data from LANDSAT acquisitions to a common haze level and improves the results of analysis.
NASA Astrophysics Data System (ADS)
Golub, M. A.; Sisakyan, I. N.; Soĭfer, V. A.; Uvarov, G. V.
1989-04-01
Theoretical and experimental investigations are reported of new mode optical components (elements) which are analogs of sinusoidal phase diffraction gratings with a variable modulation depth. Expressions are derived for nonlinear predistortion and depth of modulation, which are essential for effective operation of amplitude and phase mode optical components in devices used for analysis and formation of the transverse mode composition of coherent radiation. An estimate is obtained of the energy efficiency of phase and amplitude mode optical components, and a comparison is made with the results of an experimental investigation of a set of phase optical components matched to Gauss-Laguerre modes. It is shown that the improvement in the energy efficiency of phase mode components, compared with amplitude components, is the same as the improvement achieved using a phase diifraction grating, compared with amplitude grating with the same depth of modulation.
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.
2003-01-01
Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).
NASA Technical Reports Server (NTRS)
Kim, Dongchul; Chin, Mian; Yu, Hongbin; Diehl, Thomas; Tan, Qian; Kahn, Ralph A.; Tsigaridis, Kostas; Bauer, Susanne E.; Takemura, Toshihiko; Pozzoli, Luca;
2014-01-01
This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.
VICS82: The VISTA–CFHT Stripe 82 Near-infrared Survey
NASA Astrophysics Data System (ADS)
Geach, J. E.; Lin, Y.-T.; Makler, M.; Kneib, J.-P.; Ross, N. P.; Wang, W.-H.; Hsieh, B.-C.; Leauthaud, A.; Bundy, K.; McCracken, H. J.; Comparat, J.; Caminha, G. B.; Hudelot, P.; Lin, L.; Van Waerbeke, L.; Pereira, M. E. S.; Mast, D.
2017-07-01
We present the VISTA–CFHT Stripe 82 (VICS82) survey: a near-infrared (J+Ks) survey covering 150 square degrees of the Sloan Digital Sky Survey (SDSS) equatorial Stripe 82 to an average depth of J = 21.9 AB mag and Ks = 21.4 AB mag (80% completeness limits; 5σ point-source depths are approximately 0.5 mag brighter). VICS82 contributes to the growing legacy of multiwavelength data in the Stripe 82 footprint. The addition of near-infrared photometry to the existing SDSS Stripe 82 coadd ugriz photometry reduces the scatter in stellar mass estimates to δ {log}({M}\\star )≈ 0.3 dex for galaxies with {M}\\star > {10}9 {M}ȯ at z≈ 0.5, and offers improvement compared to optical-only estimates out to z≈ 1, with stellar masses constrained within a factor of approximately 2.5. When combined with other multiwavelength imaging of the Stripe, including moderate-to-deep ultraviolet (GALEX), optical and mid-infrared (Spitzer-IRAC) coverage, as well as tens of thousands of spectroscopic redshifts, VICS82 gives access to approximately 0.5 Gpc3 of comoving volume. Some of the main science drivers of VICS82 include (a) measuring the stellar mass function of {L}\\star galaxies out to z∼ 1; (b) detecting intermediate-redshift quasars at 2≲ z≲ 3.5; (c) measuring the stellar mass function and baryon census of clusters of galaxies, and (d) performing cross-correlation experiments of cosmic microwave background lensing in the optical/near-infrared that link stellar mass to large-scale dark matter structure. Here we define and describe the survey, highlight some early science results, and present the first public data release, which includes an SDSS-matched catalog as well as the calibrated pixel data themselves.
Measurement of aerosol optical depth in the Atlantic Ocean and Mediterranean Sea
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Yershov, Oleg; Villevalde, Yuri
1995-12-01
A brief summary of aerosol optical depth measurements in a maritime atmosphere during the last three decades is presented. The results of more than fifty publications have been analyzed and are summarized in a single table. New results of spectral aerosol optical depth measurements (from 440 to 1030 nm) in the Mediterranean Sea and Atlantic Ocean made from aboard a research vessel are also presented. Comparison of aerosol optical depths obtained over the Mediterranean Sea in the winter 1989-1990 with other Mediterranean data indicate substantial seasonal difference. The angstrom parameter values for the central and western Atlantic indicate good agreement with the results obtained for the north Atlantic. The measurements in the subtropical Atlantic region show significant variations. The pure atmosphere in the winter 1989-1990 evolved in the fall of 1991 into very turbid conditions which were probably associated with Saharan dust.
Constraining the CMB optical depth through the dispersion measure of cosmological radio transients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fialkov, A.; Loeb, A., E-mail: anastasia.fialkov@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2016-05-01
The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we showmore » that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.« less
An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b
NASA Astrophysics Data System (ADS)
Lothringer, Joshua D.; Benneke, Björn; Crossfield, Ian J. M.; Henry, Gregory W.; Morley, Caroline; Dragomir, Diana; Barman, Travis; Knutson, Heather; Kempton, Eliza; Fortney, Jonathan; McCullough, Peter; Howard, Andrew W.
2018-02-01
GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple James Webb Space Telescope (JWST) Guaranteed Time Observation programs. Here, we report the first space-based optical transmission spectrum of the planet using two Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) transit observations from 0.53 to 1.03 μm. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 μm. The spectrum is indicative of moderate to high metallicity (∼100–1000× solar), while moderate-metallicity scenarios (∼100× solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 μm in the transmission spectra of three different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b’s atmosphere.
Spherical aberration of an optical system and its influence on depth of focus.
Mikš, Antonín; Pokorný, Petr
2017-06-10
This paper analyzes the influence of spherical aberration on the depth of focus of symmetrical optical systems for imaging of axial points. A calculation of a beam's caustics is discussed using ray equations in the image plane and considering longitudinal spherical aberration as well. Concurrently, the influence of aberration coefficients on extremes of such a curve is presented. Afterwards, conditions for aberration coefficients are derived if the Strehl definition should be the same in two symmetrically placed planes with respect to the paraxial image plane. Such conditions for optical systems with large aberrations are derived with the use of geometric-optical approximation where the gyration diameter of the beam in given planes of the optical system is evaluated. Therefore, one can calculate aberration coefficients in such a way that the optical system generates a beam of rays that has the gyration radius in a given interval smaller than the defined limit value. Moreover, one can calculate the maximal depth of focus of the optical system respecting the aforementioned conditions.
NASA Astrophysics Data System (ADS)
Marquis, Jared Wayne
Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.
NASA Technical Reports Server (NTRS)
Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.
2012-01-01
New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.
Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.;
2000-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.
NASA Astrophysics Data System (ADS)
Augustine, John A.; Cornwall, Christopher R.; Hodges, Gary B.; Long, Charles N.; Medina, Carlos I.; Deluisi, John J.
2003-02-01
Over the past decade, networks of Multifilter Rotating Shadowband Radiometers (MFRSR) and automated sun photometers have been established in the United States to monitor aerosol properties. The MFRSR alternately measures diffuse and global irradiance in six narrow spectral bands and a broadband channel of the solar spectrum, from which the direct normal component for each may be inferred. Its 500-nm channel mimics sun photometer measurements and thus is a source of aerosol optical depth information. Automatic data reduction methods are needed because of the high volume of data produced by the MFRSR. In addition, these instruments are often not calibrated for absolute irradiance and must be periodically calibrated for optical depth analysis using the Langley method. This process involves extrapolation to the signal the MFRSR would measure at the top of the atmosphere (I0). Here, an automated clear-sky identification algorithm is used to screen MFRSR 500-nm measurements for suitable calibration data. The clear-sky MFRSR measurements are subsequently used to construct a set of calibration Langley plots from which a mean I0 is computed. This calibration I0 may be subsequently applied to any MFRSR 500-nm measurement within the calibration period to retrieve aerosol optical depth. This method is tested on a 2-month MFRSR dataset from the Table Mountain NOAA Surface Radiation Budget Network (SURFRAD) station near Boulder, Colorado. The resultant I0 is applied to two Asian dust-related high air pollution episodes that occurred within the calibration period on 13 and 17 April 2001. Computed aerosol optical depths for 17 April range from approximately 0.30 to 0.40, and those for 13 April vary from background levels to >0.30. Errors in these retrievals were estimated to range from ±0.01 to ±0.05, depending on the solar zenith angle. The calculations are compared with independent MFRSR-based aerosol optical depth retrievals at the Pawnee National Grasslands, 85 km to the northeast of Table Mountain, and to sun-photometer-derived aerosol optical depths at the National Renewable Energy Laboratory in Golden, Colorado, 50 km to the south. Both the Table Mountain and Golden stations are situated within a few kilometers of the Front Range of the Rocky Mountains, whereas the Pawnee station is on the eastern plains of Colorado. Time series of aerosol optical depth from Pawnee and Table Mountain stations compare well for 13 April when, according to the Naval Aerosol Analysis and Prediction System, an upper-level Asian dust plume enveloped most of Colorado. Aerosol optical depths at the Golden station for that event are generally greater than those at Table Mountain and Pawnee, possibly because of the proximity of Golden to Denver's urban aerosol plume. The dust over Colorado was primarily surface based on 17 April. On that day, aerosol optical depths at Table Mountain and Golden are similar but are 2 times the magnitude of those at Pawnee. This difference is attributed to meteorological conditions that favored air stagnation in the planetary boundary layer along the Front Range, and a west-to-east gradient in aerosol concentration. The magnitude and timing of the aerosol optical depth measurements at Table Mountain for these events are found to be consistent with independent measurements made at NASA Aerosol Robotic Network (AERONET) stations at Missoula, Montana, and at Bondville, Illinois.
NASA Astrophysics Data System (ADS)
Kakarenko, K.; Ducin, I.; Jaroszewicz, Z.; Kołodziejczyk, A.; Petelczyc, K.; Stompor, A.; Sypek, M.
2015-04-01
Light Sword Lens (LSL), i.e., an optical element with extended depth of focus (EDOF) characterized by angular modulation of the optical power in its conventional form is characterized by a linear relationship between the optical power and the angular coordinate of the corresponding angular lens sector. This dependence may be manipulated in function of the required design needs. In the present communicate this additional degree of freedom of design is used for elimination of the LSL shape discontinuity.
Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.
2017-12-01
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.
Sobon, Grzegorz; Duzynska, Anna; Świniarski, Michał; Judek, Jarosław; Sotor, Jarosław; Zdrojek, Mariusz
2017-01-01
In this work, we demonstrate a comprehensive study on the nonlinear parameters of carbon nanotube (CNT) saturable absorbers (SA) as a function of the nanotube film thickness. We have fabricated a set of four saturable absorbers with different CNT thickness, ranging from 50 to 200 nm. The CNTs were fabricated via a vacuum filtration technique and deposited on fiber connector end facets. Each SA was characterized in terms of nonlinear transmittance (i.e. optical modulation depth) and tested in a Thulium-doped fiber laser. We show, that increasing the thickness of the CNT layer significantly increases the modulation depth (up to 17.3% with 200 nm thick layer), which strongly influences the central wavelength of the laser, but moderately affects the pulse duration. It means, that choosing the SA with defined CNT thickness might be an efficient method for wavelength-tuning of the laser, without degrading the pulse duration. In our setup, the best performance in terms of bandwidth and pulse duration (8.5 nm and 501 fs, respectively) were obtained with 100 nm thick CNT layer. This is also, to our knowledge, the first demonstration of a fully polarization-maintaining mode-locked Tm-doped laser based on CNT saturable absorber. PMID:28368014
Human Stereopsis is not Limited by the Optics of the Well-focused Eye
Vlaskamp, Björn N.S.; Yoon, Geunyoung; Banks, Martin S.
2011-01-01
Human stereopsis—the perception of depth from differences in the two eyes’ images—is very precise: Image differences smaller than a single photoreceptor can be converted into a perceived difference in depth. To better understand what determines this precision, we examined how the eyes’ optics affects stereo resolution. We did this by comparing performance with normal, well-focused optics and with optics improved by eliminating chromatic aberration and correcting higher-order aberrations. We first measured luminance contrast sensitivity in both eyes and showed that we had indeed improved optical quality significantly. We then measured stereo resolution in two ways: by finding the finest corrugation in depth that one can perceive, and by finding the smallest disparity one can perceive as different from zero. Our optical manipulation had no effect on stereo performance. We checked this by redoing the experiments at low contrast and again found no effect of improving optical quality. Thus, the resolution of human stereopsis is not limited by the optics of the well-focused eye. We discuss the implications of this remarkable finding. PMID:21734272
GeSn/Si Avalanche Photodetectors on Si substrates
2016-09-16
of processes for different photo detectors. In-depth of study has been conducted for GeSn photo conductors and photodiodes. A summary of the...The material growth mechanism was in-depth studied; secondly, the material and optical characterizations have been conducted , including SEM, TEM, XRD...investigated. The material growth mechanism was in-depth studied; secondly, the material and optical characterizations have been conducted , including
Triangulation-based 3D surveying borescope
NASA Astrophysics Data System (ADS)
Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.
2016-04-01
In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.
Structure and physics of solar faculae
NASA Astrophysics Data System (ADS)
Pecker, J.-C.; Dumont, S.; Mouradian, Z.
1992-04-01
The optical depths of layers in the chromosphere-corona transition (CCT) zone, which is responsible for resolved structures in CII, CIII, OIV, and OVI lines, were determined using a new method that takes into account the effect of roughness (or local departures from sphericity) of the emitting layers in the CCT zone. The method allows determination of the angle alpha typical of the roughness (in case of availability of resolved data) and the two optical depths tau-1 and tau-2. It is shown that, even in unresolved cases, the new method gives a more realistic determination of the optical depths than previously determined.
Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T
2001-12-03
Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.
Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes
NASA Astrophysics Data System (ADS)
Smith, M. D.; Zorzano, M. P.; Lemmon, M. T.; Martín-Torres, J.; Mendaza de Cal, T.
2016-12-01
Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the more than two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.
Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes
NASA Astrophysics Data System (ADS)
Smith, Michael D.; Zorzano, María-Paz; Lemmon, Mark; Martín-Torres, Javier; Mendaza de Cal, Teresa
2016-12-01
Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.
Lee, Sangyoon; Hu, Xinda; Hua, Hong
2016-05-01
Many error sources have been explored in regards to the depth perception problem in augmented reality environments using optical see-through head-mounted displays (OST-HMDs). Nonetheless, two error sources are commonly neglected: the ray-shift phenomenon and the change in interpupillary distance (IPD). The first source of error arises from the difference in refraction for virtual and see-through optical paths caused by an optical combiner, which is required of OST-HMDs. The second occurs from the change in the viewer's IPD due to eye convergence. In this paper, we analyze the effects of these two error sources on near-field depth perception and propose methods to compensate for these two types of errors. Furthermore, we investigate their effectiveness through an experiment comparing the conditions with and without our error compensation methods applied. In our experiment, participants estimated the egocentric depth of a virtual and a physical object located at seven different near-field distances (40∼200 cm) using a perceptual matching task. Although the experimental results showed different patterns depending on the target distance, the results demonstrated that the near-field depth perception error can be effectively reduced to a very small level (at most 1 percent error) by compensating for the two mentioned error sources.
Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties
NASA Astrophysics Data System (ADS)
Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl
2017-12-01
We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.
SAM 2 measurements of the polar stratospheric aerosol. Volume 9: October 1982 - April 1983
NASA Technical Reports Server (NTRS)
Mcmaster, L. R.; Powell, K. A.
1991-01-01
The Stratospheric Aerosol Measurement (SAM) II sensor aboard Nimbus 7 is providing 1.0 micron extinction measurements of Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages including corresponding temperature profiles provided by NOAA for the time and place of each SAM II measurement are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted, and aerosol optical depths are calculated for each week. Typical values of aerosol extinction and stratospheric optical depth in the Arctic are unusually large due to the presence of material from the El Chichon volcano eruption in the Spring of 1982. For example, the optical depth peaked at 0.068, more than 50 times background values. Typical values of aerosol extinction and stratospheric optical depth in the Antarctic varied considerably during this period due to the transport and arrival of the material from the El Chichon eruption. For example, the stratospheric optical depth varied from 0.002 in October 1982, to 0.021 in January 1983. Polar stratospheric clouds were observed during the Arctic winter, as expected. A representative sample is provided of the ninth 6-month period of data to be used in atmospheric and climatic studies.
NASA Astrophysics Data System (ADS)
Jerousek, R. G.; Colwell, J. E.; Hedman, M. M.; Marouf, E. A.; French, R. G.; Esposito, L. W.; Nicholson, P. D.
2017-12-01
The parameters of a simple power-law particle size distribution can be inferred from measurements of optical depth at multiple wavelengths (Marouf et al. 1982, 1983, Zebker et al. 1985) where the number of particles of radius between a and a+da is given by n(a)da = n0(a/a0)-qda with amin ≤ a ≤ amax. In the C ring and Cassini division where the surface mass density is low, the Toomre critical wavelength for gravitational collapse is comparable to the radii of the largest particles ( 1 m) and the effects of viewing geometry on measured normal optical depth can be ignored. In these regions, we fit optical depths measured by the Visual and Infrared Mapping Spectrometer (VIMS) at λ = 2.9μm, the Ultraviolet Imaging Spectrograph (UVIS) at λ = 0.15μm, and by the Radio Science Subsystem (RSS) at X band (λ = 3.6cm) and Ka band (λ = 9.4mm) to power-law derived optical depths and constrain the power-law parameters at 10km radial resolution. In the A and B rings where the Toomre critical wavelength is much larger than the radii of the largest particles, self-gravity wakes (ephemeral elongated particle aggregates canted to the direction of orbital motion by Keplerian shear) form. Occultations of these ring regions that occur at different viewing geometries measure different normal optical depths. We model and remove the geometric effects on the ring normal optical depth using the self-gravity wake model of Colwell et al. (2006, 2007) and fit wake model derived optical depths to power-law determined optical depths to constrain the parameters of the power-law particle size distribution. We find average values of amin 5 mm in the background C ring, the C ring plateaus, and in the Cassini Division. In the A and B ring and outside the strong density waves triggered by resonances with Janus and Mimas, we find amin 9 mm except in the trans-Encke region were the minimum particle radius drops to 5 mm and again to about 3.5 mm in the trans-Keeler region near the A ring outer edge. amax ranges from one to several meters throughout the main rings, and a positive correlation between amax and the measured optical depth except in the C ring plateaus. Over the various ring regions, average amin and q are consistent with determinations from previous studies by Harbison et al. (2013), Becker et al. (2016), Jerousek et al. (2016), and Marouf et al. (2008a) with average q 2.9-3.1.
Computational adaptive optics for broadband optical interferometric tomography of biological tissue.
Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A
2012-05-08
Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourdon, Christopher Jay; Olsen, Michael G.; Gorby, Allen D.
The analytical model for the depth of correlation (measurement depth) of a microscopic particle image velocimetry (micro-PIV) experiment derived by Olsen and Adrian (Exp. Fluids, 29, pp. S166-S174, 2000) has been modified to be applicable to experiments using high numerical aperture optics. A series of measurements are presented that experimentally quantify the depth of correlation of micro-PIV velocity measurements which employ high numerical aperture and magnification optics. These measurements demonstrate that the modified analytical model is quite accurate in estimating the depth of correlation in micro-PIV measurements using this class of optics. Additionally, it was found that the Gaussian particlemore » approximation made in this model does not significantly affect the model's performance. It is also demonstrated that this modified analytical model easily predicts the depth of correlation when viewing into a medium of a different index of refraction than the immersion medium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, E.; Pekour, M.; Flynn, C.
Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less
Optical instruments synergy in determination of optical depth of thin clouds
NASA Astrophysics Data System (ADS)
Viviana Vlăduţescu, Daniela; Schwartz, Stephen E.; Huang, Dong
2018-04-01
Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.
Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladutescu, Daniela V.; Schwartz, Stephen E.
Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.
Dopant-Engineered Wide-Band Gap Semiconductors for Deep Tissue Bioimaging
NASA Astrophysics Data System (ADS)
Raghavendra, Achyut; Gregory, Wren; Slonecki, Tyler; Bruce, Terri; Podila, Ramakrishna
Optical spectroscopy promises improved lateral resolution for in vivo imaging but is limited by background fluorescence and photon attenuation. There is clearly an unmet clinical need for new hybrid approaches that use fluorescence to identify cancer margins intraoperatively during the initial operation. An efficient strategy to increase the imaging depth and diagnostic capability, beyond what two-photon absorption (2PA) offers, is to use longer excitation wavelengths outside the water absorption window through three-photon absorption (3PA). Although a variety of existing fluorescent dyes, fluorescent proteins, and calcium indicators could be used in 3PA, they have low or moderate 3PA cross-sections and suffer from photobleaching. The non-linear 3PA coefficient of such fluorescent probes is often low necessitating high excitation powers, which could cause overheating, photodamage, and photo-induced toxicity. To address this demand we have designed dopant-engineered ZnO nanoparticles (d-ZnO NPs) for enabling 3PA with higher penetration depth, lower background noise, and improved spatial resolution (<1 um) at powers below 5 mW.
NASA Astrophysics Data System (ADS)
Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Kovach, Charles; Anastasiou, Christopher J.; Zhao, Jun; Carder, Kendall L.
2013-01-01
Inherent and apparent optical properties (IOPs and AOPs) of Tampa Bay (Florida, USA) were measured during fourteen cruises between February 1998 and October 2010 to understand how these properties relate to one another and what controls light absorption and diffuse attenuation in this moderately sized (˜1000 km2), shallow estuary (average depth ˜4 m). The IOPs and AOPs included: 1) absorption coefficients of three optically significant constituents: phytoplankton pigments, detrital particles, and colored dissolved organic matter (CDOM); 2) particulate backscattering coefficients; 3) chlorophyll-a concentrations; 4) above-water remote sensing reflectance; 5) downwelling diffuse attenuation coefficients (Kd) at eight wavelengths and photosynthetically active radiation (PAR). Results showed substantial variability in all IOPs and AOPs in both space and time, with most IOPs spanning more than two orders of magnitude and showing strong co-variations. Of all four bay segments, Old Tampa Bay showed unique optical characteristics. During the wet season, the magnitude of blue-green-light absorption was dominated by CDOM, while during the dry season all three constituents contributed significantly. However, the variability in Kd (PAR, 490 nm, 555 nm) was driven mainly by the variability of detrital particles and phytoplankton as opposed to CDOM. This observation explained, at least to first order, why a nutrient reduction management strategy used by the Tampa Bay Estuary Program since the 1990s led to improved water clarity in most of Tampa Bay. The findings of this study provided the optical basis to fine tune existing or develop new algorithms to estimate the various optical water quality parameters from space.
Assessing the relationship between microwave vegetation optical depth and gross primary production
NASA Astrophysics Data System (ADS)
Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.
2018-03-01
At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than for ΔVOD or ΔVOD≥0 in case of sparsely to moderately vegetated areas and evergreen forests, while the opposite was true for deciduous forests. Results suggest that original VOD time series should be used jointly with changes in VOD for the estimation of GPP across biomes, which may further benefit from combining active and passive VOD data.
Moderation of Cloud Reduction of UV in the Antarctic Due to High Surface Albedo.
NASA Astrophysics Data System (ADS)
Nichol, S. E.; Pfister, G.; Bodeker, G. E.; McKenzie, R. L.; Wood, S. W.; Bernhard, G.
2003-08-01
To gauge the impact of clouds on erythemal (sunburn causing) UV irradiances under different surface albedo conditions, UV measurements from two Antarctic sites (McMurdo and South Pole Stations) and a midlatitude site (Lauder, New Zealand) are examined. The surface albedo at South Pole remains high throughout the year, at McMurdo it has a strong annual cycle, and at Lauder it is low throughout the year. The measurements at each site are divided into clear and cloudy subsets and are compared with modeled clear-sky irradiances to assess the attenuation of UV by clouds. A radiative transfer model is also used to interpret the observations. Results show increasing attenuation of UV with increasing cloud optical depth, but a high surface albedo can moderate this attenuation as a result of multiple scattering between the surface and cloud base. This effect is of particular importance at high latitudes where snow may be present during the summer months. There is also a tendency toward greater cloud attenuation with increasing solar zenith angle.
Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting
Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.
2009-01-01
A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034
Jinyuan Xin; Yuesi Wang; Zhanqing Li; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Shigong Wang; Guangren Lui; Lili Wang; Tianxue Wen; Yang Sun; Bo Hu
2007-01-01
To reduce uncertainties in the quantitative assessment of aerosol effects on regional climate and environmental changes, extensive measurements of aerosol optical properties were made with handheld Sun photometers in the Chinese Sun Hazemeter Network (CSHNET) starting in August 2004. Regional characteristics of the aerosol optical depth (AOD) at 500 nm and Angstrom...
NASA Astrophysics Data System (ADS)
Mamun, M.; Mondol, P.
2012-12-01
Aerosols influence our weather and climate because they affect the amount of sunlight reaching Earth's surface. An important way of probing the atmosphere from the ground is to measure the effects of the atmosphere on sunlight transmitted through the atmosphere to Earth's surface. These indirect techniques provide information about the entire atmosphere above the observer, not just the atmosphere that can be sampled directly. In response to global issues of air quality and climate change, and to the need to improve the quality of science education, inexpensive atmosphere monitoring instruments have been developed. This paper describes a new kind of inexpensive two channels LED Sun Photometer for monitoring aerosols that provide much better long-term stability than instruments that use expensive interference filters. Here HAZE-SPAN TERC VHS-1 model has been used for constructing sun photometer with light emitting diode as detector. Monitoring Earth's atmosphere is a challenging task. As there is no facility in our country (Bangladesh) for ground based measurement for monitoring aerosol so, this type of study is very essential. This study compares the aerosol optical depth (AOD) retrieved from the Terra and Aqua MODerate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a handheld sun photometer over the region of Rajshahi, Bangladesh for The 15 days duration of June 2012. The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the handheld sun photometer. The correlation coefficients r = 0.88 for Terra and r = 0.55 for Aqua where as r = 0.65 for Terra and Aqua themselves. AOD for another wavelength at 625 nm is documented in this study for finding out the relation of AOD at different wavelengths. In this paper it has been described and summarized briefly investigations for four important topics: LEDs used as light detectors, construction of sun photometer and its use, the measurements and monitoring of Aerosol Optical Depth (AOD) by using handheld sun photometer, and the comparison between satellite based and ground based measurements.
Du, Chixin; Shen, Meixiao; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua
2012-01-01
Purpose To measure by ultra-long scan depth optical coherence tomography (UL-OCT) dimensional changes in the anterior segment of human eyes during accommodation. Design Evaluation of diagnostic test or technology. Participants Forty-one right eyes of healthy subjects with a mean age of 34 years (range, 22–41 years) and a mean refraction of −2.5±2.6 diopters (D) were imaged in two repeated measurements at minimal and maximal accommodation. Methods A specially adapted designed UL-OCT instrument was used to image from the front surface of the cornea to the back surface of the crystalline lens. Custom software corrected the optical distortion of the images and yielded the biometric measurements. The coefficient of repeatability (COR) and the intraclass correlation coefficient (ICC) were calculated to evaluate the repeatability and reliability. Main Outcome Measures Anterior segment parameters and associated repeatability and reliability upon accommodation. The dimensional results included central corneal thickness (CCT), anterior chamber depth and width (ACD, ACW), pupil diameter (PD), lens thickness (LT), anterior segment length (ASL=ACD+LT), lens central position (LCP=ACD+1/2LT) and horizontal radii of the lens anterior and posterior surface curvatures (LAC, LPC). Results Repeated measurements of each variable within each accommodative state did not differ significantly (P>0.05). The CORs and ICCs for CCT, ACW, ACD, LT, LCP, and ASL were excellent (1.2% to 3.59% and 0.998 to 0.877, respectively). They were higher for PD (18.90% to 21.63% and 0.880 to 0.874, respectively), and moderate for LAC and LPC (34.86% to 42.72% and 0.669 to 0.251, respectively) in the two accommodative states. Compared to minimal accommodation, PD, ACD, LAC, LPC, and LCP decreased and LT and ASL increased significantly at maximal accommodation (P<0.05), while CCT and ACW did not change (P>0.05). Conclusions UL-OCT measured changes in anterior segment dimensions during accommodation with good repeatability and reliability. During accommodation, the back surface of the lens became steeper as the lens moved forward. PMID:22902211
Remote sensing of atmospheric optical depth using a smartphone sun photometer.
Cao, Tingting; Thompson, Jonathan E
2014-01-01
In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
NASA Astrophysics Data System (ADS)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.
2017-06-01
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...
2017-06-09
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
Joint optic disc and cup boundary extraction from monocular fundus images.
Chakravarty, Arunava; Sivaswamy, Jayanthi
2017-08-01
Accurate segmentation of optic disc and cup from monocular color fundus images plays a significant role in the screening and diagnosis of glaucoma. Though optic cup is characterized by the drop in depth from the disc boundary, most existing methods segment the two structures separately and rely only on color and vessel kink based cues due to the lack of explicit depth information in color fundus images. We propose a novel boundary-based Conditional Random Field formulation that extracts both the optic disc and cup boundaries in a single optimization step. In addition to the color gradients, the proposed method explicitly models the depth which is estimated from the fundus image itself using a coupled, sparse dictionary trained on a set of image-depth map (derived from Optical Coherence Tomography) pairs. The estimated depth achieved a correlation coefficient of 0.80 with respect to the ground truth. The proposed segmentation method outperformed several state-of-the-art methods on five public datasets. The average dice coefficient was in the range of 0.87-0.97 for disc segmentation across three datasets and 0.83 for cup segmentation on the DRISHTI-GS1 test set. The method achieved a good glaucoma classification performance with an average AUC of 0.85 for five fold cross-validation on RIM-ONE v2. We propose a method to jointly segment the optic disc and cup boundaries by modeling the drop in depth between the two structures. Since our method requires a single fundus image per eye during testing it can be employed in the large-scale screening of glaucoma where expensive 3D imaging is unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.
Contamination in the MACHO data set and the puzzle of Large Magellanic Cloud microlensing
NASA Astrophysics Data System (ADS)
Griest, Kim; Thomas, Christian L.
2005-05-01
In a recent series of three papers, Belokurov, Evans & Le Du and Evans & Belokurov reanalysed the MACHO collaboration data and gave alternative sets of microlensing events and an alternative optical depth to microlensing towards the Large Magellanic Cloud (LMC). Although these authors examined less than 0.2 per cent of the data, they reported that by using a neural net program they had reliably selected a better (and smaller) set of microlensing candidates. Estimating the optical depth from this smaller set, they claimed that the MACHO collaboration overestimated the optical depth by a significant factor and that the MACHO microlensing experiment is consistent with lensing by known stars in the Milky Way and LMC. As we show below, the analysis by these authors contains several errors, and as a result their conclusions are incorrect. Their efficiency analysis is in error, and since they did not search through the entire MACHO data set, they do not know how many microlensing events their neural net would find in the data nor what optical depth their method would give. Examination of their selected events suggests that their method misses low signal-to-noise ratio events and thus would have lower efficiency than the MACHO selection criteria. In addition, their method is likely to give many more false positives (non-lensing events identified as lensing). Both effects would increase their estimated optical depth. Finally, we note that the EROS discovery that LMC event 23 is a variable star reduces the MACHO collaboration estimates of optical depth and the Macho halo fraction by around 8 per cent, and does open the question of additional contamination.
Eddington limit for a gaseous stratus with finite optical depth
NASA Astrophysics Data System (ADS)
Fukue, Jun
2015-06-01
The Eddington luminosity of a spherical source is usually defined for a uniformly extending normal plasma. We usually suppose that the gas can accrete to the central object at the sub-Eddington luminosity, while it would be blown off from the central luminous source in the super-Eddington case. We reconsider this central dogma of the Eddington limit under the radiative transfer effect for the purely scattering case, using analytical and numerical methods. For the translucent isolated gas cloud (stratus) with finite optical depth, the concept of the Eddington luminosity is drastically changed. In an heuristic way, we find that the critical condition is approximately expressed as Γ = (1 + μ* + τc)/2, where Γ (=L/LE) is the central luminosity L normalized by the Eddington luminosity LE, τc is the optical depth of the stratus, and μ* (=√{1-R_*^2/R^2}) is the direction cosine of the central object, R* being the radius of the central object, and R the distance from the central object. When the optical depth of the stratus is around unity, the classical Eddington limit roughly holds for the stratus; Γ ˜ 1. However, when the optical depth is greater than unity, the critical condition becomes roughly Γ ˜ τc/2, and the stratus would infall on to the central source even at the highly super-Eddington luminosity. When the optical depth is less than unity, on the other hand, the critical condition reduces to Γ ≳ (1 + μ*)/2, and the stratus could be blown off in some limited ranges, depending on μ*. This new concept of the Eddington limit for the isolated stratus could drastically change the accretion and outflow physics of highly inhomegeneous plasmas, with relevance for astrophysical jets and winds and supermassive black hole formation.
Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant
2016-05-15
A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of the weekly cycle of aerosol optical depth using AERONET and MODIS data
NASA Astrophysics Data System (ADS)
Xia, Xiangao; Eck, Tom F.; Holben, Brent N.; Phillippe, Goloub; Chen, Hongbin
2008-07-01
Multi-year Aerosol Robotic Network (AERONET) and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) data are used to study AOD weekly variations at the global scale. A clear weekly cycle of AOD is observed in the United States (U.S.) and Central Europe. AOD during the weekday is larger than that during the weekend in 36 out of 43 AERONET sites in the U.S. The average U.S. weekend effect (the percent difference in AOD during the weekday and the weekend) is 3.8%. A weekly periodicity with lower AODs on Sunday and Monday and higher AODs from Wednesday until Saturday is revealed over Central Europe and the average weekend effect there is 4.0%. The weekly cycle in urban sites is greater than that in rural sites. AOD during the weekday is also significantly larger than that during the weekend in urban AERONET sites in South America and South Korea. However, a reversed AOD weekly cycle is observed in the Middle East and India. AODs on Thursday and Friday, the "weekend" for Middle East cultures, are relatively lower than AODs on other days. There is no clear weekly variation of AOD over eastern China. The striking feature in this region is the occurrence of much higher AOD on Sunday and this phenomenon is independent of season. The analysis of MODIS aerosol data is in good agreement with that of AERONET data.
NASA Astrophysics Data System (ADS)
Coria, J.; Bonilla, J., III; Li, W.; El-Askary, H. M.; Qurban, M.; Garay, M. J.; Kalashnikova, O. V.
2017-12-01
The Red Sea has one of the highest salinities and one of the most diverse ecosystems in the world. We wanted to investigate how chlorophyll-a contributes to this diverse ecosystem. From 2002 to 2015, we observed an increase in aerosol optical depth (AOD) levels which we believed contributed to an increase in chlorophyll-a concentration levels. Focusing on the Red Sea we used the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua platforms in order to acquire the data necessary for our research. After gathering the monthly data for the chlorophyll-a concentration and AOD for this period we normalized the data in order to find correlations between the two parameters. We found that there was a continuous increase in AOD from 2002 to 2015. Inversely we found that there was an overall decrease in chlorophyll-a concentration during this same time period. However, there was a correlation between AOD anomalies and chlorophyll-a anomalies that did not follow the decreasing trend of chlorophyll-a. These findings exemplified a two-month lag between the AOD anomalies and chlorophyll-a concentration anomalies. This shows that the increase in AOD has a significant impact on the chlorophyll-a conentration anomalies which in turn contributes to the overall greenness of the Red Sea. This is significant because there are many cities surrounding the Red Sea that depend on this diverse ecosystem as a stable food source.
A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES
Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...
3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim
2007-01-01
To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.
Relating Line Width and Optical Depth for CO Emission in the Large Mgellanic Cloud
NASA Astrophysics Data System (ADS)
Wojciechowski, Evan; Wong, Tony; Bandurski, Jeffrey; MC3 (Mapping CO in Molecular Clouds in the Magellanic Clouds) Team
2018-01-01
We investigate data produced from ALMA observations of giant molecular clouds (GMCs) located in the Large Magellanic Cloud (LMC), using 12CO(2–1) and 13CO(2–1) emission. The spectral line width is generally interpreted as tracing turbulent rather than thermal motions in the cloud, but could also be affected by optical depth, especially for the 12CO line (Hacar et al. 2016). We compare the spectral line widths of both lines with their optical depths, estimated from an LTE analysis, to evaluate the importance of optical depth effects. Our cloud sample includes two regions recently published by Wong et al. (2017, submitted): the Tarantula Nebula or 30 Dor, an HII region rife with turbulence, and the Planck cold cloud (PCC), located in a much calmer environment near the fringes of the LMC. We also include four additional LMC clouds, which span intermediate levels of star formation relative to these two clouds, and for which we have recently obtained ALMA data in Cycle 4.
NASA Astrophysics Data System (ADS)
Shinozuka, Y.; Johnson, R. R.; LeBlanc, S. E.; Chang, C. S.; Redemann, J.
2016-12-01
We report on our recent airborne measurements of multi-wavelength aerosol optical depth and cloud-transmitted radiances over the North Atlantic. We ran the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) in November 2015 and the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) in May and June 2016, both aboard the NASA C-130 aircraft. These sunphotometers provide measurements of overlying cirrus and aerosol optical depths of up to about 0.5 and constrain ecosystem and aerosol retrievals from the accompanying nadir-viewing remote sensing instruments. In addition, 4STAR measures hyperspectral transmitted light, which enables the retrieval of cloud optical depth, effective radius, and thermodynamic phase from below cloud. Our measurements contribute to the science objectives of the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), an interdisciplinary investigation resolving key processes controlling marine ecosystems and aerosols that are essential to our understanding of Earth system function and future change.
Aerosol Optical Depth Determinations for BOREAS
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)
1994-01-01
Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10:30 local time and cleared fully by 11:30. Heavy smoke characterized the rest of the IFC in both study areas.
Estimation of the optical errors on the luminescence imaging of water for proton beam
NASA Astrophysics Data System (ADS)
Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi
2018-04-01
Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.
Bizer, George Y; Žeželj, Iris L; Luguri, Jamie B
2013-03-01
Prior research has demonstrated the valence-framing effect, in which leading people to frame a preference negatively (e.g., 'I oppose Romney') yields stronger attitudes than does leading people to frame that same preference positively (e.g., 'I support Obama'). Three studies tested whether or not depth of processing (as operationalized by manipulations of motivation and ability to cognitively process) moderate the effect. The valence-framing effect was replicated, such that opposers manifested stronger attitudes than did supporters, but only when attitudes were relevant to the participants (Experiments 1 and 3), and when participants were not under cognitive load (Experiment 2). Our results thus identify depth of processing as an important moderator of the valence-framing effect and provide potential insight into the effect's mechanism. © 2012 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Schmid, B.; Michalsky, J.; Halthore, R.; Beauharnois, M.; Harrison, L.; Livingston, J.; Russell, P.; Holben, B.; Eck, T.; Smirnov, A.
2000-01-01
In the Fall of 1997 the Atmospheric Radiation Measurement (ARM) program conducted an Intensive Observation Period (IOP) to study aerosols. Five sun-tracking radiometers were present to measure the total column aerosol optical depth. This comparison performed on the Southern Great Plains (SGP) demonstrates the capabilities and limitations of modern tracking sunphotometers at a location typical of where aerosol measurements are required. The key result was agreement in aerosol optical depth measured by 4 of the 5 instruments within 0.015 (rms). The key to this level of agreement was meticulous care in the calibrations of the instruments.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk
2006-03-01
The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.
Gravitational microlensing of gamma-ray bursts
NASA Technical Reports Server (NTRS)
Mao, Shude
1993-01-01
A Monte Carlo code is developed to calculate gravitational microlensing in three dimensions when the lensing optical depth is low or moderate (not greater than 0.25). The code calculates positions of microimages and time delays between the microimages. The majority of lensed gamma-ray bursts should show a simple double-burst structure, as predicted by a single point mass lens model. A small fraction should show complicated multiple events due to the collective effects of several point masses (black holes). Cosmological models with a significant fraction of mass density in massive compact objects can be tested by searching for microlensing events in the current BATSE data. Our catalog generated by 10,000 Monte Carlo models is accessible through the computer network. The catalog can be used to take realistic selection effects into account.
PAH 8μm Emission as a Diagnostic of HII Region Optical Depth
NASA Astrophysics Data System (ADS)
Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.
2017-01-01
PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.
A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES
Satellite data provide new opportunities to study the regional distribution of particulate matter.
The aerosol optical depth (AOD) - a derived estimate from the satellite-measured radiance, can be compared against model estimates to provide an evaluation of the columnar ae...
USDA-ARS?s Scientific Manuscript database
Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...
NASA Astrophysics Data System (ADS)
Vincendon, M.; Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B.
2007-03-01
We have analyzed five EPF sequences acquired by OMEGA/Mars Express in the near-IR over ice-free and ice-covered surfaces to retrieve simultaneously the Lambert albedo of the surface and the optical depth of aerosols.
Kabatas, B; Pierce, R B; Unal, A; Rogal, M J; Lenzen, A
2018-08-15
An online-coupled regional Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized incorporating 0.1°×0.1° spatial resolution HTAP (Hemispheric Transport of Air Pollution) anthropogenic emissions to investigate the spatial and temporal distribution of a Saharan dust outbreak, which contributed to high levels (>50μg/m 3 ) of daily PM 10 concentrations over Turkey in April 2008. Aerosol optical depth and cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board of Aqua satellite are used to better analyze the synoptic conditions that generated the dust outbreak in April 2008. A "Sharav" low pressure system, which transports the dust from Saharan source region over Turkey along the cold front, tends to move faster in WRF-Chem simulations than observed. This causes the predicted dust event to arrive earlier than observed leading to an overestimation of surface PM 10 concentrations in WRF-Chem simulation at the beginning of the event. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ultrasound-mediated Optical Imaging and Focusing in Scattering Media
NASA Astrophysics Data System (ADS)
Suzuki, Yuta
Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using photorefractive materials as the phase-conjugate mirrors. By using a large-area photorefractive polymer as the phase-conjugate mirror, we boosted the focused optical energy by ~40 times over the output of a previously used photorefractive Bi 12SiO20 crystal. Furthermore, using both a photorefractive polymer and a Bi12SiO20 crystal as the phase-conjugate mirrors, we show direct visualization and dynamic control of TRUE focus, and demonstrate fluorescence imaging in a thick turbid medium. The last part of this dissertation describes improvements in the scanning speed of a TRUE focus, using digital phase-conjugate mirrors in both transmission and reflection modes. By employing a multiplex recording of ultrasonically encoded wavefronts in transmission mode, we have accelerated the generation of multiple TRUE foci, using frequency sweeping of both ultrasound and light. With this technique, we obtained a 2-D image of a fluorescent target centered inside a turbid sample having a thickness of 2.4 lt'. Also, by gradually moving the focal position in reflection mode, we show that the TRUE focal intensity is improved, and can be continuously scanned to image fluorescent targets in a shorter time.
NASA Astrophysics Data System (ADS)
Seppä, Jeremias; Niemelä, Karri; Lassila, Antti
2018-05-01
The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm × 2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.
NASA Astrophysics Data System (ADS)
Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.
2016-05-01
In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.
Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes
NASA Technical Reports Server (NTRS)
Smith, M. D.; Zorzano, M.-P.; Lemmon, M.; Martin-Torres, J.; Mendaza de Cal, T.
2017-01-01
Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270deg, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time. A full description of these observations, the retrieval algorithm, and the results can be found in Smith et al. (2016).
A comparison of hydrographically and optically derived mixed layer depths
Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.
2005-01-01
Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.
Aerosol optical properties and radiative effect under different weather conditions in Harbin, China
NASA Astrophysics Data System (ADS)
Mao, Qianjun; Huang, Chunlin; Zhang, Hengxing; Chen, Qixiang; Yuan, Yuan
2018-03-01
The aerosol optical properties and radiative effect under different weather conditions in Harbin (126.63°E, 45.75°N) were analyzed based on ground-based Sun/Sky radiometric (CE-318) measurements during September 2016-April 2017. The means values of aerosol optical depth (AOD500) and Angstrom exponent (AE440-870) were 0.37 ± 0.27 and 1.08 ± 0.33, respectively. The mean AOD500 under four weather conditions are apparently higher in severe pollution (Se-Po) days (0.80 ± 0.31) and moderate pollution (Mo-Po) days (0.53 ± 0.25) but lower in slight pollution (Sl-Po) days (0.37 ± 0.26) and no pollution (No-Po) days (0.26 ± 0.20), while the mean values of AE440-870 maintain high, varying from 0.98 to 1.25. The higher AE440-870 indicated that the air quality in Harbin is mainly affected by aerosols originated from anthropogenic sources. The daily values of shortwave (0.25-4 μm) direct aerosol radiative forcing (DARF) at top/bottom of atmosphere (TOA/BOA) were estimated through Santa Barbara DISORT Atmosphere Radiative Transfer (SBDART) model. Further, the aerosol radiative forcing efficiency (ARFE), radiation flux (RF) and atmosphere heating rate (HR) in Harbin were also estimated by the SBDART model.
Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves
NASA Astrophysics Data System (ADS)
Morishima, Ryuji; Turner, Neal; Spilker, Linda
2017-10-01
We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light or by dilution of thermal phase curve steepnesses due to particle motion.
Pixel-based parametric source depth map for Cerenkov luminescence imaging
NASA Astrophysics Data System (ADS)
Altabella, L.; Boschi, F.; Spinelli, A. E.
2016-01-01
Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5-6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure.
A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation be...
Controlled core removal from a D-shaped optical fiber.
Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory
2003-12-20
The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.
Shen, Xin; Javidi, Bahram
2018-03-01
We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.
Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system
NASA Astrophysics Data System (ADS)
Zheng, Yipeng; Tan, Wenjiang; Si, Jinhai; Ren, YuHu; Xu, Shichao; Tong, Junyi; Hou, Xun
2016-09-01
We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.
Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yipeng; Tan, Wenjiang, E-mail: tanwenjiang@mail.xjtu.edu.cn; Si, Jinhai
2016-09-07
We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. Thismore » imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.« less
Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N
2017-02-14
The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.
Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model
NASA Astrophysics Data System (ADS)
Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei
2009-10-01
The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.
NASA Astrophysics Data System (ADS)
Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi
2018-05-01
The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.
Impact Tsunami Calculations: Hydrodynamical Simulations vs. Linear Theory
NASA Technical Reports Server (NTRS)
Korycansky, E.; Asphaug, E.; Ward, S. N.
2003-01-01
Tsunamis generated by the impacts of asteroids and comets into the Earth oceans are widely recognized as a potential catastrophic hazard to the Earth s population. Our general conclusion is that linear theory is a reasonably accurate guide to behavior of tsunamis generated by impactors of moderate size, where the initial transient impact cavity is of moderate depth compared to the ocean depth. This is particularly the case for long wavelength waves that propagate fastest and would reach coastlines first. Such tsunamis would be generated in the open ocean by impactors of 300 meters in diameter, which might be expected to strike the Earth once every few thousand years, on the average. Larger impactors produce cavities deep enough to reach the ocean floor; even here, linear theory is applicable if the starting point is chosen at a later phase in the calculation when the impact crater has slumped back to produce a cavity of moderate depth and slope.
Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo
NASA Astrophysics Data System (ADS)
Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.
2017-06-01
We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.
Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha
2008-01-01
Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559
Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha
2008-07-01
Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.
Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra
2015-01-01
The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (p<0.01), as well as between IOL Master and digital photographs (p<0.01). There was no difference between SL-OCT and digital photographs (p>0.05). All measurements were correlated (Spearman p<0.001). Mean anterior chamber depth determined using the IOL-Master was 2.99 +/- 0.50 mm and by slit-lamp adapted optical coherence tomography was 2.56 +/- 0.46 mm. The difference was statistically significant (p<0.001). The correlation between the values was also statistically significant (Spearman, p<0.001). Automated measurements using IOL-Master yield constantly higher values than measurements based on direct eye visualization slit-lamp adapted optical coherence tomography and digital photographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.
Optics for multimode lasers with elongated depth of field
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2017-02-01
Modern multimode high-power lasers are widely used in industrial applications and control of their radiation, especially by focusing, is of great importance. Because of relatively low optical quality, characterized by high values of specifications Beam Parameter Product (BPP) or M², the depth of field by focusing of multimode laser radiation is narrow. At the same time laser technologies like deep penetration welding, cutting of thick metal sheets get benefits from elongated depth of field in area of focal plane, therefore increasing of zone along optical axis with minimized spot size is important technical task. As a solution it is suggested to apply refractive optical systems splitting an initial laser beam into several beamlets, which are focused in different foci separated along optical axis with providing reliable control of energy portions in each separate focus, independently of beam size or mode structure. With the multi-focus optics, the length of zone of material processing along optical axis is defined rather by distances between separate foci, which are determined by optical design of the optics and can be chosen according to requirements of a particular laser technology. Due to stability of the distances between foci there is provided stability of a technology process. This paper describes some design features of refractive multi-focus optics, examples of real implementations and experimental results will be presented as well.
Binding, Jonas; Ben Arous, Juliette; Léger, Jean-François; Gigan, Sylvain; Boccara, Claude; Bourdieu, Laurent
2011-03-14
Two-photon laser scanning microscopy (2PLSM) is an important tool for in vivo tissue imaging with sub-cellular resolution, but the penetration depth of current systems is potentially limited by sample-induced optical aberrations. To quantify these, we measured the refractive index n' in the somatosensory cortex of 7 rats in vivo using defocus optimization in full-field optical coherence tomography (ff-OCT). We found n' to be independent of imaging depth or rat age. From these measurements, we calculated that two-photon imaging beyond 200 µm into the cortex is limited by spherical aberration, indicating that adaptive optics will improve imaging depth.
NASA Astrophysics Data System (ADS)
Kazadzis, Stelios; Kouremeti, Natalia; Nyeki, Stephan; Gröbner, Julian; Wehrli, Christoph
2018-02-01
The World Optical Depth Research Calibration Center (WORCC) is a section within the World Radiation Center at Physikalisches-Meteorologisches Observatorium (PMOD/WRC), Davos, Switzerland, established after the recommendations of the World Meteorological Organization for calibration of aerosol optical depth (AOD)-related Sun photometers. WORCC is mandated to develop new methods for instrument calibration, to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of Sun photometers. In this work we describe the calibration hierarchy and methods used under WORCC and the basic procedures, tests and processing techniques in order to ensure the quality assurance and quality control of the AOD-retrieved data.
NASA Astrophysics Data System (ADS)
Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.
2015-12-01
Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.
Contrails of Small and Very Large Optical Depth
NASA Technical Reports Server (NTRS)
Atlas, David; Wang, Zhien
2010-01-01
This work deals with two kinds of contrails. The first comprises a large number of optically thin contrails near the tropopause. They are mapped geographically using a lidar to obtain their height and a camera to obtain azimuth and elevation. These high-resolution maps provide the local contrail geometry and the amount of optically clear atmosphere. The second kind is a single trail of unprecedentedly large optical thickness that occurs at a lower height. The latter was observed fortuitously when an aircraft moving along the wind direction passed over the lidar, thus providing measurements for more than 3 h and an equivalent distance of 620 km. It was also observed by Geostationary Operational Environmental Satellite (GOES) sensors. The lidar measured an optical depth of 2.3. The corresponding extinction coefficient of 0.023 per kilometer and ice water content of 0.063 grams per cubic meter are close to the maximum values found for midlatitude cirrus. The associated large radar reflectivity compares to that measured by ultrasensitive radar, thus providing support for the reality of the large optical depth.
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
NASA Technical Reports Server (NTRS)
Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2014-01-01
The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.
Kloog, Itai; Chudnovsky, Alexandra A; Just, Allan C; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2014-10-01
The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM 2.5 ) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM 2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM 2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R 2 =0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R 2 =0.87, R 2 =0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.
Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2017-01-01
Background The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. Methods We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003–2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Results Our model performance was excellent (mean out-of-sample R2=0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R2=0.87, R2=0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Conclusion Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region. PMID:28966552
Assessment of OMI Near-UV Aerosol Optical Depth over Land
NASA Technical Reports Server (NTRS)
Ahn, Changwoo; Torres, Omar; Jethva, Hiren
2014-01-01
This is the first comprehensive assessment of the aerosol optical depth (AOD) product retrieved from the near-UV observations by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. The OMI-retrieved AOD by the ultraviolet (UV) aerosol algorithm (OMAERUV version 1.4.2) was evaluated using collocated Aerosol Robotic Network (AERONET) level 2.0 direct Sun AOD measurements over 8 years (2005-2012). A time series analysis of collocated satellite and ground-based AOD observations over 8 years shows no discernible drift in OMI's calibration. A rigorous validation analysis over 4 years (2005-2008) was carried out at 44 globally distributed AERONET land sites. The chosen locations are representative of major aerosol types such as smoke from biomass burning or wildfires, desert mineral dust, and urban/industrial pollutants. Correlation coefficient (p) values of 0.75 or better were obtained at 50 percent of the sites with about 33 percent of the sites in the analysis reporting regression line slope values larger than 0.70 but always less than unity. The combined AERONET-OMAERUV analysis of the 44 sites yielded a p of 0.81, slope of 0.79, Y intercept of 0.10, and 65 percent OMAERUV AOD falling within the expected uncertainty range (largest of 30 percent or 0.1) at 440 nanometers. The most accurate OMAERUV retrievals are reported over northern Africa locations where the predominant aerosol type is desert dust and cloud presence is less frequent. Reliable retrievals were documented at many sites characterized by urban-type aerosols with low to moderate AOD values, concentrated in the boundary layer. These results confirm that the near-ultraviolet observations are sensitive to the entire aerosol column. A simultaneous comparison of OMAERUV, Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue, and Multiangle Imaging Spectroradiometer (MISR) AOD retrievals to AERONET measurements was also carried out to evaluate the OMAERUV accuracy in relation to those of the standard aerosol satellite products. The outcome of the comparison indicates that OMAERUV, MODIS Deep Blue, and MISR retrieval accuracies in arid and semiarid environments are statistically comparable.
NASA Technical Reports Server (NTRS)
Chu, D. A.; Remer, L. A.; Kaufman, Y. J.; Schmid, B.; Redemann, J.; Knobelspiesse, K.; Chern, J.-D.; Livingston, J.; Russell, P. B.; Xiong, X.;
2005-01-01
The Aerosol Characterization Experiment-Asia (ACE-Asia) was conducted in March-May 2001 in the western North Pacific in order to characterize the complex mix of dust, smoke, urban/industrial pollution, and background marine aerosol that is observed in that region in springtime. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides a large-scale regional view of the aerosol during the ACE-Asia time period. Focusing only on aerosol retrievals over ocean, MODIS data show latitudinal and longitudinal variation in the aerosol characteristics. Typically, aerosol optical depth (tau(sub a)) values at 0.55 micrometers are highest in the 30 deg. - 50 deg. latitude band associated with dust outbreaks. Monthly mean tau(sub a) in this band ranges approx. 0.40-70, although large differences between monthly mean and median values indicate the periodic nature of these dust outbreaks. The size parameters, fine mode fraction (eta), and effective radius (r(sub eff)) vary between monthly mean values of eta = 0.47 and r(sub eff)= 0.75 micrometers in the cleanest regions far offshore to approximately eta = 0.85 and r(sub eff) =.30 micrometers in near-shore regions dominated by biomass burning smoke. The collocated MODIS retrievals with airborne, ship-based, and ground-based radiometers measurements suggest that MODIS retrievals of spectral optical depth fall well within expected error (DELTA tau(sub a) = plus or minus 0.03 plus or minus 0.05 tau(sub a)) except in situations dominated by dust, in which cases MODIS overestimate both the aerosol loading and the aerosol spectral dependence. Such behavior is consistent with issues related to particle nonsphericity. Comparisons of MODIS-derived r(sub eff) with AERONET retrievals at the few occurrences of collocations show MODIS systematically underestimates particle size by 0.2 micrometers. Multiple-year analysis of MODIS aerosol size parameters suggests systematic differences between the year 2001 and the years 2000 and 2002, which are traced to instrumental electronic cross talk. Sensitivity studies show that such calibration errors are negligible in tau(sub a) retrievals but are more pronounced in size parameter retrievals, especially for dust and sea salt.
Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi
2015-01-01
We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740
Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications.
Shestaeva, Svetlana; Bingel, Astrid; Munzert, Peter; Ghazaryan, Lilit; Patzig, Christian; Tünnermann, Andreas; Szeghalmi, Adriana
2017-02-01
Structural, optical, and mechanical properties of Al2O3, SiO2, and HfO2 materials prepared by plasma-enhanced atomic layer deposition (PEALD) were investigated. Residual stress poses significant challenges for optical coatings since it may lead to mechanical failure, but in-depth understanding of these properties is still missing for PEALD coatings. The tensile stress of PEALD alumina films decreases with increasing deposition temperature and is approximately 100 MPa lower than the stress in thermally grown films. It was associated with incorporation of -OH groups in the film as measured by infrared spectroscopy. The tensile stress of hafnia PEALD layers increases with deposition temperature and was related to crystallization of the film. HfO2 nanocrystallites were observed even at 100°C deposition temperature with transmission electron microscopy. Stress in hafnia films can be reduced from approximately 650 MPA to approximately 450 MPa by incorporating ultrathin Al2O3 layers. PEALD silica layers have shown moderate stress values and stress relaxation with the storage time, which was correlated to water adsorption. A complex interference coating system for a dichroic mirror (DCM) at 355 nm wavelength was realized with a total coating thickness of approximately 2 μm. Severe cracking of the DCM coating was observed, and it propagates even into the substrate material, showing a good adhesion of the ALD films. The reflectance peak is above 99.6% despite the mechanical failure, and further optimization on the material properties should be carried out for demanding optical applications.
Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry.
Chetty, Indrin J; Charland, Paule M
2002-10-21
We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.
Comment on Rayleigh-Scattering Calculations for the Terrestrial Atmosphere
NASA Astrophysics Data System (ADS)
On, Ois-Marie
1998-01-01
It is shown that, for a given surface pressure, the atmospheric vertical temperature profile has a negligible influence on the Rayleigh optical depth. This contradicts the Bucholtz recommendation for the use of values that vary with air mass type. The influence of atmospheric water vapor amount on the Rayleigh optical depth is also investigated.
Atmospheric Science Data Center
2018-06-27
... AerosolType The aerosol type associated with the ground pixel. 1 - Smoke ... algorithm flag associated with the ground pixel: Aerosol extinction Optical Depth (AOD), Single Scattering Albedo (SSA), and Aerosol Absorption Optical Depth (AAOD) Retrievals: 0 - Most ...
NASA Technical Reports Server (NTRS)
Livingston, J. M.; Kapustin, V. N.; Schmid, B.; Russell, P. B.; Quinn, P. K.; Bates, T. S.; Durkee, P. A.; Nielsen, K.; Freudenthaler, V.; Wiegner, M.;
2000-01-01
We present analyses of aerosol optical depth (AOD) measurements taken with a shipboard six-channel tracking sunphotometer during ACE-2. For 10 July 1997, results are also shown for measurements acquired 70 km from the ship with a fourteen-channel airborne tracking sunphotometer.
The effect of clouds on the earth's radiation budget
NASA Technical Reports Server (NTRS)
Ziskin, Daniel; Strobel, Darrell F.
1991-01-01
The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1989-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4 km visible (0.65 microns) and 8 km infrared window (11.5 microns) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance mode. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8 km for the 71 scenes. An average visible scattering efficiency of 2.1 was found for this data set. The results reveal a significant dependence of scattering efficiency on cloud temperature.
Howe, Andrew; O'Hare, Peter; Crawford, Paul; Delafont, Bruno; McAlister, Olibhear; Di Maio, Rebecca; Clutton, Eddie; Adgey, Jennifer; McEneaney, David
2015-11-01
Optimising the depth and rate of applied chest compressions following out of hospital cardiac arrest is crucial in maintaining end organ perfusion and improving survival. The impedance cardiogram (ICG) measured via defibrillator pads produces a characteristic waveform during chest compressions with the potential to provide feedback on cardiopulmonary resuscitation (CPR) and enhance performance. The objective of this pre-clinical study was to investigate the relationship between mechanical and physiological markers of CPR efficacy in a porcine model and examine the strength of correlation between the ICG amplitude, compression depth and end-tidal CO2 (ETCO2). Two experiments were performed using 24 swine (12 per experiment). For experiment 1, ventricular fibrillation (VF) was induced and mechanical CPR commenced at varying thrusts (0-60 kg) for 2 min intervals. Chest compression depth was recorded using a Philips QCPR device with additional recording of invasive physiological parameters: systolic blood pressure, ETCO2, cardiac output and carotid flow. For experiment 2, VF was induced and mechanical CPR commenced at varying depths (0-5 cm) for 2 min intervals. The ICG was recorded via defibrillator pads attached to the animal's sternum and connected to a Heartsine 500 P defibrillator. ICG amplitude, chest compression depth, systolic blood pressure and ETCO2 were recorded during each cycle. In both experiments the within-animal correlation between the measured parameters was assessed using a mixed effect model. In experiment 1 moderate within-animal correlations were observed between physiological parameters and compression depth (r=0.69-0.77) and thrust (r=0.66-0.82). A moderate correlation was observed between compression depth and thrust (r=0.75). In experiment 2 a strong within-animal correlation and moderate overall correlations were observed between ICG amplitude and compression depth (r=0.89, r=0.79) and ETCO2 (r=0.85, r=0.64). In this porcine model of induced cardiac arrest moderate within animal correlations were observed between mechanical and physiological markers of chest compression efficacy demonstrating the challenge in utilising a single mechanical metric to quantify chest compression efficacy. ICG amplitude demonstrated strong within animal correlations with compression depth and ETCO2 suggesting its potential utility to provide CPR feedback in the out of hospital setting to improve performance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
High resolution axicon-based endoscopic FD OCT imaging with a large depth range
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Hurley, William; Deegan, John; Dean, Scott; Rolland, Jannick P.
2010-02-01
Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF). This optics could accommodate for varying sizes of tubular structures across patients and along the tree within a single patient. In the paper, we demonstrate an extended DOF without sacrificing resolution showing rotational images in biological tubular samples with 2.5 μm axial resolution, 10 ìm lateral resolution, and > 4 mm depth range using a custom designed probe.
Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle
2015-01-01
Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382
Tomography of the Red Supergiant Star MU Cep
NASA Astrophysics Data System (ADS)
Kravchenko, Kateryna
2018-04-01
We present a tomographic method allowing to recover the velocity field at different optical depths in a stellar atmosphere. It is based on the computation of the contribution function to identify the depth of formation of spectral lines in order to construct numerical masks probing different optical depths. These masks are cross-correlated with observed spectra to extract information about the average shape of lines forming at a given optical depth and to derive the velocity field projected on the line of sight. We applied this method to series of spectra of the red supergiant star mu Cep and derived velocities in different atmospheric layers. The resulting velocity variations reveal complex atmospheric dynamics and indicate that convective cells are present in the atmosphere of the mu Cep. The mu Cep velocities were compared with those obtained by applying the tomographic masks to series of snapshot spectra from 3D radiative-hydrodynamics CO5BOLD simulations.
The Distinct Biometric Features of High Myopia Compared to Moderate Myopia.
Chung, Hye Jin; Park, Chan Kee
2016-12-01
To evaluate changes in biometric parameters in myopic eyes. 412 eyes of 412 young myopic patients underwent ophthalmic examinations including assessments of refractive error, axial length (AL), anterior chamber depth (ACD), and central corneal thickness (CCT). By using spectral domain optical coherence tomography (SD-OCT), peripapillary retinal nerve fiber layer (pRNFL) thickness was measured. Subjects were divided into two groups: a moderate-myope group (-6 diopters (D) or more) and a high-myope group (less than -6 D). The relationships among ocular biometric parameters including pRNFL thickness, AL, ACD, and CCT were calculated for each group. In the moderate-myopia group, the anterior chamber deepened as AL increased (Pearson's coefficient = 0.346, p < 0.01). However, in the high-myopia group, ACD did not correlate with AL (Pearson's r = 0.065, p = 0.383). Average pRNFL thickness was also more related to SE than AL in highly myopic eyes. In highly myopic eyes, ACD did not increase as AL increased. pRNFL thickness was more related to SE than to AL. That might be due to the uneven elongation of anterior and posterior portions of the eyeball and the discrepancy between distance from the cornea to the fovea and distance from the cornea to the bottom of the eyeball as axial eye elongation. Interpretation of ocular biometric parameter in highly myopic eyes should consider these differences.
Real-time handling of existing content sources on a multi-layer display
NASA Astrophysics Data System (ADS)
Singh, Darryl S. K.; Shin, Jung
2013-03-01
A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time
NASA Astrophysics Data System (ADS)
Perry, Thomas M.; Marr, J. M.; Read, J. W.; Taylor, G. B.
2011-01-01
We obtained VLBI observations at six frequencies of two Compact Symmetric Objects, 1321+410 and 0026+346. By comparing the lower frequency maps with spectral extrapolations of the higher frequency maps, we produced maps of the optical depth as a function of frequency. The optical-depth maps of 1321+410 are strikingly uniform, consistent with a foreground screen of absorbing gas; the optical depths as a function of frequency are consistent with free-free absorption; and no net polarization was detected. We conclude that the case for free-free absorption in 1321+410 is strong. The optical-depth maps of 0026+346 exhibit structure but the morphology does not correlate with that in the intensity maps, in conflict with that expected in the case of synchrotron self-absorption. No net polarization was detected. The frequency dependence of the optical depths does not fit well to a simple free-free absorption model, but this does not take into account possible structure in the absorbing gas on smaller scales. We conclude that free-free absorption by a thin amount of gas with structure on the scale of our maps and smaller is possible in 0026+346, although no definitive conclusion can be made. A compact feature between the lobes in 0026+346 has an inverted spectrum even at the highest frequencies, suggesting that this component is synchrotron self-absorbed. We infer this to be the location of the core. We estimate an upper limit to the magnetic field in the core of 50 Gauss at a radius of 1 pc. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)
2000-01-01
Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft inlets and instruments? (3) How consistent are suborbital in situ and remote measurements of aerosols, among themselves and with satellite retrievals? What are the main reasons for observed inconsistencies?
NASA Astrophysics Data System (ADS)
Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.
2015-03-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Astrophysics Data System (ADS)
Neilson, B. T.; Hatch, C. E.; Bingham, Q. G.; Tyler, S. W.
2008-12-01
In recent years, distributed temperature sensing (DTS) has enjoyed steady increases in the number and diversity of applications. Because fiber optic cables used for DTS are typically sheathed in dark materials resistant to UV deterioration, the question arises of how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures. Initial calculations of these affects considered: shortwave radiation as a function of time of day, water depth, and water clarity; fiber optic cable dimensions; and fluid velocity. These indicate that for clear waterbodies with low velocities and shallow depths, some heating on the cable is likely during peak daily solar radiation. Given higher water velocities, substantial increases in turbidity, and/or deeper water, there should be negligible solar heating on the cable. To confirm these calculations, a field study was conducted to test the effects of solar radiation by installing two types of fiber optic cable at multiple, uniform depths in a trapezoidal canal with constant flow determined by a controlled release from Porcupine Dam near Paradise, Utah. Cables were installed in water depths from 0.05 to 0.79 m in locations of faster (center of canal) and slower (sidewall) water velocities. Thermister strings were installed at the same depths, but shielded from solar radiation and designed to record absolute water temperatures. Calculations predict that at peak solar radiation, in combination with shallow depths and slow velocities, typical fiber-optic cable is likely to experience heating greater than the ambient water column. In this study, DTS data show differences of 0.1-0.2°C in temperatures as seen by cables separated vertically by 0.31 m on the sidewall and center of the channel. Corresponding thermister data showed smaller vertical differences (~0.03-0.1°C) suggesting thermal stratification was also present in the canal. However, the magnitude of the DTS differences could not be fully explained by stratification alone. Additional information from cables installed in a shallow, near-zero velocity pool showed significantly higher temperature differences with cable depth when compared to the cable in the higher-velocity canal flows. This indicates a higher potential for heating of fiber-optic cable in stagnant, shallow waters. With sufficient water velocities and depths, the effect of shortwave solar radiation on DTS measurement accuracy via heating of the fiber- optic cable is negligible. Particular care in experimental design is recommended in shallow or low-velocity systems, including consideration of solar radiation, and independent quantification of (or calibration for) absolute temperatures.
NASA Astrophysics Data System (ADS)
Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik
2018-06-01
In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.
Structured illumination assisted microdeflectometry with optical depth scanning capability
Lu, Sheng-Huei; Hua, Hong
2018-01-01
Microdeflectometry is a powerful noncontact tool for measuring nanometer defects on a freeform surface. However, it requires a time-consuming process to take measurements at different depths for an extended depth of field (EDOF) and lacks surface information for integrating the measured gradient data to height. We propose an optical depth scanning technique to speed up the measurement process and introduce the structured illumination technique to efficiently determine the focused data among 3D observation and provide surface orientations for reconstructing an unknown surface shape. We demonstrated 3D measurements with an equivalent surface height sensitivity of 7.21 nm and an EDOF of at least 250 μm, which is 15 times that of the diffraction limited depth range. PMID:27607986
NASA Astrophysics Data System (ADS)
Salinas Cortijo, S.; Chew, B.; Liew, S.
2009-12-01
Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.
Photoacoustic microscopy and computed tomography: from bench to bedside
Wang, Lihong V.; Gao, Liang
2014-01-01
Photoacoustic imaging (PAI) of biological tissue has seen immense growth in the past decade, providing unprecedented spatial resolution and functional information at depths in the optical diffusive regime. PAI uniquely combines the advantages of optical excitation and acoustic detection. The hybrid imaging modality features high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth. Here we first summarize the fundamental principles underpinning the technology, then highlight its practical implementation, and finally discuss recent advances towards clinical translation. PMID:24905877
An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner
NASA Technical Reports Server (NTRS)
Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel
1987-01-01
The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.
NASA Astrophysics Data System (ADS)
Todorović, Miloš; Ai, Jun; Pereda Cubian, David; Stoica, George; Wang, Lihong
2006-02-01
National Health Interview Survey (NHIS) estimates more than 1.1 million burn injuries per year in the United States, with nearly 15,000 fatalities from wounds and related complications. An imaging modality capable of evaluating burn depths non-invasively is the polarization-sensitive optical coherence tomography. We report on the use of a high-speed, fiber-based Mueller-matrix OCT system with continuous source-polarization modulation for burn depth evaluation. The new system is capable of imaging at near video-quality frame rates (8 frames per second) with resolution of 10 μm in biological tissue (index of refraction: 1.4) and sensitivity of 78 dB. The sample arm optics is integrated in a hand-held probe simplifying the in vivo experiments. The applicability of the system for burn depth determination is demonstrated using biological samples of porcine tendon and porcine skin. The results show an improved imaging depth (1 mm in tendon) and a clear localization of the thermally damaged region. The burnt area determined from OCT images compares well with the histology, thus proving the system's potential for burn depth determination.
Optical switching property of electromagnetically induced transparency in a Λ system
NASA Astrophysics Data System (ADS)
Zhang, Lianshui; Wang, Jian; Feng, Xiaomin; Yang, Lijun; Li, Xiaoli; Zhao, Min
2008-12-01
In this paper we study the coherent transient property of a Λ-three-level system (Ωd = 0) and a quasi- Λ -four-level system (Ωd>0). Optical switching of the probe field can be achieved by applying a pulsed coupling field or rf field. In Λ -shaped three-level system, when the coupling field was switched on, there is a almost total transparency of the probe field and the time required for the absorption changing from 90% to 10% of the maximum absorption is 2.9Γ0 (Γ0 is spontaneous emission lifetime). When the coupling field was switched off, there is an initial increase of the probe field absorption and then gradually evolves to the maximum of absorption of the two-level absorption, the time required for the absorption of the system changing from 10% to 90% is 4.2Γ0. In four-level system, where rf driving field is used as switching field, to achieve the same depth of the optical switching, the time of the optical switching is 2.5Γ0 and 6.1Γ0, respectively. The results show that with the same depth of the optical switching, the switch-on time of the four-level system is shorter than that of the three-level system, while the switch-off time of the four-level system is longer. The depth of the optical switching of the four-level system was much larger than that of the three-level system, where the depth of the optical switching of the latter is merely 14.8% of that of the former. The speed of optical switching of the two systems can be increased by the increase of Rabi frequency of coupling field or rf field.
NASA Astrophysics Data System (ADS)
Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian
2011-12-01
Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.
NASA Astrophysics Data System (ADS)
Otsuki, Soichi
2018-04-01
Polarimetric imaging of absorbing, strongly scattering, or birefringent inclusions is investigated in a negligibly absorbing, moderately scattering, and isotropic slab medium. It was proved that the reduced effective scattering Mueller matrix is exactly calculated from experimental or simulated raw matrices even if the medium is anisotropic and/or heterogeneous, or the outgoing light beam exits obliquely to the normal of the slab surface. The calculation also gives a reasonable approximation of the reduced matrix using a light beam with a finite diameter for illumination. The reduced matrix was calculated using a Monte Carlo simulation and was factorized in two dimensions by the Lu-Chipman polar decomposition. The intensity of backscattered light shows clear and modestly clear differences for absorbing and strongly scattering inclusions, respectively, whereas it shows no difference for birefringent inclusions. Conversely, some polarization parameters, for example, the selective depolarization coefficients exhibit only a slight difference for the absorbing inclusions, whereas they showed clear difference for the strongly scattering or birefringent inclusions. Moreover, these quantities become larger with increasing the difference in the optical properties of the inclusions relative to the surrounding medium. However, it is difficult to recognize inclusions that buried at the depth deeper than 3 mm under the surface. Thus, the present technique can detect the approximate shape and size of these inclusions, and considering the depth where inclusions lie, estimate their optical properties. This study reveals the possibility of the polarization-sensitive imaging of turbid inhomogeneous media using a pencil beam for illumination.
Aerosol Optical Depth Over India
NASA Astrophysics Data System (ADS)
David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.
2018-04-01
Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.
An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan
Kumar, Naresh; Chu, Allen; Foster, Andrew
2011-01-01
Atmospheric remote sensing offers a unique opportunity to compute indirect estimates of air quality, which are critically important for the management and surveillance of air quality in megacities of developing countries, particularly in India and China, which have experienced elevated concentration of air pollution but lack adequate spatial–temporal coverage of air pollution monitoring. This article examines the relationship between aerosol optical depth (AOD) estimated from satellite data at 5 km spatial resolution and the mass of fine particles ≤2.5 μm in aerodynamic diameter (PM2.5) monitored on the ground in Delhi Metropolitan where a series of environmental laws have been instituted in recent years. PM2.5 monitored at 113 sites were collocated by time and space with the AOD computed using the data from Moderate Resolution Imaging Spectroradiometer (MODIS onboard the Terra satellite). MODIS data were acquired from NASA’s Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (DAAC). Our analysis shows a significant positive association between AOD and PM2.5. After controlling for weather conditions, a 1% change in AOD explains 0.52±0.202% and 0.39±0.15% change in PM2.5 monitored within ±45 and 150 min intervals of AOD data. This relationship will be used to estimate air quality surface for previous years, which will allow us to examine the time–space dynamics of air pollution in Delhi following recent air quality regulations, and to assess exposure to air pollution before and after the regulations and its impact on health. PMID:22180723
The impact of Pacific Decadal Oscillation on springtime dust activity in Syria
NASA Astrophysics Data System (ADS)
Pu, B.; Ginoux, P. A.
2016-12-01
The increasing trend of aerosol optical depth in the Middle East and a recent severe dust storm in Syria have raised questions as whether dust storms will increase and promoted investigations on the dust activities driven by the natural climate variability underlying the ongoing human perturbations such as the Syrian civil war. This study examined the influences of the Pacific decadal oscillation (PDO) on dust activities in Syria using an innovative dust optical depth (DOD) dataset derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol products. A significantly negative correlation is found between the Syrian DOD and the PDO in spring from 2003-2015. High DOD in spring is associated with lower geopotential height over the Middle East, Europe, and North Africa, accompanied by near surface anomalous westerly winds over the Mediterranean basin and southerly winds over the eastern Arabian Peninsula. These large-scale patterns promote the formation of the cyclones over the Middle East to trigger dust storms and also facilitate the transport of dust from North Africa, Iraq, and Saudi Arabian to Syria, where the transported dust dominates the seasonal mean DOD in spring. A negative PDO not only creates circulation anomalies favorable to high DOD in Syria but also suppresses precipitation in dust source regions over the eastern and southern Arabian Peninsula and northeastern Africa. On the daily scale, in addition to the favorable large-scale condition associated with a negative PDO, enhanced atmospheric instability in Syria associated with increased precipitation in Turkey and northern Syria is also critical for the development of strong springtime dust storms in Syria.
NASA Astrophysics Data System (ADS)
Li, X.; Zhang, C.; Li, W.
2017-12-01
Long-term spatiotemporal analysis and modeling of aerosol optical depth (AOD) distribution is of paramount importance to study radiative forcing, climate change, and human health. This study is focused on the trends and variations of AOD over six stations located in United States and China during 2003 to 2015, using satellite-retrieved Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 retrievals and ground measurements derived from Aerosol Robotic NETwork (AERONET). An autoregressive integrated moving average (ARIMA) model is applied to simulate and predict AOD values. The R2, adjusted R2, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Bayesian Information Criterion (BIC) are used as indices to select the best fitted model. Results show that there is a persistent decreasing trend in AOD for both MODIS data and AERONET data over three stations. Monthly and seasonal AOD variations reveal consistent aerosol patterns over stations along mid-latitudes. Regional differences impacted by climatology and land cover types are observed for the selected stations. Statistical validation of time series models indicates that the non-seasonal ARIMA model performs better for AERONET AOD data than for MODIS AOD data over most stations, suggesting the method works better for data with higher quality. By contrast, the seasonal ARIMA model reproduces the seasonal variations of MODIS AOD data much more precisely. Overall, the reasonably predicted results indicate the applicability and feasibility of the stochastic ARIMA modeling technique to forecast future and missing AOD values.
NASA Astrophysics Data System (ADS)
Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.
2016-06-01
The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.
The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria
NASA Astrophysics Data System (ADS)
Pu, Bing; Ginoux, Paul
2016-10-01
The increasing trend of aerosol optical depth in the Middle East and a recent severe dust storm in Syria have raised questions as to whether dust storms will increase and promoted investigations on the dust activities driven by the natural climate variability underlying the ongoing human perturbations such as the Syrian civil war. This study examined the influences of the Pacific Decadal Oscillation (PDO) on dust activities in Syria using an innovative dust optical depth (DOD) dataset derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol products. A significantly negative correlation is found between the Syrian DOD and the PDO in spring from 2003 to 2015. High DOD in spring is associated with lower geopotential height over the Middle East, Europe, and North Africa, accompanied by near-surface anomalous westerly winds over the Mediterranean basin and southerly winds over the eastern Arabian Peninsula. These large-scale patterns promote the formation of the cyclones over the Middle East to trigger dust storms and also facilitate the transport of dust from North Africa, Iraq, and Saudi Arabia to Syria, where the transported dust dominates the seasonal mean DOD in spring. A negative PDO not only creates circulation anomalies favorable to high DOD in Syria but also suppresses precipitation in dust source regions over the eastern and southern Arabian Peninsula and northeastern Africa.On the daily scale, in addition to the favorable large-scale condition associated with a negative PDO, enhanced atmospheric instability in Syria (associated with increased precipitation in Turkey and northern Syria) is also critical for the development of strong springtime dust storms in Syria.
Atmospheric Retrieval Analysis of the Directly Imaged Exoplanet HR 8799b
NASA Astrophysics Data System (ADS)
Lee, Jae-Min; Heng, Kevin; Irwin, Patrick G. J.
2013-12-01
Directly imaged exoplanets are unexplored laboratories for the application of the spectral and temperature retrieval method, where the chemistry and composition of their atmospheres are inferred from inverse modeling of the available data. As a pilot study, we focus on the extrasolar gas giant HR 8799b, for which more than 50 data points are available. We upgrade our non-linear optimal estimation retrieval method to include a phenomenological model of clouds that requires the cloud optical depth and monodisperse particle size to be specified. Previous studies have focused on forward models with assumed values of the exoplanetary properties; there is no consensus on the best-fit values of the radius, mass, surface gravity, and effective temperature of HR 8799b. We show that cloud-free models produce reasonable fits to the data if the atmosphere is of super-solar metallicity and non-solar elemental abundances. Intermediate cloudy models with moderate values of the cloud optical depth and micron-sized particles provide an equally reasonable fit to the data and require a lower mean molecular weight. We report our best-fit values for the radius, mass, surface gravity, and effective temperature of HR 8799b. The mean molecular weight is about 3.8, while the carbon-to-oxygen ratio is about unity due to the prevalence of carbon monoxide. Our study emphasizes the need for robust claims about the nature of an exoplanetary atmosphere to be based on analyses involving both photometry and spectroscopy and inferred from beyond a few photometric data points, such as are typically reported for hot Jupiters.
An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean
NASA Astrophysics Data System (ADS)
Lee, Kwon Ho
2016-04-01
The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).
Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...
Roy, Nathalie; Roy, Gilles; Bissonnette, Luc R; Simard, Jean-Robert
2004-05-01
We measure with a gated intensified CCD camera the cross-polarized backscattered light from a linearly polarized laser beam penetrating a cloud made of spherical particles. In accordance with previously published results we observe a clear azimuthal pattern in the recorded images. We show that the pattern is symmetrical, that it originates from second-order scattering, and that higher-order scattering causes blurring that increases with optical depth. We also find that the contrast in the symmetrical features can be related to measurement of the optical depth. Moreover, when the blurring contributions are identified and subtracted, the resulting pattern provides a pure second-order scattering measurement that can be used for retrieval of droplet size.
Optical depth measurements by shadow-band radiometers and their uncertainties.
Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A
2007-11-20
Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.
Computational adaptive optics for broadband optical interferometric tomography of biological tissue
NASA Astrophysics Data System (ADS)
Boppart, Stephen A.
2015-03-01
High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.
Validation of luminescent source reconstruction using spectrally resolved bioluminescence images
NASA Astrophysics Data System (ADS)
Virostko, John M.; Powers, Alvin C.; Jansen, E. D.
2008-02-01
This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.
Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T
2013-01-01
To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years) underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years) underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex) was performed. Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05) than controls (4 had scores in the clinically significant range). Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively). There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic radiations of children with mild to moderate or no visual impairment raises questions as to the pathogenesis of these changes which will need to be addressed by future studies.
NASA Astrophysics Data System (ADS)
Tung, Yen-Chun; Chung, Ming-Han; Sung, I.-Hui; Lee, Chih-Kung
2014-03-01
Adopting optical technique to pursue micromachining must make a compromise between the focal spot sizes the depth of focus. The focal spot size determines the minimum features can be fabricated. On the other hand, the depth of focus influences the ease of alignment in positioning the fabrication light beam. A typical approach to bypass the diffraction limit is to adopt the near-field approach, which has spot size in the range of the optical fiber tip. However, the depth of focus of the emitted light beam will be limited to tens of nanometers in most cases, which posts a difficult challenge to control the distance between the optical fiber tip and the sample to be machined optically. More specifically, problems remained in this machining approach, which include issues such as residue induced by laser ablation tends to deposit near the optical fiber tip and leads to loss of coupling efficiency. We proposed a method based on illuminating femtosecond laser through a sub-wavelength annular aperture on metallic film so as to produce Bessel light beam of sub-wavelength while maintaining large depth of focus first. To further advance the ease of use in one such system, producing sub-wavelength annular aperture on a single mode optical fiber head with sub-wavelength focusing ability is detailed. It is shown that this method can be applied in material machining with an emphasis to produce high aspect ratio structure. Simulations and experimental results are presented in this paper.
MER Atmospheric Results: Pancam and Mini-TES
NASA Astrophysics Data System (ADS)
Wolff, M. J.
2004-12-01
Although at first glance, the Mars Exploration Rover (MER) payload may be perceived as primarily suited to geological investigation, it is in fact quite well-suited to carry out a robust and dynamic program of atmospheric monitoring and characterization with a particular emphasis on the planetary boundary layer. More to the point, it has been doing so at both the Gusev and Meridiani locations for more than 200 days. Ongoing atmospheric observations include (1) periodic thermal infrared spectra of the Martian sky by the Miniature Thermal Emission Spectrometer (Mini-TES). The actual sequences consist of both standard 200-second integrations and long ``stares'' of up to (almost) an hour. These data are highly diagnostic of vertical thermal structure (from 10 meters to 3-5 kilometers), aerosol optical depth along with particle size, and under the right conditions, the water column. (2) direct solar imaging using the Panoramic Camera (Pancam) and 440/880 nm + neutral density (ND5) filters, providing accurate measurement visible optical depths. (3) near-sun and ``sky-arc'' sequences using the full suite of geological filters, intended to capture the forward-diffraction peak and the phase function characteristics of the aerosol particles. (4) carbon dioxide (15 micrometer band) profiling of the Mini-TES surface observations, providing an average near-surface (1 m) air temperature. The above activities have been (and will continue to be) used to characterize diurnal and secular temporal trends and to examine the spatial variability of such trends. In addition, serendipity has provided the unique opportunities of watching the decay of a moderate dust storm from two widely-separated sites as well as of multiple simultaneous orbiter-rover observing ``campaigns.'' The latter includes thus far the Mars Express and Mars Global Surveyor over-flights. During our presentation, we will summarize the atmospheric results obtained and analyzed through the end of the first 200 days of operations, the unique contributions/capabilities of each instrument, and the synergy which comes from combining the two, e.g., visible-to-infrared optical ratio.
Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros
2012-09-01
Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.
Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan
NASA Astrophysics Data System (ADS)
Alam, Khan
Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP, CTT
Light storage in a cold atomic ensemble with a high optical depth
NASA Astrophysics Data System (ADS)
Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho
2017-06-01
A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.
NASA Astrophysics Data System (ADS)
Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid
2014-12-01
We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.
Infrared cloud imaging in support of Earth-space optical communication.
Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino
2009-05-11
The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.
Photogrammetry experiments with a model eye.
Rosenthal, A R; Falconer, D G; Pieper, I
1980-01-01
Digital photogrammetry was performed on stereophotographs of the optic nerve head of a modified Zeiss model eye in which optic cups of varying depths could be simulated. Experiments were undertaken to determine the impact of both photographic and ocular variables on the photogrammetric measurements of cup depth. The photogrammetric procedure tolerates refocusing, repositioning, and realignment as well as small variations in the geometric position of the camera. Progressive underestimation of cup depth was observed with increasing myopia, while progressive overestimation was noted with increasing hyperopia. High cylindrical errors at axis 90 degrees led to significant errors in cup depth estimates, while high cylindrical errors at axis 180 degrees did not materially affect the accuracy of the analysis. Finally, cup depths were seriously underestimated when the pupil diameter was less than 5.0 mm. Images PMID:7448139
NASA Astrophysics Data System (ADS)
Du, Tuanjie; Wan, Xiaojiao; Yang, Runhua; Li, Weiwei; Ruan, Qiujun; Chen, Nan; Luo, Zhengqian
2018-01-01
In recent years, several kinds of nanomaterials have been discovered, and successfully used as saturable absorbers (SAs) for passively mode-locked fiber lasers. However, it is found that most of nanomaterials-based SAs cannot stably generate gain-guide solitons in positive group-dispersion fiber lasers, which is urgently expected to fully understand the inherent reasons. In this paper, we numerically and experimentally investigate the effects of nanomaterial saturable absorption (e.g. modulation depth and saturation optical power) on gain-guide soliton in positive group-dispersion Er3+-doped fiber laser (PGD-EDFL). By numerically solving the Ginzburg-Landau equation, the evolutions of both the mode-locked optical spectrum and pulse duration as a function of modulation depth and saturation optical power are analyzed, respectively. In experiment, we firstly prepare five nanomaterial SAs with the similar insertion loss, which have the different modulation depth from 1.80% to 23.36%, and the different saturation optical power from 8.8 to 536 W. We then perform the experimental comparison by incorporating the five SAs in a same PGD-EDFL cavity, respectively. The experimental results are in good agreement with the numerical ones. Our result reveals that: (1) a low modulation depth cannot support the formation of gain-guide soliton, (2) as the modulation depth increases, the spectral bandwidth of gain-guide soliton increases, the pulse duration decreases and the pulse chirp becomes large, (3) the saturation optical power has the weak influences on the gain-guide soliton performances.
NASA Technical Reports Server (NTRS)
Loeb, Norman G.; Schuster, Gregory L.
2008-01-01
Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.
Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering
NASA Astrophysics Data System (ADS)
Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc
2015-03-01
Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.
Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.
2013-09-01
Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).
Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network.
Yu, Zhibin; Wang, Yubo; Zheng, Bing; Zheng, Haiyong; Wang, Nan; Gu, Zhaorui
2017-01-01
Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.
A bio-optical model for integration into ecosystem models for the Ligurian Sea
NASA Astrophysics Data System (ADS)
Bengil, Fethi; McKee, David; Beşiktepe, Sükrü T.; Sanjuan Calzado, Violeta; Trees, Charles
2016-12-01
A bio-optical model has been developed for the Ligurian Sea which encompasses both deep, oceanic Case 1 waters and shallow, coastal Case 2 waters. The model builds on earlier Case 1 models for the region and uses field data collected on the BP09 research cruise to establish new relationships for non-biogenic particles and CDOM. The bio-optical model reproduces in situ IOPs accurately and is used to parameterize radiative transfer simulations which demonstrate its utility for modeling underwater light levels and above surface remote sensing reflectance. Prediction of euphotic depth is found to be accurate to within ∼3.2 m (RMSE). Previously published light field models work well for deep oceanic parts of the Ligurian Sea that fit the Case 1 classification. However, they are found to significantly over-estimate euphotic depth in optically complex coastal waters where the influence of non-biogenic materials is strongest. For these coastal waters, the combination of the bio-optical model proposed here and full radiative transfer simulations provides significantly more accurate predictions of euphotic depth.
Noise level measurement, a new method to evaluate effectiveness of sedation in pediatric dentistry.
Sabouri, A Sassan; Firoozabadi, Farshid; Carlin, Drew; Creighton, Paul; Raczka, Michelle; Joshi, Prashant; Heard, Christopher
2014-12-01
Pediatric dentists perform moderate sedation frequently to facilitate dental treatment in uncooperative children. Assessing the depth and quality of sedation is an important factor in the clinical utilization of moderate sedation. We aimed to determine if the level of noise, created by the children who are undergoing moderate sedation during dental procedures, could be used as a nonsubjective measurement of the depth of sedation and compare it to the Ohio State Behavior Rating Score (OSBRS). Following Institutional Review Board approval and after receiving informed consent, we studied 51 children with a mean age of 4.2 years and average weight of 18.5 kg, who were undergoing restorative or extractive dental procedures, requiring moderate sedation. Sedation efficacy was assessed using OSBRS at several stages of the procedure. The noise level was measured by using a NoisePRO logging device to record the noise level at a rate of every second throughout the procedure. The depth of sedation assessed by OSBRS during the operative procedure was significantly correlated with noise level. The act of administering the local anesthesia and the operative procedure itself were two phases of the encounter that were significantly associated with higher OSBRS as well as noise levels. Measurement of noise level can be used as an effective guide to quantify the depth of sedation at different stages of the dental procedure. It is a nonsubjective and continuous measurement, which could be useful in clinical practice for the administration of moderate sedation during dental procedures. By using noise level analysis we are able to determine successful, poor, and failed sedation outcome. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less
Diurnal variations in optical depth at Mars: Observations and interpretations
NASA Technical Reports Server (NTRS)
Colburn, D. S.; Pollack, J. B.; Haberle, R. M.
1988-01-01
Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.
Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes
Lee, Soomin; Choi, Da-Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul
2018-01-01
Purpose To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Methods Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Results Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. Conclusions The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. PMID:29611373
Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes.
Lee, Soomin; Choi, Da Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul; Kee, Changwon
2018-04-01
To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. © 2018 The Korean Ophthalmological Society.
A Comparison of Martian Transient Wave Energetics in High and Low Optical Depth Environments
NASA Astrophysics Data System (ADS)
Battalio, J. M.; Szunyogh, I.; Lemmon, M. T.
2016-12-01
The local energetics of individual transient eddies from the Mars Analysis Correction Data Assimilation (MACDA) is compared between a year with a global-scale dust storm (MY 25) and two years of relatively low optical depth conditions. Eddies in each year are considered from a period of strong wave activity in the northern hemisphere before the winter solstice (Ls=170-240°). The local growth of eddies is typically triggered by geopotential flux convergence. While all waves exhibit some baroclinic growth, baroclinic energy conversion is weaker in the waves that occur during the global-scale dust storm. The weaker baroclinic energy conversion in these waves, however, is compensated by a more intense barotropic transfer of the kinetic energy from the mean flow to the waves: the contribution from barotropic energy conversion allows eddies during the global-scale dust storm to attain roughly the same maximum eddy kinetic energy as eddies during the low optical depth years. Individual eddies in the waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation in both the high- and the low-optical-depth years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baibakov, K.; O'Neill, N. T.; Firanski, B.
2009-03-11
In the summer of 2007, a SPSTAR03 starphotometer was installed at Egbert, Canada (44 deg. 13' N, 79 deg. 45' W, alt 264 m) and a continuous series of initial measurements was performed between August 26 and September 19. Several sunphotometry parameters such as the aerosol optical depth (AOD) and the 'fine' and 'coarse' optical depths were extracted from the SPSTAR03 extinction spectra. The SPSTAR03 data was analyzed in conjunction with sunphotometry and zenith-pointing lidar data acquired during the same time period. Preliminary results show coarse continuity between the day- and night time AOD values (with the mean difference betweenmore » the measured and the interpolated values being 0.05) as well as a qualitative correlation between the 'fine' and 'coarse' optical depths and the normalized lidar backscatter coefficient profiles. It was also found that the spectra produced with the differential two-star measurement method were sensitive to non-horizontally homogeneous differences in the line-of-sight conditions of both stars. The one-star method helps to reduce the uncertainties but requires the determination of a calibration constant.« less
Parallel Optical Random Access Memory (PORAM)
NASA Technical Reports Server (NTRS)
Alphonse, G. A.
1989-01-01
It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2015-03-01
We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.
Evaluation of choroidal thickness in patients with obstructive sleep apnea/hypopnea syndrome.
Kara, Selcuk; Ozcimen, Muammer; Bekci, Taha Tahir; Sakarya, Yasar; Gencer, Baran; Tufan, Hasan Ali; Arikan, Sedat
2014-10-01
Purpose: To compare the subfoveal choroidal thickness (SFCT) of patients with different severities of obstructive sleep apnea/hypopnea syndrome (OSAHS) and normal controls via enhanced depth imaging optical coherence tomography (EDI-OCT). Methods: In this retrospective, case-control study, 49 eyes from 49 patients that had undergone polysomnography were included. SFCT of the horizontal and vertical line scans were manually measured for all eyes based on EDI-OCT images. Two separate analyses were performed according to different apnea/hypopnea index (AHI) groupings. Initial testing was conducted using non-OSAHS, mild OSAHS (5≤AHI<15), moderate OSAHS (15≤AHI<30), and severe OSAHS (AHI≥30) patient groupings, while secondary testing used non-OSAHS, mild OSAHS (5≤AHI<15), and moderate/severe OSAHS (AHI≥15) patient groupings. Results: The mean SFCT was 314.5 μm in the non-OSAHS patients (n=14), 324.5 μm in the mild OSAHS patients (n=15), 269.3 μm in the moderate OSAHS patients (n=11), and 264.3 μm in the severe OSAHS patients (n=9). SFCT between the four groups revealed no significant differences despite a trend towards slight thinning in the severe group (P=0.08). When the moderate and severe groups were merged and compared with the mild OASHS and non-OSAHS groups, SFCT of the moderate/severe group was found to be significantly thinner than that of the mild group (P=0.016). A negative significant correlation was found between SFCT and AHI in OSAHS patients (r=0.368, P=0.033). Conclusions: In patients with moderate/severe OSAHS, EDI-OCT revealed a thinned SFCT. Other accompanying systemic or ocular diseases may induce perfusion and oxygenation deficiency in eyes of OSAHS patients. Further studies are required in order to determine the exact relationships between ocular pathologies and clinical grades of OSAHS.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2009-03-01
The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.
Soil Water Measurement Using Actively Heated Fiber Optics at Field Scale.
Vidana Gamage, Duminda N; Biswas, Asim; Strachan, Ian B; Adamchuk, Viacheslav I
2018-04-06
Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m -1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (T cum ) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
NASA Astrophysics Data System (ADS)
Larin, K. V.; Tuchin, V. V.
2008-06-01
Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth.
Radial widths, optical depths, and eccentricities of the Uranian rings
NASA Technical Reports Server (NTRS)
Nicholson, P. D.; Matthews, K.; Goldreich, P.
1982-01-01
Observations of the stellar occultation by the Uranian rings of 15/16 August 1980 are used to estimate radial widths and normal optical depths for segments of rings 6, 5, 4, alpha, beta, eta, gamma, and delta. Synthetic occultation profiles are generated to match the observed light curves. A review of published data confirms the existence of width-radius relations for rings alpha and beta, and indicates that the optical depths of these two rings vary inversely with their radial widths. Masses are obtained for rings alpha and beta, on the assumption that differential precession is prevented by their self-gravity. A quantitative comparison of seven epsilon-ring occultation profiles obtained over a period of 3.4 yr reveals a consistent structure, which may reflect the presence of unresolved gaps and subrings.
Validation of TOMS Aerosol Products using AERONET Observations
NASA Technical Reports Server (NTRS)
Bhartia, P. K.; Torres, O.; Sinyuk, A.; Holben, B.
2002-01-01
The Total Ozone Mapping Spectrometer (TOMS) aerosol algorithm uses measurements of radiances at two near UV channels in the range 331-380 nm to derive aerosol optical depth and single scattering albedo. Because of the low near UV surface albedo of all terrestrial surfaces (between 0.02 and 0.08), the TOMS algorithm has the capability of retrieving aerosol properties over the oceans and the continents. The Aerosol Robotic Network (AERONET) routinely derives spectral aerosol optical depth and single scattering albedo at a large number of sites around the globe. We have performed comparisons of both aerosol optical depth and single scattering albedo derived from TOMS and AERONET. In general, the TOMS aerosol products agree well with the ground-based observations, Results of this validation will be discussed.
NASA Astrophysics Data System (ADS)
Yin, Biwei; Liang, Chia-Pin; Vuong, Barry; Tearney, Guillermo J.
2017-02-01
Conventional OCT images, obtained using a focused Gaussian beam have a lateral resolution of approximately 30 μm and a depth of focus (DOF) of 2-3 mm, defined as the confocal parameter (twice of Gaussian beam Rayleigh range). Improvement of lateral resolution without sacrificing imaging range requires techniques that can extend the DOF. Previously, we described a self-imaging wavefront division optical system that provided an estimated one order of magnitude DOF extension. In this study, we further investigate the properties of the coaxially focused multi-mode (CAFM) beam created by this self-imaging wavefront division optical system and demonstrate its feasibility for real-time biological tissue imaging. Gaussian beam and CAFM beam fiber optic probes with similar numerical apertures (objective NA≈0.5) were fabricated, providing lateral resolutions of approximately 2 μm. Rigorous lateral resolution characterization over depth was performed for both probes. The CAFM beam probe was found to be able to provide a DOF that was approximately one order of magnitude greater than that of Gaussian beam probe. By incorporating the CAFM beam fiber optic probe into a μOCT system with 1.5 μm axial resolution, we were able to acquire cross-sectional images of swine small intestine ex vivo, enabling the visualization of subcellular structures, providing high quality OCT images over more than a 300 μm depth range.
NASA Astrophysics Data System (ADS)
Zha, Yikun; Wei, Jingsong; Gan, Fuxi
2013-09-01
Maskless laser direct writing lithography has been applied in the fabrication of optical elements and electric-optical devices. With the development of technology, the feature size of the elements and devices is required to reduce down to nanoscale. Increasing the numerical aperture of converging lens and shortening the laser wavelength are good methods to obtain the small spot and reduce the feature size to nanoscale, while this will cause the reduction of the depth of focus. The reduction of depth of focus will lead to some difficulties in the focusing and tracking servo controlling during the high speed laser direct writing lithography. In this work, the combination of the diffractive optical elements and the nonlinear absorption inorganic resist thin films cannot only extend the depth of focus, but also reduce the feature size of the lithographic marks down to nanoscale. By using the five-zone annular phase-only binary pupil filter as the diffractive optical elements and AgInSbTe as the nonlinear absorption inorganic resist thin film, the depth of focus cannot only extend to 7.39 times that of the focused spot, but also reduce the lithographic feature size down to 54.6 nm. The ill-effect of sidelobe on the lithography is also eliminated by the nonlinear reverse saturable absorption and the phase change threshold lithographic characteristics.
NASA Astrophysics Data System (ADS)
Yu, Tianxu; Rose, William I.; Prata, A. J.
2002-08-01
Volcanic ash in volcanic clouds can be mapped in two dimensions using two-band thermal infrared data available from meteorological satellites. Wen and Rose [1994] developed an algorithm that allows retrieval of the effective particle size, the optical depth of the volcanic cloud, and the mass of fine ash in the cloud. Both the mapping and the retrieval scheme are less accurate in the humid tropical atmosphere. In this study we devised and tested a scheme for atmospheric correction of volcanic ash mapping and retrievals. The scheme utilizes infrared (IR) brightness temperature (BT) information in two infrared channels (both between 10 and 12.5 μm) and the brightness temperature differences (BTD) to estimate the amount of BTD shift caused by lower tropospheric water vapor. It is supported by the moderate resolution transmission (MODTRAN) analysis. The discrimination of volcanic clouds in the new scheme also uses both BT and BTD data but corrects for the effects of the water vapor. The new scheme is demonstrated and compared with the old scheme using two well-documented examples: (1) the 18 August 1992 volcanic cloud of Crater Peak, Mount Spurr, Alaska, and (2) the 26 December 1997 volcanic cloud from Soufriere Hills, Montserrat. The Spurr example represents a relatively ``dry'' subarctic atmospheric condition. The new scheme sees a volcanic cloud that is about 50% larger than the old. The mean optical depth and effective radii of cloud particles are lower by 22% and 9%, and the fine ash mass in the cloud is 14% higher. The Montserrat cloud is much smaller than Spurr and is more sensitive to atmospheric moisture. It also was located in a moist tropical atmosphere. For the Montserrat example the new scheme shows larger differences, with the area of the volcanic cloud being about 5.5 times larger, the optical depth and effective radii of particles lower by 56% and 28%, and the total fine particle mass in the cloud increased by 53%. The new scheme can be automated and can contribute to more accurate remote volcanic ash detection. More tests are needed to find the best way to estimate the water vapor effects in real time.
Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules
NASA Astrophysics Data System (ADS)
Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.
2018-02-01
In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.
NASA Astrophysics Data System (ADS)
Comsa, Daria Craita
2008-10-01
There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative source strength within 20 %. For sources 14mm deep, the inaccuracy in determining the relative source strength increased to 30 %. Measurements on small animals post mortem showed that the use of measured in situ optical properties to characterize heterogeneous tissue resulted in a superior estimation of the source strength and depth compared to when literature optical properties for organs or tissues were used. Moreover, it was found that regardless of the heterogeneity of the implant location or depth, our algorithm consistently showed an advantage over the simple assessment of the source strength based on the signal strength in the emission image. Our bioluminescence algorithm was generally able to predict the source strength within a factor of 2 of the true strength, but the performance varied with the implant location and depth. In fluorescence imaging a more complex technique is required, including knowledge of tissue optical properties at both the excitation and emission wavelengths. A theoretical study using simulated fluorescence data showed that, for example, for a source 5 mm deep in tissue, errors of up to 15 % in the optical properties would give rise to errors of +/-0.7 mm in the retrieved depth and the source strength would be over- or under-estimated by a factor ranging from 1.25 to 2. Fluorescent sources implanted in rats post mortem at the same depth were localized with an error just slightly higher than predicted theoretically: a root-mean-square value of 0.8 mm was obtained for all implants 5 mm deep. However, for this source depth, the source strength was assessed within a factor ranging from 1.3 to 4.2 from the value estimated in a controlled medium. Nonetheless, similarly to the bioluminescence study, the fluorescence quantification algorithm consistently showed an advantage over the simple assessment of the source strength based on the signal strength in the fluorescence image. Few studies have been reported in the literature that reconstruct known sources of bioluminescence or fluorescence in vivo or in heterogeneous phantoms. The few reported results show that the 3D tomographic methods have not yet reached their full potential. In this context, the simplicity of our technique emerges as a strong advantage.
NASA Technical Reports Server (NTRS)
Mace, Gerald G.; Benson, Sally; Sonntag, Karen L.; Kato, Seiji; Min, Qilong; Minnis, Patrick; Twohy, Cynthia H.; Poellot, Michael; Dong, Xiquan; Long, Charles;
2006-01-01
It has been hypothesized that continuous ground-based remote sensing measurements from active and passive remote sensors combined with regular soundings of the atmospheric thermodynamic structure can be combined to describe the effects of clouds on the clear sky radiation fluxes. We critically test that hypothesis in this paper and a companion paper (Part II). Using data collected at the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site sponsored by the U.S. Department of Energy, we explore an analysis methodology that results in the characterization of the physical state of the atmospheric profile at time resolutions of five minutes and vertical resolutions of 90 m. The description includes thermodynamics and water vapor profile information derived by merging radiosonde soundings with ground-based data, and continues through specification of the cloud layer occurrence and microphysical and radiative properties derived from retrieval algorithms and parameterizations. The description of the atmospheric physical state includes a calculation of the infrared and clear and cloudy sky solar flux profiles. Validation of the methodology is provided by comparing the calculated fluxes with top of atmosphere (TOA) and surface flux measurements and by comparing the total column optical depths to independently derived estimates. We find over a 1-year period of comparison in overcast uniform skies, that the calculations are strongly correlated to measurements with biases in the flux quantities at the surface and TOA of less than 10% and median fractional errors ranging from 20% to as low as 2%. In the optical depth comparison for uniform overcast skies during the year 2000 where the optical depth varies over 3 orders of magnitude we find a mean positive bias of 46% with a median bias of less than 10% and a 0.89 correlation coefficient. The slope of the linear regression line for the optical depth comparison is 0.86 with a normal deviation of 20% about this line. In addition to a case study where we examine the cloud radiative effects at the TOA, surface and atmosphere by a middle latitude synoptic-scale cyclone, we examine the cloud top pressure and optical depth retrievals of ISCCP and LBTM over a period of 1 year. Using overcast period from the year 2000, we find that the satellite algorithms tend to bias cloud tops into the middle troposphere and underestimate optical depth in high optical depth events (greater than 100) by as much as a factor of 2.
Optical depth retrievals from Delta-T SPN1 measurements of broadband solar irradiance at ground
NASA Astrophysics Data System (ADS)
Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick
2016-04-01
The SPN1 radiometer, manufactured by Delta-T Devices Ltd., is an instrument designed for the measurement of global solar irradiance and its components (diffuse, direct) at ground level. In the present study, the direct irradiance component has been used to retrieve an effective total optical depth, by applying the Beer-Lambert law to the broadband measurements. The results have been compared with spectral total optical depths derived from two Cimel CE318 and Prede POM01 sun-sky radiometers, located at the Burjassot site in Valencia (Spain), during years 2013 - 2015. The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. In turn, the Beer-Lambert law has been applied to the broadband direct solar component to obtain an effective total optical depth, representative of the total extinction in the atmosphere. For the assessment of the total optical depth values retrieved with the SPN1, two different sun-sky radiometers (Cimel CE318 and Prede POM01L) have been employed. Both instruments belong to the international networks AERONET and SKYNET. The modified SUNRAD package has been applied in both Cimel and Prede instruments. Cloud affected data has been removed by applying the Smirnov cloud-screening procedure in the SUNRAD algorithm. The broadband SPN1 total optical depth has been analysed by comparison with the spectral total optical depth from the sun-sky radiometer measurements at wavelengths 440, 500, 675, 870 and 1020 nm. The slopes and intercepts have been estimated to be 0.47 - 0.98 and 0.055 - 0.16 with increasing wavelength. The average correlation coefficients and RMSD were 0.80 - 0.83 and 0.034 - 0.036 for all the channels. The analysis shows that the SPN1 instrument underestimates the TOD increasingly with wavelength, for higher TOD. This observation is in agreement with the already known effect of a larger effective field of view in the SPN1, as the aureole radiation increase. In any case, these results are promising and would be useful as a determination of the total atmospheric extinction, mainly for users of the SPN1 in the solar radiation field.
NASA Astrophysics Data System (ADS)
Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.
2017-02-01
Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have been used to detect neural activity, but rely on indirect measurements such as changes in blood flow. Fluorescence-based techniques, including genetically encoded indicators, are powerful techniques, but require introduction of an exogenous fluorophore. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, we sought to examine non-vascular depth-dependent optical changes directly related to neural activity. We used an OCT system centered at 1310 nm to search for changes in an ex vivo brain slice preparation and an in vivo model during 4-AP induced seizure onset and propagation with respect to electrical recording. By utilizing Doppler OCT and the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex from in vivo attenuation calculations. The results of this study show a non-vascular decrease in intensity and attenuation in ex vivo and in vivo seizure models, respectively. Regions exhibiting decreased optical changes show significant temporal correlation to regions of increased electrical activity during seizure. This study allows for a thorough and biologically relevant analysis of the optical signature of seizure activity both ex vivo and in vivo using OCT.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1990-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the FIRE Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4-km visible (0.65 micro-m) and 8-km infrared window (11.5 micro-m) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 0.62 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance, extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface- based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature were ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperatures and cloud thicknesses from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. The parameterization of visible reflectance in terms of cloud optical depth and clear-sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous AVHRR data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloudy pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study of cirrus cloud scattering processes and remote sensing techniques.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1996-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Pueschel, R. F.; Bauman, J. J.; Pollack, J. B.; Brooks, S. L.; Hamill, P.; Thomason, L. W.; Stowe, L. L.; Deshler, T.;
2000-01-01
We assemble data on the Pinatubo aerosol from space, air, and ground measurements, develop a composite picture, and assess the consistency and uncertainties of measurement and retrieval techniques. Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements agree with theoretical calculations in showing a dominant composition of H2SO4-H20 mixture, with H2SO4 weight fraction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are (1) volcanic ash, present at all heights initially and just above the tropopause until at least March 1992, and (2) much smaller H2SO4 fractions at the low temperatures of high-latitude winters and the tropical tropopause. Laboratory spectroscopy and calculations yield wavelength- and temperature-dependent refractive indices for the H2SO4-H20 droplets. These permit derivation of particle size information from measured optical depth spectra, for comparison to impactor and optical-counter measurements. All three techniques paint a generally consistent picture of the evolution of R(sub eff), the effective radius. In the first month after the eruption, although particle numbers increased greatly, R(sub eff) outside the tropical core was similar to preeruption values of approx. 0.1 to 0.2 microns, because numbers of both small (r < 0.2 microns) and large (r > 0.6 microns) particles increased. In the next 3-6 months, extracore R(sub eff) increased to approx. 0.5 microns, reflecting particle growth through condensation and coagulation. Most data show that R(sub eff) continued to increase for about 1 year after the eruption. R(sub eff) values up to 0.6 - 0.8 microns or more are consistent with 0.38 - 1 micron optical depth spectra in middle to late 1992 and even later. However, in this period, values from in situ measurements are somewhat less. The difference might reflect in situ undersampling of the very few largest particles, insensitivity of optical depth spectra to the smallest particles, or the inability of flat spectra to place an upper limit on particle size. Optical depth spectra extending to wavelengths lambda > 1 micron are required to better constrain R(sub eff), especially for R(sub eff) > 0.4 microns. Extinction spectra computed from in situ size distributions are consistent with optical depth measurements; both show initial spectra with lambda(sub max) <= 0.42 microns, thereafter increasing to 0.78 <= lambda(sub max) <= 1 micron. Not until 1993 do spectra begin to show a clear return to the preeruption signature of lambda(sub max) <= 0.42 microns. The twin signatures of large R(sub eff) (> 0.3 microns) and relatively flat extinction spectra (0.4 - 1 microns) are among the longest-lived indicators of Pinatubo volcanic influence. They persist for years after the peaks in number, mass, surface area, and optical depth at all wavelengths <= 1 microns. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between global maps of 0.5- and 1.0-micron optical depth derived from the Advanced Very High Resolution Radiometer (AVHRR) and Stratospheric Aerosol and Gas Experiment (SAGE) satellite sensors. However, there are important differences between the AVHRR and SAGE midvisible optical thickness products. We discuss possible reasons for these differences and how they might be resolved.
Three-dimensional digital mapping of the optic nerve head cupping in glaucoma
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Ramirez, Manuel; Morales, Jose
1992-08-01
Visualization of the optic nerve head cupping is clinically achieved by stereoscopic viewing of a fundus image pair of the suspected eye. A novel algorithm for three-dimensional digital surface representation of the optic nerve head, using fusion of stereo depth map with a linearly stretched intensity image of a stereo fundus image pair, is presented. Prior to depth map acquisition, a number of preprocessing tasks including feature extraction, registration by cepstral analysis, and correction for intensity variations are performed. The depth map is obtained by using a coarse to fine strategy for obtaining disparities between corresponding areas. The required matching techniques to obtain the translational differences in every step, uses cepstral analysis and correlation-like scanning technique in the spatial domain for the finest details. The quantitative and precise representation of the optic nerve head surface topography following this algorithm is not computationally intensive and should provide more useful information than just qualitative stereoscopic viewing of the fundus as one of the diagnostic criteria for diagnosis of glaucoma.
NASA Astrophysics Data System (ADS)
Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.
2013-03-01
The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).
NASA Astrophysics Data System (ADS)
Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian
2016-03-01
In our previous reports we demonstrated a novel Fourier domain optical coherence tomography method, Master Slave optical coherence tomography (MS-OCT), that does not require resampling of data and can deliver en-face images from several depths simultaneously. While ideally suited for delivering information from a selected depth, the MS-OCT has been so far inferior to the conventional FFT based OCT in terms of time of producing cross section images. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real-time by assembling several T-scans from different depths. We analyze the conditions that ensure a real-time B-scan imaging operation, and demonstrate in-vivo real-time images from human fovea and the optic nerve, of comparable resolution and sensitivity to those produced using the traditional Fourier domain based method.
NASA Technical Reports Server (NTRS)
Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.
1991-01-01
The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.
NASA Technical Reports Server (NTRS)
Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.;
1995-01-01
We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.
Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols
NASA Astrophysics Data System (ADS)
Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.
2002-05-01
Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and settling of the aerosol, thus this analysis allowed to get a qualitative relation with trajectories and transport models. An additional finding is that except for the dust storms, the aerosol optical properties defined by fine particles, i.e. product of urban pollution. Possible explanations for this situation are the pollution sources in the Israeli Mediterranean coast, where population and industrial centers are concentrated, and long-range transport of polluted air masses from the European region.
Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process.
Jin, Jonghan; Kim, Jae Wan; Kang, Chu-Shik; Kim, Jong-Ahn; Lee, Sunghun
2012-02-27
We have proposed and demonstrated a novel method to measure depths of through silicon vias (TSVs) at high speed. TSVs are fine and deep holes fabricated in silicon wafers for 3D semiconductors; they are used for electrical connections between vertically stacked wafers. Because the high-aspect ratio hole of the TSV makes it difficult for light to reach the bottom surface, conventional optical methods using visible lights cannot determine the depth value. By adopting an optical comb of a femtosecond pulse laser in the infra-red range as a light source, the depths of TSVs having aspect ratio of about 7 were measured. This measurement was done at high speed based on spectral resolved interferometry. The proposed method is expected to be an alternative method for depth inspection of TSVs.
Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000
NASA Technical Reports Server (NTRS)
McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)
2002-01-01
The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.
Designs for optimizing depth of focus and spot size for UV laser ablation
NASA Astrophysics Data System (ADS)
Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long
2010-11-01
The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.
Micromachined array tip for multifocus fiber-based optical coherence tomography.
Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex
2004-08-01
High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.
Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.
2015-06-01
Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.
Irradiance attenuation coefficient in a stratified ocean - A local property of the medium
NASA Technical Reports Server (NTRS)
Gordon, H. R.
1980-01-01
The influence of optically important constituents of water on the absorption (a) and scattering (b) coefficients and the backscattering probability is considered, with emphasis placed on measuring the volume scattering function (B/theta/). Two stratification models are examined; one in which the phase function (B(theta)/b) is depth independent and only b/c is allowed to vary with optical depth, and the other in which both b/c and the phase function depend on depth. The results demonstrate that Gordon's (1977) technique of estimating a and b is applicable without change to a stratified ocean.
NASA Astrophysics Data System (ADS)
Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum
2016-06-01
A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon
2016-07-01
Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.
Front lighted optical tooling method and apparatus
Stone, William J.
1985-06-18
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.
NASA Astrophysics Data System (ADS)
Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.
2016-08-01
Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.
NASA Astrophysics Data System (ADS)
Baumgart, M.; Druml, N.; Consani, M.
2018-05-01
This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens) are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.
Effects of data assimilation on the global aerosol key optical properties simulations
NASA Astrophysics Data System (ADS)
Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu
2016-09-01
We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.
Optical clearing of vaginal tissues
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2017-02-01
Near-IR laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, undesirable thermal insult to vaginal wall was predicted. This study explores whether an optical clearing agent (OCA) can improve optical penetration depth and completely preserve vaginal wall during subsurface treatment of endopelvic fascia. Several OCA mixtures were tested, and 100% glycerol was found to be optimal. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations of thermal damage to tissue using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37 °C after 30 min. Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral thermal damage simulations were performed. MC model showed improved energy deposition in endopelvic fascia using OCA. Without OCA, 62, 37, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, compared with 50, 49, and 1% with OCA. Use of OCA also yielded 0.5 mm increase in treatment depth, allowing potential thermal tissue remodeling at 3 mm depth.
Cloud Physics Lidar Measurements During the SAFARI-2000 Field Campaign
NASA Technical Reports Server (NTRS)
McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, Stan; Starr, David OC. (Technical Monitor)
2001-01-01
A new remote sensing instrument, the Cloud Physics Lidar (CPL) has been built for use on the ER-2 aircraft. The first deployment for CPL was the SAFARI-2000 field campaign during August-September 2000. The CPL is a three-wavelength lidar designed for studies of cirrus, subvisual cirrus, and boundary layer aerosols. The CPL utilizes a high repetition rate, low pulse energy laser with photon counting detectors. A brief description of the CPL instrument will be given, followed by examples of CPL data products. In particular, examples of aerosol backscatter, including boundary layer smoke and cirrus clouds will be shown. Resulting optical depth estimates derived from the aerosol measurements will be shown. Comparisons of the CPL optical depth and optical depth derived from microPulse Lidar and the AATS-14 sunphotomer will be shown.
Solar radiation on Mars: Update 1991
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.
NASA Astrophysics Data System (ADS)
Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.
2012-09-01
The optical depth sensor (ODS) is designed to retrieve the optical depth of the dust layer and to characterize the high altitude clouds on Mars. It was developped initially for the mission MARS 96, and also was included in the payload of several other missions. The sensor was finally built and used for a field experiment in Africa in order to validate the concept and test the performance. In this work we present main principle of the retrieval, the instrumental concept and the result of the tests performed during the 2004-2005 winter field experiment. It is now included in the package DREAM, which is part of the payload of the EDM on Mars 2016 and associated to two terrestrial campaigns, in tropical environment (Brasil) and in the arctic environment.
Profilometric characterization of DOEs with continuous microrelief
NASA Astrophysics Data System (ADS)
Korolkov, V. P.; Ostapenko, S. V.; Shimansky, R. V.
2008-09-01
Methodology of local characterization of continuous-relief diffractive optical elements has been discussed. The local profile depth can be evaluated using "approximated depth" defined without taking a profile near diffractive zone boundaries into account. Several methods to estimate the approximated depth have been offered.
Impact of Assimilated and Interactive Aerosol on Tropical Cyclogenesis
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, K. M.; daSilva, A.; Matsui, T.
2014-01-01
This article investigates the impact 3 of Saharan dust on the development of tropical cyclones in the Atlantic. A global data assimilation and forecast system, the NASA GEOS-5, is used to assimilate all satellite and conventional data sets used operationally for numerical weather prediction. In addition, this new GEOS-5 version includes assimilation of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis so obtained comprises atmospheric quantities and a realistic 3-d aerosol and cloud distribution, consistent with the meteorology and validated against Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data. These improved analyses are used to initialize GEOS-5 forecasts, explicitly accounting for aerosol direct radiative effects and their impact on the atmospheric dynamics. Parallel simulations with/without aerosol radiative effects show that effects of dust on static stability increase with time, becoming highly significant after day 5 and producing an environment less favorable to tropical cyclogenesis.
Stratospheric Smoke With Unprecedentedly High Backscatter Observed by Lidars Above Southern France
NASA Astrophysics Data System (ADS)
Khaykin, S. M.; Godin-Beekmann, S.; Hauchecorne, A.; Pelon, J.; Ravetta, F.; Keckhut, P.
2018-02-01
Extreme pyroconvection events triggered by wildfires in northwest Canada and United States during August 2017 resulted in vast injection of combustion products into the stratosphere. The plumes of stratospheric smoke were observed by lidars at Observatoire de Haute-Provence (OHP) for many weeks that followed the fires as distinct aerosol layers with backscatter reaching unprecedentedly high values for a nonvolcanic aerosol layer. We use spaceborne CALIOP lidar to track the spatiotemporal evolution of the smoke plumes before their detection at OHP. A remarkable agreement between ground- and spaced-based lidars sampling the same smoke plume on a particular date allowed us to extrapolate the OHP observations to a regional scale, where CALIOP reported extreme aerosol optical depth values as high as 0.21. On a monthly time scale, the lidar observations indicate that boreal summer 2017 forest fires had a hemisphere-scale impact on stratospheric aerosol load, similar to that of moderate volcanic eruptions.
Comparison of optical coherence tomography and fundus photography for measuring the optic disc size.
Neubauer, Aljoscha S; Krieglstein, Tina R; Chryssafis, Christos; Thiel, Martin; Kampik, Anselm
2006-01-01
To assess the agreement and repeatability of optic nerve head (ONH) size measurements by optical coherence tomography (OCT) as compared to conventional planimetry of fundus photographs in normal eyes. For comparison with planimetry the absolute size of the ONH of 25 eyes from 25 normal subjects were measured by both OCT and digital fundus photography (Zeiss FF camera 450). Repeatability of automated Stratus OCT measurements were investigated by repeatedly measuring the optic disc in five normal subjects. Mean disc size was 1763 +/- 186 vertically and 1632 +/- 160 microm horizontally on planimetry. On OCT, values of 1772 +/- 317 microm vertically (p = 0.82) and a significantly smaller horizontal diameter of 1492 +/- 302 microm (p = 0.04) were obtained. The 95% limits of agreement were (-546 microm; +527 microm) for vertical and (-502 microm; +782 microm) for horizontal planimetric compared to OCT measurements. In some cases large discrepancies existed. Repeatability of automatic measurements of the optic disc by OCT was moderately good with intra-class correlation coefficients (ICC) of 0.78 horizontally and 0.83 vertically. The coefficient of repeatability indicating instrument precision was 80 microm for horizontal and 168 microm for vertical measurements. OCT can be used to determine optic disc margins in moderate agreement with planimetry in normal subjects. However, in some cases significant disagreement with photographic assessment may occur making manual inspection advisable. Automatic disc detection by OCT is moderately repeatable.
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics
NASA Astrophysics Data System (ADS)
Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej
2015-01-01
The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.
NASA Astrophysics Data System (ADS)
McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.
2002-12-01
There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types. Acoustic backscatter imagery corresponds well with the AVIRIS data in the middle to outer study area, implying a close correspondence between seafloor character and optical reflectance. AVIRIS data in the inner study area show poorer correspondence with the acoustic facies, indicating greater water column effects (turbidity). Acoustic backscatter as a proxy for bottom albedo, in conjunction with multibeam bathymetry data, will allow for more precise modeling of the optical signal in coastal environments.
Multiwavelength Optical Switch Based on Controlling the Fermi Energy of Graphene
NASA Astrophysics Data System (ADS)
Jiang, Xiangqian; Bao, Jinlin; Sun, Xiudong
2018-04-01
We propose a graphene-dielectric-graphene corrugated structure to achieve a multiwavelength optical switch. The transmission and reflection properties of the structure are discussed, and multiultranarrow resonant peaks in the transmission and reflection spectra are found. By adjusting the Fermi energy of graphene, the resonant peaks will shift obviously. Based on this shifting property we present an active multiwavelength optical switch and achieve the on-off of four different wavelengths simultaneously. We also discuss the modulation depths of transmission and reflection. For the transmission of all four wavelengths we can get a very high modulation depth close to 100%.
Optical coherence tomography - principles and applications
NASA Astrophysics Data System (ADS)
Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.
2003-02-01
There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.
Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues.
Kraft, James M; Maloney, Shannon I; Brainard, David H
2002-01-01
Two experiments were conducted to study how scene complexity and cues to depth affect human color constancy. Specifically, two levels of scene complexity were compared. The low-complexity scene contained two walls with the same surface reflectance and a test patch which provided no information about the illuminant. In addition to the surfaces visible in the low-complexity scene, the high-complexity scene contained two rectangular solid objects and 24 paper samples with diverse surface reflectances. Observers viewed illuminated objects in an experimental chamber and adjusted the test patch until it appeared achromatic. Achromatic settings made tinder two different illuminants were used to compute an index that quantified the degree of constancy. Two experiments were conducted: one in which observers viewed the stimuli directly, and one in which they viewed the scenes through an optical system that reduced cues to depth. In each experiment, constancy was assessed for two conditions. In the valid-cue condition, many cues provided valid information about the illuminant change. In the invalid-cue condition, some image cues provided invalid information. Four broad conclusions are drawn from the data: (a) constancy is generally better in the valid-cue condition than in the invalid-cue condition: (b) for the stimulus configuration used, increasing image complexity has little effect in the valid-cue condition but leads to increased constancy in the invalid-cue condition; (c) for the stimulus configuration used, reducing cues to depth has little effect for either constancy condition: and (d) there is moderate individual variation in the degree of constancy exhibited, particularly in the degree to which the complexity manipulation affects performance.
Salinas, Santo V; Chew, Boon N; Liew, Soo C
2009-03-10
The role of aerosols in climate and climate change is one of the factors that is least understood at the present. Aerosols' direct interaction with solar radiation is a well understood mechanism that affects Earth's net radiative forcing. However, quantifying its magnitude is more problematic because of the temporal and spatial variability of aerosol particles. To enhance our understanding of the radiative effects of aerosols on the global climate, Singapore has joined the AERONET (Aerosol Robotic Network) worldwide network by contributing ground-based direct Sun measurements performed by means of a multiwavelength Sun-photometer instrument. Data are collected on an hourly basis, then are uploaded to be fully screened and quality assured by AERONET. We use a one year data record (level 1.5/2.0) of measured columnar atmospheric optical depth, spanning from November 2006 to October 2007, to study the monthly and seasonal variability of the aerosol optical depth and the Angström exponent. We performed independent retrievals of these parameters (aerosol optical depth and Angström exponent) by using the photometer's six available bands covering the near-UV to near-IR (380-1080 nm). As a validation, our independent retrievals were compared with AERONET 1.5/2.0 level direct Sun product.
NASA Astrophysics Data System (ADS)
Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.
2016-08-01
A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.
Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis
NASA Astrophysics Data System (ADS)
Bo, En; Liu, Linbo
2016-10-01
We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.
ERIC Educational Resources Information Center
Raines, Jessie M.
2017-01-01
The intent of this qualitative case study was to take an in-depth look at the perceived benefit or lack thereof of a programmed reading curriculum for students with moderate cognitive disabilities within a Title 1 inner-city school. The rationale for the study was that students with moderate cognitive disabilities have difficulties learning to…
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Livingston, J. M.; Puesche, R. F.; Pollack, J. B.; Brooks, S.; Hamill, P.; Hughes, J.; Thomason, L.; Stowe, L.; Deshler, T.;
1995-01-01
We combine space, air, and ground measurements to develop a composite picture of the post-Pinatubo aerosol, and assess the consistency and uncertainties of various measurement and retrieval techniques. impactor and optical counter measurements, as well as retrievals from optical depth spectra, paint a generally consistent picture of the evolution of particle effective radii, R(sub eff). In the first month after the eruption, although particle numbers increased by orders of magnitude, R(sub eff) was similar to the preeruption value of 4.2 micrometers, because both small (r less than 0.25 micrometers) and large (r greater than 0.6 micrometers) particles increased in number, Over the next 3-6 months, R(sub eff) increased rapidly to about 0.5 micrometers. In general, R(sub eff) continued to increase for about a year after the eruption. The peak wavelength of optical depth spectra increased from initial values of less than 0.42 micrometers to values between 0.78 and 1 micrometer. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between the global maps of 0.5 and 1.0-micrometer optical depth derived from the AVHRR and SAGE satellite measurements. It also sets a context for evaluating remaining uncertainties in each of these satellite data products. We also make consensus recommendations for particle composition, shape, and temperature- and wavelength-dependent refractive index, and show how the latter effect on backscatter spectra can influence particle sizes retrieved from multiwavelength lidar measurements.
NASA Astrophysics Data System (ADS)
Razani, Marjan; Soudagar, Yasaman; Yu, Karen; Galbraith, Christopher M.; Webster, Paul J. L.; Van Vlack, Cole; Sun, Cuiru; Mariampillai, Adrian; Leung, Michael K. K.; Standish, Beau; Kiehl, Tim-Rasmus; Fraser, James M.; Yang, Victor X. D.
2013-03-01
Precision depth control of bone resection is necessary for safe surgical procedures in the spine. In this paper, we compare the control and quality of cutting bovine tail bone, as an ex vivo model of laminectomy and bony resection simulating spinal surgery, planned with micro-CT data and executed using two approaches: (a) mechanical milling guided by optical topographical imaging (OTI) and (b) optical milling using closed-loop inline coherent imaging (ICI) to monitor and control the incision depth of a high-power 1070 nm fiber laser in situ. OTI provides the in situ topology of the 2-dimensional surface of the bone orientation in the mechanical mill which is registered with the treatment plan derived from the micro-CT data. The coregistration allows the plan to be programmed into the mill which is then used as a benchmark of current surgical techniques. For laser cutting, 3D optical land marking with coaxial camera vision and the ICI system is used to coregister the treatment plan. The unstable, carbonization-mediated ablation behaviour of 1070 nm light and the unknown initial geometry of bone leads to unpredictable ablation which substantially limits the depth accuracy of open-loop cutting. However, even with such a non-ideal cutting laser, we demonstrate that ICI provides in situ high-speed feedback that automatically and accurately limits the laser's cut depth to effectively create an all-optical analogue to the mechanical mill.
NASA Astrophysics Data System (ADS)
Sockol, Alyssa; Small Griswold, Jennifer D.
2017-08-01
Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.
Yuvacı, İsa; Pangal, Emine; Bayram, Nurettin; Yüksel, Sevgi Arık; Alabay, Bedirhan; Ağadayı, Alperen; Sırakaya, Ender; Gülhan, Ahmet
2016-01-01
Evaluation of the nerve fiber thicknesses of the macula, choroid, and retina using the apnea-hypopnea index in individuals with obstructive sleep apnea syndrome (OSAS) without systemic components. Prospective, controlled study. The central macular, choroidal, and retinal nerve fiber layer (RNFL) thicknesses were evaluated using enhanced depth imaging-spectral domain optical coherence tomography in individuals with OSAS. In people with severe OSAS who had received treatment, posterior ocular structures were examined over 3 months (4th and 12th weeks), and changes were evaluated. Only the right eyes of the participants were evaluated in the study. A total of 72 people were involved in the study, with 18 in the control group and 19 with mild, 16 with moderate, and 19 with severe OSAS. No significant difference was found among the groups in terms of demographic measures. No significant differences were found among the groups in terms of the measures of central macular, central subfoveal choroidal (CSCT), temporal choroidal, nasal choroidal, and RNFL thicknesses. In severe OSAS cases in which treatment was administered, although subjective clinical recovery was observed, statistically significant thinning was detected during the 3-month follow-up period in the CSCT, general RNFL, as well as in the inferior and superior nasal quadrants, and temporal superior quadrant (p=0.005, p=0.009, p=0.039, p=0.003, and p=0.02, respectively). In the group with severe OSAS, thinning in some posterior ocular tissues was observed. Although patients with severe OSAS may experience clinical recovery, we recommend that they would be followed up in terms of ocular ischemic injury.
Wu, Ying; He, Ji C.; Zhou, Xing T.; Chu, Ren Y.
2015-01-01
Purpose To explore the relationship between ablation parameters of myopic laser surgery and measurement area of wavefront aberration (WA) with Hartmann-Shack wavefront sensor. Methods 58 subjects undergone myopic laser surgeries and 74 uncorrected myopic subjects were enrolled in this experiment. The laser ablation parameters were obtained from surgical records, which included spherical error (Rx), depth, and optical zone (OZ) of ablation. The measured area of WA was tested by the WASCA, and the real pupil size was tested by Pentacam. The corneal eccentricity (E value) and curvature was also measured with the Pentacam. All the measurements were performed under mydriatic condition. Results For uncorrected myopic eyes, the measured area of WA was similar with the real pupil size. But for the corrected eyes, the measured area of WA was smaller than the real pupil size with a mean difference of 0.66 ± 0.54 mm for moderate myopia (t = 6.45, p < 0.0001) and 1.76 ± 0.55 mm for high myopia (t = 18.92, p < 0.0001), but not for mild myopia. The Rx (t = -3.20, p = 0.0017), OZ (t = 64.4, p < 0.0001) and postoperative corneal E value (t = 2.52, p = 0.017) were the independent factors of measured area of WA. Measured area of WA = -0.81*Rx + 1.13*OZ + 0.49*postoperative corneal E value (r2 = 0.997). Conclusions The WASCA has a limitation in measuring wavefront aberration over the whole pupil area when it’s used for patients received myopic laser surgery. The measured area is smaller than the real pupil size and depends linearly on ablation depth, optical zone and corneal eccentricity. PMID:25692489
Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions
NASA Astrophysics Data System (ADS)
Gupta, Pawan; Remer, Lorraine A.; Levy, Robert C.; Mattoo, Shana
2018-05-01
In addition to the standard resolution product (10 km), the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6 (C006) data release included a higher resolution (3 km). Other than accommodations for the two different resolutions, the 10 and 3 km Dark Target (DT) algorithms are basically the same. In this study, we perform global validation of the higher-resolution aerosol optical depth (AOD) over global land by comparing against AErosol RObotic NETwork (AERONET) measurements. The MODIS-AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2 × AOD), with a high correlation (R = 0.87). The scatter is not random, but exhibits a mean positive bias of ˜ 0.06 for Terra and ˜ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e., true AOD), but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with Terra MODIS showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.
Validation of MODIS aerosol optical depth product over China using CARSNET measurements
NASA Astrophysics Data System (ADS)
Xie, Yong; Zhang, Yan; Xiong, Xiaoxiong; Qu, John J.; Che, Huizheng
2011-10-01
This study evaluates Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) retrievals with ground measurements collected by the China Aerosol Remote Sensing NETwork (CARSNET). In current stage, the MODIS Collection 5 (C5) AODs are retrieved by two distinct algorithms: the Dark Target (DT) and the Deep Blue (DB). The CARSNET AODs are derived with measurements of Cimel Electronique CE-318, the same instrument deployed by the AEROsol Robotic Network (AEROENT). The collocation is performed by matching each MODIS AOD pixel (10 × 10 km 2) to CARSNET AOD mean within 7.5 min of satellite overpass. Four-year comparisons (2005-2008) of MODIS/CARSNET at ten sites show the performance of MODIS AOD retrieval is highly dependent on the underlying land surface. The MODIS DT AODs are on average lower than the CARSNET AODs by 6-30% over forest and grassland areas, but can be higher by up to 54% over urban area and 95% over desert-like area. More than 50% of the MODIS DT AODs fall within the expected error envelope over forest and grassland areas. The MODIS DT tends to overestimate for small AOD at urban area. At high vegetated area it underestimates for small AOD and overestimates for large AOD. Generally, its quality reduces with the decreasing AOD value. The MODIS DB is capable of retrieving AOD over desert but with a significant underestimation at CARSNET sites. The best retrieval of the MODIS DB is over grassland area with about 70% retrievals within the expected error. The uncertainties of MODIS AOD retrieval from spatial-temporal collocation and instrument calibration are discussed briefly.
Arkian, F; Nicholson, S E
2017-12-01
In this study, three different sensors of satellites including the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), and Total Ozone Mapping Spectrometer (TOMS) were used to study spatial and temporal variations of aerosols over ten populated cities in Iran. Also, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for analyzing the origins of air masses and their trajectory in the area. An increasing trend in aerosol concentration was observed in the most studied cities in Iran during 1979-2016. The cities in the western part of Iran had the highest annual mean of aerosol concentration. The highest aerosol optical depth (AOD) value (0.76 ± 0.51) was recorded in May 2012 over Ahvaz, and the lowest value (0.035 ± 0.27) was recorded in December 2013 over Tabriz. After Ahvaz, the highest AOD value was found over Tehran (annual mean 0.11 ± 0.20). The results show that AOD increases with increasing industrial activities, but the increased frequency of aerosols due to land degradation and desertification is more powerful in Iran. The trajectory analysis by the HYSPLIT model showed that the air masses come from Egypt, Syria, and Lebanon and passed over the Iraq and then reached to Iran during summer. Aerosol radiative forcing (ARF) has been analyzed for Zanjan (Aerosol Robotic Network site) during 2010-2013. The ARF at surface and top of the atmosphere was found to be ranging from - 79 to - 10W m -2 (average - 33.45 W m -2 ) and from - 25 to 6 W m -2 (average - 12.80 W m -2 ), respectively.
Eocene Hyperthermal Climate Sensitivity to Greenhouse Gas and Aerosol Forcing
NASA Astrophysics Data System (ADS)
Winguth, A. M. E.; Hughlett, T. M.; Brown, M.; Rothstein, M.; Shields, C. A.; Winguth, C.
2017-12-01
A series of DeepMIP climate sensitivity experiments have been carried out with the Community Earth System Model CESM1.2 to evaluate how changes in the radiative forcing could have contributed to explain Eocene hyperthermal events. A rise in Eocene greenhouse gas forcing could have been linked to an increase in volcanism and associated destabilization of marine carbon reservoirs by dissociation of clathrathes, reorganization of the marine microbial loop, or terrestrial sources from e.g. wetlands. Such environmental changes could potentially have led to additional biophysical feedbacks altering the cloud aerosol optical depth for example by alteration of marine plankton productivity and DMS emissions to the atmosphere. The analysis of our simulations suggests a substantial warming from 3x to 12x CO2 PAL, reaching moderate temperatures of up to 20 °C over Antarctica and in the Article realm in the most extreme scenario, consistent to proxy estimates in a high CO2 world. The lower equator-to-pole temperature gradient compared to present-day is due to the lack of an ice sheet, an increase in greenhouse gases, and a lower cloud optical depth. The climate simulations suggest an intensified hydrological cycle with higher precipitation in the tropics, particularly over the Indian Eocene continent, and in mid-latitudes, whereas mega-droughts are prominent in the subtropics, particularly in Africa and South America. The Eocene geography (the closure of the Drake Passage and the more southern location of Australia) and a lower-than-present meridional temperature gradient contribute to a much weaker surface ocean circulation near the Antarctic continent as compared to the current pronounced Antarctic Circumpolar Current.
Deriving Aerosol Characteristics Over the Ocean from MODIS: Are We There Yet?
NASA Astrophysics Data System (ADS)
Remer, L. A.; Tanre, D.
2006-12-01
The MODerate resolution Imaging Spectroradiometer (MODIS) has been successfully retrieving aerosol characteristics over the ocean since shortly after the launch of the Terra satellite at the end of 1999. With its wide spectral range (0.47 to 2.13 μm) MODIS is able to derive spectral aerosol optical depth and information on the size of the aerosol particles. The products were quickly validated, the validation confirmed, and the products are now in wide use across the scientific community. The MODIS aerosol products over ocean are an outstanding success story, but are we done? As the years progress and we gain experience in using the products, evaluating them and nudging even greater information from them, we discover new challenges. Firstly, we continue to find issues affecting the integrity of the products we now produce. We need to find methods to reduce the uncertainty introduced by clouds that go beyond the classical concept of cloud masking and cloud contamination. Some of these novel cloud effects on aerosol retrieval include 3D scattering of light from cloud sides. Another issue that needs resolution is the uncertainty introduced by nonspherical particle shapes. Secondly, when MODIS was new we were excited to have spectral optical depth and particle size information. Now we find that aerosol characterization is still incomplete. We need more information. Are we there yet? Well, no, but we can see the future. To meet these new challenges we will need information beyond the spectral radiances that MODIS measures. We can see the future of satellite derivation of aerosol characteristics, and it looks more and more like a multi-sensor future.
Topcu-Yilmaz, Pinar; Akyurek, Nesibe; Erdogan, Erkan
2018-06-23
The purpose of this study was to evaluate the macular choroidal thickness in obese children with and without insulin resistance (IR). Thirty-six patients with obesity and 26 healthy volunteers were included in this cross-sectional study. The choroidal thickness was measured with enhanced depth imaging optical coherence tomography (EDI-OCT) at the fovea and at positions 500 μm, 1000 μm, 1500 μm nasal and temporal to the fovea. The choroidal thickness measurements of the groups were compared and the correlation between the homeostasis model assessment of insulin resistance (HOMA-IR) and choroidal thickness values was evaluated. The average choroidal thickness in the obese group was significantly lower than that of controls at locations 1000 μm (303.31±58.52 vs. 340.58±69.47, p=0.026) and 1500 μm (284.14±65.06 vs. 336.85±71.37, p=0.004) temporal to the fovea. A subgroup analysis depending on the presence of IR revealed that the choroidal thickness measurements at all positions were thinner in obese children without IR compared to children with IR and healthy controls. This thinning reached a statistical significance at locations 500 μm temporal, 1000 μm temporal and 1500 μm temporal to the fovea (p=0.03, p=0.009 and p=0.006; respectively). There was a moderate correlation between the choroidal thickness measurements and HOMA-IR values (r-values between 0.37 and 0.48; p<0.05). Our results suggest that obesity and IR may have an influence on the choroidal thickness in children. Longitudinal studies will clarify whether these choroidal changes are progressive and are a sign of microvascular dysfunction in childhood obesity.
NASA Astrophysics Data System (ADS)
Weber, S. A.; Engel-Cox, J. A.; Hoff, R. M.; Prados, A.; Zhang, H.
2008-12-01
Integrating satellite- and ground-based aerosol optical depth (AOD) observations with surface total fine particulate (PM2.5) and sulfate concentrations allows for a more comprehensive understanding of local- and urban-scale air quality. This study evaluates the utility of integrated databases being developed for NOAA and EPA through the 3D-AQS project by examining the relationship between remotely-sensed AOD and PM2.5 concentrations for each platform for the summer of 2004 and the entire year of 2005. We compare results for the Baltimore, MD/Washington, DC metropolitan air shed, incorporating AOD products from the Terra and GOES-12 satellites, AERONET sunphotometer, and ground-based lidar, and PM2.5 concentrations from five surface monitoring sites. The satellite-derived products include AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR), as well as the GOES Aerosol/Smoke Product (GASP). The vertical profile of lidar backscatter is used to retrieve the planetary boundary layer (PBL) height in an attempt to capture only that fraction of the AOD arising from near surface aerosols. Adjusting the AOD data using platform- and season-specific ratios, calculated using the parameters of the regression equations, for two case studies resulted in a more accurate representation of surface PM2.5 concentrations when compared to a constant ratio that is currently being used in the NOAA IDEA product. This work demonstrates that quantitative relationships between remotely-sensed and in-situ aerosol observations in an integrated database can be computed and applied to improve the use of remotely-sensed observations for estimating surface concentrations.
NASA Astrophysics Data System (ADS)
Tang, Qingxin; Bo, Yanchen; Zhu, Yuxin
2016-04-01
Merging multisensor aerosol optical depth (AOD) products is an effective way to produce more spatiotemporally complete and accurate AOD products. A spatiotemporal statistical data fusion framework based on a Bayesian maximum entropy (BME) method was developed for merging satellite AOD products in East Asia. The advantages of the presented merging framework are that it not only utilizes the spatiotemporal autocorrelations but also explicitly incorporates the uncertainties of the AOD products being merged. The satellite AOD products used for merging are the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Level-2 AOD products (MOD04_L2) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue Level 2 AOD products (SWDB_L2). The results show that the average completeness of the merged AOD data is 95.2%,which is significantly superior to the completeness of MOD04_L2 (22.9%) and SWDB_L2 (20.2%). By comparing the merged AOD to the Aerosol Robotic Network AOD records, the results show that the correlation coefficient (0.75), root-mean-square error (0.29), and mean bias (0.068) of the merged AOD are close to those (the correlation coefficient (0.82), root-mean-square error (0.19), and mean bias (0.059)) of the MODIS AOD. In the regions where both MODIS and SeaWiFS have valid observations, the accuracy of the merged AOD is higher than those of MODIS and SeaWiFS AODs. Even in regions where both MODIS and SeaWiFS AODs are missing, the accuracy of the merged AOD is also close to the accuracy of the regions where both MODIS and SeaWiFS have valid observations.
Optics of the Offshore Columbia River Plume from Glider Observations and Satellite Imagery
NASA Astrophysics Data System (ADS)
Saldias, G.; Shearman, R. K.; Barth, J. A.; Tufillaro, N.
2016-02-01
The Columbia River (CR) is the largest source of freshwater along the U.S. Pacific coast. The resultant plume is often transported southward and offshore forming a large buoyant feature off Oregon and northern California in spring-summer - the offshore CR plume. Observations from autonomous underwater gliders and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery are used to characterize the optics of the offshore CR plume off Newport, Oregon. Vertical sections, under contrasting river flow conditions, reveal a low-salinity and warm surface layer of 20-25 m (fresher in spring and warmer in summer), high Colored Dissolved Organic Matter (CDOM) concentration and backscatter, and associated with the base of the plume high chlorophyll fluorescence. Plume characteristics vary in the offshore direction as the warm and fresh surface layer thickens progressively to an average 30-40 m of depth 270-310 km offshore; CDOM, backscatter, and chlorophyll fluorescence decrease in the upper 20 m and increase at subsurface levels (30-50 m depth). MODIS normalized water-leaving radiance (nLw(λ)) spectra for CR plume cases show enhanced water-leaving radiance at green bands (as compared to no-CR plume cases) up to 154 km from shore. Farther offshore, the spectral shapes for both cases are very similar, and consequently, a contrasting color signature of low-salinity plume water is practically imperceptible from ocean color remote sensing. Empirical algorithms based on multivariate regression analyses of nLw(λ) plus Sea Surface Temperature (SST) data produce more accurate results detecting offshore plume waters than previous studies using single visible bands (e.g. adg(412) or nLw(555)).
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2014-01-01
Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.
Global cloud database from VIRS and MODIS for CERES
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Young, David F.; Wielicki, Bruce A.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Heck, Patrick W.; Dong, Xiquan
2003-04-01
The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.
Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju
2018-04-25
Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmermans, Eddy Marcel Elvire; Nisoli, Cristiano; Mozyrsky, Dima
Light radiated from a hot, opaque thermal emitter originates mostly from near the surface at which the object becomes opaque (the surface of last scattering). To be specific, we define the “optical surface” as the surface at which the optical depth, as observed from a detector, takes on the value of 1. The optical depth along a line of sight depends on the wavelength dependent. Accumulating light in different spectral bands, spectral detector then records light from different surfaces, a structure that we can picture somewhat like the layers of an onion. The theoretical framework that predicts the emitted spectralmore » signal is radioactive transfer.« less
Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J
2018-06-01
To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.
Low-Crosstalk Composite Optical Crosspoint Switches
NASA Technical Reports Server (NTRS)
Pan, Jing-Jong; Liang, Frank
1993-01-01
Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.
Hemodynamic monitoring in different cortical layers with a single fiber optical system
NASA Astrophysics Data System (ADS)
Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya
2018-02-01
Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.
Diurnal variations in optical depth at Mars
NASA Technical Reports Server (NTRS)
Colburn, D. S.; Pollack, J. B.; Haberle, R. M.
1989-01-01
Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.
NASA Astrophysics Data System (ADS)
Paul, Akshay; Chang, Theodore H.; Chou, Li-Dek; Ramalingam, Tirunelveli S.
2016-03-01
Evaluation of neurodegenerative disease often requires examination of brain morphology. Volumetric analysis of brain regions and structures can be used to track developmental changes, progression of disease, and the presence of transgenic phenotypes. Current standards for microscopic investigation of brain morphology are limited to detection of superficial structures at a maximum depth of 300μm. While histological techniques can provide detailed cross-sections of brain structures, they require complicated tissue preparation and the ultimate destruction of the sample. A non-invasive, label-free imaging modality known as Optical Coherence Tomography (OCT) can produce 3-dimensional reconstructions through high-speed, cross-sectional scans of biological tissue. Although OCT allows for the preservation of intact samples, the highly scattering and absorbing properties of biological tissue limit imaging depth to 1-2mm. Optical clearing agents have been utilized to increase imaging depth by index matching and lipid digestion, however, these contemporary techniques are expensive and harsh on tissues, often irreversibly denaturing proteins. Here we present an ideal optical clearing agent that offers ease-of-use and reversibility. Similar to how SeeDB has been effective for microscopy, our fructose-based, reversible optical clearing technique provides improved OCT imaging and functional immunohistochemical mapping of disease. Fructose is a natural, non-toxic sugar with excellent water solubility, capable of increasing tissue transparency and reducing light scattering. We will demonstrate the improved depth-resolving performance of OCT for enhanced whole-brain imaging of normal and diseased murine brains following a fructose clearing treatment. This technique potentially enables rapid, 3-dimensional evaluation of biological tissues at axial and lateral resolutions comparable to histopathology.
Walther, Andreas; Rippe, Lars; Wang, Lihong V; Andersson-Engels, Stefan; Kröll, Stefan
2017-10-01
Despite the important medical implications, it is currently an open task to find optical non-invasive techniques that can image deep organs in humans. Addressing this, photo-acoustic tomography (PAT) has received a great deal of attention in the past decade, owing to favorable properties like high contrast and high spatial resolution. However, even with optimal components PAT cannot penetrate beyond a few centimeters, which still presents an important limitation of the technique. Here, we calculate the absorption contrast levels for PAT and for ultrasound optical tomography (UOT) and compare them to their relevant noise sources as a function of imaging depth. The results indicate that a new development in optical filters, based on rare-earth-ion crystals, can push the UOT technique significantly ahead of PAT. Such filters allow the contrast-to-noise ratio for UOT to be up to three orders of magnitude better than for PAT at depths of a few cm into the tissue. It also translates into a significant increase of the image depth of UOT compared to PAT, enabling deep organs to be imaged in humans in real time. Furthermore, such spectral holeburning filters are not sensitive to speckle decorrelation from the tissue and can operate at nearly any angle of incident light, allowing good light collection. We theoretically demonstrate the improved performance in the medically important case of non-invasive optical imaging of the oxygenation level of the frontal part of the human myocardial tissue. Our results indicate that further studies on UOT are of interest and that the technique may have large impact on future directions of biomedical optics.
Abadie, S; Jardet, C; Colombelli, J; Chaput, B; David, A; Grolleau, J-L; Bedos, P; Lobjois, V; Descargues, P; Rouquette, J
2018-05-01
Human skin is composed of the superimposition of tissue layers of various thicknesses and components. Histological staining of skin sections is the benchmark approach to analyse the organization and integrity of human skin biopsies; however, this approach does not allow 3D tissue visualization. Alternatively, confocal or two-photon microscopy is an effective approach to perform fluorescent-based 3D imaging. However, owing to light scattering, these methods display limited light penetration in depth. The objectives of this study were therefore to combine optical clearing and light-sheet fluorescence microscopy (LSFM) to perform in-depth optical sectioning of 5 mm-thick human skin biopsies and generate 3D images of entire human skin biopsies. A benzyl alcohol and benzyl benzoate solution was used to successfully optically clear entire formalin fixed human skin biopsies, making them transparent. In-depth optical sectioning was performed with LSFM on the basis of tissue-autofluorescence observations. 3D image analysis of optical sections generated with LSFM was performed by using the Amira ® software. This new approach allowed us to observe in situ the different layers and compartments of human skin, such as the stratum corneum, the dermis and epidermal appendages. With this approach, we easily performed 3D reconstruction to visualise an entire human skin biopsy. Finally, we demonstrated that this method is useful to visualise and quantify histological anomalies, such as epidermal hyperplasia. The combination of optical clearing and LSFM has new applications in dermatology and dermatological research by allowing 3D visualization and analysis of whole human skin biopsies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A filter-wheel solar radiometer for atmospheric transmission studies
NASA Technical Reports Server (NTRS)
Shaw, G. E.; Peck, R. L.; Allen, G. R.
1973-01-01
A filter-wheel solar radiometer has been developed for monitoring the atmospheric optical depth at multiple narrow-wavelength intervals in the visible and near IR regions of the spectrum. Measurements of the direct solar radiations are converted to a digital format and stored in punched tape for eventual analysis by a computer. During stable clear weather condition, the instrument is capable of providing monochromatic optical depths to an estimated rms accuracy of 0.005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larin, K V; Tuchin, V V
2008-06-30
Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging ofmore » tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)« less
NASA Technical Reports Server (NTRS)
Longbothum, R. L.
1975-01-01
Stratospheric and mesospheric water vapor measurements were taken using the microwave lines at 22 GHz (22.235 GHz) and 183 GHz (183.31 GHz). The resonant cross sections for both the 22 GHz and the 183 GHz lines were used to model the optical depth of atmospheric water vapor. The range of optical depths seen by a microwave radiometer through the earth's limb was determined from radiative transfer theory. Radiometer sensitivity, derived from signal theory, was compared with calculated optical depths to determine the maximum height to which water vapor can be measured using the following methods: passive emission, passive absorption, and active absorption. It was concluded that measurements using the 22 GHz line are limited to about 50 km whereas the 183 GHz line enables measurements up to and above 100 km for water vapor mixing ratios as low as 0.1 ppm under optimum conditions.
Bottom depth and type for shallow waters: Hyperspectral observations from a blimp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, ZhongPing; Carder, K.; Steward, R.
1997-08-01
In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform formore » the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.« less
Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds
NASA Technical Reports Server (NTRS)
Torres, Omar; Bhartia, P. K.; Jethva, Hiren
2011-01-01
The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.
NASA Astrophysics Data System (ADS)
Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev
2016-09-01
We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.
Transversely polarized sub-diffraction optical needle with ultra-long depth of focus
NASA Astrophysics Data System (ADS)
Guan, Jian; Lin, Jie; Chen, Chen; Ma, Yuan; Tan, Jiubin; Jin, Peng
2017-12-01
We generated purely transversely polarized sub-diffraction optical needles with ultra-long depth of focus (DOF) by focusing azimuthally polarized (AP) beams that were modulated by a vortex 0-2 π phase plate and binary phase diffraction optical elements (DOEs). The concentric belts' radii of the DOEs were optimized by a hybrid genetic particle swarm optimization (HGPSO) algorithm. For the focusing system with the numerical aperture (NA) of 0.95, an optical needle with the full width at half maximum (FWHM) of 0.40 λ and the DOF of 6.23 λ was generated. Similar optical needles were also generated by binary phase DOEs with different belts. The results demonstrated that the binary phase DOEs could achieve smaller FWHMs and longer DOFs simultaneously. The generated needles were circularly polarized on the z-axis and there were no longitudinally polarized components in the focal fields. The radius fabrication errors of a DOE have little effect on the optical needle produced by itself. The generated optical needles can be applied to the fields of photolithography, high-density optical data storage, microscope imaging and particle trapping.
NASA Astrophysics Data System (ADS)
Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.
2012-06-01
We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z ≈ 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Lyα forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Lyα pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Lyα optical depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3σ level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over ±165 km s-1, the covering fraction of gas with Lyα optical depth greater than unity is 100+0 - 32% (66% ± 16%). Absorbers with τLyα > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with τLyα ~ 1 reside in regions where the galaxy number density is close to the cosmic mean on scales >=0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s-1, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This "finger of God" effect may be due to redshift errors, but is probably dominated by gas motions within or very close to the halos. On the other hand, on scales of 1.4-2.0 Mpc the absorption is compressed along the line of sight (with >3σ significance), an effect that we attribute to large-scale infall (i.e., the Kaiser effect). Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Déau, Estelle; Dones, Luke; Mishchenko, Michael I.; West, Robert A.; Helfenstein, Paul; Hedman, Matt M.; Porco, Carolyn C.
2018-05-01
In this paper, we continue our analysis of the saturnian ring opposition effect seen by Cassini ISS. The ring opposition effect is a peak in the rings' reflectivity caused as the directions from a spot on the rings to the observer and to the light source, respectively, converge toward zero degrees. So far, the exact origin of the ring's opposition effect is still a matter of debate. In our previous work (Déau, et al., 2013, Icarus, 226, 591-603), we compared the opposition effect morphology with the rings' optical depth and found that only the slope of the linear part of the rings' phase curves was strongly correlated with the optical depth. We interpreted this as an indication of the predominant role of interparticle shadowing at moderate phase angles (α ∼ 10-40o). More recently (Déau, 2015, Icarus, 253, 311-345), we showed that interparticle shadowing cannot explain the behavior at low phase angles (α < 1o), indirectly confirming our 2013 result. These findings led to the idea that coherent backscattering is preponderant at the smallest phase angles. Coherent backscattering depends on the microscopic scale of the regolith, and there is a growing body of evidence that regolith grain size, porosity, roughness, and composition control the opposition surge behavior for α < 1o. To test this hypothesis, we compare the opposition surge morphology to the regolith albedo and other spectral properties related to the regolith, such as water ice band depths and spectral slopes derived from Cassini VIMS data (Hedman et al., 2013, Icarus, 223, 105-130). Indeed, it has been recently proven that coherent backscattering affects the water ice band depth variations with phase angle for icy saturnian regoliths (Kolokolova et al., 2010, The Astrophysical Journal Letters, 711, L71-L74). We find that the opposition surge morphology is strongly correlated with the water ice band depth and the regolith albedo. We interpret this finding as an indication that coherent backscattering plays a role in affecting both the water ice band depths and the opposition surge at low phase angles (α < 1o). As the regolith albedo and spectral properties are related to the grain size, porosity, roughness, and composition, we try to assess which of these regolith properties are preponderant in coherent backscattering. Our study is able to narrow down the parameter space of these properties, whose values allow a good match between the angular width predicted by models of coherent backscattering and the width of the observed peak.
NASA Astrophysics Data System (ADS)
Ai, Lingyu; Kim, Eun-Soo
2018-03-01
We propose a method for refocusing-range and image-quality enhanced optical reconstruction of three-dimensional (3-D) objects from integral images only by using a 3 × 3 periodic δ-function array (PDFA), which is called a principal PDFA (P-PDFA). By directly convolving the elemental image array (EIA) captured from 3-D objects with the P-PDFAs whose spatial periods correspond to each object's depth, a set of spatially-filtered EIAs (SF-EIAs) are extracted, and from which 3-D objects can be reconstructed to be refocused on their real depth. convolutional operations are performed directly on each of the minimum 3 × 3 EIs of the picked-up EIA, the capturing and refocused-depth ranges of 3-D objects can be greatly enhanced, as well as 3-D objects much improved in image quality can be reconstructed without any preprocessing operations. Through ray-optical analysis and optical experiments with actual 3-D objects, the feasibility of the proposed method has been confirmed.
NASA Astrophysics Data System (ADS)
Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf
2018-01-01
In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.
Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Wang, Z.; Demoz, B.
2004-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.
High sensitivity optical molecular imaging system
NASA Astrophysics Data System (ADS)
An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie
2018-02-01
Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.
Jang, Mooseok; Ruan, Haowen; Judkewitz, Benjamin; Yang, Changhuei
2014-01-01
The time-reversed ultrasonically encoded (TRUE) optical focusing technique is a method that is capable of focusing light deep within a scattering medium. This theoretical study aims to explore the depth limits of the TRUE technique for biological tissues in the context of two primary constraints – the safety limit of the incident light fluence and a limited TRUE’s recording time (assumed to be 1 ms), as dynamic scatterer movements in a living sample can break the time-reversal scattering symmetry. Our numerical simulation indicates that TRUE has the potential to render an optical focus with a peak-to-background ratio of ~2 at a depth of ~103 mm at wavelength of 800 nm in a phantom with tissue scattering characteristics. This study sheds light on the allocation of photon budget in each step of the TRUE technique, the impact of low signal on the phase measurement error, and the eventual impact of the phase measurement error on the strength of the TRUE optical focus. PMID:24663917
NASA Astrophysics Data System (ADS)
Zhu, Danfeng; Zhang, Jinqiannan; Ye, Han; Yu, Zhongyuan; Liu, Yumin
2018-07-01
We propose a design of reciprocal optical diode based on asymmetric spatial mode conversion in multimode silicon waveguide on the silicon-on-insulator platform. The design possesses large bandwidth, high contrast ratio and high fabrication tolerance. The forward even-to-odd mode conversion and backward blockade of even mode are achieved by partial depth etching in the functional region. Simulated by three-dimension finite-difference time-domain method, the forward transmission efficiency is about -2.05 dB while the backward transmission efficiency is only -22.68 dB, reaching a highest contrast ratio of 0.983 at the wavelength of 1550 nm. The operational bandwidth is up to 200 nm (from 1450 nm to 1650 nm) with contrast ratio higher than 0.911. The numerical analysis also demonstrates that the proposed optical diode possesses high tolerance for geometry parameter errors which may be introduced in fabrication. The design based on partial depth etching is compatible with CMOS process and is expected to contribute to the silicon-based all-optical circuits.
Computing Temperatures in Optically Thick Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Capuder, Lawrence F.. Jr.
2011-01-01
We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Yoo, J.-M.; Dalu, G.; Kratz, P.
1991-01-01
Over the convectively active tropical ocean regions, the measurement made from space in the IR and visible spectrum have revealed the presence of optically thin cirrus clouds, which are quite transparent in the visible and nearly opaque in the IR. The Nimbus-4 IR Interferometer Spectrometer (IRIS), which has a field of view (FOV) of approximately 100 km, was utilized to examine the IR optical characteristics of these cirrus clouds. From the IRIS data, it was observed that these optically thin cirrus clouds prevail extensively over the warm pool region of the equatorial western Pacific, surrounding Indonesia. It is found that the seasonal cloud cover caused by these thin cirrus clouds exceeds 50 percent near the central regions of the warm pool. For most of these clouds, the optical thickness in the IR is less than or = 2. It is deduced that the dense cold anvil clouds associated with deep convection spread extensively and are responsible for the formation of the thin cirrus clouds. This is supported by the observation that the coverage of the dense anvil clouds is an order of magnitude less than that of the thin cirrus clouds. From these observations, together with a simple radiative-convective model, it is inferred that the optically thin cirrus can provide a greenhouse effect, which can be a significant factor in maintaining the warm pool. In the absence of fluid transports, it is found that these cirrus clouds could lead to a runaway greenhouse effect. The presence of fluid transport processes, however, act to moderate this effect. Thus, if a modest 20 W/sq m energy input is considered to be available to warm the ocean, then it is found that the ocean mixed-layer of a 50-m depth will be heated by approximately 1 C in 100 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakic, Olivera; Schaye, Joop; Steidel, Charles C.
We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z Almost-Equal-To 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Ly{alpha} forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Ly{alpha} pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Ly{alpha} opticalmore » depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3{sigma} level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over {+-}165 km s{sup -1}, the covering fraction of gas with Ly{alpha} optical depth greater than unity is 100{sup +0}{sub -32}% (66% {+-} 16%). Absorbers with {tau}{sub Ly{alpha}} > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with {tau}{sub Ly{alpha}} {approx} 1 reside in regions where the galaxy number density is close to the cosmic mean on scales {>=}0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s{sup -1}, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This 'finger of God' effect may be due to redshift errors, but is probably dominated by gas motions within or very close to the halos. On the other hand, on scales of 1.4-2.0 Mpc the absorption is compressed along the line of sight (with >3{sigma} significance), an effect that we attribute to large-scale infall (i.e., the Kaiser effect).« less
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas
2009-01-01
In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
Development and validation of satellite-based estimates of surface visibility
NASA Astrophysics Data System (ADS)
Brunner, J.; Pierce, R. B.; Lenzen, A.
2016-02-01
A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V < 30 km), low (2 km ≤ V < 10 km), and poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.
Development and validation of satellite based estimates of surface visibility
NASA Astrophysics Data System (ADS)
Brunner, J.; Pierce, R. B.; Lenzen, A.
2015-10-01
A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V < 30 km), Low (2 km ≤ V < 10 km) and Poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.
Optical and Biometric Characteristics of Anisomyopia in Human Adults
Tian, Yibin; Tarrant, Janice; Wildsoet, Christine F.
2011-01-01
Purpose To investigate the role of higher order optical aberrations and thus retinal image degradation in the development of myopia, through the characterization of anisomyopia in human adults in terms of their optical and biometric characteristics. Methods The following data were collected from both eyes of fifteen young adult anisometropic myopes and sixteen isometropic myopes: subjective and objective refractive errors, corneal power and shape, monochromatic optical aberrations, anterior chamber depth, lens thickness, vitreous chamber depth, and best corrected visual acuity. Monochromatic aberrations were analyzed in terms of their higher order components, and further analyzed in terms of 31 optical quality metrics. Interocular differences for the two groups (anisomyopes vs. isomyopes) were compared and the relationship between measured ocular parameters and refractive errors also analyzed across all eyes. Results As expected, anisomyopes and isomyopes differed significantly in terms of interocular differences in vitreous chamber depth, axial length and refractive error. However, interocular differences in other optical properties showed no significant intergroup differences. Overall, higher myopia was associated with deeper anterior and vitreous chambers, higher astigmatism, more prolate corneas, and more positive spherical aberration. Other measured optical and biometric parameters were not significantly correlated with spherical refractive error, although some optical quality metrics and corneal astigmatism were significantly correlated with refractive astigmatism. Conclusions An optical cause for anisomyopia related to increased higher order aberrations is not supported by our data. Corneal shape changes and increased astigmatism in more myopic eyes may be a by-product of the increased anterior chamber growth in these eyes; likewise, the increased positive spherical aberration in more myopic eyes may be a product of myopic eye growth. PMID:21797915
Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy.
Häußler, Andreas J; Heller, Pascal; McGuinness, Liam P; Naydenov, Boris; Jelezko, Fedor
2014-12-01
Precise positioning of nitrogen-vacancy (NV) centers is crucial for their application in sensing and quantum information. Here we present a new purely optical technique enabling determination of the NV position with nanometer resolution. We use a confocal microscope to determine the position of individual emitters along the optical axis. Using two separate detection channels, it is possible to simultaneously measure reflected light from the diamond surface and fluorescent light from the NV center and statistically evaluate both signals. An accuracy of 2.6 nm for shallow NV centers was achieved and is consistent with other techniques for depth determination.
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor; Peterson, Gary; Chang, Ernest W.; Maguluri, Gopi; Fox, William; Rajadhyaksha, Milind
2016-01-01
We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins. While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ˜1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ˜7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ˜600 μm, and agreement with histology was within about ±50 μm.
NASA Astrophysics Data System (ADS)
Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Yasuno, Yoshiaki
2017-02-01
A customized 1310-nm Jones-matrix optical coherence tomography (JM-OCT) for dermatological investigation was constructed and used for in vivo normal human skin tissue imaging. This system can simultaneously measure the threedimensional depth-resolved local birefringence, complex-correlation based OCT angiography (OCT-A), degree-ofpolarization- uniformity (DOPU) and scattering OCT intensity. By obtaining these optical properties of tissue, the morphology, vasculature, and collagen content of skin can be deduced and visualized. Structures in the deep layers of the epithelium were observed with depth-resolved local birefringence and polarization uniformity images. These results suggest high diagnostic and investigative potential of JM-OCT for dermatology.
NASA Astrophysics Data System (ADS)
Rahlves, M.; Varkentin, A.; Stritzel, J.; Blumenröther, E.; Mazurenka, M.; Wollweber, M.; Roth, B.
2016-03-01
Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Dutton, E. G.; Pueschel, R. F.; Reagan, J. A.; Defoor, T. E.; Box, M. A.; Allen, D.; Pilewskie, P.; Herman, B. M.
1993-01-01
The Ames airborne tracking sunphotometer was operated at the National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory (MLO) in 1991 and 1992 along with the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) automated tracking sunphotometer and lidar. June 1991 measurements provided calibrations, optical-depth spectra, and intercomparisons under relatively clean conditions; later measurements provided spectra and comparisons for the Pinatubo cloud plus calibration checks. June 1991 results are similar to previous MLO springtime measurements, with midvisible particle optical depth at the near-background level of 0.012 +/- 0.006 and no significant wavelength dependence in the measured range (lambda = 0.38 to 1.06 micrometers). The arrival of the Pinatubo cloud in July 1991 increased midvisible particle optical depth by more than an order of magnitude and changed the spectral shape of to an approximate power law with an exponent of about -1.4. By clearly September 1991, the spectrum was broadly peaked near 0.5 micrometers, and by July 1992, it was peaked near 0.8 micrometers. Our optical-depth spectra include corrections for diffuse light. NOAA- and Ames Research Center (ARC)-measured spectra are in good agreement. Columnar size distributions inverted from the spectra show that the initial (July 1991) post-Pinatubo cloud was relatively rich in small particles (r less than 0.25 micrometers), which were progressively depleted in the August-September 1991 and July 1992 periods. Conversely, both of the later periods had more of the optically efficient medium-sized particles (0.25 less than r less than 1 micrometers) than did the fresh July 1991 cloud. These changes are consistent with particle growth by condensation and coagulation. Photometer-inferred column backscatter values agree with those measured by the CMDL lidar on nearby nights. Combining lidar-measured backscatter profiles with photometer-derived backscatter-to-area ratios gives peak particle areas that could cause rapid heterogeneous loss of ozone, given sufficiently low particle acidity and suitable solar zenith angles (achieved at mid- to high latitudes). Top-of-troposphere radiative forcings for the September 1991 and July 1992 optical depths and size distributions over MLO are about -5 and -3 W/sq m, respectively (hence comparable in magnitude but opposite in sign to the radiative forcing caused by the increase in manmade greenhouse gases since the industrial revolution). Heating rates in the Pinatubo layer over MLO are 0.55 +/- 0.13 and 0.41 +/- 0.14 K/d for September 1991 and July 1992, respectively.
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Prochaska, Travis; Shectman, Stephen A.; Hammond, Randolph P.; Barkhouser, Robert H.; DePoy, D. L.; Marshall, J. L.
2012-09-01
We describe the conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). GMACS is a candidate first-light instrument for the GMT and will be one of several instruments housed in the Gregorian Instrument Rotator (GIR) located at the Gregorian focus. The instrument samples a 9 arcminute x 18 arcminute field of view providing two resolution modes (i.e, low resolution, R ~ 2000, and moderate resolution, R ~ 4000) over a 3700 Å to 10200 Å wavelength range. To minimize the size of the optics, four fold mirrors at the GMT focal plane redirect the full field into four individual "arms", that each comprises a double spectrograph with a red and blue channel. Hence, each arm samples a 4.5 arcminute x 9 arcminute field of view. The optical layout naturally leads to three separate optomechanical assemblies: a focal plane assembly, and two identical optics modules. The focal plane assembly contains the last element of the telescope's wide-field corrector, slit-mask, tent-mirror assembly, and slit-mask magazine. Each of the two optics modules supports two of the four instrument arms and houses the aft-optics (i.e. collimators, dichroics, gratings, and cameras). A grating exchange mechanism, and articulated gratings and cameras facilitate multiple resolution modes. In this paper we describe the details of the GMACS optomechanical design, including the requirements and considerations leading to the design, mechanism details, optics mounts, and predicted flexure performance.
Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.
Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico
2014-11-12
Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.
Monitoring of tissue modification with optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhang, Wei; Luo, Qingming; Yao, Lei; Cheng, Haiying; Zeng, Shaoqun
2002-04-01
An experimental monitoring of tissue modification of in vitro and in vivo rabbit dura mater with administration of osmotical agents, 40% glucose solution and glycerol, using optical coherence tomography was presented. The preliminary results of experimental study of influence of osmotical liquids (glucose solutions, glycerol) of rabbit dura mater were reported. The significant decreasing of the light from surface and increasing of the light from the deep of dura mater under action of osmotical solutions and the increasing of OCT imaging depth were demonstrated. Experiments showed that administration of osmolytes to dura mater allowed for effective and temporary control of its optical characteristics, which made dura mater more transparent, increased the ability of light penetrating the tissue, and consequently improved the optical imaging depth. It is a significant study, which can improve penetration of optical imaging of cerebral function and acquire more information of the deep brain tissue.
Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region
NASA Astrophysics Data System (ADS)
Colwell, J. E.; Esposito, L. W.; Cooney, J. H.
2018-01-01
The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to decreases in R. There is also a pronounced dip in R at the Mimas 5:3 bending wave corresponding to an increase in optical depth there, suggesting that at these waves small particles are liberated from clumps or self-gravity wakes leading to a reduction in effective particle size and an increase in optical depth.
Exoplanet phase curves at large phase angles. Diagnostics for extended hazy atmospheres
NASA Astrophysics Data System (ADS)
García Muñoz, A.; Cabrera, J.
2018-01-01
At optical wavelengths, Titan's brightness for large Sun-Titan-observer phase angles significantly exceeds its dayside brightness. The brightening that occurs near back-illumination is due to moderately large haze particles in the moon's extended atmosphere that forward scatters the incident sunlight. Motivated by this phenomenon, here we investigate the forward scattering from currently known exoplanets, its diagnostics possibilities, the observational requirements to resolve it and potential implications. An analytical expression is derived for the amount of starlight forward scattered by an exponential atmosphere that takes into account the finite angular size of the star. We use this expression to tentatively estimate how prevalent this phenomenon may be. Based on numerical calculations that consider exoplanet visibility, we identify numerous planets with predicted out-of-transit forward-scattering signals of up to tens of parts per million provided that aerosols of ≳1 μm size form over an extended vertical region near the optical radius level. We propose that the interpretation of available optical phase curves should be revised to constrain the strength of this phenomenon that might provide insight into aerosol scale heights and particle sizes. For the relatively general atmospheres considered here, forward scattering reduces the transmission-only transit depth by typically less than the equivalent to a scale height. For short-period exoplanets, the finite angular size of the star severely affects the amount of radiation scattered towards the observer at mid-transit.
NASA Astrophysics Data System (ADS)
Kuwahara, Victor S.; Nozaki, Sena; Nakano, Junji; Toda, Tatsuki; Kikuchi, Tomohiko; Taguchi, Satoru
2015-07-01
The 18-year time-series shows in situ ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) diffuse attenuation coefficient Kd(λ) have recurrent seasonal variability of high/low attenuation during summer/winter months, respectively, dependent on variability in water column stratification and concentrations of bio-optical properties. The mid-latitude coastal survey station displayed significant seasonality of the mixed layer depth (MLD) between 12 and 82 m which modified the distribution of chlorophyll a (4.6-24.9 mg m-2) and absorption of colored dissolved organic matter [aCDOM(320 nm) 0.043-1.34 m-1]. The median Kd(320 nm) displayed significant seasonality at 0.19-0.74 m-1 (C.V. = 44.1%) and seasonal variability within the euphotic layer [Z10%(320 nm) = 7-20%]. High attenuation of UVR with relatively moderate attenuation of PAR was consistently observed during the summer months when increased concentrations of terrestrially derived CDOM coupled with a shallow MLD were present. The winter season showed the opposite of low UVR and PAR attenuation due to a relatively deeper MLD coupled with low concentrations of bio-optical properties. Although the long term Kd(λ) did not vary significantly during the time-series, analysis of the interannual variability suggests there are positive and negative phases following the Pacific Decadal Oscillation (PDO) vis-a-vis variability in bio-optical properties (p < 0.001).
Experimental study on the sensitive depth of backwards detected light in turbid media.
Zhang, Yunyao; Huang, Liqing; Zhang, Ning; Tian, Heng; Zhu, Jingping
2018-05-28
In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.
Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth
NASA Astrophysics Data System (ADS)
Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang
2012-06-01
We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.
Controlled generation of high-intensity optical rogue waves by induced modulation instability
Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun
2017-01-01
Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum. PMID:28051149
Controlled generation of high-intensity optical rogue waves by induced modulation instability.
Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun
2017-01-04
Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.
A 5mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Wu, Lei; Xie, Huikai; Ilegbusi, Olusegun; Costa, Marco; Rolland, Jannick P.
2007-02-01
A 5mm biophotonic catheter was conceived for optical coherence tomography (OCT) with collimation optics, an axicon lens, and custom design imaging optics, yielding a 360 degree scan aimed at imaging within concave structures such as lung lobes. In OCT a large depth of focus is necessary to image a thick sample with a constant high transverse resolution. There are two approaches to achieving constant lateral resolution in OCT: Dynamic focusing or Bessel beam forming. This paper focuses on imaging with Bessel beams. A Bessel beam can be generated in the sample arm of the OCT interferometer when axicon optics is employed instead of a conventional focusing lens. We present a design for a 5mm catheter that combines an axicon lens with imaging optics and the coupling of a MEMS mirror attached to a micromotor that allow 360 degree scanning with a resolution of about 5 microns across a depth of focus of about 1.2mm.
Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy
Chekkoury, Andrei; Gateau, Jérôme; Driessen, Wouter; Symvoulidis, Panagiotis; Bézière, Nicolas; Feuchtinger, Annette; Walch, Axel; Ntziachristos, Vasilis
2015-01-01
Optical mesoscopy extends the capabilities of biological visualization beyond the limited penetration depth achieved by microscopy. However, imaging of opaque organisms or tissues larger than a few hundred micrometers requires invasive tissue sectioning or chemical treatment of the specimen for clearing photon scattering, an invasive process that is regardless limited with depth. We developed previously unreported broadband optoacoustic mesoscopy as a tomographic modality to enable imaging of optical contrast through several millimeters of tissue, without the need for chemical treatment of tissues. We show that the unique combination of three-dimensional projections over a broad 500 kHz–40 MHz frequency range combined with multi-wavelength illumination is necessary to render broadband multispectral optoacoustic mesoscopy (2B-MSOM) superior to previous optical or optoacoustic mesoscopy implementations. PMID:26417486
Light scattering from laser induced pit ensembles on high power laser optics
Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.
2015-01-01
Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less
Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes
NASA Technical Reports Server (NTRS)
Zhang, S. N.; Cui, Wei; Chen, Wan; Yao, Yangsen; Zhang, Xiaoling; Sun, Xuejun; Wu, Xue-Bing; Xu, Haiguang
2000-01-01
Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of the inner accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.
Three-layered atmospheric structure in accretion disks around stellar-mass black holes
Zhang; Cui; Chen; Yao; Zhang; Sun; Wu; Xu
2000-02-18
Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of their accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.
NASA Astrophysics Data System (ADS)
Lee, Jaeyul; Kim, Kanghae; Wijesinghe, Ruchire Eranga; Jeon, Doekmin; Lee, Sang Heun; Jeon, Mansik; Jang, Jeong Hun
2016-08-01
The aim of this study was to analyze the effectiveness of decalcification using ethylenediaminetetraacetic acid (EDTA) as an optical clearing method to enhance the depth visibility of internal soft tissues of cochlea. Ex vivo mouse and guinea pig cochlea samples were soaked in EDTA solutions for decalcification, and swept source optical coherence tomography (OCT) was used as imaging modality to monitor the decalcified samples consecutively. The monitored noninvasive cross-sectional images showed that the mouse and guinea pig cochlea samples had to be decalcified for subsequent 7 and 14 days, respectively, to obtain the optimal optical clearing results. Using this method, difficulties in imaging of internal cochlea microstructures of mice could be evaded. The obtained results verified that the depth visibility of the decalcified ex vivo samples was enhanced.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Hignett, P.; Livingston, J. M.; Schmid, B.; Chien, A.; Bergstrom, R.; Durkee, P. A.; Hobbs, P. V.; Bates, T. S.; Quinn, P. K.;
1998-01-01
Aerosol effects on atmospheric radiative fluxes provide a forcing function that is a major source of uncertainty in understanding the past climate and predicting climate change. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modelling approaches. The best-fit midvisible single-scatter albedos (approx. 0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques. In ACE-2 we measured optical depth and extinction spectra for both European urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (Delta Flux / Delta Optical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.
Choh, Vivian; Gurdita, Akshay; Tan, Bingyao; Prasad, Ratna C.; Bizheva, Kostadinka; Joos, Karen M.
2016-01-01
Purpose Moderately elevated intraocular pressure (IOP) is a risk factor for open-angle glaucoma. Some patients suffer glaucoma despite clinically measured normal IOPs. Fluctuations in IOP may have a significant role since IOPs are higher during sleep and inversion activities. Controlled transient elevations of IOPs in rats over time lead to optic nerve structural changes that are similar to the early changes observed in constant chronic models of glaucoma. Because early intervention decreases glaucoma progression, this study was done to determine if early physiological changes to the retina could be detected with noninvasive electrophysiological and optical imaging tests during moderately elevated IOP. Methods Intraocular pressures were raised to moderately high levels (35 mm Hg) in one eye of Sprague-Dawley rats while the other (control) eye was untreated. One group of rats underwent scotopic threshold response (STR) and electroretinogram (ERG) testing, while another 3 groups underwent optical coherence tomography (OCT) imaging, Western blot, or histologic evaluation. Results The amplitudes of the STR and ERG responses in eyes with moderately elevated IOPs were enhanced compared to the values before IOP elevation, and compared to untreated contralateral eyes. Structural changes to the optic nerve also occurred during IOP elevation. Conclusions Although ischemic IOP elevations are well-known to globally reduce components of the scotopic ERG, acute elevation in rats to levels often observed in untreated glaucoma patients caused an increase in these parameters. Further exploration of these phenomena may be helpful in better understanding the mechanisms mediating early retinal changes during fluctuating or chronically elevated IOP. PMID:27100161
Li, Qian; Li, Yang; Zhang, Xiaohui; Xu, Zhangxing; Zhu, Xiaoqing; Ma, Kai; She, Haicheng; Peng, Xiaoyan
2015-10-01
To characterize Bietti crystalline dystrophy (BCD) in different stages using multiple imaging modalities. Sixteen participants clinically diagnosed as BCD were included in the retrospective study and were categorized into 3 stages according to fundus photography. Eleven patients were genetically confirmed. Fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging features of BCD were analyzed. On fundus autofluorescence, the abnormal autofluorescence was shown to enlarge in area and decrease in intensity with stages. Using spectral domain optical coherence tomography, the abnormalities in Stage 1 were observed to localize in outer retinal layers, whereas in Stage 2 and Stage 3, more extensive retinal atrophy was seen. In enhanced depth imaging, the subfoveal choroidal layers were delineated clearly in Stage 1; in Stage 2, destructions were primarily found in the choriocapillaris with associated alterations in the outer vessels; Stage 3 BCD displayed severe choroidal thinning. Choroidal neovascularization and macular edema were exhibited with high incidence. IVS6-8del17bp/inGC of the CYP4V2 gene was the most common mutant allele. Noninvasive fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging may help to characterize the chorioretinal pathology of BCD at different degrees, and therefore, we propose staging of BCD depending on those methods. Physicians should be cautious of the vision-threatening complications of the disease.
Random Walks and Effective Optical Depth in Relativistic Flow
NASA Astrophysics Data System (ADS)
Shibata, Sanshiro; Tominaga, Nozomu; Tanaka, Masaomi
2014-05-01
We investigate the random walk process in relativistic flow. In the relativistic flow, photon propagation is concentrated in the direction of the flow velocity due to the relativistic beaming effect. We show that in the pure scattering case, the number of scatterings is proportional to the size parameter ξ ≡ L/l 0 if the flow velocity β ≡ v/c satisfies β/Γ Gt ξ-1, while it is proportional to ξ2 if β/Γ Lt ξ-1, where L and l 0 are the size of the system in the observer frame and the mean free path in the comoving frame, respectively. We also examine the photon propagation in the scattering and absorptive medium. We find that if the optical depth for absorption τa is considerably smaller than the optical depth for scattering τs (τa/τs Lt 1) and the flow velocity satisfies \\beta \\gg \\sqrt{2\\tau _a/\\tau _s}, then the effective optical depth is approximated by τ* ~= τa(1 + β)/β. Furthermore, we perform Monte Carlo simulations of radiative transfer and compare the results with the analytic expression for the number of scatterings. The analytic expression is consistent with the results of the numerical simulations. The expression derived in this study can be used to estimate the photon production site in relativistic phenomena, e.g., gamma-ray burst and active galactic nuclei.
Smartphone-Based Android app for Determining UVA Aerosol Optical Depth and Direct Solar Irradiances.
Igoe, Damien P; Parisi, Alfio; Carter, Brad
2014-01-01
This research describes the development and evaluation of the accuracy and precision of an Android app specifically designed, written and installed on a smartphone for detecting and quantifying incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies demonstrated that a smartphone image sensor can detect UVA radiation and the responsivity can be calibrated to measured direct solar irradiance. This current research provides the data collection, calibration, processing, calculations and display all on a smartphone. A very strong coefficient of determination of 0.98 was achieved when the digital response was recalibrated and compared to the Microtops sun photometer direct UVA irradiance observations. The mean percentage discrepancy for derived direct solar irradiance was only 4% and 6% for observations at 380 and 340 nm, respectively, lessening with decreasing solar zenith angle. An 8% mean percent difference discrepancy was observed when comparing aerosol optical depth, also decreasing as solar zenith angle decreases. The results indicate that a specifically designed Android app linking and using a smartphone image sensor, calendar and clock, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate both direct solar UVA irradiance and low aerosol optical depths for areas with low aerosol loads. © 2013 The American Society of Photobiology.
Internal-illumination photoacoustic computed tomography
NASA Astrophysics Data System (ADS)
Li, Mucong; Lan, Bangxin; Liu, Wei; Xia, Jun; Yao, Junjie
2018-03-01
We report a photoacoustic computed tomography (PACT) system using a customized optical fiber with a cylindrical diffuser to internally illuminate deep targets. The traditional external light illumination in PACT usually limits the penetration depth to a few centimeters from the tissue surface, mainly due to strong optical attenuation along the light propagation path from the outside in. By contrast, internal light illumination, with external ultrasound detection, can potentially detect much deeper targets. Different from previous internal illumination PACT implementations using forward-looking optical fibers, our internal-illumination PACT system uses a customized optical fiber with a 3-cm-long conoid needle diffuser attached to the fiber tip, which can homogeneously illuminate the surrounding space and substantially enlarge the field of view. We characterized the internal illumination distribution and PACT system performance. We performed tissue phantom and in vivo animal studies to further demonstrate the superior imaging depth using internal illumination over external illumination. We imaged a 7.5-cm-deep leaf target embedded in optically scattering medium and the beating heart of a mouse overlaid with 3.7-cm-thick chicken tissue. Our results have collectively demonstrated that the internal light illumination combined with external ultrasound detection might be a useful strategy to improve the penetration depth of PACT in imaging deep organs of large animals and humans.
Schumacher, E L; Owens, B D; Uyeno, T A; Clark, A J; Reece, J S
2017-08-01
This study tests for interspecific evidence of Heincke's law among hagfishes and advances the field of research on body size and depth of occurrence in fishes by including a phylogenetic correction and by examining depth in four ways: maximum depth, minimum depth, mean depth of recorded specimens and the average of maximum and minimum depths of occurrence. Results yield no evidence for Heincke's law in hagfishes, no phylogenetic signal for the depth at which species occur, but moderate to weak phylogenetic signal for body size, suggesting that phylogeny may play a role in determining body size in this group. © 2017 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Saponaro, G.
2015-12-01
The present study investigates the use of long-term satellite data to assess the influence of aerosols upon cloud parameters over the Baltic Sea region. This particular area offers the contrast of a very clean environment (Fennoscandia) against a more polluted one (Germany, Poland). The datasets used in this study consist of Collection 6 Level 3 daily observations from 2002 to 2014 retrieved from observations by the NASA's Moderate-Resolution Imaging Spectrometer (MODIS) instrument on-board the Aqua platform. The MODIS aerosol optical depth (AOD) and aerosol index (AI) products are used as a proxy for the number concentration of aerosol particles while the cloud effective radius (CER) and cloud optical thickness (COT) describe cloud microphysical and optical properties respectively. Through the analysis of a 12-years dataset, distribution maps provide information on a regional scale about the first aerosol indirect effect (AIE) by determining the aerosol-cloud interaction (ACI). The ACI is defined as the change in cloud optical depth or effective radius as a function of aerosol load, for which AI is used as a proxy, for a fixed liquid water path (LWP). Reanalysis data from ECMWF, namely ERA-Interim, are used to estimate meteorological settings on a regional scale. The relative humidity (RH) and specific humidity (SH) are chosen at the pressure level of 950 hPa and they are linearly interpolated to match MODIS resolution of 1 x 1 deg. The Lower Tropospheric Stability (LTS) is computed from the ERA- Interim reanalysis data as the difference between the potential temperature at 700hPa and the surface. In order to better identify and interpret the AIE, this study proposes a framework where the interactions between aerosols and clouds are estimated by dividing the dataset into different regimes. Regimes are defined by: Liquid Water Path (LWP). The discrimination by LWP allows assessing the Twomey effect. The AIE is more evident when the LWP is lower. Aerosol loading (both AOD and AI). Separated aerosol settings (AI/AOD <25th percentile versus AI/AOD > 75th percentile) provide information regarding the saturation effect. Meteorological environments. LTS determines an unstable thermodynamic environment (LTS <25th percentile) and a stable one ( LTS >75th percentile).
Extended depth of field imaging for high speed object analysis
NASA Technical Reports Server (NTRS)
Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)
2011-01-01
A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
NASA Astrophysics Data System (ADS)
Ando, Yoriko; Sawahata, Hirohito; Kawano, Takeshi; Koida, Kowa; Numano, Rika
2018-02-01
Bundled fiber optics allow in vivo imaging at deep sites in a body. The intrinsic optical contrast detects detailed structures in blood vessels and organs. We developed a bundled-fiber-coupled endomicroscope, enabling stereoscopic three-dimensional (3-D) reflectance imaging with a multipositional illumination scheme. Two illumination sites were attached to obtain reflectance images with left and right illumination. Depth was estimated by the horizontal disparity between the two images under alternative illuminations and was calibrated by the targets with known depths. This depth reconstruction was applied to an animal model to obtain the 3-D structure of blood vessels of the cerebral cortex (Cereb cortex) and preputial gland (Pre gla). The 3-D endomicroscope could be instrumental to microlevel reflectance imaging, improving the precision in subjective depth perception, spatial orientation, and identification of anatomical structures.
NASA Astrophysics Data System (ADS)
Boroomand, Ameneh; Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka
2015-03-01
The axial resolution of Spectral Domain Optical Coherence Tomography (SD-OCT) images degrades with scanning depth due to the limited number of pixels and the pixel size of the camera, any aberrations in the spectrometer optics and wavelength dependent scattering and absorption in the imaged object [1]. Here we propose a novel algorithm which compensates for the blurring effect of these factors of the depth-dependent axial Point Spread Function (PSF) in SDOCT images. The proposed method is based on a Maximum A Posteriori (MAP) reconstruction framework which takes advantage of a Stochastic Fully Connected Conditional Random Field (SFCRF) model. The aim is to compensate for the depth-dependent axial blur in SD-OCT images and simultaneously suppress the speckle noise which is inherent to all OCT images. Applying the proposed depth-dependent axial resolution enhancement technique to an OCT image of cucumber considerably improved the axial resolution of the image especially at higher imaging depths and allowed for better visualization of cellular membrane and nuclei. Comparing the result of our proposed method with the conventional Lucy-Richardson deconvolution algorithm clearly demonstrates the efficiency of our proposed technique in better visualization and preservation of fine details and structures in the imaged sample, as well as better speckle noise suppression. This illustrates the potential usefulness of our proposed technique as a suitable replacement for the hardware approaches which are often very costly and complicated.
Error analysis of 3D-PTV through unsteady interfaces
NASA Astrophysics Data System (ADS)
Akutina, Yulia; Mydlarski, Laurent; Gaskin, Susan; Eiff, Olivier
2018-03-01
The feasibility of stereoscopic flow measurements through an unsteady optical interface is investigated. Position errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity waves was 6% of the water depth, resulting in water surface inclinations of about 0.2°. (The water depth is used herein as a relevant length scale, because the measurements are performed in the entire water column. In a more general case, the relevant scale is the maximum distance from the interface to the measurement plane, H, which here is the same as the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative displacement of a particle between two frames, the errors in the measured water velocities were reasonably small, because the error in the velocity is the relative position error over the average displacement distance. The relative position error was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to 1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying (have low curvature). The stronger the disturbances on the interface are (high amplitude, short wave length), the smaller is the distance from the interface at which the measurements can be performed.
Structure of Saturn's Rings from Cassini Diametric Radio Occultations
NASA Astrophysics Data System (ADS)
Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.; Thomson, F.; Wong, K.
2005-08-01
Cassini orbits around Saturn were designed to provide eight optimized radio occultation observations of Saturn's rings during summer, 2005. Three monochromatic radio signals (0.94, 3.6, and 13 cm-wavelength) were transmitted by Cassini through the rings and observed at multiple stations of the NASA Deep Space Network. A rich data set has been collected. Detailed structure of Ring B is revealed for the first time, including multi-feature dense ''core'' ˜ 6,000 km wide of normal optical depth > 4.3, a ˜ 5,500 km region of oscillations in optical depth ( ˜ 1.7 to ˜ 3.4) over characteristic radial scales of few hundred kilometers interior to the core, and a ˜ 5,000 km region exterior to the core of similar nature but smaller optical depth fluctuation ( ˜ 2.2 to ˜ 3.3). The innermost ˜ 7,000 km region is the thinnest (mean optical depth ˜ 1.2), and includes two unusually uniform regions and a prominent density wave. With few exceptions, the structure is nearly identical for the three radio signals (when detectable), indicating that Ring B is relatively devoid of centimeters and smaller size particles. The structure is largely circularly symmetric, except for radius > ˜ 116,600 km. In Ring A, numerous (> 40) density waves are clearly observed at multiple longitudes, different average background optical depth is observed among different occultations suggesting that the azimuthal asymmetry extends over most Ring A, and strong dependence of the observed structure on wavelength implies increase in the abundance of centimeter and smaller size particles with increasing radius. Multiple longitude observations of Ring C and the Cassini Division structure reveal remarkable variability of gaps and their embedded narrow eccentric ringlets, and a wake/wave like feature interior to the gap at ˜ 118,200 km (embedded moonlet?). Wavelength dependent structure of Ring C implies abundance of centimeter size particles everywhere and sorting by size within dense embedded features.
Long term soil pH change in rainfed cropping systems: is acidification systemic?
USDA-ARS?s Scientific Manuscript database
Many soils throughout the northern Great Plains developed from deep, moderately-weathered glacial and loess deposits under prairie vegetation. Soils of this type are typically neutral to slightly acidic in near-surface depths, and slightly to strongly alkaline in subsoil depths, with high buffer cap...
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-02-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
Using FEMA FIS, HAZUS and WMOST to Evaluate Effectiveness of GI in Moderating Flood-Related Risks
The ability to accurately assess flood-related risks and costs as well as the effectiveness of green infrastructure on moderating those risks is critical for both emergency management and long-term planning. Potential flooding depths, land use and building conditions are needed ...
A simple dental caries detection system using full spectrum of laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Rocha-Cabral, Renata Maciel; Mendes, Fausto Medeiros; Maldonado, Edison Puig; Zezell, Denise Maria
2015-06-01
Objectives: to develop an apparatus for the detection of early caries lesions in enamel using the full extent of the tooth fluorescence spectrum, through the integration of a laser diode, fiber optics, filters and one portable spectrometer connected to a computer, all commercially available; to evaluate the developed device in clinical and laboratory tests, and compare its performance with commercial equipment. Methods: clinical examinations were performed in patients with indication for exodontics of premolars. After examinations, the patients underwent surgery and the teeth were stored individually. The optical measurements were repeated approximately two months after extraction, on the same sites previously examined, then histological analysis was carried out. Results: the spectral detector has presented high specificity and moderate sensitivity when applied to differentiate between healthy and damaged tissues, with no significant differences from the performance of the commercial equipment. The developed device is able to detect initial damages in enamel, with depth of approximately 300 μm. Conclusions: we successfully demonstrated the development of a simple and portable system based in laser-induced fluorescence for caries detection, assembled from common commercial parts. As the spectral detector acquires a complete recording of the spectrum from each tissue, it is possible to use it for monitoring developments of caries lesions.
Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope.
Chen, Ye; Wang, Danni; Khan, Altaz; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C
2015-10-01
Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.
Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope
NASA Astrophysics Data System (ADS)
Chen, Ye; Wang, Danni; Khan, Altaz; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.
2015-10-01
Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.
NASA Astrophysics Data System (ADS)
Ramshesh, Venkat K.; Knisley, Stephen B.
2006-03-01
Cardiac optical mapping currently provides 2-D maps of transmembrane voltage-sensitive fluorescence localized near the tissue surface. Methods for interrogation at different depths are required for studies of arrhythmias and the effects of defibrillation shocks in 3-D cardiac tissue. We model the effects of coloading with a dye that absorbs excitation or fluorescence light on the radius and depth of the interrogated region with specific illumination and collection techniques. Results indicate radii and depths of interrogation are larger for transillumination versus epi-illumination, an effect that is more pronounced for broad-field excitation versus laser scanner. Coloading with a fluorescence absorber lessens interrogated depth for epi-illumination and increases it for transillumination, which is confirmed with measurements using transillumination of heart tissue slices. Coloading with an absorber of excitation light consistently decreases the interrogated depths. Transillumination and coloading also decrease the intensities of collected fluorescence. Thus, localization can be modified with wavelength-specific absorbers at the expense of a reduction in fluorescence intensity.
Optical property modification of PMMA by ion-beam implantation
NASA Astrophysics Data System (ADS)
Hong, Wan; Woo, Hyung-Joo; Choi, Han-Woo; Kim, Young-Suk; Kim, Gi-dong
2001-01-01
Polymeric waveguides were fabricated by proton implantation on poly(methyl methacrylate) (PMMA). Depth profiles of the refractive indices of modified regions were obtained and were found to be in good agreement with the stopping power curve of protons in PMMA. It means that the waveguides are formed at the depths where the stopping power is the maximum value. Light losses for 635 nm wavelength were measured using planar waveguides to verify if the transmittance is enough for the application of the technique to optical devices.
Optical penetration sensor for pulsed laser welding
Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.
2000-01-01
An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.
NASA Astrophysics Data System (ADS)
Gouveia, Diego; Baars, Holger; Seifert, Patric; Wandinger, Ulla; Barbosa, Henrique; Barja, Boris; Artaxo, Paulo; Lopes, Fabio; Landulfo, Eduardo; Ansmann, Albert
2018-04-01
Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.
Improved Aerosol Optical Depth and Particle Size Index from Satellite Detected Radiance
1991-12-01
the central Pacific. Another environmental factor discussed by Benedict (1989) was the eruption of the Kilauea volcano in Hawaii (17°N, 157°W...another near 1O0N. A distinction can be made between an influence from Kilauea volcano at 20°N and DMS production leading to non-sea-salt sulfate...natural dust or anthropogenic pollutants. There is another peak near 8°N. Since Figure 8 revealed little optical depth from the eruption of Kilauea , this
Charland, Paule M.; Chetty, Indrin J.; Yokoyama, Shigeru; Fraass, Benedick A.
2003-01-01
In this study, a dosimetric evaluation of the new Kodak extended dose range (EDR) film versus ionization measurements has been conducted in homogeneous solid water and water‐lung equivalent layered heterogeneous phantoms for a relevant range of field sizes (up to a field size of 25×25 cm2 and a depth of 15 cm) for 6 and 15 MV photon beams from a linear accelerator. The optical density of EDR film was found to be linear up to about 350 cGy and over‐responded for larger fields and depths (5% for 25×25 cm2 at depth of 15 cm compared to a 10×10 cm2, 5 cm depth reference value). Central axis depth dose measurements in solid water with the film in a perpendicular orientation were within 2% of the Wellhöfer IC‐10 measurements for the smaller field sizes. A maximum discrepancy of 8.4% and 3.9% was found for the 25×25 cm2 field at 15 cm depth for 6 and 15 MV photons, respectively (with curve normalization at a depth of 5 cm). Compared to IC‐10 measurements, film measured central axis depth dose inside the lung slab showed a slight over‐response (at most 2%). At a depth of 15 cm in the lung phantom the over‐response was found to be 7.4% and 3.7% for the 25×25 cm2 field for 6 and 15 MV photons, respectively. When results were presented as correction factors, the discrepancy between the IC‐10 and the EDR was greatest for the lowest energy and the largest field size. The effect of the finite size of the ion chamber was most evident at smaller field sizes where profile differences versus film were observed in the penumbral region. These differences were reduced at larger field sizes and in situations where lateral electron transport resulted in a lateral spread of the beam, such as inside lung material. Film profiles across a lung tumor geometry phantom agreed with the IC‐10 chamber within the experimental uncertainties. From this investigation EDR film appears to be a useful medium for relative dosimetry in higher dose ranges in both water and lung equivalent material for moderate field sizes and depths. © 2003 American College of Medical Physics. PACS number(s): 87.53.Dq, 87.66.Cd, 87.66.Jj, 87.66.Xa PMID:12540816
An energy- and depth-dependent model for x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallas, Brandon D.; Boswell, Jonathan S.; Badano, Aldo
In this paper, we model an x-ray imaging system, paying special attention to the energy- and depth-dependent characteristics of the inputs and interactions: x rays are polychromatic, interaction depth and conversion to optical photons is energy-dependent, optical scattering and the collection efficiency depend on the depth of interaction. The model we construct is a random function of the point process that begins with the distribution of x rays incident on the phosphor and ends with optical photons being detected by the active area of detector pixels to form an image. We show how the point-process representation can be used tomore » calculate the characteristic statistics of the model. We then simulate a Gd{sub 2}O{sub 2}S:Tb phosphor, estimate its characteristic statistics, and proceed with a signal-detection experiment to investigate the impact of the pixel fill factor on detecting spherical calcifications (the signal). The two extremes possible from this experiment are that SNR{sup 2} does not change with fill factor or changes in proportion to fill factor. In our results, the impact of fill factor is between these extremes, and depends on the diameter of the signal.« less
NASA Astrophysics Data System (ADS)
Tariq, Salman; Zia, ul-Haq; Ali, Muhammad
2016-02-01
Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of aerosols with vertical profile taken on 10 October 2013 segregates the wide spread aerosol burden as smoke, polluted continental and dust aerosols.
NASA Astrophysics Data System (ADS)
Tiwari, S.; Ramachandran, S.
2017-12-01
Clouds are one of the major factors that influence the Earth's radiation budget and also change the precipitation pattern. Atmospheric aerosols play a crucial role in modifying the cloud properties acting as cloud condensation nuclei (CCN). It can change cloud droplet number concentration, cloud droplet size and hence cloud albedo. Therefore, the effects of aerosol on cloud parameters are one of the most important topics in climate change study. In the present study, we investigate the spatial variability of aerosol - cloud interactions during normal monsoon years and drought years over entire Indo - Gangetic Basin (IGB) which is one of the most polluted regions of the world. Based on aerosol loading and their major emission sources, we divided the entire IGB in to six major sub regions (R1: 66 - 71 E, 24 - 29 N; R2: 71 - 76 E, 29 - 34 N; R3: 76 - 81 E, 26 - 31 N; R4: 81 - 86 E, 23 - 28 N; R5: 86 - 91 E, 22 - 27 N and R6: 91 - 96 E, 23 - 28 N). With this objective, fifteen years (2001 - 2015), daily mean aerosol optical depth, cloud parameters and rainfall data obtained from MODerate resolution Imaging Spectroradiometer (MODIS) on board of Terra satellite and Tropical Rainfall Measuring Mission (TRMM) is analyzed over each sub regions of IGB for monsoon season (JJAS : June, July, August and September months). Preliminary results suggest that a slightly change in aerosol optical depth can affect the significant contribution of cloud fraction and other cloud properties which also show a large spatial heterogeneity. During drought years, higher cloud effective radius (i.e. CER > 20µm) decreases from western to eastern IGB suggesting the enhancement in cloud albedo. Relatively week correlation between cloud optical thickness and rainfall is found during drought years than the normal monsoon years over western IGB. The results from the present study will be helpful to reduce uncertainty in understanding of aerosol - cloud interaction over IGB. Further details will be presented during the conference.
High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies
NASA Technical Reports Server (NTRS)
Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.
2013-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment for the daily variability in the AOD-PM(sub 2.5) relationship provides a means for obtaining spatially-resolved PM(sub 2.5) concentrations.
A large, switchable optical clearing skull window for cerebrovascular imaging
Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan
2018-01-01
Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069
Application of velocity filtering to optical-flow passive ranging
NASA Technical Reports Server (NTRS)
Barniv, Yair
1992-01-01
The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.
High efficiency Raman memory by suppressing radiation trapping
NASA Astrophysics Data System (ADS)
Thomas, S. E.; Munns, J. H. D.; Kaczmarek, K. T.; Qiu, C.; Brecht, B.; Feizpour, A.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.
2017-06-01
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5 % in caesium vapour at high optical depths of up to ˜ 2× {10}5; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
Daytime variations of absorbing aerosols above clouds in the southeast Atlantic
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Christopher, S. A.
2016-12-01
The daytime variation of aerosol optical depth (AOD) above maritime stratocumulus clouds in the southeast Atlantic is investigated by merging geostationary data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) with NASA A-Train data sets. SEVIRI's 15-minute above cloud AOD and below aerosol cloud optical depth (COD) retrieval provides the opportunity to assess their direct radiative forcing using actual cloud and aerosol properties instead of using fixed values from polar-orbiting measurements. The impact of overlying aerosols above clouds on the cloud mask products are compared with active spaceborne lidar to examine the performance of the product. Uncertainty analyses of aerosol properties on the estimation of optical properties and radiative forcing are addressed.
Computational and design methods for advanced imaging
NASA Astrophysics Data System (ADS)
Birch, Gabriel C.
This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.
Optical depth of molecular gas in starburst galaxies - Is M82 the prototype?
NASA Technical Reports Server (NTRS)
Verter, F.; Rickard, L. J.
1989-01-01
An attempt is made to survey the CO(2-1) emission toward the centers of 17 IR-luminous galaxies which have previously been detected in CO(1-0). These galaxies span a wide range of size and L(FIR)/L(B) ratio, many have multiple-wavelength studies establishing them as starbursts, and some bear a morphological resemblance to M 82. Nine galaxies are detected and useful upper limits are placed on the remaining eight. Using the CO(2-1)/CO(1-0) ratio of antenna temperature as a diagnostic of optical depth, it is found that all of the galaxies contain predominantly optically thick molecular gas. This implies that the phase of starburst during which the molecular gas is optically thin, currently witnessed in M 82, is either uncommon or short-lived.
Interstellar silicate dust in the z = 0.685 absorber toward TXS 0218+357
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aller, Monique C.; Kulkarni, Varsha P.; Liger, Nicholas
2014-04-10
We report the detection of interstellar silicate dust in the z {sub abs} = 0.685 absorber along the sightline toward the gravitationally lensed blazar TXS 0218+357. Using Spitzer Space Telescope Infrared Spectrograph data, we detect the 10 μm silicate absorption feature with a detection significance of 10.7σ. We fit laboratory-derived silicate dust profile templates obtained from the literature to the observed 10 μm absorption feature and find that the best single-mineral fit is obtained using an amorphous olivine template with a measured peak optical depth of τ{sub 10} = 0.49 ± 0.02, which rises to τ{sub 10} ∼ 0.67 ±more » 0.04 if the covering factor is taken into account. We also detected the 18 μm silicate absorption feature in our data with a >3σ significance. Due to the proximity of the 18 μm absorption feature to the edge of our covered spectral range, and associated uncertainty about the shape of the quasar continuum normalization near 18 μm, we do not independently fit this feature. We find, however, that the shape and depth of the 18 μm silicate absorption are well matched to the amorphous olivine template prediction, given the optical depth inferred for the 10 μm feature. The measured 10 μm peak optical depth in this absorber is significantly higher than those found in previously studied quasar absorption systems. However, the reddening, 21 cm absorption, and velocity spread of Mg II are not outliers relative to other studied absorption systems. This high optical depth may be evidence for variations in dust grain properties in the interstellar medium between this and the previously studied high redshift galaxies.« less
Investigation of tropical cirrus cloud properties using ground based lidar measurements
NASA Astrophysics Data System (ADS)
Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.
2016-05-01
Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.
On the size and composition of particles in polar stratospheric clouds
NASA Technical Reports Server (NTRS)
Kinne, Stefan; Toon, Owen B.; Toon, Goeff C.; Farmer, Crofton B.; Browell, Edward V.
1988-01-01
Attenuation measurements of the solar radiation between 1.5 and 15 micron wavelengths were performed with the airborne (DC-8) JPL MARK 4 interferometer during the 1987 Antarctic Expedition. The opacities not only provide information about the abundance of stratospheric gases but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption (windows). The optical depth of PSCs can be determined for each window once the background attenuation, due to air-molecules and aerosol has been filtered out with a simple extinction law. The ratio of optical thicknesses at different wavelengths reveals information about particle size and particle composition. Among the almost 700 measured spectra only a few PSC cases exist. PSC events are identified by sudden reductions in the spectrally integrated intensity value and are also verified with backscattering data from an upward directed lidar instrument, that was mounted on the DC-8. For the selected case on September 21st at 14.40 GMT, lidar data indicate an optically thin cloud at 18k and later an additional optically thick cloud at 15 km altitude. All results still suffer from: (1) often arbitrary definitions of a clear case, that often already may have contained PSC particles and (2) noise problems that restrict the calculations of optical depths to values larger than 0.001. Once these problems are handled, this instrument may become a valuable tool towards a better understanding of the role PSCs play in the Antarctic stratosphere.
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2017-01-01
Near-infrared laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of the endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous computer simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, results were suboptimal, and some undesirable thermal insult to the vaginal wall was still predicted. This study uses experiments and computer simulations to explore whether application of an optical clearing agent (OCA) can further improve optical penetration depth and completely preserve the vaginal wall during subsurface treatment of the endopelvic fascia. Several different mixtures of OCA's were tested, and 100% glycerol was found to be the optimal agent. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations [including Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral model of thermal damage] using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37°C after 30 min. The MC model showed improved energy deposition in endopelvic fascia using glycerol. Without OCA, 62%, 37%, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, respectively, compared with 50%, 49%, and 1% using OCA. Use of OCA also resulted in 0.5-mm increase in treatment depth, allowing potential thermal tissue remodeling at a depth of 3 mm with complete preservation of the vaginal wall.
Application study of the optical biopsy system for small experimental animals
NASA Astrophysics Data System (ADS)
Sato, Hidetoshi; Suzuki, Toshiaki; Morita, Shin-ichi; Maruyama, Atsushi; Shimosegawa, Toru; Matsuura, Yuji; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Ozaki, Yukihiro
2008-02-01
An optical biopsy system for small experimental animals has been developed. The system includes endoscope probe, portable probe and two kinds of miniaturized Raman probes. The micro Raman probe (MRP) is made of optical fibers and the ball lens hollow optical fiber Raman probe (BHRP) is made of hollow fiber. The former has large focal depth and suitable to measure average spectra of subsurface tissue. The latter has rather small focal depth and it is possible to control focal length by selecting ball lens attached at the probe head. It is suitable to survey materials at the fixed depth in the tissue. The system is applied to study various small animal cancer models, such as esophagus and stomach rat models and subcutaneous mouse models of pancreatic cancers. In the studies of subcutaneous tumor model mouse, it is suggested that protein conformational changes occur in the tumor tissue within few minutes after euthanasia of the mouse. No more change is observed for the following ten minutes. Any alterations in the molecular level are not observed in normal skin, muscle tissues. Since the change completes in such a short time, it is suggested that this phenomenon caused by termination of blood circulation.
Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.
2011-01-01
A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.
NASA Astrophysics Data System (ADS)
De Freitas, Carolina; Hernandez, Victor M.; Ruggeri, Marco; Durkee, Heather A.; Williams, Siobhan; Gregori, Giovanni; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie
2016-03-01
The purpose of this project is to design and evaluate a system that will enable objective assessment of the optical accommodative response in real-time while acquiring axial biometric information. The system combines three sub-systems which were integrated and mounted on a joystick x-y-z adjustable modified slit-lamp base to facilitate alignment and data acquisition: (1) a Shack-Hartmann wavefront sensor for dynamic refraction measurement, provided software calculates sphere, cylinder and axis values, (2) an extended-depth Optical Coherence Tomography (OCT) system using an optical switch records high-resolution cross-sectional images across the length of the eye, from which, dynamic axial biometry (corneal thickness, anterior chamber depth, crystalline lens thickness and vitreous depth) can be extracted, and (3) a modified dual-channel accommodation stimulus unit based on the Badal optometer for providing a step change in accommodative stimulus. The prototypal system is capable of taking simultaneous measurements of both the optical and the mechanical response of lens accommodation. These measurements can provide insight into correlating changes in lens shape with changes in lens power and ocular refraction and ultimately provide a more comprehensive understanding of accommodation, presbyopia and an objective assessment of presbyopia correction techniques.
NASA Technical Reports Server (NTRS)
Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.
1987-01-01
Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.
Spectral Absorption Properties of Atmospheric Aerosols
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.
2007-01-01
We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.