Science.gov

Sample records for moderately acid-tolerant methanogens

  1. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps.

    PubMed

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2-7.5 (optimal 5.5-6.0) and at a temperature range of 30-60°C (optimal 51-55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1-94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  2. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  3. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  4. Isolation and characterization of a moderately halophilic methanogen from a solar saltern

    SciTech Connect

    Mathrani, I.M.; Boone, D.R.

    1985-07-01

    A moderately halophilic methanogenic bacterium was enriched with trimethylamine and isolated from the sediment of a solar salt pond (total dissolved solids of pond water, 250 g/liter; pH 7.5). The isolate (strain SF1, DSM 3243) was an irregular coccus which stained gram negative, with a diameter of 1 ..mu..m and a thin monolayered cell wall. The organism grew singly, in pairs, and in irregular clumps. Colonies were tannish yellow, circular, with entire edges, and about 1 mm in diameter within 1 week. Only methylamines or methanol was used for growth and methanogenesis. Most rapid growth (doubling time, 10.2 h) occurred at a temperature of 37/sup 0/C and a pH of 7.4. The optimum NaCl concentration was 2.1 M. Yeast extract or rumen fluid was required. The isolate was lysed by sodium dodecyl sulfate (0.1 g/liter) and was sensitive to chloramphenicol. The g + C content of the DNA was 41 (+/- 1) mol%.

  5. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    PubMed

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (<20 °C) limits bio-methanation of sewage. Literature shows that hydrogenotrophic methanogens can adapt themselves to low temperature and methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor.

  6. Acid tolerance mechanisms utilized by Streptococcus mutans

    PubMed Central

    Matsui, Robert; Cvitkovitch, Dennis

    2010-01-01

    Since its discovery in 1924 by J Clarke, Streptococcus mutans has been the focus of rigorous research efforts due to its involvement in caries initiation and progression. Its ability to ferment a range of dietary carbohydrates can rapidly drop the external environmental pH, thereby making dental plaque inhabitable to many competing species and can ultimately lead to tooth decay. Acid production by this oral pathogen would prove suicidal if not for its remarkable ability to withstand the acid onslaught by utilizing a wide variety of highly evolved acid-tolerance mechanisms. The elucidation of these mechanisms will be discussed, serving as the focus of this review. PMID:20210551

  7. Most acid-tolerant chickpea mesorhizobia show induction of major chaperone genes upon acid shock.

    PubMed

    Brígido, Clarisse; Oliveira, Solange

    2013-01-01

    Our goals were to evaluate the tolerance of mesorhizobia to acid and alkaline conditions as well as to investigate whether acid tolerance is related to the species or the origin site of the isolates. In addition, to investigate the molecular basis of acid tolerance, the expression of chaperone genes groEL and dnaKJ was analyzed using acid-tolerant and sensitive mesorhizobia. Tolerance to pH 5 and 9 was evaluated in liquid medium for 98 Portuguese chickpea mesorhizobia belonging to four species clusters. All isolates showed high sensitivity to pH 9. In contrast, mesorhizobia revealed high diversity in terms of tolerance to acid stress: 35 % of the isolates were acid sensitive and 45 % were highly tolerant to pH 5 or moderately acidophilic. An association between mesorhizobia tolerance to acid conditions and the origin soil pH was found. Furthermore, significant differences between species clusters regarding tolerance to acidity were obtained. Ten isolates were used to investigate the expression levels of the chaperone genes by northern hybridization. Interestingly, most acid-tolerant isolates displayed induction of the dnaK and groESL genes upon acid shock while the sensitive ones showed repression. This study suggests that acid tolerance in mesorhizobia is related to the pH of the origin soil and to the species cluster of the isolates. Additionally, the transcriptional analysis suggests a relationship between induction of major chaperone genes and higher tolerance to acid pH in mesorhizobia. This is the first report on transcriptional analysis of the major chaperones genes in mesorhizobia under acidity, contributing to a better understanding of the molecular mechanisms of rhizobia acidity tolerance.

  8. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  9. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains. PMID:27430512

  10. Osmoregulation in methanogens

    SciTech Connect

    Roberts, M.F.

    1993-01-01

    Our major goal of our work has been to develop and use NMR techniques to study how methanogenic archaebacteria deal with osmotic stress with the hope of providing insights into increasing the salt tolerance of other cells. The project has three main sections: (i) in vivo studies of methanogens; (ii) use of [sup l3]C- and [sup l5]N- labeled potential precursors and in vitro analyses of specific label uptake for elucidation of osmolyte dynamics and biosynthetic pathways of osmolytes in these organisms, and isolation of key biosynthetic enzymes; and (iii) collaborative studies on identification of organic solutes in other methanogens.

  11. Differential soil acidity tolerance of dry bean genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil acidity is a major yield limiting factors for bean production in the tropical regions. Using soil acidity tolerant genotypes is an important strategy in improving bean yields and reducing cost of production. A greenhouse experiment was conducted with the objective of evaluating 20 dry bean geno...

  12. Intracellular pH of acid-tolerant ruminal bacteria.

    PubMed Central

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells. PMID:1781695

  13. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  14. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability

    PubMed Central

    Blake, Lynsay I.; Tveit, Alexander; Øvreås, Lise; Head, Ian M.; Gray, Neil D.

    2015-01-01

    Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not

  15. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability.

    PubMed

    Blake, Lynsay I; Tveit, Alexander; Øvreås, Lise; Head, Ian M; Gray, Neil D

    2015-01-01

    Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not

  16. Usnic acid controls the acidity tolerance of lichens.

    PubMed

    Hauck, Markus; Jürgens, Sascha-René

    2008-11-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK(a1) value of usnic acid of 4.4. Below this optimum pH, dissolved SO(2) reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH

  17. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.

    PubMed Central

    Bender, G R; Sutton, S V; Marquis, R E

    1986-01-01

    Differences in acid tolerance among representative oral streptococci were found to be related more closely to the dynamic permeabilities of the bacteria to protons than to differences in the sensitivities of cell membranes to gross damage caused by environmental acidification. For Streptococcus mutans GS-5, Streptococcus sanguis NCTC 10904, and Streptococcus salivarius ATCC 13419, gross membrane damage, indicated by the release of magnesium from whole cells, occurred at pH values below about 4 and was rapid and extensive at pH values of about 3 or less. A more aciduric, lactic acid bacterium, Lactobacillus casei ATCC 4646, was more resistant to environmental acidification, and gross membrane damage was evident only at pH values below 3. Assessments of the movements of protons into S. mutans cells after an acid pulse at various pH values indicated that permeability to protons was minimal at a pH value of about 5, at which the average half time for pH equilibration across the cell membrane was about 12 min. The corresponding values for the less aciduric organism S. sanguis were pH 7 and 8.2 min, and the values for the intermediate organism S. salivarius were pH 6 and 6.6 min. The ATPase inhibitor dicyclohexylcarbodiimide acted to increase markedly the permeability of each organism to protons, and this action indicated that permeability involved not only the passive inflow of protons but also active outflow through the proton-translocating membrane ATPase. Membranes were isolated from each of the bacteria, and pH profiles for ATPase activities indicated pH optima of about 7.5, 7.0, 6.0, and 5.0 for S. sanguis, S. salivarius, S. mutans, and L. casei, respectively. Thus, the pH profiles for the enzymes reflected the acid tolerances of the bacteria and the permeabilities of whole cells to protons. PMID:3015800

  18. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  19. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  20. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  1. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    PubMed Central

    Bertel, Doug; Peck, John; Quick, Thomas J.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  2. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    PubMed

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  3. Acid tolerance response of Bordetella bronchiseptica in avirulent phase.

    PubMed

    Fingermann, M; Hozbor, D

    2015-12-01

    Bordetella bronchiseptica is a Gram-negative bacterium responsible for respiratory diseases in many mammalian hosts, including humans. This pathogen has been shown as able to persist inside the host cells, even in the phagosomes that are acidified to pH 4.5-5.0 after bacterial infection. Here we evaluated the resistance of B. bronchiseptica to survive under acidic conditions. In particular we analyzed the bacterial capacity to develop the mechanism known as acid tolerance response (ATR). Our studies were mainly focused on the avirulent phase of the bacteria since this phenotypic phase was reported to be more resistant to environmental stress conditions than the virulent phase. Results from B. bronchiseptica in virulent phase were also included for comparison purposes. In fact, for B. bronchiseptica 9.73 bacteria in virulent phase we observed that the viability of bacteria does not decrease significantly when grown at pH as low as 4.5, but it is affected when the pH of the medium was equal to or less than 4.0. After acid-adaptation at pH 5.5 for several hours, the survival rate of B. bronchiseptica 9.73 at lethal pH 4.0 for 6h was increased. Interestingly, the avirulent phase mediated by the two-component BvgAS system conferred further resistance to lethal acid challenge and a marked increase in the magnitude of the expressed ATR. The ATR for this avirulent phase seems to be associated with changes in LPS and surface protein profiles. 2D-gel electrophoresis revealed at least 25 polypeptides differentially expressed, 17 of which were only expressed or over-expressed under acid conditions. Using MALDI-TOF mass spectrometry, 10 of these differentially expressed polypeptides were identified. PMID:26640052

  4. Acid tolerance response of Bordetella bronchiseptica in avirulent phase.

    PubMed

    Fingermann, M; Hozbor, D

    2015-12-01

    Bordetella bronchiseptica is a Gram-negative bacterium responsible for respiratory diseases in many mammalian hosts, including humans. This pathogen has been shown as able to persist inside the host cells, even in the phagosomes that are acidified to pH 4.5-5.0 after bacterial infection. Here we evaluated the resistance of B. bronchiseptica to survive under acidic conditions. In particular we analyzed the bacterial capacity to develop the mechanism known as acid tolerance response (ATR). Our studies were mainly focused on the avirulent phase of the bacteria since this phenotypic phase was reported to be more resistant to environmental stress conditions than the virulent phase. Results from B. bronchiseptica in virulent phase were also included for comparison purposes. In fact, for B. bronchiseptica 9.73 bacteria in virulent phase we observed that the viability of bacteria does not decrease significantly when grown at pH as low as 4.5, but it is affected when the pH of the medium was equal to or less than 4.0. After acid-adaptation at pH 5.5 for several hours, the survival rate of B. bronchiseptica 9.73 at lethal pH 4.0 for 6h was increased. Interestingly, the avirulent phase mediated by the two-component BvgAS system conferred further resistance to lethal acid challenge and a marked increase in the magnitude of the expressed ATR. The ATR for this avirulent phase seems to be associated with changes in LPS and surface protein profiles. 2D-gel electrophoresis revealed at least 25 polypeptides differentially expressed, 17 of which were only expressed or over-expressed under acid conditions. Using MALDI-TOF mass spectrometry, 10 of these differentially expressed polypeptides were identified.

  5. Light sensitivity of methanogenic archaebacteria

    SciTech Connect

    Olson, K.D.; McMahon, C.W.; Wolfe, R.S. )

    1991-09-01

    Representatives of four families of methanogenic archaebacteria (archaea), Methanobacterium thermoautotrophicum {Delta}H, Methanobacterium thermoautotrophicum Marburg, Methanosarcina acetivorans, Methanococcus voltae, and Methanomicrobium mobile, were found to be light sensitive. The facultative anaerobic eubacteria Escherichia coli and Salmonella typhimurium, however, were tolerant of light when grown anaerobically under identical light conditions. Interference filters were used to show that the growth of the methanogens is inhibited by light in the blue end of the visible spectrum (370 to 430 nm).

  6. The Geobiochemistry of Methanogen Proteins

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Shock, E.

    2013-12-01

    A principle of geobiochemistry is that adaptation over evolutionary time includes a thermodynamic drive to minimize costs of making biomolecules like proteins and lipids. If so, then biomolecule abundances will reflect, at least in part, their relative stabilities at the conditions imposed by external environments. We tested this hypothesis by comparing relative stabilities of 138 orthologous proteins between a representative lake-sediment methanogen (Methanoculleus marisnigri) and a representative rumen methanogen (Methanospirillum hungatei) at the compositional constraints of their respective environments. Chemical affinities of the proteins were calculated based on pH, temperature, and concentrations of dissolved hydrogen, bicarbonate, ammonia, and hydrogen sulfide, together with standard Gibbs energies of formation of proteins from the elements predicted with a group additivity algorithm for unfolded proteins [1]. Methanogens were chosen as they are chemoautotrophs and their metabolism proceeds at relatively small affinities. Also, they are found in a variety of compositionally varying habitats like rumen, sediments, hydrothermal systems and sewage. The methanogens selected belong to the same order of taxonomy and are closely related. Preliminary results show that a majority of the proteins belonging to the rumen methanogen (66%) are more stable in the rumen environment, while a majority of the proteins belonging to the lake-sediment methanogen (58%) are more stable at sediment conditions. In a separate observation, it was noted that while the complete protein ';proteasome subunit alpha' of another rumen methanogen (Methanobrevibacter smithii) was less stable in its more reducing habitat as compared to a sewage methanogen (Methanothermobacter thermoautotophicus), its first 26 amino acid residues (N terminal) were in fact more stable in its own environment. These 26 residues are reported to be unique as compared to other proteasome proteins and are suggested to

  7. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  8. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae. PMID:25698512

  9. Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride

    SciTech Connect

    Bradley, P.M.; Chapelle, F.H.

    1999-10-01

    Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-{sup 14}C]vinyl chloride to {sup 14}CH{sub 4} and {sup 14}CO{sub 2}. Amendment with 2-bromoethanesulfonic acid eliminated {sup 14}CH{sub 4} production and decreased {sup 14}CO{sub 2} recovery by an equal molar amount. Results obtained with [{sup 14}C]ethene, [{sup 14}C]acetate, or {sup 14}CO{sub 2} as substrates indicated that acetotrophic methanogens were responsible for the production of {sup 14}CH{sub 4} during biodegradation of [1,2-{sup 14}C]VC.

  10. Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1999-01-01

    Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-14C]vinyl chloride to 14CH4 and 14CO2. Amendment with 2-bromoethanesulfonic acid eliminated 14CH4 production and decreased 14CO2 recovery by an equal molar amount. Results obtained with [14C]ethene, [14C]acetate, or 14CO2 as substrates indicated that acetotrophic methanogens were responsible for the production of 14CH4 during biodegradation of [1,2-14C]VC.Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-14C]vinyl chloride to 14CH4 and 14CO2. Amendment with 2-bromoethanesulfonic acid eliminated 14CH4 production and decreased 14CO2 recovery by an equal molar amount. Results obtained with [14C]-ethene, [14C]acetate, or 14CO2 as substrates indicated that acetotrophic methanogens were responsible for the production of 14CH4, during biodegradation of [1,2-14C]VC.

  11. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    PubMed

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  12. Methanogens in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to

  13. Methanogenic activities in alpine soils.

    PubMed

    Wagner, Andreas O; Hofmann, Katrin; Prem, Eva; Illmer, Paul

    2012-07-01

    Uncontrolled microbial methane production is playing an important role in global warming. In the present study, we showed that water content and incubation temperature increase the potential for methane formation in the two alpine soils under investigation. Beside these factors, the grazing of cows and thus the amendment of methanogenic microorganisms by cattle dung is the most important factor determining the potential of methane production in those soils.

  14. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false 1-Naphthaleneacetic acid; tolerances for residues. 180.155 Section 180.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.155 1-Naphthaleneacetic...

  15. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 1-Naphthaleneacetic acid; tolerances for residues. 180.155 Section 180.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.155 1-Naphthaleneacetic...

  16. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tolerances § 180.155 1-Naphthaleneacetic acid; tolerances for residues. (a) General. Tolerances are established for the combined residues of the plant growth regulator 1-naphthaleneacetic acid and its... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 1-Naphthaleneacetic acid;...

  17. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  18. YfdW and YfdU are required for oxalate-induced acid tolerance in Escherichia coli K-12.

    PubMed

    Fontenot, Elise M; Ezelle, Karen E; Gabreski, Lauren N; Giglio, Eleanor R; McAfee, John M; Mills, Alexandria C; Qureshi, Maryam N; Salmon, Kristin M; Toyota, Cory G

    2013-04-01

    Escherichia coli has several mechanisms for surviving low-pH stress. We report that oxalic acid, a small-chain organic acid (SCOA), induces a moderate acid tolerance response (ATR) in two ways. Adaptation of E. coli K-12 at pH 5.5 with 50 mM oxalate and inclusion of 25 mM oxalate in pH 3.0 minimal challenge medium separately conferred protection, with 67% ± 7% and 87% ± 17% survival after 2 h, respectively. The combination of oxalate adaptation and oxalate supplementation in the challenge medium resulted in increased survival over adaptation or oxalate in the challenge medium alone. The enzymes YfdW, a formyl coenzyme A (CoA) transferase, and YfdU, an oxalyl-CoA decarboxylase, are required for the adaptation effect but not during challenge. Unlike other SCOAs, this oxalate ATR is not a part of the RpoS regulon but appears to be linked to the signal protein GadE. We theorize that this oxalate ATR could enhance the pathogenesis of virulent E. coli consumed with oxalate-containing foods like spinach.

  19. YfdW and YfdU Are Required for Oxalate-Induced Acid Tolerance in Escherichia coli K-12

    PubMed Central

    Fontenot, Elise M.; Ezelle, Karen E.; Gabreski, Lauren N.; Giglio, Eleanor R.; McAfee, John M.; Mills, Alexandria C.; Qureshi, Maryam N.; Salmon, Kristin M.

    2013-01-01

    Escherichia coli has several mechanisms for surviving low-pH stress. We report that oxalic acid, a small-chain organic acid (SCOA), induces a moderate acid tolerance response (ATR) in two ways. Adaptation of E. coli K-12 at pH 5.5 with 50 mM oxalate and inclusion of 25 mM oxalate in pH 3.0 minimal challenge medium separately conferred protection, with 67% ± 7% and 87% ± 17% survival after 2 h, respectively. The combination of oxalate adaptation and oxalate supplementation in the challenge medium resulted in increased survival over adaptation or oxalate in the challenge medium alone. The enzymes YfdW, a formyl coenzyme A (CoA) transferase, and YfdU, an oxalyl-CoA decarboxylase, are required for the adaptation effect but not during challenge. Unlike other SCOAs, this oxalate ATR is not a part of the RpoS regulon but appears to be linked to the signal protein GadE. We theorize that this oxalate ATR could enhance the pathogenesis of virulent E. coli consumed with oxalate-containing foods like spinach. PMID:23335415

  20. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  1. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Shen, Xiaoning; Xu, Jiahui; Wang, Junzhi; Wang, Yanyan; Liu, Dong; Niu, Huanqing; Liang, Lei; Ying, Hanjie

    2016-07-10

    A mutant strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii M11, which exhibited ferulic acid tolerance up to 0.9g/L, was generated using atmospheric pressure glow discharge and high-throughput screening. Comparative genomic analysis revealed that this strain harbored a mutation of the Cbei_4693 gene, which encodes a hypothetical protein suspected to be an NADPH-dependent FMN reductase. After disrupting the Cbei_4693 gene in C. beijerinckii NCIMB 8052 using the ClosTron group II intron-based gene inactivation system, we obtained the Cbei_4693 gene inactivated mutant strain, C. beijerinckii 4693::int. Compared with C. beijerinckii NCIMB 8052, 6.23g/L of butanol was produced in P2 medium containing 0.5g/L of ferulic acid by 4693::int, and the ferulic acid tolerance was also significantly increased up to 0.8g/L. These data showed, for the first time, that the Cbei_4693 gene plays an important role in regulating ferulic acid tolerance in ABE fermentation by C. beijerinckii. PMID:27164255

  2. Modularized evolution in archaeal methanogens phylogenetic forest.

    PubMed

    Li, Jun; Wong, Chi-Fat; Wong, Mabel Ting; Huang, He; Leung, Frederick C

    2014-12-09

    Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species.

  3. Relationship between methanogenic cofactor content and maximum specific methanogenic activity of anaerobic granular sludges

    SciTech Connect

    Gorris, L.G.; de Kok, T.M.; Kroon, B.M.; van der Drift, C.; Vogels, G.D.

    1988-05-01

    In this study we investigated whether a relationship exists between the methanogenic activity and the content of specific methanogenic cofactors of granular sludges cultured on different combinations of volatile fatty acids in upflow anaerobic sludge blanket or fluidized-bed reactors. Significant correlations were measured in both cases between the contents of coenzyme F/sub 420/-2 or methanopterin and the maximum specific methanogenic activities on propionate, butyrate, and hydrogen, but not acetate. For both sludges the content of sarcinapterin appeared to be correlated with methanogenic activities on propionate, butyrate, and acetate, but not hydrogen. Similar correlations were measured with regard to the total content of coenzyme F/sub 420/-4 and F/sub 420/-5 sludges from fluidized-bed reactors. The results indicate that the contents of specific methanogenic cofactors measured in anaerobic granular sludges can be used to estimate the hydrogenotrophic or acetotrophic methanogenic potential of these sludges.

  4. Hydrogenotrophic control in methanogenic processes

    SciTech Connect

    Smith, D.P.

    1987-01-01

    Interspecies transfer of molecular hydrogen from obligately proton-reducing or facultative fermenting bacteria to chemolithotrophic methanogens is an important control process in methanogenesis. Experimental studies are presented which elucidate these interactions, and demonstrate the significance of hydrogenotrophs in process control. Steady-state hydrogen partial pressure was measured under sixteen conditions, with continuous stirred tank reactors, anaerobic baffled reactors, and an anaerobic filter, operated at various detention times on ethanol, propionate, and other substrates. Longer-chain n-carboxylic acids were formed by back reactions from acetate and propionate when hydrogen levels were elevated; reactions reversed direction when hydrogen levels fell and equilibrium shifted to favor beta-oxidations. N-propanol was formed from propionate by an ethanol-oxidation/propionate-reduction reactions, determined to be mediated by ethanol-oxidizers; n-propanol formation was enhanced by elevated propionate concentrations. Substrate utilization and product formation were consistent with reaction energetics. Substrates were not consumed when their utilization reactions had a positive free energy change, and changes in product and substrate concentrations were reversed with a shift in equilibrium of the corresponding reactions. Hydrogen levels exerted the most significant influence on the direction of equilibrium. Energetic analysis offers a predictive tool to restrictively characterize reactions and reaction patterns. Biological processes fostering biofilm growth had higher hydrogen turnover rates than processes tending towards dispersed-growth. Biofilm processes offer greater operational stability than dispersed-growth processes in treating hydrogen-producing substrates.

  5. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44

    PubMed Central

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  6. Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment.

    PubMed

    Lee, Yong-Jin; Romanek, Christopher S; Wiegel, Juergen

    2007-02-01

    An obligately anaerobic, spore-forming, moderately acid-tolerant bacterium, strain JW/YJL-B3T, was isolated from a sediment sample from a constructed wetland system receiving acid sulfate water. Based on 16S rRNA gene sequence analysis, the isolate belonged to the Firmicutes branch with Clostridium drakei SL1T (96.2 % gene sequence similarity) as its closest relative. The G+C content of the genomic DNA was 30.8 mol% (HPLC). Cells were straight to curved rods, 0.5-1.0 microm in diameter and 3.0-9.0 microm in length. The temperature range for growth was 20-45 degrees C, with an optimum around 35 degrees C. Growth was not detected below 18 degrees C or above 47 degrees C. The pH range for growth was broad, pH(25 degrees C) 3.8-8.9, with an optimum at 7.0-7.5. However at pH 4.5, the strain grew at 52 % of the optimal growth rate. The salinity range was 0-1.5 % NaCl (w/v). Strain JW/YJL-B3T utilized beef extract, Casamino acids, peptone, tryptone, arabinose, cellobiose, fructose, galactose, glucose, lactose, maltose, mannose, raffinose, ribose, sucrose, xylose, pyruvate, glutamate and inulin as a carbon and energy source. There were no indications of growth under aerobic or autotrophic conditions. The isolate produced acetate, butyrate and ethanol as fermentation end products from glucose. Based on these characteristics and other physiological properties, the isolate is placed into the novel taxon, Clostridium aciditolerans sp. nov., with strain JW/YJL-B3T (=DSM 17425T=ATCC BAA-1220T) as the type strain.

  7. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors.

    PubMed

    Whang, Liang-Ming; Hu, Tai-Ho; Liu, Pao-Wen Grace; Hung, Yu-Ching; Fukushima, Toshikazu; Wu, Yi-Ju; Chang, Shao-Hsiung

    2015-02-01

    This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition.

  8. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity. PMID:21382146

  9. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.

  10. Anaerobic biodegradation of chloroform under methanogenic conditions

    SciTech Connect

    Devesh, M.T.; Gupta, M.; Suidan, M.T.; Sayles, G.D.

    1994-12-31

    The degradation of chloroform is studied for two different methanogenic cultures grown on acetate and methanol exclusively, as the primary substrates. In chemostats, chloroform was fed at different concentrations as high as 2,000 {micro}g/l along with the primary substrate and chloroform degradation greater than 98% was observed. The kinetics of degradation of chloroform and the primary substrate were investigated using BMP tests and it was seen that the methanol-fed methanogenic culture exhibited higher rates of chloroform degradation than the acetate-fed methanogenic culture. Besides, chloroform inhibited acetate degradation at any concentration while methanol inhibition was observed only for chloroform concentrations higher than 800 {micro}g/l.

  11. Isolation and characterization of methanogenic bacteria from landfills

    SciTech Connect

    Fielding, E.R.; Archer, D.B.; De Macario, E.C.; Macario, A.J.L.

    1988-03-01

    Methanogenic bacteria were isolated from landfill sites in the United Kindgom. Strains of Methanobacterium formicicum, Methanosarcina barkeri, several different immunotypes of Methanobacterium bryantii, and a coccoid methanogen distinct from the reference immunotypes were identified.

  12. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    PubMed

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  13. High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici.

    PubMed

    Wang, Zhongqiang; Jin, Ying; Yang, Shang-Tian

    2015-03-01

    Propionic acid is an important chemical with wide applications and its production via fermentation is of great interest. However, economic production of bio-based propionic acid requires high product titer, yield, and productivity in the fermentation. A highly efficient and stable high cell density (HCD) fermentation process with cell recycle by centrifugation was developed for propionic acid production from glucose using an acid-tolerant strain of Propionibacterium acidipropionici, which had a higher specific growth rate, productivity, and acid tolerance compared to the wild type ATCC 4875. The sequential batch HCD fermentation at pH 6.5 produced propionic acid at a high titer of ∼40 g/L and productivity of 2.98 g/L h, with a yield of ∼0.44 g/g. The product yield increased to 0.53-0.62 g/g at a lower pH of 5.0-5.5, which, however, decreased the productivity to 1.28 g/L h. A higher final propionic acid titer of >55 g/L with a productivity of 2.23 g/L h was obtained in fed-batch HCD fermentation at pH 6.5. A 3-stage simulated fed-batch process in serum bottles produced 49.2 g/L propionic acid with a yield of 0.53 g/g and productivity of 0.66 g/L h. These productivities, yields and propionic acid titers were among the highest ever obtained in free-cell propionic acid fermentation.

  14. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae.

    PubMed

    Merrell, D Scott; Hava, David L; Camilli, Andrew

    2002-03-01

    Despite over 100 years of study, the intestinal pathogen Vibrio cholerae still causes epidemic disease in areas of the world where there is poor sanitation. While cholera toxin and the toxin-coregulated pilus (TCP) are known to be essential for full virulence, the role that other factors play has remained ill-defined. Herein, we describe a large-scale signature-tagged mutagenesis (STM) screen utilizing 100 pools of 96 mutants each to identify factors involved in colonization of the infant mouse small intestine. A total of 164 mutants representing transposition events into 95 different open reading frames were shown to be recovered at greatly reduced numbers from the infant mouse model. Analysis of the sites of insertion revealed multiple independent mutations within the rfb gene cluster, needed for synthesis of lipopolysaccharide (LPS), and the tcp gene cluster, needed for synthesis of the TCP. More importantly, in addition to these previously known colonization factors, we identified many genes whose activity in colonization was not previously appreciated. These can be divided into a number of functional groups, which include production of factors involved in metabolic activities, regulation of cellular processes, transport, adaptation to stress and unknown functions. In addition, we describe the reiterative use of STM, whereby colonization-defective mutants were assembled into virulence-attenuated pools (VAPs), which were used to begin to reveal roles that the identified virulence factors play in the infection process. Nine new factors were shown to be crucial for the V. cholerae acid tolerance response, which has previously been hypothesized to be important for epidemic spread of cholera. Competition assays of these nine acid tolerance response (ATR)-defective mutants revealed that mutations in gshB, hepA and recO result in a 1000-fold reduction in colonization. PMID:11952899

  15. The LysR-type regulator LeuO regulates the acid tolerance response in Vibrio cholerae.

    PubMed

    Ante, Vanessa M; Bina, X Renee; Bina, James E

    2015-12-01

    Vibrio cholerae is a neutrophilic enteric pathogen that is extremely sensitive to acid. As V. cholerae passages through the host gastrointestinal tract it is exposed to a variety of environmental stresses including low pH and volatile fatty acids. Exposure to acidic environments induces expression of the V. cholerae acid tolerance response. A key component of the acid tolerance response is the cad system, which is encoded by cadC and the cadBA operon. CadB is a lysine/cadaverine antiporter and CadA is a lysine decarboxylase and these function together to counter low intracellular and extracellular pH. CadC is a membrane-associated transcription factor that activates cadBA expression in response to acidic conditions. Herein we investigated the role of the LysR-type transcriptional regulator LeuO in the V. cholerae acid tolerance response. Transcriptional reporter assays revealed that leuO expression repressed cadC transcription, indicating that LeuO was a cadC repressor. Consistent with this, leuO expression was inversely linked to lysine decarboxylase production and leuO overexpression resulted in increased sensitivity to organic acids. Overexpression of leuO in a cadA mutant potentiated killing by organic acids, suggesting that the function of leuO in the acid tolerance response extended beyond its regulation of the cad system. Collectively, these studies have identified a new physiological role for LeuO in V. cholerae acid tolerance.

  16. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    PubMed

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  17. [Acidophilic methanogens and their applications in anaerobic digestion].

    PubMed

    Guo, Xiao-Hui; Wu, Wei-Xiang; Han, Zhi-Ying; Shi, De-Zhi

    2011-02-01

    Methanogens play an important role in global carbon cycle. There exists a range of unknown methanogenic archaea in acidic peat lands, among which, acidophilic methanogens have attracted increasing research interests because of their special metabolic characteristics. To introduce acidophilic methanogens in the anaerobic digestion process of high concentration organic wastes or waste water could essentially overcome the inhibition of acid accumulation on the methanogens and help reduce the operation cost, broadening the industrial application of anaerobic bio-treatment technology. In this paper, we reviewed the recent researches on acidophilic methanogens, with the focus on enrichment and isolation methods, physiological and biochemical characters, metabolic characteristics, and application of molecular biology. The potential applications of acidophilic methanogens in anaerobic digestion process were analyzed and proposed, and the directions for further researches were suggested.

  18. Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance

    PubMed Central

    Chen, Xiulai; Song, Wei; Gao, Cong; Qin, Wen; Luo, Qiuling; Liu, Jia; Liu, Liming

    2016-01-01

    Fumarate is a well-known biomass building block compound. However, the poor catalytic efficiency of fumarase is one of the major factors preventing its widespread production. To address this issue, we selected residues 159HPND162 of fumarase from Rhizopus oryzae as targets for site-directed mutagenesis based on molecular docking analysis. Twelve mutants were generated and characterized in detail. Kinetic studies showed that the Km values of the P160A, P160T, P160H, N161E, and D162W mutants were decreased, whereas Km values of H159Y, H159V, H159S, N161R, N161F, D162K, and D162M mutants were increased. In addition, all mutants displayed decreased catalytic efficiency except for the P160A mutant, whose kcat/Km was increased by 33.2%. Moreover, by overexpressing the P160A mutant, the engineered strain T.G-PMS-P160A was able to produce 5.2 g/L fumarate. To further enhance fumarate production, the acid tolerance of T.G-PMS-P160A was improved by deleting ade12, a component of the purine nucleotide cycle, and the resulting strain T.G(△ade12)-PMS-P160A produced 9.2 g/L fumarate. The strategy generated in this study opens up new avenues for pathway optimization and efficient production of natural products. PMID:27711153

  19. Investigation of Growth Phase-Dependent Acid Tolerance in Bifidobacteria longum BBMN68.

    PubMed

    Jin, Junhua; Song, Jingyi; Ren, Fazheng; Zhang, Hongxing; Xie, Yuanhong; Ma, Jingsheng; Li, Xue

    2016-11-01

    The underlying mechanisms imparting the growth phase-dependent acid tolerance have not been extensively investigated. In this study, we compared the acid resistance of the Bifidobacterium longum strain BBMN68 from different growth phases at lethal pH values (pH 2.5, 3.0, and 3.5), and analyzed the activity of H(+)-ATPase, the composition of fatty acids, and the mRNA abundance of ffh, uvrA, recA, lexA, groES, and dnaK in cells from different growth phases. The results indicated that the survival rates of cells from early stationary (ES) and late stationary (LS) growth phases at lethal pH values were significantly higher than those of exponential growth phase cells. Our findings indicated that by inducing a continuously auto-acidizing environment during cell growth, the acid resistance of ES and LS cells was strengthened. The higher activity of H(+)-ATPase, the decrease in unsaturated fatty acids, and the increased expression of genes involved in DNA repair and protein protection in the cells in stationary growth phase were all implicated in the significantly increased acid resistance of ES and LS cells compared with exponential growth phase cells of the B. longum strain BBMN68.

  20. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations.

    PubMed

    Stopnisek, Nejc; Bodenhausen, Natacha; Frey, Beat; Fierer, Noah; Eberl, Leo; Weisskopf, Laure

    2014-06-01

    Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp.

  1. Seasonal Changes in Methanogenesis and Methanogenic Community in Three Peatlands, New York State

    PubMed Central

    Sun, Christine L.; Brauer, Suzanna L.; Cadillo-Quiroz, Hinsby; Zinder, Stephen H.; Yavitt, Joseph B.

    2012-01-01

    Fluctuating environmental conditions can promote diversity and control dominance in community composition. In addition to seasonal temperature and moisture changes, seasonal supply of metabolic substrates selects populations temporally. Here we demonstrate cascading effects in the supply of metabolic substrates on methanogenesis and community composition of anaerobic methanogenic archaea in three contrasting peatlands in upstate New York. Fresh samples of peat soils, collected about every 3 months for 20 months and incubated at 22 ± 2°C regardless of the in situ temperature, exhibited potential rates of methane (CH4) production of 0.02–0.2 mmol L−1 day−1 [380–3800 nmol g−1 (dry) day−1). The addition of acetate stimulated rates of CH4 production in a fen peatland soil, whereas addition of hydrogen (H2), and simultaneous inhibition of H2-consuming acetogenic bacteria with rifampicin, stimulated CH4 production in two acidic bog soils, especially, in autumn and winter. The methanogenic community structure was characterized using T-RFLP analyses of SSU rRNA genes. The E2 group of methanogens (Methanoregulaceae) dominated in the two acidic bog peatlands with relatively greater abundance in winter. In the fen peatland, the E1 group (Methanoregulaceae) and members of the Methanosaetaceae were co-dominant, with E1 having a high relative abundance in spring. Change in relative abundance profiles among methanogenic groups in response to added metabolic substrates was as predicted. The acetate-amendment increased abundance of Methanosarcinaceae, and H2-amendment enhanced abundance of E2 group in all peat soils studied, respectively. Additionally, addition of acetate increased abundance of Methanosaetaceae only in the bog soils. Variation in the supply of metabolic substrates helps explain the moderate diversity of methanogens in peatlands. PMID:22408638

  2. Immobilization of the Methanogenic bacterium methanosarcina barkeri

    SciTech Connect

    Scherer, P.; Kluge, M.; Klein, J.; Sahm, H.

    1981-05-01

    Whole cells of the methanogen Methanosarcina barkeri were immobilized in an alginate network which was crosslinked with Ca/sup 2+/ calcium ions. The rates of methanol conversion to methane of entrapped cells were found to be in the same range as the corresponding rates of free cells. Furthermore, immobilized cells were active for a longer period than free cells. The particle size of the spherical alginate beads and thus diffusion has no obvious influence on the turnover of methanol. The half-value period for methanol conversion activity determined in a buffer medium was approximately 4 days at 37/degree/C for entrapped cells. The high rates of methanol degradation indicated that the immobilization technique preserved the cellular functions of this methanogenic bacterium. 24 refs.

  3. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  4. Biotransformation of alkanoylcholines under methanogenic conditions.

    PubMed

    Watson, Mary Katherine; Tezel, Ulas; Pavlostathis, Spyros G

    2012-06-01

    Ester quaternary ammonium compounds (esterquats), which are mainly used as active ingredients in fabric softeners and personal care products, are beginning to replace traditional quaternary ammonium compounds. As a result of hydrophobicity and increasing use, esterquats reach anaerobic treatment systems. However, little is known about the fate of esterquats under anaerobic conditions. In the present study, the potential inhibitory effect and biotransformation of two alkanoylcholines - acetylcholine chloride (ACh-Cl) and lauroylcholine chloride (LCh-Cl) - which are simple esterquats, under methanogenic conditions were investigated. ACh-Cl up to 300 mg/L was not inhibitory to a mixed methanogenic culture. In contrast, methanogenesis was inhibited by LCh-Cl above 50 mg/L, primarily caused by the accumulation of lauric acid which resulted from the abiotic hydrolysis of LCh. Below inhibitory concentrations, both ACh and LCh were transformed to methane by the mixed methanogenic culture. Mass spectrometric analysis confirmed that both alkanoylcholines were first abiotically hydrolyzed to choline and the corresponding alkanoic acid, which were then biotically transformed to methane, carbon dioxide, and ammonia. Thus, alkanoylcholine-containing waste streams can be bioprocessed to form methane, but hydrolysis products such as long-chain alkanoic acids may adversely impact the anaerobic bioconversion of alkanoylcholines. PMID:22463863

  5. Microbiology and biochemistry of the methanogenic archaeobacteria

    NASA Astrophysics Data System (ADS)

    Abbanat, Darren R.; Aceti, David J.; Baron, Stephen F.; Terlesky, Katherine C.; Ferry, James C.

    The methane producing bacteria area diverse group of organisms that function in nature with other groups of strictly anaerobic bacteria to convert complex organic matter to methane and carbon dioxide. The methanogens belong to the archaeobacteria, a third primary kingdom distinct from all other procaryotes (eubacteria) and eucaryotes. The distinction is based on the unique structures of cell wall and membrane components present in archaeobacteria, as well as differences in the highly conserved 16s rRNA sequences among the three kingdoms. In addition, the methanogens contain several novel cofactors that function as one-carbon carriers during the reduction of carbon dioxide to methane with electrons derived from the oxidation of H2 or formate. Methanogens also convert acetate to methane by a pathway distinct from that for carbon dioxide reduction. The pathway involves activation of acetate to acetyl-SCoA followed by decarbonylation and reduction of the methyl group to methane coupled to the oxidation of the carbonyl group to carbon dioxide.

  6. Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria

    SciTech Connect

    Leigh, J.A.

    1983-03-01

    The levels of seven water-soluble vitamins in Methanobacterium thermoautotropicum, Methanococcus voltae, Escherichia coli, Bacillus subtillis, Pseudomonas fluorescens, and Bacteroides thetaiotaomicron were compared by using a vitamin-requiring Leuconostoc strain. Both methanogens contained levels of folic acid and pantothenic acid which were approximately two orders of magnitude lower than levels in the nonmethanogens. Methanobacterium thermoautotrophicum contained levels of thiamine, biotin, nicotinic acid, and pyridoxine which were approximately one order of magnitude lower than levels in the nonmethanogens. The thiamine level in Methanococcus voltae was approximately one order of magnitude lower than levels in the nonmethanogens. Only the levels of riboflavin (and nicotinic acid and pyridoxine in Methanococcus voltae) were approximately equal in the methanogens and nonmethanogens. Folic acid may have been present in extracts of methanogens merely as a precursor, by-product, or hydrolysis product of methanopterin.

  7. Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Stetter, K. O.; Rouviere, P.; Woese, C. R.

    1991-01-01

    Analysis of its 16S rRNA sequence shows that the newly discovered hyperthermophilic methanogen, Methanopryus kandleri, is phylogenetically unrelated to any other known methanogen. The organism represents a separate lineage originating near the root of the archaeal tree. Although the 16S rRNA sequence of Mp. kandleri resembles euryarchaeal 16S rRNAs more than it does crenarchaeal, it shows more crenarchaeal signature features than any known euryarchaeal rRNA. Attempts to place it in relation to the root of the archaeal tree show that the Mp. kandleri lineage likely arises from the euryarchaeal branch of the tree. While the existence of so deeply branching a methanogenic lineage brings into question the thesis that methanogenesis evolved from an earlier metabolism similar to that seen in Thermococcus, it at the same time reinforces the notion that the aboriginal [correction of aborginal] archaeon was a thermophile.

  8. High tolerance of methanogens in granular sludge to oxygen

    SciTech Connect

    Kato, M.T.; Field, J.A.; Lettinga, G. . Dept. of Environmental Technology)

    1993-12-01

    This research assessed the effect of oxygen exposure on the methanogenic activity of anaerobic granular sludges. The toxicity of oxygen to acetoclastic methanogens in five different anaerobic granular sludges was determined in serum flasks with effective gas-to-liquid volumes of 4.65 to 1. The amount of oxygen that caused 50% inhibition of the methanogenic activity after 3 days of exposure ranged from 7% to 41% oxygen in the head space. These results indicate that methanogens located in granular sludge have a high tolerance for oxygen. The most important factor contributing to the tolerance was the oxygen consumption by facultative bacteria metabolizing biodegradable substrates. Uptake of oxygen by these bacteria creates anaerobic microenvironments where the methanogenic bacteria are protected. The results also indicate that methanogens in sludge consortia still have some tolerance to oxygen, even in the absence of facultative substrate for oxygen respiration.

  9. Methanogens: methane producers of the rumen and mitigation strategies.

    PubMed

    Hook, Sarah E; Wright, André-Denis G; McBride, Brian W

    2010-01-01

    Methanogens are the only known microorganisms capable of methane production, making them of interest when investigating methane abatement strategies. A number of experiments have been conducted to study the methanogen population in the rumen of cattle and sheep, as well as the relationship that methanogens have with other microorganisms. The rumen methanogen species differ depending on diet and geographical location of the host, as does methanogenesis, which can be reduced by modifying dietary composition, or by supplementation of monensin, lipids, organic acids, or plant compounds within the diet. Other methane abatement strategies that have been investigated are defaunation and vaccines. These mitigation methods target the methanogen population of the rumen directly or indirectly, resulting in varying degrees of efficacy. This paper describes the methanogens identified in the rumens of cattle and sheep, as well as a number of methane mitigation strategies that have been effective in vivo.

  10. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    In previous study, two extremely acidophilic strains Acidithiobacillus thiooxidans ZJJN-3 (collection site: bioleaching leachate) and ZJJN-5 (collection site: bioleaching wastewater) were isolated from a typical industrial bio-heap in China. Here, we unraveled the potential acid-tolerance components of ZJJN-3 by comparing the physiological differences with ZJJN-5 under different acid stresses. The parameters used for comparison included intracellular pH (pHin), capsule morphology, fatty acid composition of cell membrane, transcription of key molecular chaperones, H(+)-ATPase activities and NAD(+)/NADH ratio. It was indicated that the acid-tolerance of A. thiooxidans ZJJN-3 was systematically regulated. Capsule first thickened and then shed off along with increased acid stress. Cell membrane maintained the intracellular stability by up-regulating the proportion of unsaturated fatty acid and cyclopropane fatty acids. Meanwhile, the transcription of key repair molecular chaperones (GrpE-DnaK-DnaJ) was up-regulated by 2.2-3.5 folds for ensuring the proper folding of peptide. Moreover, low pHin promoted ZJJN-3 to biosynthesize more H(+)-ATPase for pumping H(+) out of cells. Furthermore, the NAD(+)/NADH ratio increased due to the decreased H(+) concentration. Based on the above physiological analysis, the potential acid-tolerance components of A. thiooxidans ZJJN-3 were first proposed and it would be useful for better understanding how these extremophiles responded to the high acid stress.

  11. Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Merkel, Alexander Y; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Sukhacheva, Marina V; van Loosdrecht, Mark C M

    2015-10-01

    Two groups of haloalkaliphilic methanogenic archaea were dominating in enrichments from hypersaline soda lake sediments at pH 10. At moderate salt concentrations with formate or H2 as electron donor, methanogens belonging to the genus Methanocalculus were enriched, while at high salt concentrations with methylated substrates, a group related to Methanosalsum zhilinae was dominating. For both groups, several pure cultures were obtained including the type strains AMF2T for the Methanocalculus group and AME2T for the Methanosalsum group. The Methanocalculus group is characterized by lithoheterotrophic growth with either formate (preferable substrate) or H2 at moderate salinity up to 1.5-2 M total Na+ and obligate alkaliphilic growth with an optimum at pH 9.5. According to phylogenetic analysis, the group also includes closely related strains isolated previously from the low-salt alkaline Lonar Lake. The novel Methanosalsum group is characterized by high salt tolerance (up to 3.5 M total Na+) and obligate alkaliphilic growth with an optimum at pH 9.5. It has a typical methylotrophic substrate profile, utilizing methanol, methylamines and dimethyl sulfide (at low concentrations) as methanogenic substrates. On the basis of physiological and phylogenetic data, it is proposed that the two groups of soda lake methanogenic isolates are assigned into two novel species, Methanocalculus alkaliphilus sp. nov. (type strain AMF2T = DSM 24457T = UNIQEM U859T) and Methanosalsum natronophilum sp. nov. (type strain AME2T = DSM 24634T = NBRC 110091T).

  12. Study of methanogen communities associated with different rumen protozoal populations.

    PubMed

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2014-12-01

    Protozoa-associated methanogens (PAM) are considered one of the most active communities in the rumen methanogenesis. This experiment investigated whether methanogens are sequestrated within rumen protozoa, and structural differences between rumen free-living methanogens and PAM. Rumen protozoa were harvested from totally faunated sheep, and six protozoal fractions (plus free-living microorganisms) were generated by sequential filtration. Holotrich-monofaunated sheep were also used to investigate the holotrich-associated methanogens. Protozoal size determined the number of PAM as big protozoa had 1.7-3.3 times more methanogen DNA than smaller protozoa, but also more endosymbiotic bacteria (2.2- to 3.5-fold times). Thus, similar abundance of methanogens with respect to total bacteria were observed across all protozoal fractions and free-living microorganisms, suggesting that methanogens are not accumulated within rumen protozoa in a greater proportion to that observed in the rumen as a whole. All rumen methanogen communities had similar diversity (22.2 ± 3.4 TRFs). Free-living methanogens composed a conserved community (67% similarity within treatment) in the rumen with similar diversity but different structures than PAM (P < 0.05). On the contrary, PAM constituted a more variable community (48% similarity), which differed between holotrich and total protozoa (P < 0.001). Thus, PAM constitutes a community, which requires further investigation as part of methane mitigation strategies.

  13. Study of methanogen communities associated with different rumen protozoal populations

    PubMed Central

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2014-01-01

    Protozoa-associated methanogens (PAM) are considered one of the most active communities in the rumen methanogenesis. This experiment investigated whether methanogens are sequestrated within rumen protozoa, and structural differences between rumen free-living methanogens and PAM. Rumen protozoa were harvested from totally faunated sheep, and six protozoal fractions (plus free-living microorganisms) were generated by sequential filtration. Holotrich-monofaunated sheep were also used to investigate the holotrich-associated methanogens. Protozoal size determined the number of PAM as big protozoa had 1.7–3.3 times more methanogen DNA than smaller protozoa, but also more endosymbiotic bacteria (2.2- to 3.5-fold times). Thus, similar abundance of methanogens with respect to total bacteria were observed across all protozoal fractions and free-living microorganisms, suggesting that methanogens are not accumulated within rumen protozoa in a greater proportion to that observed in the rumen as a whole. All rumen methanogen communities had similar diversity (22.2 ± 3.4 TRFs). Free-living methanogens composed a conserved community (67% similarity within treatment) in the rumen with similar diversity but different structures than PAM (P < 0.05). On the contrary, PAM constituted a more variable community (48% similarity), which differed between holotrich and total protozoa (P < 0.001). Thus, PAM constitutes a community, which requires further investigation as part of methane mitigation strategies. PMID:25195951

  14. Progress in the development of vaccines against rumen methanogens.

    PubMed

    Wedlock, D N; Janssen, P H; Leahy, S C; Shu, D; Buddle, B M

    2013-06-01

    Vaccination against rumen methanogens offers a practical approach to reduce methane emissions in livestock, particularly ruminants grazing on pasture. Although successful vaccination strategies have been reported for reducing the activity of the rumen-dwelling organism Streptococcus bovis in sheep and S. bovis and Lactobacillus spp. in cattle, earlier approaches using vaccines based on whole methanogen cells to reduce methane production in sheep have produced less promising results. An anti-methanogen vaccine will need to have broad specificity against methanogens commonly found in the rumen and induce antibody in saliva resulting in delivery of sufficiently high levels of antibodies to the rumen to reduce methanogen activity. Our approach has focussed on identifying surface and membrane-associated proteins that are conserved across a range of rumen methanogens. The identification of potential vaccine antigens has been assisted by recent advances in the knowledge of rumen methanogen genomes. Methanogen surface proteins have been shown to be immunogenic in ruminants and vaccination of sheep with these proteins induced specific antibody responses in saliva and rumen contents. Current studies are directed towards identifying key candidate antigens and investigating the level and types of salivary antibodies produced in sheep and cattle vaccinated with methanogen proteins, stability of antibodies in the rumen and their impact on rumen microbial populations. In addition, there is a need to identify adjuvants that stimulate high levels of salivary antibody and are suitable for formulating with protein antigens to produce a low-cost and effective vaccine.

  15. Slr2019, lipid A transporter homolog, is essential for acidic tolerance in Synechocystis sp. PCC6803.

    PubMed

    Matsuhashi, Ayumi; Tahara, Hiroko; Ito, Yutaro; Uchiyama, Junji; Ogawa, Satoru; Ohta, Hisataka

    2015-08-01

    Living organisms must defend themselves against various environmental stresses. Extracellular polysaccharide-producing cells exhibit enhanced tolerance toward adverse environmental stress. In Synechocystis sp. PCC6803 (Synechocystis), lipopolysaccharide (LPS) may play a role in this protection. To examine the relationship between stress tolerance of Synechocystis and LPS, we focused on Slr2019 because Slr2019 is homologous to MsbA in Escherichia coli, which is related to LPS synthesis. First, to obtain a defective mutant of LPS, we constructed the slr2019 insertion mutant (slr2019) strain. Sodium deoxycholate-polyacrylamide gel electrophoresis indicated that slr2019 strain did not synthesize normal LPS. Second, to clarify the participation of LPS in acid tolerance, wild type (WT) and slr2019 strain were grown under acid stress; slr2019 strain growth was significantly weaker than WT growth. Third, to examine influences on stress tolerance, slr2019 strain was grown under various stresses. Under salinity and temperature stress, slr2019 strain grew significantly slower than WT. To confirm cell morphology, cell shape and envelope of slr2019 strain were observed by transmission electron microscopy; slr2019 cells contained more electron-transparent bodies than WT cells. Finally, to confirm whether electron-transparent bodies are poly-3-hydroxybutyrate (PHB), slr2019 strain was stained with Nile Blue A, a PHB detector, and observed by fluorescence microscopy. The PHB granule content ratio of WT and slr2019 strain grown at BG-11 pH 8.0 was each 7.18 and 8.41 %. At pH 6.0, the PHB granule content ratio of WT and slr2019 strain was 2.99 and 2.60 %. However, the PHB granule content ratio of WT and slr2019 strain grown at BG-11N-reduced was 10.82 and 0.56 %. Because slr2019 strain significantly decreased PHB under BG-11N-reduced compared with WT, LPS synthesis may be related to PHB under particular conditions. These results indicated that Slr2019 is necessary for

  16. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke; Lupa, Boguslaw; Susanti, Dwi; Porat, I.; Hooper, Sean; Lykidis, A; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla L.; Saunders, Elizabeth H; Han, Cliff; Land, Miriam L; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William; Woese, Carl; Bristow, James; Kyrpides, Nikos C

    2009-01-01

    Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  17. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  18. Energetics of syntrophic cooperation in methanogenic degradation.

    PubMed Central

    Schink, B

    1997-01-01

    Fatty acids and alcohols are key intermediates in the methanogenic degradation of organic matter, e.g., in anaerobic sewage sludge digestors or freshwater lake sediments. They are produced by classical fermenting bacteria for disposal of electrons derived in simultaneous substrate oxidations. Methanogenic bacteria can degrade primarily only one-carbon compounds. Therefore, acetate, propionate, ethanol, and their higher homologs have to be fermented further to one-carbon compounds. These fermentations are called secondary or syntrophic fermentations. They are endergonic processes under standard conditions and depend on intimate coupling with methanogenesis. The energetic situation of the prokaryotes cooperating in these processes is problematic: the free energy available in the reactions for total conversion of substrate to methane attributes to each partner amounts of energy in the range of the minimum biochemically convertible energy, i.e., 20 to 25 kJ per mol per reaction. This amount corresponds to one-third of an ATP unit and is equivalent to the energy required for a monovalent ion to cross the charged cytoplasmic membrane. Recent studies have revealed that syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget. These findings allow us to understand the energy economy of these bacteria on the basis of concepts derived from the bioenergetics of other microorganisms. PMID:9184013

  19. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells

    PubMed Central

    Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.

    2013-01-01

    The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357

  20. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells.

    PubMed

    Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J; Drenzek, Nicholas J; Coolen, Marco J L

    2013-01-01

    The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation.

  1. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells.

    PubMed

    Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J; Drenzek, Nicholas J; Coolen, Marco J L

    2013-01-01

    The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357

  2. Characterization of the sat Operon in Streptococcus mutans: Evidence for a Role of Ffh in Acid Tolerance

    PubMed Central

    Kremer, Bas H. A.; van der Kraan, Marieke; Crowley, Paula J.; Hamilton, Ian R.; Brady, L. Jeannine; Bleiweis, Arnold S.

    2001-01-01

    An essential protein translocation pathway in Escherichia coli and Bacillus subtilis involves the signal recognition particle (SRP), of which the 54-kDa homolog (Ffh) is an essential component. In a previous study, we found that a transposon insertion in the ylxM-ffh intergenic region of the designated secretion and acid tolerance (sat) operon of Streptococcus mutans resulted in an acid-sensitive phenotype. In the present study, we further characterized this genomic region in S. mutans after construction of bonafide sat operon mutants and confirmed the role of the SRP pathway in acid resistance. Northern blot and primer extension analyses identified an acid-inducible promoter upstream of ylxM that was responsible for upregulating the coordinate expression of all five genes of the sat operon when cells were grown at acid pH. Two constitutive promoters, one immediately upstream of satD and one just 3′ to the acid-inducible promoter, were also identified. Except for Ffh, the functions of the sat operon gene products are unknown. SatC, SatD, and SatE have no homology to proteins with known functions, although YlxM may function as a transcriptional regulator linked to genes encoding SRP pathway proteins. Nonpolar mutations created in each of the five genes of the sat locus resulted in viable mutants. Most striking, however, was the finding that a mutation in ffh did not result in loss of cell viability, as is the case in all other microbial species in which this pathway has been described. This mutant also lacked immunologically detectable Ffh and was severely affected in resistance to acid. Complementation of the mutation resulted in restoration of acid tolerance and reappearance of cytoplasmic Ffh. These data provide evidence that the SRP pathway plays an important role in acid tolerance in S. mutans. PMID:11274114

  3. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle.

  4. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.

  5. [Community Structure and Succession of Methanogens in Beishenshu Landfill, Beijing].

    PubMed

    Song, Li-na; Wang, Lei; Xia, Meng-jing; Su, Yue; Li, Zhen-shan

    2015-09-01

    Methanogens are the key microorganisms for landfill stabilization. RT-PCR and qPCR detecting system were employed to determine the types and abundance of methanogens in 2-15 year-old solid wastes that sampled from Beishenshu Landfill, Beijing. The organic components were almost stable and the pH values were in alkaline range, which indicated that the landfill was in the methanogenic process. Methanobacterials, Methanosaeta, and Methanosarcina were detected, among which Methanosaeta and Methanosarcina are acetoclastic, and Methanobacterials are hydrogenotrophic. As landfill processing, within this time range, although the bacterial abundance was significantly decreased, the amount of methanogens was first increased and then decreased, and finally became stable after being landfilled for 9 years. Methanosarcina was the dominate taxa. Significant correlations were found between the methanogens and the volatile fatty acids, but the correlations between methanogens and larger molecular organic matters were relatively weak or even absent. Taken together, our study revealed that the amount of methanogens were affected by substrates, but hardly influenced by the conversion of large molecules in these wastes landfilled for more than 2 years. PMID:26717715

  6. [Community Structure and Succession of Methanogens in Beishenshu Landfill, Beijing].

    PubMed

    Song, Li-na; Wang, Lei; Xia, Meng-jing; Su, Yue; Li, Zhen-shan

    2015-09-01

    Methanogens are the key microorganisms for landfill stabilization. RT-PCR and qPCR detecting system were employed to determine the types and abundance of methanogens in 2-15 year-old solid wastes that sampled from Beishenshu Landfill, Beijing. The organic components were almost stable and the pH values were in alkaline range, which indicated that the landfill was in the methanogenic process. Methanobacterials, Methanosaeta, and Methanosarcina were detected, among which Methanosaeta and Methanosarcina are acetoclastic, and Methanobacterials are hydrogenotrophic. As landfill processing, within this time range, although the bacterial abundance was significantly decreased, the amount of methanogens was first increased and then decreased, and finally became stable after being landfilled for 9 years. Methanosarcina was the dominate taxa. Significant correlations were found between the methanogens and the volatile fatty acids, but the correlations between methanogens and larger molecular organic matters were relatively weak or even absent. Taken together, our study revealed that the amount of methanogens were affected by substrates, but hardly influenced by the conversion of large molecules in these wastes landfilled for more than 2 years.

  7. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    PubMed

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  8. The potential of Methanogenic Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, R.-S.; Firneis, M. G.; Leitner, J. J.; Schleper, C.; Rittmann, S. K.-M. R.

    2015-10-01

    Methanogens from the domain Archaea are obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs producing methane (CH4). For the CH4-production they primarily use various C1 typecompounds (like carbon monoxide (CO), carbon dioxide (CO2), formate (HCO- 2)), but some strains are also able to utilize methanol (CH3OH), acetate, or even methylsulfides for energy production. The capability of methanogens thriving under various extreme environments on Earth is astonishing. Their enormous diversity and the similarity between their growth conditions and the environmental conditions on extraterrestrial bodies throughout the Solar System make methanogens to an ideal test object for astrobiological experiments.

  9. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  10. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen.

    PubMed

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M; Janssen, Peter H; Luo, Dongwen; Wedlock, D Neil

    2015-04-15

    Methane is produced in the rumen of cattle by a group of archaea (single-celled organisms forming a domain distinct from bacteria and eucarya) called methanogens. Vaccination against methanogens has the potential to reduce methane emissions by inducing antibodies in saliva which are transferred to the rumen and diminish the ability of methanogens to produce methane. Since it is likely that an effective vaccination strategy will need to produce high levels of methanogen-specific antibody in the saliva; the choice of adjuvant, route of vaccination and stability of saliva-derived antibody in the rumen all need to be considered. In this study, stability of IgA and IgG in rumen fluid was determined using an in vitro assay. IgA levels in cattle saliva were reduced by only 40% after 8h exposure to rumen contents while IgG levels were reduced by 80%. These results indicated that antibody is relatively stable in the bovine rumen. A trial was conducted in cattle to investigate induction of immune responses to a methanogen protein, recombinant glycosyl transferase protein (rGT2) from Methanobrevibacter ruminantium M1. Groups of cattle (n=6) were vaccinated subcutaneously with rGT2, formulated with Montanide ISA61 with or without the TLR4 agonist, monophosphoryl lipid A (MPL). A control group (n=6) was not vaccinated. Strong antigen-specific IgG and moderate IgA responses were measured in the serum and saliva of the vaccinated animals and antibody was also detected in the rumen.

  11. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neill, K.; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  12. A hydrogen-based subsurface microbial community dominated by methanogens.

    PubMed

    Chapelle, Francis H; O'Neill, Kathleen; Bradley, Paul M; Methé, Barbara A; Ciufo, Stacy A; Knobel, LeRoy L; Lovley, Derek R

    2002-01-17

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  13. A comment on methanogenic bacteria and the primitive ecology

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1977-01-01

    As the phenotype of methanogenic bacteria is suggested to have been one of the major factors creating a dynamic balance between CO2 and CH4 in the primitive atmosphere, these organisms are thought to be very ancient. Their antiquity may be further postulated by comparative characterization of their ribosomal RNA. Accepting this antiquity, it is concluded that a carbon-dioxide-methane cycle, driven by photosynthesis, was the major carbon cycle in primitive ecology, and that photosynthesis and methanogens were thus contemporaneous.

  14. Methanogen communities in a municipal landfill complex in China.

    PubMed

    Tang, Wei; Wang, Yangqing; Lei, Yu; Song, Liyan

    2016-05-01

    Landfills are significant global sources of atmospheric methane, but little is known about the ecology and community structure of methanogens in these sites. Here, we investigated the methanogen community based on methyl coenzyme M reductase A gene amplicons in the vertical profiles of three different sites at a municipal landfill complex in China. Links between methanogen communities and refuse properties were explored using multivariate analysis. Clone library results showed that most clones (92%) were related to the hydrogenotrophic methanogens, Methanomicrobiales. Almost all of the Methanomicrobiales clones retrieved in this study are members of the genus Methanoculleus Eight clones were affiliated with the genus Methanofollis The remaining clones were clustered within the genus Methanosarcina Terminal restriction fragment length polymorphism profiles showed that the landfill was predominated by 22 taxa, making up 69%-96% of the community. Of these, a single taxon comprised 36%-65% of the communities across all sites and depths. Principal components analysis separated the methanogen community into three groups, irrespective of site or depth. Redundancy analysis suggested that total phosphorus and pH play roles in structuring methanogen communities in landfills. PMID:27036145

  15. Methanogenic archaea database containing physiological and biochemical characteristics.

    PubMed

    Jabłoński, Sławomir; Rodowicz, Paweł; Łukaszewicz, Marcin

    2015-04-01

    The methanogenic archaea are a group of micro-organisms that have developed a unique metabolic pathway for obtaining energy. There are 150 characterized species in this group; however, novel species continue to be discovered. Since methanogens are considered a crucial part of the carbon cycle in the anaerobic ecosystem, characterization of these micro-organisms is important for understanding anaerobic ecology. A methanogens database (MDB; http://metanogen.biotech.uni.wroc.pl/), including physiological and biochemical characteristics of methanogens, was constructed based on the descriptions of isolated type strains. Analysis of the data revealed that methanogens are able to grow from 0 to 122 °C. Methanogens growing at the same temperature may have very different growth rates. There is no clear correlation between the optimal growth temperature and the DNA G+C content. The following substrate preferences are observed in the database: 74.5% of archaea species utilize H2+CO2, 33% utilize methyl compounds and 8.5% utilize acetate. Utilization of methyl compounds (mainly micro-organisms belonging to the genera Methanosarcina and Methanolobus ) is seldom accompanied by an ability to utilize H2+CO2. Very often, data for described species are incomplete, especially substrate preferences. Additional research leading to completion of missing information and development of standards, especially for substrate utilization, would be very helpful.

  16. Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria

    SciTech Connect

    Ye, D.; Quensen, J.F.; Tiedje, J.M.

    1995-06-01

    When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia. 27 refs., 5 figs., 1 tab.

  17. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. PMID:25421565

  18. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation.

  19. Reductive dechlorination of chlorophenols in methanogenic cultures

    SciTech Connect

    Wang, Y.T.; Muthukrishnan, S.; Wang, Z.

    1998-03-01

    Anaerobic biodegradation of a group of 12 chlorophenols (2-CP; 3-CP; 4-CP; 2,3-DCP; 2,6-DCP; 3,4-DCP; 3,5-DCP; 2,3,6-TCP; 2,4,5-DCP; 2,3,4,6-TeCP; 2,3,5,6-TeCP; and PCP) was examined in an unacclimated digester sludge culture and in a phenol-enriched, 2-CP and 3-CP acclimated methanogenic culture. The phenol-enriched culture degraded all chlorophenols except 4-CP, whereas the digester sludge culture did not degrade PCP or 2,3,4,6-TeCP. Dechlorination products were observed in the phenol-enriched culture but not in the fresh sludge. Based on the observed dechlorination products, degradation pathways for chlorophenols in the phenol-enriched culture were proposed. The phenol-enriched culture degraded chlorophenols at much higher rates than the digester sludge by dechlorinating at the ortho and meta positions. In both cultures, the rate of degradation depended on the number as well as the ring position of chlorine substituents. Higher rates were generally observed with ortho dechlorination and for compounds with lower numbers of chlorine substituents. The average rate of degradation did not vary significantly between mono- and dichlorophenols or between tri- and tetrachlorophenols. Analysis with the Haldane expression revealed that the phenol-enriched culture was less susceptible to inhibition caused by chlorophenols and that it possessed a higher affinity for substrate than the digester sludge culture.

  20. Field Evidence for Magnetite Formation by a Methanogenic Microbial Community

    NASA Astrophysics Data System (ADS)

    Rossbach, S.; Beaver, C. L.; Williams, A.; Atekwana, E. A.; Slater, L. D.; Ntarlagiannis, D.; Lund, A.

    2015-12-01

    The aged, subsurface petroleum spill in Bemidji, Minnesota, has been surveyed with magnetic susceptibility (MS) measurements. High MS values were found in the free-product phase around the fluctuating water table. Although we had hypothesized that high MS values are related to the occurrence of the mineral magnetite resulting from the activity of iron-reducing bacteria, our microbial analysis pointed to the presence of a methanogenic microbial community at the locations and depths of the highest MS values. Here, we report on a more detailed microbial analysis based on high-throughput sequencing of the 16S rRNA gene of sediment samples from four consecutive years. In addition, we provide geochemical data (FeII/FeIII concentrations) to refine our conceptual model of methanogenic hydrocarbon degradation at aged petroleum spills and demonstrate that the microbial induced changes of sediment properties can be monitored with MS. The methanogenic microbial community at the Bemidji site consisted mainly of the syntrophic, hydrocarbon-degrading Smithella and the hydrogenotrophic, methane-generating Methanoregula. There is growing evidence in the literature that not only Bacteria, but also some methanogenic Archaea are able to reduce iron. In fact, a recent study reported that the methanogen Methanosarcina thermophila produced magnetite during the reduction of ferrihydrite in a laboratory experiment when hydrogen was present. Therefore, our finding of high MS values and the presence of magnetite in the methanogenic zone of an aged, subsurface petroleum spill could very well be the first field evidence for magnetite formation during methanogenic hydrocarbon degradation.

  1. Uranium Binding Mechanisms of the Acid-Tolerant Fungus Coniochaeta fodinicola.

    PubMed

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Collins, Richard N; Neilan, Brett A; Aoyagi, Noboru; Waite, T David

    2015-07-21

    The uptake and binding of uranium [as (UO2)(2+)] by a moderately acidophilic fungus, Coniochaeta fodinicola, recently isolated from a uranium mine site, is examined in this work in order to better understand the potential impact of organisms such as this on uranium sequestration in hydrometallurgical systems. Our results show that the viability of the fungal biomass is critical to their capacity to remove uranium from solution. Indeed, live biomass (viable cells based on vital staining) were capable of removing ∼16 mg U/g dry weight in contrast with dead biomass (autoclaved) which removed ∼45 mg U/g dry weight after 2 h. Furthermore, the uranium binds with different strength, with a fraction ranging from ∼20-50% being easily leached from the exposed biomass by a 10 min acid wash. Results from X-ray absorption spectroscopy measurements show that the strength of uranium binding is strongly influenced by cell viability, with live cells showing a more well-ordered uranium bonding environment, while the distance to carbon or phosphorus second neighbors is similar in all samples. When coupled with time-resolved laser fluorescence and Fourier transformed infrared measurements, the importance of organic acids, phosphates, and polysaccharides, likely released with fungal cell death, appear to be the primary determinants of uranium binding in this system. These results provide an important progression to our understanding with regard to uranium sequestration in hydrometallurgical applications with implications to the unwanted retention of uranium in biofilms and/or its mobility in a remediation context.

  2. Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures

    SciTech Connect

    Muralidharan, V.; Hirsh, I.S.; Bouwer, E.J.; Rinker, K.D.; Kelly, R.M.

    1997-11-05

    Interactions involving hydrogen transfer were studied in a coculture of two hyperthermophilic microorganisms: Thermotoga maritima, an anaerobic heterotroph, and Methanococcus jannaschii, a hydrogenotrophic methanogen. Cell densities of T. maritima increased 10-fold when cocultured with M. jannaschii at 85 C, and the methanogen was able to grow in the absence of externally supplied H{sub 2} and CO{sub 2}. The coculture could not be established if the two organisms were physically separated by a dialysis membrane, suggesting the importance of spatial proximity. The significance of spatial proximity was also supported by cell cytometry, where the methanogen was only found in cell sorts at or above 4.5 {micro}m in samples of the coculture in exponential phase. An unstructured mathematical model was used to compare the influence of hydrogen transport and metabolic properties on mesophilic and hyperthermophilic cocultures. Calculations suggest the increases in methanogenesis rates with temperature result from greater interactions between the methanogenic and fermentative organisms, as evidenced by the sharp decline in H{sub 2} concentration in the proximity of a hyperthermophilic methanogen. The experimental and modeling results presented here illustrate the need to consider the interactions within hyperthermophilic consortia when choosing isolation strategies and evaluating biotransformations at elevated temperatures.

  3. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  4. [Methanogens and manipulation of methane production in the rumen].

    PubMed

    Guo, Yan-qiu; Hu, Wei-lian; Liu, Jian-xin

    2005-02-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. They are characterized by their ability to produce methane under anaerobic conditions. Methane production in the rumen represents a loss of energy for the host animal, and, in addition, methane eructated by ruminants may contribute to a greenhouse effect or global warming. Reduction or elimination of methanogenesis in the rumen has been touted as a way of improving animal production and may marginally benefit to control of anthropogenic release of methane. More and more scientists focus on ruminal methanogens and methanogenesis recently. Authors summarized the manipulation of methanogenesis in the rumen, including defaunation, feed formulation, adding electron acceptors and stimulation of acetogens. The characteristics of methanogenic Archaea and the recent knowledge of the methanogenesis in the rumen were also reviewed in this article.

  5. Growth of methanogens on a Mars soil simulant.

    PubMed

    Kral, Timothy A; Bekkum, Curtis R; McKay, Christopher P

    2004-12-01

    Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.

  6. Methane as a product of chloroethene biodegradation under methanogenic conditions

    SciTech Connect

    Bradley, P.M.; Chapelle, F.H.

    1999-02-15

    Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10--39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2-{sup 14}C]trichloroethene (TCE) or [1,2-{sup 14}C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into {sup 14}CH{sub 4}. The results demonstrate that, in addition to ethene, ethane, and CO{sub 2}, CH{sub 4} can be a significant product of chloroethene biodegradation in some methanogenic sediments.

  7. An ancient divergence among the bacteria. [methanogenic phylogeny

    NASA Technical Reports Server (NTRS)

    Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

    1977-01-01

    The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

  8. Syntrophic Degradation of Lactate in Methanogenic Co-cultures

    SciTech Connect

    Meyer, Birte; Stahl, David

    2010-05-17

    In environments where the amount of the inorganic electron acceptors (oxygen, nitrate, sulfate, sulfur oroxidized metal ions (Fe3+;Mn4+) is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic associations of fermenting, acetogenic bacteria (e.g., sulfate-reducing bacteria (SRB) as"secondary fermenters") and methanogenic archaea. In these consortia, the conversion of lactate to acetate, CO2 and methane depends on the cooperating activities of both metabolically distinct microbial groups that are tightly linked by the need to maintain the exchanged metabolites (hydrogenandformate) at very low concentrations.

  9. Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community

    PubMed Central

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2014-01-01

    The addition of ferrihydrite to methanogenic microbial communities obtained from a thermophilic anaerobic digester suppressed methanogenesis in a dose-dependent manner. The amount of reducing equivalents consumed by the reduction of iron was significantly smaller than that expected from the decrease in the production of CH4, which suggested that competition between iron-reducing microorganisms and methanogens was not the most significant cause for the suppression of methanogenesis. Microbial community analyses revealed that the presence of ferrihydrite markedly affected the bacterial composition, but not the archaeal composition. These results indicate that the presence of ferrihydrite directly and indirectly suppresses thermophilic methanogenesis. PMID:24859310

  10. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    PubMed

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors.

  11. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production.

  12. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food microflora.

    PubMed

    Lachowicz, K J; Jones, G P; Briggs, D R; Bienvenu, F E; Wan, J; Wilcock, A; Coventry, M J

    1998-03-01

    Essential oils extracted by hydrodistillation from five different varieties of Ocimum basilicum L. plants (Anise, Bush, Cinnamon, Dark Opal and a commercial sample of dried basil) were examined for antimicrobial activity against a wide range of foodborne Gram-positive and -negative bacteria, yeasts and moulds by an agar well diffusion method. All five essential oils of basil showed antimicrobial activity against most of the organisms tested with the exception of Flavimonas oryzihabitans and Pseudomonas species. The inhibitory effect of Anise oil, in comparison with mixtures of the predominant components of pure linalool and methyl chavicol, against the acid-tolerant organisms, Lactobacillus curvatus and Saccharomyces cerevisiae, was examined in broth by an indirect impedance method. Synergistic effects between Anise oil, low pH (pH 4.2) and salt (5% NaCl) were determined. The antimicrobial effect of Anise oil was also assessed in a tomato juice medium by direct viable count, showing that the growth of Lact. curvatus and S. cerevisiae was completely inhibited by 0.1% and 1% Anise oil, respectively. The results of the current study indicate the need for further investigations to understand the antimicrobial effects of basil oils in the presence of other food ingredients and preservation parameters.

  13. Comparative study of aluminum and copper transport and toxicity in an acid-tolerant freshwater green alga

    SciTech Connect

    Folsom, B.R.; Popescu, N.A.; Wood, J.M.

    1986-06-01

    A comparative study of the transport and toxicity of one nonessential metal (aluminum), and one essential metal (copper), has been performed with the acid-tolerant green alga Chlorella saccarophila. This organism was isolated from a naturally acidified lake and grows well in laboratory cultures at pH 3.0. Our results show that the fast-exchange ions Ca/sup 2 +/, Mg/sup 2 +/, and Na/sup +/ offer some protection against both Al/sup 3 +/ and Cu/sup 2 +/ toxicity whereas K/sup +/ protects against Al/sup 3 +/ toxicity but enhances Cu/sup 2 +/ toxicity. Plasma emission spectroscopy shows that complexation of Al/sup 3 +/ and Fe/sup 3 +/ to cell surfaces is important in preventing toxic cytoplasmic levels of these metals, both in culture media and in acid mine water. The aqueous ion chemistry for toxic metal uptake is simplified considerably in acidic conditions, where competing hydrolysis and precipitation reactions are eliminated. Therefore, simple competitive experiments can be performed quantitatively. 12 references, 7 figures, 1 table.

  14. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect

    PubMed Central

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. PMID:27103789

  15. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae.

  16. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae. PMID:26851403

  17. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food microflora.

    PubMed

    Lachowicz, K J; Jones, G P; Briggs, D R; Bienvenu, F E; Wan, J; Wilcock, A; Coventry, M J

    1998-03-01

    Essential oils extracted by hydrodistillation from five different varieties of Ocimum basilicum L. plants (Anise, Bush, Cinnamon, Dark Opal and a commercial sample of dried basil) were examined for antimicrobial activity against a wide range of foodborne Gram-positive and -negative bacteria, yeasts and moulds by an agar well diffusion method. All five essential oils of basil showed antimicrobial activity against most of the organisms tested with the exception of Flavimonas oryzihabitans and Pseudomonas species. The inhibitory effect of Anise oil, in comparison with mixtures of the predominant components of pure linalool and methyl chavicol, against the acid-tolerant organisms, Lactobacillus curvatus and Saccharomyces cerevisiae, was examined in broth by an indirect impedance method. Synergistic effects between Anise oil, low pH (pH 4.2) and salt (5% NaCl) were determined. The antimicrobial effect of Anise oil was also assessed in a tomato juice medium by direct viable count, showing that the growth of Lact. curvatus and S. cerevisiae was completely inhibited by 0.1% and 1% Anise oil, respectively. The results of the current study indicate the need for further investigations to understand the antimicrobial effects of basil oils in the presence of other food ingredients and preservation parameters. PMID:9569711

  18. Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2232 from Karijini National Park, Australia

    PubMed Central

    Walker, Robert; Watkin, Elizabeth; Tian, Rui; Bräu, Lambert; O’Hara, Graham; Goodwin, Lynne; Han, James; Reddy, Tatiparthi; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G. capitatum but subsequently lost symbiotic competence during long-term storage. Here we describe the features of Burkholderia sp. strain WSM2232, together with genome sequence information and its annotation. The 7,208,311 bp standard-draft genome is arranged into 72 scaffolds of 72 contigs containing 6,322 protein-coding genes and 61 RNA-only encoding genes. The loss of symbiotic capability can now be attributed to the loss of nodulation and nitrogen fixation genes from the genome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197442

  19. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect.

    PubMed

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. PMID:27103789

  20. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau

    PubMed Central

    Fu, Li; Song, Tianze; Lu, Yahai

    2015-01-01

    Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales, and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this wetland sample. It appears that the aceticlastic methanogenesis dominating at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures. PMID:25745422

  1. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    PubMed

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M; Kaneko, Kan; Hook, Sarah; Janssen, Peter H; Wedlock, D Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  2. Relating methanogen community structure and anaerobic digester function.

    PubMed

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  3. Adaptation of a methanogenic consortium to arsenite inhibition

    PubMed Central

    Rodriguez-Freire, Lucia; Moore, Sarah E.; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Arsenic (As) is a ubiquitous metalloid known for its adverse effects to human health. Microorganisms are also impacted by As toxicity, including methanogenic archaea, which can affect the performance of process in which biological activity is required (i.e. stabilization of activated sludge in wastewater treatment plants). The novel ability of a mixed methanogenic granular sludge consortium to adapt to the inhibitory effect of arsenic (As) was investigated by exposing the culture to approximately 0.92 mM of AsIII for 160 d in an arsenate (AsV) reducing bioreactor using ethanol as the electron donor. The results of shaken batch bioassays indicated that the original, unexposed sludge was severely inhibited by arsenite (AsIII) as evidenced by the low 50% inhibition concentrations (IC50) determined, i.e., 19 and 90 μM for acetoclastic- and hydrogenotrophic methanogenesis, respectively. The tolerance of the acetoclastic and hydrogenotrophic methanogens in the sludge to AsIII increased 47-fold (IC50 = 910 μM) and 12-fold (IC50= 1100 μM), respectively, upon long-term exposure to As. In conclusion, the methanogenic community in the granular sludge demonstrated a considerable ability to adapt to the severe inhibitory effects of As after a prolonged exposure period. PMID:26823637

  4. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    SciTech Connect

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  5. Dynamics of the Methanogenic Archaea in Tropical Estuarine Sediments

    PubMed Central

    Torres-Alvarado, María del Rocío; Fernández, Francisco José; Ramírez Vives, Florina; Varona-Cordero, Francisco

    2013-01-01

    Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community. Sediment samples were collected during the dry (February, May, and early June) and rainy seasons (July, October, and November). Microbiological analysis included the quantification of viable methanogenic archaea (MA) with three substrates and the evaluation of kinetic activity from acetate in the presence and absence of sulfate. The environmental variables assessed were temperature, pH, Eh, salinity, sulfate, solids content, organic carbon, and carbohydrates. MA abundance was significantly higher in the rainy season (106–107 cells/g) compared with the dry season (104–106 cells/g), with methanol as an important substrate. At spatial level, MA were detected in the two layers analyzed, and no important variations were observed either in MA abundance or activity. Salinity, sulfate, solids, organic carbon, and Eh were the environmental variables related to methanogenic community. A conceptual model is proposed to explain the dynamics of the MA. PMID:23401664

  6. Dynamics of the methanogenic archaea in tropical estuarine sediments.

    PubMed

    Torres-Alvarado, María del Rocío; Fernández, Francisco José; Ramírez Vives, Florina; Varona-Cordero, Francisco

    2013-01-01

    Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community. Sediment samples were collected during the dry (February, May, and early June) and rainy seasons (July, October, and November). Microbiological analysis included the quantification of viable methanogenic archaea (MA) with three substrates and the evaluation of kinetic activity from acetate in the presence and absence of sulfate. The environmental variables assessed were temperature, pH, Eh, salinity, sulfate, solids content, organic carbon, and carbohydrates. MA abundance was significantly higher in the rainy season (10(6)-10(7) cells/g) compared with the dry season (10(4)-10(6) cells/g), with methanol as an important substrate. At spatial level, MA were detected in the two layers analyzed, and no important variations were observed either in MA abundance or activity. Salinity, sulfate, solids, organic carbon, and Eh were the environmental variables related to methanogenic community. A conceptual model is proposed to explain the dynamics of the MA.

  7. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans

    PubMed Central

    2011-01-01

    Background Methanogens are ancient organisms that are key players in the carbon cycle accounting for about one billion tones of biological methane produced annually. Methanosarcina acetivorans, with a genome size of ~5.7 mb, is the largest sequenced archaeon methanogen and unique amongst the methanogens in its biochemical characteristics. By following a systematic workflow we reconstruct a genome-scale metabolic model for M. acetivorans. This process relies on previously developed computational tools developed in our group to correct growth prediction inconsistencies with in vivo data sets and rectify topological inconsistencies in the model. Results The generated model iVS941 accounts for 941 genes, 705 reactions and 708 metabolites. The model achieves 93.3% prediction agreement with in vivo growth data across different substrates and multiple gene deletions. The model also correctly recapitulates metabolic pathway usage patterns of M. acetivorans such as the indispensability of flux through methanogenesis for growth on acetate and methanol and the unique biochemical characteristics under growth on carbon monoxide. Conclusions Based on the size of the genome-scale metabolic reconstruction and extent of validated predictions this model represents the most comprehensive up-to-date effort to catalogue methanogenic metabolism. The reconstructed model is available in spreadsheet and SBML formats to enable dissemination. PMID:21324125

  8. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations

    SciTech Connect

    Lovley, D.R.; Klug, M.J.

    1983-01-01

    Acetate and hydrogen metabolism by sulfate reducers and methanogens in the profundal sediments of an oligotrophic lake were examined. Inhibition of sulfate reduction with molybdate stimulated methane production from both hydrogen and acetate. Molybdate did not stimulate methane production in sediments that were preincubated to deplete the sulfate pool. Sulfate reduction accounted for 30 to 81% of the total of terminal metabolism proceeding through sulfate reduction and methane production in Eckman grab samples of surface sediments. The ability of sulfate reducers to effectively compete with methanogens for acetate was related to the sulfate reducers lower half-saturation constant for acetate metabolism at in situ sulfate concentrations. Processes other than sulfate reduction and methanogenesis consumed hydrogen at elevated hydrogen partial pressures and prevented a kinetic analysis of hydrogen uptake by sulfate reducers and methanogens. The demonstration that sulfate reducers can successfully compete with methanogens for hydrogen and acetate in sediments at in situ sulfate concentrations of 60 to 105 mM extends the known range of sediment habitats in which sulfate reduction can be a dominant terminal process.

  9. NATURAL ATTENUATION OF MTBE IN THE SUBSURFACE UNDER METHANOGENIC CONDITIONS

    EPA Science Inventory

    This case study was conducted at the former Fuel Farm Site at the U.S.Coast Guard Support Center at Elizabeth City, North Carolina. The study is intended to answer the following questions. Can MTBE be biodegraded under methanogenic conditions in ground water that was contaminated...

  10. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  11. Anaerobic degradation of phthalate isomers by methanogenic consortia

    SciTech Connect

    Kleerebezem, R.; Pol, L.W.H.; Lettinga, G.

    1999-03-01

    Three methanogenic enrichment cultures, grown on ortho-phthalate, iso-phthalate, or terephthalate were obtained from digested sewage sludge or methanogenic granular sludge. Cultures grown on one of the phthalate isomers were not capable of degrading the other phthalate isomers. All three cultures had the ability to degrade benzoate. Maximum specific growth rates ({mu}{sub S}{sup max}) and biomass yields (Y{sub X{sub tot}S}) of the mixed cultures were determined by using both the phthalate isomers and benzoate as substrates. Comparable values for these parameters were found for all three cultures. Values for {mu}{sub X}{sup max} and Y{sub X{sub tot}S} were higher for growth on benzoate compared to the phthalate isomers. Based on measured and estimated values for the microbial yield of the methanogens in the mixed culture, specific yields for the phthalate and benzoate fermenting organisms were calculated. A kinetic model, involving three microbial species, was developed to predict intermediate acetate and hydrogen accumulation and the final production of methane. Values for the ratio of the concentrations of methanogenic organisms, versus the phthalate isomer and benzoate fermenting organisms, and apparent half-saturation constants (K{sub S}) for the methanogens were calculated. By using this combination of measured and estimated parameter values, a reasonable description of intermediate accumulation and methane formation was obtained, with the initial concentration of phthalate fermenting organisms being the only variable. The energetic efficiency for growth of the fermenting organisms on the phthalate isomers was calculated to be significantly smaller than for growth on benzoate.

  12. Estimation of methanogen biomass by quantitation of coenzyme M

    SciTech Connect

    Elias, D.A.; Krumholz, L.R.; Tanner, R.S.; Suflita, J.M.

    1999-12-01

    Determination of the role of methanogenic bacteria in an anaerobic ecosystem often requires quantitation of the organisms. Because of the extreme oxygen sensitivity of these organisms and the inherent limitations of cultural techniques, an accurate biomass value is very difficult to obtain. The authors standardized a simple method for estimating methanogen biomass in a variety of environmental matrices. In this procedure they used the thiol biomarker coenzyme M (CoM) (2-mercaptoethanesulfonic acid), which is known to be present in tall methanogenic bacteria. A high-performance liquid chromatography-based method for detecting thiols in pore water was modified in order to quantify CoM in pure cultures, sediments, and sewage water samples. The identity of the CoM derivative was verified by using liquid chromatography-mass spectroscopy. The assay was linear for CoM amounts ranging from 2 to 2,000 pmol, and the detection limit was 2 pmol of CoM/ml of sample. CoM was not adsorbed to sediments. The methanogens tested contained an average of 19.5 nmol of CoM/mg of protein and 0.39 {+-} 0.07 fmol of CoM/cell. Environmental samples contained an average of 0.41 {+-} 0.17 fmol/cell based on most-probable-number estimates. CoM was extracted by using 1% tri-(N)-butylphosphine in isopropanol. More than 90% of the CoM was recovered from pure cultures and environmental samples. The authors observed no interference from sediments in the CoM recovery process, and the method could be completed aerobically within 3 h. Freezing sediment samples resulted in 46 to 83% decreases in the amounts of detectable CoM, whereas freezing had no effect on the amounts of CoM determined in pure cultures. The method described here provides a quick and relatively simple way to estimate methanogenic biomass.

  13. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  14. Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland.

    PubMed

    Danilova, Olga V; Kulichevskaya, Irina S; Rozova, Olga N; Detkova, Ekaterina N; Bodelier, Paul L E; Trotsenko, Yuri A; Dedysh, Svetlana N

    2013-06-01

    An aerobic methanotrophic bacterium was isolated from an acidic (pH 3.9) Sphagnum peat bog in north-eastern Russia and designated strain MG30(T). Cells of this strain were Gram-negative, pale pink-pigmented, non-motile, thick rods that were covered by large polysaccharide capsules and contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme (pMMO) and utilized only methane and methanol. Carbon was assimilated via the ribulose-monophosphate pathway; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strain MG30(T) was able to grow at a pH range of 3.8-7.3 (optimum pH 5.8-6.4) and at temperatures between 8 and 30 °C (optimum 20-25 °C). The major cellular fatty acids were C16:1ω5t, C16:1ω8c, C16:1ω7c and C14:0; the DNA G+C content was 48.5 mol%. The isolate belongs to the family Methylococcaceae of the class Gammaproteobacteria and displayed 94.7-96.9% 16S rRNA gene sequence similarity to members of the genus Methylomonas. However, strain MG30(T) differed from all taxonomically characterized members of this genus by the absence of motility, the ability to grow in acidic conditions and low DNA G+C content. Therefore, we propose to classify this strain as representing a novel, acid-tolerant species of the genus Methylomonas, Methylomonas paludis sp. nov. Strain MG30(T) (=DSM 24973(T)=VKM B-2745(T)) is the type strain. PMID:23159751

  15. Complete genome sequence of Methanolinea tarda NOBI-1T, a hydrogenotrophic methanogen isolated from methanogenic digester sludge

    DOE PAGESBeta

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; Imachi, Hiroyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Zinder, Stephen H.; Kamagata, Yoichi; Liu, Wen -Tso

    2014-09-04

    In this study, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1T, a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

  16. Ruminal Methanogen Community in Dairy Cows Fed Agricultural Residues of Corn Stover, Rapeseed, and Cottonseed Meals.

    PubMed

    Wang, Pengpeng; Zhao, Shengguo; Wang, Xingwen; Zhang, Yangdong; Zheng, Nan; Wang, Jiaqi

    2016-07-13

    The purpose was to reveal changes in the methanogen community in the rumen of dairy cows fed agricultural residues of corn stover, rapeseed, and cottonseed meals, compared with alfalfa hay or soybean meal. Analysis was based on cloning and sequencing the methyl coenzyme M reductase α-subunit gene of ruminal methanogens. Results revealed that predicted methane production was increased while population of ruminal methanogens was not significantly affected when cows were fed diets containing various amounts of agricultural residues. Richness and diversity of methanogen community were markedly increased by addition of agricultural residues. The dominant ruminal methanogens shared by all experimental groups belonged to rumen cluster C, accounting for 71% of total, followed by the order Methanobacteriales (29%). Alterations of ruminal methanogen community and prevalence of particular species occurred in response to fed agricultural residue rations, suggesting the possibility of regulating target methanogens to control methane production by dairy cows fed agricultural residues. PMID:27322573

  17. A vaccine against rumen methanogens can alter the composition of archaeal populations.

    PubMed

    Williams, Yvette J; Popovski, Sam; Rea, Suzanne M; Skillman, Lucy C; Toovey, Andrew F; Northwood, Korinne S; Wright, André-Denis G

    2009-04-01

    The objectives of this study were to formulate a vaccine based upon the different species/strains of methanogens present in sheep intended to be immunized and to determine if a targeted vaccine could be used to decrease the methane output of the sheep. Two 16S rRNA gene libraries were used to survey the methanogenic archaea in sheep prior to vaccination, and methanogens representing five phylotypes were found to account for >52% of the different species/strains of methanogens detected. A vaccine based on a mixture of these five methanogens was then formulated, and 32 sheep were vaccinated on days 0, 28, and 103 with either a control or the anti-methanogen vaccine. Enzyme-linked immunosorbent assay analysis revealed that each vaccination with the anti-methanogen formulation resulted in higher specific immunoglobulin G titers in plasma, saliva, and rumen fluid. Methane output levels corrected for dry-matter intake for the control and treatment groups were not significantly different, and real-time PCR data also indicated that methanogen numbers were not significantly different for the two groups after the second vaccination. However, clone library data indicated that methanogen diversity was significantly greater in sheep receiving the anti-methanogen vaccine and that the vaccine may have altered the composition of the methanogen population. A correlation between 16S rRNA gene sequence relatedness and cross-reactivity for the methanogens (R(2) = 0.90) also exists, which suggests that a highly specific vaccine can be made to target specific strains of methanogens and that a more broad-spectrum approach is needed for success in the rumen. Our data also suggest that methanogens take longer than 4 weeks to adapt to dietary changes and call into question the validity of experimental results based upon a 2- to 4-week acclimatization period normally observed for bacteria. PMID:19201957

  18. A vaccine against rumen methanogens can alter the composition of archaeal populations.

    PubMed

    Williams, Yvette J; Popovski, Sam; Rea, Suzanne M; Skillman, Lucy C; Toovey, Andrew F; Northwood, Korinne S; Wright, André-Denis G

    2009-04-01

    The objectives of this study were to formulate a vaccine based upon the different species/strains of methanogens present in sheep intended to be immunized and to determine if a targeted vaccine could be used to decrease the methane output of the sheep. Two 16S rRNA gene libraries were used to survey the methanogenic archaea in sheep prior to vaccination, and methanogens representing five phylotypes were found to account for >52% of the different species/strains of methanogens detected. A vaccine based on a mixture of these five methanogens was then formulated, and 32 sheep were vaccinated on days 0, 28, and 103 with either a control or the anti-methanogen vaccine. Enzyme-linked immunosorbent assay analysis revealed that each vaccination with the anti-methanogen formulation resulted in higher specific immunoglobulin G titers in plasma, saliva, and rumen fluid. Methane output levels corrected for dry-matter intake for the control and treatment groups were not significantly different, and real-time PCR data also indicated that methanogen numbers were not significantly different for the two groups after the second vaccination. However, clone library data indicated that methanogen diversity was significantly greater in sheep receiving the anti-methanogen vaccine and that the vaccine may have altered the composition of the methanogen population. A correlation between 16S rRNA gene sequence relatedness and cross-reactivity for the methanogens (R(2) = 0.90) also exists, which suggests that a highly specific vaccine can be made to target specific strains of methanogens and that a more broad-spectrum approach is needed for success in the rumen. Our data also suggest that methanogens take longer than 4 weeks to adapt to dietary changes and call into question the validity of experimental results based upon a 2- to 4-week acclimatization period normally observed for bacteria.

  19. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    PubMed

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent.

  20. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs.

    PubMed

    Fonty, Gérard; Joblin, Keith; Chavarot, Michel; Roux, Remy; Naylor, Graham; Michallon, Fabien

    2007-10-01

    The aim of this work was to determine whether reductive acetogenesis can provide an alternative to methanogenesis in the rumen. Gnotobiotic lambs were inoculated with a functional rumen microbiota lacking methanogens and reared to maturity on a fibrous diet. Lambs with a methanogen-free rumen grew well, and the feed intake and ruminal volatile fatty acid concentrations for lambs lacking ruminal methanogens were lower but not markedly dissimilar from those for conventional lambs reared on the same diet. A high population density (10(7) to 10(8) cells g(-1)) of ruminal acetogens slowly developed in methanogen-free lambs. Sulfate- and fumarate-reducing bacteria were present, but their population densities were highly variable. In methanogen-free lambs, the hydrogen capture from fermentation was low (28 to 46%) in comparison with that in lambs containing ruminal methanogens (>90%). Reductive acetogenesis was not a significant part of ruminal fermentation in conventional lambs but contributed 21 to 25% to the fermentation in methanogen-free meroxenic animals. Ruminal H(2) utilization was lower in lambs lacking ruminal methanogens, but when a methanogen-free lamb was inoculated with a methanogen, the ruminal H(2) utilization was similar to that in conventional lambs. H(2) utilization in lambs containing a normal ruminal microflora was age dependent and increased with the animal age. The animal age effect was less marked in lambs lacking ruminal methanogens. Addition of fumarate to rumen contents from methanogen-free lambs increased H(2) utilization. These findings provide the first evidence from animal studies that reductive acetogens can sustain a functional rumen and replace methanogens as a sink for H(2) in the rumen.

  1. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    PubMed

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M; Kaneko, Kan; Hook, Sarah; Janssen, Peter H; Wedlock, D Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible. PMID:27472482

  2. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens

    PubMed Central

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M.; Kaneko, Kan; Hook, Sarah; Janssen, Peter H.; Wedlock, D. Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1–2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible. PMID:27472482

  3. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen

    NASA Technical Reports Server (NTRS)

    Mathrani, I. M.; Boone, D. R.; Mah, R. A.; Fox, G. E.; Lau, P. P.

    1988-01-01

    Methanohalophilus zhilinae, a new alkaliphilic, halophilic, methylotrophic species of methanogenic bacteria, is described. Strain WeN5T (T = type strain) from Bosa Lake of the Wadi el Natrun in Egypt was designated the type strain and was further characterized. This strain was nonmotile, able to catabolize dimethylsulfide, and able to grow in medium with a methyl group-containing substrate (such as methanol or trimethylamine) as the sole organic compound added. Sulfide (21 mM) inhibited cultures growing on trimethylamine. The antibiotic susceptibility pattern of strain WeN5T was typical of the pattern for archaeobacteria, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 38 mol%. Characterization of the 16S ribosomal ribonucleic acid sequence indicated that strain WeN5T is phylogenetically distinct from members of previously described genera other than Methanohalophilus and supported the partition of halophilic methanogens into their own genus.

  4. Nickel requirement and factor F430 content of methanogenic bacteria.

    PubMed Central

    Diekert, G; Konheiser, U; Piechulla, K; Thauer, R K

    1981-01-01

    Methanobacterium thermoautotrophicum has been reported to require nickel for growth and to contain high concentrations of a nickel tetrapyrrole designated factor F430. In this communication it is shown that all methanogenic bacteria investigated incorporated nickel during growth and also synthesized factor F430. This was also true for Methanobrevibacter smithii, which is dependent on acetate as a carbon source, and for Methanosarcina barkeri growing on acetate or methanol as energy sources. Other bacteria, including Acetobacterium woodii and Clostridium thermoaceticum, contained no factor F430. It is further shown that two yellow nickel-containing degradation products were formed from factor F430 when heated at pH 7. This finding explains why several forms of factor F430 were found in methanogenic bacteria when a heat step was employed in the purification procedure. PMID:7298577

  5. Composition and Role of Extracellular Polymers in Methanogenic Granules

    PubMed Central

    Veiga, M. C.; Jain, M. K.; Wu, W.; Hollingsworth, R. I.; Zeikus, J. G.

    1997-01-01

    Methanobacterium formicicum and Methanosarcina mazeii are two prevalent species isolated from an anaerobic granular consortium grown on a fatty acid mixture. The extracellular polysaccharides (EPS) were extracted from Methanobacterium formicicum and Methanosarcina mazeii and from the methanogenic granules to examine their role in granular development. The EPS made up approximately 20 to 14% of the extracellular polymer extracted from the granules, Methanobacterium formicicum, and Methanosarcina mazeii. The EPS produced by Methanobacterium formicicum was composed mainly of rhamnose, mannose, galactose, glucose, and amino sugars, while that produced by Methanosarcina mazeii contained ribose, galactose, glucose, and glucosamine. The same sugars were also present in the EPS produced by the granules. These results indicate that the two methanogens, especially Methanobacterium formicicum, contributed significantly to the production of the extracellular polymer of the anaerobic granules. Growth temperature, substrates (formate and H(inf2)-CO(inf2)), and the key nutrients (nitrogen and phosphate concentrations) affected polymer production by Methanobacterium formicicum. PMID:16535504

  6. An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction

    PubMed Central

    Susanti, Dwi; Mukhopadhyay, Biswarup

    2012-01-01

    Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F420)-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe4-S4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe4-S4] cluster and an additional [Fe4-S4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe4-S4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F420H2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit. PMID:23028926

  7. Transformation of phenol into phenylalanine by a methanogenic consortium

    SciTech Connect

    Lepine, F.; Milot, S.; Beaudet, R.; Villemur, R.

    1996-03-01

    Phenol is a widely used chemical found in many wastewaters of industrial origin. The degradation of phenol by methanogenic bacterial consortia has been reported by many investigators. To better characterise the metabolism of this consortium, a new metabolic pathway of benzoic acid, an intermediary in the degradation of phenol, is reported. This study describes the transformations of benzoic acid into 3-phenylpropionic acid and phenylalanine. 25 refs., 5 figs.

  8. Reducing methane emissions in sheep by immunization against rumen methanogens.

    PubMed

    Wright, A D G; Kennedy, P; O'Neill, C J; Toovey, A F; Popovski, S; Rea, S M; Pimm, C L; Klein, L

    2004-09-28

    This work was conducted to determine if methane emissions from sheep immunized with an anti-methanogen vaccine were significantly lower than methane emissions from non-immunized sheep, to test the effectiveness of two different vaccine formulations (VF) on methane abatement, and to compare methane emissions measured using a closed-circuit respiration chamber and the sulphur-hexafluoride (SF6) tracer technique. Thirty mature wether sheep were randomly allocated to three treatment groups (n = 10). One group received an immunization of adjuvant only on days 0 and 153 (control), a second group received an immunization with a 3-methanogen mix on days 0 and 153 (VF3 + 3), and a third group received an immunization of a 7-methanogen mix on day 0 followed by a 3-methanogen mix on day 153 (VF7 + 3). Four weeks post-secondary immunization, there was a significant 7.7% reduction in methane production per kg dry matter intake in the VF7 + 3 group compared to the controls (P = 0.051). However, methane emissions from sheep immunized with VF7 + 3 were not significantly different when compared to the sheep in the control group (P = 0.883). The average IgG and IgA antibody titres in both plasma and saliva of the VF3 + 3 immunized sheep were four to nine times higher than those immunized with VF7 + 3 (P< 0.001) at both 3 and 6 weeks post-secondary immunization. Data also revealed that SF6 methane estimates were consistently higher than the respiration chamber estimates and that there was no significant correlation between the SF6 methane estimates and the respiration chamber methane estimates (R2 = 0.11).

  9. Environmental selection of planktonic methanogens in permafrost thaw ponds

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  10. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  11. Genetics and molecular biology of methanogen genes. Final report

    SciTech Connect

    Konisky, J.

    1997-10-07

    Adenylate kinase has been isolated from four related methanogenic members of the Archaea. For each the optimum temperature for enzyme activity was similar to the temperature for optimal microbial growth and was approximately 30 C for Methanococcus voltage, 70 C for Methanococcus thermolithotrophicus, 80 C for Methanococcus igneus and 80--90 C for Methanococcus jannaschii. The enzymes were sensitive to the adenylate kinase inhibitor, Ap{sub 5}A [P{sup 1}, P{sup 5}-di(adenosine-5{prime}) pentaphosphate], a property that was exploited to purify the enzymes by CIBACRON Blue affinity chromatography. The enzymes had an estimated molecular weight (approximately 23--25 kDa) in the range common for adenylate kinases. Each of the enzymes had a region of amino acid sequence close to its N-terminus that was similar to the canonical P-loop sequence reported for all adenylate kinases. However, the methanogen sequences lacked a lysine residue that has previously been found to be invariant in adenylate kinases including an enzyme isolated from the Archeon, Sulfolobus acidocaldarius. If verified as a nucleotide binding domain, the methanogen sequence would represent a novel nucleotide binding motif. There was no correlation between amino acid abundance and the optimal temperature for enzyme activity.

  12. Hydrogen consumption by methanogens on the early Earth

    NASA Technical Reports Server (NTRS)

    Kral, T. A.; Brink, K. M.; Miller, S. L.; McKay, C. P.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is possible that the first autotroph used chemical energy rather than light. This could have been the main source of primary production after the initial inventory of abiotic organic material had been depleted. The electron acceptor most readily available for use by this first chemoautotroph would have been CO2. The most abundant electron donor may have been H2 that would have been outgassing from volcanoes at a rate estimated to be as large as 10(12) moles yr-1, as well as from photo-oxidation of Fe+2. We report here that certain methanogens will consume H2 down to partial pressures as low as 4 Pa (4 x 10(-5) atm) with CO2 as the sole carbon source at a rate of 0.7 ng H2 min-1 microgram-1 cell protein. The lower limit of pH2 for growth of methanogens can be understood on the basis that the pH2 needs to be high enough for one ATP to be synthesized per CO2 reduced. The pH2 values needed for growth measured here are consistent with those measured by Stevens and McKinley for growth of methanogens in deep basalt aquifers. H2-consuming autotrophs are likely to have had a profound effect on the chemistry of the early atmosphere and to have been a dominant sink for H2 on the early Earth after life began rather than escape from the Earth's atmosphere to space.

  13. Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations.

    PubMed

    Yang, Chunyu; Wang, Wei; Du, Miaofen; Li, Chunfang; Ma, Cuiqing; Xu, Ping

    2013-02-01

    Pulp mill wastewater generated from wheat straw is characterized as high alkalinity and very high COD pollution load. A naturally developed microbial community in a pulp mill wastewater storage pool that had been disused were investigated in this study. Owing to natural evaporation and a huge amount of lignocellulose's deposition, the wastewater sediment contains high concentrations of organic matters and sodium ions, but low concentrations of chloride and carbonate. The microbiota inhabiting especially anaerobic community, including methanogenic arhcaea and cellulolytic species, was studied. All archaeal sequences fall into 2 clusters of family Halobacteriaceae and methanogenic archaeon in the phylum Euryarchaeota. In the methanogenic community, phylogenetic analysis of methyl coenzyme M reductase A (mcrA) genes targeted to novel species in genus Methanoculleus or novel genus of order Methanomicrobiales. The predominance of Methanomicrobiales suggests that methanogenesis in this system might be driven by the hydrogenotrophic pathway. As the important primary fermenter for methane production, the cellulolytic community of enzyme GHF48 was found to be dominated by narrower breadth of novel clostridial cellulase genes. Novel anoxic functional members in such extreme sediment provide the possibility of enhancing the efficiency of anoxic treatment of saline and alkaline wastewaters, as well as benefiting to the biomass transformation and biofuel production processes. PMID:23228889

  14. Environmental selection of planktonic methanogens in permafrost thaw ponds

    NASA Astrophysics Data System (ADS)

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-08-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  15. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  16. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka

    PubMed Central

    Mach, Václav; Blaser, Martin B.; Claus, Peter; Chaudhary, Prem P.; Rulík, Martin

    2015-01-01

    Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool. PMID:26052322

  17. Identification of Methanogenic archaea in the Hyporheic Sediment of Sitka Stream

    PubMed Central

    Buriánková, Iva; Brablcová, Lenka; Mach, Václav; Dvořák, Petr; Chaudhary, Prem Prashant; Rulík, Martin

    2013-01-01

    Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers. PMID:24278322

  18. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka.

    PubMed

    Mach, Václav; Blaser, Martin B; Claus, Peter; Chaudhary, Prem P; Rulík, Martin

    2015-01-01

    Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool.

  19. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  20. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    PubMed

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization. PMID:27198766

  1. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    PubMed

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization.

  2. Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities.

    PubMed

    Symsaris, Evangelos C; Fotidis, Ioannis A; Stasinakis, Athanasios S; Angelidaki, Irini

    2015-06-30

    In this study, a toxicity assay using a mesophilic wastewater treatment plant sludge-based (SI) and a thermophilic manure-based inoculum (MI), under different biomass concentrations was performed to define the effects of diclofenac (DCF), triclosan (TCS), and nonylphenol (NP) on anaerobic digestion (AD) process. Additionally, the influence of DCF, TCS, and NP on the relative abundance of the methanogenic populations was investigated. Results obtained demonstrated that, in terms of methane production, SI inoculum was more resistant to the toxicity effect of DCF, TCS, and NP, compared to the MI inoculum. The IC50 values were 546, 35, and 363 mg L(-1) for SI inoculum and 481, 32, and 74 mg L(-1) for MI inoculum for DCF, TCS, and NP, respectively. For both inocula, higher biomass concentrations reduced the toxic effect of TCS (higher methane production up to 64%), contrary to DCF, where higher biomass loads decreased methane yield up to 31%. Fluorescence in situ hybridization analysis showed that hydrogenotrophic methanogens were more resistant to the inhibitory effect of DCF, TCS, and NP compared to aceticlastic methanogens.

  3. Anaerobic biodegradation of 2,4,6-trichlorophenol by methanogenic granular sludge: role of co-substrates and methanogenic inhibition.

    PubMed

    Puyol, D; Mohedano, A F; Sanz, J L; Rodríguez, J J

    2009-01-01

    The influence of several co-substrates in the anaerobic biodegradation of 2,4,6-trichlorophenol (246TCP) by methanogenic granular sludge as well as in methanogenesis inhibition by 246TCP has been studied. 4 g-COD.L(-1) of lactate, sucrose, volatile fatty acids (VFA) acetate:propionate:butyrate 1:1:1, ethanol, methanol, yeast extract (YE), and 2 g-COD.L(-1) of formate and methylamine were tested. Two concentrations of 246TCP: 80 mg.L(-1) and 113 mg.L(-1) (this last corresponding to the EC(50) for acetotrophic methanogenesis) were tested. Three consecutive co-substrate and nutrient feedings were accomplished. 246TCP was added in the second feed, and the 246TCP removal rate increased considerably after the third feed. Accumulated metabolites after ortho-dechlorination, either 4-chlorophenol (4CP) (when methanol, ethanol or VFA were used as co-substrates) or 2,4-dichlorophenol (24DCP) (with lactate) avoided the complete dechlorination of 246TCP. With methylamine and formate this compound was degraded only partially. Monochlorophenols biodegradation was partially achieved with YE, but both 24DCP and 2,6-dichlorophenol (26DCP) were accumulated. In the presence of sucrose para-dechlorination was observed. 246TCP was better tolerated by methanogens when ethanol and methanol were added because of the highest specific methanogenic activity achieved with these co-substrates. Methanol and ethanol were the best co-substrates in the anaerobic biodegradation of 246TCP.

  4. Osmoregulation in Methanogens (and Other Interesting Organisms)

    SciTech Connect

    Roberts, Mary Fedarko

    2014-12-03

    Our research has been aimed at (i) identifying, (ii) determining mode of regulation, and (iii) understanding how different classes of compatible solutes (also termed osmolytes) affect macromolecular stability in response to osmotic and thermal stress. For solutes we have identified (e.g., di-inositol-1,1’-phosphate (DIP)), we used NMR to elucidate biosynthetic pathways and then cloned suspected enzymes in the pathway to explore how they are regulated. Compatible solutes are thought to protect proteins from thermal and osmotic stresses by being excluded from the surface, allowing critical water molecules to interact with the protein. This implies there are no specific binding interactions between osmolytes and proteins. However, we and others have often observed very specific solute effects for proteins that suggest a more direct interaction between solute and protein is likely can occur. Measuring such a weak interaction is extremely difficult. We have developed a solution NMR method, high-resolution field cycling relaxometry, that can measure spin-lattice relaxation rates as a function of magnetic field from 11.7 (the field of a 500 MHz spectrometer) to 0.003 T. The methodology is ideal for nuclei in small molecules with moderately long relaxation times at high fields – phosphate groups (31P), enriched carbonyls (13C), or methyl groups (1H). The protein of interest is spin-labeled to introduce a large dipole on it that will dominate the relaxation of nuclei on any small molecules that bind transiently. The key is to measure relaxation below 1-2 T (and extract nuclei-spin label distances in the bound complex) where the small molecule relaxation will be dominated by dipolar mechanisms with a correlation time indicative of the large protein complex. Our explorations of an inositol monophosphatase (the last step in DIP generation) localized four discrete binding sides for the thermoprotectant α-glutamate. This is a novel approach, and while the work did not fully

  5. An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs.

    PubMed

    Hedlund, Brian P; Dodsworth, Jeremy A; Cole, Jessica K; Panosyan, Hovik H

    2013-07-01

    Culture-independent and enrichment techniques, with an emphasis on members of the Archaea, were used to determine the composition and structure of microbial communities inhabiting microbial mats in the source pools of two geothermal springs near the towns of Arzakan and Jermuk in Armenia. Amplification of small-subunit rRNA genes using "universal" primers followed by pyrosequencing (pyrotags) revealed highly diverse microbial communities in both springs, with >99 % of pyrosequences corresponding to members of the domain Bacteria. The spring in Arzakan was colonized by a photosynthetic mat dominated by Cyanobacteria, in addition to Proteobacteria, Bacteroidetes, Chloroflexi, Spirochaeta and a diversity of other Bacteria. The spring in Jermuk was colonized by phylotypes related to sulfur, iron, and hydrogen chemolithotrophs in the Betaproteobacteria and Epsilonproteobacteria, along with a diversity of other Bacteria. Analysis of near full-length small subunit rRNA genes amplified using Archaea-specific primers showed that both springs are inhabited by a diversity of methanogens, including Methanomicrobiales and Methanosarcinales and relatives of Methanomassiliicoccus luminyensis, close relatives of the ammonia-oxidizing archaeon (AOA) "Candidatus Nitrososphaera gargensis", and the yet-uncultivated Miscellaneous Crenarchaeotal Group and Deep Hydrothermal Vent Crenarchaeota group 1. Methanogenic enrichments confirmed the predicted physiological diversity, revealing methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis at 45 and 55 °C, but not 65 °C. This is one of only a few studies combining cultivation-independent and -dependent approaches to study archaea in moderate-temperature (37-73 °C) terrestrial geothermal environments and suggests important roles for methanogenic archaea and AOA in the carbon and nitrogen biogeochemical cycles in these environments. PMID:23632917

  6. An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs.

    PubMed

    Hedlund, Brian P; Dodsworth, Jeremy A; Cole, Jessica K; Panosyan, Hovik H

    2013-07-01

    Culture-independent and enrichment techniques, with an emphasis on members of the Archaea, were used to determine the composition and structure of microbial communities inhabiting microbial mats in the source pools of two geothermal springs near the towns of Arzakan and Jermuk in Armenia. Amplification of small-subunit rRNA genes using "universal" primers followed by pyrosequencing (pyrotags) revealed highly diverse microbial communities in both springs, with >99 % of pyrosequences corresponding to members of the domain Bacteria. The spring in Arzakan was colonized by a photosynthetic mat dominated by Cyanobacteria, in addition to Proteobacteria, Bacteroidetes, Chloroflexi, Spirochaeta and a diversity of other Bacteria. The spring in Jermuk was colonized by phylotypes related to sulfur, iron, and hydrogen chemolithotrophs in the Betaproteobacteria and Epsilonproteobacteria, along with a diversity of other Bacteria. Analysis of near full-length small subunit rRNA genes amplified using Archaea-specific primers showed that both springs are inhabited by a diversity of methanogens, including Methanomicrobiales and Methanosarcinales and relatives of Methanomassiliicoccus luminyensis, close relatives of the ammonia-oxidizing archaeon (AOA) "Candidatus Nitrososphaera gargensis", and the yet-uncultivated Miscellaneous Crenarchaeotal Group and Deep Hydrothermal Vent Crenarchaeota group 1. Methanogenic enrichments confirmed the predicted physiological diversity, revealing methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis at 45 and 55 °C, but not 65 °C. This is one of only a few studies combining cultivation-independent and -dependent approaches to study archaea in moderate-temperature (37-73 °C) terrestrial geothermal environments and suggests important roles for methanogenic archaea and AOA in the carbon and nitrogen biogeochemical cycles in these environments.

  7. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost.

    PubMed

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs. PMID:26029170

  8. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost

    PubMed Central

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M.

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs. PMID:26029170

  9. Anaerobic microbial community response to methanogenic inhibitors 2-bromoethanesulfonate and propynoic acid.

    PubMed

    Webster, Tara M; Smith, Adam L; Reddy, Raghav R; Pinto, Ameet J; Hayes, Kim F; Raskin, Lutgarde

    2016-08-01

    Methanogenic inhibitors are often used to study methanogenesis in complex microbial communities or inhibit methanogens in the gastrointestinal tract of livestock. However, the resulting structural and functional changes in archaeal and bacterial communities are poorly understood. We characterized microbial community structure and activity in mesocosms seeded with cow dung and municipal wastewater treatment plant anaerobic digester sludge after exposure to two methanogenic inhibitors, 2-bromoethanesulfonate (BES) and propynoic acid (PA). Methane production was reduced by 89% (0.5 mmol/L BES), 100% (10 mmol/LBES), 24% (0.1 mmol/LPA), and 95% (10 mmol/LPA). Using modified primers targeting the methyl-coenzyme M reductase (mcrA) gene, changes in mcrA gene expression were found to correspond with changes in methane production and the relative activity of methanogens. Methanogenic activity was determined by the relative abundance of methanogen 16S rRNA cDNA as a percentage of the total community 16S rRNA cDNA. Overall, methanogenic activity was lower when mesocosms were exposed to higher concentrations of both inhibitors, and aceticlastic methanogens were inhibited to a greater extent than hydrogenotrophic methanogens. Syntrophic bacterial activity, measured by 16S rRNA cDNA, was also reduced following exposure to both inhibitors, but the overall structure of the active bacterial community was not significantly affected. PMID:26987552

  10. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda).

    PubMed

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens' diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.

  11. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  12. Degradation of hydrocarbons under methanogenic conditions in different geosystems

    NASA Astrophysics Data System (ADS)

    Straaten, Nontje; Jiménez García, Núria; Richnow, Hans-Hermann; Krueger, Martin

    2014-05-01

    With increasing energy demand the search for new resources is becoming increasingly important for the future energy supply. Therefore the knowledge about fossil fuels like oil or natural gas and their extraction should be expanded. Biodegraded oil is found in many reservoirs worldwide. Consequently, it is very important to get insight in the microbial communities and metabolic processes involved in hydrocarbon degradation. Due to the lack of alternative electron acceptors in hydrocarbon-rich geosystems, degradation often takes place under methanogenic conditions. The aim of the present study is to identify the microorganisms and mechanisms involved in the degradation of complex hydrocarbons, like BTEX and polycyclic aromatic hydrocarbons, using culture dependent and independent techniques. For this purpose enrichment cultures from marine sediments, shales, coal and oil reservoirs are monitored for their capability to degrade alkanes and aromatic compounds. Moreover the environmental samples of these different geosystems analysed for evidence for the in situ occurrence of methanogenic oil degradation. The gas geochemical data provided in several cases hints for a recent biological origin of the methane present. First results of the microbial community analysis showed in environmental samples and enrichment cultures the existence of Bacteria known to degrade hydrocarbons. Also a diverse community of methanogenic Archaea could be found in the clone libraries. Additionally, in oil and coal reservoir samples the degradation of model hydrocarbons, e.g. methylnaphthalene, hexadecane and BTEX, to CH4 was confirmed by 13C-labeling. To explore the mechanisms involved in biodegradation, the enrichments as well as the original environmental samples are further analysed for the presence of respective functional genes.

  13. Effect of temperature on perchloroethylene dechlorination by a methanogenic consortium

    SciTech Connect

    Gao, J.; Skeen, R.S.; Hooker, B.S.

    1995-04-01

    The effect of temperature on the kinetics of growth, substrate metabolism, and perchloroethylene (PCE) dechlorination by a methanogenic consortium is reported. In all cases, a simple kinetic model accurately reflected experimental data. Values for the substrate and methane yield coefficients, and the maximum specific growth rate are fairly consistent at each temperature. Also, the substrate and methane yield coefficients show little temperature sensitivity. In contrast, both the maximum specific growth rate and the PCE dechlorination yield coefficient (Y{sub PCE}) are temperature dependent.

  14. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics.

    PubMed

    Graham, David E; White, Robert H

    2002-04-01

    Methanogenesis, the anaerobic production of methane from CO2 or simple carbon compounds, requires seven organic coenzymes. This review describes pathways for the biosynthesis of methanofuran, 5,6,7,8-tetrahydromethanopterin, coenzyme F420, coenzyme M (2-mercaptoethanesulfonic acid) and coenzyme B (7-mercaptoheptanoyl-L-threonine phosphate). Spectroscopic evidence for the pathways is reviewed and recent efforts are described to identify and characterize the biosynthetic enzymes from methanogenic archaea. The literature from 1971 to September 2001 is reviewed, and 169 references are cited. PMID:12013276

  15. Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods.

    PubMed

    Lv, Z; Leite, A F; Harms, H; Richnow, H H; Liebetrau, J; Nikolausz, M

    2014-10-01

    In order to better understand the effects of the substrate feeding regime on methanogenesis during anaerobic digestion in biogas reactors, four continuous stirred tank reactors operated under mesophilic conditions were investigated. In addition to standard physicochemical parameters, the stable isotopic signatures of CH4 and CO2 before and after daily feeding were analyzed. The activity of the methanogens was assessed by methyl coenzyme M reductase alpha-subunit (mcrA/mrtA) gene transcript analysis. Two different feeding regimes i.e. single vs. double consecutive feeding of the otherwise same daily maize silage load were investigated. During the first phase, a single feeding of the whole daily dose increased the biogas production within 70-80 min from around 0.5 to 2.0 L/h. This increase was associated with a transient increase of the acetic acid concentration and a corresponding decrease of the pH. Only moderate increase in biogas yield and VFA concentration (mainly acetate) was observed when the daily substrate was apportioned into two feedings. However, the overall daily gas production was similar in both cases. Regardless of the feeding regime, significantly depleted δ(13)CH4 and minor changes in the CO2 content of biogas were observed after feeding, which were followed by enrichment of δ(13)CH4. This period was associated with detectable changes in activity of methanogenic communities monitored by terminal restriction fragment length polymorphism analysis based on the transcripts of mcrA/mrtA genes. Methanoculleus and Methanobacterium spp. were the predominant methanogens in all reactors, while Methanosarcina spp. activity was only significant in two reactors. The activity of Methanoculleus and Methanosarcina spp. increased after the feeding in these reactors, which was followed by a depletion of δ(13)C in the produced gas. In both reactors, the less depleted isotopic values were detected before the second feeding, when Methanobacterium was the most

  16. Community Structure Analysis of Methanogens Associated with Rumen Protozoa Reveals Bias in Universal Archaeal Primers

    PubMed Central

    McAllister, Tim A.

    2012-01-01

    The diversity of protozoan-associated methanogens in cattle was investigated using five universal archaeal small-subunit (SSU) rRNA gene primer sets. Methanobrevibacter spp. and rumen cluster C (distantly related to Thermoplasma spp.) were predominant. Significant differences in species composition among libraries indicate that some primers used previously to characterize rumen methanogens exhibit biased amplification. PMID:22447586

  17. Spatial Variations of the Methanogenic Communities in the Sediments of Tropical Mangroves

    PubMed Central

    Jing, Hongmei; Cheung, Shunyan; Zhou, Zhi; Wu, Chen; Nagarajan, Sanjay; Liu, Hongbin

    2016-01-01

    Methane production by methanogens in mangrove sediments is known to contribute significantly to global warming, but studies on the shift of methanogenic community in response to anthropogenic contaminations were still limited. In this study, the effect of anthropogenic activities in the mangrove sediments along the north and south coastlines of Singapore were investigated by pyrosequencing of the mcrA gene. Our results showed that hydrogenotrophic, acetoclastic and methylotrophic methanogens coexist in the sediments. The predominance of the methylotrophic Methanosarcinales reflects the potential for high methane production as well as the possible availability of low acetate and high methylated C-1 compounds as substrates. A decline in the number of acetoclastic/methylotrophic methanogens in favor of hydrogenotrophic methanogens was observed along a vertical profile in Sungei Changi, which was contaminated by heavy metals. The diversity of methanogens in the various contaminated stations was significantly different from that in a pristine St. John’s Island. The spatial variation in the methanogenic communities among the different stations was more distinct than those along the vertical profiles at each station. We suggest that the overall heterogeneity of the methanogenic communities residing in the tropical mangrove sediments might be due to the accumulated effects of temperature and concentrations of nitrate, cobalt, and nickel. PMID:27684479

  18. Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda)

    PubMed Central

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia. PMID:25028969

  19. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens.

    PubMed

    Taubner, Ruth-Sophie; Rittmann, Simon K-M R

    2016-01-01

    Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens. PMID:27199898

  20. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens

    PubMed Central

    Taubner, Ruth-Sophie; Rittmann, Simon K.-M. R.

    2016-01-01

    Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens. PMID:27199898

  1. Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis.

    PubMed

    Conway de Macario, Everly; Macario, Alberto J L

    2009-02-01

    Microbes that produce methane gas, methanogens, were identified as Archaea in the 1970s but their possible role in disease is only emerging now, after they were found in the large intestine, mouth, and vagina. Significant associations were observed, for instance, between levels of methanogens in periodontal pockets and severity of periodontitis, and between quantities of methanogens in the large intestine and diseases such as colon cancer and diverticulosis. Recently, a role for intestinal methanogens in obesity was proposed. The lesson learned is that for methanogens we have to look at their pathogenicity from a different angle in comparison to classic pathogens that invade tissues and release toxins. This type of pathogenicity has not yet been described for methanogens. Instead, methanogens seem to participate in pathogenicity indirectly, favoring the growth of other microbes, which are directly involved in pathogenesis. This indirect role should not be minimized. On the contrary, it has become clear that a fundamental change of approach to the understanding and control of microbial diseases must be implemented. A comprehensive strategy is needed to elucidate the syntrophic associations that are essential for a healthy relation among microbes (including methanogens) and between them and the host organism, and to unveil those associations that lead to disease.

  2. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen.

    PubMed

    Nobu, Masaru Konishi; Narihiro, Takashi; Kuroda, Kyohei; Mei, Ran; Liu, Wen-Tso

    2016-10-01

    The ecophysiology of one candidate methanogen class WSA2 (or Arc I) remains largely uncharacterized, despite the long history of research on Euryarchaeota methanogenesis. To expand our understanding of methanogen diversity and evolution, we metagenomically recover eight draft genomes for four WSA2 populations. Taxonomic analyses indicate that WSA2 is a distinct class from other Euryarchaeota. None of genomes harbor pathways for CO2-reducing and aceticlastic methanogenesis, but all possess H2 and CO oxidation and energy conservation through H2-oxidizing electron confurcation and internal H2 cycling. As the only discernible methanogenic outlet, they consistently encode a methylated thiol coenzyme M methyltransferase. Although incomplete, all draft genomes point to the proposition that WSA2 is the first discovered methanogen restricted to methanogenesis through methylated thiol reduction. In addition, the genomes lack pathways for carbon fixation, nitrogen fixation and biosynthesis of many amino acids. Acetate, malonate and propionate may serve as carbon sources. Using methylated thiol reduction, WSA2 may not only bridge the carbon and sulfur cycles in eutrophic methanogenic environments, but also potentially compete with CO2-reducing methanogens and even sulfate reducers. These findings reveal a remarkably unique methanogen 'Candidatus Methanofastidiosum methylthiophilus' as the first insight into the sixth class of methanogens 'Candidatus Methanofastidiosa'.

  3. Relationship between methanogenic archaea and subgingival microbial complexes in human periodontitis.

    PubMed

    Horz, H P; Robertz, N; Vianna, M E; Henne, K; Conrads, G

    2015-10-01

    We compared the amounts of methanogenic archaea with ten of the most important periodontal pathogens in 125 clinical samples. Correlation analysis suggests that the support of the periodontitis-associated bacterial consortium by methanogenic archaea may be driven through direct or indirect interactions with Prevotella intermedia.

  4. Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil.

    PubMed

    Liu, Dongyan; Ishikawa, Hiroki; Nishida, Mizuhiko; Tsuchiya, Kazunari; Takahashi, Tomoki; Kimura, Makoto; Asakawa, Susumu

    2015-01-01

    Methanogenic archaea are strict anaerobes and demand highly reduced conditions to produce methane in paddy field soil. However, methanogenic archaea survive well under upland and aerated conditions in paddy fields and exhibit stable community. In the present study, methanogenic archaeal community was investigated in fields where paddy rice (Oryza sativa L.) under flooded conditions was rotated with soybean (Glycine max [L.] Merr.) under upland conditions at different rotation histories, by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR methods targeting 16S rRNA and mcrA genes, respectively. Soil samples collected from the fields before flooding or seeding, during crop cultivation and after harvest of crops were analyzed. The abundance of the methanogenic archaeal populations decreased to about one-tenth in the rotational plots than in the consecutive paddy (control) plots. The composition of the methanogenic archaeal community also changed. Most members of the methanogenic archaea consisting of the orders Methanosarcinales, Methanocellales, Methanomicrobiales, and Methanobacteriales existed autochthonously in both the control and rotational plots, while some were strongly affected in the rotational plots, with fatal effect to some members belonging to the Methanosarcinales. This study revealed that the upland conversion for one or longer than 1 year in the rotational system affected the methanogenic archaeal community structure and was fatal to some members of methanogenic archaea in paddy field soil. PMID:25113614

  5. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems.

  6. Quantitative Immunologic Analysis of the Methanogenic Flora of Digestors Reveals a Considerable Diversity

    PubMed Central

    Macario, Alberto J. L.; de Macario, Everly Conway

    1988-01-01

    To determine which methanogens occur in digestors, we performed a quantitative immunologic analysis of a variety of samples. A comprehensive panel of calibrated polyclonal antibody probes of predefined specificity spectra was used. This allowed precise identification of bacteria by antigenic fingerprinting. A considerable diversity of methanogens was uncovered, much larger than previously reported, encompassing at least 14 strains of 11 species. Strategies were developed to measure the load of any given methanogen in a sample and to compare samples quantitatively. Two methanogens were found to predominate which were antigenically closely related with either Methanobacterium formicicum MF or Methanobrevibacter arboriphilus AZ. Fundamental data, probes, and methods are now available to monitor methanogenic subpopulations during digestor operation and thus learn about their respective roles and predictive significance. Images PMID:16347541

  7. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

    PubMed Central

    Narihiro, Takashi; Sekiguchi, Yuji

    2011-01-01

    Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721

  8. Methane formation and methane oxidation by methanogenic bacteria.

    PubMed Central

    Zehnder, A J; Brock, T D

    1979-01-01

    Methanogenic bacteria were found to form and oxidize methane at the same time. As compared to the quantity of methane formed, the amount of methane simultaneously oxidized varied between 0.3 and 0.001%, depending on the strain used. All the nine tested strains of methane producers (Methanobacterium ruminantium, Methanobacterium strain M.o.H., M. formicicum, M. thermoautotrophicum, M. arbophilicum, Methanobacterium strain AZ, Methanosarcina barkeri, Methanospirillum hungatii, and the "acetate organism") reoxidized methane to carbon dioxide. In addition, they assimilated a small part of the methane supplied into cell material. Methanol and acetate also occurred as oxidation products in M. barkeri cultures. Acetate was also formed by the "acetate organism," a methane bacterium unable to use methanogenic substrates other than acetate. Methane was the precursor of the methyl group of the acetate synthesized in the course of methane oxidation. Methane formation and its oxidation were inhibited equally by 2-bromoethanesulfonic acid. Short-term labeling experiments with M. thermoautotrophicum and M. hungatii clearly suggest that the pathway of methane oxidation is not identical with a simple back reaction of the methane formation process. Images PMID:762019

  9. Presence of an Unusual Methanogenic Bacterium in Coal Gasification Waste

    PubMed Central

    Tomei, Francisco A.; Rouse, Dwight; Maki, James S.; Mitchell, Ralph

    1988-01-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics d-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37°C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 μm wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. Images PMID:16347791

  10. Restricted diversity of dental calculus methanogens over five centuries, France

    PubMed Central

    Huynh, Hong T. T.; Nkamga, Vanessa D.; Signoli, Michel; Tzortzis, Stéfan; Pinguet, Romuald; Audoly, Gilles; Aboudharam, Gérard; Drancourt, Michel

    2016-01-01

    Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14th to 19th centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR sequencing identified Candidatus Methanobrevibacter sp. N13 in 44.6%, Methanobrevibacter oralis in 19.6%, a new Methanomassiliicoccus luminyensis-like methanogen in 12.5%, a Candidatus Nitrososphaera evergladensis-like in one and Methanoculleus bourgensis in one specimen, respectively. One Candidatus Methanobrevibacter sp. N13 dental calculus was further documented by fluorescent in situ hybridization. The prevalence of dental calculus M. oralis was significantly lower in past populations than in modern populations (P = 0.03, Chi-square test). This investigation revealed a previously unknown repertoire of archaea found in the oral cavity of past French populations as reflected in preserved dental calculus. PMID:27166431

  11. Interactions of methanogens and denitrifiers in degradation of phenols

    SciTech Connect

    Fang, H.H.P.; Zhou, G.M.

    1999-01-01

    Experiments were conducted at 37 C in an upflow anaerobic sludge blanket reactor treating wastewater containing phenol, m-cresol, and nitrate at various concentrations. Results show that anaerobic sludge was able to conduct denitrification without much acclimation. Denitrifiers outcompeted methanogens for substrates for carbon and electron supplies. They were able to use phenol and m-cresol as substrate without a carbohydrate cosubstrate. Denitrifying 1 g of NO{sub 3}{sup {minus}}-N ratios greater than 3.34. At the ratio of 5.23, over 98% of phenol but only 60% of m-cresol were degraded jointly by denitrifiers and methanogens with 1 day of hydraulic retention. At ratios less than 3.34, methanogenesis ceased to take place and denitrification became incomplete because of insufficient supply of substrate. Batch tests further confirmed that degradation of m-cresol was enhanced not only by the presence of nitrate, but also by the presence of either sucrose or phenol as cosubstrate.

  12. Recovery of palladium(II) by methanogenic granular sludge.

    PubMed

    Pat-Espadas, Aurora M; Field, James A; Otero-Gonzalez, Lila; Razo-Flores, Elías; Cervantes, Francisco J; Sierra-Alvarez, Reyes

    2016-02-01

    This is the first report that demonstrates the ability of anaerobic methanogenic granular sludge to reduce Pd(II) to Pd(0). Different electron donors were evaluated for their effectiveness in promoting Pd reduction. Formate and H2 fostered both chemically and biologically mediated Pd reduction. Ethanol only promoted the reduction of Pd(II) under biotic conditions and the reduction was likely mediated by H2 released from ethanol fermentation. No reduction was observed in biotic or abiotic assays with all other substrates tested (acetate, lactate and pyruvate) although a large fraction of the total Pd was removed from the liquid medium likely due to biosorption. Pd(II) displayed severe inhibition towards acetoclastic and hydrogenotrophic methanogens, as indicated by 50% inhibiting concentrations as low as 0.96 and 2.7 mg/L, respectively. The results obtained indicate the potential of utilizing anaerobic granular sludge bioreactor technology as a practical and promising option for Pd(II) reduction and recovery offering advantages over pure cultures.

  13. Restricted diversity of dental calculus methanogens over five centuries, France.

    PubMed

    Huynh, Hong T T; Nkamga, Vanessa D; Signoli, Michel; Tzortzis, Stéfan; Pinguet, Romuald; Audoly, Gilles; Aboudharam, Gérard; Drancourt, Michel

    2016-01-01

    Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14(th) to 19(th) centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR sequencing identified Candidatus Methanobrevibacter sp. N13 in 44.6%, Methanobrevibacter oralis in 19.6%, a new Methanomassiliicoccus luminyensis-like methanogen in 12.5%, a Candidatus Nitrososphaera evergladensis-like in one and Methanoculleus bourgensis in one specimen, respectively. One Candidatus Methanobrevibacter sp. N13 dental calculus was further documented by fluorescent in situ hybridization. The prevalence of dental calculus M. oralis was significantly lower in past populations than in modern populations (P = 0.03, Chi-square test). This investigation revealed a previously unknown repertoire of archaea found in the oral cavity of past French populations as reflected in preserved dental calculus. PMID:27166431

  14. Pressure-Enhanced Activity and Stability of a Hyperthermophilic Protease from a Deep-Sea Methanogen

    PubMed Central

    Michels, P. C.; Clark, D. S.

    1997-01-01

    We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988). PMID:16535711

  15. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil.

    PubMed

    Schmidt, Oliver; Horn, Marcus A; Kolb, Steffen; Drake, Harold L

    2015-03-01

    The impact of temperature on the largely unresolved intermediary ecosystem metabolism and associated unknown microbiota that link cellulose degradation and methane production in soils of a moderately acidic (pH 4.5) fen was investigated. Supplemental [(13) C]cellulose stimulated the accumulation of propionate, acetate and carbon dioxide as well as initial methane production in anoxic peat soil slurries at 15°C and 5°C. Accumulation of organic acids at 15°C was twice as fast as that at 5°C. 16S rRNA [(13) C]cellulose stable isotope probing identified novel unclassified Bacteria (79% identity to the next cultured relative Fibrobacter succinogenes), unclassified Bacteroidetes (89% identity to Prolixibacter bellariivorans), Porphyromonadaceae, Acidobacteriaceae and Ruminococcaceae as main anaerobic degraders of cellulose-derived carbon at both 15°C and 5°C. Holophagaceae and Spirochaetaceae were more abundant at 15°C. Clostridiaceae dominated the degradation of cellulose-derived carbon only at 5°C. Methanosarcina was the dominant methanogenic taxa at both 15°C and 5°C. Relative abundance of Methanocella increased at 15°C whereas that of Methanoregula and Methanosaeta increased at 5°C. Thaumarchaeota closely related to Nitrosotalea (presently not known to grow anaerobically) were abundant at 5°C but absent at 15°C indicating that Nitrosotalea sp. might be capable of anaerobic growth at low temperatures in peat.

  16. Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites.

    PubMed

    Tokura; Ohkuma; Kudo

    2000-09-01

    The molecular phylogeny of methanogenic archaea associated with the flagellated protist species Dinenympha and Microjoenia in the gut of termites, Reticulitermes speratus and Hodotermopsis sjoestedti, and those attached to the gut epithelium was examined based on PCR-amplified small-subunit ribosomal RNA genes. The sequences identified were classified into six groups within the genus Methanobrevibacter, including groups of yet uncharacterized novel species. Closely related methanogens were shared between Microjoenia and some Dinenympha cells in each termite. The methanogens harbored by the flagellates were phylogenetically different from the methanogens associated with the gut epithelium, suggesting that distinct methanogen species showed distinct spatial distributions in the termite gut.

  17. Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon

    PubMed Central

    Kendall, Melissa M.; Boone, David R.

    2006-01-01

    Little is known about the methanogenic degradation of acetate, the fate of molecular hydrogen and formate or the ability of methanogens to grow and produce methane in cold, anoxic marine sediments. The microbes that produce methane were examined in permanently cold, anoxic marine sediments at Hydrate Ridge (44°35' N, 125°10' W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were diluted into enrichment medium with formate, acetate or trimethylamine as catabolic substrate. After 2 years of incubation at 4 °C to 15 °C, enrichment cultures produced methane. PCR amplification and sequencing of the rRNA genes from the highest dilutions with growth suggested that each enrichment culture contained a single strain of methanogen. The level of sequence similarity (91 to 98%) to previously characterized prokaryotes suggested that these methanogens belonged to novel genera or species within the orders Methanomicrobiales and Methanosarcinales. Analysis of the 16S rRNA gene libraries from DNA extracted directly from the sediment samples revealed phylotypes that were either distantly related to cultivated methanogens or possible anaerobic methane oxidizers related to the ANME-1 and ANME-2 groups of the Archaea. However, no methanogenic sequences were detected, suggesting that methanogens represented only a small proportion of the archaeal. PMID:16877319

  18. Taxonomic status and ecologic function of methanogenic bacteria isolated from the oral cavity of humans

    SciTech Connect

    Kemp, C.W.

    1985-01-01

    The detection of methane gas in samples of dental plaque and media inoculated with dental plaque was attributed to the presence of methane-producing bacteria in the plaque microbiota. The results of a taxonomic analysis of the 12 methanogenic isolates obtained from human dental plaque, (ABK1-ABK12), placed the organisms in the genus Methanobrevibacter. A DNA-DNA hybridization survey established three distinct genetic groups of oral methanogens based on percent homology values. The groups exhibited less than 32% homology between themselves and less than 17% homology with the three known members of the genus methanobrevibacter. The ecological role of the oral methanogens was established using mixed cultures of selected methanogenic isolates (ABK1, ABK4, ABK6, or ABK7) with oral heterotrophic bacteria. Binary cultures of either Streptococcus mutans, Streptococcus sanguis, Veillonella rodentium, Lactobacillus casei, or Peptostreptococcus anaerobius together with either methanogenic isolates ABK6 or ABK7 were grown to determine the effect of the methanogens on the distribution of carbon end products produced by the heterotrophs. Binary cultures of S. mutans and ABK7 exhibited a 27% decrease in lactic acid formation when compared to pure culture of S. mutans. The decrease in lactic acid production was attributed to the removal of formate by the methanogen, (ABK7), which caused an alteration in the distribution of carbon end products by S. mutans.

  19. Methanogenic burst in the end-Permian carbon cycle

    PubMed Central

    Rothman, Daniel H.; Fournier, Gregory P.; French, Katherine L.; Alm, Eric J.; Boyle, Edward A.; Cao, Changqun; Summons, Roger E.

    2014-01-01

    The end-Permian extinction is associated with a mysterious disruption to Earth’s carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth’s greatest mass extinction by a specific microbial innovation. PMID:24706773

  20. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

    DOE PAGESBeta

    Rother, Michael; Krzycki, Joseph A.

    2010-01-01

    Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to putmore » this knowledge into the context of their unique energy metabolism.« less

  1. Effect of acclimation on methanogenic degradation of chlorophenols

    SciTech Connect

    Wang, Y.T.; Muthukrishnan, S.

    1996-11-01

    Chlorophenols are highly toxic and persistent in the environment. Several millions of pounds of chlorinated phenols and chlorophenol based compounds are manufactured and used every year. Pentachlorophenol (PCP) and tetrachlorophenols (TCP) are widely used in the paper pulp industry and also as wood preservatives. Chlorophenols are also formed during the disinfection of wastewater containing phenols and in chlorine bleaching processes of cellulose. Anaerobic biodegradation of chlorophenols by anaerobic microbial consortia has been extensively studied by many researchers. Anaerobic biodegradation of chlorophenols occurs through a series of reductive dechlorination, in which the chlorine is replaced by hydrogen at each step. This reductive dehalogenation is of environmental importance because the less chlorinated metabolic products are generally less toxic and more easily degraded by aerobic bacteria. The main objective of this study is to examine the degradation of chlorophenols in both unacclimated and acclimated methanogenic cultures.

  2. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

    PubMed Central

    Rother, Michael; Krzycki, Joseph A.

    2010-01-01

    Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism. PMID:20847933

  3. Methane production from coal by a single methanogen

    NASA Astrophysics Data System (ADS)

    Mayumi, Daisuke; Mochimaru, Hanako; Tamaki, Hideyuki; Yamamoto, Kyosuke; Yoshioka, Hideyoshi; Suzuki, Yuichiro; Kamagata, Yoichi; Sakata, Susumu

    2016-10-01

    Coal-bed methane is one of the largest unconventional natural gas resources. Although microbial activity may greatly contribute to coal-bed methane formation, it is unclear whether the complex aromatic organic compounds present in coal can be used for methanogenesis. We show that deep subsurface–derived Methermicoccus methanogens can produce methane from more than 30 types of methoxylated aromatic compounds (MACs) as well as from coals containing MACs. In contrast to known methanogenesis pathways involving one- and two-carbon compounds, this “methoxydotrophic” mode of methanogenesis couples O-demethylation, CO2 reduction, and possibly acetyl–coenzyme A metabolism. Because MACs derived from lignin may occur widely in subsurface sediments, methoxydotrophic methanogenesis would play an important role in the formation of natural gas not limited to coal-bed methane and in the global carbon cycle.

  4. Microbial community signature of high-solid content methanogenic ecosystems.

    PubMed

    Abbassi-Guendouz, Amel; Trably, Eric; Hamelin, Jérôme; Dumas, Claire; Steyer, Jean Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2013-04-01

    In this study, changes in bacterial and archaeal communities involved in anaerobic digestion processes operated with high solid contents were investigated. Batch tests were performed within a range of total solids (TS) of 10-35%. Between 10% and 25% TS, high methanogenic activity was observed and no overall specific structure of active bacterial communities was found. At 30% and 35%, methanogenesis was inhibited as a consequence of volatile fatty acids accumulation. Here, a specific bacterial signature was observed with three main dominant bacteria related to Clostridium sp., known for their ability to grow at low pH. Additionally, archaeal community was gradually impacted by TS content. Three archaeal community structures were observed with a gradual shift from Methanobacterium sp. to Methanosarcina sp., according to the TS content. Overall, several species were identified as biomarkers of methanogenesis inhibition, since bacterial and archaeal communities were highly specific at high TS contents.

  5. Methanogenic burst in the end-Permian carbon cycle

    NASA Astrophysics Data System (ADS)

    Rothman, Daniel H.; Fournier, Gregory P.; French, Katherine L.; Alm, Eric J.; Boyle, Edward A.; Cao, Changqun; Summons, Roger E.

    2014-04-01

    The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.

  6. Methanogenic burst in the end-Permian carbon cycle.

    PubMed

    Rothman, Daniel H; Fournier, Gregory P; French, Katherine L; Alm, Eric J; Boyle, Edward A; Cao, Changqun; Summons, Roger E

    2014-04-15

    The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation. PMID:24706773

  7. [Analysis of methanogenic community of anaerobic granular sludge based on mcrA gene].

    PubMed

    Liu, Chu; Li, Liang; Ma, Jun-Ke; Wu, Gen; Yang, Jing-Liang

    2011-04-01

    The methanogenic community in anaerobic granular sludge from a full-scale UASB treating avernectin wastewater was analyzed based on mcrA gene, compared to 16S rRNA gene. The results indicated that the diversity indices of methanogenic community, including Shannon diversity index, Margalef richness index and Berger-Parker dominance index, were no difference between mcrA gene-based and 16S rRNA gene-based PCR products analysis by DGGE, although their DGGE band patterns were different, implying that the diversity analysis of methanogenic community based on mcrA genes was consistent with 16S rRNA gene. The phylogenetic analysis of dominant methanogenic populations based on these two target genes also showed resemble and Methanobacteriales and Methanosarcinales were determined to be the main orders of methanogenic populations in anaerobic granular sludge. On the other hand, the difference in phylogenetic analysis suggested simultaneously some group-specific of the two target genes. The hybridization of methanogenic community in FISH analysis based on two target genes was almost identical except a little different hybridization areas. The average relative abundance of methanogenic community was 24.25% +/- 6. 47% detected by FISH based on mcrA gene, lower than that based on 16S rRNA gene (33.42% +/- 2.34%). Then it could be concluded that the analysis of methanogenic community based on mcrA gene and 16S rRNA gene exhibited high resemblance and mcrA gene could used to be target gene for methanogenic community, as an alternative of 16S rRNA gene.

  8. Progression of methanogenic degradation of crude oil in the subsurface

    USGS Publications Warehouse

    Bekins, B.A.; Hostettler, F.D.; Herkelrath, W.N.; Delin, G.N.; Warren, E.; Essaid, H.I.

    2005-01-01

    Our results show that subsurface crude-oil degradation rates at a long-term research site were strongly influenced by small-scale variations in hydrologic conditions. The site is a shallow glacial outwash aquifer located near Bemidji in northern Minnesota that became contaminated when oil spilled from a broken pipeline in August 1979. In the study area, separate-phase oil forms a subsurface oil body extending from land surface to about 1 m (3.3 ft) below the 6-8-m (20-26 ft)-deep water table. Oil saturation in the sediments ranges from 10-20% in the vadose zone to 30-70% near the water table. At depths below 2 m (6.6 ft), degradation of the separate-phase crude oil occurs under methanogenic conditions. The sequence of methanogenic alkane degradation depletes the longer chain n-alkanes before the shorter chain n-alkanes, which is opposite to the better known aerobic sequence. The rates of degradation vary significantly with location in the subsurface. Oil-coated soils within 1.5 m (5 ft) of land surface have experienced little degradation where soil water saturation is less than 20%. Oil located 2-8 m (6.6-26 ft) below land surface in areas of higher recharge has been substantially degraded. The best explanation for the association between recharge and enhanced degradation seems to be increased downward transport of microbial growth nutrients to the oil body. This is supported by observations of greater microbial numbers at higher elevations in the oil body and significant decreases with depth in nutrient concentrations, especially phosphorus. Our results suggest that environmental effects may cause widely diverging degradation rates in the same spill, calling into question dating methods based on degradation state. Copyright ?? 2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  9. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost.

    PubMed

    Metje, Martina; Frenzel, Peter

    2007-04-01

    Few studies have dealt so far with methanogenic pathways and populations in subarctic and arctic soils. We studied the effects of temperature on rates and pathways of CH4 production and on the relative abundance and structure of the archaeal community in a mildly acidic peat from a permafrost region in Siberia (67 degrees N). We monitored the production of CH4 and CO2 over time and measured the consumption of Fe(II), ethanol and volatile fatty acids. All experiments were performed with and without specific inhibitors [2-bromoethanesulfonate (BES) for methanogenesis and CH3F for acetoclastic methanogenesis]. The optimum temperature for methanogenesis was between 26 degrees C and 28 degrees C [4.3 micromol CH4 (g dry weight)(-1) day(-1)], but the activity was high even at 4 degrees C [0.75 micromol CH4 (g dry weight)(-1) day(-1)], constituting 17% of that at 27 degrees C. The population structure of archaea was studied by terminal restriction fragment length polymorphism analysis and remained constant over a wide temperature range. Acetoclastic methanogenesis accounted for about 70% of the total methanogenesis. Most 16S rRNA gene sequences clustered with Methanosarcinales, correlating with the prevalence of acetoclastic methanogenesis. In addition, sequences clustering with Methanobacteriales were recovered. Fe reduction occurred in parallel to methanogenesis. At lower and higher temperatures Fe reduction was not affected by BES. Because butyrate was consumed during methanogenesis and accumulated when methanogenesis was inhibited (BES and CH3F), it is proposed to serve as methanogenic precursor, providing acetate and H2 by syntrophic oxidation. In addition, ethanol and caproate occurred as intermediates. Because of thermodynamic constraints, homoacetogenesis could not compete with hydrogenotrophic methanogenesis. PMID:17359267

  10. Growth of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacteria on artificial supports.

    PubMed

    Urrutia, H; Vidal, R; Baeza, M; Reyes, J E; Aspe, E

    1997-06-01

    The efficiency of organic matter degradation in attached biomass reactors depends on the suitable selection of artificial support for the retention of bacterial communities. We have studied the growth on glass and clay beads of methylaminotrophic, acetotrophic and hydrogenotrophic methanogenic bacterial communities isolated from anaerobic reactors. Bacterial counts were performed by the standard MPN technique. Experiments were performed in 50 ml vials for 12 days at 35 degrees C. Increase in the counts of methylaminotrophic and hydrogenotrophic methanogens occurred on both glass and clay beads. The latter support material also stimulated the growth rate of methylaminotrophic methanogens.

  11. Osmoregulation in methanogens. Progress report, May 15, 1991--January 15, 1993

    SciTech Connect

    Roberts, M.F.

    1993-01-01

    Our major goal of our work has been to develop and use NMR techniques to study how methanogenic archaebacteria deal with osmotic stress with the hope of providing insights into increasing the salt tolerance of other cells. The project has three main sections: (i) in vivo studies of methanogens; (ii) use of {sup l3}C- and {sup l5}N- labeled potential precursors and in vitro analyses of specific label uptake for elucidation of osmolyte dynamics and biosynthetic pathways of osmolytes in these organisms, and isolation of key biosynthetic enzymes; and (iii) collaborative studies on identification of organic solutes in other methanogens.

  12. Enumeration of methanogens with a focus on fluorescence in situ hybridization.

    PubMed

    Kumar, Sanjay; Dagar, Sumit Singh; Mohanty, Ashok Kumar; Sirohi, Sunil Kumar; Puniya, Monica; Kuhad, Ramesh C; Sangu, K P S; Griffith, Gareth Wyn; Puniya, Anil Kumar

    2011-06-01

    Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.

  13. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittman, Simon K.-M. R.

    2015-12-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.

  14. SEQUENTIAL REDUCTIVE DEHALOGATION OF CHLOROANILINES BY MICROORGANISMS FROM A METHANOGENIC AQUIFER

    EPA Science Inventory

    Chloroaniline-based compounds are widely used chem- icals and important contaminants of aquatic and terrestrial environments. We have found that chloroanilines can be biologically dehalogenated in polluted aquifers when methanogenic, but not sulfate-reducing conditions prevail. T...

  15. Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea

    PubMed Central

    Hendrickson, Erik L.; Haydock, Andrew K.; Moore, Brian C.; Whitman, William B.; Leigh, John A.

    2007-01-01

    The use of molecular hydrogen as electron donor for energy generation is a defining characteristic of the hydrogenotrophic methanogens, an ancient group that dominates the phylum Eury archaeota. We present here a global study of changes in mRNA abundance in response to hydrogen availability for a hydrogenotrophic methanogen. Cells of Methanococcus maripaludis were grown by using continuous culture to deconvolute the effects of hydrogen limitation and growth rate, and microarray analyses were conducted. Hydrogen limitation markedly increased mRNA levels for genes encoding enzymes of the methanogenic pathway that reduce or oxidize the electron-carrying deazaflavin, coenzyme F420. F420-dependent redox functions in energy-generating metabolism are characteristic of the methanogenic Archaea, and the results show that their regulation is distinct from other redox processes in the cell. Rapid growth increased mRNA levels of the gene for an unusual hydrogenase, the hydrogen-dependent methylenetetrahydromethanopterin dehydrogenase. PMID:17502615

  16. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    PubMed Central

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  17. Enumeration of methanogens with a focus on fluorescence in situ hybridization

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Dagar, Sumit Singh; Mohanty, Ashok Kumar; Sirohi, Sunil Kumar; Puniya, Monica; Kuhad, Ramesh C.; Sangu, K. P. S.; Griffith, Gareth Wyn; Puniya, Anil Kumar

    2011-06-01

    Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.

  18. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies.

    PubMed

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G; Rittmann, Simon K-M R

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  19. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China

    NASA Astrophysics Data System (ADS)

    Liu, D. Y.; Ding, W. X.; Jia, Z. J.; Cai, Z. C.

    2011-02-01

    Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability at regional, national, and global levels related to temperature, water table, plant type and methanogenic archaea etc. To understand the underlying factors that induce spatial differences in CH4 emissions, and the relationship between the population of methanogenic archaea and CH4 production potential in natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical soil profiles sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau in the alpine climate zone. The top soil layer had the highest population of methanogens (1.07-8.29 × 109 cells g-1 soil) in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2 = 0.72, P < 0.001, n = 13) and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2 = 0.76, P < 0.001, n = 13) in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2 = 0.01, P > 0.05, n = 13), it is related to the dissolved organic carbon concentration (R2 = 0.31, P = 0.05, n = 13). This suggests that the methanogen population might be not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 273.64 μg CH4 kg-1 soil d-1 in the Poyang wetland to 664.59 μg CH4 kg-1 soil d-1 in the Carex lasiocarpa marsh of the Sanjiang Plain. We conclude

  20. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    PubMed Central

    Aschenbach, Katrin; Conrad, Ralf; Řeháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~103 gdw−1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  1. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas.

    PubMed

    Aschenbach, Katrin; Conrad, Ralf; Reháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~10(3) gdw(-1) soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts.

  2. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas.

    PubMed

    Aschenbach, Katrin; Conrad, Ralf; Reháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~10(3) gdw(-1) soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  3. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments.

    PubMed

    Fowler, S Jane; Toth, Courtney R A; Gieg, Lisa M

    2016-01-01

    The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst

  4. Comparative study of fermentation and methanogen community structure in the digestive tract of goats and rabbits.

    PubMed

    Abecia, L; Fondevila, M; Rodríguez-Romero, N; Martínez, G; Yáñez-Ruiz, D R

    2013-05-01

    Methane is the most important anthropogenic contribution to climate change after carbon dioxide and represents a loss of feed energy for the animal, mainly for herbivorous species. However, our knowledge about the ecology of Archaea, the microbial group responsible for methane synthesis in the gut, is very poor. Moreover, it is well known that hindgut fermentation differs from rumen fermentation. The composition of archaeal communities in fermentation compartments of goats and rabbits were investigated using DGGE to generate fingerprints of archaeal 16S rRNA gene. Ruminal contents and faeces from five Murciano-Granadina goats and caecal contents of five commercial White New Zealand rabbits were compared. Diversity profile of methanogenic archaea was carried out by PCR-DGGE. Quantification of methanogenic archaea and the abundance relative to bacteria was determined by real-time PCR. Methanogenic archaeal species were relatively constant across species. Dendrogram from DGGE of the methanogen community showed one cluster for goat samples with two sub-clusters by type of sample (ruminal and faeces). In a second cluster, samples from rabbit were grouped. No differences were found either in richness or Shannon index as diversity indexes. Although the primer sets used was developed to investigate rumen methanogenic archaeal community, primers specificity did not affect the assessment of rabbit methanogen community structure. Rumen content showed the highest number or methanogenic archaea (log₁₀ 9.36), followed by faeces (log₁₀ 8.52) and showing rabbit caecum the lower values (log₁₀ 5.52). DGGE profile showed that pre-gastric and hindgut fermenters hold a very different methanogen community. Rabbits hold a microbial community of similar complexity than that in ruminants but less abundant, which agrees with the type of fermentation profile.

  5. Environmental controls on methanogen viability in the hydrothermal waters of the El Tatio geyser field, Chile.

    NASA Astrophysics Data System (ADS)

    Franks, M. A.; Bennett, P. C.; Omelon, C.; Engel, A. S.

    2007-12-01

    At the El Tatio geyser field, a unique hydrothermal site located in the Andes Mountains in Chile, methanogenic archaea were found in only two of the hundreds of hydrothermal features. Reported here is an investigation into the environmental and geochemical controls on the distribution of methanogenic archaea. Located in the hyper- arid Atacama Desert, El Tatio waters are characterized by high salinity (95-175mM), Na-Cl type waters and circum-neutral pH (6.5-7), with very low inorganic carbon (0.1-0.5 mM TIC), but very high concentrations of As and Sb (300-700 uM As, 10-30uM Sb). Extensive bacterial mats thrive in most of the shallow run-off streams originating from hydrothermal features. In order to determine geochemical controls on methanogen populations, major and trace elements, including As and Sb speciation and concentrations, were determined using IC and HPLC-ICP-MS methods. The structure of microbial communities was analyzed using MPN enumeration of methanogens, culturing, and phylogenetic analysis using molecular techniques. Here, as in many hydrothermal regions, temperature and geochemical gradients influence the microbial ecology. Results from MPN enumeration indicate methanogen populations are dominated by H2-utilizing (carbonate reducing) archaea at both of the sites, with some acetate-oxidizing archaea present. These sites contain comparatively high DIC concentrations; however, it is unclear whether this is a control or a product of methanogenic archaea. Water quality analyses also show a strong correlation between antimony concentrations and the presence of methanogens; methanogenic archaea being present only at sites with 17 uM Sb concentrations or less.

  6. Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars

    NASA Astrophysics Data System (ADS)

    Kral, Timothy A.; Goodhart, Timothy H.; Harpool, Joshua D.; Hearnsberger, Christopher E.; McCracken, Graham L.; McSpadden, Stanley W.

    2016-01-01

    In 2008, the Mars Phoenix Lander discovered perchlorate at its landing site, and in 2012, the Curiosity rover confirmed the presence of perchlorate on Mars. The research reported here was designed to determine if certain methanogens could grow in the presence of three different perchlorate salt solutions. The methanogens tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum and Methanococcus maripaludis. Media were prepared containing 0%, 0.5%, 1.0%, 2%, 5% and 10% wt/vol magnesium perchlorate, sodium perchlorate, or calcium perchlorate. Organisms were inoculated into their respective media followed by incubation at each organism's growth temperature. Methane production, commonly used to measure methanogen growth, was measured by gas chromatography of headspace gas samples. Methane concentrations varied with species and perchlorate salt tested. However, all four methanogens produced substantial levels of methane in the presence of up to 1.0% perchlorate, but not higher. The standard procedure for growing methanogens typically includes sodium sulfide, a reducing agent, to reduce residual molecular oxygen. However, the sodium sulfide may have been reducing the perchlorate, thus allowing for growth of the methanogens. To investigate this possibility, experiments were conducted where stainless steel nails were used instead of sodium sulfide as the reducing agent. Prior to the addition of perchlorate and inoculation, the nails were removed from the liquid medium. Just as in the prior experiments, the methanogens produced methane at comparable levels to those seen with sodium sulfide as the reductant, indicating that sodium sulfide did not reduce the perchlorate to any significant extent. Additionally, cells metabolizing in 1% perchlorate were transferred to 2%, cells metabolizing in 2% were transferred to 5%, and finally cells metabolizing in 5% were transferred to 10%. All four species produced methane at 2% and 5%, but not 10

  7. Evidence of novel phylogenetic lineages of methanogenic archaea from hypersaline microbial mats.

    PubMed

    García-Maldonado, José Q; Bebout, Brad M; Everroad, R Craig; López-Cortés, Alejandro

    2015-01-01

    Methanogenesis in hypersaline and high-sulfate environments is typically dominated by methylotrophic methanogens because sulfate reduction is thermodynamically favored over hydrogenotrophic methanogenesis in these environments. We characterized the community composition of methanogenic archaea in both unmanipulated and incubated microbial mats from different hypersaline environments in Baja California Sur, Mexico. Clone libraries of methyl coenzyme-M reductase (mcrA) sequences and DGGE band patterns of 16S rRNA and mcrA sequences showed that the methanogen community in these microbial mats is dominated by methylotrophic methanogens of the genus Methanohalophilus. However, phylogenetic analyses of mcrA sequences from these mats also revealed two new lineages corresponding to putative hydrogenotrophic methanogens related with the strictly hydrogenotrophic order Methanomicrobiales. Stimulated methane production under decreased salinity and sulfate concentrations also suggested the presence of hydrogenotrophic methanogens in these samples. The relative abundance of mcrA gene and transcripts, estimated by SYBR green I qPCR assays, suggested the activity of different phylogenetic groups of methanogens, including the two novel clusters, in unmanipulated samples of hypersaline microbial mats. Using geochemical and molecular approaches, we show that substrate limitation and values of salinity and sulfate higher than 3 % and 25 mM (respectively) are potential environmental constraints for methanogenesis in these environments. Microcosm experiments with modifications of salinity and sulfate concentrations and TMA addition showed that upper salt and sulfate concentrations for occurrence of methylotrophic methanogenesis were 28 % and 263 mM, respectively. This study provides phylogenetic information about uncultivated and undescribed methanogenic archaea from hypersaline environments.

  8. A T-RFLP database for the rapid profiling of methanogenic communities in anaerobic digesters.

    PubMed

    Bühligen, Franziska; Lucas, Rico; Nikolausz, Marcell; Kleinsteuber, Sabine

    2016-06-01

    We present a simple protocol for the cost- and time-efficient profiling of methanogens based on T-RFLP fingerprinting of mcrA amplicons. Sequence data were compiled from mesophilic lab-scale and full-scale biogas reactors operated under various conditions and fed with various substrates. The database facilitates the rapid identification of methanogens, thus reducing the need of cloning and sequencing. PMID:27046270

  9. Higher Temperature and Hydrogen Availability Stimulated the Methanogenic Activity in East Antarctic Subglacial Sediment

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2014-12-01

    Subglacial ecosystem has been recognized as an environment with considerable methanogenic activity, and therefore is of significant impact on global methane budget and climate change. Although the methanogens have been discovered at a few subglacial environments, the methanogenic activity there is yet insufficiently studied, especially on the effects of environmental parameters, due to technical difficulties on sampling and cultivation. Here, in this study, we attempt to access the methanogenic activity and community structure in response to temperature and substrate availability. An integrated approach including in vitro cultivation and molecular techniques were employed. A subglacial sediment from Larsemann Hills, East Antarctica was incubated at different temperatures (1, 4, 12 oC) supplied with H2+CO2 or sodium acetate to estimate the methanogenic activity. The McrA gene which is a specific marker for methanogens was amplified with primer ME and ML to construct phylogenetic trees. This functional gene was also quantified by Q-PCR before and after the incubation to estimate the increase of methanogens. After 8 months a highest methanogenesis rate of 226 pmol/ day/ gram sediment was observed at 12 oC with H2 supplying, which was 2 times higher than that with acetate supplying, clearly suggesting that H2 is a preferable substrate than acetate. The methanogenesis rate without supplying extra substrate showed positive temperature dependence with rate of 23.3, 24.8, 131 pmol/day/gram sediment at 1 oC, 4 oC, and 12 oC, respectively. The McrA copy number was increased more than 300 times and 50 times with H2 and acetate supplying respectively after the incubation. 94% and 67% of the mcrA gene sequences were classed into methanomicrobiales which were hydrogen-trophic methanogens in the two clone libraries with primer ML and ME respectively. This finding suggests the potential effect of methanogenesis under glacier on the climate change.

  10. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.

    PubMed

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-08-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [(13)C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and (13)C-labeling of CH4 verified that supplemental [(13)C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae. PMID:25615437

  11. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil

    PubMed Central

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-01-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [13C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and 13C-labeling of CH4 verified that supplemental [13C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae. PMID:25615437

  12. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments

    PubMed Central

    Fowler, S. Jane; Toth, Courtney R. A.; Gieg, Lisa M.

    2016-01-01

    The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst

  13. Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity?

    PubMed

    Krakat, Niclas; Schmidt, Stefan; Scherer, Paul

    2010-09-01

    The present long-term study (about 1,100 days) monitored the diversity of methanogens during the mesophilic, anaerobic digestion of beet silage. Six fermentor samples were analyzed by ribosomal RNA gene restriction analysis, fluorescence in situ hybridization, and fluorescence microscopy. Hydrogenotrophic methanogens dominated within the population in all samples analyzed. Multidimensional scaling revealed that a rapid decrease in hydraulic retention time resulted in increased species richness, which in turn led to slightly higher CH(4) yields. PMID:20675458

  14. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.

    PubMed

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-08-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [(13)C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and (13)C-labeling of CH4 verified that supplemental [(13)C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae.

  15. Influence of the Natural Microbial Flora on the Acid Tolerance Response of Listeria monocytogenes in a Model System of Fresh Meat Decontamination Fluids

    PubMed Central

    Samelis, John; Sofos, John N.; Kendall, Patricia A.; Smith, Gary C.

    2001-01-01

    Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (105 CFU/ml) Listeria monocytogenes were evaluated at 35°C in water (10 or 85°C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35°C rather than lower (≤15°C) temperatures to maximize the response of inoculated L. monocytogenes in the washings with or without competitive flora. Acid solution washings were free (<1.0 log CFU/ml) of natural flora before inoculation (day 0), and no microbial growth occurred during storage (35°C, 8 days). Inoculated L. monocytogenes died off (negative enrichment) in acid washings within 24 h. In nonacid (water) washings, the pathogen increased (approximately 1.0 to 2.0 log CFU/ml), irrespective of natural flora, which, when present, predominated (>8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35°C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid. PMID:11375145

  16. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources.

    PubMed

    Tucker, Yael Tarlovsky; Kotcon, James; Mroz, Thomas

    2015-06-01

    Marcellus Shale occurs at depths of 1.5-2.5 km (5000 to 8000 feet) where most geologists generally assume that thermogenic processes are the only source of natural gas. However, methanogens in produced fluids and isotopic signatures of biogenic methane in this deep shale have recently been discovered. This study explores whether those methanogens are indigenous to the shale or are introduced during drilling and hydraulic fracturing. DNA was extracted from Marcellus Shale core samples, preinjected fluids, and produced fluids and was analyzed using Miseq sequencing of 16s rRNA genes. Methanogens present in shale cores were similar to methanogens in produced fluids. No methanogens were detected in injected fluids, suggesting that this is an unlikely source and that they may be native to the shale itself. Bench-top methane production tests of shale core and produced fluids suggest that these organisms are alive and active under simulated reservoir conditions. Growth conditions designed to simulate the hydrofracture processes indicated somewhat increased methane production; however, fluids alone produced relatively little methane. Together, these results suggest that some biogenic methane may be produced in these wells and that hydrofracture fluids currently used to stimulate gas recovery could stimulate methanogens and their rate of producing methane.

  17. Performance of methanogenic reactors in temperature phased two-stage anaerobic digestion of swine wastewater.

    PubMed

    Kim, Woong; Shin, Seung Gu; Cho, Kyungjin; Lee, Changsoo; Hwang, Seokhwan

    2012-12-01

    The present study investigated the shifts in the chemical profiles of a two-phase anaerobic digestion system in methanogenic and acidogenic reactors for the treatment of swine wastewater. Acidogenic and methanogenic digesters were used with overall HRTs ranging from 27 to 6 d. In the optimized thermophilic/acidogenic phase throughout the entire experimental period, VS was reduced by 13.8% (1.6%); however, COD hardly decreased because of the thermophilic hydrolysis of organic materials, such as carbohydrates, proteins, and lipids, without any significant consumption of volatile fatty acids. In the methanogenic/mesophilic phase, COD was reduced by 65.8 (1.1)% compared to a 47.4 (2.9)% reduction in VS reduction efficiency with the gradual increase in methane production during a methanogenic HRT between 25 and 10 d. A high protein degradation rate was observed in the optimized acidogenic phase, which is assumed to be due to the low content of carbohydrates in raw swine wastewater as well as the readily thermophilic hydrolysis of proteins. Two-phase systems of anaerobic digestion consisting of optimized thermophilic and mesophilic methanogenic digesters showed a stable performance with respect to VS reduction efficiency with OLRs less than 3 g VS/L·d, in other words, more than 10 days of methanogenic HRT in this study.

  18. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources.

    PubMed

    Tucker, Yael Tarlovsky; Kotcon, James; Mroz, Thomas

    2015-06-01

    Marcellus Shale occurs at depths of 1.5-2.5 km (5000 to 8000 feet) where most geologists generally assume that thermogenic processes are the only source of natural gas. However, methanogens in produced fluids and isotopic signatures of biogenic methane in this deep shale have recently been discovered. This study explores whether those methanogens are indigenous to the shale or are introduced during drilling and hydraulic fracturing. DNA was extracted from Marcellus Shale core samples, preinjected fluids, and produced fluids and was analyzed using Miseq sequencing of 16s rRNA genes. Methanogens present in shale cores were similar to methanogens in produced fluids. No methanogens were detected in injected fluids, suggesting that this is an unlikely source and that they may be native to the shale itself. Bench-top methane production tests of shale core and produced fluids suggest that these organisms are alive and active under simulated reservoir conditions. Growth conditions designed to simulate the hydrofracture processes indicated somewhat increased methane production; however, fluids alone produced relatively little methane. Together, these results suggest that some biogenic methane may be produced in these wells and that hydrofracture fluids currently used to stimulate gas recovery could stimulate methanogens and their rate of producing methane. PMID:25924080

  19. Methanogenic archaea diversity in hyporheic sediments of a small lowland stream.

    PubMed

    Brablcová, Lenka; Buriánková, Iva; Badurová, Pavlína; Chaudhary, Prem Prashant; Rulík, Martin

    2015-04-01

    Abundance and diversity of methanogenic archaea were studied at five localities along a longitudinal profile of a Sitka stream (Czech Republic). Samples of hyporheic sediments were collected from two sediment depths (0-25 cm and 25-50 cm) by freeze-core method. Methanogen community was analyzed by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequencing method. The proportion of methanogens to the DAPI-stained cells varied among all localities and depths with an average value 2.08 × 10(5) per g of dry sediment with the range from 0.37 to 4.96 × 10(5) cells per g of dry sediment. A total of 73 bands were detected at 19 different positions on the DGGE gel and the highest methanogen diversity was found at the downstream located sites. There was no relationship between methanogen diversity and sediment depth. Cluster analysis of DGGE image showed three main clusters consisting of localities that differed in the number and similarity of the DGGE bands. Sequencing analysis of representative DGGE bands revealed phylotypes affiliated with members belonging to the orders Methanosarcinales, Methanomicrobiales and Methanocellales. The knowledge about occurrence and diversity of methanogenic archaea in freshwater ecosystems are essential for methane dynamics in river sediments and can contribute to the understanding of global warming process.

  20. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions

    PubMed Central

    Angel, Roey; Claus, Peter; Conrad, Ralf

    2012-01-01

    The prototypical representatives of the Euryarchaeota—the methanogens—are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ13C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment. PMID:22071343

  1. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments

    USGS Publications Warehouse

    Risatti, J.B.; Rowland, S.J.; Yon, D.A.; Maxwell, J.R.

    1984-01-01

    Abundant volatile lipids of Methanobacterium thermoautotrophicum and Methanosarcina barkeri include isoprenoid hydrocarbons (??? C30), and C15, C20 and C25 isoprenoid alcohols. M. barkeri contains 2,6,10,15,19-pentamethyleicosane, whose relative stereochemistry is the same as found in marine sediments, indicating that it is a marker of methanogenic activity. The C20, C30 and C25 alkenes in M. thermoautotrophicum also have a preferred sterochemistry; the latter have the 2,6,10,14,18-pentamethyleicosanyl skeleton, suggesting that the alkane in marine sediments may derive from methanogens. The stereochemistry of squalane in a marine sediment is also compatible with an origin in methanogens; in contrast, the stereochemistry of pristane in M. thermoautotrophicum indicates a fossil fuel contaminant origin, suggesting that this and certain other alkanes reported in archaebacteria might also be of contaminant origin. There is, therefore, little evidence at present that the pristane in immature marine sediments originates in methanogens. The C15 and C20 saturated alcohols in M. thermoautotrophicum have mainly the all-R configuration. If this is generally true for methanogens, the C20 alcohol in the Messel shale may originate mainly from methanogens, whereas that in the Green River shale may originate mainly from photosynthetic organisms. ?? 1984.

  2. Relationship between Trophic Status and Methanogenic Pathways in Alaskan Peatlands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, X.; Sidelinger, W.; Wang, Y.; Hines, M. E.; Langford, L.; Chanton, J.

    2015-12-01

    To improve predictions of naturally emitted CH4 from northern wetlands, it is necessary to further examine the methanogenic pathways in these wetlands. Stable isotope C ratios (δ13C) have been used as a robust tool to distinguish different pathways, but different sources of parent compounds (acetate and CO2) with unique δ13C may add complexity to previously established criteria. Large portions of peatlands accommodate a mixture of different sphagna and sedges. Plant species may look very similar and belong to the same genus but are different morphologically and physiologically. To better understand the relationships between surface vegetation patterns and methanogenic pathways, 26 peatland sites were studied in Fairbanks and Anchorage, Alaska in summers of 2014 and 2015. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH4 and volatile fatty acids production rates, δ13C values, and surface vegetation species/pattern. In the low-pH trophic cluster (pH~3.5), non-vascular/vascular plant ratios (NV/V) were ~ 0.87 and dominated by diverse Sphagnum species and specific sedges (Eriophorum vaginatum), and fermentation was the dominant end-point in decomposition with no CH4 detected. Although NV/V is about the same in the intermediate cluster (0.74) (pH~4.5), and Sphagnum squarrosum was largely present, both hydrogenotrophic (HM) and acetoclastic methanogenesis (AM) were very active. Syntrophy was present at certain sites, which may provide CO2 with unique δ13C for CH4 production. At the highest pH trophic cluster examined in this study (pH~5), non-vascular plants were almost not existent and Carex aquatilis dominated. CH4 production rates (mainly HM) were slower than those in the intermediate cluster and the apparent fractionation factor a was lower than in the sites with syntrophy, which warrants further investigation of the position and compound specific δ13C analysis of volatile fatty acids.

  3. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    SciTech Connect

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of

  4. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    DOE PAGESBeta

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions bymore » this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  5. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    PubMed Central

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 µM h−1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  6. Methanogenic Oil Degradation in the Dagang Oil Field

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans Hermann; Krüger, Martin

    2014-05-01

    Anaerobic biodegradation is one of the main in situ oil transformation processes in subsurface oil reservoirs. Recent studies have provided evidence of biodegradation of residual oil constituents under methanogenic conditions. Methane, like other biogenic gases, may contribute to reduce the viscosity of oil and enhance its flow characteristics (making it more available) but it can also be used as a energy source. So the aim of the present study was to provide reliable information on in situ biotransformation of oil under methanogenic conditions, and to assess the feasibility of implementing a MEOR strategy at this site. For this reason, chemical and isotopic analyses of injection and production fluids of the Dagang oil field (Hebei province, China) were performed. Microbial abundances were assessed by qPCR, and clone libraries were performed to study the diversity. In addition, microcosms with either oil or 13C-labelled hydrocarbons were inoculated with injection or production waters to characterize microbial processes in vitro. Geochemical and isotopic data were consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation: GC-MS profiles of petroleum samples were nearly devoid of n-alkanes, linear alkylbenzenes, and alkyltoluenes, and light PAH, confirming that Dagang oil is mostly highly weathered. In addition, carbon and hydrogen isotopic signatures of methane (δ13CCH4 and δDCH4, respectively), and the bulk isotopic discrimination (Δδ13C) between methane and CO2 (between 32 and 65 ) were in accordance with previously reported values for methane formation during hydrocarbon degradation. Furthermore, methane-producing Archaea and hydrocarbon-degrading Bacteria were abundant in produced oil-water samples. On the other hand, our laboratory degradation experiments revealed that autochthonous microbiota are capable of significantly degrade oil within several months, with biodegradation patterns resembling those

  7. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  8. Study on two methylotrophic and halophilic methanogens, Methanosarcina siciliae HI350 and Methanolobus taylorii GS-16

    SciTech Connect

    Ni, S.

    1994-01-01

    Strain HI350, similar to Methanolobus siciliae T4/M[sup T] (T = type strain) morphologically and physiologically, was isolated from an oil well in the Gulf of Mexico. Catabolic substrates included methanol, trimethylamine, dimethyl sulfide, and methane thiol, but not H[sub 2]-CO[sub 2], formate, or acetate. Growth was fastest in the presence of 0.4 to 0.6 M Na[sup +], in the presence of 60 to 200 mM Mg[sup 2+], at pH 6.5 to 6.8, and at 40[degrees]C. Methanolobus siciliae T4/M[sup T] was closely related to Methanosarcina. Transfer of Methanolobus siciliae T4/M[sup T] to the genus Methanosarcina as Methanosarcina siciliae is proposed with strain HI350 as its reference strain. Degradation of dimethyl sulfide or methane thiol by strain HI350 was complete, and stoichiometric quantities of methane and hydrogen sulfide were formed. Studies of cell-free extracts suggested that enzymes for degradation of dimethyl sulfide and methane thiol were inducible, whereas those for the degradation of methanol or trimethylamine were constitutive. Methanolobus taylorii GS-16, a moderately halophilic and alkcaliphilic methanogen, grows over a wide pH range. The key observation indicative of the involvement of K[sup +] transport in cytosolic acidification was that valinomycin (0.8 [mu]M), a K[sup +] uniporter, inhibited the growth of strain GS-16 only at alkaline pH. Experiments with resting cells indicated that, at alkaline pH, valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, a K[sup +]/H[sup +] antiporter was proposed to account for the K[sup +] extrusion and the uncoupling effect of valinomycin at alkaline pH.

  9. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid

    PubMed Central

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-01-01

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network. PMID:26581248

  10. [Improvement of acetic acid tolerance and fermentation performance of industrial Saccharomyces cerevisiae by overexpression of flocculent gene FLO1 and FLO1c].

    PubMed

    Du, Zhaoli; Cheng, Yanfei; Zhu, Hui; He, Xiuping; Zhang, Borun

    2015-02-01

    Flocculent gene FLO1 and its truncated form FLO1c with complete deletion of repeat unit C were expressed in a non-flocculent industrial strain Saccharomyces cerevisiae CE6 to generate recombinant flocculent strains 6-AF1 and 6-AF1c respectively. Both strains of 6-AF1 and 6-AF1c displayed strong flocculation and better cell growth than the control strain CE6-V carrying the empty vector under acetic acid stress. Moreover, the flocculent strains converted glucose to ethanol at much higher rates than the control strain CE6-V under acetic acid stress. In the presence of 0.6% (V/V) acetic acid, the average ethanol production rates of 6-AF1 and 6-AF1c were 1.56 and 1.62 times of that of strain CE6-V, while the ethanol production rates of 6-AF1 and 6-AF1c were 1.21 and 1.78 times of that of strain CE6-V under 1.0% acetic acid stress. Results in this study indicate that acetic acid tolerance and fermentation performance of industrial S. cerevisiae under acetic acid stress can be improved largely by flocculation endowed by expression of flocculent genes, especially FLO1c.

  11. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid.

    PubMed

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-11-19

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5'-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5'-TGTAAGCCCTAACA-3') upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network.

  12. Cellular fatty acid profile and H(+)-ATPase activity to assess acid tolerance of Bacillus sp. for potential probiotic functional attributes.

    PubMed

    Shobharani, P; Halami, Prakash M

    2014-11-01

    The present study has been focused widely on comparative account of probiotic qualities of Bacillus spp. for safer usage. Initially, 170 heat resistant flora were isolated and selected for non-pathogenic cultures devoid of cytK, hblD, and nhe1 virulence genes. Subsequently, through biochemical tests along with 16S rRNA gene sequencing and fatty acid profiling, the cultures were identified as Bacillus megaterium (AR-S4), Bacillus subtilis (HR-S1), Bacillus licheniformis (Csm1-1a and HN-S1), and Bacillus flexus (CDM4-3c and CDM3-1). The selected cultures showed 70-80 % survival under simulated gastrointestinal condition which was also confirmed through H(+)-ATPase production. The amount of H(+)-ATPase increased by more than 2-fold when grown at pH 2 which support for the acid tolerance ability of Bacillus isolates. The study also examined the influence of acidic pH on cellular fatty acid composition of Bacillus spp. A remarkable shift in the fatty acid profile was observed at acidic pH through an increased amount of even numbered fatty acid (C16 and C18) in comparison with odd numbered (C15 and C17). Additionally, the cultures exhibited various probiotic functional properties. Overall, the study increases our understanding of Bacillus spp. and will allow both industries and consumers to choose for well-defined probiotic with possible health benefits. PMID:25125040

  13. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    PubMed

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1).

  14. Isolation and Characterization of an H2-Oxidizing Thermophilic Methanogen

    PubMed Central

    Ferguson, Thomas J.; Mah, Robert A.

    1983-01-01

    A thermophilic methanogen was isolated from enrichment cultures originally inoculated with sludge from an anaerobic kelp digester (55°C). This isolate exhibited a temperature optimum of 55 to 60°C and a maximum near 70°C. Growth occurred throughout the pH range of 5.5 to 9.0, with optimal growth near pH 7.2. Although 4% salt was present in the isolation medium, salt was not required for optimal growth. The thermophile utilized formate or H2-CO2 but not acetate, methanol, or methylamines for growth and methanogenesis. Growth in complex medium was very rapid, and a minimum doubling time of 1.8 h was recorded in media supplemented with rumen fluid. Growth in defined media required the addition of acetate and an unknown factor(s) from digester supernatant, rumen fluid, or Trypticase. Cells in liquid culture were oval to coccoid, 0.7 to 1.8 μm in diameter, often occurring in pairs. The cells were easily lysed upon exposure to oxygen or 0.08 mg of sodium dodecyl sulfate per ml. The isolate was sensitive to tetracycline and chloramphenicol but not penicillin G or cycloserine. The DNA base composition was 59.69 mol% guanine plus cytosine. Images PMID:16346171

  15. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    PubMed

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1). PMID:26549712

  16. Molecular characterization of a toluene-degrading methanogenic consortium

    SciTech Connect

    Ficker, M.; Krastel, K.; Orlicky, S.; Edwards, E.

    1999-12-01

    A toluene-degrading methanogenic consortium enriched from creosote-contaminated aquifer material was maintained on toluene as the sole carbon and energy source for 10 years. The species in the consortium were characterized by using a molecular approach. Total genomic DNA was isolated, and 16S rRBA genes were amplified by using PCR performed with kingdom-specific primers that were specific for 16S rRBA genes from either members of the kingdom Bacteria or members of the kingdom Archaea. A total of 90 eubacterial clones and 75 archaeal clones were grouped by performing a restriction fragment length polymorphism (RFLP) analysis. Six eubacterial sequences and two archaeal sequences were found in the greatest abundance (in six or more clones) based on the RFLP analysis. The relative abundance of each putative species was estimated by using fluorescent in situ hybridization (FISH), and the presence of putative species was determined qualitatively by performing slot blot hybridization with consortium DNA. Both archael species and two of the six eubacterial species were detected in the DNA and FISH hybridization experiments. A phylogenetic analysis of these four dominant organisms suggested that the two archaeal species are related to the genera methanosaeta and Methanospirillum. One of the eubacterial species is related to the genus Desulfotomaculum, which the others is not related to any previously described genus. By elimination, the authors propose that the last organism probably initiates the attack on toluene.

  17. Functional responses of methanogenic archaea to syntrophic growth

    PubMed Central

    Walker, Christopher B; Redding-Johanson, Alyssa M; Baidoo, Edward E; Rajeev, Lara; He, Zhili; Hendrickson, Erik L; Joachimiak, Marcin P; Stolyar, Sergey; Arkin, Adam P; Leigh, John A; Zhou, Jizhong; Keasling, Jay D; Mukhopadhyay, Aindrila; Stahl, David A

    2012-01-01

    Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H2 directly as reductant, versus those using the reduced deazaflavin (coenzyme F420). The greater importance of direct reduction by H2 was supported by improved syntrophic growth of a deletion mutant in an F420-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism. PMID:22739494

  18. Fate of neptunium in an anaerobic, methanogenic microcosm.

    SciTech Connect

    Banaszak, J. E.

    1998-12-21

    Neptunium is found predominantly as Np(IV) in reducing environments, but Np(V) in aerobic environments. However, currently it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. In order to evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosminoculated with anaerobic sediments from a metal-contaminated fresh water lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np volubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbian y produced Mn(II/HI) and Fe(II) may serve as electron donors for Np reduction.

  19. Bacterial surface antigens defined by monoclonal antibodies: the methanogens

    SciTech Connect

    Conway de Macario, E.; Macario, A.J.L.; Magarinos, M.C.; Jovell, R.J.; Kandler, O.

    1982-01-01

    The methanogens (MB) are unique microbes of great evolutionary interest with applications in biotechnology-bioengineerings and are important in digestive processes. Their cell-wall composition is distinctively different from that of Eubacteria, e.g. the Methanobacteriaceae possess the peptidoglycan pseudomurein rather than murein. The range of cell-wall compositions among MB and their evolutionary and functional significance is not well known. The authors undertook a systematic study of the MB's surface structure using monoclonal antibodies through the following steps: (1) generation of hybridomas that produce antibody to several MB from 3 of their 4 families; (2) development of immunoenzymatic assays for MB's antigens and antibodies; (3) determination of the fine specificity of monoclonal antibodies by inhibition-blocking tests using cell-wall extracts and compounds of known structure; thus a set of monoclonal probes of predetermined specificity was assembled; and (4) resolution of surface determinants of MB representative of the Methanobacteriaceae using the monoclonal probes. Specific markers of MB strains were characterized. Two epitopes were identified within the pseudomurein molecule.

  20. Fate of neptunium in an anaerobic, methanogenic microcosm

    SciTech Connect

    Banaszak, J.E.; Webb, S.M.; Rittmann, B.E.; Gaillard, J.F.; Reed, D.T.

    1999-07-01

    Neptunium is found predominantly as Np(IV) in reducing environments, but as Np(V) in aerobic environments. Currently, it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. To evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosm inoculated with anaerobic sediments from a metal-contaminated freshwater lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np solubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbially produced Mn(II/III) and Fe(II) may serve as electron donors for Np reduction.

  1. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community.

    PubMed

    Hamilton, Joshua J; Calixto Contreras, Montserrat; Reed, Jennifer L

    2015-07-01

    Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei.

  2. Interaction of acetogens and methanogens in anaerobic freshwater sediments.

    PubMed

    Jones, J G; Simon, B M

    1985-04-01

    Anaerobic decomposition processes in the profundal sediments of Blelham Tarn (English Lake District) are often limited during late summer by the input of organic carbon. The concentration of acetate in the interstitial water fell from about 100 microM (immediately after sedimentation of the spring diatom bloom) to a relatively constant value of about 20 microM in late summer, during which acetate utilization appeared to be balanced by production. Addition of chloroform and molybdate caused an accumulation of cold acetate in large sediment cores and of [14C]acetate in small cores to which [14C]bicarbonate had been added. In both cases chloroform caused the greater accumulation, implying that acetoclastic methanogens were the more active consumers. The conversion of 14CO2 to [14C]acetate was inversely related, with depth, to its conversion to 14CH4. Methanogenesis from CO2 decreased during late summer, whereas acetogenesis and acetoclastic methanogenesis increased over the same time period. The production of acetate from CO2 was generally equivalent to less than 10% of the acetate carbon utilized but could be as high as 25% of that value. Hydrogen consumption by acetogens could be as high as 50% of that utilized in methanogenesis. The role of acetogenic bacteria in anaerobic processes may therefore be of greater significance in lakes such as Blelham Tarn than in more eutrophic systems. PMID:4004224

  3. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations.

    PubMed

    André, L; Ndiaye, M; Pernier, M; Lespinard, O; Pauss, A; Lamy, E; Ribeiro, T

    2016-05-01

    Several 60L dry batch anaerobic digestion (AD) reactors were implemented with or without liquid reserve on cattle manure. The immersed part modulation of cattle manure increased the methane flow of about 13%. The quantitative real time PCR and the optimized DNA extraction were implemented and validated to characterize and quantify the methanogen dynamic in dry batch AD process. Final quantities of methanogens converged toward the same level in several inocula at the end of AD. Methanogen dynamic was shown by dominance of Methanosarcinaceae for acetotrophic methanogens and Methanobacteriales for the hydrogenotrophic methanogens. Overall, methanogens populations were stabilized in liquid phase, except Methanosaetaceae. Solid phase was colonized by Methanomicrobiales and Methanosarcinaceae populations giving a support to biofilm development. The methane increase could be explained by a raise of Methanosarcinaceae population in presence of a total contact between solid and liquid phases. Methanosarcinaceae was a bio-indicator of the methane production. PMID:26897414

  4. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations.

    PubMed

    André, L; Ndiaye, M; Pernier, M; Lespinard, O; Pauss, A; Lamy, E; Ribeiro, T

    2016-05-01

    Several 60L dry batch anaerobic digestion (AD) reactors were implemented with or without liquid reserve on cattle manure. The immersed part modulation of cattle manure increased the methane flow of about 13%. The quantitative real time PCR and the optimized DNA extraction were implemented and validated to characterize and quantify the methanogen dynamic in dry batch AD process. Final quantities of methanogens converged toward the same level in several inocula at the end of AD. Methanogen dynamic was shown by dominance of Methanosarcinaceae for acetotrophic methanogens and Methanobacteriales for the hydrogenotrophic methanogens. Overall, methanogens populations were stabilized in liquid phase, except Methanosaetaceae. Solid phase was colonized by Methanomicrobiales and Methanosarcinaceae populations giving a support to biofilm development. The methane increase could be explained by a raise of Methanosarcinaceae population in presence of a total contact between solid and liquid phases. Methanosarcinaceae was a bio-indicator of the methane production.

  5. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    PubMed

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  6. Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands.

    PubMed

    Lin, Yongxin; Liu, Deyan; Ding, Weixin; Kang, Hojeong; Freeman, Chris; Yuan, Junji; Xiang, Jian

    2015-12-01

    There is ample evidence that methane (CH4) emissions from natural wetlands exhibit large spatial variations at a field scale. However, little is known about the metabolically active methanogens mediating these differences. We explored the spatial patterns in active methanogens of summer inundated Calamagrostis angustifolia marsh with low CH4 emissions and permanently inundated Carex lasiocarpa marsh with high CH4 emissions in Sanjiang Plain, China. In C. angustifolia marsh, the addition of (13)C-acetate significantly increased the CH4 production rate, and Methanosarcinaceae methanogens were found to participate in the consumption of acetate. In C. lasiocarpa marsh, there was no apparent increase in the CH4 production rate and no methanogen species were labeled with (13)C. When (13)CO2-H2 was added, however, CH4 production was found to be due to Fen Cluster (Methanomicrobiales) in C. angustifolia marsh and Methanobacterium Cluster B (Methanobacteriaceae) together with Fen Cluster in C. lasiocarpa marsh. These results suggested that CH4 was produced primarily by hydrogenotrophic methanogens using substrates mainly derived from plant litter in C. lasiocarpa marsh and by both hydrogenotrophic and acetoclastic methanogens using substrates mainly derived from root exudate in C. angustifolia marsh. The significantly lower CH4 emissions measured in situ in C. angustifolia marsh was primarily due to a deficiency of substrates compared to C. lasiocarpa marsh. Therefore, we speculate that the substrate source regulates both the type of active methanogens and the CH4 production pathway and consequently contributes to the spatial variations in CH4 productions observed in these freshwater marshes. PMID:26286511

  7. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    PubMed Central

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-01-01

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  8. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    PubMed

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-01-01

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars. PMID:27682103

  9. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    PubMed Central

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-01-01

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars. PMID:27682103

  10. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    PubMed

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  11. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    PubMed Central

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A.; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Plugge, Caroline M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria. PMID:26074892

  12. Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses

    SciTech Connect

    Santegoeds, C.M.; Damgaard, L.R.; Hesselink, G.; Zopfi, J.; Lens, P.; Muyzer, G.; Beer, D. de

    1999-10-01

    Using molecular techniques and microsensors for H{sub 2}S and CH{sub 4}, the authors studied the population structure of and the activity distribution in anaerobic aggregates. The aggregates originated from three different types of reactors: a methanogenic reactor, a methanogenic-sulfidogenic reactor, and a sulfidogenic reactor. Microsensor measurements in methanogenic-sulfidogenic aggregates revealed that the activity of sulfate-reducing bacteria was located in a surface layer of 50 to 100 {micro}m thick. The sulfidogenic aggregates contained a wider sulfate-reducing zone (the first 200 to 300 {micro}m from the aggregate surface) with a higher activity. The methanogenic aggregates did not show significant sulfate-reducing activity. Methanogenic activity in the methanogenic-sulfidogenic aggregates and the methanogenic aggregates was located more inward, starting at ca. 100 {micro}m from the aggregate surface. The methanogenic activity was not affected by 10 mM sulfate during a 1-day incubation. The sulfidogenic and methanogenic activities were independent of the type of electron donor, but the substrates were metabolized in different zones. The localization of the populations corresponded to the microsensor data.

  13. Toxicity and biodegradation of formaldehyde in anaerobic methanogenic culture.

    PubMed

    Qu, M; Bhattacharya, S K

    1997-09-01

    Formaldehyde is present in several industrial wastewaters including petrochemical wastes. In this study, the toxicity and degradability of formaldehyde in anaerobic systems were investigated. Formaldehyde showed severe toxicity to an acetate enrichment methanogenic culture. As low as 10 mg/L (0.33 mM) of formaldehyde in the reactor completely inhibited acetate utilization. Formaldehyde, however, was degraded while acetate utilization was inhibited. Degradation of formaldehyde (Initial concentration < or =30 mg/L) followed Monod model with a rate constant, k, of 0.35-0.46 d(-1). At higher initial concentrations (> or =60 mg/L), formaldehyde degradation was inhibited and partial degradation was possible. The initial formaldehyde to biomass ratio, S(0)/X(0), was useful to predict the degradation potential of high formaldehyde concentrations in batch systems. When S(0)/X(0) < or = 0.1, formaldehyde was completely degraded with initial concentration of up to 95 mg/L; when S(0)/X(0) > or = 0.29, formaldehyde at higher than 60 mg/L was only partially degraded. The inhibition of formaldehyde degradation in batch systems could be avoided by repeated additions of low concentrations of formaldehyde (up to 30 mg/L). Chemostats (14-day retention time) showed degradation of 74 mg/L-d (1110 mg/L) of influent formaldehyde with a removal capacity of 164 mg/g VSS-day. A spike of 30 mg/L (final concentration in the chemostat) formaldehyde to the chemostat caused only a small increase in effluent acetate concentration for 3 days. But a spike of 60 mg/L (final concentration in the chemostat) formaldehyde to the chemostat resulted in a dramatic increase in acetate concentration in the effluent. The results also showed that the acetate enrichment culture was not acclimated to formaldehyde even after 226 days. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 727-736, 1997.

  14. Linkage among Vegetation, Microbes and Methanogenic Pathways in Alaskan Peatlands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Sidelinger, W.; Shu, H.; Varner, R. K.; Hines, M. E.

    2014-12-01

    Northern wetlands are thought to account for one third of the naturally emitted CH4. However, methane production pathways in northern peatlands are poorly understood, yet are predicted to change in response to vegetation shifts due to warming. Previous studies noted that acetate conversion to methane (acetoclastic methanogenesis, AM) in northern wetlands is largely impeded and acetate accumulates, however AM tends to increase with minerotrophy. To understand methanogenic pathways and to provide linkage among pathways, we studied Alaskan wetlands in 2013 and 2014. In 2013, laboratory incubations were conducted in three peatlands representing trophic gradients from bogs to fens. During 2014, 37 different sites in Fairbanks and Anchorage were studied that represented wetlands with pH values from 3.5 to 5.5 and vegetation from primarily Sphagnum to sedges. Measurements in 2014 included vegetation composition, gases (CH4, CO2, H2, and CO), 13CH4 and 13CO2, volatile fatty acids, DOC, other electron acceptors. Further incubation studies are being conducted to decipher controls on decomposition pathways. Gene sequencing was used to characterize microbial community composition, and metagenomic and transcriptomics were conducted to describe community activity. Results showed that methanogenesis was higher in fens than bogs, but hydrogenotrophic methanogenesis (HM) was dominant at all sites. End product ratios showed that AM was occurring in fens, albeit slowly. Fermentation was an important end-point in decomposition and microbial syntrophy was weak. These data, regardless of trophic status, differed greatly from data obtained from temperate wetlands in which terminal respiratory processes were strong and C flow through syntrophy was important. Trophic status influenced C flow in the Alaskan sites, but terminal processes were weak and end product formation tended to end at primary fermentation, which dominated as the terminal step in decomposition.

  15. Transformation of toluene and benzene by mixed methanogenic cultures.

    PubMed Central

    Grbić-Galić, D; Vogel, T M

    1987-01-01

    The aromatic hydrocarbons toluene and benzene were anaerobically transformed by mixed methanogenic cultures derived from ferulic acid-degrading sewage sludge enrichments. In most experiments, toluene or benzene was the only semicontinuously supplied carbon and energy source in the defined mineral medium. No exogenous electron acceptors other than CO2 were present. The cultures were fed 1.5 to 30 mM unlabeled or 14C-labeled aromatic substrates (ring-labeled toluene and benzene or methyl-labeled toluene). Gas production from unlabeled substrates and 14C activity distribution in products from the labeled substrates were monitored over a period of 60 days. At least 50% of the substrates were converted to CO2 and methane (greater than 60%). A high percentage of 14CO2 was recovered from the methyl group-labeled toluene, suggesting nearly complete conversion of the methyl group to CO2 and not to methane. However, a low percentage of 14CO2 was produced from ring-labeled toluene or from benzene, indicating incomplete conversion of the ring carbon to CO2. Anaerobic transformation pathways for unlabeled toluene and benzene were studied with the help of gas chromatography-mass spectrometry. The intermediates detected are consistent with both toluene and benzene degradation via initial oxidation by ring hydroxylation or methyl oxidation (toluene), which would result in the production of phenol, cresols, or aromatic alcohol. Additional reactions, such as demethylation and ring reduction, are also possible. Tentative transformation sequences based upon the intermediates detected are discussed. PMID:3105454

  16. Transduction-like gene transfer in the methanogen Methanococcus voltae

    NASA Technical Reports Server (NTRS)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  17. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    PubMed

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  18. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes.

  19. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    PubMed

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.

  20. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    PubMed

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research. PMID:23877581

  1. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China.

    PubMed

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  2. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

    PubMed Central

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  3. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    PubMed

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  4. Elevated ground-level O3 negatively influences paddy methanogenic archaeal community.

    PubMed

    Feng, Youzhi; Lin, Xiangui; Yu, Yongchang; Zhang, Huayong; Chu, Haiyan; Zhu, Jianguo

    2013-01-01

    The current knowledge regarding the effect of global climate change on rice-paddy methane (CH4) emissions is incomplete, partly because information is limited concerning the mechanism of the microbial response to elevated ground-level ozone (O3). A field experiment was conducted in the China Ozone Free-Air Concentration Enrichment facility in a rice-wheat rotation system to investigate the responses of methanogenic archaeal communities to elevated ground-level O3 by culture-independent and -reliant approaches. We found that elevated ground-level O3 inhibited methanogenic activity and influenced the composition of paddy methanogenic communities, reducing the abundance and diversity of paddy methanogens by adversely affecting dominant groups, such as aceticlastic Methanosaeta, especially at the rice tillering stage. Our results indicated that continuously elevated ground-level O3 would negatively influence paddy methanogenic archaeal communities and its critical ecological function. These findings will contribute to a comprehensive understanding of the responses and feedbacks of paddy ecosystems to global climate change. PMID:24217205

  5. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  6. Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge.

    PubMed

    Gonzalez-Estrella, Jorge; Sierra-Alvarez, Reyes; Field, James A

    2013-09-15

    Release of engineered nanoparticles (NPs) to municipal wastewater from industrial and residential sources could impact biological systems in wastewater treatment plants. Methanogenic inhibition can cause failure of anaerobic waste(water) treatment. This study investigated the inhibitory effect of a wide array of inorganic NPs (Ag(0), Al₂O₃, CeO₂, Cu(0), CuO, Fe(0), Fe₂O₃, Mn₂O₃, SiO₂, TiO₂, and ZnO supplied up to 1500 mgL(-1)) to acetoclastic and hydrogenotrophic methanogenic activity of anaerobic granular sludge. Of all the NPs tested, only Cu(0) and ZnO caused severe methanogenic inhibition. The 50% inhibiting concentrations determined towards acetoclastic and hydrogenotrophic methanogens were 62 and 68 mgL(-1) for Cu(0) NP; and 87 and 250 mgL(-1) for ZnO NP, respectively. CuO NPs also caused inhibition of acetoclastic methanogens. Cu(2+) and Zn(2+) salts caused similar levels of inhibition as Cu(0) and ZnO NPs based on equilibrium soluble metal concentrations measured during the assays, suggesting that the toxicity was due to the release of metal ions by NP-corrosion. A commercial dispersant, Dispex, intended to increase NP stability did not affect the inhibitory impact of the NPs. The results taken as a whole suggest that Zn- and Cu-containing NPs can release metal ions that are inhibitory for methanogenesis.

  7. Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments.

    PubMed

    Mathai, Prince P; Zitomer, Daniel H; Maki, James S

    2015-06-01

    In methanogenic habitats, volatile fatty acids (VFA), such as propionate and butyrate, are major intermediates in organic matter degradation. VFA are further metabolized to H(2), acetate and CO(2) by syntrophic fatty acid-degrading bacteria (SFAB) in association with methanogenic archaea. Despite their indispensable role in VFA degradation, little is known about SFAB abundance and their environmental distribution. To facilitate ecological studies, we developed four novel genus-specific quantitative PCR (qPCR) assays, with primer sets targeting known SFAB: Syntrophobacter, Smithella, Pelotomaculum and Syntrophomonas. Primer set specificity was confirmed using in silico and experimental (target controls, clone libraries and melt-curve analysis) approaches. These qPCR assays were applied to quantify SFAB in a variety of mesophilic methanogenic habitats, including a laboratory propionate enrichment culture, pilot- and full-scale anaerobic reactors, cow rumen, horse faeces, an experimental rice paddy soil, a bog stream and swamp sediments. The highest SFAB 16S rRNA gene copy numbers were found in the propionate enrichment culture and anaerobic reactors, followed by the bog stream and swamp sediment samples. In addition, it was observed that SFAB and methanogen abundance varied with reactor configuration and substrate identity. To our knowledge, this research represents the first comprehensive study to quantify SFAB in methanogenic habitats using qPCR-based methods. These molecular tools will help investigators better understand syntrophic microbial communities in engineered and natural environments.

  8. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. PMID:20602990

  9. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

    PubMed Central

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  10. Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry.

    PubMed

    Sasaki, Kengo; Morita, Masahiko; Hirano, Shin-Ichi; Ohmura, Naoya; Igarashi, Yasuo

    2009-08-01

    To compare the performances and microbial populations of methanogenic reactors with and without carbon fiber textiles (CFT), we operated small-scale (200 ml) reactors using a slurry of artificial garbage. For both types of reactors, the organic loading rate (OLR) was stepwisely and rapidly increased in the same manner. Start-up period was shortened by adding CFT. Reactors with CFT showed greater efficiency for removal of suspended solid and volatile suspended solid than reactors without CFT at a long hydraulic retention time (HRT) between 8 and 13 days. The reactors with CFT maintained stable methane production at an OLR of 15.3 g dichromate chemical oxygen demand (CODcr)/l/day and DNAs from microorganisms were highly concentrated in adhering fractions on CFT. As shown by quantitative PCR analysis, the proportions of methanogenic archaea were conserved more than 25% in adhering fractions on CFT in reactors with CFT. By contrast, reactors without CFT showed accumulation of volatile fatty acid and deteriorated at an OLR of 2.4 gCODcr/l/day. Methanogenic proportions dropped to 17.1% in suspended fractions of reactors without CFT. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that all archaeal DGGE bands in both types of reactors were related to methanogens, but more bands were observed in reactors with CFT. Thus the higher performance of reactors with CFT likely reflects the greater abundance of microorganisms and methanogenic diversity. PMID:19619860

  11. Distinguishing activity decay and cell death from bacterial decay for two types of methanogens.

    PubMed

    Hao, Xiaodi; Cai, Zhengqing; Fu, Kunming; Zhao, Dongye

    2012-03-15

    As bacterial decay consists of cell death and activity decay, and the corresponding information about AOB/NOB, OHO, PAOs and GAOs has been experimentally acquired, another functional type of bacteria in biological wastewater treatment, methanogens, remains to be investigated, to gather the same information, which is extremely important for such bacteria with low growth rates. With successfully selection and enrichment of both aceticlastic and hydrogenotrophic methanogens, and by means of measuring specific methane activity (SMA) and hydrogen consumption rate (HCR), a series of decay experiments and molecular techniques such as FISH verification and LIVE/DEAD staining revealed, identified and calculated the decay and death rates of both aceticlastic and hydrogenotrophic methanogens respectively. The results indicated that the decay rates of aceticlastic and hydrogenotrophic methanogens were 0.070 and 0.034 d(-1) respectively, and the death rates were thus calculated at 0.022 and 0.016 d(-1) respectively. For this reason, cell deaths were only responsible for 31% and 47% of the total bacterial decay of aceticlastic and hydrogenotrophic methanogens, and activity decays actually contributed significantly to the total bacterial decay, respectively at 69% and 53%.

  12. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

    PubMed Central

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology.

  13. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. PMID:22458514

  14. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.

    PubMed

    Wu, Chongde; Zhang, Juan; Chen, Wei; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-01-01

    Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species. PMID:22159611

  15. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  16. Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis.

    PubMed

    Cho, Si-Kyung; Im, Wan-Taek; Kim, Dong-Hoon; Kim, Moon-Hwan; Shin, Hang-Sik; Oh, Sae-Eun

    2013-03-01

    The performance of dry anaerobic digestion (AD) of food waste was investigated under mesophilic conditions and the methanogenic community was investigated using 454 pyrosequencing. Stable dry AD was achieved by hydraulic retention time (HRT) control without the addition of alkali agents. The average CH4 production rate, CH4 content, and volatile solid reduction rate were 2.51±0.17m(3)/m(3)/d, 66±2.1%, and 65.8±1.22%, respectively, at an HRT of 40d. The methanogenic community of the seed sludge experienced a significant reduction in genus diversity from 18 to 4 and a dominant methanogenic shift from hydrogenotrophic to acetoclastic groups after the acclimation under dry condition. Almost all sequences of the dry anaerobic digester were closely related with those of Methanosarcina thermophila with similarity of 96.4-99.1%. The experimental results would serve as useful information to understand the dry AD system.

  17. Toward the identification of methanogenic archaeal groups as targets of methane mitigation in livestock animalsr

    PubMed Central

    St-Pierre, Benoit; Cersosimo, Laura M.; Ishaq, Suzanne L.; Wright, André-Denis G.

    2015-01-01

    In herbivores, enteric methane is a by-product from the digestion of plant biomass by mutualistic gastrointestinal tract (GIT) microbial communities. Methane is a potent greenhouse gas that is not assimilated by the host and is released into the environment where it contributes to climate change. Since enteric methane is exclusively produced by methanogenic archaea, the investigation of mutualistic methanogen communities in the GIT of herbivores has been the subject of ongoing research by a number of research groups. In an effort to uncover trends that would facilitate the development of efficient methane mitigation strategies for livestock species, we have in this review summarized and compared currently available results from published studies on this subject. We also offer our perspectives on the importance of pursuing current research efforts on the sequencing of gut methanogen genomes, as well as investigating their cellular physiology and interactions with other GIT microorganisms. PMID:26284054

  18. Utilization of aminoaromatic acids by a methanogenic enrichment culture and by a novel Citrobacter freundii strain.

    PubMed

    Savelieva, Olga; Kotova, Irina; Roelofsen, Wim; Stams, Alfons J M; Netrusov, Alexander

    2004-02-01

    Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4+, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.

  19. Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria

    SciTech Connect

    Boopathy, R.; Daniels, L. )

    1991-07-01

    Methanogens can use H{sub 2} produced by cathodic depolarization-mediated oxidation of elemental iron to produce methane. Thermodynamic consideration of the cathodic depolarization mechanism predicts more oxidation of Fe{sup 0} at lower pH. Methanogenic responses to pH by Methanococcus deltae, Methanococcus thermolithotrophicus, and Methanosarcina barkeri were examined. When grown on H{sub 2}-CO{sub 2}, these bacteria had pH optima from 6.2 to 7.0, but when all H{sub 2} was supplied from Fe{sup 0}, methanogenic pH optima were lower, 5.4 to 6.5. Corrosion was monitored with and without cultures and at various pHs; more corrosion occurred when cultures were present, biologically induced corrosion was greatest at the pH optima for methanogenesis from Fe{sup 0}, and corrosion without cultures increased with a drop in pH.

  20. Factors influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation.

    PubMed

    Morita, Masahiko; Sasaki, Kengo

    2012-05-01

    Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review. PMID:22395906

  1. Molecular diversity of methanogens in fecal samples from Bactrian camels (Camelus bactrianus) at two zoos.

    PubMed

    Turnbull, Kathryn L; Smith, Rachel P; St-Pierre, Benoit; Wright, André-Denis G

    2012-08-01

    Animals are dependent on mutualistic microbial communities that reside in their gastrointestinal track for essential physiological functions such as nutrition and pathogen resistance. The composition of microbial communities in an animal is influenced by various factors, including species, diet and geographical location. In this preliminary study, the population structure of fecal methanogens in Bactrian camels (Camelus bactrianus) from two zoos was studied using separate 16S rRNA gene libraries for each zoo. While methanogen sequences belonging to the genus Methanobrevibacter were dominant in both libraries, they showed significant differences in diversity (p=0.05) and structure (p<0.0001). Population structure analysis revealed that only two operational taxonomic units (OTUs) were shared between libraries, while two OTUs were unique to the Southwick Zoo library and seven OTUs were unique to the Potter Park Zoo library. These preliminary results highlight how methanogen population structures can vary greatly between animals of the same species maintained in captivity at different locations.

  2. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition

    PubMed Central

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  3. Factors influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation.

    PubMed

    Morita, Masahiko; Sasaki, Kengo

    2012-05-01

    Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review.

  4. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass

    PubMed Central

    Ferry, James G

    2012-01-01

    The conversion of biomass to CH4 (biomethanation) involves an anaerobic microbial food chain composed of at least three metabolic groups of which the first two decompose the complex biomass primarily to acetate, formate, and H2. The thermodynamics of these conversions are unfavorable requiring a symbiosis with the CH4-producing group (methanogens) that metabolize the decomposition products to favorable concentrations. The methanogens produce CH4 by two major pathways, conversion of the methyl group of acetate and reduction of CO2 coupled to the oxidation of formate or H2. This review covers recent advances in the fundamental understanding of both methanogenic pathways with the view of stimulating research towards improving the rate and reliability of the overall biomethanation process. PMID:21555213

  5. Distribution of methanogenic potential in fractions of turf grass used as inoculum for the start-up of thermophilic anaerobic digestion.

    PubMed

    Suwannoppadol, Suwat; Ho, Goen; Cord-Ruwisch, Ralf

    2012-08-01

    This study aims to investigate thermophilic methanogens in turf used as an inoculum. Results showed that Methanoculleus sp. regarded as hydrogenotrophic and Methanosarcina sp. regarded as acetoclastic methanogens were present in turf tested. However, active acetoclastic methanogens were present in turf soil only. The current study showed that thermophilic methanogens were present in various turf grass species: Stenotaphrum secundatum, Cynodon dactylon, and Zoysia japonica. Severe treatments of grass leaves under oxic conditions, including blending, drying and pulverizing did not affect the thermophilic hydrogenotrophic methanogenic activity of the grass. A dried and pulverized grass extract could be generated that can serve as a readily storable methanogenic inoculum for thermophilic anaerobic digestion. The methanogens could also be physically extracted into an aqueous suspension, suitable as an inoculum. The possible contribution of the presence of methanogens on grass plants to global greenhouse emissions is briefly discussed.

  6. Distribution, activities, and interactions of methanogens and sulfate-reducing prokaryotes in the Florida Everglades.

    PubMed

    Bae, Hee-Sung; Holmes, M Elizabeth; Chanton, Jeffrey P; Reddy, K Ramesh; Ogram, Andrew

    2015-11-01

    To gain insight into the mechanisms controlling methanogenic pathways in the Florida Everglades, the distribution and functional activities of methanogens and sulfate-reducing prokaryotes (SRPs) were investigated in soils (0 to 2 or 0 to 4 cm depth) across the well-documented nutrient gradient in the water conservation areas (WCAs) caused by runoff from the adjacent Everglades Agricultural Area. The methyl coenzyme M reductase gene (mcrA) sequences that were retrieved from WCA-2A, an area with relatively high concentrations of SO4 (2-) (≥39 μM), indicated that methanogens inhabiting this area were broadly distributed within the orders Methanomicrobiales, Methanosarcinales, Methanocellales, Methanobacteriales, and Methanomassiliicoccales. In more than 3 years of monitoring, quantitative PCR (qPCR) using newly designed group-specific primers revealed that the hydrogenotrophic Methanomicrobiales were more numerous than the Methanosaetaceae obligatory acetotrophs in SO4 (2-)-rich areas of WCA-2A, while the Methanosaetaceae were dominant over the Methanomicrobiales in WCA-3A (with relatively low SO4 (2-) concentrations; ≤4 μM). qPCR of dsrB sequences also indicated that SRPs are present at greater numbers than methanogens in the WCAs. In an incubation study with WCA-2A soils, addition of MoO4 (2-) (a specific inhibitor of SRP activity) resulted in increased methane production rates, lower apparent fractionation factors [αapp; defined as (amount of δ(13)CO2 + 1,000)/(amount of δ(13)CH4 + 1,000)], and higher Methanosaetaceae mcrA transcript levels compared to those for the controls without MoO4 (2-). These results indicate that SRPs play crucial roles in controlling methanogenic pathways and in shaping the structures of methanogen assemblages as a function of position along the nutrient gradient.

  7. Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters.

    PubMed

    Kim, Jaai; Kim, Woong; Lee, Changsoo

    2013-11-01

    Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Despite extensive efforts, AD microbial ecology is still limitedly understood, especially due to the lack of quantitative information on the structures and dynamics of AD microbial communities. Such knowledge gap is particularly pronounced in sewage sludge AD processes although treating sewage sludge is among the major practical applications of AD. Therefore, we examined the microbial communities in three full-scale sewage sludge digesters using qualitative and quantitative molecular techniques in combination: denaturing gradient gel electrophoresis (DGGE) and real-time polymerase chain reaction (PCR). Eight out of eleven bacterial sequences retrieved from the DGGE analysis were not affiliated to any known species while all eleven archaeal sequences were assigned to known methanogen species. Quantitative real-time PCR analysis revealed that, based on the 16S rRNA gene abundance, the hydrogenotrophic order Methanomicrobiales is the most dominant methanogen group (> 94% of the total methanogen population) in all digesters. This corresponds well to the prevailing occurrence of the DGGE bands related to Methanolinea and Methanospirillum, both belonging to the order Methanomicrobiales, in all sludge samples. It is therefore suggested that hydrogenotrophic methanogens, especially Methanomicrobiales strains, are likely the major players responsible for biogas production in the digesters studied. Our observation is contrary to the conventional understanding that aceticlastic methanogens generally dominate methanogen communities in stable AD environments, suggesting the need for further studies on the dominance relationship in various AD systems.

  8. Distribution, Activities, and Interactions of Methanogens and Sulfate-Reducing Prokaryotes in the Florida Everglades

    PubMed Central

    Bae, Hee-Sung; Holmes, M. Elizabeth; Chanton, Jeffrey P.; Reddy, K. Ramesh

    2015-01-01

    To gain insight into the mechanisms controlling methanogenic pathways in the Florida Everglades, the distribution and functional activities of methanogens and sulfate-reducing prokaryotes (SRPs) were investigated in soils (0 to 2 or 0 to 4 cm depth) across the well-documented nutrient gradient in the water conservation areas (WCAs) caused by runoff from the adjacent Everglades Agricultural Area. The methyl coenzyme M reductase gene (mcrA) sequences that were retrieved from WCA-2A, an area with relatively high concentrations of SO42− (≥39 μM), indicated that methanogens inhabiting this area were broadly distributed within the orders Methanomicrobiales, Methanosarcinales, Methanocellales, Methanobacteriales, and Methanomassiliicoccales. In more than 3 years of monitoring, quantitative PCR (qPCR) using newly designed group-specific primers revealed that the hydrogenotrophic Methanomicrobiales were more numerous than the Methanosaetaceae obligatory acetotrophs in SO42−-rich areas of WCA-2A, while the Methanosaetaceae were dominant over the Methanomicrobiales in WCA-3A (with relatively low SO42− concentrations; ≤4 μM). qPCR of dsrB sequences also indicated that SRPs are present at greater numbers than methanogens in the WCAs. In an incubation study with WCA-2A soils, addition of MoO42− (a specific inhibitor of SRP activity) resulted in increased methane production rates, lower apparent fractionation factors [αapp; defined as (amount of δ13CO2 + 1,000)/(amount of δ13CH4 + 1,000)], and higher Methanosaetaceae mcrA transcript levels compared to those for the controls without MoO42−. These results indicate that SRPs play crucial roles in controlling methanogenic pathways and in shaping the structures of methanogen assemblages as a function of position along the nutrient gradient. PMID:26276115

  9. Detection and Isolation Techniques for Methanogens from Microbial Mats (in the El Tatio Geyser Field, Chile)

    NASA Astrophysics Data System (ADS)

    Pearson, E. Z.; Franks, M. A.; Bennett, P.

    2010-12-01

    Isolating methanogenic archea from an extreme environment such as El Tatio (high altitude, arid climate) gives insight to the methanogenic taxas able to adapt and grow under extreme conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85° C) with high levels of arsenic and low DIC levels. Despite these challenges, many of El Tatio’s hundred plus hydrothermal features host extensive microbial mat communities, many showing evidence of methanogenesis. When trying to isolate methanogens unique to this area, various approaches and techniques were used. To detect the presence of methanogens in samples taken from the field, dissolved methane concentrations were determined via gas chromatography (GC) analysis. Samples were then selected for culturing and most probable number (MPN) enumeration, where growth was assessed using both methane production and observations of fluorescence under UV light. PCR was used to see if the archeal DNA was apparent directly from the field, and shotgun cloning was done to determine phylogenetic affiliation. Several culturing techniques were carried out in an attempt to isolate methanogens from samples that showed evidence of methanogenesis. The slant culturing method was used because of the increased surface area for colonization combined with the relative ease of keeping anaerobic. After a few weeks, when colonies were apparent, some were aseptically selected and inoculated to observe growth in a liquid media containing ampicillin to inhibit bacterial growth. Culturing techniques proved successful after inoculation, showing a slow growth of methanogens via GC and autofluorescence. Further PCR tests and subsequent sequencing were done to confirm and identify isolates.

  10. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    SciTech Connect

    Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  11. Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets

    PubMed Central

    2014-01-01

    Background Methane (CH4) emissions in cattle are an undesirable end product of rumen methanogenic fermentative activity as they are associated not only with negative environmental impacts but also with reduced host feed efficiency. The aim of this study was to quantify total and specific rumen microbial methanogenic populations in beef cattle divergently selected for residual feed intake (RFI) while offered (i) a low energy high forage (HF) diet followed by (ii) a high energy low forage (LF) diet. Ruminal fluid was collected from 14 high (H) and 14 low (L) RFI animals across both dietary periods. Quantitative real time PCR (qRT-PCR) analysis was conducted to quantify the abundance of total and specific rumen methanogenic microbes. Spearman correlation analysis was used to investigate the association between the relative abundance of methanogens and animal performance, rumen fermentation variables and diet digestibility. Results Abundance of methanogens, did not differ between RFI phenotypes. However, relative abundance of total and specific methanogen species was affected (P < 0.05) by diet type, with greater abundance observed while animals were offered the LF compared to the HF diet. Conclusions These findings suggest that differences in abundance of specific rumen methanogen species may not contribute to variation in CH4 emissions between efficient and inefficient animals, however dietary manipulation can influence the abundance of total and specific methanogen species. PMID:25276350

  12. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  13. Development of methanogenic consortia in fluidized-bed batches using sepiolite of different particle size.

    PubMed

    Sánchez, J M; Rodríguez, F; Valle, L; Muñoz, M A; Moriñigo, M A; Borrego, J J

    1996-09-01

    The addition of support materials, such as sepiolite, to fluidized-bed anaerobic digesters enhances the methane production by increasing the colonization by syntrophic microbiota. However, the efficiency in the methanogenesis depends on the particle size of the support material, the highest level of methane production being obtained by the smaller particle size sepiolite. Because of the porosity and physico-chemical characteristics of these support materials, the anaerobic microbial consortia formed quickly (after one week of incubation). The predominant methanogenic bacteria present in the active granules, detected both by immunofluorescence using specific antibodies and by scanning electron microscopy, were acetoclastic methanogens, mainly Methanosarcina and Methanosaeta.

  14. Hydrobiogeochemical controls on a low-carbon emitting energy extraction mechanism: exploring methanogenic crude oil biodegradation

    NASA Astrophysics Data System (ADS)

    Shelton, Jenna; McIntosh, Jennifer; Akob, Denise; Spear, John; Warwick, Peter; McCray, John

    2016-04-01

    Exploiting naturally-occurring microbial communities in the deep subsurface could help mitigate the effects of CO2 emissions to the atmosphere. These microbial communities, a combination of methanogens and syntrophic bacteria, can perform methanogenic crude oil biodegradation, namely the conversion of crude oil to natural gas, and have also been detected in biodegraded, methanogenic reservoirs. These microbes could target residual crude oil, a high-carbon, hard-to-obtain fossil fuel source, and convert it to natural gas, effectively "producing" a lower CO2 per BTU fuel source. Yet, little is known about what geochemical parameters are driving microbial population dynamics in biodegraded, methanogenic oil reservoirs, and how the presence of specific microbial communities may impact methanogenic crude oil biodegradation. To investigate methanogenic crude oil biodegradation, 22 wells along a subsurface hydrogeochemical gradient in the southeastern USA were sampled for DNA analysis of the microbial community, and geochemical analysis of produced water and crude oil. A statistical comparison of microbial community structure to formation fluid geochemical parameters, amount of crude oil biodegradation, and relative extent of methanogenesis revealed that relative degree of biodegradation (high, medium, or low), chloride concentration (550 mM to 2100 mM), well depth (393 m to 1588 m), and spatial location within the reservoir (i.e., oil field location) are the major drivers of microbial diversity. There was no statistical evidence for correlation between extent of methanogenesis and the subsurface community composition. Despite the dominance of methanogens in these sampled wells, methanogenic activity was not predicted solely based on the microbial community composition. Crude oil biodegradation, however, correlates with both community composition and produced water geochemistry, suggesting a co-linear system and implying that microbial communities associated with degree

  15. Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria : a review.

    SciTech Connect

    Boopathy, R.; Kulpa, C. F.; Manning, J.; Environmental Research; Univ. of Notre Dame

    1998-01-01

    In recent years, research on microbial degradation of explosives and nitroaromatic compounds has increased. Most studies of the microbial metabolism of nitroaromatic compounds have used aerobic microorganisms. Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Few review papers exist, and those deal mainly with aerobic bacterial degradation of explosives; none deals with anaerobic bacteria. In this paper, we review the anaerobic metabolic processes in the degradation of explosives and nitroaromatic compounds under sulfate-reducing and methanogenic conditions.

  16. Effect of perchloroethylene (PCE) on methane and acetate production by a methanogenic consortium

    SciTech Connect

    Bereded-Samuel, Y.; Petersen, J.N.; Skeen, R.S.

    1996-12-31

    The effects of perchloroethylene (PCE) concentration in the range of 0-100 mg/L on methane and acetate production by a methanol-enriched methanogenic consortia were investigated at 17{degrees}C. The results indicate that PCE is more inhibitory to methanogenesis than to acetogenesis. At concentrations as low as 10 ppm, PCE affects the methanogenic activity of the consortium, and has completely inhibited this activity at 100 ppm. Conversely, PCE does not begin to inhibit acetogenic activity until the concentration is above 10 ppm, and has not completely inhibited it even at a PCE concentration of 100 ppm. 15 refs., 3 figs.

  17. Complete genome sequence of Methanolinea tarda NOBI-1T, a hydrogenotrophic methanogen isolated from methanogenic digester sludge

    SciTech Connect

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; Imachi, Hiroyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Zinder, Stephen H.; Kamagata, Yoichi; Liu, Wen -Tso

    2014-09-04

    In this study, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1T, a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

  18. Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: spatio-temporal variations and impact on methanogenic activity.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Topp, Edward; Masse, Lucie; Massé, Daniel I; Talbot, Guylaine

    2013-02-01

    Greenhouse gas emissions represent a major environmental problem associated with the management of manure from the livestock industry. Methane is the primary GHG emitted during manure outdoor storage. In this paper, the variability of two swine and two dairy manure storage tanks was surveyed, in terms of physico-chemical and microbiological parameters. The impact of the inter-tank and spatio-temporal variations of these parameters on the methanogenic activity of manure was ascertained. A Partial Least Square regression was carried out, which demonstrated that physico-chemical as well as microbiological parameters had a major influence on the methanogenic activity. Among the 19 parameters included in the regression, the concentrations of VFAs had the strongest negative influence on the methane emission rate of manure, resulting from their well-known inhibitory effect. The relative abundance of two amplicons in archaeal fingerprints was found to positively influence the methanogenic activity, suggesting that Methanoculleus spp. and possibly Methanosarcina spp. are major contributors to methanogenesis in storage tanks. This work gave insights into the mechanisms, which drive methanogenesis in swine and dairy manure storage tanks.

  19. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  20. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    PubMed

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  1. Phylogenetic identification of methanogens assimilating acetate-derived carbon in dairy and swine manures.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Morissette, Bruno; Kalmokoff, Martin L; Topp, Edward; Brooks, Stephen P J; Matias, Fernando; Neufeld, Josh D; Talbot, Guylaine

    2015-02-01

    In order to develop approaches for reducing the carbon footprint of the swine and dairy industries, it is important first to identify the methanogenic communities that drive methane emissions from stored manure. In this study, the metabolically active methanogens in substrate-starved manure samples taken from two dairy and one swine manure storage tanks were identified using [(13)C]-acetate and DNA stable-isotope probing (DNA-SIP). Molecular analysis of recovered genomic [(13)C]-DNA revealed that two distinct clusters of unclassified methanogen populations affiliated with the Methanoculleus genus, and the populations affiliated with Methanoculleus chikugoensis assimilated acetate-derived carbon (acetate-C) in swine and dairy starved manure samples, respectively. Furthermore, carbon flow calculations indicated that these populations were the primary contributors to methane emissions during these anoxic SIP incubations. Comparative analysis of mcrA gene abundance (coding for a key enzyme of methanogenesis) for Methanoculleus spp. in fresh feces and a wider range of stored dairy or swine manure samples, by real-time quantitative PCR using newly designed specific primers, demonstrated that the abundance of this genus significantly increased during storage. The findings supported the involvement of these particular methanogen populations as methane emitters from swine and dairy manure storage tanks. The study revealed that the ability to assimilate acetate-C for growth in manure differed within the Methanoculleus genus.

  2. Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste.

    PubMed

    Lin, Jia; Zuo, Jiane; Ji, Ruofan; Chen, Xiaojie; Liu, Fenglin; Wang, Kaijun; Yang, Yunfeng

    2012-01-01

    A lab-scale continuously-stirred tank reactor (CSTR), used for anaerobic co-digestion of fruit and vegetable waste (FVW) and food waste (FW) at different mixture ratios, was operated for 178 days at the organic loading rate of 3 kg VS (volatile solids)/(m3 x day). The dynamics of the Archaeal community and the correlations between environmental variables and methanogenic community structure were analyzed by polymerase chain reactions--denaturing gradient gel electrophoresis (PCR-DGGE) and redundancy analysis (RDA), respectively. PCR-DGGE results demonstrated that the mixture ratio of FVW to FW altered the community composition of Archaea. As the FVW/FW ratio increased, Methanoculleus, Methanosaeta and Methanosarcina became the predominant methanogens in the community. Redundancy analysis results indicated that the shift of the methanogenic community was significantly correlated with the composition of acidogenic products and methane production yield. Different mixture ratios of substrates led to different compositions of intermediate metabolites, which may affect the methanogenic community. These results suggested that the analysis of microbial communities could be used to diagnose anaerobic processes.

  3. Molecular Biology and Genetics of the Acetate-Utilizing Methanogenic Bacteria

    SciTech Connect

    Robert P. Gunsalus

    2003-07-21

    Methane biosynthesis by the Methanosarcina species, in contrast to other methanogens, occurs from the full range of methanogenic substrates that include acetate, methanol, tri-methyl, di-methyl, and methyl-amine, methyl-sulfides, and in limited instances, H2/CO2. The Methanosarcina are also versatile in their ability to adapt and grow in habitats of varying osmolarity ranging from fresh water environments, marine environments, and to hyper saline environments (ca to 1.2 M NaCl). To facilitate studies that address the biochemistry, molecular biology and physiology of these organisms, we have constructed a whole-genome microarray to identify classes of differentially expressed genes in M. mazei strain Goe1. We propose to further identify and examine how genes and their proteins involved in the synthesis and transport of osmolytes in the cell are regulated. These compounds include N-epsilon-acetyl-beta-lysine, alpha-glutamate, betaine, and potassium whose levels within the cell are modulated in order to provide appropriate osmotic balance. We will identify differentially expressed genes involved in hydrogen and carbon dioxide sequestration since M. mazei strain Goe1 is currently the only practical model for such study. Finally, we will explore the essential roles of two metals, molybdate and tungstate, in methanogen regulation and metabolism of these environmentally essential organsims. The above studies will advance our general understanding of how methanogens respond to their environmental signals, and adapt by adjusting their physiology to thrive in changing anaerobic habitats whether natural or man-made.

  4. Can abundance of methanogen be a good indicator for CH4 flux in soil ecosystems?

    PubMed

    Kim, Jinhyun; Lee, Seung-Hoon; Jang, Inyoung; Jeong, Sangseom; Kang, Hojeong

    2015-12-01

    Methane, which is produced by methanogenic archaea, is the second most abundant carbon compound in the atmosphere. Due to its strong radiative forcing, many studies have been conducted to determine its sources, budget, and dynamics. However, a mechanistic model of methane flux has not been developed thus far. In this study, we attempt to examine the relevance of the abundance of methanogen as a biological indicator of methane flux in three different types of soil ecosystems: permafrost, rice paddy, and mountainous wetland. We measured the annual average methane flux and abundance of methanogen in the soil ecosystems in situ. The correlation between methane flux and the abundance of methanogen exists only under a specific biogeochemical conditions such as SOM of higher than 60%, pH of 5.6-6.4, and water-saturated. Except for these conditions, significant correlations were absent. Therefore, microbial abundance information can be applied to a methane flux model selectively depending on the biogeochemical properties of the soil ecosystem.

  5. Draft Genome Sequence of an Obligately Methylotrophic Methanogen, Methanococcoides methylutens, Isolated from Marine Sediment

    PubMed Central

    Guan, Yue; Ngugi, David K.; Blom, Jochen; Ali, Shahjahan; Ferry, James G.

    2014-01-01

    Methanococcoides methylutens, the type species of the genus Methanococcoides, is a slightly halophilic methanogenic archaeon with a methylotrophic metabolism. Here, we present the annotated draft genome sequence of M. methylutens, which comprises 2,508,511 bp with 2,482 coding sequences, 51 tRNA genes, and a G+C content of 42.5%. PMID:25414501

  6. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    PubMed

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4. PMID:25615435

  7. Interactions between amino-acid-degrading bacteria and methanogenic bacteria in anaerobic digestion

    SciTech Connect

    Nagase, M.; Matsuo, T.

    1982-10-01

    The degradation of amino acids in anaerobic digestion was examined in terms of the interactions between amino-acid-degrading bacteria and methanogenic bacteria. Certain amino acids were degraded oxidatively by dehydrogenation, with methanogenic bacteria acting as H/sub 2/ acceptors. The inhibition of methanogenesis by chloroform also inhibited the degradation of these amino acids and/or caused variations in the composition of volatile acids produced from them. The presence of glycine reduced the inhibitory effect caused by chloroform, probably because glycine acted as an H/sub 2/ acceptor in place of methanogenic bacteria. This fact suggested that the coupled oxidation-reduction reactions between two amino acids - one acting as the H/sub 2/ donor and the other acting as the H/sub 2/ acceptor - may occur in the anaerobic digestion of proteins or amino-acid mixtures. The conversion of some proteins to volatile acids was not affected when methanogensis was inhibited by chloroform. This suggested that the component amino acids of proteins may be degraded by the coupled oxidation-reduction reactions and that the degradation of proteins may not be dependent on the activity of methanogenic bacteria as H/sub 2/ acceptors.

  8. Methanogens couple anaerobic Fe(O) oxidation and CHCl{sub 3} reduction

    SciTech Connect

    Weathres, L.J.; Parkin, G.F.; Novak, P.J.; Alvarez, P.J.J.

    1995-12-01

    Recent studies have shown that chlorinated aliphatic hydrocarbons (CAHs) may be reduced by metallic iron. These studies have focused on abiotic processes, while limited attention has been given to combined microbial and abiotic dechlorination. Methanogenic bacteria can use metallic iron as an energy source, by coupling the anodic dissolution of iron with the consumption of water-derived hydrogen. Hence, under methanogenic conditions in the presence of zero-valent iron, two degradation mechanisms may be important Fe(O) may reduce CAHs abiotically, and Fe(O) may indirectly reduce CAHs via biodehalogenation. Our results using steel wool and methanogenic cell suspension indicate that methanogens coupled the biocorrosion of iron metal and biodehalogenation of CHCl{sub 3} via cometabolism, with water-derived hydrogen acting as energy source. This work demonstrates that, at least under specific conditions, biodehalogenation dominates abiotic mechanisms in aqueous systems containing zero-valent g iron. Further work is required to determine if these results are sustainable in flow-through environments.

  9. Methanogenesis in hypersaline ecosystems, and isolation and characterization of eight halophilic, methanogenic bacteria

    SciTech Connect

    Mathrani, I.M.

    1989-01-01

    The present ecological study of methanogenesis in hypersaline ecosystems focused on anaerobic sediment samples collected from several parts of the world. Inocula from solar salterns and natural hypersaline systems were examined for their ability to use catabolic substrates and for conditions which supported methanogenesis. Eight strictly anaerobic, halophilic, methane-producing Archaeobacteria were isolated from enrichment cultures inoculated with samples from hypersaline systems. The physiological and ecological characteristics of the isolates were examined and their phenotypic relatedness to each other and existing species of halophilic methanogens was discussed. The methanogenic, sulfate-reducing, and cellulolytic, halophilic bacteria from sediments of Lake Retba, Senegal were enumerated in depth profiles of sediment core samples. The catabolic substrates and environmental conditions for best growth of each bacterial group were determined. Trimethylamine, dimethylamine, methylamine, methanol, and sometimes dimethylsulfide were used as substrates for growth of methanogenic enrichment cultures and the eight isolates; hydrogen, acetate, or secondary alcohols did not support growth of methanogens. Hydrogen, formate, and lactate supported the growth of halophilic sulfate-reducing bacteria.

  10. Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets.

    PubMed

    Franzolin, Raul; St-Pierre, Benoit; Northwood, Korinne; Wright, André-Denis G

    2012-07-01

    The water buffalo (Bubalus bubalis) is a prominent livestock species for the production of milk and meat in many countries. We investigated the diversity of rumen methanogens in Mediterranean water buffaloes maintained in Brazil under different diets: corn silage, grazing pasture, or sugar cane. A total of 467 clones were isolated from three methanogen 16S rRNA gene clone libraries that each represented a distinct feed type. The 467 clones were assigned to 19 species-level operational taxonomic units (OTUs). Four OTUs were represented in all three libraries, eight OTUs were library-specific, six OTUs were found in only the corn silage and pasture grazing libraries, and one OTU was shared only between pasture grazing and sugar cane libraries. We found that Methanobrevibacter-related sequences were the most abundant in the water buffaloes sampled for our analysis, in contrast to previously reported studies showing that Methanomicrobium mobile-like methanogens were the most abundant methanogens in water buffaloes of Murrah and Surti breeds sampled in India. Considering the worldwide distribution of water buffaloes and the likely wide variety of diets provided, our results combined with studies from other groups support that larger scope analyses of microbiomes for this livestock species would provide great insight into the contribution of geographical location, breed, and diet in determining the population structure of rumen microorganisms.

  11. Peptidolytic Microbial Community of Methanogenic Reactors from two Modified Uasbs of Brewery Industries.

    PubMed

    Díaz, C; Baena, S; Patel, B K C; Fardeau, M L

    2010-07-01

    We studied the peptide-degrading anaerobic communities of methanogenic reactors from two mesophilic full-scale modified upflow anaerobic sludge blanket (UASB) reactors treating brewery wastewater in Colombia. Most probable number (MPN) counts varied between 7.1 x 10(8) and 6.6 × 10(9) bacteria/g volatile suspended solids VSS (Methanogenic Reactor 1) and 7.2 × 10(6) and 6.4 × 10(7) bacteria/g (VSS) (Methanogenic Reactor 2). Metabolites detected in the highest positive MPN dilutions in both reactors were mostly acetate, propionate, isovalerate and, in some cases, negligible concentrations of butyrate. Using the highest positive dilutions of MPN counts, 50 dominant strains were isolated from both reactors, and 12 strains were selected for sequencing their 16S rRNA gene based on their phenotypic characteristics. The small-subunit rRNA gene sequences indicated that these strains were affiliated to the families Propionibacteriaceae, Clostridiaceae and Syntrophomonadaceae in the low G + C gram-positive group and Desulfovibrio spp. in the class δ-Proteobacteria. The main metabolites detected in the highest positive dilutions of MPN and the presence of Syntrophomonadaceae indicate the effect of the syntrophic associations on the bioconversion of these substrates in methanogenic reactors. Additionally, the potential utilization of external electron acceptors for the complete degradation of amino acids by Clostridium strains confirms the relevance of these acceptors in the transformation of peptides and amino acids in these systems. PMID:24031547

  12. Aerobic culture of methanogenic archaea without an external source of hydrogen.

    PubMed

    Khelaifia, S; Lagier, J-C; Nkamga, V D; Guilhot, E; Drancourt, M; Raoult, D

    2016-06-01

    Culturing methanogenic archaea is fastidious, expensive, and requires an external source of hydrogen and carbon dioxide. Until now, these microorganisms have only been cultivated under strictly anaerobic conditions. We previously developed a single versatile culture medium containing sugars and anti-oxydants for cultivating all human known methanogens. Performing aerobic cultures in the presence of Bacteroides thetaiotaomicron, which produces hydrogen, allows for cultivation of Methanobrevibacter smithii which itself produces methane. To obtain colonies, we cultivated M. smithii in an agar plate in the upper part of a double chamber flask with a liquid culture of B. thetaiotaomicron in the lower compartment. We subsequently cultured four other methanogenic species for the first time and successfully isolated 13 strains of M. smithii and nine strains of Methanobrevibacter oralis from 100 stools and 45 oral samples. This procedure allows aerobic isolation and antibiotic susceptibility testing. This changes the ability to routinely study methanogens, which have been neglected in clinical microbiology laboratories and may be useful for biogas production. PMID:27010812

  13. [Influence of Temperature on the Anaerobic Packed Bed Reactor Performance and Methanogenic Community].

    PubMed

    Xie, Hai-ying; Wang, Xin; Li, Mu-yuan; Yan, Xu-you; Igarashi, Yasuo; Luo, Feng

    2015-11-01

    This study aimed to analyze the effect of temperature on performance and microbial community structure of an anaerobic packed bed reactor (APBR). The temperature was increased step-wise from room temperature (22 degrees C ± 1 degrees C) to psychrophilic (15 degrees C ± 1 degrees C), mesophilic (37 degrees C ± 1 degrees C) and thermophilic (55 degrees C ± 1 degrees C). The results showed that, in the temperature changing process, the higher the temperature of APBR was, the higher COD removal rate and daily gas production were. After temperature changed to psychrophilic, mesophilic and thermophilic, COD removal rate and daily gas production were 25%, 45%, 60% and 2.3 L x d(-1), 4.0 L x d(-1), 8.5 L x d(-1) respectively. However, there was no significant change in biogas composition (-60%). A sudden temperature change caused a simultaneous increase in the concentration of volatile fatty acids (VFA), which had been fluctuating. Using 16S rRNA gene clone library screening, Euryarchaeota was commonly found, including important methanogens: MBT (Methanobacteriales), Mst (Methanosaetaceae) , Msc (Methanosarcinaceae) and MMB (Methanomicrobiales), as well as thermophilic bacteria and few spring Archaea. However, the diversity of methanogenic groups was reduced, especially at mesophilic. The results of quantitative PCR showed that the 16S rRNA gene concentrations of Mst, MMB and Msc were reduced by temperature changes. Although the relative proportion of every kind of methanogen was significantly affected, Mst was the dominant methanogen. PMID:26911011

  14. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie; Yuan, Zhiguo

    2015-02-01

    Methanethiol (MT) is considered one of the predominant odorants in sewer systems. Therefore, understanding MT transformation in sewers is essential to sewer odor assessment and abatement. In this study, we investigated the degradation of MT in laboratory anaerobic sewers. Experiments were carried out in seven anaerobic sewer reactors with biofilms at different stages of development. MT degradation was found to be strongly dependent on the methanogenic activity of sewer biofilms. The MT degradation rate accelerated with the increase of methanogenic activity of sewer biofilms, resulting in MT accumulation (i.e. net production) in sewer reactors with relatively low methanogenic activities, and MT removal in reactors with higher methanogenic activities. A Monod-type kinetic expression was developed to describe MT degradation kinetics in anaerobic sewers, in which the maximum degradation rate was modeled as a function of the maximum methane production rate through a power function. It was also found that MT concentration had a linear relationship with acetate concentration, which may be used for preliminary assessment of MT presence in anaerobic sewers. PMID:25437340

  15. Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms.

    PubMed

    Ke, Xiubin; Lu, Yahai; Conrad, Ralf

    2014-01-01

    Archaea in rice fields play an important role in carbon and nitrogen cycling. They comprise methane-producing Euryarchaeota as well as ammonia-oxidizing Thaumarchaeota, but their community structures and population dynamics have not yet been studied in the same system. Different soil compartments (surface, bulk, rhizospheric soil) and ages of roots (young and old roots) at two N fertilization levels and at three time points (the panicle initiation, heading and maturity periods) of the season were assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of archaeal genes (mcrA, amoA, 16S rRNA gene). The community of total Archaea in soil and root samples mainly consisted of the methanogens and the Thaumarchaeota and their abundance increased over the season. Methanogens proliferated everywhere, but Thaumarchaeota proliferated only on the roots and in response to nitrogen fertilization. The community structures of Archaea, methanogens and Thaumarchaeota were different in soil and root samples indicating niche differentiation. While Methanobacteriales were generally present, Methanosarcinaceae and Methanocellales were the dominant methanogens in soil and root samples, respectively. The results emphasize the specific colonization of roots by two ecophysiologically different groups of archaea which may belong to the core root biome.

  16. Radiation resistance of methanogenic archaea from Siberian permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Moeller, Ralf; Rettberg, Petra; Wagner, Dirk

    2007-08-01

    Methanogenic archaea from the Siberian permafrost-affected soils and from nonpermafrost habitats were exposed to solar UV- and ionizing radiation in order to assess their limits of survival. Metabolic activity and viability of methanogenic archaea in environmental samples remained unaffected by exposure to monochromatic and polychromatic UV radiation caused by the shielding of the soil layers. Pure methanogenic cultures isolated from the permafrost's active layer exhibit an increase in radioresistance to UV (20-fold) and ionizing radiation (32-fold) compared to the non-permafrost isolates. The F37 (UV radiation) and D37 (X-rays) values of the permafrost strain Methanosarcina sp. SMA-21 were 700 J m-2 and 6-12 kGy, respectively. This resistance is comparable to values for Deinococcus radiodurans (F37 640 Jm-2, D37 6-7 kGy). Due to the increased radiation-resistance of permafrost isolates, their long-term survival, and their anaerobic lithoautotrophic metabolism, methanogenic archaea from permafrost can be considered as suitable candidates in the search for microbial life in the Martian subsurface. The ESA mission Mars Express confirmed the existence of water on Mars, which is a fundamental requirement for life, as well as CH4 in the Martian atmosphere, which could only originate from active volcanism or from biological sources; both these results suggest that microbial life could still exist on Mars, for example in the form of subsurface lithoautotrophic ecosystems, which also exist in permafrost regions on Earth.

  17. Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets.

    PubMed

    Franzolin, Raul; St-Pierre, Benoit; Northwood, Korinne; Wright, André-Denis G

    2012-07-01

    The water buffalo (Bubalus bubalis) is a prominent livestock species for the production of milk and meat in many countries. We investigated the diversity of rumen methanogens in Mediterranean water buffaloes maintained in Brazil under different diets: corn silage, grazing pasture, or sugar cane. A total of 467 clones were isolated from three methanogen 16S rRNA gene clone libraries that each represented a distinct feed type. The 467 clones were assigned to 19 species-level operational taxonomic units (OTUs). Four OTUs were represented in all three libraries, eight OTUs were library-specific, six OTUs were found in only the corn silage and pasture grazing libraries, and one OTU was shared only between pasture grazing and sugar cane libraries. We found that Methanobrevibacter-related sequences were the most abundant in the water buffaloes sampled for our analysis, in contrast to previously reported studies showing that Methanomicrobium mobile-like methanogens were the most abundant methanogens in water buffaloes of Murrah and Surti breeds sampled in India. Considering the worldwide distribution of water buffaloes and the likely wide variety of diets provided, our results combined with studies from other groups support that larger scope analyses of microbiomes for this livestock species would provide great insight into the contribution of geographical location, breed, and diet in determining the population structure of rumen microorganisms. PMID:22286379

  18. Methanogenic archaea diversity in hyporheic sediments of a small lowland stream

    NASA Astrophysics Data System (ADS)

    Brablcova, Lenka; Buriánková, Iva; Rulík, Martin

    2015-04-01

    Abundance and diversity of methanogenic archaea were studied at five localities along a longitudinal profile of a Sitka stream (Czech Republic). Samples of hyporheic sediments were collected from two sediment depths (0-25 cm and 25-50 cm) by freeze-core method. Methanogen community was analyzed by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequencing method. The proportion of methanogens to the DAPI-stained cells varied among all localities and depths with an average value 2.08 × 105 per g of dry sediment. A total of 73 bands were detected at 19 different positions on the DGGE gel and the highest methanogen diversity was found at the downstream located sites. Cluster analysis of DGGE image showed three main clusters consisting of localities that differed in the number and similarity of the DGGE bands. Sequencing analysis of representative DGGE bands revealed phylotypes affiliated with members belonging to the orders Methanosarcinales, Methanomicrobiales and Methanocellales. The authors are thankful to the European Social Fund and state budget of the Czech Republic for providing the financial support during this study. This work is a part of the POSTUP II project CZ.1.07/2.3.00/30.0041, which is mutually financed by the previously stated funding agencies.

  19. Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate, 3-nitro-1-propionic acid (NPA), and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if fed at high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied li...

  20. Peptidolytic Microbial Community of Methanogenic Reactors from two Modified Uasbs of Brewery Industries

    PubMed Central

    Díaz, C.; Baena, S.; Patel, B.K.C.; Fardeau, M.L.

    2010-01-01

    We studied the peptide-degrading anaerobic communities of methanogenic reactors from two mesophilic full-scale modified upflow anaerobic sludge blanket (UASB) reactors treating brewery wastewater in Colombia. Most probable number (MPN) counts varied between 7.1 x 108 and 6.6 × 109 bacteria/g volatile suspended solids VSS (Methanogenic Reactor 1) and 7.2 × 106 and 6.4 × 107 bacteria/g (VSS) (Methanogenic Reactor 2). Metabolites detected in the highest positive MPN dilutions in both reactors were mostly acetate, propionate, isovalerate and, in some cases, negligible concentrations of butyrate. Using the highest positive dilutions of MPN counts, 50 dominant strains were isolated from both reactors, and 12 strains were selected for sequencing their 16S rRNA gene based on their phenotypic characteristics. The small-subunit rRNA gene sequences indicated that these strains were affiliated to the families Propionibacteriaceae, Clostridiaceae and Syntrophomonadaceae in the low G + C gram-positive group and Desulfovibrio spp. in the class δ-Proteobacteria. The main metabolites detected in the highest positive dilutions of MPN and the presence of Syntrophomonadaceae indicate the effect of the syntrophic associations on the bioconversion of these substrates in methanogenic reactors. Additionally, the potential utilization of external electron acceptors for the complete degradation of amino acids by Clostridium strains confirms the relevance of these acceptors in the transformation of peptides and amino acids in these systems. PMID:24031547

  1. Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium

    USGS Publications Warehouse

    Oremland, Ronald S.; Zehr, Jon P.

    1986-01-01

    Anaerobic San Francisco Bay salt marsh sediments rapidly metabolized [14C]dimethylselenide (DMSe) to 14CH4 and 14CO2. Addition of selective inhibitors (2-bromoethanesulfonic acid or molybdate) to these sediments indicated that both methanogenic and sulfate-respiring bacteria could degrade DMSe to gaseous products. However, sediments taken from the selenium-contaminated Kesterson Wildlife Refuge produced only 14CO2 from [14C]DMSe, implying that methanogens were not important in the Kesterson samples. A pure culture of a dimethylsulfide (DMS)-grown methylotrophic methanogen converted [14C]DMSe to 14CH4 and14CO2. However, the organism could not grow on DMSe. Addition of DMS to either sediments or the pure culture retarded the metabolism of DMSe. This effect appeared to be caused by competitive inhibition, thereby indicating a common enzyme system for DMS and DMSe metabolism. DMSe appears to be degraded as part of the DMS pool present in anoxic environments. These results suggest that methylotrophic methanogens may demethylate methylated forms of other metals and metalloids found in nature.

  2. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri

    USGS Publications Warehouse

    Liu, D.; Dong, Hailiang H.; Bishop, M.E.; Wang, Hongfang; Agrawal, A.; Tritschler, S.; Eberl, D.D.; Xie, S.

    2011-01-01

    Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H2/CO2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H2/CO2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H2/CO2 as substrate, depending on nontronite concentration (5-10g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H2/CO2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget. ?? 2010 Elsevier Ltd.

  3. Complete Genome Sequence of the Methanogen Methanoculleus bourgensis BA1 Isolated from a Biogas Reactor

    PubMed Central

    Maus, Irena; Wibberg, Daniel; Winkler, Anika; Pühler, Alfred; Schnürer, Anna

    2016-01-01

    Methanoculleus bourgensis BA1, a hydrogenotrophic methanogen, was isolated from a laboratory-scale biogas reactor operating under an elevated ammonium concentration. Here, the complete genome sequence of M. bourgensis BA1 is reported. The availability of the BA1 genome sequence enables detailed comparative analyses involving other Methanoculleus spp. representing important members of microbial biogas communities. PMID:27340059

  4. Efficient treatment of garbage slurry in methanogenic bioreactor packed by fibrous sponge with high porosity.

    PubMed

    Sasaki, Kengo; Sasaki, Daisuke; Morita, Masahiko; Hirano, Shin-Ichi; Matsumoto, Norio; Ohmura, Naoya; Igarashi, Yasuo

    2010-05-01

    Adding a supporting material to a methanogenic bioreactor treating garbage slurry can improve efficiency of methane production. However, little is known on how characteristics (e.g., porosity and hydrophobicity) of the supporting material affect the bioreactor degrading garbage slurry. We describe the reactor performances and microbial communities in bioreactors containing hydrophilic or hydrophobic sheets, or fibrous hydrophilic or hydrophobic sponges. The porosity affected the efficiency of methane production and solid waste removal more than the hydrophilic or hydrophobic nature of the supporting material. When the terminal restriction fragment length polymorphism technique was used at a lower organic loading rate (OLR), microbial diversities in the suspended fraction were retained on the hydrophobic, but not the hydrophilic, sheets. Moreover, real-time quantitative polymerase chain reaction (PCR) performed at a higher OLR revealed that the excellent performance of reactors containing fibrous sponges with high porosity (98%) was supported by a clear increase in the numbers of methanogens on these sponges, resulting in larger total numbers of methanogens in the reactors. In addition, the bacterial communities in fractions retained on both the hydrophobic and hydrophilic fibrous sponges differed from those in the suspended fraction, thus increasing bacterial diversity in the reactor. Thus, higher porosity of the supporting material improves the bioreactor performance by increasing the amount of methanogens and bacterial diversity; surface hydrophobicity contributes to maintaining the suspended microbial community. PMID:20162271

  5. Efficient treatment of garbage slurry in methanogenic bioreactor packed by fibrous sponge with high porosity.

    PubMed

    Sasaki, Kengo; Sasaki, Daisuke; Morita, Masahiko; Hirano, Shin-Ichi; Matsumoto, Norio; Ohmura, Naoya; Igarashi, Yasuo

    2010-05-01

    Adding a supporting material to a methanogenic bioreactor treating garbage slurry can improve efficiency of methane production. However, little is known on how characteristics (e.g., porosity and hydrophobicity) of the supporting material affect the bioreactor degrading garbage slurry. We describe the reactor performances and microbial communities in bioreactors containing hydrophilic or hydrophobic sheets, or fibrous hydrophilic or hydrophobic sponges. The porosity affected the efficiency of methane production and solid waste removal more than the hydrophilic or hydrophobic nature of the supporting material. When the terminal restriction fragment length polymorphism technique was used at a lower organic loading rate (OLR), microbial diversities in the suspended fraction were retained on the hydrophobic, but not the hydrophilic, sheets. Moreover, real-time quantitative polymerase chain reaction (PCR) performed at a higher OLR revealed that the excellent performance of reactors containing fibrous sponges with high porosity (98%) was supported by a clear increase in the numbers of methanogens on these sponges, resulting in larger total numbers of methanogens in the reactors. In addition, the bacterial communities in fractions retained on both the hydrophobic and hydrophilic fibrous sponges differed from those in the suspended fraction, thus increasing bacterial diversity in the reactor. Thus, higher porosity of the supporting material improves the bioreactor performance by increasing the amount of methanogens and bacterial diversity; surface hydrophobicity contributes to maintaining the suspended microbial community.

  6. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    PubMed

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4.

  7. High Concentrations of Methyl Fluoride Affect the Bacterial Community in a Thermophilic Methanogenic Sludge

    PubMed Central

    Hao, Liping; Lü, Fan; Wu, Qing; Shao, Liming; He, Pinjing

    2014-01-01

    To precisely control the application of methyl fluoride (CH3F) for analysis of methanogenic pathways, the influence of 0–10% CH3F on bacterial and archaeal communities in a thermophilic methanogenic sludge was investigated. The results suggested that CH3F acts specifically on acetoclastic methanogenesis. The inhibitory effect stabilized at an initial concentration of 3–5%, with around 90% of the total methanogenic activity being suppressed, and a characteristic of hydrogenotrophic pathway in isotope fractionation was demonstrated under this condition. However, extended exposure (12 days) to high concentrations of CH3F (>3%) altered the bacterial community structure significantly, resulting in increased diversity and decreased evenness, which can be related to acetate oxidation and CH3F degradation. Bacterial clone library analysis showed that syntrophic acetate oxidizing bacteria Thermacetogenium phaeum were highly enriched under the suppression of 10% CH3F. However, the methanogenic community did not change obviously. Thus, excessive usage of CH3F over the long term can change the composition of the bacterial community. Therefore, data from studies involving the use of CH3F as an acetoclast inhibitor should be interpreted with care. Conversely, CH3F has been suggested as a factor to stimulate the enrichment of syntrophic acetate oxidizing bacteria. PMID:24658656

  8. Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms.

    NASA Astrophysics Data System (ADS)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites

  9. Methyl coenzyme M reductase (mcrA) gene based phylogenetic analysis of methanogens population in Murrah buffaloes (Bubalus bubalis).

    PubMed

    Chaudhary, Prem Prashant; Sirohi, Sunil Kumar; Singh, Dheer; Saxena, Jyoti

    2011-08-01

    The aim of the present study was to decipher the diversity of methanogens in rumen of Murrah buffaloes so that effective strategies can be made in order to mitigate methane emission from these methanogens. In the present study diversity of rumen methanogens in Murrah buffaloes (Bubalus bubalis) from North India was evaluated by using mcr-A gene library obtained from the pooled PCR product from four animals and by using MEGA4 software. A total of 104 clones were examined, revealing 26 different mcr-A gene sequences or phylotypes. Of the 26 phylotypes, 16 (64 of 104 clones) were less than 97% similar to any of the cultured strain of methanogens. Seven clone sequences were clustered with Methanomicrobium mobile and three clone sequences were clustered with Methanobrevibacter gottschalkii during the phylogenetic analysis. Uncultured group of methanogens comes out to be the major component of the methanogens community structure in Murrah buffaloes. Methanomicrobium phylotype comes out to be major phylotype among cultured methanogens followed by Methanobrevibacter phylotype. These results help in making effective strategies to check the growth of dominant communities in the rumen of this animal which in turn help in the reduction of methane emission in the environment and ultimately helps us in fighting with the problem of global warming.

  10. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    PubMed Central

    Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-01-01

    A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array. PMID:25164858

  11. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

    PubMed Central

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Xiang, Jian; Lin, Yongxin

    2016-01-01

    Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential. PMID:26728134

  12. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

    NASA Astrophysics Data System (ADS)

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Xiang, Jian; Lin, Yongxin

    2016-01-01

    Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential.

  13. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples

    PubMed Central

    Tan, Boonfei; Jane Fowler, S; Laban, Nidal Abu; Dong, Xiaoli; Sensen, Christoph W; Foght, Julia; Gieg, Lisa M

    2015-01-01

    Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities. PMID:25734684

  14. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions.

    PubMed Central

    Freedman, D L; Gossett, J M

    1991-01-01

    Biodegradation of dichloromethane (DCM) to environmentally acceptable products was demonstrated under methanogenic conditions (35 degrees C). When DCM was supplied to enrichment cultures as the sole organic compound at a low enough concentration to avoid inhibition of methanogenesis, the molar ratio of CH4 formed to DCM consumed (0.473) was very close to the amount predicted by stoichiometric conservation of electrons. DCM degradation was also demonstrated when methanogenesis was partially inhibited (with 0.5 to 1.5 mM 2-bromoethanesulfonate or approximately 2 mM DCM) or completely stopped (with 50 to 55.5 mM 2-bromoethanesulfonate). Addition of a eubacterial inhibitor (vancomycin, 100 mg/liter) greatly reduced the rate of DCM degradation. 14CO2 was the principal product of [14C]DCM degradation, followed by 14CH4 (when methanogenesis was uninhibited) or 14CH3COOH (when methanogenesis was partially or completely inhibited). Hydrogen accumulated during DCM degradation and then returned to background levels when DCM was consumed. These results suggested that nonmethanogenic organisms mediated DCM degradation, oxidizing a portion to CO2 and fermenting the remainder to acetate; acetate formation suggested involvement of an acetogen. Methanogens in the enrichment culture then converted the products of DCM degradation to CH4. Aceticlastic methanogens were more easily inhibited by 2-bromoethanesulfonate and DCM than were CO2-reducing methanogens. When DCM was the sole organic-carbon and electron donor source supplied, its use as a growth substrate was demonstrated. The highest observed yield was 0.085 g of suspended organic carbon formed per g of DCM carbon consumed. Approximately 85% of the biomass formed was attributable to the growth of nonmethanogens, and 15% was attributable to methanogens. PMID:1746945

  15. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.

    PubMed

    Allan, J; Ronholm, J; Mykytczuk, N C S; Greer, C W; Onstott, T C; Whyte, L G

    2014-04-01

    Increasing permafrost thaw, driven by climate change, has the potential to result in organic carbon stores being mineralized into carbon dioxide (CO2) and methane (CH4) through microbial activity. This study examines the effect of increasing temperature on community structure and metabolic activity of methanogens from the Canadian High Arctic, in an attempt to predict how warming will affect microbially controlled CH4 soil flux. In situ CO2 and CH4 flux, measured in 2010 and 2011 from ice-wedge polygons, indicate that these soil formations are a net source of CO2 emissions, but a CH4 sink. Permafrost and active layer soil samples were collected at the same sites and incubated under anaerobic conditions at warmer temperatures, with and without substrate amendment. Gas flux was measured regularly and indicated an increase in CH4 flux after extended incubation. Pyrosequencing was used to examine the effects of an extended thaw cycle on methanogen diversity and the results indicate that in situ methanogen diversity, based on the relative abundance of the 16S ribosomal ribonucleic acid (rRNA) gene associated with known methanogens, is higher in the permafrost than in the active layer. Methanogen diversity was also shown to increase in both the active layer and permafrost soil after an extended thaw. This study provides evidence that although High Arctic ice-wedge polygons are currently a sink for CH4, higher arctic temperatures and anaerobic conditions, a possible result of climate change, could result in this soil becoming a source for CH4 gas flux. PMID:24596286

  16. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines

    PubMed Central

    Liang, Renxing; Grizzle, Robert S.; Duncan, Kathleen E.; McInerney, Michael J.; Suflita, Joseph M.

    2014-01-01

    Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens. PMID:24639674

  17. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.

    PubMed

    Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  18. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss. PMID:27421101

  19. Kinetics of DCE and VC mineralization under methanogenic and Fe(III)- reducing conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1997-01-01

    The kinetics of anaerobic mineralization of DCE and VC under mathanogenic and Fe(III)-reducing conditions as a function of dissolved contaminant concentration were evaluated. Microorganisms indigenous to creek bed sediments, where groundwater contaminated with chlorinated ethenes continuously discharges, demonstrated significant mineralization of DCE and VC under methanogenic and Fe(III)- reducing conditions. Over 37 days, the recovery of [1,214C]VC radioactivity as 14CO2 ranged from 5% to 44% and from 8% to 100% under methanogenic and Fe(III)-reducing conditions, respectively. The recovery of [1,2-14C]DCE radioactivity as 14CO2 ranged from 4% to 14% and did not vary significantly between methanogenic and Fe(III)reducing conditions. VC mineralization was described by Michaelis- Menten kinetics. Under methanogenic conditions, V(max) was 0.19 ?? 0.01 ??mol L-1 d-1 and the half-saturation constant, k(m), was 7.6 ?? 1.7 ??M. Under Fe(III)-reducing conditions, V(max) was 0.76 ?? 0.07 ??mol L-1 d-1 and k(m) was 1.3 ?? 0.5 ??M. In contrast, DCE mineralization could be described by first-order kinetics. The first-order degradation rate constant for DCE mineralization was 0.6 ?? 0.2% d-1 under methanogenic and Fe(III)-reducing conditions. The results indicate that the kinetics of chlorinated ethane mineralization can vary significantly with the specific contaminant and the predominant redox conditions under which mineralization occurs.

  20. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies.

    PubMed

    Zhou, Mi; Hernandez-Sanabria, Emma; Guan, Le Luo

    2009-10-01

    Cattle with high feed efficiencies (designated "efficient") produce less methane gas than those with low feed efficiencies (designated "inefficient"); however, the role of the methane producers in such difference is unknown. This study investigated whether the structures and populations of methanogens in the rumen were associated with differences in cattle feed efficiencies by using culture-independent methods. Two 16S rRNA libraries were constructed using approximately 800-bp amplicons generated from pooled total DNA isolated from efficient (n = 29) and inefficient (n = 29) animals. Sequence analysis of up to 490 randomly selected clones from each library showed that the methanogenic composition was variable: less species variation (22 operational taxonomic units [OTUs]) was detected in the rumens of efficient animals, compared to 27 OTUs in inefficient animals. The methanogenic communities in inefficient animals were more diverse than those in efficient ones, as revealed by the diversity indices of 0.84 and 0.42, respectively. Differences at the strain and genotype levels were also observed and found to be associated with feed efficiency in the host. No difference was detected in the total population of methanogens, but the prevalences of Methanosphaera stadtmanae and Methanobrevibacter sp. strain AbM4 were 1.92 (P < 0.05) and 2.26 (P < 0.05) times higher in inefficient animals, while Methanobrevibacter sp. strain AbM4 was reported for the first time to occur in the bovine rumen. Our data indicate that the methanogenic ecology at the species, strain, and/or genotype level in the rumen may play important roles in contributing to the difference in methane gas production between cattle with different feed efficiencies.

  1. Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions

    NASA Astrophysics Data System (ADS)

    Schirmack, Janosch; Böhm, Michael; Brauer, Chris; Löhmannsröben, Hans-Gerd; de Vera, Jean-Pierre; Möhlmann, Diedrich; Wagner, Dirk

    2014-08-01

    On Earth, chemolithoautothrophic and anaerobic microorganisms such as methanogenic archaea are regarded as model organisms for possible subsurface life on Mars. For this reason, the methanogenic strain Methanosarcina soligelidi (formerly called Methanosarcina spec. SMA-21), isolated from permafrost-affected soil in northeast Siberia, has been tested under Martian thermo-physical conditions. In previous studies under simulated Martian conditions, high survival rates of these microorganisms were observed. In our study we present a method to measure methane production as a first attempt to study metabolic activity of methanogenic archaea during simulated conditions approaching conditions of Mars-like environments. To determine methanogenic activity, a measurement technique which is capable to measure the produced methane concentration with high precision and with high temporal resolution is needed. Although there are several methods to detect methane, only a few fulfill all the needed requirements to work within simulated extraterrestrial environments. We have chosen laser spectroscopy, which is a non-destructive technique that measures the methane concentration without sample taking and also can be run continuously. In our simulation, we detected methane production at temperatures down to -5 °C, which would be found on Mars either temporarily in the shallow subsurface or continually in the deep subsurface. The pressure of 50 kPa which we used in our experiments, corresponds to the expected pressure in the Martian near subsurface. Our new device proved to be fully functional and the results indicate that the possible existence of methanogenic archaea in Martian subsurface habitats cannot be ruled out.

  2. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples.

    PubMed

    Tan, Boonfei; Fowler, S Jane; Abu Laban, Nidal; Dong, Xiaoli; Sensen, Christoph W; Foght, Julia; Gieg, Lisa M

    2015-09-01

    Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities.

  3. Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer.

    PubMed

    Felchner-Zwirello, Monika; Winter, Josef; Gallert, Claudia

    2013-10-01

    A mixed culture from an anaerobic biowaste digester was enriched on propionate and used to investigate interspecies hydrogen transfer in dependence of spatial distances between propionate degraders and methanogens. From 20.3 mM propionate, 20.8 mM acetate and 15.5 mM methane were formed. Maximum specific propionate oxidation and methane formation rates were 49 and 23 mmol mg(-1) day(-1), respectively. Propionate oxidation was inhibited by only 20 mM acetate by about 50 %. Intermediate formate formation during inhibited methanogensis was observed. The spatial distribution and the biovolume fraction of propionate degraders and of methanogens in relation to the total population during aggregate formation were determined. Measurements of interbacterial distances were conducted with fluorescence in situ hybridization by application of group-specific 16S rRNA-targeted probes and 3D image analyses. With increasing incubation time, floc formation and growth up to 54 μm were observed. Propionate degraders and methanogens were distributed randomly in the flocs. The methanogenic biovolume fraction was high at the beginning and remained constant over 42 days, whereas the fraction of propionate degraders increased with time during propionate feeding. Interbacterial distances between propionate degraders and methanogens decreased with time from 5.30 to 0.29 μm, causing an increase of the maximum possible hydrogen flux from 1.1 to 10.3 nmol ml(-1) min(-1). The maximum possible hydrogen flux was always higher than the hydrogen formation and consumption rate, indicating that reducing the interspecies distance by aggregation is advantageous in complex ecosystems.

  4. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  5. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec.

    PubMed

    Li, XiXi; Durmic, Zoey; Liu, ShiMin; McSweeney, Chris S; Vercoe, Philip E

    2014-10-01

    Eremophila glabra Juss. (Scrophulariaceae), a native Australian shrub, has been demonstrated to have low methanogenic potential in a batch in vitro fermentation system. The present study aimed to test longer-term effects of E. glabra on rumen fermentation characteristics, particularly methane production and the methanogen population, when included as a component of a fermentation substrate in an in vitro continuous culture system (Rusitec). E. glabra was included at 150, 250, 400 g/kg DM (EG15, EG25, and EG40) with an oaten chaff and lupin-based substrate (control). Overall, the experiment lasted 33 days, with 12 days of acclimatization, followed by two periods during which fermentation characteristics (total gas, methane and VFA productions, dry matter disappearance, pH) were measured. The number of copies of genes specifically associated with total bacteria and cellulolytic bacteria (16S rRNA gene) and total ruminal methanogenic archaeal organisms (the methyl coenzyme M reductase A gene (mcrA)) was also measured during this time using quantitative real-time PCR. Total gas production, methane and volatile fatty acid concentrations were significantly reduced with addition of E. glabra. At the end of the experiment, the overall methane reduction was 32% and 45% for EG15 and EG25 respectively, compared to the control, and the reduction was in a dose-dependent manner. Total bacterial numbers did not change, but the total methanogen population decreased by up to 42.1% (EG40) when compared to the control substrate. The Fibrobacter succinogenes population was reduced at all levels of E. glabra, while Ruminococcus albus was reduced only by EG40. Our results indicate that replacing a portion of a fibrous substrate with E. glabra maintained a significant reduction in methane production and methanogen populations over three weeks in vitro, with some minor inhibition on overall fermentation at the lower inclusion levels.

  6. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss.

  7. Use of a Hierarchical Oligonucleotide Primer Extension Approach for Multiplexed Relative Abundance Analysis of Methanogens in Anaerobic Digestion Systems

    PubMed Central

    Chuang, Hui-Ping; Hsu, Mao-Hsuan; Chen, Wei-Yu

    2013-01-01

    In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products. PMID:24077716

  8. Moderate views of abortion.

    PubMed

    Sumner, L W

    1997-01-01

    This essay offers a moderate view of abortion that imposes a time limit for unrestricted abortion and specific indications for later abortions. The introduction notes that the discussion will provide a defense for this policy based on a moral analysis but that other options for moderates, especially options provided by freestanding views (the defense of which does not rest on any prior commitment about the morality of abortion), will also be considered. The next section considers the moral status of the fetus grounded in a criterion of moral standing that stipulates the necessary characteristics to achieve moral standing. This discussion concludes that a fetus acquires moral standing only when it becomes sentient. Section 3 moves the argument from ethics to politics to prove that a moderate policy must place no limitations on abortion before the time the fetus becomes sentient because before that time the fetus has no interest for the state to protect. The final section notes that some pro-choice advocates may be happier with the moderate policy proposed than with its controversial defense based on the moral status of the fetus and that another defense of a moderate policy could be based on a finding that the ethical issue can not be decided and that no view about abortion ethics is more reasonable than any other. The essay concludes that the ethical debate is ultimately unavoidable. PMID:12348328

  9. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Fraas, A.P.; Tudor, J.J.

    1963-08-01

    An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)

  10. Hydrogen moderator performance calculations

    SciTech Connect

    Picton, D. J.; Beynon, T. D.; Broome, T. A.

    1997-09-01

    A comparison was made between MCNP calculations and experimental measurements of the neutron spectrum from the liquid hydrogen moderator on ISIS. The calculations were performed for varying ortho/para concentrations, and demonstrated a best fit for 100% para-hydrogen. The agreement between the measured and calculated results was good below 2Å (i.e. for energies above 20 meV) but significant deviations were seen for longer wavelengths. A second study used the MCNP code for a detailed comparison of the time distributions and neutron spectra from poisoned liquid hydrogen and liquid methane moderators. The results indicate that the replacement of a liquid methane moderator with liquid hydrogen, in order to eliminate radiation damage effects, is an option which can be seriously considered. (auth)

  11. Coupled moderator neutronics

    SciTech Connect

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-12-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source.

  12. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department`s moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  13. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  14. The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions

    PubMed Central

    Leahy, Sinead C.; Kelly, William J.; Altermann, Eric; Ronimus, Ron S.; Yeoman, Carl J.; Pacheco, Diana M.; Li, Dong; Kong, Zhanhao; McTavish, Sharla; Sang, Carrie; Lambie, Suzanne C.; Janssen, Peter H.; Dey, Debjit; Attwood, Graeme T.

    2010-01-01

    Background Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed. Methodology/Principal Findings The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species. Conclusions/Significance The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to

  15. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium

    NASA Astrophysics Data System (ADS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    1994-12-01

    Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and CO2 reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In the summer, methane oxidation was confined to sulfate-depleted sediments and occurred at rates lower than those of CO2 reduction. In the winter, net methane oxidation occurred in an interval at the base of the sulfate-containing zone. Sediment incubation experiments suggest both methanogens and sulfate reducers were responsible for the observed methane oxidation. In one incubation experiment both modes of oxidation were partially inhibited by 2-bromoethanesulfonic acid (a specific inhibitor of methanogens). This evidence, along with the apparent confinement of methane oxidation to sulfate-depleted sediments in the summer, indicates that methanogenic bacteria are involved in methane oxidation. In a second incubation experiment, net methane oxidation was induced by adding sulfate to homogenized methanogenic sediments, suggesting that sulfate reducers also play a role in the process. We hypothesize that methanogens oxidize methane and produce hydrogen via a reversal of CO2 reduction. The hydrogen is efficiently removed and maintained at low concentrations by sulfate reducers. Pore water H2 concentrations in the sediment incubation experiments (while net methane oxidation was occurring) were low enough that methanogenic bacteria could derive sufficient energy for growth from the oxidation of methane. The methanogen-sulfate reducer consortium is consistent not only with the results of this study, but may also be a feasible mechanism for previously documented anaerobic methane oxidation in both freshwater and marine environments.

  16. Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters

    USGS Publications Warehouse

    Oremland, Ronald S.

    1979-01-01

    When plankton samples were incubated anaerobically with a cysteine-sulfide reducing agent, pronounced methane evolution occurred. This activity was inhibited by air, CHCl3, C2H2, and 2-bromoethanesulfonic acid. Adding [14C]CO32− resulted in accumulation of [14C]CH4. Portions of the digestive tracts of three fishes were incubated in methanogenic media, and two of the samples showed the presence of methanogenic bacteria.

  17. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium

    SciTech Connect

    Hoehler, T.M.; Alperin, M.J.; Albert, D.B.

    1994-12-01

    Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and CO{sub 2} reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In the summer, methane oxidation was confined to sulfate-depleted sediments and occurred at rates lower than those of CO{sub 2} reduction. In the winter, net methane oxidation occurred in an interval at the base of the sulfate-containing zone. Sediment incubation experiments suggest both methanogens and sulfate reducers were responsible for the observed methane oxidation. In one incubation experiment both modes of oxidation were partially inhibited by 2-bromoethanesulfonic acid (a specific inhibitor of methanogens). This evidence, along with the apparent confinement of methane oxidation to sulfate-depleted sediments in the summer, indicates that methanogenic bacteria are involved in methane oxidation. In a second incubation experiment, net methane oxidation was induced by adding sulfate to homogenized methanogenic sediments, suggesting that sulfate reducers also a play a role in the process. We hypothesize that methanogens oxidize methane and produce hydrogen via a reversal of CO{sub 2} reduction. The hydrogen is efficiently removed and maintained at low concentrations by sulfate reducers. Pore water H{sub 2} concentrations in the sediment incubation experiments (while net methane oxidation was occurring) were low enough that methanogenic bacteria could derive sufficient energy for growth from the oxidation of methane. The methanogen-sulfate reducer consortium may also be a feasible mechanism for previously documented anaerobic methane oxidation in both freshwater and marine environments. 63 refs., 6 refs.

  18. Comparison of metabolomic profiles of microbial communities between stable and deteriorated methanogenic processes.

    PubMed

    Sasaki, Daisuke; Sasaki, Kengo; Tsuge, Yota; Morita, Masahiko; Kondo, Akihiko

    2014-11-01

    Central metabolite profiles from glucose in microbial communities during methanogenic process were compared between a stable methanogenic reactor (MR) and a deteriorated reactor (DR). The concentrations of intracellular metabolites related to the Embden-Meyerhof and pentose phosphate pathways, with the exception of pyruvate, remained high in the MR, showing increased carbon flux in the glycolysis pathway during stable methanogenesis. Extracellular acetate temporarily accumulated in the MR, consistent with higher ATP level in the MR. Intracellular concentrations of the intermediates in the reductive branch of tricarboxylic acid cycle, malate, fumarate, and succinate were higher in the DR. Low NADH/NAD(+) ratio both in the MR and DR would suggest NADH consumption during acetate and lactate/succinate production in the MR and DR, respectively. Intracellular glutamate levels were higher in the MR, correlating with lower NADPH/NADP(+) ratio concentrations in the MR. These findings contribute to a better understanding of the metabolic state during stable methanogenesis.

  19. Co-occurence of Crenarchaeota, Thermoplasmata and methanogens in anaerobic sludge digesters.

    PubMed

    Chouari, Rakia; Guermazi, Sonda; Sghir, Abdelghani

    2015-05-01

    16S rRNA Crenarchaeota and Thermoplasmata sequences retrieved from 22 anaerobic digesters were analysed. 4.8 and 0.53 % of archaeal sequences were simultaneously affiliated to these lineages. A core of 2 operational taxonomic units (OTUs) representing 0.6 to -33.6 % of all archaeal sequences were defined for the Crenarchaeotes and identified to already known but not yet cultivable organisms in almost half of the digesters sampled. For the Thermoplasmata, apparently less abundant with 0.7 to -4.7 % of the archaeal sequences, 3 OTUs were identified. We showed here that Crenarchaeotes coexist with methanogens and are particularly abundant when Arch I lineage (also called WSA2 by Hugenholtz) is dominant in digesters. Moreover, Thermoplasmata were detected when Crenarchaeota were present. Interactions between methanogens, Crenarchaeotea and Thermoplamata were thus discussed. PMID:25739565

  20. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions.

    PubMed Central

    Freedman, D L; Gossett, J M

    1989-01-01

    A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [14C]PCE indicated that [14C]ethylene was the terminal product; significant conversion to 14CO2 or 14CH4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE. PMID:2552919

  1. Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management.

    PubMed

    Williams, Julie; Williams, Haydn; Dinsdale, Richard; Guwy, Alan; Esteves, Sandra

    2013-07-01

    Microbial populations in a full-scale anaerobic digester fed on food waste were monitored over an 18-month period using qPCR. The digester exhibited a highly dynamic environment in which methanogenic populations changed constantly in response to availability of substrates and inhibitors. The methanogenic population in the digester was dominated by Methanosaetaceae, suggesting that aceticlastic methanogenesis was the main route for the production of methane. Sudden losses (69%) in Methanosaetaceae were followed by a build-up of VFAs which were subsequently consumed when populations recovered. A build up of ammonium inhibited Methanosaetaceae and resulted in shifts from acetate to hydrogen utilization. Addition of trace elements and alkalinity when propionate levels were high stimulated microbial growth. Routine monitoring of microbial populations and VFAs provided valuable insights into the complex processes occurring within the digester and could be used to predict digester stability and facilitate digester optimization.

  2. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community.

    PubMed

    Jiang, Shenghua; Park, Sunhwa; Yoon, Younggun; Lee, Ji-Hoon; Wu, Wei-Min; Phuoc Dan, Nguyen; Sadowsky, Michael J; Hur, Hor-Gil

    2013-09-01

    Production and emission of methane have been increasing concerns due to its significant effect on global climate change and the carbon cycle. Here we report facilitated methane production from acetate by a novel community of methanogens and acetate oxidizing bacteria in the presence of poorly crystalline akaganeite slurry. Comparative analyses showed that methanogenesis was significantly enhanced by added akaganeite and acetate was mostly stoichiometrically converted to methane. Electrons produced from anaerobic acetate oxidation are transferred to akaganeite nanorods that likely prompt the transformation into goethite nanofibers through a series of biogeochemical processes of soluble Fe(II) readsorption and Fe(III) reprecipitation. The methanogenic archaea likely harness the biotransformation of akaganeite to goethite by the Fe(III)-Fe(II) cycle to facilitate production of methane. These results provide new insights into biogeochemistry of iron minerals and methanogenesis in the environment, as well as the development of sustainable methods for microbial methane production. PMID:23919295

  3. Comparison of metabolomic profiles of microbial communities between stable and deteriorated methanogenic processes.

    PubMed

    Sasaki, Daisuke; Sasaki, Kengo; Tsuge, Yota; Morita, Masahiko; Kondo, Akihiko

    2014-11-01

    Central metabolite profiles from glucose in microbial communities during methanogenic process were compared between a stable methanogenic reactor (MR) and a deteriorated reactor (DR). The concentrations of intracellular metabolites related to the Embden-Meyerhof and pentose phosphate pathways, with the exception of pyruvate, remained high in the MR, showing increased carbon flux in the glycolysis pathway during stable methanogenesis. Extracellular acetate temporarily accumulated in the MR, consistent with higher ATP level in the MR. Intracellular concentrations of the intermediates in the reductive branch of tricarboxylic acid cycle, malate, fumarate, and succinate were higher in the DR. Low NADH/NAD(+) ratio both in the MR and DR would suggest NADH consumption during acetate and lactate/succinate production in the MR and DR, respectively. Intracellular glutamate levels were higher in the MR, correlating with lower NADPH/NADP(+) ratio concentrations in the MR. These findings contribute to a better understanding of the metabolic state during stable methanogenesis. PMID:25237777

  4. Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps

    PubMed Central

    L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G.; Cragg, Barry A.; Parkes, R. John; Toffin, Laurent

    2015-01-01

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps. PMID:25769831

  5. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut.

    PubMed Central

    Gijzen, H J; Broers, C A; Barughare, M; Stumm, C K

    1991-01-01

    Production of methane in the hindgut of the cockroach Periplaneta americana was found to vary, depending on the feeding regimen. Methane production was positively correlated with the numbers of the ciliate Nyctotherus ovalis living in the cockroach hindgut. Defaunation of the cockroaches by means of low concentrations of metronidazole (Flagyl) resulted in a quick drop of methane production. Addition of the methanogenic substrates acetate and formate to isolated hindguts stimulated methane production. Inside the ciliate cells, autofluorescing bacteria could be demonstrated which were presumed to be methanogens. Electron microscopy revealed that the bacteria resembled Methanobrevibacter and that they were closely associated with organelles which contained infolded membranes and which were presumably hydrogenosomes. Images PMID:1908205

  6. Effects of Sulfuroxy Anions on Degradation of Pentachlorophenol by a Methanogenic Enrichment Culture

    PubMed Central

    Madsen, Torben; Aamand, Jens

    1991-01-01

    We studied the degradation of pentachlorophenol (PCP) under methanogenic and sulfate-reducing conditions with an anaerobic mixed culture derived from sewage sludge. The consortium degraded PCP via 2,3,4,5-tetrachlorophenol, 3,4,5-trichlorophenol, and 3,5-dichlorophenol and eventually accumulated 3-chlorophenol. Dechlorination of PCP and metabolites was inhibited in the presence of sulfate, thiosulfate, and sulfite. A decrease in the rate of PCP transformation was noted when the endogenous dissolved H2 was depleted below 0.11 μM in sulfate-reducing cultures. The effect on dechlorination observed with sulfate could be relieved by addition of molybdate, a competitive inhibitor of sulfate reduction. Addition of H2 reduced the inhibition observed with sulfuroxy anions. The inhibitory effect of sulfuroxy anions may be due to a competition for H2 between sulfate reduction and dechlorination. When cultured under methanogenic conditions, the consortium degraded several chlorinated and brominated phenols. PMID:16348548

  7. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions.

    PubMed

    Freedman, D L; Gossett, J M

    1989-09-01

    A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [14C]PCE indicated that [14C]ethylene was the terminal product; significant conversion to 14CO2 or 14CH4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE.

  8. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    PubMed

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature.

  9. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    PubMed

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. PMID:26712349

  10. Divergent responses of methanogenic archaeal communities in two rice cultivars to elevated ground-level O3.

    PubMed

    Zhang, Jianwei; Tang, Haoye; Zhu, Jianguo; Lin, Xiangui; Feng, Youzhi

    2016-06-01

    Inhibitive effect of elevated ground-level ozone (O3) on paddy methane (CH4) emission varies with rice cultivars. However, little information is available on its microbial mechanism. For this purpose, the responses of methane-metabolizing microorganisms, methanogenic archaea and methanotrophic bacteria to O3 pollution were investigated in the O3-tolerant (YD6) and the O3-sensitive (IIY084) cultivars at two rice growth stages in Free Air Concentration Elevation of O3 (O3-FACE) system of China. It was found that O3 pollution didn't change the abundances of Type I and Type II methanotrophic bacteria at two rice stages. For methanogenic archaea, their abundances in both cultivars were decreased by O3 pollution at the tillering stage. Furthermore, a greater negative influence on methanogenic archaeal community was observed on IIY084 than on YD6: at tillering stage, the alpha diversity indices of methanogenic archaeal community in IIY084 was decreased to a greater extent than in YD6; IIY084 shifted methanogenic archaeal community composition and decreased the abundances and the diversities of Methanosarcinaceae and Methanosaetaceae as well as the abundance of Methanomicrobiales, while the diversity of Methanocellaceae were increased in YD6. These findings indicate that the variations in the responses of paddy CH4 emission to O3 pollution between cultivars could result from the divergent responses of their methanogenic archaea. PMID:26895536

  11. Potential functional gene diversity involved in methanogenesis and methanogenic community structure in Indian buffalo (Bubalus bubalis) rumen.

    PubMed

    Singh, Krishna M; Patel, Amrutlal K; Shah, Ravi K; Reddy, Bhaskar; Joshi, Chaitanya G

    2015-08-01

    Understanding the methanogen community structure and methanogenesis from Bubalus bubalis in India may be beneficial to methane mitigation. Our current understanding of the microbial processes leading to methane production is incomplete, and further advancement in the knowledge of methanogenesis pathways would provide means to manipulate its emission in the future. In the present study, we evaluated the methanogenic community structure in the rumen as well as their potential genes involved in methanogenesis. The taxonomic and metabolic profiles of methanogens were assessed by shotgun sequencing of rumen metagenome by Ion Torrent semiconductor sequencing. The buffalo rumen contained representative genera of all the families of methanogens. Members of Methanobacteriaceae were found to be dominant, followed by Methanosarcinaceae, Methanococcaceae, Methanocorpusculaceae, and Thermococcaceae. A total of 60 methanogenic genera were detected in buffalo rumen. Methanogens related to the genera Methanobrevibacter, Methanosarcina, Methanococcus, Methanocorpusculum, Methanothermobacter, and Methanosphaera were predominant, representing >70 % of total archaeal sequences. The metagenomic dataset indicated the presence of genes involved in the methanogenesis and acetogenesis pathways, and the main functional genes were those of key enzymes in the methanogenesis. Sequences related to CoB--CoM heterodisulfide reductase, methyl coenzyme M reductase, f420-dependent methylenetetrahydromethanopterin reductase, and formylmethanofuran dehydrogenase were predominant in rumen. In addition, methenyltetrahydrofolate cyclohydrolase, methylenetetrahydrofolate dehydrogenase, 5,10-methylenetetrahydrofolate reductase, and acetyl-coenzyme A synthetase were also recovered. PMID:25663664

  12. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    PubMed

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities.

  13. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    PubMed

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. PMID:26499486

  14. Syntrophic-Methanogenic Associations along a Nutrient Gradient in the Florida Everglades

    PubMed Central

    Chauhan, Ashvini; Ogram, Andrew; Reddy, K. R.

    2004-01-01

    Nutrient runoff from the Everglades Agricultural Area resulted in a well-documented gradient of phosphorus concentrations in soil and water, with concomitant ecosystem-level changes, in the northern Florida Everglades. It was recently reported that sulfate-reducing prokaryote assemblage composition, numbers, and activities are dependent on position along the gradient (H. Castro, K. R. Reddy, and A. Ogram, Appl. Environ. Microbiol. 68:6129-6137, 2002). The present study utilized a combination of culture- and non-culture-based approaches to study differences in composition of assemblages of syntrophic and methanogenic microbial communities in eutrophic, transition, and oligotrophic areas along the phosphorus gradient. Methanogenesis rates were much higher in eutrophic and transition regions, and sequence analysis of 16S rRNA gene clone libraries constructed from samples taken from these regions revealed differences in composition and activities of syntroph-methanogen consortia. Methanogens from eutrophic and transition regions were almost exclusively composed of hydrogenotrophic methanogens, with approximately 10,000-fold-greater most probable numbers of hydrogenotrophs than of acetotrophs. Most cultivable strains from eutrophic and transition regions clustered within novel lineages. In non-culture-based studies to enrich syntrophs, most bacterial and archaeal clones were either members of novel lineages or closely related to uncultivated environmental clones. Novel cultivable Methanosaeta sp. and fatty acid-oxidizing bacteria related to the genera Syntrophomonas and Syntrophobacter were observed in microcosms containing soil from eutrophic regions, and different lines of evidence indicated the existence of novel syntrophic association in eutrophic regions. PMID:15184146

  15. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy.

    PubMed

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L E; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha-1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg-1) and swine (460 g kg-1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered. PMID:25494364

  16. Enhanced methanogenesis from hexadecane and ethylbenzene under non-methanogenic conditions

    NASA Astrophysics Data System (ADS)

    Siegert, Michael; Cichocka, Danuta; Herrmann, Steffi; Richnow, Hans-Hermann; Springael, Dirk; Krüger, Martin

    2010-05-01

    Microbially enhanced oil recovery (MEOR) may provide access to remaining, but yet inaccessible petroleum in reservoirs. The microbial conversion of heavy hydrocarbon remnants into gaseous methane could at least provide access to energy which would otherwise be lost. On the other hand, methanogenesis could remove toxic hydrocarbons from contaminated aquifers and sediments. Therefore, sediment samples from a contaminated sea port basin were investigated to assess the in situ potential for methanogenic hydrocarbon degradation. Since this process is believed to be a sequential syntrophic procedure, non-methanogenic conditions were created in sediment microcosms to facilitate the first hydrocarbon attacking step. To achieve this, a high electron potential was created by the addition of ferrihydrite, manganese oxide, nitrate or sulfate as electron acceptors. Hexadecane, ethylbenzene or naphthalene were used as model carbon substrates. Methanogenesis evolved rapidly from set ups treated with iron and manganese, but not nitrate, reflecting the in situ conditions at the site. Surprisingly, on sulfate methanogenesis was neither inhibited nor significantly supported. Methane formation rates were the highest with hexadecane as substrate, followed by ethylbenzene and naphthalene. Methane was removed in high rates at the same time by anaerobic methanotrophs. The microbial community in situ and in vitro was dominated by members of the Geobacteraceae. Their methanogenic partners were quantified, targeting the genes encoding for the methyl coenzyme M reductase (mcrA). Methane consumption in the microcosms and the presence of methanotrophic anaerobes belonging to the ANME-1 and ANME-2 clusters suggest anaerobic methanotrophy as an accompanying process. mcrA genes belonging to the ANME-1 & -2 clusters were detected in lower copy numbers than the methanogenic mcrA, which is in good agreement with the activity measurements. These results indicate that the in situ stimulation of

  17. Zero-valent iron on Mars: An alternative energy source for methanogens

    NASA Astrophysics Data System (ADS)

    Chastain, Brendon K.; Kral, Timothy A.

    2010-07-01

    Zero-valent iron, montmorillonite-like smectites, and CO 2 gas are known to exist on Mars, and work was performed to investigate the ability of methanogens to subsist on these materials. After 71 days of incubation at 55 °C, mean methane concentration as percent of headspace volume was 19.80 ± 1.76% (mean ± SE) for replicates containing elemental iron and 0.50 ± 0.15% for those lacking elemental iron.

  18. Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production.

    PubMed

    Ziembińska-Buczyńska, A; Banach, A; Bacza, T; Pieczykolan, M

    2014-12-01

    Anaerobic digestion (AD) is the most popular path of organic waste disposal. It is often used in wastewater treatment plants for excessive sludge removal. Methanogenic fermentation had usually been performed under mesophilic conditions, but in the past few years the thermophilic processes have become more popular due to economics and sludge sanitation. Methanogens, the group of microorganisms responsible for methane production, are thought to be sensitive to temperature change and it has already been proven that the communities performing methanogenesis under mesophilic and thermophilic conditions differ. But in most cases the research performed on methanogen diversity and changeability was undertaken in two separate anaerobic chambers for meso- and thermophilic conditions. It is also known that there is a group of microorganisms performing AD which are insensitive to temperature. Also the linkage between digester performance and its microbial content and community changeability is still not fully understood. That is why in this experiment we analyzed the bacterial community performing methanogenesis in a pilot scale anaerobic chamber during the shift from mesophilic to thermophilic conditions to point at the group of temperature tolerant microorganisms and their performance. The research was performed with PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). It occurred that the community biodiversity decreased together with a temperature increase. The changes were coherent for both the total bacteria community and methanogens. These bacterial shifts were also convergent with biogas production-it decreased in the beginning of the thermophilic phase with the bacterial biodiversity decrease and increased when the community seemed to be restored. DGGE results suggest that among a wide variety of microorganisms involved in AD there is a GC-rich group relatively insensitive towards temperature change, able to adapt quickly to shifts in

  19. Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the American cockroach, Periplaneta americana.

    PubMed Central

    Gijzen, H J; Barugahare, M

    1992-01-01

    The ciliate Nyctotherus ovalis occurs in high numbers in the hindgut of the American cockroach (Periplaneta americana) and harbors methanogenic bacteria as endosymbionts. The contribution of these hindgut microorganisms to metabolic and developmental processes of P. americana was studied by comparing cultures of cockroaches in which the composition of the hindgut microbial population was altered in various ways. Rearing the insects protozoan free resulted in increased insect generation time, decreased adult body weight, and absence of methane production. After feeding of protozoan-free adult cockroaches with a hindgut suspension containing N. ovalis and methanogens, methane increased to normal values and insect body weight was restored during the development of the second generation of insects. Feeding the protozoan-free cockroaches a hindgut suspension which was made free of N. ovalis resulted in an increase in methane production to only about 20% of the normal methane production level. This suggests that the methanogenic endosymbionts of N. ovalis are the major source of methane production in the hindgut. Inhibition of methanogens by addition of bromoethanesulfonic acid to the drinking water of a normal cockroach culture resulted in a reduction of methane production to about 2% of the normal level. No effects on insect body weight or the number of N. ovalis organisms were observed, but the fermentation pattern in the hindgut was shifted towards a relative increase in propionate levels. Similar results were obtained for in vitro cultures of hindgut microorganisms treated with bromoethanesulfonic acid. The results suggest a major role for hindgut protozoa in cockroach metabolic activities, especially during the insect growth period. The relatively large amounts of methane produced by cockroaches and by other methane-producing xylophagous insects suggest a major contribution by insects to global methane production. PMID:1514803

  20. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor

    PubMed Central

    Imachi, Hiroyuki; Aoi, Ken; Tasumi, Eiji; Saito, Yumi; Yamanaka, Yuko; Saito, Yayoi; Yamaguchi, Takashi; Tomaru, Hitoshi; Takeuchi, Rika; Morono, Yuki; Inagaki, Fumio; Takai, Ken

    2011-01-01

    Microbial methanogenesis in subseafloor sediments is a key process in the carbon cycle on the Earth. However, the cultivation-dependent evidences have been poorly demonstrated. Here we report the cultivation of a methanogenic microbial consortium from subseafloor sediments using a continuous-flow-type bioreactor with polyurethane sponges as microbial habitats, called down-flow hanging sponge (DHS) reactor. We anaerobically incubated methane-rich core sediments collected from off Shimokita Peninsula, Japan, for 826 days in the reactor at 10 °C. Synthetic seawater supplemented with glucose, yeast extract, acetate and propionate as potential energy sources was provided into the reactor. After 289 days of operation, microbiological methane production became evident. Fluorescence in situ hybridization analysis revealed the presence of metabolically active microbial cells with various morphologies in the reactor. DNA- and RNA-based phylogenetic analyses targeting 16S rRNA indicated the successful growth of phylogenetically diverse microbial components during cultivation in the reactor. Most of the phylotypes in the reactor, once it made methane, were more closely related to culture sequences than to the subsurface environmental sequence. Potentially methanogenic phylotypes related to the genera Methanobacterium, Methanococcoides and Methanosarcina were predominantly detected concomitantly with methane production, while uncultured archaeal phylotypes were also detected. Using the methanogenic community enrichment as subsequent inocula, traditional batch-type cultivations led to the successful isolation of several anaerobic microbes including those methanogens. Our results substantiate that the DHS bioreactor is a useful system for the enrichment of numerous fastidious microbes from subseafloor sediments and will enable the physiological and ecological characterization of pure cultures of previously uncultivated subseafloor microbial life. PMID:21654849

  1. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy

    PubMed Central

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L. E.; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha−1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg−1) and swine (460 g kg−1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered. PMID:25494364

  2. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.

    PubMed

    Breidenbach, Björn; Blaser, Martin B; Klose, Melanie; Conrad, Ralf

    2016-09-01

    Crop rotation of flooded rice with upland crops is a common management scheme allowing the reduction of water consumption along with the reduction of methane emission. The introduction of an upland crop into the paddy rice ecosystem leads to dramatic changes in field conditions (oxygen availability, redox conditions). However, the impact of this practice on the archaeal and bacterial communities has scarcely been studied. Here, we provide a comprehensive study focusing on the crop rotation between flooded rice in the wet season and upland maize (RM) in the dry season in comparison with flooded rice (RR) in both seasons. The composition of the resident and active microbial communities was assessed by 454 pyrosequencing targeting the archaeal and bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic lineages and an increase of aerobic Thaumarchaeota. Members of Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Methanocellaceae were equally suppressed in the rotational fields indicating influence on both acetoclastic and hydrogenotrophic methanogens. On the contrary, members of soil crenarchaeotic group, mainly Candidatus Nitrososphaera, were higher in the rotational fields, possibly indicating increasing importance of ammonia oxidation during drainage. In contrast, minor effects on the bacterial community were observed. Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational fields, whereas members of anaerobic Chloroflexi and sulfate-reducing members of Deltaproteobacteria were found in higher abundance in the rice fields. Combining quantitative polymerase chain reaction and pyrosequencing data revealed increased ribosomal numbers per cell for methanogenic species during crop rotation. This stress response, however, did not allow the methanogenic community to recover in the rotational fields during re-flooding and rice

  3. Production of Ethane, Ethylene, and Acetylene from Halogenated Hydrocarbons by Methanogenic Bacteria

    PubMed Central

    Belay, Negash; Daniels, Lacy

    1987-01-01

    Several methanogenic bacteria were shown to produce ethane, ethylene, and acetylene when exposed to the halogenated hydrocarbons bromoethane, dibromo- or dichloroethane, and 1,2-dibromoethylene, respectively. They also produced ethylene when exposed to the coenzyme M analog and specific methanogenic inhibitor bromoethanesulfonic acid. The production of these gases from halogenated hydrocarbons has a variety of implications concerning microbial ecology, agriculture, and toxic waste treatment. All halogenated aliphatic compounds tested were inhibitory to methanogens. Methanococcus thermolithotrophicus, Methanococcus deltae, and Methanobacterium thermoautotrophicum ΔH and Marburg were completely inhibited by 7 μM 1,2-dibromoethane and, to various degrees, by 51 to 1,084 μM 1,2-dichloroethane, 1,2-dibromoethylene, 1,2-dichloroethylene, and trichloroethylene. In general, the brominated compounds were more inhibitory. The two Methanococcus species were fully inhibited by 1 μM bromoethanesulfonic acid, whereas both Methanobacterium strains were only partly inhibited by 2,124 μM. Coenzyme M protected cells from bromoethanesulfonic acid but not from any of the other inhibitors. PMID:16347389

  4. Significance of ether lipids derived from methanogens in sediments from modern and ancient basins

    SciTech Connect

    Shouten, S.; Sinninghe Damste, J.S.; Hoefs, M.J.L.; De Leeuw, J.W. Netherlands and Utrecht Univ. )

    1996-01-01

    High amounts of biphytanyl carbon skeletons with 0-3 cyclopentyl rings and low amounts of 2, 6, 10, 14, 18-pentamethyleicosane (PME) were detected after treatment with hydrogen iodide of fractions of several sediment extracts. These compounds are biosynthesized by archaebacteria only. Since the sediments were deposited in normal marine environments, these lipids are derived from methanogenic bacteria and more specifically Methanosarcina barkeri. In recent sediments from in and below the extensive oxygen-minimum zone in the Arabian Sea high amounts were detected in surface sediment samples where oxygen is still present. Our data suggest that these ether-bound compounds may be indicators for methane-production in the upper part of the water column and possibly an extensive oxygen-minimum zone. The concentrations varied strongly (2 orders of magnitude) in the Miocene Monterey Formation suggesting significant variations in water column methanogenic activity. The stable carbon isotopic compositions of the acyclic and cyclic biphytane carbon skeletons are several per mil heavier than those of compounds derived from photoautotrophic organisms whereas the stable carbon isotopic compositions of PME are several per mil lighter. This indicates the presence of different species of methanogens utilizing different carbon substrates.

  5. Significance of ether lipids derived from methanogens in sediments from modern and ancient basins

    SciTech Connect

    Shouten, S.; Sinninghe Damste, J.S.; Hoefs, M.J.L.; De Leeuw, J.W. |

    1996-12-31

    High amounts of biphytanyl carbon skeletons with 0-3 cyclopentyl rings and low amounts of 2, 6, 10, 14, 18-pentamethyleicosane (PME) were detected after treatment with hydrogen iodide of fractions of several sediment extracts. These compounds are biosynthesized by archaebacteria only. Since the sediments were deposited in normal marine environments, these lipids are derived from methanogenic bacteria and more specifically Methanosarcina barkeri. In recent sediments from in and below the extensive oxygen-minimum zone in the Arabian Sea high amounts were detected in surface sediment samples where oxygen is still present. Our data suggest that these ether-bound compounds may be indicators for methane-production in the upper part of the water column and possibly an extensive oxygen-minimum zone. The concentrations varied strongly (2 orders of magnitude) in the Miocene Monterey Formation suggesting significant variations in water column methanogenic activity. The stable carbon isotopic compositions of the acyclic and cyclic biphytane carbon skeletons are several per mil heavier than those of compounds derived from photoautotrophic organisms whereas the stable carbon isotopic compositions of PME are several per mil lighter. This indicates the presence of different species of methanogens utilizing different carbon substrates.

  6. Methanogen Diversity in Indigenous and Introduced Ruminant Species on the Tibetan Plateau.

    PubMed

    Huang, Xiao Dan; Martinez-Fernandez, Gonzalo; Padmanabha, Jagadish; Long, Ruijun; Denman, Stuart E; McSweeney, Christopher S

    2016-01-01

    Host factors are regarded as important in shaping the archaeal community in the rumen but few controlled studies have been performed to demonstrate this across host species under the same environmental conditions. A study was designed to investigate the structure of the methanogen community in the rumen of two indigenous (yak and Tibetan sheep) and two introduced domestic ruminant (cattle and crossbred sheep) species raised and fed under similar conditions on the high altitude Tibetan Plateau. The methylotrophic Methanomassiliicoccaceae was the predominant archaeal group in all animals even though Methanobrevibacter are usually present in greater abundance in ruminants globally. Furthermore, within the Methanomassiliicoccaceae family members from Mmc. group 10 and Mmc. group 4 were dominant in Tibetan Plateau ruminants compared to Mmc. group 12 found to be highest in other ruminants studied. Small ruminants presented the highest number of sequences that belonged to Methanomassiliicoccaceae compared to the larger ruminants. Although the methanogen community structure was different among the ruminant species, there were striking similarities between the animals in this environment. This indicates that factors such as the extreme environmental conditions and diet on the Tibetan Plateau might have a greater impact on rumen methanogen community compared to host differences.

  7. Methanogen Diversity in Indigenous and Introduced Ruminant Species on the Tibetan Plateau

    PubMed Central

    Huang, Xiao Dan; Martinez-Fernandez, Gonzalo; Padmanabha, Jagadish; Long, Ruijun; Denman, Stuart E.; McSweeney, Christopher S.

    2016-01-01

    Host factors are regarded as important in shaping the archaeal community in the rumen but few controlled studies have been performed to demonstrate this across host species under the same environmental conditions. A study was designed to investigate the structure of the methanogen community in the rumen of two indigenous (yak and Tibetan sheep) and two introduced domestic ruminant (cattle and crossbred sheep) species raised and fed under similar conditions on the high altitude Tibetan Plateau. The methylotrophic Methanomassiliicoccaceae was the predominant archaeal group in all animals even though Methanobrevibacter are usually present in greater abundance in ruminants globally. Furthermore, within the Methanomassiliicoccaceae family members from Mmc. group 10 and Mmc. group 4 were dominant in Tibetan Plateau ruminants compared to Mmc. group 12 found to be highest in other ruminants studied. Small ruminants presented the highest number of sequences that belonged to Methanomassiliicoccaceae compared to the larger ruminants. Although the methanogen community structure was different among the ruminant species, there were striking similarities between the animals in this environment. This indicates that factors such as the extreme environmental conditions and diet on the Tibetan Plateau might have a greater impact on rumen methanogen community compared to host differences. PMID:27274707

  8. Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures

    NASA Astrophysics Data System (ADS)

    Reid, I. N.; Sparks, W. B.; Lubow, S.; McGrath, M.; Livio, M.; Valenti, J.; Sowers, K. R.; Shukla, H. D.; MacAuley, S.; Miller, T.; Suvanasuthi, R.; Belas, R.; Colman, A.; Robb, F. T.; Dassarma, P.; Müller, J. A.; Coker, J. A.; Cavicchioli, R.; Chen, F.; Dassarma, S.

    2006-08-01

    Cold environments are common throughout the Galaxy. We are conducting a series of experiments designed to probe the low-temperature limits for growth in selected methanogenic and halophilic Archaea. This paper presents initial results for two mesophiles, a methanogen, Methanosarcina acetivorans, and a halophile, Halobacterium sp. NRC-1, and for two Antarctic cold-adapted Archaea, a methanogen, Methanococcoides burtonii, and a halophile, Halorubrum lacusprofundi. Neither mesophile is active at temperatures below 5 °C, but both cold-adapted microorganisms show significant growth at sub-zero temperatures (-2 °C and -1 °C, respectively), extending previous low-temperature limits for both species by 4 5 °C. At low temperatures, both H. lacusprofundi and M. burtonii form multicellular aggregates, which appear to be embedded in extracellular polymeric substances. This is the first detection of this phenomenon in Antarctic species of Archaea at cold temperatures. The low-temperature limits for both psychrophilic species fall within the temperature range experienced on present-day Mars and could permit survival and growth, particularly in sub-surface environments. We also discuss the results of our experiments in the context of known exoplanet systems, several of which include planets that intersect the Habitable Zone. In most cases, those planets follow orbits with significant eccentricity, leading to substantial temperature excursions. However, a handful of the known gas giant exoplanets could potentially harbour habitable terrestrial moons.

  9. RDX biodegradation by a methanogenic enrichment culture obtained from an explosives manufacturing wastewater treatment plant

    SciTech Connect

    Adrian, N.R.; Sutherland, K.

    1998-12-01

    This study examined the biodegradation of RDX in wastewater from an industrial wastewater treatment plant at the Holston Army Ammunition Plant in Kingsport, TN. Serum bottles containing 100 ml of a basal salts medium amended with 10 percent (v/v) sludge from the anoxic filter at the plant were amended with RDX and incubated under methanogenic conditions. Biodegradation intermediates corresponding to the mono-, di-, and trinitroso- RDX were observed. A methanogenic enrichment culture, derived from the wastewater, biodegraded 25% micrometer RDX in less than 16 days when ethanol was supplied as an electron donor. Methane production in the ethanol amended bottles was only observed after RDX had been depleted, while RDX unamended controls experienced no lag in methane production. The addition of 5 mM BESA to the culture inhibited methane production, but not RDX and ethanol degradation. These findings demonstrate the importance of adding reduced cosubstrates to enhance RDX biodegradation, and support the hypothesis that RDX is serving as a terminal electron acceptor in methanogenic environments.

  10. The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR.

    PubMed

    Pakarinen, O; Kaparaju, P; Rintala, J

    2011-10-01

    The possibility of shifting a methanogenic process for hydrogen production by changing the process parameters viz., organic loading rate (OLR) and hydraulic retention time (HRT) was evaluated. At first, two parallel semi-continuously fed continuously stirred tank reactors (CSTR) were operated as methanogenic reactors (M1 and M2) for 78 days. Results showed that a methane yield of 198-218 L/kg volatile solids fed (VS(fed)) was obtained when fed with grass silage at an OLR of 2 kgVS/m³/d and HRT of 30 days. After 78 days of operation, hydrogen production was induced in M2 by increasing the OLR from 2 to 10 kgVS/m³/d and shortening the HRT from 30 to 6 days. The highest H₂ yield of 42 L/kgVS(fed) was obtained with a maximum H₂ content of 24%. The present results thus demonstrate that methanogenic process can be shifted towards hydrogen production by increasing the OLR and decreasing HRT.

  11. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  12. Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics.

    PubMed

    Krakat, Niclas; Westphal, A; Schmidt, S; Scherer, P

    2010-03-01

    Beet silage and beet juice were digested continuously as representative energy crops in a thermophilic biogas fermentor for more than 7 years. Fluorescence microscopy of 15 samples covering a period of 650 days revealed that a decrease in temperature from 60 degrees C to 55 degrees C converted a morphologically uniform archaeal population (rods) into a population of methanogens exhibiting different cellular morphologies (rods and coccoid cells). A subsequent temperature increase back to 60 degrees C reestablished the uniform morphology of methanogens observed in the previous 60 degrees C period. In order to verify these observations, representative samples were investigated by amplified rRNA gene restriction analysis (ARDRA) and fluorescence in situ hybridization (FISH). Both methods confirmed the temperature-dependent population shift observed by fluorescence microscopy. Moreover, all samples investigated demonstrated that hydrogenotrophic Methanobacteriales dominated in the fermentor, as 29 of 34 identified operational taxonomic units (OTUs) were assigned to this order. This apparent discrimination of acetoclastic methanogens contradicts common models for anaerobic digestion processes, such as anaerobic digestion model 1 (ADM1), which describes the acetotrophic Euryarchaeota as predominant organisms.

  13. Limited aeration of methanogenic systems for treatment of sulfate-containing wastewater

    SciTech Connect

    Zitomer, D.H.; Shrout, J.D.

    1998-07-01

    Wastewaters with high sulfate concentrations are often not readily amenable to methanogenic treatment due to production of potentially inhibitory hydrogen sulfide. Some reports indicate that treatment has been enhanced by air sparging of recycle flows to air-strip hydrogen sulfide and create a selective environment for reduction of sulfate to elemental sulfur, rather than sulfides and thiosulfate. In this report, direct aeration of methanogenic expanded beds was employed for treatment of high-sulfate wastewater and compared to a strictly anaerobic control. An influent wastewater COD:SO{sup {minus}2}{sub 4} ratio as low as 4,4:1 did not discernibly inhibit methane production in the anaerobic control. At a relatively high OLR of 30g COD/L{sub A}-d and a relatively short HRT of 4.2 hours, the COD removal of the control was 97%. Methanogenesis was also sustained in the aerated reactors which had oxygen transfer rates of between 2 to 5% of the OLR. These aerated reactors converted approximately 70% of the COD to methane. Future research will involve higher sulfate loadings and aeration rates to determine possible benefits of direct aeration of methanogenic expanded beds.

  14. Contribution of transcriptomics to systems-level understanding of methanogenic Archaea.

    PubMed

    Browne, Patrick D; Cadillo-Quiroz, Hinsby

    2013-01-01

    Methane-producing Archaea are of interest due to their contribution to atmospheric change and for their roles in technological applications including waste treatment and biofuel production. Although restricted to anaerobic environments, methanogens are found in a wide variety of habitats, where they commonly live in syntrophic relationships with bacterial partners. Owing to tight thermodynamic constraints of methanogenesis alone or in syntrophic metabolism, methanogens must carefully regulate their catabolic pathways including the regulation of RNA transcripts. The transcriptome is a dynamic and important control point in microbial systems. This paper assesses the impact of mRNA (transcriptome) studies on the understanding of methanogenesis with special consideration given to how methanogenesis is regulated to cope with nutrient limitation, environmental variability, and interactions with syntrophic partners. In comparison with traditional microarray-based transcriptome analyses, next-generation high-throughput RNA sequencing is greatly advantageous in assessing transcription start sites, the extent of 5' untranslated regions, operonic structure, and the presence of small RNAs. We are still in the early stages of understanding RNA regulation but it is already clear that determinants beyond transcript abundance are highly relevant to the lifestyles of methanogens, requiring further study.

  15. Direct Characterization of Methanogens in Two High-Rate Anaerobic Biological Reactors

    PubMed Central

    Kobayashi, Hester A.; de Macario, Everly Conway; Williams, Regan S.; Macario, Alberto J. L.

    1988-01-01

    The methanogenic flora from two types of turbulent, high-rate reactors was studied by immunologic methods as well as by phase-contrast, fluorescence, and scanning electron microscopy. The reactors were a fluidized sand-bed biofilm ANITRON reactor and an ultrafiltration membrane-associated suspended growth MARS reactor (both trademarks of Air Products and Chemicals, Inc., Allentown, Pa.). Conventional microscopic methods revealed complex mixtures of microbes of a range of sizes and shapes, among which morphotypes resembling Methanothrix spp. and Methanosarcina spp. were noticed. Precise identification of these and other methanogens was accomplished by antigenic fingerprinting with a comprehensive panel of calibrated antibody probes of predefined specificity spectra. The methanogens identified showed morphotypes and antigenic fingerprints indicating their close similarity with the following reference organisms: Methanobacterium formicicum MF and Methanosarcina barkeri W in the ANITRON reactor only; Methanosarcina barkeri R1M3, M. mazei S6, Methanogenium cariaci JR1, and Methanobrevibacter arboriphilus AZ in the MARS reactor only; and Methanobrevibacter smithii ALI and Methanothrix soehngenii Opfikon in both reactors. Species diversity and distribution appeared to be, at least in part, dependent on the degree of turbulence inside the reactor. Images PMID:16347581

  16. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.

    PubMed

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui

    2015-08-15

    Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89-94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  17. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation.

    PubMed

    Cruz Viggi, Carolina; Rossetti, Simona; Fazi, Stefano; Paiano, Paola; Majone, Mauro; Aulenta, Federico

    2014-07-01

    Interspecies electron transfer mechanisms between Bacteria and Archaea play a pivotal role during methanogenic degradation of organic matter in natural and engineered anaerobic ecosystems. Growing evidence suggests that in syntrophic communities electron transfer does not rely exclusively on the exchange of diffusible molecules and energy carriers such as hydrogen or formate, rather microorganisms have the capability to exchange metabolic electrons in a more direct manner. Here, we show that supplementation of micrometer-size magnetite (Fe3O4) particles to a methanogenic sludge enhanced (up to 33%) the methane production rate from propionate, a key intermediate in the anaerobic digestion of organic matter and a model substrate to study energy-limited syntrophic communities. The stimulatory effect most probably resulted from the establishment of a direct interspecies electron transfer (DIET), based on magnetite particles serving as electron conduits between propionate-oxidizing acetogens and carbon dioxide-reducing methanogens. Theoretical calculations revealed that DIET allows electrons to be transferred among syntrophic partners at rates which are substantially higher than those attainable via interspecies H2 transfer. Besides the remarkable potential for improving anaerobic digestion, which is a proven biological strategy for renewable energy production, the herein described conduction-based DIET could also have a role in natural methane emissions from magnetite-rich soils and sediments.

  18. Geolipids produced by methanogens and sulfate-reducing bacteria at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Bradley, A. S.; Hayes, J. M.; Summons, R. E.

    2003-12-01

    Molecular biomarkers document the presence in a geologic system of particular microbial lineages, or of microbes that use specific metabolic processes. Lipid extracts from carbonate rocks of the Lost City Hydrothermal Field yield a predominance of biomarkers diagnostic for methanogenic archaea including the ether lipids archaeol, sn-2 and sn-3 hydroxyarchaeol, and dihydroxyarchaeol and the hydrocarbon 2,6,10,15,19-pentamethylicosane (PMI). Sterols and hopanoids, diagnostic for eukaryotes and bacteria respectively, were subordinate. At ten sites surveyed thus far, biomarker types were not correlated with vent temperature or activity. Hydroxyarchaeols were detected in three active (T >= 70° C) and two inactive vents. Glycerol monoethers with saturated and unsaturated C15-C20 n-alkyl chains, diagnostic for sulfate-reducing bacteria, were detected in five active and three inactive vents. Carbohydrates were detected in four active vents, but not in the inactive vents. High concentrations of sn-2 and sn-3 hydroxyarchaeol and a dihydroxyarchaeol at a 70° C site (sample 3869-1404) suggest that methane cycling is the dominant metabolic processes at this location. The presence of methanogens at this site is confirmed by the presence of pentamethylicosane. Stable isotopic compositions of these biomarkers will be used to determine whether these methanogens are consuming or producing methane. This sample also contains C16 and C18 saturated glycerol monoethers. In conjunction with genomic studies, the biomarker analyses will document the metabolic roles of microbes in this system.

  19. Choline and N,N-Dimethylethanolamine as Direct Substrates for Methanogens

    PubMed Central

    Watkins, Andrew J.; Roussel, Erwan G.; Webster, Gordon; Parkes, R. John

    2012-01-01

    Choline (N,N,N-trimethylethanolamine), which is widely distributed in membrane lipids and is a component of sediment biota, has been shown to be utilized anaerobically by mixed prokaryote cultures to produce methane but not by pure cultures of methanogens. Here, we show that five recently isolated Methanococcoides strains from a range of sediments (Aarhus Bay, Denmark; Severn Estuary mudflats at Portishead, United Kingdom; Darwin Mud Volcano, Gulf of Cadiz; Napoli mud volcano, eastern Mediterranean) can directly utilize choline for methanogenesis producing ethanolamine, which is not further metabolized. Di- and monomethylethanolamine are metabolic intermediates that temporarily accumulate. Consistent with this, dimethylethanolamine was shown to be another new growth substrate, but monomethylethanolamine was not. The specific methanogen inhibitor 2-bromoethanesulfonate (BES) inhibited methane production from choline. When choline and trimethylamine are provided together, diauxic growth occurs, with trimethylamine being utilized first, and then after a lag (∼7 days) choline is metabolized. Three type strains of Methanococcoides (M. methylutens, M. burtonii, and M. alaskense), in contrast, did not utilize choline. However, two of them (M. methylutens and M. burtonii) did metabolize dimethylethanolamine. These results extend the known substrates that can be directly utilized by some methanogens, giving them the advantage that they would not be reliant on bacterial syntrophs for their substrate supply. PMID:23001649

  20. Anaerobic digestion from residue of industrial cassava industrialization with acidogenic and methanogenic physical separation phases.

    PubMed

    Paixão, M A; Tavares, C R; Bergamasco, R; Bonifácio, A L; Costa, R T

    2000-01-01

    A trial was carried out in a continuous regimen, using a completely stirred tank reactor, at acidogenic phase, and a hybrid reactor (upflow anaerobic sludge blanket + fixed bed) at methanogenic phase at room temperature. The residue to be treated came from a flour and cassava meal industry, and the reactors operated for 300 d with affluent chemical oxygen demand (COD) concentrations of 7500, 9000, 11,000, and 14,000 mg/L. The final results showed a biogas production with a content of 80% methane and an average reduction of COD and free cyanide of nearly 96 and 98%, respectively. The separation of phases selected bacterial groups. At acidogenic phase, a predominance of propionic, n-butyric, and n-valeric acids, as well as a biomass composed of 95% fermentative bacilli, which were responsible for a 90% reduction in free cyanide concentration, was observed. At methanogenic phase, a predominance of methanogenic bacteria that came only from the Methanothrix genus was observed. The bacteria were responsible for high levels of organic matter removal and methane production.

  1. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    SciTech Connect

    Sandoval Lozano, Claudia Johanna Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-02-15

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

  2. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment.

    PubMed

    Lozano, Claudia Johanna Sandoval; Mendoza, Marisol Vergara; de Arango, Mariela Carreño; Monroy, Edgar Fernando Castillo

    2009-02-01

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH(4) and CO(2)) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Río Frío Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L(-1) and a concentration of CO(2) of 90%. In this reactor, the fermentative population was predominant (10(5)-10(6)MPN mL(-1)). The acetogenic population was (10(5)MPN mL(-1)) and the sulphate-reducing population was (10(4)-10(5)MPN mL(-1)). In the methanogenic reactor (R2), levels of CH(4) (70%) were higher than CO(2) (25%), whereas the VFA values were lower than 4000 mg L(-1). Substrate competition between sulphate-reducing (10(4)-10(5)MPN mL(-1)) and methanogenic bacteria (10(5)MPN mL(-1)) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH(4)g(-1)VSS(-1)day(-1)) and hydrogenophilic (0.94 g COD-CH(4)g(-1)VSS(-1)day(-1)) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified. PMID:18707861

  3. The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China.

    PubMed

    Liu, Deyan; Ding, Weixin; Jia, Zhongjun; Cai, Zucong

    2012-10-01

    Significant spatial variation in CH(4) emissions is a well-established feature of natural wetland ecosystems. To understand the key factors affecting CH(4) production, the variation in community structure of methanogenic archaea, in relation to substrate and external environmental influences, was investigated in selected wetlands across China, using denaturing gradient gel electrophoresis. Case study areas were the subtropical Poyang wetland, the warm-temperate Hongze wetland, the cold-temperate Sanjiang marshes, and the alpine Ruoergai peatland on the Qinghai-Tibetan Plateau. The topsoil layer in the Hongze wetland exhibited the highest population of methanogens; the lowest was found in the Poyang wetland. Maximum CH(4) production occurred in the topsoil layer of the Sanjiang Carex lasiocarpa marsh, the minimum was observed in the Ruoergai peatland. CH(4) production potential was significantly correlated with the dissolved organic carbon (DOC) concentration but not with the abundance or diversity indices of methanogenic archaea. Phylogenetic analysis and DOC concentration indicated a shift in the dominant methanogen from the hydrogenotrophic Methanobacteriales in DOC-rich wetlands to Methanosarcinaceae with a low affinity in wetlands with relatively high DOC and then to the acetotrophic methanogen Methanosaetaceae with a high affinity in wetlands with low DOC, or with high DOC but rich sulfate-reducing bacteria. Therefore, it is proposed that the dominant methanogen type in wetlands is primarily influenced by available DOC concentration. In turn, the variation in CH(4) production potential in the wetlands of eastern China is attributable to differences in the DOC content and the dominant type of methanogen present.

  4. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values.

    PubMed Central

    Barredo, M S; Evison, L M

    1991-01-01

    The effect of propionate toxicity at different pH values (6.5, 7.0, and 8.0) on methanogen-enriched sludge. Methanobrevibacter smithii, and Methanospirillum hungatii was studied. Organisms were grown in Balch medium 3 in Hungate tubes, and toxicity was characterized by a decrease in production of methane and in bacterial numbers. Propionate inhibited bacterial growth and cumulative methane production at concentrations as low as 20 mM. In the absence of propionate, the methanogen-enriched sludge and M. smithii showed better cumulative methane production at pH 6.5 and 7.0 than at pH 8.0. However, in the presence of propionate, these organisms showed better cumulative methane production at pH 8.0. M. hungatii differed in its behavior; the best values of cumulative methane production for this organism occurred at pH 7.0. Bacterial numbers reflected the microbial response to the presence of propionate. The highest counts of methanogenic bacteria were observed at pH 6.5 and 8.0. The numbers of methanogens were affected by the presence of propionate even at concentrations as low as 20 or 30 mM; at propionate concentrations above 80 mM, the methanogen count was affected by at least 2 orders of magnitude. Upon comparison of the responses of the pure cultures and the methanogen-enriched sludge to increasing propionate concentrations, it was found that the sensitivity of the pure cultures was similar to that of the methanogens in the sludge. PMID:1872605

  5. The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China.

    PubMed

    Liu, Deyan; Ding, Weixin; Jia, Zhongjun; Cai, Zucong

    2012-10-01

    Significant spatial variation in CH(4) emissions is a well-established feature of natural wetland ecosystems. To understand the key factors affecting CH(4) production, the variation in community structure of methanogenic archaea, in relation to substrate and external environmental influences, was investigated in selected wetlands across China, using denaturing gradient gel electrophoresis. Case study areas were the subtropical Poyang wetland, the warm-temperate Hongze wetland, the cold-temperate Sanjiang marshes, and the alpine Ruoergai peatland on the Qinghai-Tibetan Plateau. The topsoil layer in the Hongze wetland exhibited the highest population of methanogens; the lowest was found in the Poyang wetland. Maximum CH(4) production occurred in the topsoil layer of the Sanjiang Carex lasiocarpa marsh, the minimum was observed in the Ruoergai peatland. CH(4) production potential was significantly correlated with the dissolved organic carbon (DOC) concentration but not with the abundance or diversity indices of methanogenic archaea. Phylogenetic analysis and DOC concentration indicated a shift in the dominant methanogen from the hydrogenotrophic Methanobacteriales in DOC-rich wetlands to Methanosarcinaceae with a low affinity in wetlands with relatively high DOC and then to the acetotrophic methanogen Methanosaetaceae with a high affinity in wetlands with low DOC, or with high DOC but rich sulfate-reducing bacteria. Therefore, it is proposed that the dominant methanogen type in wetlands is primarily influenced by available DOC concentration. In turn, the variation in CH(4) production potential in the wetlands of eastern China is attributable to differences in the DOC content and the dominant type of methanogen present. PMID:22218772

  6. How do people define moderation?

    PubMed

    vanDellen, Michelle R; Isherwood, Jennifer C; Delose, Julie E

    2016-06-01

    Eating in moderation is considered to be sound and practical advice for weight maintenance or prevention of weight gain. However, the concept of moderation is ambiguous, and the effect of moderation messages on consumption has yet to be empirically examined. The present manuscript examines how people define moderate consumption. We expected that people would define moderate consumption in ways that justified their current or desired consumption rather than view moderation as an objective standard. In Studies 1 and 2, moderate consumption was perceived to involve greater quantities of an unhealthy food (chocolate chip cookies, gummy candies) than perceptions of how much one should consume. In Study 3, participants generally perceived themselves to eat in moderation and defined moderate consumption as greater than their personal consumption. Furthermore, definitions of moderate consumption were related to personal consumption behaviors. Results suggest that the endorsement of moderation messages allows for a wide range of interpretations of moderate consumption. Thus, we conclude that moderation messages are unlikely to be effective messages for helping people maintain or lose weight. PMID:26964691

  7. How do people define moderation?

    PubMed

    vanDellen, Michelle R; Isherwood, Jennifer C; Delose, Julie E

    2016-06-01

    Eating in moderation is considered to be sound and practical advice for weight maintenance or prevention of weight gain. However, the concept of moderation is ambiguous, and the effect of moderation messages on consumption has yet to be empirically examined. The present manuscript examines how people define moderate consumption. We expected that people would define moderate consumption in ways that justified their current or desired consumption rather than view moderation as an objective standard. In Studies 1 and 2, moderate consumption was perceived to involve greater quantities of an unhealthy food (chocolate chip cookies, gummy candies) than perceptions of how much one should consume. In Study 3, participants generally perceived themselves to eat in moderation and defined moderate consumption as greater than their personal consumption. Furthermore, definitions of moderate consumption were related to personal consumption behaviors. Results suggest that the endorsement of moderation messages allows for a wide range of interpretations of moderate consumption. Thus, we conclude that moderation messages are unlikely to be effective messages for helping people maintain or lose weight.

  8. Application of the fluorescent-antibody technique to the study of a methanogenic bacterium in lake sediments.

    PubMed

    Strayer, R F; Tiedje, J M

    1978-01-01

    Fluorescent antibody (FA) was prepared for a methanogenic bacterium isolated from Wintergreen Lake pelagic sediment. The isolate resembles Methanobacterium formicicum. The FA did not cross-react with 9 other methanogens, including M. formicicum strains, or 24 heterotrophs, 18 of which had been isolated from Wintergreen Lake sediment. FA-reacting methanogens were detected in heat-fixed smears of several different lake sediments and anaerobic sewage sludge. Pretreatment of all samples with either rhodamine-conjugated geletin or bovine serum albumin adequately controlled nonspecific absorption of the FA. Autofluorescent particles were observed in the sediment samples but, with experience, they could easily be distinguished from FA-reacting bacteria. FA direct counts of the specific methanogen in Wintergreen Lake sediments were made on four different sampling dates and compared with five-tube most-probable-number estimates of the total methanogenic population that was present in the same samples. The FA counts ranged from 3.1 X 10(6) to 1.4 X 10(7)/g of dry sediment. The highest most-probable-number estimates were at least an order ofmagnitude lower.

  9. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Drift, C. van der; Vogels, G.D.

    1999-05-01

    The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 {micro}mol of DMS was stoichiometrically converted into 112 {micro}mol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, the study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.

  10. Effects of soil structure destruction on methane production andcarbon partitioning between methanogenic pathways in tropical rain forestsoils

    SciTech Connect

    Teh, Yit Arn; Silver, Whendee L.

    2005-01-25

    Controls on methanogenesis are often determined fromlaboratory incubations of soils converted to slurries. Destruction ofsoil structure during slurry conversion may disrupt syntrophicassociations, kill methanogens, and/or alter the microsite distributionof methanogenic activity, suppressing CH4 production. The effects ofslurry conversion on methanogenesis were investigated to determine ifdisruption of aggregate structure impacted methanogenesis, substrateutilization, and C partitioning between methanogenic pathways. Soils werecollected from the tropical rain forest life zone of the LuquilloExperimental Forest, Puerto Rico, and exposed to different physicaldisturbances, including flooding and physical homogenization. Slurryconversion negatively impacted methanogenesis. Rates of CH4 productiondeclined by a factor of 17 after well-aggregated soils were converted toslurries. Significantly more 13C-acetate was recovered in CO2 compared toCH4 after slurry conversion, suggesting that methanogens consumed lessacetate after slurry conversion and may have competed less effectivelywith other anaerobes for acetate. Isotopic data indicate that therelative partitioning of C between aceticlastic and hydrogenotrophicpathways wasunchanged after slurry conversion. These data suggest thatexperiments which destroy soil structure may significantly underestimatemethanogenesis and overestimate the potential for other microorganisms tocompete with methanogens for organic substrates. Current knowledge of thefactors that regulate methanogenesis in soil may be biased by thefindings of slurry-based experiments, that do not accurately representthe complex, spatially heterogeneous conditions found in well-aggregatedsoils.

  11. FLUID MODERATED REACTOR

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  12. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    PubMed

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.

  13. Heterogeneous Distribution of Microbial Activity in Methanogenic Aggregates: pH and Glucose Microprofiles

    PubMed Central

    Lens, Piet N. L.; De Beer, Dirk; Cronenberg, Carel C. H.; Houwen, Frans P.; Ottengraf, Simon P. P.; Verstraete, Willy H.

    1993-01-01

    Methanogenic aggregates, harvested from an upflow anaerobic sludge blanket reactor treating potato starch wastewater, were acclimatized to either glucose or a mixture of sugars and organic nitrogen compounds (i.e., diluted molasses). Both types of granules exhibited internal pH and substrate concentration gradients in mineral medium (pH 7.0, 30°C) as was measured with microelectrodes. Glucose-acclimatized granules suspended in a mineral medium lacking glucose exhibited a distinct internal pH decrease of about 1 U within the granule, suggesting strong metabolism by the acidogenic bacteria. Molasses-acclimatized and aged granules suspended in mineral medium did not exhibit such a pH decrease, suggesting the importance of the metabolic state of these acidogens. The pH gradient did not occur in deactivated granules and was not observable in strongly buffered media (mineral medium containing 33 mM phosphate or reactor liquid). When glucose (0.5 to 5.0 mM) was added to the mineral medium, granules exhibited a convex pH profile. Glucose consumption was located exclusively in the outer 200 to 300 μm of the aggregates (mean diameter = 1.5 mm). The addition of 20 mM 2-bromoethanesulfonic acid to the mineral medium indicated that the higher pH levels in the centre of the granule appeared to be related to the activity of methanogens. It is suggested that acidogenic activity occurs predominantly in the outer 200 to 300 μm of the aggregate and methanogenic activity occurs predominantly in the center of the investigated granules. Images PMID:16349091

  14. A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics.

    PubMed

    Yang, Yu; Gajaraj, Shashikanth; Wall, Judy D; Hu, Zhiqiang

    2013-06-15

    Silver nanoparticles (AgNPs, nanosilver) and silver ions released from industry and various consumer products are eventually disposed in sanitary landfills. To compare the effects of these two forms of silver on landfill bioreactor operations with leachate recirculation, municipal solid waste (MSW) in six identical 9-L bioreactors was exposed to AgNPs (stabilized with 0.06% polyvinyl alcohol) or Ag(+) at a silver concentration of 10 mg/kg solids. The landfill anaerobic digestion was operated and monitored for more than 200 days. There was no significant difference in cumulative methane volume or methane production rate between the groups of control and 10 mg/kg Ag(+). However, MSW treated with 10 mg/kg AgNPs resulted in a reduced methane production (by up to 80%) and accumulation of volatile fatty acids in the leachates. This was accompanied by higher leachate Ag concentrations (an average of 3.7 ± 0.3 mg/L) after day 132 as compared to those in the groups of control and 10 mg/kg Ag(+) at 0.7 ± 0.4 and 1.1 ± 0.3 mg/L, respectively. Quantitative PCR targeting 16S rRNA genes of methanogens indicated reduced methanogenic growth in the bioreactors exposed to nanosilver. The peak values of total methanogens in leachates were (1.18 ± 0.09) × 10(10), (4.57 ± 2.67) × 10(10) and (7.72 ± 0.78) × 10(8) (cells/mL) for the groups of control, Ag(+) and AgNPs, respectively. The results suggest that silver ions have minimal impact on landfill methane production at the concentration of 10 mg/kg. However, nanosilver inhibits methanogenesis and is more toxic than its counterpart, likely due to slow and long-term Ag(+) release from nanosilver dissolution yielding more bioavailability in landfill leachates.

  15. Analysis of methanogenic and methanotrophic activity at the western margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Broemsen, E. L.; Webster, K. D.; Dieser, M.; Pratt, L. M.; Christner, B. C.

    2012-12-01

    Anoxic conditions in environments beneath the world's glaciers and ice sheets provide plausible habitats supporting the microbial production of methane. Recent reports of potential methane sources beneath the Greenland Ice Sheet (GrIS) suggest in situ production by an active community of methanogens. Beneath the GrIS, microbially derived methane can be dissolved in subglacial water, and during periods of melting, can exchange with the atmosphere at sites of subglacial discharge. Transfer of methane from subglacial fluids to the atmosphere could be a significant climate factor, but few data are available to make such assessments. The specific aim of this study was to characterize the composition and activity of methanogens and methanotrophs present in samples of subglacial outflow at the ice sheet margin near Kangerlussuaq, Greenland. Subglaical water was collected twice-weekly over a nine week period (mid July to mid September of 2012) and the dissolved methane concentration in the samples was determined via gas chromatography. Extracted RNA and DNA from the subglacial water was analyzed by analysis of 16s rRNA and rRNA genes present in the subglacial assemblages. From the molecular results we infer the presence of active methanogens related to the order Methanosarcinales. Further, locally elevated concentrations of atmospheric methane as high as 1.92 ± 0.03 ppmv, were detected in the ice tunnel of the subglacial outflow using open-path laser spectrometry. From these data we estimate rates of methane release at the ice sheet margin during the summer melt months at this geographical location. The results provide a context for addressing the impact that deglaciation will have on the release of greenhouse gases from ice sheets on a warming Earth.

  16. Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates

    PubMed Central

    Morita, Masahiko; Malvankar, Nikhil S.; Franks, Ashley E.; Summers, Zarath M.; Giloteaux, Ludovic; Rotaru, Amelia E.; Rotaru, Camelia; Lovley, Derek R.

    2011-01-01

    ABSTRACT Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems. PMID:21862629

  17. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.

    PubMed

    Schmidt, Oliver; Hink, Linda; Horn, Marcus A; Drake, Harold L

    2016-08-01

    Syntrophic bacteria drive the anaerobic degradation of certain fermentation products (e.g., butyrate, ethanol, propionate) to intermediary substrates (e.g., H2, formate, acetate) that yield methane at the ecosystem level. However, little is known about the in situ activities and identities of these syntrophs in peatlands, ecosystems that produce significant quantities of methane. The consumption of butyrate, ethanol or propionate by anoxic peat slurries at 5 and 15 °C yielded methane and CO2 as the sole accumulating products, indicating that the intermediates H2, formate and acetate were scavenged effectively by syntrophic methanogenic consortia. 16S rRNA stable isotope probing identified novel species/strains of Pelobacter and Syntrophomonas that syntrophically oxidized ethanol and butyrate, respectively. Propionate was syntrophically oxidized by novel species of Syntrophobacter and Smithella, genera that use different propionate-oxidizing pathways. Taxa not known for a syntrophic metabolism may have been involved in the oxidation of butyrate (Telmatospirillum-related) and propionate (unclassified Bacteroidetes and unclassified Fibrobacteres). Gibbs free energies (ΔGs) for syntrophic oxidations of ethanol and butyrate were more favorable than ΔGs for syntrophic oxidation of propionate. As a result of the thermodynamic constraints, acetate transiently accumulated in ethanol and butyrate treatments but not in propionate treatments. Aceticlastic methanogens (Methanosarcina, Methanosaeta) appeared to outnumber hydrogenotrophic methanogens (Methanocella, Methanoregula), reinforcing the likely importance of aceticlastic methanogenesis to the overall production of methane. ΔGs for acetogenesis from H2 to CO2 approximated to -20 kJ mol(-1) when acetate concentrations were low, indicating that acetogens may have contributed to the flow of carbon and reductant towards methane. PMID:26771931

  18. The alkaloid gramine in the anaerobic digestion process-inhibition and adaptation of the methanogenic community.

    PubMed

    Popp, Denny; Harms, Hauke; Sträuber, Heike

    2016-08-01

    As many plant secondary metabolites have antimicrobial activity, microorganisms of the anaerobic digestion process might be affected when plant material rich in these compounds is digested. Hitherto, the effects of plant secondary metabolites on the anaerobic digestion process are poorly investigated. In this study, the alkaloid gramine, a constituent of reed canary grass, was added daily to a continuous co-digestion of grass silage and cow manure. A transient decrease of the methane yield by 17 % and a subsequent recovery was observed, but no effect on other process parameters. When gramine was infrequently spiked in higher amounts, the observed inhibitory effect was even more pronounced including a 53 % decrease of the methane yield and an increase of acetic acid concentrations up to 96 mM. However, the process recovered and the process parameters were finally at initial values (methane yield around 255 LN CH4 per gram volatile solids of substrate and acetic acid concentration lower than 2 mM). The bacterial communities of the reactors remained stable upon gramine addition. In contrast, the methanogenic community changed from a well-balanced mixture of five phylotypes towards a strong dominance of Methanosarcina (more than two thirds of the methanogenic community) while Methanosaeta disappeared. Batch inhibition assays revealed that acetic acid was only converted to methane via acetoclastic methanogenesis which was more strongly affected by gramine than hydrogenotrophic methanogenesis and acetogenesis. Hence, when acetoclastic methanogenesis is the dominant pathway, a shift of the methanogenic community is necessary to digest gramine-rich plant material. PMID:27138201

  19. Diversity of methanogens in the hindgut of captive white rhinoceroses, Ceratotherium simum

    PubMed Central

    2013-01-01

    Background The white rhinoceros is on the verge of extinction with less than 20,200 animals remaining in the wild. In order to better protect these endangered animals, it is necessary to better understand their digestive physiology and nutritional requirements. The gut microbiota is nutritionally important for herbivorous animals. However, little is known about the microbial diversity in the gastrointestinal tract (GIT) of the white rhinoceros. Methanogen diversity in the GIT may be host species-specific and, or, function-dependent. To assess methanogen diversity in the hindgut of white rhinoceroses, an archaeal 16S rRNA gene clone library was constructed from pooled PCR products obtained from the feces of seven adult animals. Results Sequence analysis of 153 archaeal 16S rRNA sequences revealed 47 unique phylotypes, which were assigned to seven operational taxonomic units (OTUs 1 to 7). Sequences assigned to OTU-7 (64 out of 153 total sequencs – 42%) and OTU-5 (18%, 27/153) had 96.2% and 95.5% identity to Methanocorpusculum labreanum, respectively, making Methanocorpusculum labreanum the predominant phylotype in these white rhynoceroses. Sequences belonging to OTU-6 (27%, 42/153) were related (97.6%) to Methanobrevibacter smithii. Only 4% of the total sequences (6/153) were assigned to Methanosphaera stadtmanae (OTU-1). Sequences belonging to OTU-2 (4%, 6/153), OTU-3 (3%, 5/153) and OTU-4 (2%, 3/153) were distantly related (87.5 to 88,4%) to Methanomassiliicoccus luminyensis and were considered to be novel species or strains that have yet-to-be cultivated and characterized. Conclusion Phylogenetic analysis indicated that the methanogen species in the hindgut of white rhinoceroses were more similar to those in the hindgut of horses. Our findings may help develop studies on improving the digestibility of forage for sustainable management and better health of these endangered animals. PMID:24228793

  20. High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds

    SciTech Connect

    Zitomer, D.H.; Shrout, J.D.

    2000-02-01

    Many industrial wastewaters have both high organic pollution and sulfate (SO{sub 4}{sup {minus}2}) concentrations. Although biological conversion of organics to methane may be an economical chemical oxygen demand (COD) removal option, significant inhibition of methane production results from reduction of SO{sub 4}{sup {minus}2} to hydrogen sulfide (H{sub 2}S), which is inhibitory to methanogenic microorganisms. Therefore, sulfate-containing wastewater is often not amenable to conventional anaerobic treatment. Recently, limited aeration of recycle flow to hybrid and baffled reactors has been used to treat this wastewater and has been shown to reduce aqueous H{sub 2}S concentrations by causing production of uninhibitory sulfur (S{degree}) and thiosulfate (S{sub 2}O{sub 3}{sup {minus}2}) as well as gas stripping volatile H{sub 2}S. In this study, directly aerated methanogenic fluidized bed reactors (FBRs) achieved increased methane production compared to strictly anaerobic FBRs treating high-sulfate wastewater. Oxygen transfer satisfying up to 28% of the COD load resulted in maximum specific oxygen utilization rates of 0.20 mg oxygen/g volatile solids{center{underscore}dot}min, with significant, concomitant methane production. Under typically inhibitory SO{sub 4}{sup {minus}2} loading, higher aeration caused increased effluent SO{sub 4}{sup {minus}2}, increased H{sub 2}S mass in the offgas, and lower reactor H{sub 2}S concentration. As a result, COD removal increased from 25% for a strictly anaerobic FBR to 87% for an aerated FBR. In addition, aerated systems required significantly less alkalinity supplementation to maintain a pH value of 7, ostensibly because of stripping of acidic carbon dioxide. The potential pH increase associated with aeration also shifts sulfide speciation to less toxic disulfide. Direct, limited aeration of methanogenic FBRs is described as a method for increased COD removal when treating high-COD, high-sulfate wastewater.

  1. Identification of Methanoculleus spp. as Active Methanogens during Anoxic Incubations of Swine Manure Storage Tank Samples

    PubMed Central

    Barret, Maialen; Gagnon, Nathalie; Kalmokoff, Martin L.; Topp, Edward; Verastegui, Yris; Brooks, Stephen P. J.; Matias, Fernando; Neufeld, Josh D.

    2013-01-01

    Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-13C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of 13C into DNA was detectable at in situ acetate concentrations (∼7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the 13C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis. PMID:23104405

  2. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Pecoits, Ernesto; Lalonde, Stefan V; Papineau, Dominic; Nisbet, Euan G; Barley, Mark E; Arndt, Nicholas T; Zahnle, Kevin; Kamber, Balz S

    2009-04-01

    It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.

  3. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Pecoits, Ernesto; Lalonde, Stefan V; Papineau, Dominic; Nisbet, Euan G; Barley, Mark E; Arndt, Nicholas T; Zahnle, Kevin; Kamber, Balz S

    2009-04-01

    It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere. PMID:19360085

  4. Methanotrophic and Methanogenic Communities in Swiss Alpine Fens Dominated by Carex rostrata and Eriophorum angustifolium

    PubMed Central

    Cheema, Simrita; Henneberger, Ruth

    2015-01-01

    Vascular plants play a key role in controlling CH4 emissions from natural wetlands, because they influence CH4 production, oxidation, and transport to the atmosphere. Here we investigated differences in the abundance and composition of methanotrophic and methanogenic communities in three Swiss alpine fens dominated by different vascular plant species under natural conditions. The sampling locations either were situated at geographically distinct sites with different physicochemical properties but the same dominant plant species (Carex rostrata) or were located within the same site, showing comparable physicochemical pore water properties, but had different plant species (C. rostrata or Eriophorum angustifolium). All three locations were permanently submerged and showed high levels of CH4 emissions (80.3 to 184.4 mg CH4 m−2 day−1). Soil samples were collected from three different depths with different pore water CH4 and O2 concentrations and were analyzed for pmoA and mcrA gene and transcript abundance and community composition, as well as soil structure. The dominant plant species appeared to have a significant influence on the composition of the active methanotrophic communities (transcript level), while the methanogenic communities differed significantly only at the gene level. Yet no plant species-specific microbial taxa were discerned. Moreover, for all communities, differences in composition were more pronounced with the site (i.e., with different physicochemical properties) than with the plant species. Moreover, depth significantly influenced the composition of the active methanotrophic communities. Differences in abundance were generally low, and active methanotrophs and methanogens coexisted at all three locations and depths independently of CH4 and O2 concentrations or plant species. PMID:26092454

  5. Methanotrophic and Methanogenic Communities in Swiss Alpine Fens Dominated by Carex rostrata and Eriophorum angustifolium.

    PubMed

    Cheema, Simrita; Zeyer, Josef; Henneberger, Ruth

    2015-09-01

    Vascular plants play a key role in controlling CH4 emissions from natural wetlands, because they influence CH4 production, oxidation, and transport to the atmosphere. Here we investigated differences in the abundance and composition of methanotrophic and methanogenic communities in three Swiss alpine fens dominated by different vascular plant species under natural conditions. The sampling locations either were situated at geographically distinct sites with different physicochemical properties but the same dominant plant species (Carex rostrata) or were located within the same site, showing comparable physicochemical pore water properties, but had different plant species (C. rostrata or Eriophorum angustifolium). All three locations were permanently submerged and showed high levels of CH4 emissions (80.3 to 184.4 mg CH4 m(-2) day(-1)). Soil samples were collected from three different depths with different pore water CH4 and O2 concentrations and were analyzed for pmoA and mcrA gene and transcript abundance and community composition, as well as soil structure. The dominant plant species appeared to have a significant influence on the composition of the active methanotrophic communities (transcript level), while the methanogenic communities differed significantly only at the gene level. Yet no plant species-specific microbial taxa were discerned. Moreover, for all communities, differences in composition were more pronounced with the site (i.e., with different physicochemical properties) than with the plant species. Moreover, depth significantly influenced the composition of the active methanotrophic communities. Differences in abundance were generally low, and active methanotrophs and methanogens coexisted at all three locations and depths independently of CH4 and O2 concentrations or plant species.

  6. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    NASA Astrophysics Data System (ADS)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  7. Response of the methanogenic microbial communities in Amazonian oxbow lake sediments to desiccation stress.

    PubMed

    Conrad, Ralf; Ji, Yang; Noll, Matthias; Klose, Melanie; Claus, Peter; Enrich-Prast, Alex

    2014-06-01

    Methanogenic microbial communities in soil and sediment function only when the environment is inundated and anoxic. In contrast to submerged soils, desiccation of lake sediments happens only rarely. However, some predictions suggest that extreme events of drying will become more common in the Amazon region, and this will promote an increase in sediments drying and exposure. We asked whether and how such methanogenic communities can withstand desiccation stress. Therefore, we determined the rates and pathways of CH(4) production (analysis of CH(4) and δ(13) C of CH(4), CO(2) and acetate), the copy numbers of bacterial and archaeal 16S rRNA genes and mcrA genes (quantitative PCR), and the community composition of Archaea and Bacteria (T-RFLP and pyrosequencing) in oxbow lake sediments of rivers in the Brazilian Amazon region. The rivers were of white water, black water and clear water type. The measurements were done with sediment in fresh state and after drying and rewetting. After desiccation and rewetting the composition of both, the archaeal and bacterial community changed. Since lake sediments from white water rivers exhibited only negligible methanogenic activity, probably because of relatively high iron and low organic matter content, they were not further analysed. The other sediments produced CH(4), with hydrogenotrophic methanogenesis usually accounting for > 50% of total activity. After desiccation and rewetting, archaeal and bacterial gene copy numbers decreased. The bacterial community showed a remarkable increase of Clostridiales from about 10% to > 30% of all Bacteria, partially caused by proliferation of specific taxa as the numbers of OTU shared with fresh sediment decreased from about 9% to 3%. Among the Archaea, desiccation specifically enhanced the relative abundance of either Methanocellales (black water) and/or Methanosarcinaceae (clear water). Despite the changes in gene copy numbers and composition of the microbial community, rates of CH

  8. Identification of Endosymbiotic Methanogen and Ectosymbiotic Spirochetes of Gut Protists of the Termite Coptotermes formosanus.

    PubMed

    Inoue, Jun-Ichi; Noda, Satoko; Hongoh, Yuichi; Ui, Sadaharu; Ohkuma, Moriya

    2008-01-01

    Prokaryotic associations with gut protists of the termite Coptotermes formosanus were investigated based on 16S rRNA gene sequences. An endosymbiotic methanogen of Spirotrichonympha leidyi phylogenetically grouped with endosymbionts of other gut protists in the genus Methanobrevibacter, seemed to be unrelated to the host protist phylogeny. Three different lineages of ectosymbiotic spirochetes in the genus Treponema were identified in single cells of Holomastigotoides mirabile, indicating their simultaneous occurrence. Although these symbionts represented mere minor populations in the gut, their phylogenetic assignments suggest a common symbiotic relationship involving H(2) metabolism.

  9. Low strength ultrasonication positively affects the methanogenic granules toward higher AD performance. Part I: physico-chemical characteristics.

    PubMed

    Cho, Si-Kyung; Hwang, Yu-Hoon; Kim, Dong-Hoon; Jeong, In-Seok; Shin, Hang-Sik; Oh, Sae-Eun

    2013-05-01

    To elucidate the correlation between enhanced biogas production and changed physico-chemical properties of methanogenic granules after low strength ultrasonication, in this study, the effects of low strength ultrasonication on the settling velocity, permeability, porosity, and fluid collection efficiency of the methanogenic granules were investigated. In addition, their morphological changes were visualized using a scanning electron microscopic technique. The experimental results indicate that low strength ultrasonication increased both the permeability (37%) and specific surface area (230%) of the granules through the generation of greater craters and cracks on the granular surface compared to the control granules. The penetration of nutrients and substrate into the granules was thereby enhanced, and more favorable conditions for achieving higher anaerobic performance were provided to the ultrasonicated granules. The microbial community shift caused by the changed physico-chemical properties of the methanogenic granules will be further analyzed in part II of this study. PMID:23563439

  10. Investigation of methanogenic community structures in rural biogas digesters from different climatic regions in Yunnan, southwest China.

    PubMed

    Dong, Minghua; Wu, Yan; Li, Qiumin; Tian, Guangliang; Yang, Bin; Li, Yingjuan; Zhang, Lijuan; Wang, Yongxia; Xiao, Wei; Yin, Fang; Zhao, Xingling; Zhang, Wudi; Cui, Xiaolong

    2015-05-01

    Understanding of the microbial community structures of the biogas digesters in different climatic regions can help improve the methane production in the fermentation process. The methanogenic archaeal diversity in four rural biogas digesters (BNA, JSA, LJA, and XGA) was investigated by a culture-independent rRNA approach in different climatic regions in Yunnan. Community structure composed of 711 clones in the all libraries. A total of 33 operational taxonomic units (OTUs) were detected, and major groups of methanogens were the orders Methanosarcinales and Methanomicrobiales. 63.2 % of all archaeal OTUs belong to the order Methanosarcinales which mostly contain acetotrophic methanogens. Methanomicrobiales (19.5 % in all OTUs) were detected in considerable number. Additionally, there were minor rates of uncultured archaea. The principal component analysis indicated that the genus Methanosaeta was mainly affected by the fermentation temperatures. PMID:25575901

  11. Anaerobic 2-propanol degradation in anoxic paddy soil and the possible role of methanogens in its degradation.

    PubMed

    Tonouchi, Akio

    2004-08-01

    The anaerobic degradation of 2-propanol in anoxic paddy soil was studied with soil cultures and a 2-propanol-utilizing methanogen. Acetone was the first and the major intermediate involved in the methanogenic degradation of 2-propanol. Analyses with a methanogenesis inhibitor, bacteria antibiotics, and the addition of H2 to the gas phase revealed that 2-propanol oxidation to acetone directly occurred using 2-propanol-utilizing methanogens, but not with H2-producing syntrophic bacteria, for which the removal of acetone is required for complete 2-propanol oxidation. The 2-propanol-utilizing strain IIE1, which is phylogenetically closely related to Methanoculleus palmolei, was isolated from paddy soil, and the potential role of the strain in 2-propanol degradation was investigated. 2-Propanol is one of the representative fermentation intermediates in anaerobic environments. This is the first report on the anaerobic 2-propanol degradation process. PMID:15297909

  12. Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater.

    PubMed

    Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Zieliński, Marcin; Dębowski, Marcin

    2013-02-01

    This study analyzed dairy wastewater fermentation in convection- and microwave-heated hybrid reactors at loadings of 1 and 2 kg COD/(m3 d) and temperatures of 35 and 55 °C. The biomass was investigated at a molecular level to determine the links between the operational parameters of anaerobic digestion and methanogenic Archaea structure. The highest production of biogas with methane content of ca. 67% was noted in the mesophilic microwave-heated reactors. The production of methane-rich biogas and the overall diversity of Archaea was determined by Methanosarcinaceae presence. The temperature and the application of microwaves were the main factors explaining the variations in the methanogen community. At 35 °C, the microwave heating stimulated the growth of highly diverse methanogen assemblages, promoting Methanosarcina barkeri presence and excluding Methanosarcina harudinacea from the biomass. A temperature increase to 55 °C lowered Methanosarcinaceae abundance and induced a replacement of Methanoculleus palmolei by Methanosarcina thermophila.

  13. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents

    PubMed Central

    Topçuoğlu, Begüm D.; Stewart, Lucy C.; Morrison, Hilary G.; Butterfield, David A.; Huber, Julie A.; Holden, James F.

    2016-01-01

    Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7–40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4+ generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments. PMID:27547206

  14. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents.

    PubMed

    Topçuoğlu, Begüm D; Stewart, Lucy C; Morrison, Hilary G; Butterfield, David A; Huber, Julie A; Holden, James F

    2016-01-01

    Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4 (+) generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments.

  15. Reactive transport model of growth and methane production by high-temperature methanogens in hydrothermal regions of the subseafloor

    NASA Astrophysics Data System (ADS)

    Stewart, L. C.; Algar, C. K.; Topçuoğlu, B. D.; Fortunato, C. S.; Larson, B. I.; Proskurowski, G. K.; Butterfield, D. A.; Vallino, J. J.; Huber, J. A.; Holden, J. F.

    2014-12-01

    Hydrogenotrophic methanogens are keystone high-temperature autotrophs in deep-sea hydrothermal vents and tracers of habitability and biogeochemical activity in the hydrothermally active subseafloor. At Axial Seamount, nearly all thermophilic methanogens are Methanothermococcus and Methanocaldococcus species, making this site amenable to modeling through pure culture laboratory experiments coupled with field studies. Based on field microcosm incubations with 1.2 mM, 20 μM, or no hydrogen, the growth of methanogens at 55°C and 80°C is limited primarily by temperature and hydrogen availability, with ammonium amendment showing no consistent effect on total methane output. The Arrhenius constants for methane production by Methanocaldococcus jannaschii (optimum 82°C) and Methanothermococcus thermolithotrophicus (optimum 65°C) were determined in pure culture bottle experiments. The Monod constants for hydrogen concentration were measured by growing both organisms in a 2-liter chemostat at two dilution rates; 55°C, 65°C and 82°C; and variable hydrogen concentrations. M. jannaschii showed higher ks and Vmax constants than M. thermolithotrophicus. In the field, hydrogen and methane concentrations in hydrothermal end-member and low-temperature diffuse fluids were measured, and the concentrations of methanogens that grow at 55°C and 80°C in diffuse fluids were determined using most-probable-number estimates. Methane concentration anomalies in diffuse fluids relative to end-member hydrothermal concentrations and methanogen cell concentrations are being used to constrain a 1-D reactive transport model using the laboratory-determined Arrhenius and Monod constants for methane production by these organisms. By varying flow path length and subseafloor cell concentrations in the model, our goal is to determine solutions for the potential depth of the subseafloor biosphere coupled with the amount of methanogenic biomass it contains.

  16. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents.

    PubMed

    Topçuoğlu, Begüm D; Stewart, Lucy C; Morrison, Hilary G; Butterfield, David A; Huber, Julie A; Holden, James F

    2016-01-01

    Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4 (+) generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments. PMID:27547206

  17. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints.

    PubMed

    Ganzert, Lars; Jurgens, German; Münster, Uwe; Wagner, Dirk

    2007-02-01

    Permafrost environments in the Arctic are characterized by extreme environmental conditions that demand a specific resistance from microorganisms to enable them to survive. In order to understand the carbon dynamics in the climate-sensitive Arctic permafrost environments, the activity and diversity of methanogenic communities were studied in three different permafrost soils of the Siberian Laptev Sea coast. The effect of temperature and the availability of methanogenic substrates on CH4 production was analysed. In addition, the diversity of methanogens was analysed by PCR with specific methanogenic primers and by denaturing gradient gel electrophoresis (DGGE) followed by sequencing of DGGE bands reamplified from the gel. Our results demonstrated methanogenesis with a distinct vertical profile in each investigated permafrost soil. The soils on Samoylov Island showed at least two optima of CH4 production activity, which indicated a shift in the methanogenic community from mesophilic to psychrotolerant methanogens with increasing soil depth. Furthermore, it was shown that CH4 production in permafrost soils is substrate-limited, although these soils are characterized by the accumulation of organic matter. Sequence analyses revealed a distinct diversity of methanogenic archaea affiliated to Methanomicrobiaceae, Methanosarcinaceae and Methanosaetaceae. However, a relationship between the activity and diversity of methanogens in permafrost soils could not be shown. PMID:16978241

  18. Anaerobic biodegradation of soybean biodiesel and diesel blends under methanogenic conditions.

    PubMed

    Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D

    2015-12-15

    Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic biodegradation of soybean biodiesel B100 (biodiesel only) with different petrodiesel loads was studied using biomass pre-acclimated to B100 and B80 (80% biodiesel and 20% petrodiesel). The results indicated that the biodiesel fraction of the blend could be effectively biodegraded, whereas petrodiesel was not biodegraded at all under methanogenic conditions. The presence of petrodiesel in blends with biodiesel had a greater inhibitory effect on the rate of biodegradation than the biodegradation efficiency (defined as the efficiency of methane production). Both the biodegradation rate coefficient and the methane production efficiency increased almost linearly with the increasing fraction of biodiesel. With the increasing fraction of petrodiesel, the biodegradation rate and efficiency were correlated with the concentration of soluble FAMEs in the water.

  19. The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Carter, W. D., Jr.

    1992-01-01

    The delta C-13 value of porewater acetate isolated from the anoxic sediments of Cape Lookout Bight (North Carolina) ranged from -17.6 percent in the sulfate reduction zone to -2.8 percent in the underlying methanogenic zone. The large C-13 enrichment in the sulfate-depleted sediments appears to be associated with the dissimilation of acetate to CH4 and CO2. Fractionation factors for that process were estimated to be 1.032 +/- 0.014 and 1.036 +/- 0.019 for the methyl and carboxyl groups. A subsurface maximum in delta C-13 of the total acetate molecule, as well as the methyl and carboxyl carbons at 10-15 cm depth within the sediment column, indicate that changes in the relative rates of acetate cycling pathways occur in the methanogenic zone. The methyl group of the acetate was depleted in C-13 by 7-14 percent relative to the carboxyl moiety. The intramolecular heterogeneity may be the result of both synthetic and catabolic isotope effects.

  20. Decolorization of a reactive copper-phthalocyanine dye under methanogenic conditions.

    PubMed

    Beydili, M I; Matthews, R D; Pavlostathis, S G

    2001-01-01

    The objective of this research was to assess the biological decolorization of the copper-phthalocyanine dye Reactive Blue 7 (RB7) under methanogenic conditions using a mixed, methanogenic culture in a repetitive dye addition batch assay. The initial rate of decolorization was 13.2 mg/L-d and 5.7 mg/L-d for the first and second dye addition, respectively. For an initial RB7 concentration of ca. 300 mg/L, the extent of decolorization remained constant (about 62%) for each repetitive RB7 addition and resulted in a residual color build up. Declining absorbance ratio values (A664/A620) with increasing incubation time confirmed that the observed color removal was due to transformation as opposed to adsorption on the biomass. Chemical decolorization assays using sodium dithionite as the reducing agent resulted in similar absorbance spectra to that obtained after biological decolorization. In addition, in both the chemical and biological decolorization assays, partial oxidation of the reduced dye solution upon exposure to air resulted in higher residual color, indicating that the reduction and decolorization of RB7 are partially reversible. These results also suggest that RB7 reduction and decolorization both chemically and biologically most likely followed a similar reduction mechanism.

  1. Archaea and Bacteria Acclimate to High Total Ammonia in a Methanogenic Reactor Treating Swine Waste

    PubMed Central

    Parameswaran, Prathap; Rittmann, Bruce E.

    2016-01-01

    Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H2 accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH3-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis. PMID:27725793

  2. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

    NASA Astrophysics Data System (ADS)

    Mickol, R. L.; Kral, T. A.

    2016-09-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  3. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane.

    PubMed

    Denman, Stuart E; Tomkins, Nigel W; McSweeney, Christopher S

    2007-12-01

    Methyl coenzyme-M reductase A (mcrA) clone libraries were generated from microbial DNA extracted from the rumen of cattle fed a roughage diet with and without supplementation of the antimethanogenic compound bromochloromethane. Bromochloromethane reduced total methane emissions by c. 30%, with a resultant increase in propionate and branched chain fatty acids. The mcrA clone libraries revealed that Methanobrevibacter spp. were the dominant species identified. A decrease in the incidence of Methanobrevibacter spp. from the clone library generated from bromochloromethane treatment was observed. In addition, a more diverse methanogenic population with representatives from Methanococcales, Methanomicrobiales and Methanosacinales orders was observed for the bromochloromethane library. Sequence data generated from these libraries aided in the design of an mcrA-targeted quantitative PCR (qPCR) assay. The reduction in methane production by bromochloromethane was associated with an average decrease of 34% in the number of methanogenic Archaea when monitored with this qPCR assay. Dissociation curve analysis of mcrA amplicons showed a clear difference in melting temperatures for Methanobrevibacter spp. (80-82 degrees C) and all other methanongens (84-86 degrees C). A decrease in the intensity of the Methanobrevibacter spp. specific peak and an increase for the other peak in the bromochloromethane-treated animals corresponded with the changes within the clone libraries.

  4. The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9.

    PubMed

    Kelly, William J; Pacheco, Diana M; Li, Dong; Attwood, Graeme T; Altermann, Eric; Leahy, Sinead C

    2016-01-01

    Methanobrevibacter millerae SM9 was isolated from the rumen of a sheep maintained on a fresh forage diet, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. It is the first rumen isolate from the Methanobrevibacter gottschalkii clade to have its genome sequence completed. The 2.54 Mb SM9 chromosome has an average G + C content of 31.8 %, encodes 2269 protein-coding genes, and harbors a single prophage. The overall gene content is comparable to that of Methanobrevibacter ruminantium M1 and the type strain of M. millerae (ZA-10(T)) suggesting that the basic metabolism of these two hydrogenotrophic rumen methanogen species is similar. However, M. millerae has a larger complement of genes involved in methanogenesis including genes for methyl coenzyme M reductase II (mrtAGDB) which are not found in M1. Unusual features of the M. millerae genomes include the presence of a tannase gene which shows high sequence similarity with the tannase from Lactobacillus plantarum, and large non-ribosomal peptide synthase genes. The M. millerae sequences indicate that methane mitigation strategies based on the M. ruminantium M1 genome sequence are also likely to be applicable to members of the M. gottschalkii clade. PMID:27536339

  5. Molecular biology and genetics of the acetate-utilizing methanogenic bacteria

    SciTech Connect

    Gunsalus, R.P.

    1991-01-01

    Acetate conversion to methane and C0{sub 2} by the methanogenic archaebacteria is a primary rate limiting step in anaerobic biodegradative processes in nature. However, the genetic study of these organisms has not been experimentally tractable due to the inability to grow and plate the organisms as single cells, and to extract high molecular weight DNA and RNA without shearing. The acetate-utilizing species, Methanosarcina thermolphila TM-1, is being used for the proposed genetic and molecular studies because, unlike previously described acetotrophic methanosarcina that have a thick heteropolysaccharide cell wall, this species can be cultured in a unicellular form that has a protein cell wall lacking the heteropolysaccharide layer. These cells can be gently disrupted to obtain protoplasts or lysed to yield intact genomic DNA and RNA. Experiments are in progress to develop a gene transfer system in this bacterial species. Methods are being developed and refined for the efficient plating of M. thermophila on defined media, for chemical mutagenesis, and for the isolation of mutants defective in acetate utilization. Chromosomal DNA libraries have been constructed from M. thermophila and are being used to clone genes involved in the acetate utilization pathway (e.g. carbon monoxide dehydrogenase). Once cloned, analysis of the molecular mechanisms responsible for their regulatory control will be performed. These studies should aid our understanding of the pathway for acetate utilization in M. thermophila and serve as a model for elucidating regulatory mechanisms in the acetotrophic methanogens.

  6. Identification of Methanogens and Controls on Methane Production in Incubations of Natural Methane Seep Sediments

    NASA Astrophysics Data System (ADS)

    Kevorkian, R.; Lloyd, K. G.

    2014-12-01

    Methane, the most abundant hydrocarbon in Earth's atmosphere, is produced in large quantities in sediments underlying the world's oceans. Very little of this methane makes it to surface sediments as it is consumed by Anaerobic Methanotrophs (ANME's) in consortia with Sulfate Reducing Bacteria (SRB). Less is known about which organisms are responsible for methane production in marine sediments, and whether that production is under thermodynamic control based on hydrogen concentrations. Although ANMEs have been found to be active in methanogenic sediments and incubations, it is currently unknown whether they are able to grow in methanogenic conditions. We demonstrated with bottle incubations of methane seep sediment taken from Cape Lookout Bight, NC, that hydrogen controls methane production. While sulfate was present the hydrogen concentration was maintained at below 2 nM. Only after the depletion of sulfate allowed hydrogen concentrations to rise above 5 nM did we see production of methane. The same sediments when spiked with methane gas demonstrated its complete removal while sulfate reduction occurred. Quantitative PCR shows that ANME-2 and ANME-1 increase in 16S copy number as methane increases. Total direct cell counts demonstrate a decline in cells with the decrease of sulfate until a recovery corresponding with production of methane. Our results strongly suggest that hydrogen concentrations influence what metabolic processes can occur in marine sediments, and that ANME-1 and ANME-2 are able to grow on the energy provided from methane production.

  7. Effects of auxiliary carbon sources and electron acceptors on methanogenic degradation of chlorinated phenols

    SciTech Connect

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y. )

    1993-08-01

    The authors studied the degradation of chlorinated phenols under methanogenic conditions by establishing enrichment cultures on 4-chlorophenol and 2,4-dichlorophenol with or without a supplementary substrate. p-Cresol was chosen as a nonchlorinated aromatic compound structurally similar to the chlorophenols, and propionate was chosen as a readily utilizable carbon source. 2,4-Dichlorophenol was dechlorinated to 4-chlorophenol, which was degraded without further detection of metabolites. The rates of chlorophenols and supplementary substrates. The addition of p-cresol or propionate as an auxiliary carbon source enhanced the rate of 4-chlorophenol degradation. Methanogenic cultures capable of ortho dechlorination were repeatedly subcultured by dilution into fresh media and refeeding of 2,6-dichlorophenol and either p-cresol or propionate as auxiliary substrates. 2,6-Dichlorophenol was sequentially dechlorinated to 2-chlorophenol and phenol and ultimately mineralized to methane and carbon dioxide. Cultures adapted to 2,4- or 2,6-dichlorophenol also readily dechlorinated other dichlorophenols containing an ortho chlorine. The alternative electron acceptors nitrate, sulfite, and thiosulfate completely inhibited dechlorination of 2,6-dichlorophenol, whereas sulfate slowed the dechlorination rate.

  8. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C

    NASA Astrophysics Data System (ADS)

    Huber, R.; Kurr, M.; Jannasch, H. W.; Stetter, K. O.

    1989-12-01

    THE organisms with the highest growth temperature known so far are members of the archaebacterial genus Pyrodictium1'2. These anaerobic sulphur reducers thrive at temperatures of up to 110 °C within a shallow hydrothermal system off Vulcano, Italy. Only a few hyperthermophilic methanogens are known-members of the genus Methanothermus, which grow exclusively within terrestrial fields of fumaroles from which sulphurous gas is emitted and show an upper growth temperature of 97 °C (ref. 3), and some members of the genus Methanococcus, which grow within deep-sea hydro-thermal systems at temperatures up to about 90 °C (ref. 4). We have now isolated a novel group of methanogenic archaebacteria growing at least at 110°C from sediment samples taken by the research submersible Alvin at the Guaymas Basin hot vents (Gulf of California). This finding demonstrates the unexpected biogenic methanogenesis at temperatures above 100 °C, and, in view of biogeochemistry, could explain isotope discrimination at temperatures that were thought to be unfavourable for biological methanogenesis.

  9. Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen.

    PubMed

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-07-01

    The study investigated the effects of methanogen pretreatment on pyrolysis behaviors of corn stalk (CS) by using Py-GC/MS analysis and thermogravimetric analysis. Results indicated that biopretreatment changed considerably the pyrolysis behaviors of CS from four weight loss stages to two weight loss stages. Increasing biopretreatment time from 5 days to 25 days enhanced the kinds and contents of chemicals in volatile products. In pyrolysis products, the contents of sugars, linear ketones and furans decreased from 1.43%, 12.60% and 7.38% to 1.25%, 10.22% and 3.25%, respectively, and the contents of phenols increased from 15.08% to 27.84%. The most content change from 6.83% to 13.63% indicated that methanogen pretreatment improved the pyrolysis selectivity of CS to product the 4-VP, but it was disadvantageous to 5-hydroxymethyl furfural, levoglucose and furfural. The changes of chemical compositions and structure of CS after biopretreatment were the main reason of the differences. PMID:24855936

  10. A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen

    PubMed Central

    Yoon, Sung Ho; Turkarslan, Serdar; Reiss, David J.; Pan, Min; Burn, June A.; Costa, Kyle C.; Lie, Thomas J.; Slagel, Joseph; Moritz, Robert L.; Hackett, Murray; Leigh, John A.; Baliga, Nitin S.

    2013-01-01

    Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 58 different steady-state and time-course experiments that were performed in chemostats or batch cultures under a spectrum of environmental perturbations that modulated methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least three additional protein-coding genes of previously unknown function as well as one noncoding RNA. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to intercoordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in the regulation of phosphate-dependent repression of formate dehydrogenase—a key enzyme in the methanogenesis pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between methanogenesis and other cellular functions. PMID:24089473

  11. Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester

    PubMed Central

    Ellis, Joshua T.; Tramp, Cody; Sims, Ronald C.; Miller, Charles D.

    2012-01-01

    The microbial diversity and metabolic potential of a methanogenic consortium residing in a 3785-liter anaerobic digester, fed with wastewater algae, was analyzed using 454 pyrosequencing technology. DNA was extracted from anaerobic sludge material and used in metagenomic analysis through PCR amplification of the methyl-coenzyme M reductase α subunit (mcrA) gene using primer sets ML, MCR, and ME. The majority of annotated mcrA sequences were assigned taxonomically to the genera Methanosaeta in the order Methanosarcinales. Methanogens from the genus Methanosaeta are obligate acetotrophs, suggesting this genus plays a dominant role in methane production from the analyzed fermentation sample. Numerous analyzed sequences within the algae fed anaerobic digester were unclassified and could not be assigned taxonomically. Relative amplicon frequencies were determined for each primer set to determine the utility of each in pyrosequencing. Primer sets ML and MCR performed better quantitatively (representing the large majority of analyzed sequences) than primer set ME. However, each of these primer sets was shown to provide a quantitatively unique community structure, and thus they are of equal importance in mcrA metagenomic analysis. PMID:23724331

  12. Biodegradation of polychlorinated methanes in methanogenic systems. Annual report, 1 Dec 88-1 Mar 89

    SciTech Connect

    Freedman, D.L.

    1991-01-01

    This research investigated biodegradation of several halogenated methanes under methanogenic conditions. Biodegradation of dichloromethane to C02 and acetic acid (both environmentally acceptable products) was demonstrated in a fixed-film reactor, operated at 20 deg C, a residence time as low as 0.25 day, and an influent concentration of 91 micro M. The biodegradability of chloroform was examined in a dichloromethane-degrading enrichment culture. Sustained consumption of chloroform (approximately 8.5 micron M) was achieved only when vitamin B 12 was also added. Initially, equimolar amounts of chloroform and B 12 were added; when the amount of B 12 added was gradually decreased to zero, chloroform degradation continued at the same rapid rate. Biodegradation of 14C chloroform yielded approximately 77% C02, 10% carbon monoxide, 7% soluble compounds (about 15% of which consisted of acetate), and 2% nonsoluble compounds; no 14CH4 was formed. Brominated methanes (dibromomethane, bromochloromethane, and bromomethane) degraded much more slowly' if at all, than dichloromethane, they inhibited methanogenesis and dichloromethane degradation. Sustained degradation of chloromethane was demonstrated for an extended period without the need for an electron donor. Preliminary results suggest chloromethane serves as an electron donor under methanogenic conditions, just as dichloromethane does. Biotransformation of carbon tetrachloride was also demonstrated in the dichloromethane-degrading enrichment culture.

  13. Squalenes, phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic 'archaebacteria'

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Langworthy, T. A.; Holzer, G.; Oro, J.

    1979-01-01

    The neutral lipids from nine species of methanogenic bacteria (five methanobacilli, two methanococci, a methanospirillum and a methanosarcina) and two thermoacidophilic bacteria (Thermo-plasma and Sulfolobus) have been analyzed. The neutral lipids were found to comprise a wide range (C14 to C30) of polyisoprenyl hydrocarbons with varying degrees of saturation. The principal components represented the three major isoprenoid series (C20 phytanyl, C25 pentaisoprenyl, and C30 squalenyl), in contrast with the neutral lipids of extreme halophiles, which consist predominantly of C2O (phytanyl, geranylgeraniol), C30 (squalenes), C40 (carotenes) and C50 (bacterioruberins compounds), as reported by Kates (1978). These results, which indicate strong general similarities between genetically diverse organisms, support the classification of these organisms in a separate phylogenetic group. The occurrence of similar isoprenoid compounds in petroleum and ancient sediments and the fact that the methanogens, halophiles and thermoacidophiles live in conditions presumed to have prevailed in archaen times suggest that the isoprenoid compounds in petroleum compounds and sediment may have been directly synthesized by organisms of this type

  14. Modeling anaerobic bioreactor landfills in methanogenic phase: long term and short term behaviors.

    PubMed

    Gholamifard, Shabnam; Eymard, Robert; Duquennoi, Christian

    2008-12-01

    We have developed a mathematical model to simulate the behavior of real bioreactor landfills in the anaerobic methanogenic phase. This coupled model is composed of a two-phase flow and a biological model based on Darcy's law and Monod's model, respectively. This model considers bacterial activity and biological behavior as a function of temperature and makes it possible to study the thermo-biological behavior of bioreactor landfills with temperature changes. In this model we consider different effects of saturation on solid waste degradation. These effects consist of increasing hydrolysis with saturation and also decreasing the concentration of volatile fatty acids (VFAs) and activating the methanogenic biomass. This paper presents first the mathematical coupled model and the numerical methods used to solve the conservation equations. The numerical model is then used to simulate two bioreactor landfills. This paper presents the results of long and short (with leachate recirculation) term numerical simulations comparing them with site results. Finally results as well as advantages and drawbacks of the model are discussed. The results show that the mathematical model is able to reproduce the hydro-thermo-biological behavior of a bioreactor landfill in different conditions, with and without leachate recirculation, and leads to a better understanding of important thermal and biological parameters.

  15. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge.

    PubMed Central

    Donlon, B A; Razo-Flores, E; Field, J A; Lettinga, G

    1995-01-01

    N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated with the industrial production of dyes, explosives, pesticides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationships of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed in serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and the degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anaerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compoun