Sample records for moderately high temperature

  1. Low to moderate temperature nanolaminate heater

    DOEpatents

    Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  2. Body temperature and resistance to evaporative water loss in tropical Australian frogs.

    PubMed

    Tracy, Christopher R; Christian, Keith A; Betts, Gregory; Tracy, C Richard

    2008-06-01

    Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.

  3. Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants.

    PubMed

    Benlloch-González, María; Quintero, José Manuel; Suárez, María Paz; Sánchez-Lucas, Rosa; Fernández-Escobar, Ricardo; Benlloch, Manuel

    2016-12-01

    There is little information about the prolonged effect of a moderately high temperature on the growth of olive (Olea europaea L.). It has been suggested that when the temperature of the air rises above 35°C the shoot growth of olive is inhibited while there is any reference on how growth is affected when the soil is warmed. In order to examine these effects, mist-cuttings and young plants generated from seeds were grown under moderate high temperature (37°C) for 64 and 42days respectively. In our study, plant dry matter accumulation was reduced when the temperature of both the air and the root medium was moderately high. However, when the temperature of the root medium was 25°C, the inhibitory effect of air high temperature on plant growth was not observed. The exposure of both the aerial part and the root to moderate high temperature also reduced the accumulation of K + in the stem and the root, the water use efficiency and leaf relative water content. However, when only the aerial part was exposed to moderate high temperature, the accumulation of K + in the stem, the water use efficiency and leaf relative water content were not modified. The results from this study suggest that the olive is very efficient in regulating the water and potassium transport through the plant when only the atmosphere surrounding the aerial part is warmed up. However, an increase in the soil temperature decrease root K + uptake and its transport to the aerial parts resulting in a reduction in shoot water status and growth. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com; Centre for Nuclear Energy, Universiti Tenaga Nasional; Mohamed, Abdul Aziz bin

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried outmore » using a neutron spectrometer.« less

  5. Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape.

    PubMed

    Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher

    2017-01-01

    Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.

  6. Vegetation placement for summer built surface temperature moderation in an urban microclimate.

    PubMed

    Millward, Andrew A; Torchia, Melissa; Laursen, Andrew E; Rothman, Lorne D

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  7. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  8. Ecosystem response to climatic variables - air temperature and precipitation: How can these variables alter plant productions in C4-grass dominant ecosystem?

    NASA Astrophysics Data System (ADS)

    Jung, C. G.; Jiang, L.; Luo, Y.

    2017-12-01

    Understanding net primary production (NPP) response to the key climatic variables, temperature and precipitation, is essential since the response could be represented by one of future consequences from ecosystem responses. Under future climatic warming, fluctuating precipitation is expected. In addition, NPP solely could not explain whole ecosystem response; therefore, not only NPP, but also above- and below-ground NPP (ANPP and BNPP, respectively) need to be examined. This examination needs to include how the plant productions response along temperature and precipitation gradients. Several studies have examined the response of NPP against each of single climatic variable, but understanding the response of ANPP and BNPP to the multiple variables is notably poor. In this study, we used the plant productions data (NPP, ANPP, and BNPP) with climatic variables, i.e., air temperature and precipitation, from 1999 to 2015 under warming and clipping treatments (mimicking hay-harvesting) in C4-grass dominant ecosystem located in central Oklahoma, United States. Firstly, we examined the nonlinear relationships with the climatic variables for NPP, ANPP and BNPP; and then predicted possible responses in the temperature - precipitation space by using a linear mixed effect model. Nonlinearities of NPP, ANPP and BNPP to the climatic variables have been found to show unimodal curves, and nonlinear models have better goodness of fit as shown lower Akaike information criterion (AIC) than linear models. Optimum condition for NPP is represented at high temperature and precipitation level whereas BNPP is maximized at moderate precipitation levels while ANPP has same range of NPP's optimum condition. Clipping significantly reduced ANPP while there was no clipping effect on NPP and BNPP. Furthermore, inclining NPP and ANPP have shown in a range from moderate to high precipitation level with increasing temperature while inclining pattern for BNPP was observed in moderate precipitation level. Overall, the C4-grass dominant ecosystem has a potential for considerable increases in NPP in hotter and wetter conditions as shown a range from moderate to high temperature and precipitation levels; ANPP has peaked at the high temperature and precipitation level, but maximum BNPP needs moderate precipitation level and high temperature.

  9. Reliable, Low-Cost, Low-Weight, Non-Hermetic Coating for MCM Applications

    NASA Technical Reports Server (NTRS)

    Jones, Eric W.; Licari, James J.

    2000-01-01

    Through an Air Force Research Laboratory sponsored STM program, reliable, low-cost, low-weight, non-hermetic coatings for multi-chip-module(MCK applications were developed. Using the combination of Sandia Laboratory ATC-01 test chips, AvanTeco's moisture sensor chips(MSC's), and silicon slices, we have shown that organic and organic/inorganic overcoatings are reliable and practical non-hermetic moisture and oxidation barriers. The use of the MSC and unpassivated ATC-01 test chips provided rapid test results and comparison of moisture barrier quality of the overcoatings. The organic coatings studied were Parylene and Cyclotene. The inorganic coatings were Al2O3 and SiO2. The choice of coating(s) is dependent on the environment that the device(s) will be exposed to. We have defined four(4) classes of environments: Class I(moderate temperature/moderate humidity). Class H(high temperature/moderate humidity). Class III(moderate temperature/high humidity). Class IV(high temperature/high humidity). By subjecting the components to adhesion, FTIR, temperature-humidity(TH), pressure cooker(PCT), and electrical tests, we have determined that it is possible to reduce failures 50-70% for organic/inorganic coated components compared to organic coated components. All materials and equipment used are readily available commercially or are standard in most semiconductor fabrication lines. It is estimated that production cost for the developed technology would range from $1-10/module, compared to $20-200 for hermetically sealed packages.

  10. Non-equilibrium thermionic electron emission for metals at high temperatures

    NASA Astrophysics Data System (ADS)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  11. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    PubMed

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Heat Wave and Mortality: A Multicountry, Multicommunity Study

    PubMed Central

    Gasparrini, Antonio; Armstrong, Ben G.; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; Coelho, Micheline de Sousa Zanotti Stagliorio; Pan, Xiaochuan; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel D.; Bell, Michelle L.; Scortichini, Matteo; Michelozzi, Paola; Punnasiri, Kornwipa; Li, Shanshan; Tian, Linwei; Garcia, Samuel David Osorio; Seposo, Xerxes; Overcenco, Ala; Zeka, Ariana; Goodman, Patrick; Dang, Tran Ngoc; Dung, Do Van; Mayvaneh, Fatemeh; Saldiva, Paulo Hilario Nascimento; Williams, Gail; Tong, Shilu

    2017-01-01

    Background: Few studies have examined variation in the associations between heat waves and mortality in an international context. Objectives: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. Methods: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave–mortality relation over lags of 0–10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. Results: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave–mortality associations, but not daily minimum temperature. Conclusions: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026 PMID:28886602

  13. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures

    DOE PAGES

    Orazov, Marat; Davis, Mark E.

    2015-09-08

    Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxidemore » and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2–SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation.« less

  14. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus.

    PubMed

    Willett, Christopher S

    2010-09-01

    Thermal adaptation to spatially varying environmental conditions occurs in a wide range of species, but what is less clear is the nature of fitness trade-offs associated with this temperature adaptation. Here, populations of the intertidal copepod Tigriopus californicus are examined at both local and latitudinal scales to determine whether these populations have evolved differences in their survival under high temperature stress. A clear pattern of increasing high temperature stress tolerance is seen with decreasing latitude, consistent with temperature adaptation. Additionally, there is also evidence for significant variation in thermal tolerance on a smaller scale. The competitive fitness of pairs of northern and southern copepod populations were also examined under a series of lower, more moderate temperatures. These fitness assays show that the southern populations that have the best survival under extreme high temperatures have lowered competitive fitness at the lower temperatures tested, whereas the fitness of the southern populations exceeded that of the northern populations at the highest temperatures tested. Combined, these results suggest that there may be evolutionary trade-offs between performance at high and stressful temperatures and fitness at moderate temperatures in this species. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.

  15. Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures.

    PubMed

    Sato, Suguru; Peet, Mary M; Thomas, Judith F

    2002-05-01

    To determine the thermosensitive periods and physiological processes in tomato flowers exposed to moderately elevated temperatures, tomato plants (Lycopersicon esculentum Mill., cv. NC 8288) were grown at 28/22 degrees C or 32/26 degrees C day/night temperature regimes and then transferred to the opposite regime for 0-15 d before or 0-24 h after anthesis. For plants initially grown at 28/22 degrees C, moderate temperature stress before anthesis decreased the percentage of fruit set per plant, but did not clarify the thermosensitive period. The same level of stress did not significantly reduce fruit set when applied immediately after anthesis. For plants initially grown at 32/26 degrees C, fruit set was completely prevented unless a relief period of more than 5 d was provided before anthesis. The same level of stress relief for 3-24 h after anthesis also increased fruit set. Plants were most sensitive to 32/26 degrees C temperatures 7-15 d before anthesis. Microscopic investigation of anthers in plants grown continuously at high temperature indicated disruption of development in the pollen, endothecium, epidermis, and stomium. This disruption was reduced, but still observable in plants relieved from high temperature for 10 d before anthesis.

  16. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis

    PubMed Central

    Zhou, Rong; Wang, Qian; Jiang, Fangling; Cao, Xue; Sun, Mintao; Liu, Min; Wu, Zhen

    2016-01-01

    MicroRNAs (miRNAs) are 19–24 nucleotide (nt) noncoding RNAs that play important roles in abiotic stress responses in plants. High temperatures have been the subject of considerable attention due to their negative effects on plant growth and development. Heat-responsive miRNAs have been identified in some plants. However, there have been no reports on the global identification of miRNAs and their targets in tomato at high temperatures, especially at different elevated temperatures. Here, three small-RNA libraries and three degradome libraries were constructed from the leaves of the heat-tolerant tomato at normal, moderately and acutely elevated temperatures (26/18 °C, 33/33 °C and 40/40 °C, respectively). Following high-throughput sequencing, 662 conserved and 97 novel miRNAs were identified in total with 469 conserved and 91 novel miRNAs shared in the three small-RNA libraries. Of these miRNAs, 96 and 150 miRNAs were responsive to the moderately and acutely elevated temperature, respectively. Following degradome sequencing, 349 sequences were identified as targets of 138 conserved miRNAs, and 13 sequences were identified as targets of eight novel miRNAs. The expression levels of seven miRNAs and six target genes obtained by quantitative real-time PCR (qRT-PCR) were largely consistent with the sequencing results. This study enriches the number of heat-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in tomatoes at elevated temperatures. PMID:27653374

  17. Investigation of Tokamak Solid Divertor Target Options.

    DTIC Science & Technology

    1981-05-26

    but materials are not known which could operate at the high resulting wall temperatures . Mist- steam flows would also demand a relatively high ...flux P = coolant density = bulk coolant viscosity w = coolant viscosity at average wall temperature = units conversion At high heat loads and moderate...therefore, the inner wall temperature will be over 300 OF, posing a high temp- erature materials challenge. E. Swirl and Mixed Flow Schemes Extensive work

  18. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers.

    PubMed

    Slavin, Margaret; Lu, Yingjian; Kaplan, Nicholas; Yu, Liangli Lucy

    2013-11-15

    Black soybean is a potential functional food ingredient with high anthocyanin content, but the ability to maintain anthocyanin content under dry heat processing has not been reported. This study investigated the effects of soybean seed coat colour and baking time-temperature combinations on the extractable antioxidant properties of a soy cracker food model. Crackers prepared with black soybeans had significantly higher TPC, total isoflavones, and peroxyl, hydroxyl, and ABTS(+) radical scavenging abilities than their yellow counterparts, at all time-temperature combinations. Cyanidin-3-glucoside (C3G) was detected only in black soybean crackers, and all baking treatments significantly decreased C3G. The greatest losses occurred at the low temperature×long time and high temperature×short time, the smallest loss with moderate temperature×short/medium time. The high temperature treatment altered phenolic acid and isoflavone profiles; however, total isoflavones were unaffected. Overall results suggest that moderate baking temperature at minimal time may best preserve anthocyanin and other phenolics in baked black soybean crackers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2014-05-07

    Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered.

  20. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    USDA-ARS?s Scientific Manuscript database

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  1. Evaluation of physiological strain in hot work areas using thermal imagery.

    PubMed

    Holm, Clint A; Pahler, Leon; Thiese, Matthew S; Handy, Rodney

    2016-10-01

    Monitoring core body temperature to identify heat strain in workers engaged in hot work in heat stress environments is intrusive and expensive. Nonintrusive, inexpensive methods are needed to calculate individual Physiological Strain Index (PSI). Thermal imaging and heart rate monitoring were used in this study to calculate Physiological Strain Index (PSI) from thermal imaging temperatures of human subjects wearing thermal protective garments during recovery from hot work. Ten male subjects were evaluated for physiological strain while participating in hot work. Thermal images of the head and neck were captured with a high-resolution thermal imaging camera concomitant with measures of gastrointestinal and skin temperature. Lin's concordance correlation coefficient (rho_c), Pearson's coefficient (r) and bias correction factor (C-b) were calculated to compare thermal imaging based temperatures to gastrointestinal temperatures. Calculations of PSI based thermal imaging recorded temperatures were compared to gastrointestinal based PSI. Participants reached a peak PSI of 5.2, indicating moderate heat strain. Sagittal measurements showed low correlation (rho_c=0.133), moderate precision (r=0.496) and low accuracy (C_b=0.269) with gastrointestinal temperature. Bland-Altman plots of imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the Limits of Agreement (LoA) fell outside the ±0.25C range of clinical significance. Bland-Altman plots of PSI calculated from imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the LoA fell outside the ±0.5 range of clinical significance. Results of this study confirmed previous research showing thermal imagery is not highly correlated to body core temperature during recovery from moderate heat strain in mild ambient conditions. Measurements display a trend toward increasing correlation at higher body core temperatures. Accuracy was not sufficient at mild to moderate heat strain to allow calculation of individual physiological stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological variables in broilers grown to 42 day of age

    USDA-ARS?s Scientific Manuscript database

    The interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological reactions in broilers grown to 42 day of age were investigated. The experiment consisted of 2 levels (Moderate=21.1, High=26.7 °C) of temperatures and 2 light sour...

  3. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  4. Reactor and method for hydrocracking carbonaceous material

    DOEpatents

    Duncan, Dennis A.; Beeson, Justin L.; Oberle, R. Donald; Dirksen, Henry A.

    1980-01-01

    Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.

  5. Bending cyclic load test for crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2018-02-01

    The failures induced by thermomechanical fatigue within crystalline silicon photovoltaic modules are a common issue that can occur in any climate. In order to understand these failures, we confirmed the effects of compressive or tensile stresses (which were cyclically loaded on photovoltaic cells and cell interconnect ribbons) at subzero, moderate, and high temperatures. We found that cell cracks were induced predominantly at low temperatures, irrespective of the compression or tension applied to the cells, although the orientation of cell cracks was dependent on the stress applied. The fracture of cell interconnect ribbons was caused by cyclical compressive stress at moderate and high temperatures, and this failure was promoted by the elevation of temperature. On the basis of these results, the causes of these failures are comprehensively discussed in relation to the viscoelasticity of the encapsulant.

  6. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  7. Influence of environmental temperature and light intensity on growth performance and blood physiological parameters of broilers grown to heavy weight

    USDA-ARS?s Scientific Manuscript database

    In a study of temperature and light intensity, 9 treatments consisted of 3 levels (Low=15.6, Moderate=21.1, High=26.7 °C) of temperatures and 3 levels (0.5, 3.0, 20 lx) of light intensities from d 8 to 56 d of age. Across all light levels at d 56, broilers subjected to high temperature significantly...

  8. Chlorophyll fluorescence and CO(2) assimilation of black spruce seedlings following frost in different temperature and light conditions.

    PubMed

    Lamontagne, M.; Bigras, F. J.; Margolis, H. A.

    2000-03-01

    Effects of artificial frosts on light-saturated photosynthesis (A(max)) and ground, maximal and variable fluorescence variables (F(o), F(m), and F(v) and F(v)/F(m)) were monitored on 1-year-old foliage of black spruce seedlings (Picea mariana (Mill.) BSP) grown at high (25 degrees C), moderate (15 degrees C) and low (5 degrees C) temperatures and moderate (240 &mgr;mol m(-2) s(-1)) and low (80 &mgr;mol m(-2) s(-1)) irradiances. Photoinhibition of 1-year-old foliage was greater in seedlings grown in moderate light than in seedlings grown in low light. Photoinhibition increased with decreasing growth chamber temperature at both irradiances. Most changes in F(v)/F(m) were caused by changes in F(v). Exposure to -4 degrees C decreased both F(v)/F(m) and A(max) compared with control values. The effect of the -4 degrees C frost treatment was greater in seedlings grown in low light than in seedlings grown in moderate light, probably because seedlings grown in moderate light were already partially photoinhibited before the frost treatment. Following -4 degrees C treatment, neither F(v)/F(m) nor A(max) recovered in seedlings grown in low light. Light-saturated photosynthesis decreased with decreasing growth chamber temperature. Light-saturated photosynthesis was more sensitive to the -3 and -4 degrees C frost treatments in seedlings grown at 25 degrees C than in seedlings grown at 15 and 5 degrees C. The A(max) of seedlings grown at 15 degrees C was sensitive only to the -4 degrees C frost treatment, whereas A(max) of seedlings grown at 5 degrees C was not sensitive to any of the frost treatments. Recovery of A(max) following frost took longer in seedlings grown at high temperatures than in seedlings grown at low temperatures. For seedlings grown at the same temperature but under different irradiances, both A(max) and F(v)/F(m) reflected damage to the photosynthetic system following a moderate frost. However, for seedlings grown at the same irradiance but different temperatures, A(max) provided a more sensitive indicator of frost damage to the photosynthetic system than F(v)/F(m) ratio.

  9. The Environment and the Microbial Ecology of Human Skin

    PubMed Central

    McBride, Mollie E.; Duncan, W. Christopher; Knox, J. M.

    1977-01-01

    Microbial flora of the skin of three human population groups representing different natural environments was examined quantitatively and qualitatively to determine whether environmental differences in temperature and humidity can influence the microbial flora of normal skin. Five anatomical skin sites - hands, back, axillae, groin, and feet - were sampled from 10 subjects working in a high-humidity, high-temperature environment, 10 subjects from a low-temperature, high-humidity environment, and 10 subjects working in a moderate-temperature and low-humidity environment. Bacterial populations were significantly larger from the back, axillae, and feet in individuals from the high-temperature and high-humidity environment as compared to the moderate-temperature, low-humidity environment. High humidity and low temperature had no significant effect on total populations, but this group showed a higher frequency of isolation of fungi, and gram-negative bacteria from the back and feet. Although there was an indication that increase in the environmental humidity could result in an increased frequency of isolation of gram-negative bacteria, there was no evidence that an increase in either temperature or humidity altered the relative proportions of gram-negative bacteria in the predominantly gram-positive microbial flora found on normal skin. It was concluded that, although climatic changes may cause fluctation in microbial populations from certain sites, they are not a major influence on the ecology of the microbial flora of normal skin in the natural environment. The variables introduced by studying individuals in their natural environment and the influence of these on the results are discussed. PMID:16345214

  10. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, Willaim; Strydom, G.; Kane, J.

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less

  11. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation.

    PubMed

    Cvetkovska, Marina; Szyszka-Mroz, Beth; Possmayer, Marc; Pittock, Paula; Lajoie, Gilles; Smith, David R; Hüner, Norman P A

    2018-05-08

    The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    PubMed

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin

    2017-10-01

    The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.

  14. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    PubMed

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  15. Effects of incubation temperature on growth and performance of the veiled chameleon (Chamaeleo calyptratus).

    PubMed

    Andrews, Robin M

    2008-10-01

    I evaluated the effect of incubation temperature on phenotypes of the veiled chameleon, Chamaeleo calyptratus. I chose this species for study because its large clutch size (30-40 eggs or more) allows replication within clutches both within and among experimental treatments. The major research objectives were (1) to assess the effect of constant low, moderate, and high temperatures on embryonic development, (2) to determine whether the best incubation temperature for embryonic development also produced the "best" hatchlings, and (3) to determine how a change in incubation temperature during mid-development would affect phenotype. To meet these objectives, I established five experimental temperature regimes and determined egg survival and incubation length and measured body size and shape, selected body temperatures, and locomotory performance of lizards at regular intervals from hatching to 90 d, or just before sexual maturity. Incubation temperature affected the length of incubation, egg survival, and body mass, but did not affect sprint speed or selected body temperature although selected body temperature affected growth in mass independently of treatment and clutch. Incubation at moderate temperatures provided the best conditions for both embryonic and post-hatching development. The highest incubation temperatures were disruptive to development; eggs had high mortality, developmental rate was low, and hatchlings grew slowly. Changes in temperature during incubation increased the among-clutch variance in incubation length relative to that of constant temperature treatments. Copyright 2008 Wiley-Liss, Inc.

  16. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    PubMed

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Thermionic cogeneration burner design

    NASA Astrophysics Data System (ADS)

    Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.

    Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.

  18. The temperature-productivity squeeze: Constraints on brook trout growth along an Appalachian river continuum

    USGS Publications Warehouse

    Petty, J. Todd; Thorne, David; Huntsman, Brock M.; Mazik, Patricia M.

    2014-01-01

    We tested the hypothesis that brook trout growth rates are controlled by a complex interaction of food availability, water temperature, and competitor density. We quantified trout diet, growth, and consumption in small headwater tributaries characterized as cold with low food and high trout density, larger tributaries characterized as cold with moderate food and moderate trout density, and large main stems characterized as warm with high food and low trout density. Brook trout consumption was highest in the main stem where diets shifted from insects in headwaters to fishes and crayfish in larger streams. Despite high water temperatures, trout growth rates also were consistently highest in the main stem, likely due to competitively dominant trout monopolizing thermal refugia. Temporal changes in trout density had a direct negative effect on brook trout growth rates. Our results suggest that competition for food constrains brook trout growth in small streams, but access to thermal refugia in productive main stem habitats enables dominant trout to supplement growth at a watershed scale. Brook trout conservation in this region should seek to relieve the “temperature-productivity squeeze,” whereby brook trout productivity is constrained by access to habitats that provide both suitable water temperature and sufficient prey.

  19. Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice.

    PubMed

    Torres, E F; González-M, G; Klotz, B; Rodrigo, D

    2016-03-01

    The aim of this study was to evaluate the effect of high hydrostatic pressure treatment combined with moderate processing temperatures (25 ℃-50 ℃) on the inactivation of Escherichia coli O157: H7 (ATCC 700728), E. coli K12 (ATCC 23716), and pectin methyl esterase in orange juice, using pressures of 250 to 500 MPa with times ranging between 1 and 30 min. Loss of viability of E. coli O157:H7 increased significantly as pressure and treatment time increased, achieving a 6.5 log cycle reduction at 400 MPa for 3 min at 25 ℃ of treatment. With regard to the inactivation of pectin methyl esterase, the greatest reduction obtained was 90.05 ± 0.01% at 50 ℃ and 500 MPa of pressure for 15 min; therefore, the pectin methyl esterase enzyme was highly resistant to the treatments by high hydrostatic pressure. The results obtained in this study showed a synergistic effect between the high pressure and moderate temperatures in inactivating E. coli cells. © The Author(s) 2016.

  20. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    PubMed

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Self-Organization of Amorphous Carbon Nanocapsules into Diamond Nanocrystals Driven by Self-Nanoscopic Excessive Pressure under Moderate Electron Irradiation without External Heating.

    PubMed

    Wang, Chengbing; Ling, San; Yang, Jin; Rao, Dewei; Guo, Zhiguang

    2018-01-01

    Phase transformation between carbon allotropes usually requires high pressures and high temperatures. Thus, the development of low-temperature phase transition approaches between carbon allotropes is highly desired. Herein, novel amorphous carbon nanocapsules are successfully synthesized by pulsed plasma glow discharge. These nanocapsules are comprised of highly strained carbon clusters encapsulated in a fullerene-like carbon matrix, with the formers serving as nucleation sites. These nucleation sites favored the formation of a diamond unit cell driven by the self-nanoscopic local excessive pressure, thereby significantly decreasing the temperature required for its transformation into a diamond nanocrystal. Under moderate electron beam irradiation (10-20 A cm -2 ) without external heating, self-organization of the energetic carbon clusters into diamond nanocrystals is achieved, whereas the surrounding fullerene-like carbon matrix remains nearly unchanged. Molecular dynamics simulations demonstrate that the defective rings as the active sites dominate the phase transition of amorphous carbon to diamond nanocrystal. The findings may open a promising route to realize phase transformation between carbon allotropes at a lower temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Incidence and seasonality of hypothermia among newborns in southern Nepal.

    PubMed

    Mullany, Luke C; Katz, Joanne; Khatry, Subarna K; Leclerq, Steven C; Darmstadt, Gary L; Tielsch, James M

    2010-01-01

    To quantify incidence, age distribution, and seasonality of neonatal hypothermia among a large population cohort. Longitudinal cohort study. Sarlahi, Nepal. A total of 23 240 newborns born between September 2, 2002, and February 1, 2006. Main Exposures Community-based workers recorded axillary temperature on days 1 through 4, 6, 8, 10, 12, 14, 21, and 28 (213 636 total measurements). Regression smoothing was used to describe axillary temperature patterns during the newborn period. Hypothermia incidence in the first day, week, and month were estimated using standard cutoffs. Ambient temperatures allowed comparison of mild hypothermia (36.0 degrees C to <36.5 degrees C) and moderate or severe hypothermia (<36.0 degrees C) incidence over mean ambient temperature quintiles. Measurements lower than 36.5 degrees C were observed in 21 459 babies (92.3%); half (48.6%) had moderate or severe hypothermia, and risk peaked in the first 24 to 72 hours of life. Risk of moderate or severe hypothermia increased by 41.3% (95% confidence interval, 40.0%-42.7%) for every 5 degrees C decrease in average ambient temperature. Relative to the highest quintile, risk was 4.03 (95% confidence interval, 3.77-4.30) times higher among babies exposed to the lowest quintile of average ambient temperature. In the hot season, one-fifth of the babies (18.2%) were observed below the moderate hypothermia cutoff. Mild or moderate hypothermia was nearly universal, with substantially higher risk in the cold season. However, incidence in the hot season was also high; thus, year-round thermal care promotion is required. Research on community, household, and caretaker practices associated with hypothermia can guide behavioral interventions to reduce risk.

  3. Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China

    PubMed Central

    Wang, Shang; Dong, Hailiang; Hou, Weiguo; Jiang, Hongchen; Huang, Qiuyuan; Briggs, Brandon R.; Huang, Liuqin

    2014-01-01

    Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts. PMID:25524763

  4. Effect of hot temperatures on the hematological parameters, health and performance of calves

    NASA Astrophysics Data System (ADS)

    Broucek, Jan; Kisac, Peter; Uhrincat, Michael

    2009-03-01

    The objective of this paper was to evaluate the effects of high temperatures on calves. The hypothesis that the red and white blood cells, health, and performance of calves would be influenced by the temperature period at birth and gender was tested. Sixty-three Holstein calves were used. They were reared in individual hutches from the second day of life to weaning at the age of 8 weeks. All calves were allotted to treatment groups according to the temperature period at birth: moderate temperature period 1 (MT1), high temperature period (HT), moderate temperature period 2 (MT2). The same conditions of nutrition were ensured. We recorded 62 summer days and 14 tropical days during HT. Sixty-six days with a value above 72.0 of the temperature-humidity index (THI) and 26 with values greater than 78.0 were found. No significant differences were found in red blood cells with the exception of hemoglobin between MT1 and MT2 ( p = 0.031) during the 8th week. Significant differences were observed among treatment groups in the percentage of eosinophiles during the 6th week ( p = 0.044). The HT calves had the least body weight from the first week to weaning ( p = 0.053) and the highest water consumption ( p = 0.042). The results emphasize the ability of dairy calves to maintain homeostasis during prolonged periods of heat stress. The exposure to high temperatures resulted only in a significant decrease of starter concentrate consumption and reduced growth.

  5. Davis Fire: Fire behavior and fire effects analysis

    Treesearch

    LaWen T. Hollingsworth

    2010-01-01

    The Davis Fire presents an interesting example of fire behavior in subalpine fir, partially dead lodgepole pine with multiple age classes, and moist site Douglas-fir vegetation types. This has been summer of moderate temperatures and intermittent moisture that has kept live herbaceous and live woody moistures fairly high and dead fuel moistures at a moderate level....

  6. Thermal study of the Missouri River in North Dakota using infrared imagery

    USGS Publications Warehouse

    Crosby, Orlo A.

    1971-01-01

    The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment. At the present time, thermal additions generated by the powerplants have little effect on the temperature regimen of the Missouri River at high rates of river discharge.

  7. Using high thermal stability flexible thin film thermoelectric generator at moderate temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Zhuang-Hao; Luo, Jing-Ting; Chen, Tian-Bao; Zhang, Xiang-Hua; Liang, Guang-Xing; Fan, Ping

    2018-04-01

    Flexible thin film thermoelectric devices are extensively used in the microscale industry for powering wearable electronics. In this study, comprehensive optimization was conducted in materials and connection design for fabricating a high thermal stability flexible thin film thermoelectric generator. First, the thin films in the generator, including the electrodes, were prepared by magnetron sputtering deposition. The "NiCu-Cu-NiCu" multilayer electrode structure was applied to ensure the thermal stability of the device used at moderate temperature in an air atmosphere. A design with metal layer bonding and series accordant connection was then employed. The maximum efficiency of a single PN thermocouple generator is >11%, and the output power loss of the generator is <10% after integration.

  8. LDA-Mediated Synthesis of Triarylmethanes by Arylation of Diarylmethanes with Fluoroarenes at Room Temperature.

    PubMed

    Ji, Xinfei; Huang, Tao; Wu, Wei; Liang, Fang; Cao, Song

    2015-10-16

    A practical and convenient approach for the secondary C(sp(3))-H arylation of diarylmethanes with various fluoroarenes is described. The reaction proceeds smoothly in the presence of LDA (lithium diisopropylamide) at room temperature and affords triarylmethanes in moderate to high yields.

  9. Increased coronary heart disease and stroke hospitalisations from ambient temperatures in Ontario

    PubMed Central

    Bai, Li; Li, Qiongsi; Wang, Jun; Lavigne, Eric; Gasparrini, Antonio; Copes, Ray; Yagouti, Abderrahmane; Burnett, Richard T; Goldberg, Mark S; Cakmak, Sabit; Chen, Hong

    2018-01-01

    Objective To assess the associations between ambient temperatures and hospitalisations for coronary heart disease (CHD) and stroke. Methods Our study comprised all residents living in Ontario, Canada, 1996–2013. For each of 14 health regions, we fitted a distributed lag non-linear model to estimate the cold and heat effects on hospitalisations from CHD, acute myocardial infarction (AMI), stroke and ischaemic stroke, respectively. These effects were pooled using a multivariate meta-analysis. We computed attributable hospitalisations for cold and heat, defined as temperatures above and below the optimum temperature (corresponding to the temperature of minimum morbidity) and for moderate and extreme temperatures, defined using cut-offs at the 2.5th and 97.5th temperature percentiles. Results Between 1996 and 2013, we identified 1.4 million hospitalisations from CHD and 355 837 from stroke across Ontario. On cold days with temperature corresponding to the 1st percentile of temperature distribution, we found a 9% increase in daily hospitalisations for CHD (95% CI 1% to 16%), 29% increase for AMI (95% CI 15% to 45%) and 11% increase for stroke (95% CI 1% to 22%) relative to days with an optimal temperature. High temperatures (the 99th percentile) also increased CHD hospitalisations by 6% (95% CI 1% to 11%) relative to the optimal temperature. These estimates translate into 2.49% of CHD hospitalisations attributable to cold and 1.20% from heat. Additionally, 1.71% of stroke hospitalisations were attributable to cold. Importantly, moderate temperatures, rather than extreme temperatures, yielded the most of the cardiovascular burdens from temperatures. Conclusions Ambient temperatures, especially in moderate ranges, may be an important risk factor for cardiovascular-related hospitalisations. PMID:29101264

  10. An Essential Component in Chloroplast Development and Maintenance at Moderate High Temperature in Higher Plants: Chloroplast-targeted FtsH11 Proteases

    USDA-ARS?s Scientific Manuscript database

    Among the 12 predicted FtsH proteases in Arabidopsis, AtFtsH11 is the only metalloprotease targeting to both chloroplast and mitochondria and the only one essential for Arabidopsis plant to survive at moderate heat stress at all developmental stages. Under optimal conditions, atftsh11 mutants were...

  11. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOEpatents

    Mamantov, Gleb

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  12. Process for preparing high-transition-temperature superconductors in the Nb-Al-Ge system

    DOEpatents

    Giorgi, A.L.; Szklarz, E.G.

    1973-01-30

    The patent describes a process for preparing superconducting materials in the Nb-Al-Ge system having transition temperatures in excess of 19K. The process comprises premixing powdered constituents, pressing them into a plug, heating the plug to 1,450-1,800C for 30 minutes to an hour under vacuum or an inert atmosphere, and annealing at moderate temperatures for reasonably long times (approximately 50 hours). High transition-temperature superconductors, including those in the Nb3(Al,Ge) system, prepared in accordance with this process exhibit little degradation in the superconducting transition temperature on being ground to -200 mesh powder. (GRA)

  13. Relation of Temperature and Humidity to the Risk of Recurrent Gout Attacks

    PubMed Central

    Neogi, Tuhina; Chen, Clara; Niu, Jingbo; Chaisson, Christine; Hunter, David J.; Choi, Hyon; Zhang, Yuqing

    2014-01-01

    Gout attack risk may be affected by weather (e.g., because of volume depletion). We therefore examined the association of temperature and humidity with the risk of recurrent gout attacks by conducting an internet-based case-crossover study in the United States (in 2003–2010) among subjects with a diagnosis of gout who had 1 or more attacks during 1 year of follow-up. We examined the association of temperature and humidity over the prior 48 hours with the risk of gout attacks using a time-stratified approach and conditional logistic regression. Among 632 subjects with gout, there was a significant dose-response relationship between mean temperature in the prior 48 hours and the risk of subsequent gout attack (P = 0.01 for linear trend). Higher temperatures were associated with approximately 40% higher risk of gout attack compared with moderate temperatures. There was a reverse J-shaped relationship between mean relative humidity and the risk of gout attacks (P = 0.03 for quadratic trend). The combination of high temperature and low humidity had the greatest association (odds ratio = 2.04, 95% confidence interval: 1.26, 3.30) compared with moderate temperature and relative humidity. Thus, high ambient temperature and possibly extremes of humidity were associated with an increased risk of gout attack, despite the likelihood that individuals are often in climate-controlled indoor environments. PMID:24993733

  14. Potential use of ceramic coating as a thermal insulation on cooled turbine hardware

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1976-01-01

    An analysis was made to determine the potential benefits of using a ceramic thermal insulation coating of calcia-stabilized zirconia on cooled engine parts. The analysis was applied to turbine vanes of a high temperature and high pressure core engine and a moderate temperature and low pressure research engine. Measurements made during engine operation showed that the coating substantially reduced vane metal wall temperatures. Evaluation of the durability of the coating on turbine vanes and blades in a furnace and engine were encouraging.

  15. The survivability of Bacillus anthracis (Sterne strain) in processed liquid eggs.

    PubMed

    Khan, Saeed A; Sung, Kidon; Nawaz, Mohamed S; Cerniglia, Carl E; Tamplin, Mark L; Phillips, Robert W; Kelley, Lynda Collins

    2009-04-01

    In this study, we investigated the survival and inactivation kinetics of a surrogate strain of Bacillus anthracis (Sterne strain) in whole egg (WE), egg white (EW), sugared egg yolk (YSU), and salted egg yolk (YSA) at low (-20, 0, and 5 degrees C), moderate (15, 20, 25, 30, 35, and 40 degrees C), and high storage temperatures (45, 50, 55, and 60 degrees C). Outgrowth of the spores was measured as lag phase duration (LPD). Replication of vegetative cells was measured in terms of growth rate (GR) and maximum population density (MPD). Spore inactivation was recorded as inactivation rate and percent reduction in viable count. In general, spore viability decreased at low and high temperatures and increased at moderate temperatures. At 0 and 5 degrees C, a 60-100% reduction in spore viability was seen within 2-3 weeks in WE and YSU, 0-30% in YSA, and 50-100% in EW. At -20 degrees C, however, no drop in spore titer was observed in YSU and EW but a 20% drop in titer was seen in YSA and 50% in WE within 2-3 weeks. At high temperatures, WE, EW, and YSA produced a 20-50% drop in the spore titer within 1-4h whereas YSU showed 100% inactivation within 0.75 h. At moderate storage temperatures, as the temperature increased from 15 to 40 degrees C, LPD decreased from 13.5 to 0.75 h and MPD reached 0.27-2.2 x1 0(9) CFU/ml in YSU and WE, respectively. Markedly lower growth was observed in YSA (LPD=24-270 h, MPD=9 x 10(5) CFU/ml) and spores were inactivated completely within 1-6h in EW. The survivability and inactivation data of B. anthracis in liquid egg products reported in this investigation will be helpful in developing risk assessment models on food biosecurity.

  16. An Investigation of a Photographic Technique of Measuring High Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Siviter, James H., Jr.; Strass, H. Kurt

    1960-01-01

    A photographic method of temperature determination has been developed to measure elevated temperatures of surfaces. The technique presented herein minimizes calibration procedures and permits wide variation in emulsion developing techniques. The present work indicates that the lower limit of applicability is approximately 1,400 F when conventional cameras, emulsions, and moderate exposures are used. The upper limit is determined by the calibration technique and the accuracy required.

  17. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  18. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    NASA Astrophysics Data System (ADS)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  19. Metallic seal for thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor)

    1990-01-01

    The invention is particularly concerned with sealing thermal barrier coating systems of the type in use and being contemplated for use in diesel and other internal combustion engines. The invention also would find application in moderately high temperature regions of gas turbine engines and any other application employing a thermal barrier coating at moderate temperatures. Ni-35Cr-6Al-1Y, Ni-35Cr-6Al-1Yb, or other metallic alloy denoted as MCrAlx is applied over a zirconia-based thermal barrier overlayer. The close-out layer is glass-bead preened to densify its surface. This seals and protects the thermal barrier coating system.

  20. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    NASA Technical Reports Server (NTRS)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  1. Thermoregulation and thermal perception in the cold and heat before and after intermittent heat adaptation

    NASA Astrophysics Data System (ADS)

    Issing, K.; Fuhr, E.

    1986-09-01

    Students wearing swim suits were exposed for 30 min to neutral room temperature (TR=28‡C). During the following 60 min they were subjected to gradual decreases or increases of room temperature reaching 12‡C or 45‡C, respectively. Static thermal stimuli were applied to the palms of the right (38‡C) and left (25‡C) hands. Hands and feet of all subjects were thermally isolated at 22‡C ambient temperature. General thermal comfort (GTC), local thermal comfort (LTC), skin blood flow (which is proportional to heat transport index λ) several body temperatures, oxygen-consumption(dot V_{O_2 } ), and sweat rate (S), were measured. After moderate intermittent heat exposures (7 times for 1h at TR=42.5‡C) the experiments started again. From GTC, LTC, or λ as functions of TR, no new knowledge about thermoregulatory or adaptive mechanisms was available. The high λ in the cold stimulated left hand, however, and the oscillatory thresholds (λOSC) for rhythmic vasomotion indicated the peripheral influence of skin temperature, as well as local, mean skin temperature (¯Ts) and core temperature. When exposed to moderate temperature decreases or increases the body seems to react only with increasing thermal resistance by vasoconstriction or an increase of sweat rate, respectively. Moderate heat adaptation is only able to raise sweat rate, but not the thresholds and gain of the S-function. We assume that functional studies of adaptive modifications in humans must be conducted at temperatures greatly beyond those used in these experiments.

  2. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK (Xiayoukeng), and MC (Macao) with low discharge rates, and low or moderate temperatures, particularly in riverbeds or valleys.Keywords: Spring; Temperature; Discharge rate; Indicator kriging; Uncertainty

  3. Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi

    2017-02-01

    This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.

  4. Preliminary Flight Deck Observations During Flight in High Ice Water Content Conditions

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas; Duchanoy, Dominque; Bourdinot, Jean-Francois; Harrah, Steven; Strapp, Walter; Schwarzenboeck, Alfons; Dezitter, Fabien; Grandin, Alice

    2015-01-01

    In 2006, Mason et al. identified common observations that occurred in engine power-loss events attributed to flight in high concentrations of ice crystals. Observations included light to moderate turbulence, precipitation on the windscreen (often reported as rain), aircraft total temperature anomalies, lack of significant airframe icing, and no flight radar echoes at the location and altitude of the engine event. Since 2006, Mason et al. and others have collected information from pilots who experienced engine power-loss events via interviews and questionnaires to substantiate earlier observations and support event analyses. In 2011, Mason and Grzych reported that vertical acceleration data showed increases in turbulence prior to engine events, although the turbulence was usually light to moderate and not unique to high ice water content (HIWC) clouds. Mason concluded that the observation of rain on the windscreen was due to melting of ice high concentrations of ice crystals on the windscreen, coalescing into drops. Mason also reported that these pilot observations of rain on the windscreen were varied. Many pilots indicated no rain was observed, while others observed moderate rain with unique impact sounds. Mason concluded that the variation in the reports may be due to variation in the ice concentration, particle size, and temperature.

  5. Chloroplast targeting of FtsHprotease is essential for chloroplast development and thylakoid stability at elevated temperatures in plants

    USDA-ARS?s Scientific Manuscript database

    AtFtsH11 is a chloroplast and mitochondria dual targeted metalloprotease, identified as essential for Arabidopsis plant to survive at moderate high temperatures at all developmental stages. Our study showed that FtsH11 plays critical roles in both the early stages of chloroplast biogenesis and main...

  6. Cork is used to make tooling patterns and molds

    NASA Technical Reports Server (NTRS)

    Hoffman, F. J.

    1965-01-01

    Sheet and waste cork are cemented together to provide a tooling pattern or mold. The cork form withstands moderately high temperatures under vacuum or pressure with minimum expansion, shrinkage, or distortion.

  7. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology.

    PubMed

    Pulschen, André A; Rodrigues, Fabio; Duarte, Rubens T D; Araujo, Gabriel G; Santiago, Iara F; Paulino-Lima, Ivan G; Rosa, Carlos A; Kato, Massuo J; Pellizari, Vivian H; Galante, Douglas

    2015-08-01

    The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75-2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to -6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology

    PubMed Central

    Pulschen, André A; Rodrigues, Fabio; Duarte, Rubens T D; Araujo, Gabriel G; Santiago, Iara F; Paulino-Lima, Ivan G; Rosa, Carlos A; Kato, Massuo J; Pellizari, Vivian H; Galante, Douglas

    2015-01-01

    The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75–2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to −6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes. PMID:26147800

  9. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology

    NASA Astrophysics Data System (ADS)

    Pulschen, A. A.; Rodrigues, F.; Duarte, R. T.; Araujo, G. G.; Santiago, I. F.; Paulino-Lima, Ivan G.; Rosa, Carlos A.; Kato, Massuo J.; Pellizari, Vivian H.; Galante, Douglas

    2015-08-01

    The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75-2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to -6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes.

  10. The electrical conductivity during incipient melting in the oceanic low velocity zone

    PubMed Central

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-01-01

    A low viscosity layer in the upper mantle, the Asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the Asthenosphere are attributed either to sub-solidus water-related defects in olivine minerals2-4 or to a few volume percents of partial melt5-8 but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be higher than 50 ppm due to partitioning with other mantle phases9, including pargasite amphibole at moderate temperatures10, and partial melting at high temperatures9; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the Asthenosphere and by the high melt mobility that can lead to gravitational segregation11,12. Here we determined the electrical conductivity of CO2-H2O-rich melts, typically produced at the onset of mantle melting. Electrical conductivity modestly increases with moderate amounts of H2O and CO2 but it dramatically increases as CO2 content exceeds 6 wt% in the melt. Incipient melts, long-expected to prevail in the asthenosphere10,13-15, can therefore trigger its high electrical conductivities. Considering depleted and enriched mantle abundances in H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the Asthenosphere for various plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (>5Ma), incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas for young plates4, where seamount volcanism occurs6, higher degree of melting is expected. PMID:24784219

  11. Electrical conductivity during incipient melting in the oceanic low-velocity zone.

    PubMed

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-05-01

    The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected.

  12. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. Themore » result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.« less

  13. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  14. One-wire thermocouple

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Staimach, C. J.

    1977-01-01

    Nickel alloy/constantan device accurately measures surface temperature at precise locations. Device is moderate in cost and simplifies fabrication of highly-instrumented seamless-surface heat-transfer models. Device also applies to metal surfaces if constantan wire has insulative coat.

  15. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B.; Wojtsekhowski, B.

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +}more » beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  16. Who's hot, who's not? Effects of concentrating solar power heliostats on soil temperature at Ivanpah Solar Electric Generating System, Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Grodsky, S.; Hernandez, R. R.

    2017-12-01

    Solar energy development may function as a contemporary, anthropogenic driver of disturbance when sited in natural ecosystems. Orientation and density of solar modules, including heliostats at concentrating solar power (CSP) facilities, may affect soils via shading and altered surface-water flow. Meanwhile, soil attributes like temperature and moisture may affect nutrient cycling, plant germination and growth, and soil biota. We tested effects of CSP heliostats on soil temperature at Ivanpah Solar Electric Generating System (ISEGS) in the Mojave Desert, USA. We implemented experimental treatments based on preconstruction rare plant [e.g., Mojave milkweed (Asclepias nyctaginifolia)] protection areas (hereafter "halos"), site preparation activities, and heliostat density throughout three, replicated CSP blocks (i.e., tower and associated heliostats), including: (1) No Halos (Bladed) - high site preparation intensity, high heliostat density immediately surrounding towers; (2) No Halos (Mowed) - moderate site preparation intensity, moderate to low heliostat density as distance increases from towers; and (3) Halos - no site preparation, no heliostats. We also established control sites within 1,600 km of ISEGS in undisturbed desert. We observed significant differences in soil temperature across treatments. We recorded significantly lower soil temperatures in the No Halos (Bladed) treatments (26.7°C) and No Halos (Mowed) treatments (29.9°C) than in the Halos treatments (32.9°C) and controls (32.1°C). We also determined that soil temperatures in the Halos treatments and controls did not significantly differ. Our results indicated that shading from high-density heliostat configuration significantly reduced soil temperature relative to low-density heliostat configuration and areas without CSP. Shading from heliostats and consequential fluctuation in soil temperatures may affect local-scale distribution of flora and fauna, leading to altered "bottom-up" ecological interactions at ISEGS.

  17. High-transition-temperature superconductors in the Nb-Al-Ge system

    DOEpatents

    Giorgi, A.L.; Szklarz, E.G.

    1972-09-26

    The patent describes superconducting materials of the nominal composition Nb(x)Al(y)Ge(l-y), where x is in the range of 1.9 to 2.8 and y is in the range of 0.5 to 0.9, having transition temperatures in the 19 -20K. range which are readily produced by annealing arc-melted compositions, or cold-pressed, heat-treated compositions at moderate temperatures for reasonably long times (about 50 hours).

  18. Temperature Control of Hypertensive Rats during Moderate Exercise in Warm Environment.

    PubMed

    Campos, Helton O; Leite, Laura H R; Drummond, Lucas R; Cunha, Daise N Q; Coimbra, Cândido C; Natali, Antônio J; Prímola-Gomes, Thales N

    2014-09-01

    The control of body temperature in Spontaneously Hypertensive Rat (SHR) subjected to exercise in warm environment was investigated. Male SHR and Wistar rats were submitted to moderate exercise in temperate (25°C) and warm (32°C) environments while body and tail skin temperatures, as well as oxygen consumption, were registered. Total time of exercise, workload performed, mechanical efficiency and heat storage were determined. SHR had increased heat production and body temperature at the end of exercise, reduced mechanical efficiency and increased heat storage (p < 0.05). Furthermore, these rats also showed a more intense and faster increase in body temperature during moderate exercise in the warm environment (p < 0.05). The lower mechanical efficiency seen in SHR was closely correlated with their higher body temperature at the point of fatigue in warm environment (p < 0.05). Our results indicate that SHR exhibit significant differences in body temperature control during moderate exercise in warm environment characterized by increased heat production and heat storage during moderate exercise in warm environment. The combination of these responses result in aggravated hyperthermia linked with lower mechanical efficiency. Key PointsThe practice of physical exercise in warm environment has gained importance in recent decades mainly because of the progressive increases in environmental temperature;To the best of our knowledge, these is the first study to analyze body temperature control of SHR during moderate exercise in warm environment;SHR showed increased heat production and heat storage that resulted in higher body temperature at the end of exercise;SHR showed reduced mechanical efficiency;These results demonstrate that when exercising in a warm environment the hypertensive rat exhibit differences in temperature control.

  19. High Temperature Transfer Molding Resins Based on 2,3,3',4'-Biphenyltetracarboxylic Dianhydride

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Yokota, R.; Criss, J. M.

    2002-01-01

    As part of an ongoing effort to develop materials for resin transfer molding (RTM) processes to fabricate high performance/high temperature composite structures, phenylethynyl containing imides have been under investigation. New phenylethynyl containing imide compositions were prepared using 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA) and evaluated for cured glass transition temperature (Tg), melt flow behavior, and for processability into flat composite panels via RTM. The a-BPDA imparts a unique combination of properties that are desirable for high temperature transfer molding resins. In comparison to its symmetrical counterpart (i.e. 3,3',4,4'-biphenyltetracarboxylic dianhydride), a-BPDA affords oligomers with lower melt viscosities and when cured, higher Tgs. Several candidates exhibited the appropriate combination of properties such as a low and stable melt viscosity required for RTM processes, high cured Tg, and moderate toughness. The chemistry, physical, and composite properties of select resins will be discussed.

  20. Design guide for helicopter transmission seals

    NASA Technical Reports Server (NTRS)

    Hayden, T. S.; Keller, C. H., Jr.

    1974-01-01

    A detailed approach for the selection and design of seals for helicopter transmissions is presented. There are two major types of seals presently being used and they are lip type seals and mechanical type seals. Lip type seals can be divided in conventional lip seals and hydrodynamic lip seals. Conventional lip seals can be used for slow-speed, low-pressure, low-temperature sealing. Hydrodynamic lip seals although they are as pressure and temperature limited as conventional lip seals, can operate at a higher speed. Mechanical types seals are comprised of face seals and circumferential seals. Face seals are capable of high speed, high pressure, and high temperature. Circumferential seals can be used in high-speed and high-temperature applications, but will leak excessively at moderate pressures. The performance goals of transmission seals are a life that is at least equal to the scheduled overhaul interval of the gearbox component and a leakage rate of near zero.

  1. Temperature deviation index and elderly mortality in Japan.

    PubMed

    Lim, Youn-Hee; Reid, Colleen E; Honda, Yasushi; Kim, Ho

    2016-07-01

    Few studies have examined how the precedence of abnormal temperatures in previous neighboring years affects the population's health. In the present study, we attempted to quantify the health effects of abnormal weather patterns by creating a metric called the temperature deviation index (TDI) and estimated the effects of TDI on mortality in Japan. We used data from 47 prefectures in Japan to compute the TDI on days between May and September from 1966 to 2010. The TDI is a summed product of an indicator of absence of high temperatures in the neighboring years, and more weights were assigned to the years closest to the current year. To estimate the TDI effects on elderly mortality, we used generalized linear modeling with a Poisson distribution after adjusting for apparent temperature, barometric pressure, day of the week, and time trend. For each prefecture, we estimated the TDI effects and pooled the estimates to yield a national average for 1991-2010 in Japan. The estimated effects of TDI in middle- or high-latitude prefectures were greater than in low-latitude prefectures. The estimated national average of TDI effects was a 0.5 % (95 % confidence intervals [CI], 0.1, 1.0) increase in elderly mortality per 1-unit (around 1 standard deviation) increase in the TDI. The significant pooled estimation of TDI effects was mainly due to the TDI effects on summer days with moderate temperature (25th-49th percentile, mean temperature 22.9 °C): a 1.9 % (95 % CI, 1.1, 2.6) increase in elderly mortality per 1-unit increase in the TDI. However, TDI effects were insignificant in other temperature ranges. These findings suggest that elderly deaths increased on moderate temperature days in the summer that differed substantially from days during that time window in the neighboring years. Therefore, not only high temperature itself but also temperature deviation compared to previous years could be considered to be a risk factor for elderly mortality in the summer.

  2. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult.

    PubMed

    Shin, Hangsik

    2016-12-01

    Pulse rate variability (PRV) is a promising physiological and analytic technique used as a substitute for heart rate variability (HRV). PRV is measured by pulse wave from various devices including mobile and wearable devices but HRV is only measured by an electrocardiogram (ECG). The purpose of this study was to evaluate PRV and HRV at various ambient temperatures and elaborate on the interchangeability of PRV and HRV. Twenty-eight healthy young subjects were enrolled in the experiment. We prepared temperature-controlled rooms and recorded the ECG and photoplethysmography (PPG) under temperature-controlled, constant humidity conditions. The rooms were kept at 17, 25, and 38 °C as low, moderate, and high ambient temperature environments, respectively. HRV and PRV were derived from the synchronized ECG and PPG measures and they were studied in time and frequency domain analysis for PRV/HRV ratio and pulse transit time (PTT). Similarity and differences between HRV and PRV were determined by a statistical analysis. PRV/HRV ratio analysis revealed that there was a significant difference between HRV and PRV for a given ambient temperature; this was with short-term variability measures such as SDNN SDSD or RMSSD, and HF-based variables including HF, LF/HF and normalized HF. In our analysis the absolute value of PTT was not significantly influenced by temperature. Standard deviation of PTT, however, showed significant difference not only between low and moderate temperatures but also between low and high temperatures. Our results suggest that ambient temperature induces a significant difference in PRV compared to HRV and that the difference becomes greater at a higher ambient temperature.

  3. Algal-Based Renewable Energy for Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsen, Christian

    2017-03-31

    To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons-more » where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.« less

  4. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag 8 SiSe 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar

    Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag 8SiSe 6, which exhibits promising thermoelectric performance close to room temperature.

  5. Genetic characteristics of fluid inclusions in sphalerite from the Silesian-Cracow ores, Poland

    USGS Publications Warehouse

    Kozlowski, A.; Leach, D.L.; Viets, J.G.

    1996-01-01

    Fluid inclusion studies in sphalerite from early-stage Zn-Pb mineralization in the Silesian-Cracow region (southern Poland), yielded homogenization temperatures (Th) from 80 to 158??C. Vertical thermal gradient of the parent fluids was 6 to 10??C, and the ore crystallization temperature ranges varied from <10??C at deep levels to 25??C at shallow levels. The peculiarities of formation of primary and secondary fluid inclusions from organic-matter-bearing water-dominated medium, position of the inclusions in crystals, features of secondary inclusions, the inclusion refilling phenomena, their formation on recrystallization of ores, and Th distribution in single fissure fillings were considered. The ore-forming fluids were liquid-hydrocarbon-bearing aqueous solutions of Na-Ca-Cl type with lower Ca contents in the south and higher Ca contents in the north of the region. The ore-forming fluids had salinities from nul to about 23 weight percent of NaCl equivalent. Three types of fluids were recognized, that mixed during ore precipitation: a) ascending fluids of low-to-moderate salinity and high, b) formation brines of high salinity and moderate Th, and c) descending waters of low salinity and low-to-moderate Th.

  6. Trends in Surface Temperature at High Latitudes

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record started. Also, the SST in the Arctic basin is observed to be anomalously high in 2007 when the perennial ice cover declined dramatically to its lowest extent. In the Antarctic, surface temperature trends are much more moderate with the most positive trends occurring in the Antarctic Peninsula and parts of Western Antarctica while some cooling are observed in the Antarctic Plateau and the Ross Sea. The trends in SST in the region is similar to global averages but precipitation from more evaporation may have a key role in the spatial distribution of surface temperature in the ice covered region

  7. Tribological Performance of PM300 Solid Lubricant Bushings for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Striebing, Donald R.; Stanford, Malcolm K.; DellaCorte, Christopher; Rossi, Anne M.

    2007-01-01

    PM300 is a high temperature solid lubricant material produced through conventional powder metallurgy processing. PM300 is a combination of metal binder (NiCr), hardener (Cr2O3) and lubricant (Ag and BaF2/CaF2) phases and is in commercial use in high temperature furnace conveyors. In this paper, the tribological characteristics of PM300 are evaluated using a newly developed bushing test rig in which PM300 bushings are loaded against rotating steel shafts at temperatures from 25 to 650 C. The data shows that friction and wear are low to moderate and that the lubrication performance (friction) improves with increasing temperature. Several alternative PM300 compositions are evaluated which do not contain silver and are targeted at aircraft gas turbine applications in which environmental compatibility of silver is a concern. It is expected that the data resulting from this research will further the commercialization of this technology.

  8. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil.

    PubMed

    Rogério, J P; Santos, M A; Santos, E O

    2013-11-01

    For almost two decades, studies have been under way in Brazil, showing how hydroelectric reservoirs produce biogenic gases, mainly methane (CH4) and carbon dioxide (CO2), through the organic decomposition of flooded biomass. This somewhat complex phenomenon is due to a set of variables with differing levels of interdependence that directly or indirectly affect greenhouse gas (GHG) emissions. The purpose of this paper is to determine, through a statistical data analysis, the relation between CO2, CH4 diffusive fluxes and environmental variables at the Furnas, Itumbiara and Serra da Mesa hydroelectric reservoirs, located in the Cerrado biome on Brazil's high central plateau. The choice of this region was prompted by its importance in the national context, covering an area of some two million square kilometers, encompassing two major river basins (Paraná and Tocantins-Araguaia), with the largest installed power generation capacity in Brazil, together accounting for around 23% of Brazilian territory. This study shows that CH4 presented a moderate negative correlation between CO2 and depth. Additionally, a moderate positive correlation was noted for pH, water temperature and wind. The CO2 presented a moderate negative correlation for pH, wind speed, water temperature and air temperature. Additionally, a moderate positive correlation was noted for CO2 and water temperature. The complexity of the emission phenomenon is unlikely to occur through a simultaneous understanding of all the factors, due to difficulties in accessing and analyzing all the variables that have real, direct effects on GHG production and emission.

  9. Climate change (elevated CO₂, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage.

    PubMed

    Salazar-Parra, Carolina; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Morales, Fermín

    2012-02-01

    Photosynthetic carbon fixation (A(N) ) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O₂, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO₂, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A(N) + respiration + photorespiration) were observed in plants treated with elevated CO₂ and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H₂O₂ and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO₂ and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation. Copyright © Physiologia Plantarum 2011.

  10. Effects of a whole-body spandex garment on rectal temperature and oxygen consumption in healthy dogs.

    PubMed

    Reimer, S Brent; Schulz, Kurt S; Mason, David R; Jones, James H

    2004-01-01

    To determine whether a full-body spandex garment would alter rectal temperatures of healthy dogs at rest in cool and warm environments. Prospective study. 10 healthy dogs. Each dog was evaluated at a low (20 degrees to 25 degrees C [68 degrees to 77 degrees F]) or high (30 degrees to 35 degrees C [86 degrees to 95 degrees F]) ambient temperature while wearing or not wearing a commercially available whole-body spandex garment designed for dogs. Oxygen consumption was measured by placing dogs in a flow-through indirect calorimeter for 90 to 120 minutes. Rectal temperature was measured before dogs were placed in the calorimeter and after they were removed. Rectal temperature increased significantly more at the higher ambient temperature than at the lower temperature and when dogs were not wearing the garment than when they were wearing it. The specific rate of oxygen consumption was significantly higher at the lower ambient temperature than at the higher temperature. Results suggest that wearing a snug spandex body garment does not increase the possibility that dogs will overheat while in moderate ambient temperatures. Instead, wearing such a garment may enable dogs to better maintain body temperature during moderate heat loading. These results suggest that such garments might be used for purposes such as wound or suture protection without causing dogs to overheat.

  11. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less

  12. Hemodynamic Responses to Head and Neck Cooling

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Carbo, Jorge E.; Montgomery, Leslie D.; Webbon, Bruce W.

    1994-01-01

    Personal thermoregulatory systems which provide head and neck cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objective of this study was to measure the scalp temperature and circulatory responses during use of one commercially available thermal control system. The Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used in this study. Two EEG electrodes and one skin temperature transducer were placed on the anterior midline of the scalp to measure the scalp blood and temperature. Blood flow was measured using a bipolar impedance rheograph. Ten subjects, seated in an upright position at normal room temperature, were tested at high, medium, moderate, moderate-low and low coolant temperatures. Scalp blood flow was recorded continuously using a computer data acquisition system with a sampling frequency of 200 Hz. Scalp temperature and cooling helmet Inlet temperature was logged periodically during the test period. This study quantifies the effect of head cooling upon scalp temperature and blood flow. These data may also be used to select operational specifications of the head cooling system for biomedical applications such as the treatment of migraine headaches, scalp cooling during chemotherapy, and cooling of multiple sclerosis patients.

  13. Green chiral HPLC study of the stability of Chiralcel OD under high temperature liquid chromatography and subcritical water conditions.

    PubMed

    Droux, S; Roy, M; Félix, G

    2014-10-01

    We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2014-03-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  15. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  16. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance.

    PubMed

    Wang, Yi; Hua, Jian

    2009-10-01

    Temperature has a profound effect on plant growth and development. However, the molecular mechanisms underlying this regulation are not well understood. In particular, how moderate temperature variations are perceived and transduced inside the plant cells remains obscure. In this study, we analyzed transcriptional responses to a moderate decrease in temperature (cooling) in Arabidopsis thaliana. The cooling response involves a weaker and more transient induction of cold-induced genes, such as COR15a, than cold response. This induction probably accounts for the increase in freezing tolerance by cooling acclimation. Cooling also induces some defense response genes, and their induction, but not that of COR15a, requires the salicylic acid signaling pathway. Analysis of the regulation of COR15a reveals that cooling induction is mediated through the same C repeat/dehydration-responsive (CRT/DRE) element as cold induction. Furthermore, we identified a role for CBF1 and CBF4 in transducing signals of moderate decreases in temperature. It appears that variants of the CBF signaling cascade are utilized in cold and cooling responses, and a moderate decrease in temperature may invoke an adaptive response to prepare plants to cope with a more drastic decrease in temperature.

  17. High-intensity positron microprobe at Jefferson Lab

    DOE PAGES

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 10 10 e +/s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system,more » transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  18. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.

    PubMed

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2012-11-01

    The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.

  19. Physiological and lactation responses of Egyptian dairy Baladi goats to natural thermal stress under subtropical environmental conditions.

    PubMed

    El-Tarabany, Mahmoud S; El-Tarabany, Akram A; Atta, Mostafa A

    2017-01-01

    The objective of this study was to evaluate the impact of thermal stress on milk production and physiological traits of Baladi goats under subtropical Egyptian conditions. Sixty dairy Baladi goats were exposed to three different levels of temperature-humidity index (THI), including low (less than 70), moderate (over 70 and up to 80), and high levels (over 80). The influence of THI on the milk composition and physiological, hematological, and biochemical traits was investigated. Rectal temperature and respiration rate were significantly greater at the higher THI than at low and moderate THI (p = 0.016 and 0.002, respectively). Baladi goats had decreased daily milk yield in a rate of 27.3 and 19.3 % at high THI level, compared with low and moderate THI, respectively (p = 0.031). On the contrary, no significant differences have been reported in protein, fat, and total solids percentages at different THI levels. Total leucocyte count, serum glucose, and total protein were significantly reduced at high THI in comparison with low and moderate THI levels (p = 0.043, 0.001, and 0.001, respectively). However, dairy goats maintained relatively stable estimates for erythrocytes count, hemoglobin, serum triglycerides, cholesterol, catalase, total antioxidant capacity, and triiodothyronine at different THI levels. Our results indicate that dairy Baladi goats can tolerate THI levels up to 80; however, variable reduction in milk yield and few biochemical (serum total protein and glucose) and hematological (leucocytes count) parameters have been reported at a THI level higher than 80.

  20. Modeling the effects of light, carbon dioxide, and temperature on the growth of potato

    NASA Technical Reports Server (NTRS)

    Yandell, B. S.; Najar, A.; Wheeler, R.; Tibbitts, T. W.

    1988-01-01

    This study examined the effects of light, temperature and carbon dioxide on the growth of potato (Solanum tuberosum L.) in a controlled environment in order to ascertain the best growing conditions for potato in life support systems in space. 'Norland' and 'Russet Burbank' were grown in 6-L pots of peat-vermiculite for 56 d in growth chambers at the University of Wisconsin Biotron. Environmental factor levels included continuous light (24-h photoperiod) at 250, 400, and 550 micromoles m-2 s-1 PPF; constant temperature at 16, 20, and 24 degrees C; and CO2 at approximately 400, 1000, and 1600 microliters L-1. Separate effects analysis and ridge analysis provided a means to examine the effects of individual environmental factors and to determine combinations of factors that are expected to give the best increases in yields over the central design point. The response surface of Norland indicated that tuber yields were highest with moderately low temperature (18.7 degrees C), low CO2 (400 microliters L-1) and high light (550 micromoles m-2 s-1 PPF). These conditions also favored shorter stem growth. Russet Burbank tuber yields were highest at moderately low temperature (17.5 degrees C), high CO2 (1600 microliters L-1) and medium analyses will be used to project the most efficient conditions for growth of potatoes in closed ecological life support systems (CELSS) in space colonies.

  1. The effect of the menstrual cycle and water consumption on physiological responses during prolonged exercise at moderate intensity in hot conditions.

    PubMed

    Hashimoto, Hideki; Ishijima, Toshimichi; Suzuki, Katsuhiko; Higuchi, Mitsuru

    2016-09-01

    Reproductive hormones are likely to be involved in thermoregulation through body fluid dynamics. In the present study, we aimed to investigate the effect of the menstrual cycle and water consumption on physiological responses to prolonged exercise at moderate intensity in hot conditions. Eight healthy young women with regular menstrual cycles performed cycling exercise for 90 minutes at 50% V̇O2peak intensity during the low progesterone (LP) level phase and high progesterone (HP) level phase, with or without water consumption, under hot conditions (30°C, 50% relative humidity). For the water consumption trials, subjects ingested water equivalent to the loss in body weight that occurred in the earlier non-consumption trial. For all four trials, rectal temperature, cardiorespiratory responses, and ratings of perceived exertion (RPE) were measured. Throughout the 90-minute exercise period, rectal temperatures during HP were higher than during LP by an average of 0.4 °C in the non-consumption trial (P<0.01) and 0.2 °C in the water consumption trial (P<0.05). During exercise, water consumption affected the changes in rectal temperature and heat rate (HR) during HP, but it did not exert these effects during LP. Furthermore, we found a negative correlation between estradiol levels and rectal temperature during LP. During prolonged exercise at moderate intensity under hot conditions, water consumption is likely to be useful for suppressing the associated increase in body temperature and HR, particularly during HP, whereas estradiol appears to be useful for suppressing the increase in rectal temperature during LP.

  2. Downscaling Surface Temperature Image with TsHARP

    USDA-ARS?s Scientific Manuscript database

    Daily evapotranspiration (ET) maps would significantly improve assessing crop water requirements, especially in the Texas High Plains (THP) where the supply of irrigation water is limited. Evapotranspireation maps derived from satellite data with daily coverage such as MODIS (Moderate Resolution Ima...

  3. Assessment of surface acidity in mesoporous materials containing aluminum and titanium

    NASA Astrophysics Data System (ADS)

    Araújo, Rinaldo S.; Maia, Débora A. S.; Azevedo, Diana C. S.; Cavalcante, Célio L., Jr.; Rodríguez-Castellón, E.; Jimenez-Lopez, A.

    2009-04-01

    The surface acidity of mesoporous molecular sieves of aluminum and titanium was evaluated using four different techniques: n-butylamine volumetry, cyclohexylamine thermodesorption, temperature-programmed desorption of ammonia and adsorption of pyridine. The nature, strength and concentration of the acid sites were determined and correlated to the results of a probe reaction of anthracene oxidation to 9,10-anthraquinone (in liquid phase). In general, the surface acidity was highly influenced by the nature, location and coordination of the metal species (Al and Ti) in the mesoporous samples. Moderate to strong Brönsted acid sites were identified for the Al-MCM-41 sample in a large temperature range. For mesoporous materials containing Ti, the acidity was represented by a combination of weak to moderate Brönsted and Lewis acid sites. The Ti-HMS sample exhibits a higher acidity of moderate strength together with a well-balanced concentration of Brönsted and Lewis acid sites, which enhanced both conversion and selectivity in the oxidation reaction of anthracene.

  4. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  5. Comment on "the one dimensional acoustic field with arbitrary mean axial temperature gradient and mean flow" (J.Li and A.S.Morgans, Journal of Sound and Vibration 400 (2017) 248-269)

    NASA Astrophysics Data System (ADS)

    Dokumaci, Erkan

    2017-12-01

    In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.

  6. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change epilithic communities in the future, thereby likely leading to reduced reef stability and recovery.

  7. Plant molecular responses to the elevated ambient temperatures expected under global climate change.

    PubMed

    Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng

    2018-01-02

    Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.

  8. Novel Endoxylanases of the Moderately Thermophilic Polysaccharide-Degrading Bacterium Melioribacter roseus.

    PubMed

    Rakitin, Andrey L; Ermakova, Alexandra Y; Ravin, Nikolai V

    2015-09-01

    Three endoxylanase-encoding genes from the moderately themophilic chemoorganotrophic bacterium Melioribacter roseus were cloned and expressed in Escherichia coli. Genes xyl2091 (Mros_2091) and xyl2495 (Mros_2495) encode GH10 family hydrolases, whereas xyl2090 (Mros_2090) represents the GH30 family. In addition to catalytic domains, Xyl2090 and Xyl2091 contain carbohydrate-binding modules that could facilitate their binding to xylans and Por sorting domains associated with the sorting of proteins from the periplasm to the outer membrane, where they are covalently attached. Recombinant endoxylanase Xyl2495 exhibited a high specific activity of 1,920 U/mg on birchwood xylan at 40°C. It is active at low temperatures, exhibiting more than 30% of the maximal activity even at 0°C. Endoxylanases Xyl2090 and Xyl2091 have lower specific activities but higher temperature optima at 80°C and 65°C, respectively. Analysis of xylan hydrolysis products revealed that Xyl2090 generates xylo-oligosaccharides longer than xylopentaose. Xylose and xylobiose are the major products of xylan hydrolysis by the recombinant Xyl2091 and Xyl2495. No activity against cellulose was observed for all enzymes. The presence of three xylanases ensures efficient xylan hydrolysis by M. roseus. The highly processive "free" endoxylanase Xyl2495 could hydrolyze xylan under moderate temperatures. Xylan hydrolysis at elevated temperatures could be accomplished by concerted action of two cell-bound xylanases; Xyl2090 that probably degrades xylans to long xylo-oligosaccharides, and Xyl2091 hydrolyzing them to xylose and xylobiose. The new endoxylanases could be useful for saccharification of lignocellulosic biomass in biofuels production, bleaching of paper pulp, and obtaining low molecular weight xylooligosaccharides.

  9. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; O'Neill, C.

    2015-06-01

    We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.

  10. Porous Ceramic Cures at Moderate Temperatures, Is Good Heat Insulator

    NASA Technical Reports Server (NTRS)

    Eubanks, Alfred G.; Hunkeler, Ronald E.

    1965-01-01

    The problem: To develop a foamed-in-place refractory material that would provide good thermal insulation, mechanical support, and vibration shielding for enclosed objects at temperatures up to 30000 F. The preparation of conventional foamed refractory materials required long curing times (as much as 48 hours) and high temperatures (at least 700 F), rendering such materials unusable for in-place potting of heat-sensitive components. The solution: A foamed ceramic material that has the requisite thermal insulation and strength, and also displays other properties that suggest a wide range of applications.

  11. The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (Gadus morhua) are stimulated with bacterial versus viral antigens.

    PubMed

    Hori, Tiago S; Gamperl, A Kurt; Nash, Gord; Booman, Marije; Barat, Ashoktaru; Rise, Matthew L

    2013-10-01

    Exposure to elevated temperature is an inherent feature of Atlantic cod (Gadus morhua) sea-cage culture in some regions (e.g., Newfoundland) and may also become an increasingly prevalent challenge for wild fish populations because of accelerated climate change. Therefore, understanding how elevated temperatures impacts the immune response of this commercially important species may help to reduce the potential negative impacts of such challenges. Previously, we investigated the impacts of moderately elevated temperature on the antiviral responses of Atlantic cod (Hori et al. 2012) and reported that elevated temperature modulated the spleen transcriptome response to polyriboinosinic polyribocytidylic acid (pIC, a viral mimic). Herein, we report a complementary microarray study that investigated the impact of the same elevated temperature regime on the Atlantic cod spleen transcriptome response to intraperitoneal (IP) injection of formalin-killed Aeromonas salmonicida (ASAL). Fish were held at two different temperatures (10 °C and 16 °C) prior to immune stimulation and sampled 6 and 24 h post-injection (HPI). In this experiment, we identified 711 and 666 nonredundant ASAL-responsive genes at 6HPI and 24HPI, respectively. These included several known antibacterial genes, including hepcidin, cathelicidin, ferritin heavy subunit, and interleukin 8. However, we only identified 15 differentially expressed genes at 6HPI and 2 at 24HPI (FDR 1%) when comparing ASAL-injected fish held at 10 °C versus 16 °C. In contrast, the same comparisons with pIC-injected fish yielded 290 and 339 differentially expressed genes (FDR 1%) at 6HPI and 24HPI, respectively. These results suggest that moderately elevated temperature has a lesser effect on the Atlantic cod spleen transcriptome response to ASAL (i.e., the antibacterial response) than to pIC (i.e., antiviral response). Thus, the impacts of high temperatures on the cod's immune response may be pathogen dependent.

  12. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.

    PubMed

    Möller, M; Alchanatis, V; Cohen, Y; Meron, M; Tsipris, J; Naor, A; Ostrovsky, V; Sprintsin, M; Cohen, S

    2007-01-01

    Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates are discussed. Future research should aim at developing thermal imaging into an irrigation scheduling tool applicable to different crops.

  13. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    PubMed

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors have to be considered when interpreting body temperature measures to identify sick cows. Furthermore, the prevalence of fever considering different thresholds is higher during hot than moderate periods. However, even in a moderate period healthy cows can exhibit a body temperature that is considered as fever. This fact clearly illustrates that fever alone should not be considered the decision criterion whether a cow is allocated to an antibiotic treatment, although it is the most important one that is objectively measurable. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams

    DOEpatents

    Siriwardane, Ranjani V [Morgantown, WV; Stevens, Robert W [Morgantown, WV

    2012-03-06

    A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

  15. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  16. Characterization Report on Fuels for NEAMS Model Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gofryk, Krzysztof

    Nearly 20% of the world’s electricity today is generated by nuclear energy from uranium dioxide (UO 2) fuel. The thermal conductivity of UO 2 governs the conversion of heat produced from fission events into electricity and it is an important parameter in reactor design and safety. While nuclear fuel operates at high to very high temperatures, thermal conductivity and other materials properties lack sensitivity to temperature variations and to material variations at reactor temperatures. As a result, both the uncertainties in laboratory measurements at high temperatures and the small differences in properties of different materials inevitably lead to large uncertaintiesmore » in models and little predictive power. Conversely, properties measured at low to moderate temperatures have more sensitivity, less uncertainty, and have larger differences in properties for different materials. These variations need to be characterized as they will afford the highest predictive capability in modeling and offer best assurances for validation and verification at all temperatures. This is well emphasized in the temperature variation of the thermal conductivity of UO 2.« less

  17. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xing, E-mail: star1987@hdu.edu.cn; Wang, Huizhen; Ji, Zhenguo

    2016-09-15

    A novel 3D microporous metal-organic framework with NbO topology, [Cu{sub 2}(L)(H{sub 2}O){sub 2}]∙(DMF){sub 6}·(H{sub 2}O){sub 2} (ZJU-10, ZJU = Zhejiang University; H{sub 4}L =2′-hydroxy-[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu{sup 2+} sites, ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g, as well as moderately high C{sub 2}H{sub 2} volumetric uptake capacity of 132 cm{sup 3}/cm{sup 3}. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature. - Graphical abstract: A new NbO-type microporous metal-organic framework ZJU-10 withmore » suitable pore size and open Cu{sup 2+} sites was synthesized to realize the strong interaction with acetylene molecules, which can separate the acetylene from methane and carbon dioxane gas mixtures at room temperature. Display Omitted - Highlights: • A novel 3D NbO-type microporous metal-organic framework ZJU-10 was solvothermally synthesized and structurally characterized. • ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g. • ZJU-10a shows a moderately high C{sub 2}H{sub 2} gravimetric (volumetric) uptake capacity of 174 (132) cm{sup 3}/g at 298 K and 1 bar. • ZJU-10a can separate acetylene from methane and carbon dioxide gas mixtures at room temperature.« less

  18. Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics

    DTIC Science & Technology

    2013-04-02

    this architecture include concentrated solar photovoltaics , thermoelectrics , and fuel cells. System Testing. Themicroreactorwas ignitedbyhydrogen...2, 3), thermoelectrics (4, 5), and thermophotovoltaics (TPVs) (6, 7). TPVs present an extremely appealing approach for small-scale power sources due...into spectrally confined thermal radiation, optically coupled to low-bandgap photovoltaic (PV) diodes that are electrically interfaced with a unique

  19. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    NASA Astrophysics Data System (ADS)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.

  20. Mg incorporation in GaN grown by plasma-assisted molecular beam epitaxy at high temperatures

    NASA Astrophysics Data System (ADS)

    Yang, W. C.; Lee, P. Y.; Tseng, H. Y.; Lin, C. W.; Tseng, Y. T.; Cheng, K. Y.

    2016-04-01

    The influence of growth conditions on the incorporation and activation of Mg in GaN grown by plasma-assisted molecular beam epitaxy at high growth temperature (>700 °C) is presented. It is found that the highest Mg incorporation with optimized electrical properties is highly sensitive both to the Mg/Ga flux ratio and III/V flux ratio. A maximum Mg activation of ~5% can be achieved at a growth temperature of 750 °C. The lowest resistivity achieved is 0.56 Ω-cm which is associated with a high hole mobility of 6.42 cm2/V-s and a moderately high hole concentration of 1.7×1018 cm-3. Although the highest hole concentration achieved in a sample grown under a low III/V flux ratio and a high Mg/Ga flux ratio reaches 7.5×1018 cm-3, the mobility is suffered due to the formation of defects by the excess Mg. In addition, we show that modulated beam growth methods do not enhance Mg incorporation at high growth temperature in contrast to those grown at a low temperature of 500 °C (Appl. Phys. Lett. 93, 172112, Namkoong et al., 2008 [19]).

  1. Microstructure and properties of laser-clad high-temperature wear-resistant alloys

    NASA Astrophysics Data System (ADS)

    Yang, Yongqiang

    1999-02-01

    A 2-kW CO 2 laser with a powder feeder was used to produce alloy coatings with high temperature-wear resistance on the surface of steel substrates. To analyze the microstructure and microchemical composition of the laser-clad layers, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray microanalysis system was employed. X-ray diffraction techniques were applied to characterize the phases formed during the cladding process. The results show that the microstructure of the cladding alloy consists mainly of many dispersed particles (W 2C, (W,Ti)C 1- x, WC), a lamellar eutectic carbide M 12C, and an (f.c.c) matrix. Hardness tested at room and high temperature showed that the laser-clad zone has a moderate room temperature hardness and relatively higher elevated temperature hardness. The application of the laser-clad layer to a hot tool was very successful, and its operational life span was prolonged 1 to 4 times.

  2. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    DOE PAGES

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; ...

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating themore » irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.« less

  3. High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3

    DOE PAGES

    McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...

    2017-11-07

    Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less

  4. High-temperature magnetostructural transition in van der Waals-layered α -MoCl3

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.

    2017-11-01

    The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.

  5. Synergistic effects of temperature and humidity on the symptoms of COPD patients

    NASA Astrophysics Data System (ADS)

    Mu, Zhe; Chen, Pei-Li; Geng, Fu-Hai; Ren, Lei; Gu, Wen-Chao; Ma, Jia-Yun; Peng, Li; Li, Qing-Yun

    2017-11-01

    This panel study investigates how temperature, humidity, and their interaction affect chronic obstructive pulmonary disease (COPD) patients' self-reported symptoms. One hundred and six COPD patients from Shanghai, China, were enrolled, and age, smoking status, St. George Respiratory Questionnaire (SGRQ) score, and lung function index were recorded at baseline. The participants were asked to record their indoor temperature, humidity, and symptoms on diary cards between January 2011 and June 2012. Altogether, 82 patients finished the study. There was a significant interactive effect between temperature and humidity ( p < 0.0001) on COPD patients. When the indoor humidity was low, moderate, and high, the indoor temperature ORs were 0.969 (95% CI 0.922 to 1.017), 0.977 (0.962 to 0.999), and 0.920 (95% CI 0.908 to 0.933), respectively. Low temperature was a risk factor for COPD patients, and high humidity enhanced its risk on COPD. The indoor temperature should be kept at least on average at 18.2 °C, while the humidity should be less than 70%. This study demonstrates that temperature and humidity were associated with COPD patients' symptoms, and high humidity would enhance the risk of COPD due to low temperature.

  6. Optical characterization of wide-gap detector-grade semiconductors

    NASA Astrophysics Data System (ADS)

    Elshazly, Ezzat S.

    Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd1-xZnxTe, x˜0.1) and Thallium Bromide (TlBr), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and TlBr as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064nm wavelength and 7ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300K to 110K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (TlBr) and compared with the results for cadmium zinc telluride (CZT) in a temperature range from 300K to 110K. The experimental data was analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160K. While, in TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a 1T temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center, located approximately 200 meV from the middle of the bandgap, could be used to significantly increase the room temperature trapping time in TlBr. The results of this model demonstrate that the room temperature trapping time in TlBr can, in principle, approach 0.1ms through the introduction of a moderately deep compensation level but without decreasing the overall trap concentration. This strategy is not possible in CZT, because the band gap is too small to use a moderately deep compensation level while still maintaining high material resistivity. Carrier trapping times were measured in three polycrystalline TlBr samples produced by melting commercial TlBr beads in a sealed quartz ampoule for two hours at three different temperatures near the melting point. The trapping time decreased with increasing melting temperature, presumably due to the thermal generation of a trap state.

  7. Halophilic Amylase from a Moderately Halophilic Micrococcus

    PubMed Central

    Onishi, Hiroshi

    1972-01-01

    A moderately halophilic Micrococcus sp., isolated from unrefined solar salt, produced a considerable amount of extracellular dextrinogenic amylase when cultivated aerobically in media containing 1 to 3 m NaCl. The Micrococcus amylase had maximal activity at pH 6 to 7 in 1.4 to 2 m NaCl or KCl at 50 C. Calcium ion and a high concentration of NaCl or KCl were essential for activity and stability of the amylase. The salt response of the amylase depended greatly on the pH and temperature of the enzyme assay. PMID:5058445

  8. Structural changes associated with the acute thermal instability of Rubisco activase

    USDA-ARS?s Scientific Manuscript database

    The inhibition of photosynthesis at moderately high temperatures has been linked to a decrease in Rubisco activation, thought to be a consequence of the thermal instability of Rubisco's chaperone, Rubisco activase. To determine the structural basis for inactivation of Rubisco activase, the effects o...

  9. Structural Changes Associated with the Acute Thermal Instability of Rubisco Activase

    USDA-ARS?s Scientific Manuscript database

    The inhibition of photosynthesis at moderately high temperatures has been linked to a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation. This decrease is thought to be a consequence of the thermal instability of Rubisco’s chaperone, ribulose-1,5-bisphosphate carboxyla...

  10. Assessment of Moderate- and High-Temperature Geothermal Resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.; DeAngelo, Jacob; Galanis, S. Peter

    2008-01-01

    Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation's geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.

  11. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less

  12. Microscale Heat Conduction Models and Doppler Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperaturemore » rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.« less

  13. Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.

    Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.

  14. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  15. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  16. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE PAGES

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...

    2016-05-10

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  17. Large electrostrictive effect in (Ba1-xGd2x/3)Zr0.3Ti0.7O3 relaxor towards moderate field actuator and energy storage applications

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Saha, Sujoy; Sinha, T. P.; Rout, S. K.

    2016-11-01

    The need of lead-free high performance ceramics with large electrostrictive effect, minimum hysteresis loss and energy storage ability at room temperature has become indispensable. At room temperature one of the key challenges in ceramic materials is to enhance the electrostrictive and energy storage properties simultaneously. In this regards, lead-free gadolinium modified barium zirconate titanate (Ba1-xGd2x/3)(Zr0.3Ti0.7)O3 (x = 0.02, 0.04, 0.06, 0.08, 0.10) ceramic was experimentally investigated to gain the competent electromechanical parameters near room temperature. Dielectric measurements exhibit a diffuse type of phase transition of relaxor phenomena and slim hysteresis loop with low remnant polarization and low hysteresis loss were observed. A moderate electric field of 30 kV/cm, recoverable energy and storage efficiency increases with Gd content. Strain-electric field hysteresis curves such as S-E, S-E2, and S-P2 profiles indicate improved electrostrictive characteristic of the ceramics. Results show that a maximum strain S ˜ 0.083% with large electrostrictive coefficient Q11 ˜ 0.054 m4/C2 and M11 ˜ 0.142 × 10-16 m2/V2 were obtained for x = 0.02 based BGdZT composition near relaxor-paraelectric phase boundary. The behavior of electrostrictive effect and energy storage efficiency suggested new possibilities of high precision lead-free ceramic actuator in a moderate field.

  18. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    PubMed

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  19. Localization and superconductivity in (BEDT-TIF) 2Cu[N(CN) 2]Cl: Pressure effect

    NASA Astrophysics Data System (ADS)

    Sushko, Yu. V.; Bondarenko, V. A.; Petrosov, R. A.; Kushch, N. D.; Yagubskii, E. B.

    1991-12-01

    At ambient pressure titled salt exhibits the insulating ground state. Superconductivity with T c near 12 K appears at the pressure of 95 bar and under the moderate pressures coexists with the high-temperature semiconducting regime. At 340 bar the metallic behavior of resistance is stabilized in whole temperature range and T c reaches the maximum value (midpoint 12.8 K, onset 13.8 K). Further pressure increasing causes rapid T c decreasing.

  20. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  1. Efficacy of reflective insulation in reducing heat stress on dairy calves housed in polyethylene calf hutches.

    PubMed

    Carter, B H; Friend, T H; Garey, S M; Sawyer, J A; Alexander, M B; Tomazewski, M A

    2014-01-01

    The objective of this study was to determine the ability of radiant insulation hutch covers to moderate the effect of ambient temperature and radiant energy on calves housed in polyethylene hutches. The insulation had a double layer of polyethylene bubble film laminated between a layer of aluminum foil and white polyethylene (reflectance = 95%, R value (ft(2) · °F ·h/Btu) = 2.7). In each of two experiments (exp.), hutches were either uninsulated (control) or covered with reflective insulation across the top and sides of the hutch leaving the front, back, and pen exposed. Each hutch had a 1.2 × 1.8-m attached outdoor wire pen. In both exp., rate of increase of interior hutch temperature relative to ambient temperature was lower in insulated hutches (P < 0.001) indicating they were warmer at low THI and cooler at high THI. In exp. 1, increase in respiration rate and ear canal temperature of the calves, relative to THI, were moderated in insulated hutches (P < 0.001). In Exp. 2, respiration rate was not affected by treatment (P = 0.50), but increased with increasing THI (P < 0.001). Mean ADG did not differ among treatments in either exp. (P > 0.21). Insulating calf hutches with reflective insulation moderated hutch microclimate, and improved calf comfort, but did not translate to improvements in economically relevant variables such as ADG.

  2. Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)

    NASA Astrophysics Data System (ADS)

    Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander

    2016-04-01

    Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of kimberlite and basaltic magmas at the T, P - parameters of the Earth's crust and upper mantle. The Russian Foundation for Basic Research (project 15-05-01318) and the Russian Science Foundation (project 14-27-00054) are acknowledged for the financial support. [1] Persikov, E.S. & Bukhtiyarov, P.G. (2009) Russian Geology & Geophysics, 50, No 12, 1079-1090.

  3. High-resolution distributed temperature sensing with the multiphoton-timing technique

    NASA Astrophysics Data System (ADS)

    Höbel, M.; Ricka, J.; Wüthrich, M.; Binkert, Th.

    1995-06-01

    We report on a multiphoton-timing distributed temperature sensor (DTS) based on the concept of distributed anti-Stokes Raman thermometry. The sensor combines the advantage of very high spatial resolution (40 cm) with moderate measurement times. In 5 min it is possible to determine the temperature of as many as 4000 points along an optical fiber with an accuracy Delta T less than 2 deg C. The new feature of the DTS system is the combination of a fast single-photon avalanche diode with specially designed real-time signal-processing electronics. We discuss various parameters that affect the operation of analog and photon-timing DTS systems. Particular emphasis is put on the consequences of the nonideal behavior of sensor components and the corresponding correction procedures.

  4. Food poisoning potential of Bacillus cereus strains from Norwegian dairies.

    PubMed

    Stenfors Arnesen, Lotte P; O'sullivan, Kristin; Granum, Per Einar

    2007-05-10

    Characteristics concerning diarrhoeal potential were investigated in B. cereus dairy strains. The thirty-nine strains, isolated from whipping cream, were tested for cytotoxicity after culturing at human body temperature as well as 25 degrees C and 32 degrees C. At 37 degrees C, none of the strains were highly cytotoxic. This observation suggests that those strains should be considered to pose a minor risk with regard to diarrhoeal food poisoning. However, some strains were moderately or highly cytotoxic when grown at 25 degrees C and 32 degrees C. While the majority of the strains were able to grow at refrigeration temperatures, only four B. weihenstephanensis strains were identified among them when subjected to discriminative PCR assays and growth temperatures which delimit this species.

  5. Environmentally-friendly lithium recycling from a spent organic li-ion battery.

    PubMed

    Renault, Stéven; Brandell, Daniel; Edström, Kristina

    2014-10-01

    A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation and rheological behavior of polymer-modified asphalts

    NASA Astrophysics Data System (ADS)

    Yousefi, Ali Akbar

    1999-09-01

    Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.

  7. Recent developments in polyimide and bismaleimide adhesives

    NASA Technical Reports Server (NTRS)

    Politi, R. E.

    1985-01-01

    Research on high temperature resin systems has intensified. In the Aerospace Industry, the motivation for this increased activity has been to replace heat resistant alloys of aluminum, stainless steel and titanium by lighter weight glass and carbon fiber reinforced composites. Applications for these structures include: (1) engine nacelles involving long time exposure (thousands of hours) to temperatures in the 150 to 300 C range, (2) supersonic military aircraft involving moderately long exposure (hundreds of hours) to temperatures of 150 to 200 C, and (3) missile applications involving only brief exposure (seconds or minutes) to temperatures up to 500 C and above. Because of fatigue considerations, whenever possible, it is preferable to bond rather than mechanically fasten composite structures. For this reason, the increased usage of high temperature resin matrix systems for composites has necessitated the devlopment of compatible and equally heat stable adhesive systems. The performance of high temperature epoxy, epoxy phenolic and condensation polyimide adhesives is reviewed. This is followed by a discussion of three recently developed types of adhesives: (1) condensation reaction polyimides having improved processing characteristics; (2) addition reaction polyimides; and (3) bismaleimides.

  8. Effect of dietary astaxanthin on the growth performance, non-specific immunity, and antioxidant capacity of pufferfish (Takifugu obscurus) under high temperature stress.

    PubMed

    Cheng, Chang-Hong; Guo, Zhi-Xun; Ye, Chao-Xia; Wang, An-Li

    2018-02-01

    The present study was conducted to investigate the effects of astaxanthin on growth performance, biochemical parameters, ROS production, and immune-related gene expressions of the pufferfish (Takifugu obscurus) under high temperature stress. The experimental basal diets supplemented with astaxanthin at the rates of 0 (control), 20, 40, 80, 160, and 320 mg kg -1 were fed to fish for 8 weeks. The results showed that the fish fed diet with 80, 160, and 320 mg kg -1 astaxanthin significantly improved weight gain and specific growth rate. Furthermore, fish fed the moderate dietary astaxanthin increased plasma alkaline phosphatase activities, and decrease plasma aspartate aminotransferase and alanine aminotransferase activities. After the feeding trial, the fish were exposed to high temperature stress for 48 h. The results shown that astaxanthin could suppress ROS production induced by high temperature stress. Meanwhile, compared with the control group, the astaxanthin groups increased SOD, CAT, and HSP70 mRNA levels under high temperature stress. These results showed that the basal diet supplemented with 80-320 mg kg -1 astaxanthin could enhance growth, nonspecific immune responses, and antioxidant defense system and improve resistance against high temperature stress in pufferfish.

  9. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouat, Aidan R.; Lohr, Tracy L.; Wegener, Evan C.

    2016-08-23

    A single-site molybdenum dioxo catalyst, (O c) 2Mo(=O) 2@C, was prepared via direct grafting of MoO 2Cl 2(dme) (dme = 1,2-dimethoxyethane) on high-surface- area activated carbon. The physicochemical and chemical properties of this catalyst were fully characterized by N 2 physisorption, ICP-AES/OES, PXRD, STEM, XPS, XAS, temperature-programmed reduction with H 2 (TPR-H 2), and temperature-programmed NH 3 desorption (TPD-NH 3). The single-site nature of the Mo species is corroborated by XPS and TPR-H 2 data, and it exhibits the lowest reported MoO x Tmax of reduction reported to date, suggesting a highly reactive MoVI center. (O c) 2Mo(=O) 2@C catalyzesmore » the transesterification of a variety of esters and triglycerides with ethanol, exhibiting high activity at moderate temperatures (60-90 °C) and with negligible deactivation. (O c) 2Mo(=O) 2@C is resistant to water and can be recycled at least three times with no loss of activity. The transesterification reaction is determined experimentally to be first order in [ethanol] and first order in [Mo] with ΔH = 10.5(8) kcal mol -1 and ΔS = -32(2) eu. The low energy of activation is consistent with the moderate conditions needed to achieve rapid turnover. This highly active carbon-supported single-site molybdenum dioxo species is thus an efficient, robust, and lowcost catalyst with significant potential for transesterification processes.« less

  10. The effect of substrate, ADP and uncoupler on the respiration of tomato pollen during incubation in vitro at moderately high temperature.

    PubMed

    Karapanos, I C; Akoumianakis, K A; Olympios, C M; Passam, H C

    2009-09-01

    Pollen of tomato cv. Supermarmande was collected from greenhouse-grown plants at various intervals throughout the year and arbitrarily classified as of high, medium or low respiratory activity on the basis of CO(2) production during 8 h incubation in vitro at 30 degrees C, a temperature that is considered to be moderately high for tomato fruit set. After an initial burst of respiration during the first stage of hydration at 30 degrees C (>1 h), the respiration rate of pollen of all three categories declined, the decrease being greater in the lots with a low or medium respiratory activity than in the high category. During hydration (10 min after the start of incubation), the addition of succinate or reduced beta-nicotinamide adenine dinucleotide (NADH) to the substrate increased the respiratory rate of slowly-respiring pollen more than that of fast-respiring pollen, but carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and adenosine 5'-diphosphate (ADP) had less effect. After 1-4 h incubation, the respiration rate of the slow- or medium-respiring pollen lots had decreased, but was stimulated by succinate or NADH, and to a lesser degree by ADP. By 7 h, the respiration rate of all pollen lots had declined and was stimulated less by substrate, ADP or CCCP. The oxidation of NADH by tomato pollen contrasts with the failure of other pollen species to utilize this substrate; moreover, a synergistic effect of NADH and succinate was consistently observed. We conclude that the decline in respiration during incubation for up to 4 h at 30 degrees C may reflect a lack of respiratory substrate. After 7 h, however, the decreased response to substrate indicates a loss of mitochondrial integrity or an accumulation of metabolic inhibitors. It is concluded that at 30 degrees C (a moderately high temperature for tomato pollen), the initially high rate of respiration leads to exhaustion of the endogenous respiratory substrates (particularly in pollen with low to medium respiratory activity), but subsequently to ageing and a loss of mitochondrial activity.

  11. Surface Fatigue Life of High Temperature Gear Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1994-01-01

    Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.

  12. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  13. Effects of Dopant on Depoling Temperature in Modified BiScO3 - PbTiO3

    NASA Technical Reports Server (NTRS)

    Kowalski, Benjamin; Sehirlioglu, Alp

    2014-01-01

    In recent years there has been a renewed interest for high temperature piezoelectrics for both terrestrial and aerospace applications. These applications are limited in part by the operating temperature, which is usually taken as one half of the Curie temperature (Tc), and is 200C for one of the most widely used commercial piezoelectrics, Pb(Zr,Ti)O3 (PZT). In an effort to increase Tc, subsequent research into high temperature Bi(BB)O3 PbTiO3 piezoelectrics led to the discovery of the morphotropic phase boundary (MPB) in the high-Tc BiScO3 PbTiO3 (BS-PT) system with a Tc of 460C and a d33 of 460 pmV. The Tc marks the ferroelectric to paraelectric phase transformation and while, in general, a phase transformation leads to thermal depoling in piezoelectrics with low or moderate Tcs, for high Tc piezoelectrics thermally assisted dipole rotation can lead to randomization of domains at temperatures below Tc. It becomes necessary to determine the depoling temperature (Td) which dictates the actual working temperature range. By doping for Sc and Ti the Td can be shifted while maintaining similar electromechanical properties as a function of temperature. The effect of this B-site doping on depoling temperature has been explored through the characterization of microstructure and weakhigh field measurements.

  14. Projected regional changes in the characteristics of dry and moist heat waves in the United States derived from downscaled CMIP5 models

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.

    2017-12-01

    Extreme temperatures affect society in multiple ways, but the impacts are often different depending on the concurrent humidity. For example, the greatest impacts on human morbidity and mortality result when the temperature and humidity are both elevated. Conversely, high temperatures coupled with low humidity often lead to agricultural impacts resulting in lower yields. Despite the importance of humidity in determining heat wave impacts, relatively few students of future temperature extremes have also considered possible changes in humidity. In a recent study, we investigated recent historical changes in the frequency and intensity and low humidity and high humidity extreme temperature events using a framework based on isobaric equivalent temperature. Here, we extend this approach to climate projections from CMIP5 models to explore possible regional changes in extreme heat characteristics. After using quantile mapping to bias correct and downscale the CMIP5 model outputs, we analyze results from two future periods (2031-2055 and 2061-2085) and two representative concentration pathways, RCP 4.5 and RCP 8.5, corresponding to moderate and high levels of radiative forcing from greenhouse gases. For each of seven US regions, we consider changes in extreme temperature frequency, changes in the proportion of extreme temperature days characterized by high humidity, and changes in the magnitude of temperature and humidity on extreme temperature days.

  15. Switchgrass (Panicum virgatum L.) Intraspecific Variation and Thermotolerance Classification Using in Vitro Seed Germination Assay

    DOE PAGES

    Seepaul, Ramdeo; Macoon, Bisoondat; Reddy, K. Raja; ...

    2011-01-01

    Cardinal temperatures for plant processes have been used for thermotolerance screening of genotypes, geoclimatic adaptability determination and phenological prediction. Current simulation models for switchgrass (Panicum virgatum L.) utilize single cardinal temperatures across genotypes for both vegetative and reproductive processes although in-tra-specific variation exists among genotypes. An experiment was conducted to estimate the cardinal temperatures for seed germination of 14 diverse switchgrass genotypes and to classify genotypes for temperature tolerance. Stratified seeds of each genotype were germinated at eight constant temperatures from 10 °C to 45 °C under a constant light intensity of 35 μmol m -2s -1 for 12 hdmore » -1. Germination was recorded at 6-h intervals in all treatments. Maximum seed germination (MSG) and germination rate (GR), estimated by fitting Sigmoidal function to germination-time series data, varied among genotypes. Quadratic and bilinear models best described the MSG and GR responses to temperature, respectively. The mean cardinal temperatures, T min, T opt, and T max, were 8.1, 26.6, and 45.1 °C for MSG and 11.1, 33.1, and 46.0 °C for GR, respectively. Cardinal temperatures for MSG and GR; however, varied significantly among genotypes. Genotypes were classified as sensitive (Cave-in-Rock, Dacotah, Expresso, Forestburg, Kanlow, Sunburst, Trailblazer, and Tusca), intermediate (Alamo, Blackwell, Carthage, Shawnee, and Shelter) and tolerant (Summer) to high temperature based on cumulative temperature response index (CTRI) estimated by summing individual response indices estimated from the MSG and GR cardinal temperatures. Similarly, genotypes were also classified as sensitive (Alamo, Blackwell, Carthage, Dacotah, Shawnee, Shelter and Summer), moderately sensitive (Cave-in-rock, Forestburg, Kanlow, Sunburst, and Tusca), moderately tolerant (Trailblazer), and tolerant (Expresso) to low temperatures. The cardinal temperature estimates would be useful to improve switchgrass models for field applications. Additionally, the identified cold- and heat-tolerant genotypes can be selected for niche environments and in switchgrass breeding programs to develop new genotypes for low and high temperature environments.« less

  16. Differential host mortality explains the effect of high temperature on the prevalence of a marine pathogen

    PubMed Central

    Neigel, Joseph E.

    2017-01-01

    Infectious diseases threaten marine populations, and the extent of their impacts is often assessed by prevalence of infection (the proportion of infected individuals). Changes in prevalence are often attributed to altered rates of transmission, although the rates of birth, recovery, and mortality also determine prevalence. The parasitic dinoflagellate Hematodinium perezi causes a severe, often fatal disease in blue crabs. It has been speculated that decreases in prevalence associated with high temperatures result from lower rates of infection. We used field collections, environmental sensor data, and high-temperature exposure experiments to investigate the factors that change prevalence of infections in blue crab megalopae (post-larvae). These megalopae migrate from offshore waters, where temperatures are moderate, to marshes where temperatures may be extremely high. Within a few days of arriving in the marsh, the megalopae metamorphose into juvenile crabs. We found a strong negative association between prevalence of Hematodinium infection in megalopae and the cumulative time water temperatures in the marsh exceeded 34°C over the preceding two days. Temperatures this high are known to be lethal for blue crabs, suggesting that higher mortality of infected megalopae could be the cause of reduced prevalence. Experimental exposure of megalopae from the marsh to a temperature of 34°C resulted in higher mortality for infected than uninfected individuals, and decreased the prevalence of infection among survivors from 18% to 3%. PMID:29084257

  17. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 degrees and 17 degrees C.

    PubMed

    Morris, J G; Nevill, M E; Boobis, L H; Macdonald, I A; Williams, C

    2005-12-01

    Nine unacclimatized university sportsmen performed a prolonged, intermittent, high-intensity shuttle running test in hot (HT) (33 degrees C, dry bulb temperature, approximately 28 %, relative humidity) and moderate (MT) (17 degrees C, 63 %) environmental conditions. Subjects performed 60 m of walking, a 15-m sprint, 60 m of cruising ( approximately 85 % V.O (2max)), and 60 m of jogging ( approximately 45 %V.O (2max)) for 14.8 +/- 0.1 min followed by a 3-min rest, repeated until volitional exhaustion. The hot trial was performed first followed, 14 days later, by the moderate trial. During exercise subjects drank water ad libitum. Subjects ran almost twice as far in the moderate as in the hot trial (HT 11216 +/- 1411, MT 21644 +/- 1629, m, p < 0.01), and the decline in average 15-m sprint performance was greater in the heat (HT, 0.17 +/- 0.05, MT, 0.09 +/- 0.03, s, p < 0.05). Average heart rates, blood lactate and glucose, and plasma adrenaline and noradrenaline concentrations were greater in the HT (main effect trial, p < 0.01), as were serum cortisol concentration (main effect trial p < 0.05, n = 5) and muscle temperature (HT exhaustion vs. same time point in MT, 40.2 +/- 0.3 vs. 39.3 +/- 0.2, degrees C, p < 0.01). Peak torque during knee flexion and extension was not different pre-and post-exercise in the HT. Muscle glycogen utilization tended to be greater in the heat (HT 193.2 +/- 19.5, MT 143.8 +/- 23.9, mmol . kg dry wt (-1), p = 0.055, n = 8). In 7 out of the 8 subjects the increase in utilization was between 19 and just over 200 % greater in the HT. Glycogen remaining in the muscle at exhaustion was greater in the hot than moderate trial (HT 207.4 +/- 34.3, MT 126.5 +/- 46.8, mmol . kg dry wt (-1), p < 0.01, n = 8). Rectal temperature (T (rec)) was higher in the HT at exhaustion than at the same point in time in the moderate trial (HT, 39.60 +/- 0.15 vs. MT 38.75 +/- 0.10, degrees C, interaction trial-time, p < 0.01). There was a very strong negative relationship between rate of rise in T (rec) and distance completed in the HT (HT r = - 0.90, p < 0.01, MT r = - 0.76, p < 0.05). Thus, the earlier onset of exhaustion during prolonged intermittent shuttle running in the heat is associated with hyperthermia. However, while muscle glycogen utilization may be elevated by heat stress, low whole muscle glycogen concentrations would not seem to be the cause of this earlier exhaustion.

  18. Collision Studies of Gaseous Molecular Lasers

    DTIC Science & Technology

    1976-12-01

    conventional plot of log k VT vsT /3 10 vs showing the high temperature experimental data of Millikan and Whited and the moderate an. low temperature data...4821 (1976). -327- 11. D. M. Brink and G. Satchler, Angular Momentum (Oxford University Press, 1975). 12. H, Rabitz and G. Zarur, J. Chem. Phys. 62...8217,j’t) eJ(njet) (2.2) d, J’ 3 where n is the vibrational quantum number, j is the rotational quantum number, and J to the total angular momentum. The

  19. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  20. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  1. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...

  2. Self-assembled 3D zinc borate florets via surfactant assisted synthesis under moderate pressures: Process temperature dependent morphology study

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.

    2018-04-01

    In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.

  3. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  4. Transport, Thermal, and Magnetic Properties of YbNi3X9 (X = Al, Ga): A Newly Synthesized Yb-Based Kondo Lattice System

    NASA Astrophysics Data System (ADS)

    Yamashita, Tetsuro; Miyazaki, Ryoichi; Aoki, Yuji; Ohara, Shigeo

    2012-03-01

    We have succeeded in synthesizing a new Yb-based Kondo lattice system, YbNi3X9 (X = Al, Ga). Our study reveals that YbNi3Al9 shows typical features of a heavy-fermion antiferromagnet with a Néel temperature of TN = 3.4 K. All of the properties reflect a competition between the Kondo effect and the crystalline electric field (CEF) effect. The moderate heavy-fermion state leads to an enhanced Sommerfeld coefficient of 100 mJ/(mol\\cdotK2), even if ordered antiferromagnetically. On the other hand, the isostructural gallide YbNi3Ga9 is an intermediate-valence system with a Kondo temperature of TK = 570 K. A large hybridization scale can overcome the CEF splitting energy, and a moderately heavy Fermi-liquid ground state with high local moment degeneracy should form at low temperatures. Note that the quality of single-crystalline YbNi3X9 is extremely high compared with those of other Yb-based Kondo lattice compounds. We conclude that YbNi3X9 is a suitable system for investigating the electronic structure of Yb-based Kondo lattice systems from a heavy-fermion system with an antiferromagnetically ordered ground state to an intermediate-valence system.

  5. Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02

    NASA Astrophysics Data System (ADS)

    Li, T. T.; Qu, A.; Yuan, X. N.; Tan, F. X.; Li, X. W.; Wang, T.; Zhang, L. H.

    2017-07-01

    Moderate halophilic bacteria are of halophilic bacteria whose suitable growth of NaCl is 5-10%. When the moderate halophilic bacteria response to high osmotic stress, the intracellular will synthesize small organic molecule compatible solutes. Ectoine, which is the major synthetic osmotic compatible solutes for moderate halophilic bacteria, can help microbial enzymes, nucleic acids and the whole cell resist to hypertonic, high temperature, freezing and other inverse environment. In order to increase the Ectoine production of Moderate halophilic bacteria Halomonas sp. H02, the Ectoine fermentation medium component was optimized by Plackett-Burman (PB) and Response Surface Methodology (RSM) based on the principle of non-complete equilibrium The results of PB experiments showed that the three main influencing factors of Moderate halophilic bacteria Halomonas sp. H02 synthesis Ectoine culture medium were C5H8NNaO4 concentration, NaCl concentration and initial pH. According to the center point of the steepest climbing experiment, the central combination design experiment was used to show that the model is consistent with the actual situation. The optimum combination of three influencing factors were C5H8NNaO4 41 g/L, NaCl 87.2 g/L and initial pH 5.9, and the predicted amount of Ectoine was 1835.8 mg/L, increased by 41.6%.

  6. Solid methane in neutron radiation: Cryogenic moderators and cometary cryo volcanism

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Lawson, C. R.; Jenkins, D. M.; Ridley, C. J. T.; Haynes, D. J.

    2017-12-01

    The effect of ionizing radiation on solid methane has previously been an area of interest in the astrophysics community. In the late 1980s this interest was further boosted by the possibility of using solid methane as a moderating medium in spallation neutron sources. Here we present test results of solid methane moderators commissioned at the ISIS neutron source, and compare them with a model based on the theory of thermal explosion. Good agreement between the moderator test data and our model suggests that the process of radiolysis defect recombination happens at two different temperature ranges: the ;lower temperature; recombination process occurs at around 20 K, with the ;higher temperature; process taking place between 50 and 60 K. We discuss consequences of this mechanism for the designing and operation of solid methane moderators used in advanced neutron sources. We also discuss the possible role of radiolysis defect recombination processes in cryo-volcanism on comets, and suggest an application based on this phenomenon.

  7. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  8. Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit

    USGS Publications Warehouse

    Levy, S.S.; O'Neil, J.R.

    1989-01-01

    The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.

  9. Nonimaging concentrators for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Winston, R.; Gallagher, J. J.

    1980-03-01

    A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.

  10. Warm water temperatures and shifts in seasonality increase trout recruitment but only moderately decrease adult size in western North American tailwaters

    USGS Publications Warehouse

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.

    2018-01-01

    Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.

  11. Microrefuges and the occurrence of thermal specialists: implications for wildlife persistence amidst changing temperatures

    USGS Publications Warehouse

    Hall, L. Embere; Chalfoun, Anna D.; Beever, Erik; Loosen, Anne E.

    2016-01-01

    BackgroundContemporary climate change is affecting nearly all biomes, causing shifts in animal distributions, phenology, and persistence. Favorable microclimates may buffer organisms against rapid changes in climate, thereby allowing time for populations to adapt. The degree to which microclimates facilitate the local persistence of climate-sensitive species, however, is largely an open question. We addressed the importance of microrefuges in mammalian thermal specialists, using the American pika (Ochotona princeps) as a model organism. Pikas are sensitive to ambient temperatures, and are active year-round in the alpine where conditions are highly variable. We tested four hypotheses about the relationship between microrefuges and pika occurrence: 1) Local-habitat Hypothesis (local-habitat conditions are paramount, regardless of microrefuge); 2) Surface-temperature Hypothesis (surrounding temperatures, unmoderated by microrefuge, best predict occurrence); 3) Interstitial-temperature Hypothesis (temperatures within microrefuges best predict occurrence), and 4) Microrefuge Hypothesis (the degree to which microrefuges moderate the surrounding temperature facilitates occurrence, regardless of other habitat characteristics). We examined pika occurrence at 146 sites across an elevational gradient. We quantified pika presence, physiographic habitat characteristics and forage availability at each site, and deployed paired temperature loggers at a subset of sites to measure surface and subterranean temperatures.ResultsWe found strong support for the Microrefuge Hypothesis. Pikas were more likely to occur at sites where the subsurface environment substantially moderated surface temperatures, especially during the warm season. Microrefugium was the strongest predictor of pika occurrence, independent of other critical habitat characteristics, such as forage availability.ConclusionsBy modulating surface temperatures, microrefuges may strongly influence where temperature-limited animals persist in rapidly warming environments. As climate change continues to manifest, efforts to understand the changing dynamics of animal-habitat relationships will be enhanced by considering the quality of microrefuges.

  12. Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat.

    PubMed

    Ludlow, M M; Björkman, O

    1984-11-01

    Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, S.K.; Gupta, R.P.; Khare, G.P.

    The objectives of this project are to determine the long-term chemical reactivity and mechanical durability of a fluidized version of Phillips Petroleum Company`s proprietary Z-SORB sorbent for the desulfurization of coal-derived gases in a high-pressure (20 atm) fluidized-bed reactor under simulated U-Gas conditions and at a moderate operating temperature of 538 degrees C.

  14. Differential response of Aspen and Birch trees to heat stress under elevated carbon dioxide

    Treesearch

    Joseph N.T. Darbah; Thomas D. Sharkey; Carlo Calfapietra; David F. Karnosky

    2010-01-01

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO2 protected photosynthesis of both species against moderate heat stress. Elevated CO...

  15. Catalyst for treatment and control of post-combustion emissions

    NASA Technical Reports Server (NTRS)

    Upchurch, legal representative, Wilhelmina H. (Inventor); Schryer, David R. (Inventor); Upchurch, Billy T. (Inventor)

    2008-01-01

    The present invention utilizes two precious metals with two to five different metal-oxides in a layered matrix to convert CO, HCs, and NOx to CO.sub.2, and N.sub.2 by oxidation of two components and reduction of the other in a moderately high temperature gaseous environment containing excess oxygen.

  16. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    PubMed

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Soil information system of Arunachal Pradesh in a GIS environment for land use planning

    NASA Astrophysics Data System (ADS)

    Maji, Amal K.; Nayak, Dulal C.; Krishna, Nadimpalli, , DR; Srinivas, Challa V.; Kamble, Kalpana; Reddy, Gangalakunta P. Obi; Velayutham, Mariappan

    Arunachal Pradesh, the largest mountainous state of India, is situated in the northeastern part of the Himalayan region and characterized by high annual rainfall, forest vegetation and diversity in soils. Information on the soils of the state is essential for scientific land use planning and sustainable production. A soil resource inventory and subsequent database creation for thematic mapping using a Geographical Information System (GIS) is presented in this paper. Physiographically, Arunachal Pradesh can be divided into four distinct zones: snow-capped mountains (5500 m amsl); lower Himalayan ranges (3500 m amsl); the sub-Himalayan Siwalik hills (700 m amsl); and the eastern Assam plains. Soils occurring in these physiographic zones are Inceptisols (37 percent), Entisols (35 percent), Ultisols (14 percent) and Alfisols (0.5 percent). The remaining soils can be classed as miscellaneous. Soil resource inventory studies show that the soils of the warm perhumid eastern Himalayan ecosystem, with a 'thermic' temperature regime, are Inceptisols and Entisols; and that they are highly acidic in nature. Soils of the warm perhumid Siwalik hill ecosystem, with a 'hyperthermic' temperature regime, are also Entisols and Inceptisols with a high to moderate acidic condition. The dominant soils of the northeastern Purvachal hill ecosystem, with 'hyperthermic' and 'thermic' temperature regimes, are Ultisols and Inceptisols. Inceptisols and Entisols are the dominant soils in the hot and humid plain ecosystem. Steeply sloping landform and high rainfall are mainly responsible for a high erosion hazard in the state. The soil erosion map indicates that very severe (20 percent of TGA) to severe (25 percent of TGA) soil erosion takes place in the warm per-humid zone, whereas, moderate erosion takes place in the Siwalik hills and hot, humid plain areas. This is evident from the soil depth class distribution of Arunachal Pradesh, which shows that shallow soils cover 20 percent of the TGA of the state. Most of the state is covered by hills and agricultural practices are limited to valley regions. However, the soils of other physiographic zones (lower altitudinal, moderately hilly terrain) provide scope for plantations, such as orange, banana and tea plantations.

  18. The Evaluation of a Modified Chrome Oxide Based High Temperature Solid Lubricant Coating for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1998-01-01

    This paper describes the friction and wear performance of PS304, a modified chrome oxide based coating, for foil gas bearings. PS304 contains 60 wt% NiCr binder, 20 wt% Cr2O3 hardener, and 10 wt% each Ag, and BaF2/CaF2 lubricants. For evaluation, the coating is plasma spray deposited onto test journals which are slid against a superalloy partial arc foil bearing. The test load was 10 KPa (1.5 psi) and the bearings were run under start/stop cyclic conditions. The data show good wear performance of the bearing, especially at temperatures above 25 deg. C. Bearing friction was moderate (micron approx. or equal to 0.4) over the entire temperature range. Based upon the results obtained, the PS304 coating has promise for high temperature, oil-free turbomachinery applications.

  19. High Temperature - Thin Film Strain Gages Based on Alloys of Indium Tin Oxide

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J.; Cooke, James D.; Bienkiewicz, Joseph M.

    1998-01-01

    A stable, high temperature strain gage based on reactively sputtered indium tin oxide (ITO) was demonstrated at temperatures up to 1050 C. These strain sensors exhibited relatively large, negative gage factors at room temperature and their piezoresistive response was both linear and reproducible when strained up to 700 micro-in/in. When cycled between compression and tension, these sensors also showed very little hysteresis, indicating excellent mechanical stability. Thin film strain gages based on selected ITO alloys withstood more than 50,000 strain cycles of +/- 500 micro-in/in during 180 hours of testing in air at 1000 C, with minimal drift at temperature. Drift rates as low as 0.0009%/hr at 1000 C were observed for ITO films that were annealed in nitrogen at 700 C prior to strain testing. These results compare favorably with state of the art 10 micro-m thick PdCr films deposited by NASA, where drift rates of 0.047%/hr at 1050 C were observed. Nitrogen annealing not only produced the lowest drift rates to date, but also produce the largest dynamic gage factors (G = 23.5). These wide bandgap, semiconductor strain sensors also exhibited moderately low temperature coefficients of resistance (TCR) at temperatures up to 1100 C, when tested in a nitrogen ambient. A TCR of +230 ppm/C over the temperature range 200 C < T < 500 C and a TCR of -469 ppm/C over the temperature range 600 C < T < 1100 C was observed for the films tested in nitrogen. However, the resistivity behavior changed considerably when the same films were tested in oxygen ambients. A TCR of -1560 ppm/C was obtained over the temperature range of 200 C < T < 1100 C. When similar films were protected with an overcoat or when ITO films were prepared with higher oxygen contents in the plasma, two distinct TCR's were observed. At T < 800 C, a linear TCR of -210 ppm/C was observed and at T > 800 C, a linear TCR of -2170 DDm/C was observed. The combination of a moderately low TCR and a relatively large gage factor make these semiconducting oxide films promising candidates for the active strain elements in high temperature thin film strain gages, particularly in applications where static strain measurement is desired.

  20. Analytical precision of the Urolizer for the determination of the BONN-Risk-Index (BRI) for calcium oxalate urolithiasis and evaluation of the influence of 24-h urine storage at moderate temperatures on BRI.

    PubMed

    Berg, Wolfgang; Bechler, Robin; Laube, Norbert

    2009-01-01

    Since its first publication in 2000, the BONN-Risk-Index (BRI) has been successfully used to determine the calcium oxalate (CaOx) crystallization risk from urine samples. To date, a BRI-measuring device, the "Urolizer", has been developed, operating automatically and requiring only a minimum of preparation. Two major objectives were pursued: determination of Urolizer precision, and determination of the influence of 24-h urine storage at moderate temperatures on BRI. 24-h urine samples from 52 CaOx stone-formers were collected. A total of 37 urine samples were used for the investigation of Urolizer precision by performing six independent BRI determinations in series. In total, 30 samples were taken for additional investigation of urine storability. Each sample was measured thrice: directly after collection, after 24-h storage at T=21 degrees C, and after 24-h cooling at T=4 degrees C. Outcomes were statistically tested for identity with regard to the immediately obtained results. Repeat measurements for evaluation of Urolizer precision revealed statistical identity of data (p-0.05). 24-h storage of urine at both tested temperatures did not significantly affect BRI (p-0.05). The pilot-run Urolizer shows high analytical reliability. The innovative analysis device may be especially suited for urologists specializing in urolithiasis treatment. The possibility for urine storage at moderate temperatures without loss of analysis quality further demonstrates the applicability of the BRI method.

  1. Interaction Effects of Temperature and Ozone on Lung Function and Markers of Systemic Inflammation, Coagulation, and Fibrinolysis: A Crossover Study of Healthy Young Volunteers

    PubMed Central

    Kahle, Juliette J.; Neas, Lucas M.; Devlin, Robert B.; Case, Martin W.; Schmitt, Michael T.; Madden, Michael C.

    2014-01-01

    Background: Trends in climate suggest that extreme weather events such as heat waves will become more common. High levels of the gaseous pollutant ozone are associated with elevated temperatures. Ozone has been associated with respiratory diseases as well as cardiovascular morbidity and mortality and can reduce lung function and alter systemic markers of fibrinolysis. The interaction between ozone and temperature is unclear. Methods: Sixteen healthy volunteers were exposed in a randomized crossover study to 0.3 ppm ozone and clean air for 2 hr at moderate (22°C) temperature and again at an elevated temperature (32.5°C). In each case lung function was performed and blood taken before and immediately after exposure and the next morning. Results: Ozone exposure at 22°C resulted in a decrease in markers of fibrinolysis the next day. There was a 51.8% net decrease in PAI-1 (plasminogen activator inhibitor-1), a 12.1% net decrease in plasminogen, and a 17.8% net increase in D-dimer. These significantly differed from the response at 32.5°C, where there was a 44.9% (p = 0.002) and a 27.9% (p = 0.001) increase in PAI-1 and plasminogen, respectively, and a 12.5% (p = 0.042) decrease in D-dimer. In contrast, decrements in lung function following ozone exposure were comparable at both moderate and elevated temperatures (forced expiratory volume in 1 sec, –12.4% vs. –7.5%, p > 0.05). No changes in systemic markers of inflammation were observed for either temperature. Conclusion: Ozone-induced systemic but not respiratory effects varied according to temperature. Our study suggests that at moderate temperature ozone may activate the fibrinolytic pathway, while at elevated temperature ozone may impair it. These findings provide a biological basis for the interaction between temperature and ozone on mortality observed in some epidemiologic studies. Citation: Kahle JJ, Neas LM, Devlin RB, Case MW, Schmitt MT, Madden MC, Diaz-Sanchez D. 2015. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: a crossover study of healthy young volunteers. Environ Health Perspect 123:310–316; http://dx.doi.org/10.1289/ehp.1307986 PMID:25514459

  2. Fast Risetime Reverse Bias Pulse Failures in SiC PN Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian; Parsons, James D.

    1996-01-01

    SiC-based high temperature power devices are being developed for aerospace systems which will require high reliability. One behavior crucial to power device reliability. To date, it has necessarily been assumed to date is that the breakdown behavior of SiC pn junctions will be similar to highly reliable silicon-based pn junctions. Challenging this assumption, we report the observation of anomalous unreliable reverse breakdown behavior in moderately doped (2-3 x 10(exp 17) cm(exp -3)) small-area 4H- and 6H-SiC pn junction diodes at temperatures ranging from 298 K (25 C) to 873 K (600 C). We propose a mechanism in which carrier emission from un-ionized dopants and deep level defects leads to this unstable behavior. The fundamental instability mechanism is applicable to all wide bandgap semiconductors whose dopants are significantly un-ionized at typical device operating temperatures.

  3. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.

    PubMed

    Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen

    2013-09-09

    Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration.

  4. Containerless high-pressure petrology experiments in the microgravity environment of the Space Station

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The genesis of igneous rocks on terrestrial planets can only be understood through experiments at pressures corresponding to those in planetary mantles (10 to 50 kbar). Such experiments typically require a piston-cylinder apparatus, and an apparatus that has the advantage of controllable pressure and temperature, adequate sample volume, rapid sample quench, and minimal danger of catastrophic failure. It is proposed to perform high-pressure and high-temperature piston-cylinder experiments aboard the Space Station. The microgravity environment in the Space Station will minimize settling due to density contrasts and may, thus, allow experiments of moderate duration to be performed without a platinoid capsule and without the sample having to touch the container walls. The ideal pressure medium would have the same temperatures. It is emphasized, however, that this proposed experimental capability requires technological advances and innovations not currently available.

  5. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    NASA Astrophysics Data System (ADS)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  6. Thermal therapy techniques for skin and superficial tissue disease

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.

    2000-01-01

    There are numerous diseases and abnormal growths and conditions that afflict the skin and underlying superficial tissues. In addition to cancers such as primary, recurrent, and metastatic melanomas and carcinomas, there are many non-malignant conditions such as psoriasis plaques, port wine stains, warts, and superficial cut and bum wounds. Many of these clinical conditions have been shown responsive to treatment with thermal therapy - either low temperature freezing (cryotherapy),. moderate temperature warming to about 41-45°C (hyperthermia), or high temperature (>50°C) ablation or coagulation necrosis therapy. Because both very low and very high temperature therapies are for the most part non-selectively destructive in nature, they normally are used for applications where therapy can be localized precisely in the desired target and some necrosis of adjacent normal tissues is acceptable. With the exception of precision controlled cryotherapy or laser surgery (e.g. wart, mole, tattoo and port wine stain removal) or focal thermal surgery of small deep-seated nodules, it is generally preferred to use moderate thermal therapy (hyperthermia) in the treatment of skin and subcutaneous tissue disease in order to preserve the protective barrier characteristic of intact skin within the target region while inducing more subtle long term therapeutic improvement in the disease condition. This type of subtle thermal therapy is usually administered in combination with one or more other therapies such as radiation or chemotherapy - something with a differential effect on the target and surrounding normal tissues that can be magnified by the adjuvant use of heat.

  7. THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; A.M. Ougouag

    2011-12-01

    The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less

  8. Correlations between properties and applications of the CVD amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Kleps, Irina; Angelescu, Anca

    2001-12-01

    The aim of this paper is to emphasise the correlation between film preparation conditions, film properties and their applications. Low pressure chemical vapour deposition amorphous silicon carbide (a-SiC) and silicon carbonitride (SiCN) films obtained from liquid precursors have different structure and composition depending on deposition conditions. Thus, the films deposited under kinetic working conditions reveal a stable structure and composition. Deposition at moderate temperature leads to stoichiometric SiC, while the films deposited at high temperatures have a composition closer to Si 1- xC x, with x=0.75. These films form a very reactive interface with metallic layers. The films realised under kinetic working regime can be used in Si membrane fabrication process or as coating films for field emission applications. SiC layers field emission properties were investigated; the field emission current density of the a-SiC/Si structures was 2.4 mA/cm 2 at 25 V/μm. An Si membrane technology based on moderate temperatures (770-850 °C) a-SiC etching mask is presented.

  9. Design of hydrogen vent line for the cryogenic hydrogen system in J-PARC

    NASA Astrophysics Data System (ADS)

    Tatsumoto, Hideki; Aso, Tomokazu; Kato, Takashi; Ohtsu, Kiichi; Hasegawa, Shoichi; Maekawa, Fujio; Futakawa, Masatoshi

    2009-02-01

    As one of the main experimental facilities in J-PARC, an intense spallation neutron source (JSNS) driven by a 1-MW proton beam selected supercritical hydrogen at a temperature of 20 K and a pressure of 1.5 MPa as a moderator material. Moderators are controlled by a cryogenic hydrogen system that has a hydrogen relief system, which consists of high and low pressure stage of manifolds, a hydrogen vent line and a stack, in order to release hydrogen to the outside safely. The design of the hydrogen vent line should be considered to prevent purge nitrogen gas in the vent line from freezing when releasing the cryogenic hydrogen, to prevent moisture in the stack placed in an outdoor location from freezing, and to inhibit large piping temperature reduction at a building wall penetration. In this work, temperature change behaviors in the hydrogen vent line were analyzed by using a CFD code, STAR-CD. We determined required sizes of the vent line based on the analytical results and its layout in the building.

  10. Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning.

    PubMed

    Santín, Cristina; Otero, Xose L; Doerr, Stefan H; Chafer, Chris J

    2018-04-15

    This study examines the direct impact of a moderate/high-severity prescribed fire on phosphorous (P) stocks and partitioning in oligotrophic soils of a dry eucalypt forest within Sydney's water supply catchments, Australia. We also quantify and characterize the P present in the ash produced in this fire, and explore its relationships with the maximum temperatures recorded in the litter layer during the burn. In these oligotrophic soils, P concentrations were already relatively low before the fire (<130mgkg -1 , mainly in organic forms). The fire consumed the entire litter layer and the thin Oa soil horizon, creating 6.3±3.1tha -1 of ash, and resulted into direct net P losses of ~7kgha -1 . The P lost was mostly organic and there was a moderate net gain of inorganic and non-reactive P forms. Importantly, only a small proportion of the post-fire P was bioavailable (equivalent to ~3% of the total P lost during fire). Higher total P concentrations in ash corresponded with higher maximum temperatures (>650°C) recorded in the burning litter layer, but effects of fire temperature on ash P partitioning were not significant. Fire not only transformed P chemically, but also physically. Our results show that, immediately after fire, up to 2kgha -1 of P was present in the ash layer and, therefore, highly erodible and susceptible to be transported off-site by wind- and water erosion. Even if most of this P was, initially, of low bioavailability, its transfer to depositional environments with different geochemical conditions (e.g. anoxic sediments in water reservoirs) can alter its geochemical forms and availability. Further investigation of potential P transformations off-site is therefore essential, particularly given that SE-Australian water supply catchments are subject to recurrent perturbation by prescribed fire and wildfires. The latter have already resulted in major algal blooms in water supply reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Band-like temperature dependence of mobility in a solution-processed organic semiconductor

    NASA Astrophysics Data System (ADS)

    Sakanoue, Tomo; Sirringhaus, Henning

    2010-09-01

    The mobility μ of solution-processed organic semiconductorshas improved markedly to room-temperature values of 1-5cm2V-1s-1. In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100cm2V-1s-1 at 10K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent `band-like', negative temperature coefficient of the mobility (dμ/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.

  12. Band-like temperature dependence of mobility in a solution-processed organic semiconductor.

    PubMed

    Sakanoue, Tomo; Sirringhaus, Henning

    2010-09-01

    The mobility mu of solution-processed organic semiconductors has improved markedly to room-temperature values of 1-5 cm(2) V(-1) s(-1). In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100 cm(2) V(-1) s(-1) at 10 K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent 'band-like', negative temperature coefficient of the mobility (dmu/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.

  13. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less

  14. Evaluation of advanced high rate Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.

    1986-01-01

    Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.

  15. Current and efficiency optimization under oscillating forces in entropic barriers

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Aydıner, Ekrem

    2016-09-01

    The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).

  16. Daily Scheduled High Fat Meals Moderately Entrain Behavioral Anticipatory Activity, Body Temperature, and Hypothalamic c-Fos Activation

    PubMed Central

    Gallardo, Christian M.; Gunapala, Keith M.; King, Oliver D.; Steele, Andrew D.

    2012-01-01

    When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA), is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903). In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal. PMID:22815954

  17. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition.

    PubMed

    Schellen, L; van Marken Lichtenbelt, W D; Loomans, M G L C; Toftum, J; de Wit, M H

    2010-08-01

    Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum thermal condition differ between young adults and elderly. There is a lack of studies that describe the effect of aging on thermal comfort and productivity during a moderate temperature drift. In this study, the effect of a moderate temperature drift on physiological responses, thermal comfort, and productivity of eight young adults (age 22-25 year) and eight older subjects (age 67-73 year) was investigated. They were exposed to two different conditions: S1-a control condition; constant temperature of 21.5 degrees C; duration: 8 h; and S2-a transient condition; temperature range: 17-25 degrees C, duration: 8 h, temperature drift: first 4 h: +2 K/h, last 4 h: -2 K/h. The results indicate that thermal sensation of the elderly was, in general, 0.5 scale units lower in comparison with their younger counterparts. Furthermore, the elderly showed more distal vasoconstriction during both conditions. Nevertheless, TS of the elderly was related to air temperature only, while TS of the younger adults also was related to skin temperature. During the constant temperature session, the elderly preferred a higher temperature in comparison with the young adults. Because the stock of fossil fuels is limited, energy savings play an important role. Thermal comfort is one of the most important performance indicators to successfully apply measures to reduce the energy need in buildings. Allowing drifts in indoor temperature is one of the options to reduce the energy demand. This study contributes to the knowledge concerning the effects of a moderate temperature drift and the age of the inhabitants on their thermal comfort.

  18. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  19. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials

    PubMed Central

    Pallas, J. E.; Michel, B. E.; Harris, D. G.

    1967-01-01

    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg. Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential. Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects. Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels. Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered. Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity. PMID:16656488

  20. Tertiary climates and floristic relationships at high latitudes in the northern hemisphere

    USGS Publications Warehouse

    Wolfe, J.A.

    1980-01-01

    During the Paleocene and Eocene, climates were characterized by a low mean annual range of temperature (a maximum of 10-15??C), a moderate to high mean annual temperature (10-20??C), and abundant precipitation; strong broad-leaved evergreen vegetation extended to almost lat. 60??N during the Paleocene and to well above 61??N during the Eocene. Poleward of the broad-leaved evergreen forests were forests that were broad-leaved deciduous; these deciduous forests, however, were unlike extant broad-leaved deciduous forests in general floristic composition and physiognomy. Coniferous forests probably occupied the northernmost latitudes. At the end of the Eocene, a major climatic deterioration resulted in a high (> 30??C) mean annual range of temperature and a low mean annual temperature (< 10??C). Vegetation represented temperate broad-leaved deciduous and coniferous forests. The Oligocene and Neogene climatic trends represent a decrease in both mean annual range of temperature and mean annual temperature. Tundra vegetation did not appear until late in the Neogene. The present distribution of broad-leaved evergreens concomitant with the principles of plant physiology indicates that present winter light conditions at high latitudes could not support broad-leaved evergreen forest. A possible solution to the problem is to increase winter light by lessening the inclination of the earth's rotational axis. ?? 1980.

  1. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa.

    PubMed

    Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka

    2018-04-28

    High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

  2. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa

    NASA Astrophysics Data System (ADS)

    Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka

    2018-04-01

    High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

  3. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    USGS Publications Warehouse

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  4. The effects of moderately high temperature on zeaxanthin accumulation and decay.

    PubMed

    Zhang, Ru; Kramer, David M; Cruz, Jeffrey A; Struck, Kimberly R; Sharkey, Thomas D

    2011-09-01

    Moderately high temperature reduces photosynthetic capacities of leaves with large effects on thylakoid reactions of photosynthesis, including xanthophyll conversion in the lipid phase of the thylakoid membrane. In previous studies, we have found that leaf temperature of 40°C increased zeaxanthin accumulation in dark-adapted, intact tobacco leaves following a brief illumination, but did not change the amount of zeaxanthin in light-adatped leaves. To investigate heat effects on zeaxanthin accumulation and decay, zeaxanthin level was monitored optically in dark-adapted, intact tobacco and Arabidopsis thaliana leaves at either 23 or 40°C under 45-min illumination. Heated leaves had more zeaxanthin following 3-min light but had less or comparable amounts of zeaxanthin by the end of 45 min of illumination. Zeaxanthin accumulated faster at light initiation and decayed faster upon darkening in leaves at 40°C than leaves at 23°C, indicating that heat increased the activities of both violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE). In addition, our optical measurement demonstrated in vivo that weak light enhances zeaxanthin decay relative to darkness in intact leaves of tobacco and Arabidopsis, confirming previous observations in isolated spinach chloroplasts. However, the maximum rate of decay is similar for weak light and darkness, and we used the maximum rate of decay following darkness as a measure of the rate of ZE during steady-state light. A simulation indicated that high temperature should cause a large shift in the pH dependence of the amount of zeaxanthin in leaves because of differential effects on VDE and ZE. This allows for the reduction in ΔpH caused by heat to be offset by increased VDE activity relative to ZE.

  5. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    PubMed

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  6. Relation of water quality to land use in the drainage basins of four tributaries to the Toms River, New Jersey, 1994-95

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn

    1999-01-01

    The influence of land use on the water quality of four tributaries to the Toms River, which drains nearly one-half of the Barnegat Bay wateshed, was studied during the initial phase of a multiyear investigation. Water samples were collected from and streamflows were measured in Long Swamp Creek, Wrangel Brook, Davenport Branch, and Jakes Creek during periods of base flow and stormflow in the growing and nongrowing seasons during May 1994 to October 1995. The drainage areas upstream from the seven measurement sites were characterized as highly developed, moderately developed, slightly developed, or undeveloped. Concentrations were determined and area-normalized instantaneous loads (yields) were estimated for total nitrogen, ammonia, nitrate, organic nitrogen, hydrolyzable phosphorus plus orthosphosphorus, orthophosphorus, total suspended solids, and fecal-coliform bacteria in the water samples. Specific conductance, pH, temperature, and dissolved oxygen were measured. Yields of total nitrogen, nitrate, and organic nitrogen at sites on Wrangel Brook, which drains moderately developed areas, were either larger than or similar to yields at the site on Long Swamp Creek, which drains a highly developed area. The magnitude of these yields probably was not related directly to the intensity of land development, but more likely was influenced by the type of development, the amount of base flow, and historical land use in the basin. The large concentrations of total nitrogen and nitrate in base flow in Wrangel Brook could have resulted from fertilizers that were applied to high-maintenance lawns and from agricultural runoff that has remained in the ground water since the 1950's and eventually was discharged to streams. Yields of ammonia appear to be partly related to the intensity of land development and storm runoff. Yields of ammonia at the site on Long Swamp Creek (a highly developed area) were either larger than or similar to yields at sites on Wrangel Brook (moderately developed areas). Yields were smallest at the site on Davenport Branch, which drains a slightly developed area. Yields of hydrolyzable phosphorus plus orthophosphorus and yields of orthophosphorus appear to be related to the intensity of development. Concentrations of hydrolyzable phosphorus plus orthophosphorus were greater in Long Swamp Creek (highly developed areas) than in Wrangel Brook (moderately developed areas). Concentrations of orthophosphorus were largest in Wrangel Brook (moderately developed) and Long Swamp Creek (highly developed). Total suspended solids and bacteria were somewhat related to intensity of development. Yields of total suspended solids were greater at sites downstream from highly and moderately developed areas than from slightly developed areas. Yields of bacteria were strongly related to streamflow and season. Specific conductance appears to be related to streamflow. pH probably was related to intensity of land development; pH was greater (more basic) in streams draining highly developed areas than in those draining other areas. Concentrations of dissolved oxygen were affected more by water temperature than by intensity of development or streamflow.

  7. Hydrocarbon Constituents of T-56 Combustor Exhaust

    DTIC Science & Technology

    1975-04-01

    May 1973 to determine feasibility of exhaust cryotrapping and to establish analytical methodology for identifying individual hydrocarbon compounds (3...midtemperature setting was at about 166°C, and 33 psig, corresponding to the conditions of many moderate-pressure ratio engines (1). Finally the high -temperature...condition of 2040C and 50 psig simulates many newer high -pressure-ratio engines, like the F-101 and F-100. Table 2 lists typical military engines and

  8. Kansas trends and changes in temperature, precipitation, drought, and frost-free days from the 1890s to 2015

    USDA-ARS?s Scientific Manuscript database

    Kansas extends 660 km from the moderate elevations and semi-humid conditions of the Lower Missouri Basin to the High Plains lying above the Ogallala aquifer and along the Rockies’ eastern slope. Such characteristics result in significant climate variability across the state, making timely and accura...

  9. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  10. 76 FR 18087 - Endangered and Threatened Wildlife and Plants; Reclassification of the Okaloosa Darter From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... watershed basins. These areas are characterized by high sand ridges where soil nutrients are low and... variation of both temperature and flow is moderated by the deep layers of sand. The streams support a... stream systems they inhabit by restoring and protecting stream habitat, water quality, and water quantity...

  11. Chytrid Fungus, Batrachochytrium dendrobatidis , in Wild Populations of the Lake Titicaca Frog, Telmatobius culeus, in Peru.

    PubMed

    Berenguel, Raul A; Elias, Roberto K; Weaver, Thomas J; Reading, Richard P

    2016-10-01

    The Lake Titicaca frog (Telmatobius culeus) is critically endangered, primarily from overexploitation. However, additional threats, such as chytrid fungus ( Batrachochytrium dendrobatidis ), are poorly studied. We found moderate levels of chytrid infection using quantitative PCR. Our results enhance our understanding of chytrid tolerance to high pH and low water temperature.

  12. Characterization of Arcjet Flows Using Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bamford, Douglas J.; O'Keefe, Anthony; Babikian, Dikran S.; Stewart, David A.; Strawa, Anthony W.

    1995-01-01

    A sensor based on laser-induced fluorescence has been installed at the 20-MW NASA Ames Aerodynamic Heating Facility. The sensor has provided new, quantitative, real-time information about properties of the arcjet flow in the highly dissociated, partially ionized, nonequilibrium regime. Number densities of atomic oxygen, flow velocities, heavy particle translational temperatures, and collisional quenching rates have been measured. These results have been used to test and refine computational models of the arcjet flow. The calculated number densities, translational temperatures, and flow velocities are in moderately good agreement with experiment

  13. The Liquid Annular Reactor System (LARS) propulsion

    NASA Technical Reports Server (NTRS)

    Powell, James; Ludewig, Hans; Horn, Frederick; Lenard, Roger

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5).

  14. Observations of the microclimate of a lake under cold air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.

    1977-01-01

    The moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold air advective conditions. Point temperature measurements north and south of the lake and data obtained from the NOAA satellite and a thermal scanner flown at 1.6 km, indicate that, under conditions of moderate winds (approximately 4m/sec), surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C. With surface wind speed less than 1m/sec, no substantial temperature effects were observed. Results of this study are being used in land use planning, lake level control and in agriculture for selecting planting sites.

  15. Moderating Effects of Weather-Related Factors on a Physical Activity Intervention.

    PubMed

    Welch, Whitney A; Spring, Bonnie; Phillips, Siobhan M; Siddique, Juned

    2018-05-01

    The purpose of this study is to identify whether weather-related factors moderate the effect of a physical activity (PA) intervention. Participants (N=204, 77% female, mean age 33 [SD=11] years, mean BMI 28.2 [SD=7.1]) from the Make Better Choices 1 trial, enrolled April 2005 to April 2008, were randomized to one of two treatment conditions: (1) increase moderate to vigorous physical activity (MVPA) treatment group, or (2) decrease sedentary behavior control group. Participants wore an accelerometer for 5 weeks: a 2-week baseline assessment followed by a 3-week intervention. Accelerometer data were used to estimate minutes/day of MVPA. Average daily temperature, day length, and precipitation were obtained from the National Climatic Data Center and combined with the accelerometer data. Linear mixed effects models were used to determine whether these weather-related factors moderated the effect of the intervention on MVPA. Separate models were fit for season, daily average temperature, and day length. There was a significant moderating effect of season on MVPA such that the PA intervention, as compared with control, increased MVPA 10.4 minutes more in the summer than in the winter (95% CI=1.1, 19.6, p=0.029). There was a significant moderating effect of daily temperature such that every 10°F increase in temperature was associated with an additional 1.5 minutes/day increase in the difference in MVPA increase between the two intervention conditions (95% CI=0.1, 2.9, p=0.015). There was a significant moderating effect of day length such that every additional hour of daylight was associated with a 2.23-minute increase in the PA intervention's impact on increasing MVPA (95% CI=0.8, 3.7, p=0.002). Day length and temperature had a significant moderating effect on change in MVPA during a PA intervention such that the intervention was less effective on colder days and on shorter days, independently. These results suggest that strategies to overcome environmental barriers should be considered when designing PA interventions for adults. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Fragmentation Speed at Magmatic Temperatures: an Experimental Determination

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The propagation speed of the fragmentation front (fragmentation speed) is a controlling factor in the dynamics of explosive volcanic eruptions and can affect the eruptive regime. It is impossible to measure the fragmentation speed directly in natural systems. Thus, laboratory experiments using natural samples represent a unique source of information revealing the dynamics of fragmentation processes. Rapid decompression experiments of natural samples from several volcanoes allowed us to quantify the influence of sample porosity and pressure differential on the fragmentation speed. These previous experiments have been performed almost exclusively at temperatures up to 300 °C. Due to experimental constraints it is not possible to measure directly the fragmentation speed at magmatic temperatures using the same procedure as in the experiments up to moderate temperature. The magmatic temperature for the analyzed rock types varies typically between 700 - 900 °C, reflecting their moderate to high silica content. For this reason, the influence of the temperature on the fragmentation speed had not been investigated systematically. In order to determine the fragmentation speed at magmatic temperatures (700 - 900 °C), we performed rapid decompression experiments of volcanic rocks and measured with a high-speed camera the ejection speed at the front of the gas-particle mixture produced by fragmentation. Then we used a theoretical model based on a 1-D shock-tube theory considering the conservation laws across the fragmentation front that provides a relationship between the fragmentation speed and the ejection speed at the front of the gas-particle mixture. This model has been validated in fragmentation experiments at room temperature where the fragmentation and ejection speed were measured simultaneously. We investigated natural volcanic samples covering a broad range of connected porosity (16 - 65 vol. %) and applied pressures (4-20 MPa) at room temperature and up to 850 °C. To our knowledge, this is the first systematic investigation of the fragmentation speed of volcanic samples at magmatic temperatures. These results enhance our understanding of explosive volcanic eruptions. As has been shown by recent studies, a quantitative knowledge of the dynamics of magma fragmentation is critical for determining the eruptive regime.

  17. Heat tolerance of automotive lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Albers, Joern

    Starter batteries have to withstand a quite large temperature range. In Europe, the battery temperature can be -30 °C in winter and may even exceed +60 °C in summer. In most modern cars, there is not much space left in the engine compartment to install the battery. So the mean battery temperature may be higher than it was some decades ago. In some car models, the battery is located in the passenger or luggage compartment, where ambient temperatures are more moderate. Temperature effects are discussed in detail. The consequences of high heat impact into the lead-acid battery may vary for different battery technologies: While grid corrosion is often a dominant factor for flooded lead-acid batteries, water loss may be an additional influence factor for valve-regulated lead-acid batteries. A model was set up that considers external and internal parameters to estimate the water loss of AGM batteries. Even under hot climate conditions, AGM batteries were found to be highly durable and superior to flooded batteries in many cases. Considering the real battery temperature for adjustment of charging voltage, negative effects can be reduced. Especially in micro-hybrid applications, AGM batteries cope with additional requirements much better than flooded batteries, and show less sensitivity to high temperatures than suspected sometimes.

  18. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties.

    PubMed

    Hozain, Moh'd I; Salvucci, Michael E; Fokar, Mohamed; Holaday, A Scott

    2010-01-01

    Significant inhibition of photosynthesis occurs at temperatures only a few degrees (

  19. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  20. Robustness of a rhythmic circuit to short- and long-term temperature changes.

    PubMed

    Tang, Lamont S; Taylor, Adam L; Rinberg, Anatoly; Marder, Eve

    2012-07-18

    Recent computational and experimental work has shown that similar network performance can result from variable sets of synaptic and intrinsic properties. Because temperature is a global perturbation that differentially influences every biological process within the nervous system, one might therefore expect that individual animals would respond differently to temperature. Nonetheless, the phase relationships of the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, are remarkably invariant between 7 and 23°C (Tang et al., 2010). Here, we report that, when isolated STG preparations were exposed to more extreme temperature ranges, their networks became nonrhythmic, or "crashed", in a reversible fashion. Animals were acclimated for at least 3 weeks at 7, 11, or 19°C. When networks from the acclimated animals were perturbed by acute physiologically relevant temperature ramps (11-23°C), the network frequency and phase relationships were independent of the acclimation group. At high acute temperatures (>23°C), circuits from the cold-acclimated animals produced less-regular pyloric rhythms than those from warm-acclimated animals. At high acute temperatures, phase relationships between pyloric neurons were more variable from animal to animal than at moderate acute temperatures, suggesting that individual differences across animals in intrinsic circuit parameters are revealed at high temperatures. This shows that individual and variable neuronal circuits can behave similarly in normal conditions, but their behavior may diverge when confronted with extreme external perturbations.

  1. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettan, M.; Silverman, I.; Shapira, M.

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less

  2. Far-infrared-induced magnetoresistance oscillations in GaAs/AlxGa1-xAs -based two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Wirthmann, André; McCombe, Bruce D.; Heitmann, Detlef; Holland, Steffen; Friedland, Klaus-Jürgen; Hu, Can-Ming

    2007-11-01

    We report on photoresistance and magnetotransport measurements in a moderate mobility two-dimensional electron system subject to far-infrared (terahertz) radiation. The photoresistance shows radiation induced 1/B -periodic oscillations, which we identify as the terahertz analog of microwave-induced resistance oscillations (MIROs). The MIRO-analog oscillations show a sign reversal in the low-field, high current regime. We simultaneously observe magnetoplasmons and MIRO-analog oscillations with no apparent coupling between them. Using a meandering Hall-bar geometry allows us to greatly enhance sensitivity and detect these oscillations even at elevated temperatures and moderate mobilities.

  3. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating themore » MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)« less

  4. Tympanic temperature in confined beef cattle exposed to excessive heat load

    NASA Astrophysics Data System (ADS)

    Mader, T. L.; Gaughan, J. B.; Johnson, L. J.; Hahn, G. L.

    2010-11-01

    Angus crossbred yearling steers ( n = 168) were used to evaluate effects on performance and tympanic temperature (TT) of feeding additional potassium and sodium to steers exposed to excessive heat load (maximum daily ambient temperature exceeded 32°C for three consecutive days) during seasonal summer conditions. Steers were assigned one of four treatments: (1) control; (2) potassium supplemented (diet containing 2.10% KHCO3); (3) sodium supplemented (diet containing 1.10% NaCl); or (4) potassium and sodium supplemented (diet containing 2.10% KHCO3 and 1.10% NaCl). Overall, additional KHCO3 at the 2% level or NaCl at the 1% level did not improve performance or heat stress tolerance with these diet formulations. However, the addition of KHCO3 did enhance water intake. Independent of treatment effects, TT of cattle displaying high, moderate, or low levels of stress suggest that cattle that do not adequately cool down at night are prone to achieving greater body temperatures during a subsequent hot day. Cattle that are prone to get hot but can cool at night can keep average tympanic temperatures at or near those of cattle that tend to consistently maintain lower peak and mean body temperatures. In addition, during cooler and moderately hot periods, cattle change TT in a stair-step or incremental pattern, while under hot conditions, average TT of group-fed cattle moves in conjunction with ambient conditions, indicating that thermoregulatory mechanisms are at or near maximum physiological capacity.

  5. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study.

    PubMed

    Brearley, Amanda L; Sherburn, Margaret; Galea, Mary P; Clarke, Sandy J

    2015-10-01

    What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? An observational study. One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Tympanic temperature was measured at rest pre-immersion (T1), after 35minutes of moderate-intensity aqua-aerobic exercise (T2), after a further 10minutes of light exercise while still in the water (T3) and finally on departure from the facility (T4). The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, p<0.001) at T2, was maintained at this level at T3 and had returned to pre-immersion resting values at T4. Regression analysis demonstrated that the temperature response was not related to the water temperature (T2 r = -0.01, p = 0.9; T3 r = -0.02, p=0.9; T4 r=0.03, p=0.8). Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F=0.94, p=0.40; T3 F=0.93, p=0.40; T4 F=0.70, p=0.50). Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  6. Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature.

    PubMed Central

    Armour, A.; Mairs, R. J.; Gaze, M. N.; Wheldon, T. E.

    1994-01-01

    Successful imaging or treatment of neuroblastoma with 131I-meta-iodobenzylguanidine (131I-mIBG) depends on the selectivity of active (type 1) uptake of mIBG in neuroblastoma cells relative to passive (type 2) uptake present in most normal tissues. This study investigates the effects of moderately elevated temperature (39-41 degrees C) on the cellular uptake of 131I-mIBG in two neuroblastoma cell lines [SK-N-BE(2c) and IMR-32] and in a non-neuronal (ovarian carcinoma) cell line (A2780). In SK-N-BE(2c), a cell line with high active uptake capacity, the specific (type 1) uptake was reduced by 75% (P < 0.001) at 39 degrees C. Both IMR-32 and A2780 have a low capacity for accumulation of mIBG by active uptake. These cell lines demonstrated a statistically significant increase in accumulation at 39 degrees C, mainly as a result of increased non-specific transport. At 41 degrees C uptake of 131I-mIBG was reduced in all cell lines. Thus, the active component of mIBG uptake is more vulnerable to increased temperature than the passive component. It seems probable that moderately increased temperature will have an unfavourable effect on the therapeutic differential for targeted radiotherapy of neuroblastoma using radiolabelled mIBG. PMID:8080728

  7. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures.

    PubMed

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  8. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures

    PubMed Central

    Wang, Zhong-hua; Gao, Xing-cun; Liu, Cheng-hao; Qi, Han-bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100–500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300–500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption. PMID:29668672

  9. Europa Lander Material Selection Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Alexander S.; Heller, Mellisa

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input frommore » the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.« less

  10. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  11. The effects of temperature on the stability of a neuronal oscillator.

    PubMed

    Rinberg, Anatoly; Taylor, Adam L; Marder, Eve

    2013-01-01

    The crab Cancer borealis undergoes large daily fluctuations in environmental temperature (8-24°C) and must maintain appropriate neural function in the face of this perturbation. In the pyloric circuit of the crab stomatogastric ganglion, we pharmacologically isolated the pacemaker kernel (the AB and PD neurons) and characterized its behavior in response to temperature ramps from 7°C to 31°C. For moderate temperatures, the pacemaker displayed a frequency-temperature curve statistically indistinguishable from that of the intact circuit, and like the intact circuit maintained a constant duty cycle. At high temperatures (above 23°C), a variety of different behaviors were seen: in some preparations the pacemaker increased in frequency, in some it slowed, and in many preparations the pacemaker stopped oscillating ("crashed"). Furthermore, these crashes seemed to fall into two qualitatively different classes. Additionally, the animal-to-animal variability in frequency increased at high temperatures. We used a series of Morris-Lecar mathematical models to gain insight into these phenomena. The biophysical components of the final model have temperature sensitivities similar to those found in nature, and can crash via two qualitatively different mechanisms that resemble those observed experimentally. The crash type is determined by the precise parameters of the model at the reference temperature, 11°C, which could explain why some preparations seem to crash in one way and some in another. Furthermore, even models with very similar behavior at the reference temperature diverge greatly at high temperatures, resembling the experimental observations.

  12. Fluid Characteristics in the Giant Quartz Reef System of the Bundelkhand Craton, India: Constraints from Fluid Inclusion Study

    NASA Astrophysics Data System (ADS)

    Rout, D.; Panigrahi, M. K.; Pati, J. K.

    2017-12-01

    Giant quartz reefs are anomalous features indicating extensive mobilization of silica in the crust. Such reefs in the Abitibi belt, Canada and elsewhere are believed to be the result of activity of fluid of diverse sources on terrain boundaries. The Bundelkhand granitoid complex constituting a major part of the Bundelkhnad Craton in north-Central India is traversed by numerous such quartz reefs all across for a length of about 500 km. There are about 20 major reefs having dimensions of 35 to 40 km in length, 50 to 60 m in width standing out as prominent ridges in the region. Almost all are aligned parallel to each other in a sub-vertical to vertical manner following the NE-SW to NNE-SSW trend. Fluid inclusion petrography in quartz from these reefs reveal four types of inclusions viz. aqueous biphase (type-I), pure carbonic (type-II), aqueous carbonic (type-III) and polyphase (type-IV) inclusions. The type-I aqueous biphase inclusions are the dominant type in all the samples studied so far. Salinities calculated from temperature of melting of last ice (Tm) values are low to moderate, ranging from 0.18 to 18.19 wt% NaCl equivalents. Temperature of liquid-vapor homogenization (Th) values of these inclusions show a wide range from 101 ºC to 386 ºC (cluster around 150-250 ºC) essentially into liquid phase ruling out boiling during its course of evolution. Besides, aqueous Biphase inclusions, some data on pure CO2 inclusions furnish a near constant value of TmCO2 at -56.6 ºC in the Bundelkhand Craton indicating absence of CH4. Bivariate plot between Th and salinity suggest three possible water types which are controlling the overall activity of fluid in quartz reefs of Bundelkhand Craton viz. low-T low saline, high-T low saline and moderate-T and moderate saline. A low saline and CO2-bearing and higher temperature nature resembles a metamorphic fluid that may be a source for these giant quartz reefs. The low temperature low-salinity component could be a meteoric fluid that possibly mixed with a moderate salinity fluid. Such a moderate salinity fluid could represent a magmatic fluid that evolved to such low temperatures through prolonged fluid rock interaction. Although these quartz reefs do not bear any economic grade mineralization, the fluid characteristics compare well with mineralized reefs in the Dharwar and Bastar cratons.

  13. Climatology of Diffusion Potential Classes for Minneapolis-St. Paul.

    NASA Astrophysics Data System (ADS)

    Johnson, Allen B.; Baker, Donald G.

    1997-12-01

    This climatological study reports on the potential for atmospheric diffusion at Minneapolis-St. Paul, Minnesota, cities located in the heart of the North American continent. As such, the results can be considered typical of an urban setting within a continental climate.Data were obtained from a nearly continuous 8-yr record of vertical temperature and wind measurements made on a 152.4-m tower. Temperature lapse rates between 21.3 and 152.4 m were grouped into three stability categories: 1) isothermal-inversion, 2) subadiabatic, and 3) superadiabatic. A subdivision of each was based upon wind speeds of less than 4 m s1 and greater than or equal to 4 m s1, resulting in six classes that were examined according to wind direction, time of day, time of year and, most importantly, the associated synoptic conditions.The isothermal-inversion condition was limited to nighttime periods, especially when high pressure centers were dominant and winds were less than 4 m s1. The highest frequency of occurrence was during midsummer, while the lowest was during late fall and early winter. The subadiabatic condition was primarily a nighttime phenomenon, except for the winter season when it was also common during the day. An interesting feature of the diurnal frequencies was that a morning and evening subadiabatic peak occurred due to the transition between nighttime stable and the daytime unstable conditions. The superadiabatic condition was mainly a daytime phenomenon and dominated the early afternoon period throughout the year.The lowest diffusion potential, a result of very stable air and light winds, occurred during the nighttime period, particularly when under the influence of a high pressure center. Weak to moderate diffusion potential, found to occur with weakly stable air and light to moderate winds, was associated with the perimeter of the high pressure center and also with overcast skies near a low pressure center. This condition normally occurred during the night as well as during windy days. Moderate to high diffusion potential, resulting from superadiabatic conditions and light to moderate winds, dominated the early afternoon period. Strong nighttime ventilation was restricted to the winter season when northwesterly winds dominated the region immediately behind a cold front.

  14. Temperature and salinity regulation of growth and gas exchange of Salicornia fruticosa (L.) L.

    PubMed

    Abdulrahman, Farag Saleh; Williams, George J

    1981-03-01

    Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C 3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20-25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO 2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO 2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.

  15. Metal-Metal Microfilamentary Composites for High Strength Electrical Conductor Applications, Phase 2

    DTIC Science & Technology

    1991-08-01

    wire. A long pulse, even one of high current. eventually allows the accelerating lower grip assembly to catch up to the extending wire. Generation of...suggeat that the mecanical strengthening is due to the increased dlocation density. The experimental results of Rider and Foxon (12) and the theoretical...matrix. The effect of heat treatment temperatures up to 900’C on the internal structure of Nb filaments is not well defined. Moderately deformed Nb single

  16. Observations of the convective plume of a lake under cold-air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.; Chen, E.

    1978-01-01

    Moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold-air advective conditions. Point temperature measurements north and south of the lake and data obtained from a thermal scanner flown at 1.6 km indicate that surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C under conditions of moderate winds (about 4 m/s). No substantial temperature effects were observed with surface wind speed less than 1 m/s. Fluxes of sensible and latent heat from Lake Apopka were calculated from measurements of lake temperature, net radiation, relative humidity, and air temperature above the lake. Bulk transfer coefficients and the Bowen ratio were calculated and found to be in agreement with reported data for nonadvective conditions.

  17. Temperature dependence of the Henry's law constant for hydrogen storage in NaA zeolites: a Monte Carlo simulation study.

    PubMed

    Sousa, João Miguel; Ferreira, António Luís; Fagg, Duncan Paul; Titus, Elby; Krishna, Rahul; Gracio, José

    2012-08-01

    Grand canonical Monte Carlo simulations of hydrogen adsorption in zeolites NaA were carried out for a wide range of temperatures between 77 and 300 K and pressures up to 180 MPa. A potential model was used that comprised of three main interactions: van der Waals, coulombic and induced polarization by the electric field in the system. The computed average number of adsorbed molecules per unit cell was compared with available results and found to be in agreement in the regime of moderate to high pressures. The particle insertion method was used to calculate the Henry coefficient for this model and its dependence on temperature.

  18. Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure

    NASA Astrophysics Data System (ADS)

    Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.

    2004-05-01

    The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.

  19. Nuclear fuel elements and method of making same

    DOEpatents

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  20. Coupled field-structural analysis of HGTR fuel brick using ABAQUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, S.; Jain, R.; Majumdar, S.

    2012-07-01

    High-temperature, gas-cooled reactors (HTGRs) are usually helium-gas cooled, with a graphite core that can operate at reactor outlet temperatures much higher than can conventional light water reactors. In HTGRs, graphite components moderate and reflect neutrons. During reactor operation, high temperature and high irradiation cause damage to the graphite crystal and grains and create other defects. This cumulative structural damage during the reactor lifetime leads to changes in graphite properties, which can alter the ability to support the designed loads. The aim of the present research is to develop a finite-element code using commercially available ABAQUS software for the structural integritymore » analysis of graphite core components under extreme temperature and irradiation conditions. In addition, the Reactor Geometry Generator tool-kit, developed at Argonne National Laboratory, is used to generate finite-element mesh for complex geometries such as fuel bricks with multiple pin holes and coolant flow channels. This paper presents the proposed concept and discusses results of stress analysis simulations of a fuel block with H-451 grade material properties. (authors)« less

  1. Temperature dependencies of Henry’s law constants for different plant sesquiterpenes

    PubMed Central

    Copolovici, Lucian; Niinemets, Ülo

    2018-01-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry’s law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry’s law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry’s law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755

  2. Chaparral and fire

    USGS Publications Warehouse

    Keeley, Jon E.

    2007-01-01

    Large wildfires are an inevitable feature of chaparral. The moderate temperatures during winter promote growth of extensive stands of shrublands with contiguous fuels covering massive portions of the landscape. The summer-fall drought makes these fuels highly flammable over a relatively lengthy portion of the year. Because of widespread human influence, most fires today are anthropogenic; however, in wilderness areas lightning still accounts for some chaparral fires.

  3. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    PubMed

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  4. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering

    PubMed Central

    Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-01-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method. PMID:27877777

  5. Anomalous low temperature resistivity in CeCr0.8V0.2Ge3

    NASA Astrophysics Data System (ADS)

    Singh, Durgesh; Patidar, Manju Mishra; Mishra, A. K.; Krishnan, M.; Ganesan, V.

    2018-04-01

    Resistivity (8T) and heat capacity (0T) of CeCr0.8V0.2Ge3 at low temperatures and high magnetic fields are reported. Resistivity curve shows a Kondo like behavior at an anomalously high temperature of 250K. A broad peak at 20K is observed in resistivity. A sharp change in resistivity around 7.3K is due to magnetic ordering mediated by coherence effects. Similar low temperature peak is also observed in heat capacity around 7.2K. A small magnetic field of the order of 1T shifts the peak towards lower temperatures confirming the antiferromagnetic ordering. A broad feature, which appears in resistivity at 20K, is absent in heat capacity. This feature shift towards higher temperatures with magnetic field, and may be due to the partial ferromagnetic ordering or due to geometrical frustration which opposes the magnetic ordering. The system shows a moderate heavy fermion behavior with Sommerfeld coefficient (γ) of 111mJ/mol-K2. Debye temperature of the compound is 250K. Shifting of TN in magnetic fields towards 0K indicates a possibility of quantum criticality in this system.

  6. Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.

    2014-05-01

    Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.

  7. Gallium isotopic evidence for the fate of moderately volatile elements in planetary bodies and refractory inclusions

    NASA Astrophysics Data System (ADS)

    Kato, Chizu; Moynier, Frédéric

    2017-12-01

    The abundance of moderately volatile elements, such as Zn and Ga, show variable depletion relative to CI between the Earth and primitive meteorite (chondrites) parent bodies. Furthermore, the first solar system solids, the calcium-aluminum-rich inclusions (CAIs), are surprisingly rich in volatile element considering that they formed under high temperatures. Here, we report the Ga elemental and isotopic composition of a wide variety of chondrites along with five individual CAIs to understand the origin of the volatile elements and to further characterize the enrichment of the volatile elements in high temperature condensates. The δ71Ga (permil deviation of the 71Ga/69Ga ratio from the Ga IPGP standard) of carbonaceous chondrites decreases in the order of CI >CM >CO >CV and is inversely correlated with the Al/Ga ratio. This implies that the Ga budget of the carbonaceous chondrites parent bodies were inherited from a two component mixing of a volatile rich reservoir enriched in heavy isotope of Ga and a volatile poor reservoir enriched in light isotope of Ga. Calcium-aluminum-rich inclusions are enriched in Ga and Zn compared to the bulk meteorite and are both highly isotopically fractionated with δ71Ga down to -3.56‰ and δ66Zn down to -0.74‰. The large enrichment in the light isotopes of Ga and Zn in the CAIs implies that the moderately volatile elements were introduced in the CAIs during condensation in the solar nebula as opposed to secondary processing in the meteorite parent body and supports a change in gas composition in which CAIs were formed.

  8. CO 2 capture from IGCC gas streams using the AC-ABC process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagar, Anoop; McLaughlin, Elisabeth; Hornbostel, Marc

    The objective of this project was to develop a novel, low-cost CO 2 capture process from pre-combustion gas streams. The bench-scale work was conducted at the SRI International. A 0.15-MWe integrated pilot plant was constructed and operated for over 700 hours at the National Carbon Capture Center, Wilsonville, AL. The AC-ABC (ammonium carbonate-ammonium bicarbonate) process for capture of CO 2 and H 2S from the pre-combustion gas stream offers many advantages over Selexol-based technology. The process relies on the simple chemistry of the NH 3-CO 2-H 2O-H 2S system and on the ability of the aqueous ammoniated solution to absorbmore » CO 2 at near ambient temperatures and to release it as a high-purity, high-pressure gas at a moderately elevated regeneration temperature. It is estimated the increase in cost of electricity (COE) with the AC-ABC process will be ~ 30%, and the cost of CO 2 captured is projected to be less than $27/metric ton of CO 2 while meeting 90% CO 2 capture goal. The Bechtel Pressure Swing Claus (BPSC) is a complementary technology offered by Bechtel Hydrocarbon Technology Solutions, Inc. BPSC is a high-pressure, sub-dew-point Claus process that allows for nearly complete removal of H 2S from a gas stream. It operates at gasifier pressures and moderate temperatures and does not affect CO 2 content. When coupled with AC-ABC, the combined technologies allow a nearly pure CO 2 stream to be captured at high pressure, something which Selexol and other solvent-based technologies cannot achieve.« less

  9. Structural and Electrical Characterization of SiO2 Gate Dielectrics Deposited from Solutions at Moderate Temperatures in Air.

    PubMed

    Esro, Mazran; Kolosov, Oleg; Jones, Peter J; Milne, William I; Adamopoulos, George

    2017-01-11

    Silicon dioxide (SiO 2 ) is the most widely used dielectric for electronic applications. It is usually produced by thermal oxidation of silicon or by using a wide range of vacuum-based techniques. By default, the growth of SiO 2 by thermal oxidation of silicon requires the use of Si substrates whereas the other deposition techniques either produce low quality or poor interface material and mostly require high deposition or annealing temperatures. Recent investigations therefore have focused on the development of alternative deposition paradigms based on solutions. Here, we report the deposition of SiO 2 thin film dielectrics deposited by spray pyrolysis in air at moderate temperatures of ≈350 °C from pentane-2,4-dione solutions of SiCl 4 . SiO 2 dielectrics were investigated by means of UV-vis absorption spectroscopy, spectroscopic ellipsometry, XPS, XRD, UFM/AFM, admittance spectroscopy, and field-effect measurements. Data analysis reveals smooth (R RMS < 1 nm) amorphous films with a dielectric constant of about 3.8, an optical band gap of ≈8.1 eV, leakage current densities in the order of ≈10 -7 A/cm 2 at 1 MV/cm, and high dielectric strength in excess of 5 MV/cm. XPS measurements confirm the SiO 2 stoichiometry and FTIR spectra reveal features related to SiO 2 only. Thin film transistors implementing spray-coated SiO 2 gate dielectrics and C 60 and pentacene semiconducting channels exhibit excellent transport characteristics, i.e., negligible hysteresis, low leakage currents, high on/off current modulation ratio on the order of 10 6 , and high carrier mobility.

  10. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  11. Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model.

    PubMed

    Williams, C R; Gill, B S; Mincham, G; Mohd Zaki, A H; Abdullah, N; Mahiyuddin, W R W; Ahmad, R; Shahar, M K; Harley, D; Viennet, E; Azil, A; Kamaluddin, A

    2015-10-01

    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.

  12. Synthesis of Ternary Borocarbonitrides by High Temperature Pyrolysis of Ethane 1,2-Diamineborane

    PubMed Central

    Leardini, Fabrice; Massimi, Lorenzo; Flores-Cuevas, Eduardo; Fernández, Jose Francisco; Ares, Jose Ramon; Betti, Maria Grazia; Mariani, Carlo

    2015-01-01

    Ethane 1,2-diamineborane (EDAB) is an alkyl-containing amine-borane adduct with improved hydrogen desorption properties as compared to ammonia borane. In this work, it is reported the high temperature thermolytic decomposition of EDAB. Thermolysis of EDAB has been investigated by concomitant thermogravimetry-differential thermal analysis-mass spectrometry experiments. EDAB shows up to four H2 desorption events below 1000 °C. Small fractions of CH4, C2H4 and CO/CO2 are also observed at moderate-high temperatures. The solid-state thermolysis product has been characterized by means of different structural and chemical methods, such as X-ray diffraction, Raman spectroscopy, Scanning electron microscopy, Elemental analysis, and X-ray photoelectron spectroscopy (XPS). The obtained results indicate the formation of a ternary borocarbonitride compound with a poorly-crystalline graphitic-like structure. By contrast, XPS measurements show that the surface is rich in carbon and nitrogen oxides, which is quite different to the bulk of the material. PMID:28793545

  13. Ba6-3 x Nd8+2 x Ti18O54 Tungsten Bronze: A New High-Temperature n-Type Oxide Thermoelectric

    NASA Astrophysics Data System (ADS)

    Azough, Feridoon; Freer, Robert; Yeandel, Stephen R.; Baran, Jakub D.; Molinari, Marco; Parker, Stephen C.; Guilmeau, Emmanuel; Kepaptsoglou, Demie; Ramasse, Quentin; Knox, Andy; Gregory, Duncan; Paul, Douglas; Paul, Manosh; Montecucco, Andrea; Siviter, Jonathan; Mullen, Paul; Li, Wenguan; Han, Guang; Man, Elena A.; Baig, Hasan; Mallick, Tapas; Sellami, Nazmi; Min, Gao; Sweet, Tracy

    2016-03-01

    Semiconducting Ba6-3 x Nd8+2 x Ti18O54 ceramics (with x = 0.00 to 0.85) were synthesized by the mixed oxide route followed by annealing in a reducing atmosphere; their high-temperature thermoelectric properties have been investigated. In conjunction with the experimental observations, atomistic simulations have been performed to investigate the anisotropic behavior of the lattice thermal conductivity. The ceramics show promising n-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical conductivity, and temperature-stable, low thermal conductivity; For example, the composition with x = 0.27 (i.e., Ba5.19Nd8.54Ti18O54) exhibited a Seebeck coefficient of S 1000K = 210 µV/K, electrical conductivity of σ 1000K = 60 S/cm, and thermal conductivity of k 1000K = 1.45 W/(m K), leading to a ZT value of 0.16 at 1000 K.

  14. Snowmelt sensitivity to warmer temperatures: a field-validated model analysis, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2014-12-01

    We present model simulations of climate change impacts on snowmelt processes over a 1600 km2 area in the southern Sierra Nevada, including western Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to giant sequoia groves to alpine tundra. Three reference years were evaluated: a moderately dry snow season (23% below average SWE), an average snow season (7% above average SWE), and a moderately wet snow season (54% above average SWE). The Alpine3D model was run for the reference years and results were evaluated against data from a multi-scale measurement campaign that included repeated manual snow courses and basin-scale snow surveys, dozens of automated snow depth sensors, and automated SWE stations. Compared to automated measurements, the model represented the date of snow disappearance within two days. Compared to manual measurements, model SWE RMSE values for the average and wet snow seasons were highly correlated (R2=0.89 and R2=0.73) with the distance of SWE measurements from the nearest precipitation gauge used to force the model; no significant correlation was found with elevation. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may critically limit snow model accuracy. The air temperature measured at 19 regional stations for the three reference years was modified by +1°C to +6°C to simulate the impact of warmer temperatures on snowmelt dynamics over the 3600 m elevation gradient. For all years, progressively warmer temperatures caused the seasonal SWE centroid to shift earlier and higher in elevation. At forested middle elevations, 70 - 80% of the present-day snowpack volume is lost in a +2°C scenario; 30 - 40% of that change is a result of precipitation phase shift and the remainder is due to enhanced melt. At all elevations, spring and fall snowpack was most sensitive to warmer temperatures; mid-winter sensitivity was least for elevations >3100 m. Interestingly, the dominant effect of warmer temperatures on snowmelt was a reduction in daily melt rates. The drier year was most sensitive to temperature changes with a greater decrease in the number of days with high melt rates. The results offer insight into the sensitivity of snowmelt processes to warmer temperatures in the Sierra Nevada.

  15. Thermal Adaptation of Dihydrofolate Reductase from the Moderate Thermophile Geobacillus stearothermophilus

    PubMed Central

    2014-01-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ∼30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  16. Extraction and Capture of Water from Martian Regolith Experimental Proof-of-Concept

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Bauman, Steve; Johnson, Kyle

    2016-01-01

    Mars Design Reference Architecture 5.0:Lists in-situ resource utilization (ISRU) as enabling for robust human Mars missionsLO2LCH4 ascent propulsion 25,000 kg oxygen from atmosphere for ascent and life support Atmospheric based ISRU processes less operationally complex than surface based limited concept evaluation to date and Mars surface water property and distribution uncertainty would not allow [Mars soil water processing] to be base lined at this time Limited Concept Evaluation to Date Lunar regolith O2 extraction processing experience Lunar regolith is fluidized and heated to high temperatures with H2 to produce H2O from iron-bearing minerals Mars similarity concept: Soil placed in fluidized bed reactor Heated to moderate temperatures Inert gas flow used to fluidize the bed and help with water desorption Challenges: High-temperature dusty seals Working gas requires downstream separation and recycling to reduce consumables loss Batch process heating thermally inefficient.

  17. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium

    DOE PAGES

    Brygoo, Stephanie; Millot, Marius; Loubeyre, Paul; ...

    2015-11-16

    Megabar (1 Mbar = 100 GPa) laser shocks on precompressed samples allow reaching unprecedented high densities and moderately high ~10 3–10 4 K temperatures. We describe in this paper a complete analysis framework for the velocimetry (VISAR) and pyrometry (SOP) data produced in these experiments. Since the precompression increases the initial density of both the sample of interest and the quartz reference for pressure-density, reflectivity, and temperature measurements, we describe analytical corrections based on available experimental data on warm dense silica and density-functional-theory based molecular dynamics computer simulations. Finally, using our improved analysis framework, we report a re-analysis of previouslymore » published data on warm dense hydrogen and helium, compare the newly inferred pressure, density, and temperature data with most advanced equation of state models and provide updated reflectivity values.« less

  18. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea

    NASA Astrophysics Data System (ADS)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Tsou, JinYeu; Jiang, Tingchen; Liang, X. San

    2018-06-01

    In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) concentration in the East China Sea (ECS) during the period 2003-2016. Level 3 (4 km) monthly SST and Chl-a data from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship between the two variables. The approaches employed included correlation analysis, regression analysis, and so forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high correlation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of Chl-a concentration in the ECS.

  19. Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms

    NASA Astrophysics Data System (ADS)

    Cole, C.; Finch, A. A.; Hintz, C.; Hintz, K.; Allison, N.

    2018-06-01

    Understanding how rising seawater pCO2 and temperatures impact coral aragonite accretion is essential for predicting the future of reef ecosystems. Here, we report 2 long-term (10-11 month) studies assessing the effects of temperature (25 and 28 °C) and both high and low seawater pCO2 (180-750 μatm) on the calcification, photosynthesis and respiration of individual massive Porites spp. genotypes. Calcification rates were highly variable between genotypes, but high seawater pCO2 reduced calcification significantly in 4 of 7 genotypes cultured at 25 °C but in only 1 of 4 genotypes cultured at 28 °C. Increasing seawater temperature enhanced calcification in almost all corals, but the magnitude of this effect was seawater pCO2 dependent. The 3 °C temperature increase enhanced calcification rate on average by 3% at 180 μatm, by 35% at 260 μatm and by > 300% at 750 μatm. The rate increase at high seawater pCO2 exceeds that observed in inorganic aragonites. Responses of gross/net photosynthesis and respiration to temperature and seawater pCO2 varied between genotypes, but rates of all these processes were reduced at the higher seawater temperature. Increases in seawater temperature, below the thermal stress threshold, may mitigate against ocean acidification in this coral genus, but this moderation is not mediated by an increase in net photosynthesis. The response of coral calcification to temperature cannot be explained by symbiont productivity or by thermodynamic and kinetic influences on aragonite formation.

  20. Thermoelectric Coolers with Sintered Silver Interconnects

    NASA Astrophysics Data System (ADS)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  1. He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl

    NASA Astrophysics Data System (ADS)

    Pouchon, Manuel A.; Chen, Jiachao; Hoffelner, Wolfgang

    2009-05-01

    TiAl is a well known high temperature material with good creep properties. It is investigated as a potential structural material for Generation IV high temperature gas cooled nuclear reactors. The tests are performed with the ABB-2 (Ti-rich TiAl with 2 at.% W) developed by ASEA Brown Boveri Ltd. (ABB). Thin samples are irradiated throughout with 24 MeV 4He2+ ions; the irradiated material is then investigated towards its microstructure and its hardness. The microstructure is studied by transmission electron microscopy and the hardness is investigated using a micro-hardness tester and a nano-indenter. Different effects can be identified. From room to moderate irradiation temperatures, the radiation induced hardening of the material slowly vanishes until the material completely recovers at about 943 K. Beyond this temperature, He-bubble formation seems to harden the material again, until beyond 1200 K a steep increase in hardening is detected. This effect can be correlated with bubbles being identified in the micrographs. The results are consistent and give strong indications to a microstructural development as a function of temperature.

  2. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less

  3. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  4. Environmental Studies on Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.

    2005-01-01

    Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.

  5. An argyrodite-type Ag9GaSe6 liquid-like material with ultralow thermal conductivity and high thermoelectric performance.

    PubMed

    Jiang, Binbin; Qiu, Pengfei; Chen, Hongyi; Zhang, Qihao; Zhao, Kunpeng; Ren, Dudi; Shi, Xun; Chen, Lidong

    2017-10-24

    We report a ternary argyrodite-type Ag 9 GaSe 6 compound as a promising thermoelectric material in a moderate temperature range. Due to high carrier mobility and ultralow lattice thermal conductivity, a maximum ZT of 1.1 was obtained with stoichiometric Ag 9 GaSe 6 at 800 K. Via introducing slight Se-deficiency to optimize the carrier concentration, the maximum ZT is further enhanced to 1.3.

  6. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice

    PubMed Central

    Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright’s F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance. PMID:27494320

  7. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    PubMed

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  8. Simulating the moderating effect of a lake on downwind temperatures

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  9. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    PubMed Central

    Fichtel, Katja; Logemann, Jörn; Fichtel, Jörg; Rullkötter, Jürgen; Cypionka, Heribert; Engelen, Bert

    2015-01-01

    Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment–basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure. PMID:26500624

  10. ROBUSTNESS OF A RYTHMIC CIRCUIT TO SHORT AND LONG-TERM TEMPERATURE CHANGES

    PubMed Central

    TANG, LAMONT S.; TAYLOR, ADAM L.; RINBERG, ANATOLY; MARDER, EVE

    2012-01-01

    Recent computational and experimental work has shown that similar network performance can result from variable sets of synaptic and intrinsic properties. Because temperature is a global perturbation that differentially influences every biological process within the nervous system, one might therefore expect that individual animals would respond differently to temperature. Nonetheless, the phase relationships of the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, are remarkably invariant between 7 and 23 °C (Tang et al., 2010). Here, we report that when isolated STG preparations were exposed to more extreme temperature ranges, their networks became non-rhythmic, or “crashed”, in a reversible fashion. Animals were acclimated for at least 3 weeks at 7 °C, 11 °C, or 19 °C. When networks from the acclimated animals were perturbed by acute physiologically relevant temperature ramps (11–23 °C), the network frequency and phase relationships were independent of the acclimation group. At high acute temperatures (>23 °C), circuits from the cold-acclimated animals produced less-regular pyloric rhythms than those from warm-acclimated animals. At high acute temperatures, phase relationships between pyloric neurons were more variable from animal to animal than at moderate acute temperatures, suggesting that individual differences across animals in intrinsic circuit parameters are revealed at high temperatures. This shows that individual and variable neuronal circuits can behave similarly in normal conditions, but their behavior may diverge when confronted with extreme external perturbations. PMID:22815521

  11. GaN Based Electronics And Their Applications

    NASA Astrophysics Data System (ADS)

    Ren, Fan

    2002-03-01

    The Group III-nitrides were initially researched for their promise to fill the void for a blue solid state light emitter. Electronic devices from III-nitrides have been a more recent phenomenon. The thermal conductivity of GaN is three times that of GaAs. For high power or high temperature applications, good thermal conductivity is imperative for heat removal or sustained operation at elevated temperatures. The development of III-N and other wide bandgap technologies for high temperature applications will likely take place at the expense of competing technologies, such as silicon-on-insulator (SOI), at moderate temperatures. At higher temperatures (>300°C), novel devices and components will become possible. The automotive industry will likely be one of the largest markets for such high temperature electronics. One of the most noteworthy advantages for III-N materials over other wide bandgap semiconductors is the availability of AlGaN/GaN and InGaN/GaN heterostructures. A 2-dimensional electron gas (2DEG) has been shown to exist at the AlGaN/GaN interface, and heterostructure field effect transistors (HFETs) from these materials can exhibit 2DEG mobilities approaching 2000 cm2 / V?s at 300K. Power handling capabilities of 12 W/mm appear feasible, and extraordinary large signal performance has already been demonstrated, with a current state-of-the-art of >10W/mm at X-band. In this talk, high speed and high temperature AlGaN/GaN HEMTs as well as MOSHEMTs, high breakdown voltage GaN (>6KV) and AlGaN (9.7 KV) Schottky diodes, and their applications will be presented.

  12. Frost risks in the Mantaro river basin

    NASA Astrophysics Data System (ADS)

    Trasmonte, G.; Chavez, R.; Segura, B.; Rosales, J. L.

    2008-04-01

    As part of the study on the Mantaro river basin's (central Andes of Perú) current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems) tools, using minimum temperature - 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April), when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence) were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l.), while the low (or null) probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.). Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke) in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l.), moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  13. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  14. Phase competition and anomalous thermal evolution in high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; Lin, Hai-Qing; Gong, Chang-De

    2017-07-01

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T* for the strange normal state well above the superconducting transition temperature. However, recently the T* within the superconducting dome was reported to unexpectedly exhibit back-bending likely in the cuprate Bi2Sr2CaCu2O8 +δ . Here we show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t -t'-t''-J -V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. In particular, the T* back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. Our results imply that the revised phase diagram is likely to take place in high-temperature superconductors.

  15. Effect of Heat Treatment Parameters on the Microstructure and Properties of Inconel-625 Superalloy

    NASA Astrophysics Data System (ADS)

    Sukumaran, Arjun; Gupta, R. K.; Anil Kumar, V.

    2017-07-01

    Inconel-625 is a solid solution-strengthened alloy used for long-duration applications at high temperatures and moderate stresses. Different heat treatment cycles (temperatures of 625-1025 °C and time of 2-6 h) have been studied to obtain optimum mechanical properties suitable for a specific application. It has been observed that room temperature strength and, hardness decreased and ductility increased with increase in heat treatment temperature. The rate of change of these properties is found to be moderate for the samples heat-treated up to 850 °C, and thereafter, it increases rapidly. It is attributed to the microstructural changes like dissolution of carbides, recrystallization and grain growth. Microstructures are found to be predominantly single-phase austenitic with the presence of fine alloy carbides. The presence of twins is observed in samples heat-treated at lower temperature, which act as nucleation sites for recrystallization at 775 °C. Beyond 850 °C, the role of carbides present in the matrix is subsided by the coarsening of recrystallized grains and finally at 1025 °C, significant dissolution of carbide results in substantial reduction in strength and increase in ductility. Elongation to an extent of >71% has been obtained in sample heat-treated at 1025 °C indicating excellent tendency for cold workability. Failure of heat-treated specimens is found to be mainly due to carbide particle-matrix decohesion which acts as locations for crack initiation.

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less

  17. Baseline Concept Description of a Small Modular High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less

  18. Method and apparatus for cutting and abrading with sublimable particles

    DOEpatents

    Bingham, D.N.

    1995-10-10

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquefied gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquefied first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquefied gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket. 6 figs.

  19. Method and apparatus for cutting and abrading with sublimable particles

    DOEpatents

    Bingham, Dennis N.

    1995-01-01

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquified gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquified first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquified gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket.

  20. Hall mobility and photoconductivity in TlGaSeS crystals

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Gasanly, N. M.

    2013-01-01

    In this work, the fundamental properties of the TlGaSeS single crystals are investigated by means of temperature dependent electrical resistivity and Hall mobility. The crystal photo-responsibility as function of illumination intensity and temperature is also tested in the temperature range of 350-160 K. The study allowed the determination of acceptor centers as 230 and 450 meV below and above 260 K, and recombination centers as 181, 363, and 10 meV at low, moderate, and high temperatures, respectively. While the temperature-dependent Hall mobility behaved abnormally, the photoconductivity analysis reflected an illumination intensity dependent recombination center. Namely, the recombination center increased from 10 to 90 meV as the light intensity increased from 27.9 to 76.7 mW cm-2, respectively. That strange behavior was attributed to the temporary shift in Fermi level caused by photoexcitation.

  1. Relationship between the Heat Tolerance of Photosynthesis and the Thermal Stability of Rubisco Activase in Plants from Contrasting Thermal Environments1

    PubMed Central

    Salvucci, Michael E.; Crafts-Brandner, Steven J.

    2004-01-01

    Inhibition of net photosynthesis (Pn) by moderate heat stress has been attributed to an inability of Rubisco activase to maintain Rubisco in an active form. To examine this proposal, the temperature response of Pn, Rubisco activation, chlorophyll fluorescence, and the activities of Rubisco and Rubisco activase were examined in species from contrasting environments. The temperature optimum of Rubisco activation was 10°C higher in the creosote bush (Larrea tridentata) compared with the Antarctic hairgrass (Deschampsia antarctica), resembling the temperature response of Pn. Pn increased markedly with increasing internal CO2 concentration in Antarctic hairgrass and creosote bush plants subjected to moderate heat stress even under nonphotorespiratory conditions. Nonphotochemical quenching of chlorophyll fluorescence, the effective quantum yield of photochemical energy conversion (ΔF/Fm′) and the maximum yield of PSII (Fv/Fm) were more sensitive to temperature in Antarctic hairgrass and two other species endemic to cold regions (i.e. Lysipomia pumila and spinach [Spinacea oleracea]) compared with creosote bush and three species (i.e. jojoba [Simmondsia chinensis], tobacco [Nicotiana tabacum], and cotton [Gossypium hirsutum]) from warm regions. The temperature response of activity and the rate of catalytic inactivation of Rubisco from creosote bush and Antarctic hairgrass were similar, whereas the optimum for ATP hydrolysis and Rubisco activation by recombinant creosote bush, cotton, and tobacco activase was 8°C to 10°C higher than for Antarctic hairgrass and spinach activase. These results support a role for activase in limiting photosynthesis at high temperature. PMID:15084731

  2. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures

    NASA Astrophysics Data System (ADS)

    Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang

    2018-04-01

    Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.

  3. Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus two summer annuals.

    PubMed

    Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara

    2014-09-01

    Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.

  4. Characterization of flame radiosity in shrubland fires

    Treesearch

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro

    2011-01-01

    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  5. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Treesearch

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  6. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C. Y.

    1977-01-01

    A key to the success of this program was the breakthrough development of a technology for producing ultra-thin silicon slices which are very flexible, resilient, and tolerant of moderate handling abuse. Experimental topics investigated were thinning technology, gaseous junction diffusion, aluminum back alloying, internal reflectance, tantalum oxide anti-reflective coating optimization, slice flexibility, handling techniques, production rate limiting steps, low temperature behavior, and radiation tolerance.

  7. RETRACTED: Chemical densification of plasma sprayed yttria stabilized zirconia (YSZ) coatings for high temperature wear and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard

    2012-12-01

    Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.

  8. Comparison of hyperthermic hyperventilation during passive heating and prolonged light and moderate exercise in the heat.

    PubMed

    Tsuji, Bun; Honda, Yasushi; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2012-11-01

    Elevation of core temperature leads to increases in ventilation in both resting subjects and those engaged in prolonged exercise. We compared the characteristics of the hyperthermic hyperventilation elicited during passive heating at rest and during prolonged moderate and light exercise. Twelve healthy men performed three trials: a rest trial in which subjects were passively heated using hot-water immersion (41°C) and a water-perfused suit and two exercise trials in which subjects exercised at 25% (light) or 50% (moderate) of peak oxygen uptake in the heat (37°C and 50% relative humidity) after first using water immersion (18°C) to reduce resting esophageal temperature (T(es)). This protocol enabled detection of a T(es) threshold for hyperventilation during the exercise. When minute ventilation (Ve) was expressed as a function of T(es), 9 of the 12 subjects showed T(es) thresholds for hyperventilation in all trials. The T(es) thresholds for increases in Ve during light and moderate exercise (37.1 ± 0.4 and 36.9 ± 0.4°C) were both significantly lower than during rest (38.3 ± 0.6°C), but the T(es) thresholds did not differ between the two exercise intensities. The sensitivity of Ve to increasing T(es) (slope of the T(es)-Ve relation) above the threshold was significantly lower during moderate exercise (8.7 ± 3.5 l · min(-1) · °C(-1)) than during rest (32.5 ± 24.2 l · min(-1) · °C(-1)), but the sensitivity did not differ between light (10.4 ± 13.0 l · min(-1) · °C(-1)) and moderate exercise. These results suggest the core temperature threshold for hyperthermic hyperventilation and the hyperventilatory response to increasing core temperature in passively heated subjects differs from that in exercising subjects, irrespective of whether the exercise is moderate or light.

  9. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  10. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

    PubMed Central

    Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan

    2013-01-01

    The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220

  11. Influence of quality control variables on failure of graphite/epoxy under extreme moisture conditions

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Lee, P. R.

    1980-01-01

    Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.

  12. Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2016-02-01

    High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.

  13. Advances in High Temperature Materials for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  14. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City

    NASA Astrophysics Data System (ADS)

    Ríos, B.; Torres-Jardón, R.; Ramírez-Arriaga, E.; Martínez-Bernal, A.; Rosas, I.

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized areas. A principal components analysis established that the concentrations of each pollen type differed across the urbanization gradients. Additionally, it was found that a large number of allergenic pollens are produced by ornamental trees, some only recently introduced by urban planners.

  15. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments.

    PubMed

    Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming

    2016-09-15

    Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were <100 μm in spring, but colonies within moderate-size (100-500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Laboratory Studies of High Temperature Deformation and Fracture of Lava Domes

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P.; Tuffen, H.; Meredith, P.

    2007-12-01

    The high temperature fracture mechanics of magma at high temperatures exerts a fundamental control on the stability of lava domes and the timing and style of eruptions at andesitic to dacitic volcanoes. This is evidenced in the pervasive fracturing seen in both ancient and active magma conduits and lava domes; in addition to the volcanic earthquakes that occur before and during episodes of dome growth and dome collapse. Uniaxial and triaxial deformation experiments have been performed on crystal rich and crystal free magmas (andesite from Ancestral Mount Shasta, California, USA and a rhyolitic obsidian from Krafla, Iceland) at a range of temperatures (up to 900°C), confining pressures (up to 50 MPa) and strain rates (10-5s-1) to 10-3s-1) whilst recording acoustic emissions (AE). Results from these experiments provide useful inputs into models of lava dome stability, extrusion mechanisms, and source mechanisms for volcanic earthquakes. However, the large sample sizes used to ensure valid results (25mm diameter and 75mm length) made it difficult to maintain stable high temperatures under confined conditions. Also, only rudimentary AE data could be obtained, due to the distance of the transducers from the samples to keep them away from the high temperatures. Here, we present modifications to this apparatus, which include a new furnace, improved loading system, additional pore pressure and permeability measurement capability, and vastly improved acoustic monitoring. This allows (1)stable higher temperatures (up to 1000°C) to be achieved under confined conditions, (2) high temperature and moderate pressure (up to 70 MPa) hydrostatic measurements of permeability and acoustic velocities, (3) high temperature triaxial deformation under different pore fluid and pressure conditions, and (4) full waveform AE monitoring for all deformation experiments. This system can thus be used to measure the physical properties and strength of rocks under volcanic conditions and to simulate volcanic earthquakes.

  17. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  18. Mechanism for the occurrence of paramagnetic planes within magnetically ordered cerium systems

    NASA Astrophysics Data System (ADS)

    Kioussis, Nicholas; Cooper, Bernard R.; Banerjea, Amitava

    1988-11-01

    Hybridization of moderately delocalized f electrons with band electrons gives rise to a highly anisotropic two-ion interaction. Previously it has been shown that such an interaction explains the experimentally observed unusual magnetic behavior of CeBi, yielding a phase transition from a higher-temperature type-I (↑↓) to a lower-temperature type-IA (↑↑↓↓) antiferromagnetic structure. If the hybridization-mediated interaction is the key to understanding the magnetic behavior of such moderately delocalized f-electron systems, we should expect to be able to understand on this basis the even more unusual magnetic behavior of CeSb. In CeSb, there is a sequence of magnetic structures in which the higher-temperature structures involve a periodic stacking of paramagnetic \\{001\\} planes alternating with magnetically ordered \\{001\\} planes of [001]-moment alignment. In this paper we show that such a coexistence of paramagnetic and magnetically ordered Ce3+ sites can be understood on the basis of the hybridization-mediated interionic interaction when there are cubic crystal-field (CF) interactions of comparable strength. The tendency to form paramagnetic planes is found to increase with increasing CF strength (Γ7 ground state); and the stability of the up-down paramagnetic plane arrangement at high temperatures is shown to arise from the reconciliation of the magnetic ordering with the CF interactions. We also find that for a certain range of parameters a different novel situation occurs, with a fully nonmagnetic (singlet) ground state for the Ce3+ ion. This singlet state is not Kondo-like, and occurs in such a way that the system would be expected to fluctuate between two differently polarized states, one of which is the singlet state.

  19. Temperature Measurements in Dynamically-loaded Systems Using Neutron Resonance Spectroscopy (NRS) at LANSCE

    NASA Astrophysics Data System (ADS)

    Yuan, V. W.

    2002-12-01

    In previous attempts to determine the internal temperature in systems subjected to dynamic loading, experimenters have usually relied on surface-based optical techniques that are often hampered by insufficient information regarding the emissivity of the surfaces under study. Neutron Resonance Spectroscopy (NRS) is a technique that uses Doppler-broadened neutron resonances to measure internal temperatures in dynamically-loaded samples. NRS has developed its own target-moderator assembly to provide single pulses with an order of magnitude higher brightness than the Lujan production target. The resonance line shapes from which temperature information is extracted are also influenced by non-temperature-dependent broadening from the moderator and detector phosphorescence. Dynamic NRS experiments have been performed to measure the temperature in a silver sheet jet and behind the passage of a shock wave in molybdenum.

  20. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  1. Impact of high ambient temperature on unintentional injuries in high-income countries: a narrative systematic literature review

    PubMed Central

    Otte im Kampe, Eveline; Kovats, Sari; Hajat, Shakoor

    2016-01-01

    Objectives Given the likelihood of increased hot weather due to climate change, it is crucial to have prevention measures in place to reduce the health burden of high temperatures and heat waves. The aim of this review is to summarise and evaluate the evidence on the effects of summertime weather on unintentional injuries in high-income countries. Design 3 databases (Global Public Health, EMBASE and MEDLINE) were searched by using related keywords and their truncations in the title and abstract, and reference lists of key studies were scanned. Studies reporting heatstroke and intentional injuries were excluded. Results 13 studies met our inclusion criteria. 11 out of 13 studies showed that the risk of unintentional injuries increases with increasing ambient temperatures. On days with moderate temperatures, the increased risk varied between 0.4% and 5.3% for each 1°C increase in ambient temperature. On extreme temperature days, the risk of injuries decreased. 2 out of 3 studies on occupational accidents found an increase in work-related accidents during high temperatures. For trauma hospital admissions, 6 studies reported an increase during hot weather, whereas 1 study found no association. The evidence for impacts on injuries by subgroups such as children, the elderly and drug users was limited and inconsistent. Conclusions The present review describes a broader range of types of unintentional fatal and non-fatal injuries (occupational, trauma hospital admissions, traffic, fire entrapments, poisoning and drug overdose) than has previously been reported. Our review confirms that hot weather can increase the risk of unintentional injuries and accidents in high-income countries. The results are useful for injury prevention strategies. PMID:26868947

  2. High fever following postpartum administration of sublingual misoprostol.

    PubMed

    Durocher, J; Bynum, J; León, W; Barrera, G; Winikoff, B

    2010-06-01

    To explore what triggers an elevated body temperature of > or =40.0 degrees C in some women given misoprostol, a prostaglandin E1 analogue, for postpartum haemorrhage (PPH). Post hoc analysis. One tertiary-level hospital in Quito, Ecuador. A cohort of 58 women with a fever of above 40 degrees C following treatment with sublingual misoprostol (800 micrograms) for PPH. Side effects were documented for 163 Ecuadorian women given sublingual misoprostol to treat their PPH. Women's body temperatures were measured, and if they had a fever of > or =40.0 degrees C, measurements were taken hourly until the fever subsided. Temperature trends were analysed, and the possible physiological mechanisms by which postpartum misoprostol produces a high fever were explored. The onset, duration, peak temperatures, and treatments administered for cases with a high fever. Fifty-eight of 163 women (35.6%) treated with misoprostol experienced a fever of > or =40.0 degrees C. High fevers followed a predictable pattern, often preceded by moderate/severe shivering within 20 minutes of treatment. Body temperatures peaked 1-2 hours post-treatment, and gradually declined over 3 hours. Fevers were transient and did not lead to any hospitalisation. Baseline characteristics were comparable among women who did and did not develop a high fever, except for known previous PPH and time to placental expulsion. An unexpectedly high rate of elevated body temperature of > or =40.0 degrees C was documented in Ecuador following sublingually administered misoprostol. It is unclear why temperatures > or =40.0 degrees C occurred with a greater frequency in Ecuador than in other study populations using similar treatment regimens for PPH. Pharmacogenetic studies may shed further light on variations in individuals' responses to misoprostol.

  3. High fever following postpartum administration of sublingual misoprostol

    PubMed Central

    Durocher, J; Bynum, J; León, W; Barrera, G; Winikoff, B

    2010-01-01

    Objective To explore what triggers an elevated body temperature of ≥40.0°C in some women given misoprostol, a prostaglandin E1 analogue, for postpartum haemorrhage (PPH). Design Post hoc analysis. Setting One tertiary-level hospital in Quito, Ecuador. Population A cohort of 58 women with a fever of above 40°C following treatment with sublingual misoprostol (800 micrograms) for PPH. Methods Side effects were documented for 163 Ecuadorian women given sublingual misoprostol to treat their PPH. Women’s body temperatures were measured, and if they had a fever of ≥40.0°C, measurements were taken hourly until the fever subsided. Temperature trends were analysed, and the possible physiological mechanisms by which postpartum misoprostol produces a high fever were explored. Main outcome measures The onset, duration, peak temperatures, and treatments administered for cases with a high fever. Results Fifty-eight of 163 women (35.6%) treated with misoprostol experienced a fever of ≥40.0°C. High fevers followed a predictable pattern, often preceded by moderate/severe shivering within 20 minutes of treatment. Body temperatures peaked 1–2 hours post-treatment, and gradually declined over 3 hours. Fevers were transient and did not lead to any hospitalisation. Baseline characteristics were comparable among women who did and did not develop a high fever, except for known previous PPH and time to placental expulsion. Conclusions An unexpectedly high rate of elevated body temperature of ≥40.0°C was documented in Ecuador following sublingually administered misoprostol. It is unclear why temperatures ≥40.0°C occurred with a greater frequency in Ecuador than in other study populations using similar treatment regimens for PPH. Pharmacogenetic studies may shed further light on variations in individuals’ responses to misoprostol. PMID:20406228

  4. Square lattice honeycomb reactor for space power and propulsion

    NASA Astrophysics Data System (ADS)

    Gouw, Reza; Anghaie, Samim

    2000-01-01

    The most recent nuclear design study at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) is the Moderated Square-Lattice Honeycomb (M-SLHC) reactor design utilizing the solid solution of ternary carbide fuels. The reactor is fueled with solid solution of 93% enriched (U,Zr,Nb)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. The M-SLHC design is based on a cylindrical core that has critical radius and length of 37 cm and 50 cm, respectively. This design utilized zirconium hydrate to act as moderator. The fuel sub-assemblies are designed as cylindrical tubes with 12 cm in diameter and 10 cm in length. Five fuel subassemblies are stacked up axially to form one complete fuel assembly. These fuel assemblies are then arranged in the circular arrangement to form two fuel regions. The first fuel region consists of six fuel assemblies, and 18 fuel assemblies for the second fuel region. A 10-cm radial beryllium reflector in addition to 10-cm top axial beryllium reflector is used to reduce neutron leakage from the system. To perform nuclear design analysis of the M-SLHC design, a series of neutron transport and diffusion codes are used. To optimize the system design, five axial regions are specified. In each axial region, temperature and fuel density are varied. The axial and radial power distributions for the system are calculated, as well as the axial and radial flux distributions. Temperature coefficients of the system are also calculated. A water submersion accident scenario is also analyzed for these systems. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel, which provides a relatively high thrust to weight ratio. .

  5. Tribological properties of PM212: A high-temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1989-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  6. Tribological properties of PM212 - A high temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1990-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  7. Predicting bacteremia based on nurse-assessed food consumption at the time of blood culture.

    PubMed

    Komatsu, Takayuki; Onda, Toshihito; Murayama, Go; Yamanouchi, Masashi; Inukai, Minori; Sakai, Ai; Kikuta, Masumi; Branch, Joel; Aoki, Makoto; Tierney, Lawrence M; Inoue, Kenji

    2012-01-01

    Bacteremia and its complications are important causes of morbidity and mortality in hospitalized patients. However, the yield of blood cultures is relatively low, with many false-positive results from bacterial contamination. We investigated the relationship between patient food consumption and the presence of bacteremia. This was an observational analysis of a cohort of 1179 patients who underwent blood culture analysis between January 2005 and December 2009. Patients with anorexia-inducing conditions, such as gastrointestinal illness and malignant disease treated with chemotherapy, were excluded. Food consumption was rated by nurses as the percentage of food consumed during the meal preceding the blood culture. Groupings were as follows: low consumption (<50%), moderate (>50% to <80%), and high (>80%). Low consumption was observed in 39.8% of patients, moderate in 17.8%, and high in 41.6%. The average body temperature was 38.1 ± 1.1°C. Bacteremia was present in 18.5%, 3.9%, and 1.4% of patients in the low, moderate, and high food consumption groups, respectively. The negative predictive value was 98.3%, suggesting that bacteremia is very unlikely in the setting of good food intake. Bacteremia is an unlikely occurrence in hospitalized patients who maintain adequate food consumption at the time of blood culture. Copyright © 2012 Society of Hospital Medicine.

  8. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  9. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    NASA Astrophysics Data System (ADS)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  10. Spatial Patterns of Variability in Antarctic Surface Temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation

    NASA Technical Reports Server (NTRS)

    Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.

  11. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  12. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.

  13. Adhesive and Composite Properties of a New Phenylethynyl Terminated Imide

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Connell, J. W.; Hergenrother, P. M.

    2002-01-01

    A relatively new phenylethynyl terminated imide oligomer (PETI) from the reaction of 2,3,',4'- biphenyltetracarboxylic dianhydride, 4,4'-oxydianiline and endcapped with 4- phenylethynylphthalic anhydride at a calculated number average molecular weight of 5000 g/mole was evaluated as an adhesive and composite matrix. The asymmetric dianhydride imparts a low melt viscosity to the oligomer and a high glass transition temperature to the cured resin. Preliminary adhesive work with titanium (6Al-4V) adherend gave good room temperature (RT) tensile shear strengths and excellent retention of RT strength at 260 C. Preliminary composite work using unsized IM7 carbon fiber provided moderate to high mechanical properties. The chemistry, mechanical, and physical properties of the new PETI in neat resin, adhesive and composite form are presented.

  14. Clapeyron slope reversal in the melting curve of AuGa2 at 5.5 GPa.

    PubMed

    Geballe, Z M; Raju, S V; Godwal, B K; Jeanloz, R

    2013-10-16

    We use x-ray diffraction in a resistively heated diamond anvil cell to extend the melting curve of AuGa2 beyond its minimum at 5.5 GPa and 720 K, and to constrain the high-temperature phase boundaries between cubic (fluorite structure), orthorhombic (cottunite structure) and monoclinic phases. We document a large change in Clapeyron slope that coincides with the transitions from cubic to lower symmetry phases, showing that a structural transition is the direct cause of the change in slope. In addition, moderate (~30 K) to large (90 K) hysteresis is detected between melting and freezing, from which we infer that at high pressures, AuGa2 crystals can remain in a metastable state at more than 5% above the thermodynamic melting temperature.

  15. Influence of Off-Centre Operation on the Performance of HTS Maglev

    NASA Astrophysics Data System (ADS)

    Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.

    2014-03-01

    Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

  16. Water source protection funds as a tool to address climate adaptation and resiliency in southwestern forests

    Treesearch

    Laura Falk McCarthy

    2014-01-01

    Wildfire intensity in the Southwestern United States has increased over the last decade corresponding with dense fuels and higher temperatures. For example, in New Mexico on the 2011 Las Conchas fire, intense fire and wind-driven fire behavior resulted in large areas of moderate and high severity burn (42 percent of burned area) with roughly 65,000 acres (26,300 ha)...

  17. The visual ecology of a deep-sea fish, the escolar Lepidocybium flavobrunneum (Smith, 1843)†

    PubMed Central

    Landgren, Eva; Fritsches, Kerstin; Brill, Richard; Warrant, Eric

    2014-01-01

    Escolar (Lepidocybium flavobrunneum, family Gempylidae) are large and darkly coloured deep-sea predatory fish found in the cold depths (more than 200 m) during the day and in warm surface waters at night. They have large eyes and an overall low density of retinal ganglion cells that endow them with a very high optical sensitivity. Escolar have banked retinae comprising six to eight layers of rods to increase the optical path length for maximal absorption of the incoming light. Their retinae possess two main areae of higher ganglion cell density, one in the ventral retina viewing the dorsal world above (with a moderate acuity of 4.6 cycles deg−1), and the second in the temporal retina viewing the frontal world ahead. Electrophysiological recordings of the flicker fusion frequency (FFF) in isolated retinas indicate that escolar have slow vision, with maximal FFF at the highest light levels and temperatures (around 9 Hz at 23°C) which fall to 1–2 Hz in dim light or cooler temperatures. Our results suggest that escolar are slowly moving sit-and-wait predators. In dim, warm surface waters at night, their slow vision, moderate dorsal resolution and highly sensitive eyes may allow them to surprise prey from below that are silhouetted in the downwelling light. PMID:24395966

  18. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valderrama, B.; Henderson, H.B.; Gan, J.

    2015-04-01

    Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO 2). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporationmore » regimes are present in UO 2. Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO 2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. Themore » NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.« less

  20. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2 -Si3N4.

    PubMed

    Hernández-Pinilla, D; Rodríguez-Palomo, A; Álvarez-Fraga, L; Céspedes, E; Prieto, J E; Muñoz-Martín, A; Prieto, C

    2016-06-01

    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2-Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating-cooling cycles are shown here.

  1. Estimating the stability of electrical conductivity of filled polymers under the influence of negative temperatures

    NASA Astrophysics Data System (ADS)

    Minakova, N. N.; Ushakov, V. Ya.

    2017-12-01

    One of the key problems in modern materials technology is synthesis of materials for electrotechnical devices capable of operating under severe conditions. Electrical and power engineering, in particular, demands for electrically conductive composite materials operating at high and low temperatures, various mechanical loads, electric fields, etc. Chaotic arrangement of electrically conductive component in the matrix and its structural and geometrical inhomogeneity can increase the local electric and thermal energy flux densities up to critical values even when their average values remain moderate. Elastomers filled with technical carbon being a promising component for electrotechnical devices was chosen as an object of study.

  2. A boundary element method for steady incompressible thermoviscous flow

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    A boundary element formulation is presented for moderate Reynolds number, steady, incompressible, thermoviscous flows. The governing integral equations are written exclusively in terms of velocities and temperatures, thus eliminating the need for the computation of any gradients. Furthermore, with the introduction of reference velocities and temperatures, volume modeling can often be confined to only a small portion of the problem domain, typically near obstacles or walls. The numerical implementation includes higher order elements, adaptive integration and multiregion capability. Both the integral formulation and implementation are discussed in detail. Several examples illustrate the high level of accuracy that is obtainable with the current method.

  3. Directly susceptible, noncarbon metal ceramic composite crucible

    DOEpatents

    Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald

    1999-01-01

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  4. Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral symbionts.

    PubMed

    Hoogenboom, Mia O; Campbell, Douglas A; Beraud, Eric; Dezeeuw, Katrina; Ferrier-Pagès, Christine

    2012-01-01

    Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to "bleach," lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate. This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress. Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host.

  5. Moderate- and high-intensity exhaustive exercise in the heat induce a similar increase in monocyte Hsp72.

    PubMed

    Périard, J D; Ruell, P A; Thompson, M W; Caillaud, C

    2015-11-01

    This study examined the relationship between exhaustive exercise in the heat at moderate and high intensities on the intracellular heat shock protein 72 (iHsp72) response. Twelve male subjects cycled to exhaustion at 60 and 75% of maximal oxygen uptake in hot conditions (40 °C, 50% RH). iHsp72 concentration was measured in monocytes before, at exhaustion and 24 h after exercise. Rectal temperature, heart rate and oxygen uptake were recorded during exercise. Volitional exhaustion occurred at 58.9 ± 12.1 and 27.3 ± 9.5 min (P < 0.001) and a rectal temperature of 39.8 ± 0.4 and 39.2 ± 0.6 °C (P = 0.002), respectively, for 60 and 75 %. The area under the curve above a rectal temperature of 38.5 °C was greater at 60 % (17.5 ± 6.6 °C min) than 75 % (3.4 ± 4.8 °C min; P < 0.001), whereas the rate of increase in rectal temperature was greater at 75 % (5.1 ± 1.7 vs. 2.2 ± 1.4 °C h(-1); P < 0.001). iHsp72 concentration increased similarly at exhaustion relative to pre-exercise (P = 0.044) and then increased further at 24 h (P < 0.001). Multiple regression analysis revealed no predictor variables associated with iHsp72 expression; however, a correlation was observed between exercise intensities for the increase in iHsp expression at exhaustion and 24 h (P < 0.05). These results suggest that iHsp72 expression increased in relation to the level of hyperthermia attained and sustained at 60 % and the higher metabolic rate and greater rate of increase in core temperature at 75 %, with the further increase in iHsp72 concentration 24 h after exercise reinforcing its role as a chaperone and cytoprotective agent.

  6. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGES

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; ...

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(k BT e + E F ) ~ 0.3] and moderately-degenerate [k BT e/E F ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is themore » first test of these theories in WDM plasma.« less

  7. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    USGS Publications Warehouse

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short-term – exert minimal control over Rs.

  8. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    PubMed

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  9. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  10. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  11. Li{sub 4}FeH{sub 6}: Iron-containing complex hydride with high gravimetric hydrogen density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Hiroyuki, E-mail: cyto@spring8.or.jp; Takagi, Shigeyuki; Matsuo, Motoaki

    2014-07-01

    Li{sub 4}FeH{sub 6}, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li{sub 4}FeH{sub 6} is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li{sub 4}FeH{sub 6} at moderate pressures. Li{sub 4}FeH{sub 6} can be recovered at ambient conditions wheremore » Li{sub 4}FeH{sub 6} is metastable.« less

  12. Thermally stable, low dielectric polyquinolines for aerospace and electronics applications

    NASA Technical Reports Server (NTRS)

    Hendricks, Neil H.; Marrocco, Matthew L.; Stoakley, Diane M.; St. Clair, Anne K.

    1990-01-01

    Four new high molecular weight, linear chain polyquinolines have been synthesized and fabricated into high quality free standing films. These polymers are characterized by moderate to high glass transition temperatures, excellent thermal and thermooxidative stability, extremely low dielectric constants and good planarizing characteristics. The polymers absorb very low quantities of moisture. As a consequence, the dielectric constant of one new polyquinoline has been shown to be quite insensitive to exposure to warm/wet conditions. Isothermal aging of one new derivative in air has been carried out at elevated temperatures (250 C to 345 C). The results demonstrate truly outstanding thermooxidative stability. Additional characterizations include molecular weight determinations, solubilities and film-forming characteristics, density measurements, and UV-Vis spectroscopy. The data acquired to date suggest that the polymers may find use as refractive films and coatings and as interlevel planarizers in microelectronics applications.

  13. Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development

    PubMed Central

    SATO, S.; KAMIYAMA, M.; IWATA, T.; MAKITA, N.; FURUKAWA, H.; IKEDA, H.

    2006-01-01

    • Background and Aims Global warming is gaining significance as a threat to natural and managed ecosystems since temperature is one of the major environmental factors affecting plant productivity. Hence, the effects of moderate temperature increase on the growth and development of the tomato plant (Lycopersicon esculentum) were investigated. • Methods Plants were grown at 32/26 °C as a moderately elevated temperature stress (METS) treatment or at 28/22 °C (day/night temperatures) as a control with natural light conditions. Vegetative growth and reproductive development as well as sugar content and metabolism, proline content and translocation in the androecium were investigated. • Key Results METS did not cause a significant change in biomass, the number of flowers, or the number of pollen grains produced, but there was a significant decrease in the number of fruit set, pollen viability and the number of pollen grains released. Glucose and fructose contents in the androecium (i.e. all stamens from one flower) were generally higher in the control than METS, but sucrose was higher in METS. Coincidently, the mRNA transcript abundance of acid invertase in the androecium was decreased by METS. Proline contents in the androecium were almost the same in the control and METS, while the mRNA transcript level of proline transporter 1, which expresses specifically at the surface of microspores, was significantly decreased by METS. • Conclusions The research indicated that failure of tomato fruit set under a moderately increased temperature above optimal is due to the disruption of sugar metabolism and proline translocation during the narrow window of male reproductive development. PMID:16497700

  14. 13C 12C exchange between calcite and graphite: A possible thermometer in Grenville marbles

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1981-01-01

    The fractionation of 13C between calcite and graphite, ??(Cc-Gr). is consistently small (2.6-4.8 permil) in 34 assemblages from upper amphibolite- and granulite-facies marbles of the Grenville Province. In 25 samples from the Adirondack Mountains, New York, it decreases regularly with increasing metamorphic temperature. The fractionations are independent of absolute ??13C values of calcite (-2.9 to +5.0). For T = 600-800??C, the Adirondack data are described by ??(Cc-Gr) = -0.00748T (??C) + 8.68. This good correlation between ?? and T suggests that carbon isotope equilibrium was attained in these high-grade marbles and that the theoretical calculations of this fractionation by Bottinga are approximately 2 permil too large in this temperature range. Because of the relatively high temperature sensitivity suggested by these results and by Bottinga's calculations, and the pressure independence of isotope fractionation, ??(Cc-Gr) may provide a very good thermometer for high-grade marbles. Comparison of this field calibration for ??(Cc-Gr) vs temperature with results from other terranes supports the utility of ??(Cc-Gr) for geothermometry and suggests that graphite is much more sluggish to exchange than calcite, that exchange between calcite and graphite occurs at temperatures as low as 300??C, and that equilibrium may normally be attained only when peak metamorphic temperatures are greater than 500-600??C. Because 13C exchange is an unavoidable metamorphic process at temperatures above 300??C, high values of ??13C(Gr) in moderate- to high-grade carbonate-bearing rocks do not provide a sufficient criterion to infer an abiogenic origin for the graphite. ?? 1981.

  15. Phase competition and anomalous thermal evolution in high-temperature superconductors

    DOE PAGES

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; ...

    2017-07-12

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T * for the strange normal state well above the superconducting transition temperature. However, recently the T * within the superconducting dome was reported to unexpectedly exhibit back-bending likely in themore » cuprate Bi 2 Sr 2 CaCu 2 O 8 + δ . We show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t - t ' - t ' ' - J - V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. Particularly, the T * back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. These results imply that the revised phase diagram is likely to take place in high-temperature superconductors.« less

  16. Effect of temperature, wetness duration, and planting density on olive anthracnose caused by Colletotrichum spp.

    PubMed

    Moral, Juan; Jurado-Bello, José; Sánchez, M Isabel; de Oliveira, Rodrígues; Trapero, Antonio

    2012-10-01

    The influence of temperature, wetness duration, and planting density on infection of olive fruit by Colletotrichum acutatum and C. simmondsii was examined in laboratory and field experiments. Detached olive fruit of 'Arbequina', 'Hojiblanca', and 'Picual' were inoculated with conidia of several isolates of the pathogen and kept at constant temperatures of 5 to 35°C in humid chambers. Similarly, potted plants and stem cuttings with fruit were inoculated and subjected to wetness periods of 0 to 48 h. Infection occurred at 10 to 25°C, and disease severity was greater and the mean latent period was shorter at 17 to 20°C. Overall, C. acutatum was more virulent than C. simmondsii at temperatures <25°C. When temperature was not a limiting factor, disease severity increased with the wetness period from 0 to 48 h. Disease severity was modeled as a function of temperature and wetness duration; two critical fruit incidence thresholds were defined as 5 and 20%, with wetness durations of 1.0 and 12.2 h at the optimum temperature. In the field, anthracnose epidemics progressed faster in a super-high-density planting (1,904 olive trees/ha) than in the high-density plantings (204 to 816 olive trees/ha) and caused severe epidemics in the super-high-density planting even with the moderately resistant Arbequina. Data in this study will be useful for the development of a forecasting system for olive anthracnose epidemics.

  17. Environmental tests of metallization systems for terrestrial photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  18. Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature

    NASA Technical Reports Server (NTRS)

    Yu, Ping; Nalette, Tim; Kayatin, Matthew

    2016-01-01

    The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.

  19. [Effect of investment composition ratio for pure titanium crown and bridge on some mechanical properties of mould].

    PubMed

    Yang, Se-fei; Wang, You-xu; Guo, Tian-wen; Liu, Hong-chen

    2011-11-01

    To determine the optimal composition of a self-developing investment material by measuring physical and mechanical properties of mould. L(9) (3(4)) orthogonal design was adopted. One hundred and fifty specimens with the size of 80 mm × 20 mm × 20 mm were prepared to measure the atmospheric temperature bending strength, high temperature bending strength and residual bending strength. Nine specimens with the size of 5 mm diameter 25 mm heigh were prepared to survey the thermal expansion curve from ambient temperature to 1150°C. Strengths were greatly affected by fine powder proportion in refractory and water/powder ratio. When the content of fine powder was 35% and water/powder ratio was 1:7.5, adequate atmospheric temperature strength and high temperature strength could be achieved. Moreover, the residual strength was moderate. The thermal extension curves of specimens in experiment group were almost similar. And the average linear expansion coefficient was (4 ∼ 5) × 10(-6)/°C. The three kinds of bending strength of self-developing investment material are compared with commercialized investment material for titanium casting when water/powder ratio and the content of fine powder are carefully controlled.

  20. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  1. Nitrogen removal via nitrite from seawater contained sewage.

    PubMed

    Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing

    2004-01-01

    Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).

  2. Merging-compression formation of high temperature tokamak plasma

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.; Sykes, A.

    2017-07-01

    Merging-compression is a solenoid-free plasma formation method used in spherical tokamaks (STs). Two plasma rings are formed and merged via magnetic reconnection into one plasma ring that then is radially compressed to form the ST configuration. Plasma currents of several hundred kA and plasma temperatures in the keV-range have been produced using this method, however until recently there was no full understanding of the merging-compression formation physics. In this paper we explain in detail, for the first time, all stages of the merging-compression plasma formation. This method will be used to create ST plasmas in the compact (R ~ 0.4-0.6 m) high field, high current (3 T/2 MA) ST40 tokamak. Moderate extrapolation from the available experimental data suggests the possibility of achieving plasma current ~2 MA, and 10 keV range temperatures at densities ~1-5  ×  1020 m-3, bringing ST40 plasmas into a burning plasma (alpha particle heating) relevant conditions directly from the plasma formation. Issues connected with this approach for ST40 and future ST reactors are discussed

  3. The Mechanical Properties of Energetically Deposited Non-Crystalline Carbon Thin Films

    DOE PAGES

    Kracica, M.; Kocer, C.; Lau, D.; ...

    2015-11-05

    The mechanical behaviour of carbon films prepared with a variety of densities and microstructures was investigated using nanoindentation. Deposition energies between 25 and 600 eV and temperatures in the range 25-600 °C were used. Films prepared at low temperatures and moderate energy were amorphous with a high density. Finite element methods were used to model the stress fields, reproduce the indentation behaviour and evaluate elastic properties. Young s moduli up to 670 GPa and a low Poisson s ratio of ~ 0.17 were found, comparable to polycrystalline cubic boron nitride, one of the hardest materials known. Films with the samemore » density did not always show the same behaviour, emphasising the role of microstructure in determining mechanical response. Extended graphite- like regions within the films grown at high energy and high temperature observed in transmission electron microscopy caused plastic deformation and failure to recover after a complete indentation cycle. At low deposition energies, the graphite-like regions were smaller in size causing plastic deformation but with complete recovery after indentation.« less

  4. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less

  5. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  6. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  7. Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Hartmann, F.; Pfenning, A.; Rebello Sousa Dias, M.; Langer, F.; Höfling, S.; Kamp, M.; Worschech, L.; Castelano, L. K.; Marques, G. E.; Lopez-Richard, V.

    2017-10-01

    We study the electroluminescence (EL) emission of purely n-doped resonant tunneling diodes in a wide temperature range. The paper demonstrates that the EL originates from impact ionization and radiative recombination in the extended collector region of the tunneling device. Bistable current-voltage response and EL are detected and their respective high and low states are tuned under varying temperature. The bistability of the EL intensity can be switched from direct to inverted with respect to the tunneling current and the optical on/off ratio can be enhanced with increasing temperature. One order of magnitude amplification of the optical on/off ratio can be attained compared to the electrical one. Our observation can be explained by an interplay of moderate peak-to-valley current ratios, large resonance voltages, and electron energy loss mechanisms, and thus, could be applied as an alternative route towards optoelectronic applications of tunneling devices.

  8. Differential response of cell-cycle and cell-expansion regulators to heat stress in apple (Malus domestica) fruitlets.

    PubMed

    Flaishman, Moshe A; Peles, Yuval; Dahan, Yardena; Milo-Cochavi, Shira; Frieman, Aviad; Naor, Amos

    2015-04-01

    Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. El Niño and its impact on fire weather conditions in Alaska

    USGS Publications Warehouse

    Hess, Jason C.; Scott, Carven A.; Hufford, Gary L.; Fleming, Michael D.

    2001-01-01

    Examining the relationship of El Niño to weather patterns in Alaska shows wide climate variances that depend on the teleconnection between the tropics and the northern latitudes. However, the weather patterns exhibited in Alaska during and just after moderate to strong El Niño episodes are generally consistent: above normal temperature and precipitation along the Alaskan coast, and above normal temperature and below normal precipitation in the interior, especially through the winter. The warm, dry conditions in the Alaskan interior increase summer wildfire potential. Statistics on the area burned since 1940 show that 15 out of 17 of the biggest fire years occurred during a moderate to strong El Niño episode. These 15 years account for nearly 63% of the total area burned over the last 58 years. Evidence points to increased dry thunderstorms and associated lightning activity during an El Niño episode; the percentage of total area burned by lightning caused fires during five episodes increased from a normal of less than 40% to a high of about 96%.

  10. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  11. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China.

    PubMed

    Zhang, Xianxian; Yin, Shan; Li, Yinsheng; Zhuang, Honglei; Li, Changsheng; Liu, Chunjiang

    2014-02-15

    Rice is one of the major crops of southern China and Southeast Asia. Rice paddies are one of the largest agricultural greenhouse gas (GHG) sources in this region because of the application of large quantities of nitrogen (N) fertilizers to the plants. In particular, the production of methane (CH4) is a concern. Investigating a reasonable amount of fertilizers to apply to plants is essential to maintaining high yields while reducing GHG emissions. In this study, three levels of fertilizer application [high (300 kg N/ha), moderate (210 kg N/ha), and low (150 kg N/ha)] were designed to examine the effects of variation in N fertilizer application rate on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the paddy fields in Chongming Island, Shanghai, China. The high level (300 kg N/ha) represented the typical practice adopted by the local farmers in the area. Maximum amounts of CH4 and N2O fluxes were observed upon high-level fertilizer application in the plots. Cumulative N2O emissions of 23.09, 40.10, and 71.08 mg N2O/m(2) were observed over the growing season in 2011 under the low-, moderate-, and high-level applications plots, respectively. The field data also indicated that soil temperatures at 5 and 10 cm soil depths significantly affected soil respiration; the relationship between Rs and soil temperature in this study could be described by an exponential model. Our study showed that reducing the high rate of fertilizer application is a feasible way of attenuating the global-warming potential while maintaining the optimum yield for the studied paddy fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Copepod colonization of organic and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Plum, Christoph; Pradillon, Florence; Fujiwara, Yoshihiro; Sarrazin, Jozée

    2017-03-01

    The few existing studies on deep-sea hydrothermal vent copepods indicate low connectivity with surrounding environments and reveal high endemism among vents. However, the finding of non-endemic copepod species in association with engineer species at different reduced ecosystems poses questions about the dispersal of copepods and the colonization of hydrothermal vents as well as their ecological connectivity. The objective of this study is to understand copepod colonization patterns at a hydrothermal vent site in response to environmental factors such as temperature and fluid flow as well as the presence of different types of substrata. To address this objective, an in situ experiment was deployed using both organic (woods, pig bones) and inorganic (slates) substrata along a gradient of hydrothermal activity at the Lucky Strike vent field (Eiffel Tower, Mid-Atlantic Ridge). The substrata were deployed in 2011 during the MoMARSAT cruise and were recovered after two years in 2013. Overall, copepod density showed significant differences between substrata types, but was similar among different hydrothermal activity regimes. Highest densities were observed on woods at sites with moderate or low fluid input, whereas bones were the most densely colonized substrata at the 2 sites with higher hydrothermal influence. Although differences in copepod diversity were not significant, the observed trends revealed overall increasing diversity with decreasing temperature and fluid input. Slates showed highest diversity compared to the organic substrata. Temperature and fluid input had a significant influence on copepod community composition, resulting in higher similarity among stations with relatively high and low fluid inputs, respectively. While vent-specialists such as dirivultids and the tegastid Smacigastes micheli dominated substrata at high vent activity, the experiment demonstrated increasing abundance and dominance of non-vent taxa with decreasing temperature and fluid input. Effects of the substratum type on community composition were not significant, although at sites with moderate or low fluid input, woods exhibited distinctive communities with high densities and relative abundance of the taxon Nitocrella sp. In conclusion, copepod colonization and species composition were mainly influenced by hydrothermal fluid input and temperature rather than the type of substratum. The outcome of this study provides fundamental knowledge to better understand copepod colonization at hydrothermal vents.

  13. A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment.

    PubMed

    Khalili Ghadikolaei, Kamran; Gharechahi, Javad; Haghbeen, Kamahldin; Akbari Noghabi, Kambiz; Hosseini Salekdeh, Ghasem; Shahbani Zahiri, Hossein

    2018-03-01

    Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a V max and K m of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (E a ), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol -1 , 16.12 kJ mol -1 , and 56.09 kJ mol -1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.

  14. Barrier island community change: What controls it?

    NASA Astrophysics Data System (ADS)

    Dows, B.; Young, D.; Zinnert, J.

    2014-12-01

    Conversion from grassland to woody dominated communities has been observed globally. In recent decades, this pattern has been observed in coastal communities along the mid-Atlantic U.S. In coastal environments, a suite of biotic and abiotic factors interact as filters to determine plant community structure and distribution. Microclimatic conditions: soil and air temperature, soil moisture and salinity, and light attenuation under grass cover were measured across a grassland-woody encroachment gradient on a Virginia barrier island; to identify the primary factors that mediate this change. Woody establishment was associated with moderately dense (2200 shoots/m2) grass cover, but reduced at high (> 6200 shoots/ m2) and low (< 1250 shoots/ m2) densities. Moderately dense grass cover reduced light attenuation (82.50 % reduction) to sufficiently reduce soil temperature thereby limiting soil moisture evaporation. However, high grass density reduced light attenuation (98.7 % reduction) enough to inhibit establishment of woody species; whereas low grass density attenuated much less light (48.7 % reduction) which allowed for greater soil moisture evaporation. Soil salinity was dynamic as rainfall, tidal inundation, and sea spray produce spatiotemporal variation throughout the barrier island landscape. The importance of light and temperature were compounded as they also indirectly affect soil salinity via their affects on soil moisture. Determining how these biotic and abiotic factors relate to sea level rise and climate change will improve understanding coastal community response as global changes proceed. Understanding how community shifts affect ecosystem function and their potential to affect adjacent systems will also improve predictive ability of coastal ecosystem responses.

  15. High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1- x Fe x O3 (0 ≤ x ≤ 1)

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, H.; Saito, M.; Okamoto, Y.

    2017-05-01

    Polycrystalline samples of Pr0.9Sr0.1Mn1- x Fe x O3 (0 ≤ x ≤ 1) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5 K to 350 K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850 K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 ( x = 0) sample exhibited ferromagnetic-like ground state below T C = 145 K (Curie temperature), the ferromagnetic transition temperature T C decreased with increasing x. The Seebeck coefficient of the samples with 0 ≤ x ≤ 0.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x = 0 changed from hole-like to electron-like behavior above 800 K. On the other hand, the samples with x ≥ 0.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x = 1 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x = 1 showed power factor of 20 μW m-1 K-2 at 850 K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide.

  16. Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: A model-data comparison

    NASA Astrophysics Data System (ADS)

    Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław; Markwick, Paul J.

    2017-09-01

    We investigate the impact of different CO2 levels and different subarctic gateway configurations on the surface temperatures during the latest Cretaceous using the Earth System Model COSMOS. The simulated temperatures are compared with the surface temperature reconstructions based on a recent compilation of the latest Cretaceous proxies. In our numerical experiments, the CO2 level ranges from 1 to 6 times the preindustrial (PI) CO2 level of 280 ppm. On a global scale, the most reasonable match between modeling and proxy data is obtained for the experiments with 3 to 5 × PI CO2 concentrations. However, the simulated low- (high-) latitude temperatures are too high (low) as compared to the proxy data. The moderate CO2 levels scenarios might be more realistic, if we take into account proxy data and the dead zone effect criterion. Furthermore, we test if the model-data discrepancies can be caused by too simplistic proxy-data interpretations. This is distinctly seen at high latitudes, where most proxies are biased toward summer temperatures. Additional sensitivity experiments with different ocean gateway configurations and constant CO2 level indicate only minor surface temperatures changes (< 1°C) on a global scale, with higher values (up to 8°C) on a regional scale. These findings imply that modeled and reconstructed temperature gradients are to a large degree only qualitatively comparable, providing challenges for the interpretation of proxy data and/or model sensitivity. With respect to the latter, our results suggest that an assessment of greenhouse worlds is best constrained by temperatures in the midlatitudes.

  17. The role of temperature in determining species' vulnerability to ocean acidification: a case study using Mytilus galloprovincialis.

    PubMed

    Kroeker, Kristy J; Gaylord, Brian; Hill, Tessa M; Hosfelt, Jessica D; Miller, Seth H; Sanford, Eric

    2014-01-01

    Ocean acidification (OA) is occurring across a backdrop of concurrent environmental changes that may in turn influence species' responses to OA. Temperature affects many fundamental biological processes and governs key reactions in the seawater carbonate system. It therefore has the potential to offset or exacerbate the effects of OA. While initial studies have examined the combined impacts of warming and OA for a narrow range of climate change scenarios, our mechanistic understanding of the interactive effects of temperature and OA remains limited. Here, we use the blue mussel, Mytilus galloprovincialis, as a model species to test how OA affects the growth of a calcifying invertebrate across a wide range of temperatures encompassing their thermal optimum. Mussels were exposed in the laboratory to a factorial combination of low and high pCO2 (400 and 1200 µatm CO2) and temperatures (12, 14, 16, 18, 20, and 24°C) for one month. Results indicate that the effects of OA on shell growth are highly dependent on temperature. Although high CO2 significantly reduced mussel growth at 14°C, this effect gradually lessened with successive warming to 20°C, illustrating how moderate warming can mediate the effects of OA through temperature's effects on both physiology and seawater geochemistry. Furthermore, the mussels grew thicker shells in warmer conditions independent of CO2 treatment. Together, these results highlight the importance of considering the physiological and geochemical interactions between temperature and carbonate chemistry when interpreting species' vulnerability to OA.

  18. Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hodgkinson, M.; Murton, B. J.; Roberts, S.

    2013-12-01

    Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica rich fluid (e.g. the primary VDVF fluids) with only 2% of seawater. At lower pH (e.g. typical ';black smoker' fluids), the ratio jumps to over 90% while at high pH (e.g. ';Lost City' fluids) brucite and carbonate dominate. Estimates using recently measured vent temperatures and fluid fluxes indicate a heat flux of ~800 MW for the active VDVF. Assuming the primary vent fluid has remained largely unchanged, the VDVF could have grown in under 1000 years and Mystic Mount in ~2000 years. Both the hydrothermal mounds and faults in the surrounding gabbro share a NNW-ESE orientation that is consistent with a brittle structural control imposed by the flexural curvature of the MDOCC in response to the uplift of the lower oceanic crust along a low-angle detachment fault. We propose that these flexural faults provide pathways for fluids to ingress deep into the MDOCC where they react with both mafic rocks (producing high-temperature, low pH, sulphide and copper-bearing fluids), peridotites and carbonates (increasing the pH) resulting in a moderate pH, silica-rich fluid that precipitates talc on mixing with seawater. The presence of further, inactive, talc mounds within 1 km of the VDVF indicates hydrothermal activity on OCCs has been widespread and represents a significant but hitherto overlooked mechanism of crustal heat loss and chemical interaction with the ocean at slow-spreading ridges.

  19. The temperature response of CO2 assimilation, photochemical activities and rubisco activation in camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.

    USDA-ARS?s Scientific Manuscript database

    The temperature optimum of photosynthesis coincides with the average daytime temperature in a species’ native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photos...

  20. Photodissociation Dye Laser Studies and High Pressure Discharge Conditioning Studies

    DTIC Science & Technology

    1976-11-01

    overnight to complete the formation of the Grignard reagent . The mixture was then cooled to room temperature and the solution was decanted ’.rom the...the Grignard reagent . A solution of the commercially available bromodiphenyl- methane (12.35 g) in the minimum quantity of dry benzene was then added...fairly rapidly into the reformed Hrignard reagent . A moderate exotherm was noted during this addition. The mixture was refluxed for two hours

  1. COATING COLUMBIUM FOR HIGH TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoz, G.

    1960-04-01

    An investigation was conducted to find a coating for niobium to make it oxidation resistaat. The results obtained at the U. S. Naval Research Laboratory using zinc as a coating are reported. Tests conducted on molten zinc dipped niobium with an intentional flaw after coating, revealed a moderate hardness increase near the flaw. No indication of oxygen absorption or other embrittlement after 5 hours at 2000 deg F was observed in the coated metal. (B.O.G.)

  2. Microstructure and Mechanical Properties of Bulk Nanostructured Cu-Ta Alloys Consolidated by Equal Channel Angular Extrusion

    DTIC Science & Technology

    2014-07-01

    5,9], W [16], Zr [17] and Nb [18]. These systems have shown moderate to extraordinarily high microstructural stability at elevated temperatures...cans were then either serial sectioned for shear punch testing or cut into compression samples using wire electric discharge machining. Through SEM...to resist deformation, but do not necessarily alter the dislocation mechanism operating during plastic deformation. There are a number of challenges

  3. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hencemore » the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.« less

  4. Elevation of cardiac troponin I during non-exertional heat-related illnesses in the context of a heatwave

    PubMed Central

    2010-01-01

    Introduction The prognostic value of cardiac troponin I (cTnI) in patients having a heat-related illness during a heat wave has been poorly documented. Methods In a post hoc analysis, we evaluated 514 patients admitted to emergency departments during the August 2003 heat wave in Paris, having a core temperature >38.5°C and who had analysis of cTnI levels. cTnI was considered as normal, moderately elevated (abnormality threshold to 1.5 ng.mL-1), or severely elevated (>1.5 ng.mL-1). Patients were classified according to our previously described risk score (high, intermediate, and low-risk of death). Results Mean age was 84 ± 12 years, mean body temperature 40.3 ± 1.2°C. cTnI was moderately elevated in 165 (32%) and severely elevated in 97 (19%) patients. One-year survival was significantly decreased in patients with moderate or severe increase in cTnI (24 and 46% vs 58%, all P < 0.05). Using logistic regression, four independent variables were associated with an elevated cTnI: previous coronary artery disease, Glasgow coma scale <12, serum creatinine >120 μmol.L-1, and heart rate >110 bpm. Using Cox regression, only severely elevated cTnI was an independent prognostic factor (hazard ratio 1.93, 95% confidence interval 1.35 to 2.77) when risk score was taken into account. One-year survival was decreased in patients with elevated cTnI only in high risk patients (17 vs 31%, P = 0.04). Conclusions cTnI is frequently elevated in patients with non-exertional heat-related illnesses during a heat wave and is an independent risk factor only in high risk patients where severe increase (>1.5 ng.mL-1) indicates severe myocardial damage. PMID:20507603

  5. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process.

    PubMed

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.

  6. Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities.

    PubMed

    Kreslavski, Vladimir; Tatarinzev, Nikolai; Shabnova, Nadezhda; Semenova, Galina; Kosobryukhov, Anatoli

    2008-10-09

    The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 degrees C for 20 min and to temperature 42 degrees C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 degrees C for 72h. The net photosynthetic rates (P(N)) and the fluorescence ratios F(v)/F(m) were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 degrees C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO(2) assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 degrees C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.

  7. Structure and properties of starches from Arracacha (Arracacia xanthorrhiza) roots.

    PubMed

    Castanha, Nanci; Villar, James; Matta Junior, Manoel Divino da; Anjos, Carlota Boralli Prudente Dos; Augusto, Pedro Esteves Duarte

    2018-06-05

    Arracacha (Arracacia xanthorrhiza Bancroft) is an underexplored Andean root with a high starch content. In this work, starches from two different varieties of Peruvian arracacha were evaluated and characterized in relation to their granule morphology, molecular structure and properties. The starches presented round or polygonal shapes, with a mean diameter of ~20 μm and B-type granules. They were rich in amylopectin molecules with long chain lengths (with the ability to complex iodine) and some with intermediate sizes (indicating a defective crystalline structure). The starches presented low gelatinization temperature, enthalpy of gelatinization and tendency to retrogradation and high peak apparent viscosity and swelling capacity, even at moderate temperatures (60 °C), characteristics of high interest for industrial purposes. Besides, the starches presented a smooth and elastic gel and a high paste clarity. Overall, the arracacha roots presented attractive properties and can be used as an alternative botanical source for starch extraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Is extreme climate or moderate climate more conducive to longevity in China?

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Rosenberg, Mark; Wang, Yingli

    2018-02-01

    Climate is closely related to human longevity. In China, there are many climate types. According to national population censuses from 1982 to 2000, most provinces with a high ratio of centenarians are located in western and northwestern China far from the sea; these areas are characterized by a dry, cold climate, very high altitude, very high daily temperature range, strong winds, and partial hypoxia. Meanwhile, provinces with a high ratio of nonagenarians from 1982 to 2000 are located in southern China near the sea. Previous studies have attributed the high ratio of centenarians in western and northwestern China to the extreme local climate. However, centenarians in these areas decreased greatly in 2010, whereas residents in southern China frequently reached 90 to 100 years old in 2010. This study aims to explain this strange phenomenon and find whether extreme climate in Tibetan plateau and northwestern China or moderate climate in southern China is more conducive to longevity. The study found that mortality rate in Tibetan plateau is much higher than southern China, then a population evolution experiment was proposed to compare longevity indicators between low mortality rate and high mortality rate and shows that longevity indicators will decrease in the near future and increase above their original levels after several decades when the mortality rate is decreased. Results of this study show individuals in northwestern China do not live as long as those in eastern and southern China. A moderate climate is more conducive to longevity than extreme climate in China. The longevity of a region should be judged by long-term longevity indicators.

  9. Is extreme climate or moderate climate more conducive to longevity in China?

    PubMed

    Huang, Yi; Rosenberg, Mark; Wang, Yingli

    2018-06-01

    Climate is closely related to human longevity. In China, there are many climate types. According to national population censuses from 1982 to 2000, most provinces with a high ratio of centenarians are located in western and northwestern China far from the sea; these areas are characterized by a dry, cold climate, very high altitude, very high daily temperature range, strong winds, and partial hypoxia. Meanwhile, provinces with a high ratio of nonagenarians from 1982 to 2000 are located in southern China near the sea. Previous studies have attributed the high ratio of centenarians in western and northwestern China to the extreme local climate. However, centenarians in these areas decreased greatly in 2010, whereas residents in southern China frequently reached 90 to 100 years old in 2010. This study aims to explain this strange phenomenon and find whether extreme climate in Tibetan plateau and northwestern China or moderate climate in southern China is more conducive to longevity. The study found that mortality rate in Tibetan plateau is much higher than southern China, then a population evolution experiment was proposed to compare longevity indicators between low mortality rate and high mortality rate and shows that longevity indicators will decrease in the near future and increase above their original levels after several decades when the mortality rate is decreased. Results of this study show individuals in northwestern China do not live as long as those in eastern and southern China. A moderate climate is more conducive to longevity than extreme climate in China. The longevity of a region should be judged by long-term longevity indicators.

  10. Is extreme climate or moderate climate more conducive to longevity in China?

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Rosenberg, Mark; Wang, Yingli

    2018-06-01

    Climate is closely related to human longevity. In China, there are many climate types. According to national population censuses from 1982 to 2000, most provinces with a high ratio of centenarians are located in western and northwestern China far from the sea; these areas are characterized by a dry, cold climate, very high altitude, very high daily temperature range, strong winds, and partial hypoxia. Meanwhile, provinces with a high ratio of nonagenarians from 1982 to 2000 are located in southern China near the sea. Previous studies have attributed the high ratio of centenarians in western and northwestern China to the extreme local climate. However, centenarians in these areas decreased greatly in 2010, whereas residents in southern China frequently reached 90 to 100 years old in 2010. This study aims to explain this strange phenomenon and find whether extreme climate in Tibetan plateau and northwestern China or moderate climate in southern China is more conducive to longevity. The study found that mortality rate in Tibetan plateau is much higher than southern China, then a population evolution experiment was proposed to compare longevity indicators between low mortality rate and high mortality rate and shows that longevity indicators will decrease in the near future and increase above their original levels after several decades when the mortality rate is decreased. Results of this study show individuals in northwestern China do not live as long as those in eastern and southern China. A moderate climate is more conducive to longevity than extreme climate in China. The longevity of a region should be judged by long-term longevity indicators.

  11. Mapping malaria risk using geographic information systems and remote sensing: The case of Bahir Dar City, Ethiopia.

    PubMed

    Minale, Amare Sewnet; Alemu, Kalkidan

    2018-05-07

    The main objective of this study was to develop a malaria risk map for Bahir Dar City, Amhara, which is situated south of Lake Tana on the Ethiopian plateau. Rainfall, temperature, altitude, slope and land use/land cover (LULC), as well as proximity measures to lake, river and health facilities, were investigated using remote sensing and geographical information systems. The LULC variable was derived from a 2012 SPOT satellite image by supervised classification, while 30-m spatial resolution measurements of altitude and slope came from the Shuttle Radar Topography Mission. Metrological data were collected from the National Meteorological Agency, Bahir Dar branch. These separate datasets, represented as layers in the computer, were combined using weighted, multi-criteria evaluations. The outcome shows that rainfall, temperature, slope, elevation, distance from the lake and distance from the river influenced the malaria hazard the study area by 35%, 15%, 10%, 7%, 5% and 3%, respectively, resulting in a map showing five areas with different levels of malaria hazard: very high (11.2%); high (14.5%); moderate (63.3%); low (6%); and none (5%). The malaria risk map, based on this hazard map plus additional information on proximity to health facilities and current LULC conditions, shows that Bahir Dar City has areas with very high (15%); high (65%); moderate (8%); and low (5%) levels of malaria risk, with only 2% of the land completely riskfree. Such risk maps are essential for planning, implementing, monitoring and evaluating disease control as well as for contemplating prevention and elimination of epidemiological hazards from endemic areas.

  12. Highly conducting divalent Mg{sup 2+} cation solid electrolytes with well-ordered three-dimensional network structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Shinji; Yamane, Megumi; Hoshino, Yasunori

    2016-03-15

    A three-dimensionally well-ordered NASICON-type Mg{sup 2+} cation conductor, (Mg{sub x}Hf{sub 1−x}){sub 4/(4−2x)}Nb(PO{sub 4}){sub 3}, was firstly developed by partial substitution of lower valent Mg{sup 2+} cation onto the Hf{sup 4+} sites in a HfNb(PO{sub 4}){sub 3} solid to realize high Mg{sup 2+} cation conductivity even at moderate temperatures. Due to the formation of well-ordered NASICON-type structure, both the high Mg{sup 2+} cation conductivity below 450 °C and the low activation energy for Mg{sup 2+} cation migration was successfully realized for the (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{sub 4}){sub 3} solid. Pure Mg{sup 2+} cation conduction in the NASICON-type (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{submore » 4}){sub 3} solid was directly and quantitatively demonstrated by means of two kinds of dc electrolysis. - Graphical abstract: Image of the Mg{sup 2+} cation conduction in NASICON-type (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{sub 4}){sub 3} and its Mg{sup 2+} conductivity. - Highlights: • We develop a three-dimensionally well-ordered NASICON-type Mg{sup 2+} cation conductor. • A high magnesium cation conductivity is realized even at moderate temperatures. • Divalent magnesium cation conduction is demonstrated directly and quantitatively.« less

  13. Modulation of fatty acid composition and growth in Sporosarcina species in response to temperatures and exogenous branched-chain amino acids.

    PubMed

    Tsuda, Kentaro; Nagano, Hideaki; Ando, Akinori; Shima, Jun; Ogawa, Jun

    2017-06-01

    Psychrotolerant endospore-forming Sporosarcina species have been predominantly isolated from minced fish meat (surimi), which is stored under refrigeration after heat treatment. To develop a better method for preserving surimi-based food products, we studied the growth and fatty acid compositions of the isolated strain S92h as well as Sporosarcina koreensis and Sporosarcina aquimarina at cold and moderate temperatures. The growth rates of strain S92h and S. koreensis were the fastest and slowest at cold temperatures, respectively, although these strains grew at a similar rate at moderate temperatures. In all three strains, the proportions of anteiso-C 15:0 and unsaturated fatty acids (UFAs) were significantly higher at cold temperatures than at moderate temperatures. Furthermore, supplementation with valine, leucine, and isoleucine resulted in proportional increases in iso-C 16:0 , iso-C 15:0 , and anteiso-C 15:0 , respectively, among the fatty acid compositions of these strains. The proportions of the UFAs were also altered by the supplementation. At cold temperatures, the growth rates of strain S92h and S. koreensis, but not of S. aquimarina, were affected by supplementation with leucine. Supplementation with isoleucine enhanced the growth of S. koreensis at cold temperatures but not that of the other strains. Valine did not affect the growth of any strain. These results indicate that anteiso-C 15:0 and UFAs both play important roles in the cold tolerance of the genus Sporosarcina and that these bacteria modulate their fatty acid compositions in response to the growth environment.

  14. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-04-18

    We explore the stability of the ambient pressure zinc-blende polymorph (B3) structure of silicon carbide (SiC) at high pressures and temperatures where it transforms to the rocksalt (B1) structure. We find that the transition occurs ~40 GPa lower than previously measured when heated to moderately high temperatures. A lower transition pressure is consistent with the transition pressures predicted in numerous ab initio computations. We find a large volume decrease across the transition of ~17%, with the volume drop increasing at higher formation pressures, suggesting this transition is volume driven yielding a nearly pressure-independent Clapeyron slope. Such a dramatic density increasemore » occurring at pressure is important to consider in applications where SiC is exposed to extreme conditions, such as in industrial applications or planetary interiors.« less

  15. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach

    NASA Astrophysics Data System (ADS)

    Chen, Lipeng; Zhao, Yang

    2017-12-01

    Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.

  16. Perceived exertion is as effective as the perceptual strain index in predicting physiological strain when wearing personal protective clothing.

    PubMed

    Borg, David N; Costello, Joseph T; Bach, Aaron J; Stewart, Ian B

    2017-02-01

    The perceptual strain index (PeSI) has been shown to overcome the limitations associated with the assessment of the physiological strain index (PSI), primarily the need to obtain a core body temperature measurement. The PeSI uses the subjective scales of thermal sensation and perceived exertion (RPE) to provide surrogate measures of core temperature and heart rate, respectively. Unfortunately, thermal sensation has shown large variability in providing an estimation of core body temperature. Therefore, the primary aim of this study was to determine if thermal comfort improved the ability of the PeSI to predict the PSI during exertional-heat stress. Eighteen healthy males (age: 23.5years; body mass: 79.4kg; maximal aerobic capacity: 57.2ml·kg -1 ·min -1 ) wore four different chemical/biological protective garments while walking on treadmill at a low (<325W) or moderate (326-499W) metabolic workload in environmental conditions equivalent to wet bulb globe temperatures 21, 30 or 37°C. Trials were terminated when heart rate exceeded 90% of maximum, when core body temperature reached 39°C, at 120min or due to volitional fatigue. Core body temperature, heart rate, thermal sensation, thermal comfort and RPE were recorded at 15min intervals and at termination. Multiple statistical methods were used to determine the most accurate perceptual predictor. Significant moderate relationships were observed between the PeSI (r=0.74; p<0.001), the modified PeSI (r=0.73; p<0.001) and unexpectedly RPE (r=0.71; p<0.001) with the PSI, respectively. The PeSI (mean bias: -0.8±1.5 based on a 0-10 scale; area under the curve: 0.887), modified PeSI (mean bias: -0.5±1.4 based on 0-10 scale; area under the curve: 0.886) and RPE (mean bias: -0.7±1.4 based on a 0-10 scale; area under the curve: 0.883) displayed similar predictive performance when participants experienced high-to-very high levels of physiological strain. Modifying the PeSI did not improve the subjective prediction of physiological strain. However, RPE provided an equally accurate prediction of physiological strain, particularly when high-to-very high levels of strain were observed. Therefore, given its predictive performance and user-friendliness, the evidence suggests that RPE in isolation is a practical and cost-effective tool able to estimate physiological strain during exertional-heat stress under these work conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mapping Sensory Spots for Moderate Temperatures on the Back of Hand.

    PubMed

    Yang, Fan; Chen, Guixu; Zhou, Sikai; Han, Danhong; Xu, Jingjing; Xu, Shengyong

    2017-12-04

    Thermosensation with thermoreceptors plays an important role in maintaining body temperature at an optimal state and avoiding potential damage caused by harmful hot or cold environmental temperatures. In this work, the locations of sensory spots for sensing moderate temperatures of 40-50 °C on the back of the hands of young Chinese people were mapped in a blind-test manner with a thermal probe of 1.0 mm spatial resolution. The number of sensory spots increased along with the testing temperature; however, the surface density of sensory spots was remarkably lower than those reported previously. The locations of the spots were irregularly distributed and subject-dependent. Even for the same subject, the number and location of sensory spots were unbalanced and asymmetric between the left and right hands. The results may offer valuable information for designing artificial electronic skin and wearable devices, as well as for clinical applications.

  18. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  19. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  20. Corrosion tests in Hawaiian geothermal fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen-Basse, J.; Lam, Kam-Fai

    1984-01-01

    Exposure tests were conductd in binary geothermal brine on the island of Hawaii. The steam which flashes from the high pressure, high temperature water as it is brought to ambient pressure contains substantial amounts of H{sub 2}S. In the absence of oxygen this steam is only moderately aggressive but in the aerated state it is highly aggressive to carbon steels and copper alloys. The liquid after flasing is intermediately aggressive. The Hawaiian fluid is unique in chemistry and corrosion behavior; its corrosiveness is relatively mild for a geothermal fluid falling close to the Iceland-type resources. 24 refs., 7 figs., 5more » tabs.« less

  1. Design of space-type electronic power transformers

    NASA Technical Reports Server (NTRS)

    Ahearn, J. F.; Lagadinos, J. C.

    1977-01-01

    Both open and encapsulated varieties of high reliability, low weight, and high efficiency moderate and high voltage transformers were investigated to determine the advantages and limitations of their construction in the ranges of power and voltage required for operation in the hard vacuum environment of space. Topics covered include: (1) selection of the core material; (2) preliminary calculation of core dimensions; (3) selection of insulating materials including magnet wire insulation, coil forms, and layer and interwinding insulation; (4) coil design; (5) calculation of copper losses, core losses and efficiency; (6) calculation of temperature rise; and (7) optimization of design with changes in core selection or coil design as required to meet specifications.

  2. Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions

    PubMed Central

    Reyna, Kelly S.

    2017-01-01

    Global warming is likely to alter reproductive success of ground-nesting birds that lay eggs normally left unattended for days or even weeks before actual parental incubation, especially in already warm climates. The native North American bobwhite quail (Colinus virginianus) is such a species, and pre-incubation quail eggs may experience temperatures ≥45°C. Yet, almost nothing is known about embryonic survival after such high pre-incubation temperatures. Freshly laid bobwhite quail eggs were exposed during a 12 day pre-incubation period to one of five thermal regimes: low oscillating temperatures (25–40°C, mean = 28.9°C), high oscillating temperatures (30–45°C, mean = 33.9°C), low constant temperatures (28.85°C), high constant temperatures (mean = 33.9°C), or commercially employed pre-incubation temperatures (20°C). After treatment, eggs were then incubated at a standard 37.5°C to determine subsequent effects on embryonic development rate, survival, water loss, hatching, and embryonic oxygen consumption. Both quantity of heating degree hours during pre-incubation and specific thermal regime (oscillating vs. non-oscillating) profoundly affected important aspects of embryo survival and indices of development and growth Pre-incubation quail eggs showed a remarkable tolerance to constant high temperatures (up to 45°C), surviving for 4.5±0.3 days of subsequent incubation, but high oscillating pre-incubation temperature increased embryo survival (mean survival 12.2±1.8 days) and led to more rapid development than high constant temperature (maximum 38.5°C), even though both groups experienced the same total heating degree-hours. Oxygen consumption was ~200–300 μl O2.egg.min-1 at hatching in all groups, and was not affected by pre-incubation conditions. Oscillating temperatures, which are the norm for pre-incubation quail eggs in their natural habitat, thus enhanced survival at higher temperatures. However, a 5°C increase in pre-incubation temperature, which equates to the predicted long-term increases of 5°C or more, nonetheless reduced hatching rate by approximately 50%. Thus, while pre-incubation bobwhite eggs may be resiliant to moderate oscillating temperature increases, global warming will likely severely impact wild bobwhite quail populations, especially in their strongholds in southern latitudes. PMID:28926597

  3. Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions.

    PubMed

    Reyna, Kelly S; Burggren, Warren W

    2017-01-01

    Global warming is likely to alter reproductive success of ground-nesting birds that lay eggs normally left unattended for days or even weeks before actual parental incubation, especially in already warm climates. The native North American bobwhite quail (Colinus virginianus) is such a species, and pre-incubation quail eggs may experience temperatures ≥45°C. Yet, almost nothing is known about embryonic survival after such high pre-incubation temperatures. Freshly laid bobwhite quail eggs were exposed during a 12 day pre-incubation period to one of five thermal regimes: low oscillating temperatures (25-40°C, mean = 28.9°C), high oscillating temperatures (30-45°C, mean = 33.9°C), low constant temperatures (28.85°C), high constant temperatures (mean = 33.9°C), or commercially employed pre-incubation temperatures (20°C). After treatment, eggs were then incubated at a standard 37.5°C to determine subsequent effects on embryonic development rate, survival, water loss, hatching, and embryonic oxygen consumption. Both quantity of heating degree hours during pre-incubation and specific thermal regime (oscillating vs. non-oscillating) profoundly affected important aspects of embryo survival and indices of development and growth Pre-incubation quail eggs showed a remarkable tolerance to constant high temperatures (up to 45°C), surviving for 4.5±0.3 days of subsequent incubation, but high oscillating pre-incubation temperature increased embryo survival (mean survival 12.2±1.8 days) and led to more rapid development than high constant temperature (maximum 38.5°C), even though both groups experienced the same total heating degree-hours. Oxygen consumption was ~200-300 μl O2.egg.min-1 at hatching in all groups, and was not affected by pre-incubation conditions. Oscillating temperatures, which are the norm for pre-incubation quail eggs in their natural habitat, thus enhanced survival at higher temperatures. However, a 5°C increase in pre-incubation temperature, which equates to the predicted long-term increases of 5°C or more, nonetheless reduced hatching rate by approximately 50%. Thus, while pre-incubation bobwhite eggs may be resiliant to moderate oscillating temperature increases, global warming will likely severely impact wild bobwhite quail populations, especially in their strongholds in southern latitudes.

  4. A Synthesis of Experimental Data Describing the Partitioning of Moderately Volatile Elements in Major Rock Forming Minerals: Implications for the Moon

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey

    2017-01-01

    Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.

  5. Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management

    PubMed Central

    Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua

    2011-01-01

    Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations. PMID:21860667

  6. Interlayer tunneling in a strongly correlated electron-phonon system

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Zieliński, J.

    1996-10-01

    We discuss the role of interlayer tunneling for superconducting properties of strongly correlated (U-->∞ limit) two-layer Hubbard model coupled to phonons. Strong correlations are taken into account within the mean-field approximation for auxiliary boson fields. To consider phonon-mediated and interlayer tunneling contribution to superconductivity on equal footing we incorporate the tunneling term into the generalized Eliashberg equations. This leads to the modification of the phonon-induced pairing kernel and implies a pronounced enhancement of the superconducting transition temperature in the d-wave channel for moderate doping. In numerical calculations the two-dimensional band structure has been explicitly taken into account. The relevance of our results for high-temperature superconductors is briefly discussed.

  7. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    PubMed Central

    Hernández-Pinilla, D.; Rodríguez-Palomo, A.; Álvarez-Fraga, L.; Céspedes, E.; Prieto, J.E.; Muñoz-Martín, A.; Prieto, C.

    2016-01-01

    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here. PMID:27182544

  8. Tuning the Curie temperature of FeCo compounds by tetragonal distortion

    NASA Astrophysics Data System (ADS)

    Jakobsson, A.; Şaşıoǧlu, E.; Mavropoulos, Ph.; Ležaić, M.; Sanyal, B.; Bihlmayer, G.; Blügel, S.

    2013-09-01

    Combining density-functional theory calculations with a classical Monte Carlo method, we show that for B2-type FeCo compounds, tetragonal distortion gives rise to a strong reduction of the Curie temperature TC. The TC monotonically decreases from 1575 K (for c /a=1) to 940 K (for c /a=√2 ). We find that the nearest neighbor Fe-Co exchange interaction is sufficient to explain the c/a behavior of the TC. Combination of high magnetocrystalline anisotropy energy with a moderate TC value suggests tetragonal FeCo grown on the Rh substrate with c /a=1.24 to be a promising material for heat-assisted magnetic recording applications.

  9. Processing effects on physicochemical properties of creams formulated with modified milk fat.

    PubMed

    Bolling, J C; Duncan, S E; Eigel, W N; Waterman, K M

    2005-04-01

    Type of thermal process [high temperature, short time pasteurization (HTST) or ultra-high temperature pasteurization (UHT)] and homogenization sequence (before or after pasteurization) were examined for influence on the physicochemical properties of natural cream (20% milk fat) and creams formulated with 20% low-melt, fractionated butteroil emulsified with skim milk, or buttermilk and butter-derived aqueous phase. Homogenization sequence influenced physicochemical makeup of the creams. Creams homogenized before pasteurization contained more milk fat surface material, higher phospholipid levels, and less protein at the milk fat interface than creams homogenized after pasteurization. Phosphodiesterase I activity was higher (relative to protein on lipid globule surface) when cream was homogenized before pasteurization. Creams formulated with skim milk and modified milk fat had relatively more phospholipid adsorbed at the milk fat interface. Ultra-high-temperature-pasteurized natural and reformulated creams were higher in viscosity at all shear rates investigated compared with HTST-pasteurized creams. High-temperature, short time-pasteurized natural cream was more viscous than HTST-pasteurized reformulated creams at most shear rates investigated. High-temperature, short time-pasteurized creams had better emulsion stability than UHT-pasteurized creams. Cream formulated with buttermilk had creaming stability most comparable to natural cream, and cream formulated with skim milk and modified butteroil was least stable to creaming. Most creams feathered in a pH range of 5.00 to 5.20, indicating that they were moderately stable to slightly unstable emulsions. All processing sequences yielded creams within sensory specifications with the exception of treatments homogenized before UHT pasteurization and skim milk formulations homogenized after UHT pasteurization.

  10. Mantle Lithosphere Rheology, Vertical Tectonics, and the Exhumation of (U)HP Rocks

    NASA Astrophysics Data System (ADS)

    Bodur, Ömer F.; Göǧüş, Oǧuz H.; Pysklywec, Russell N.; Okay, Aral I.

    2018-02-01

    Numerical modeling results indicate that mantle lithosphere rheology can influence the pressure-temperature-time (P-T-t) trajectories of continental crust subducted and exhumed during the onset of continental collision. Exhumation of ultrahigh-pressure ( 35 kbar)/high-temperature ( 750°C) metamorphic rocks is more prevalent in models with stronger continental mantle lithosphere (e.g., dry), whereas high-pressure ( 9-22 kbar)/low-temperature (350°C-630°C) metamorphic rocks occur in models with weaker rheology (e.g., hydrated) for the same layer. In the latter case, the buried crustal rocks can remain encased in ablatively subducting mantle lithosphere, reach only moderate temperatures, and exhume by dripping/detachment of the lithospheric root. In this transition from subduction to a dripping style of "vertical tectonics," burial and exhumation of crustal rocks are driven without imposed far-field plate convergence. The model results are compared against thermobarometric P-T estimates from major (ultra)high-pressure metamorphic terranes. We propose that the exhumation of high-pressure/low-temperature metamorphic rocks in Tavşanlı and Afyon zones in western Anatolia may be caused by viscous dripping of mantle lithosphere suggesting a weaker continental mantle lithosphere, whereas (ultra)high-pressure exhumation (e.g., Dabie Shan-eastern China and Dora Maira-western Alps) may be associated with plate-like subduction. In the latter case, the slab is much stronger and deformation is localized to the subduction interface along which rocks are buried to >100 km depth before they are exhumed to the near surface.

  11. Anion exchange membrane crosslinked in the easiest way stands out for fuel cells

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Masem; Wu, Liang; Liang, Xian; Yang, Zhengjin; Hou, Jianqiu; Xu, Tongwen

    2018-06-01

    Covalent crosslinking is an effective method to stabilize anion exchange membranes (AEMs) against water swelling and high alkaline environment, yet complicated process is required. We report herein a straightforward approach to prepare highly crosslinked, transparent and flexible AEM by simply immersing a halo-alkylated polymer (e.g., brominated poly-(2,6-dimethyl-phenylene oxide)) based membrane in aqueous dimethylamine solution at room temperature and the following methylation. During this crosslinking process, a robust self-crosslinking network is formed which shows a gel fraction in N-methyl-2-pyrrolidone of (up to) 94%. Self-crosslinked membranes show low water uptakes (20-42%) and dimensional swelling (9-16%) compared to non-crosslinked membrane but good hydroxide conductivities (up to 26 mS cm-1) at room temperature. Besides, the resulting membranes show some interesting features: the membranes do not immensely change its room temperature water swelling properties at high temperature but exhibits good hydroxide conductivities (up to 60 mS cm-1 at 80 °C). Noting that, the self-crosslinked AEM reported here has no β-hydrogens, exhibiting extremely high alkaline stability (no decline in hydroxide conductivity in 1 M KOH at 60 °C for 360h). Membrane electrode assembly consists of fabricated membrane shows moderate fuel cell performance reaching peak power density 31 mW cm-2 at 60 °C in a H2/O2 alkaline fuel cell.

  12. Low-temperature growth of highly crystalline β-Ga2O3 nanowires by solid-source chemical vapor deposition

    PubMed Central

    2014-01-01

    Growing Ga2O3 dielectric materials at a moderately low temperature is important for the further development of high-mobility III-V semiconductor-based nanoelectronics. Here, β-Ga2O3 nanowires are successfully synthesized at a relatively low temperature of 610°C by solid-source chemical vapor deposition employing GaAs powders as the source material, which is in a distinct contrast to the typical synthesis temperature of above 1,000°C as reported by other methods. In this work, the prepared β-Ga2O3 nanowires are mainly composed of Ga and O elements with an atomic ratio of approximately 2:3. Importantly, they are highly crystalline in the monoclinic structure with varied growth orientations in low-index planes. The bandgap of the β-Ga2O3 nanowires is determined to be 251 nm (approximately 4.94 eV), in good accordance with the literature. Also, electrical characterization reveals that the individual nanowire has a resistivity of up to 8.5 × 107 Ω cm, when fabricated in the configuration of parallel arrays, further indicating the promise of growing these highly insulating Ga2O3 materials in this III-V nanowire-compatible growth condition. PACS 77.55.D; 61.46.Km; 78.40.Fy PMID:25114641

  13. Low-temperature growth of highly crystalline β-Ga2O3 nanowires by solid-source chemical vapor deposition.

    PubMed

    Han, Ning; Wang, Fengyun; Yang, Zaixing; Yip, SenPo; Dong, Guofa; Lin, Hao; Fang, Ming; Hung, TakFu; Ho, Johnny C

    2014-01-01

    Growing Ga2O3 dielectric materials at a moderately low temperature is important for the further development of high-mobility III-V semiconductor-based nanoelectronics. Here, β-Ga2O3 nanowires are successfully synthesized at a relatively low temperature of 610°C by solid-source chemical vapor deposition employing GaAs powders as the source material, which is in a distinct contrast to the typical synthesis temperature of above 1,000°C as reported by other methods. In this work, the prepared β-Ga2O3 nanowires are mainly composed of Ga and O elements with an atomic ratio of approximately 2:3. Importantly, they are highly crystalline in the monoclinic structure with varied growth orientations in low-index planes. The bandgap of the β-Ga2O3 nanowires is determined to be 251 nm (approximately 4.94 eV), in good accordance with the literature. Also, electrical characterization reveals that the individual nanowire has a resistivity of up to 8.5 × 10(7) Ω cm, when fabricated in the configuration of parallel arrays, further indicating the promise of growing these highly insulating Ga2O3 materials in this III-V nanowire-compatible growth condition. 77.55.D; 61.46.Km; 78.40.Fy.

  14. Temperature, routine activities, and domestic violence: a reanalysis.

    PubMed

    Rotton, J; Cohn, E G

    2001-04-01

    It was hypothesized that base rate differences in the number of complaints made during daylight and nighttime hours were responsible for a previously reported, nonlinear relationship between temperature and domestic violence. This hypothesis was tested by subjecting calls for service in 1987 and 1988 in Minneapolis, to moderator-variable regression analyses with controls for time of day, day of the week, season, and their interactions as well as linear trend, major holidays, public school closings, the first day of the month, and other weather variables. Temporal variables explained 75% of the variance in calls for service. As hypothesized, the base rate artifact was responsible for an apparent downturn in violence at high temperatures: Fewer complaints were received during afternoon hours, because they happen to be the warmest time of the day. The results were interpreted in terms of routine activity theory.

  15. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.

    PubMed

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2015-05-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.

  16. Sol-gel immobilized short-chain poly(ethylene glycol) coating for capillary microextraction of underivatized polar analytes.

    PubMed

    Kulkarni, Sameer; Shearrow, Anne M; Malik, Abdul

    2007-12-07

    Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid sol-gel PEG coating and the fused silica capillary inner surface. This chemical anchorage provided excellent thermal and solvent stability to the created sol-gel PEG coating as is evidenced by its high upper limit of allowable conditioning temperature (340 degrees C) and its practically identical performance before and after rinsing with various solvents. The prepared sol-gel PEG coating provided simultaneous extraction of moderately polar and highly polar analytes from aqueous samples without requiring derivatization, pH adjustment or salting-out procedures. Detection limits on the order of nanogram per liter (ng/L) were achieved in CME-GC-flame ionization detection experiments designed for the preconcentration and trace analysis of both highly polar and moderately polar compounds extracted directly from aqueous media using sol-gel short-chain PEG coated microextraction capillaries.

  17. Crystal structure and anisotropic magnetic properties of new ferromagnetic Kondo lattice compound Ce(Cu,Al,Si)2

    NASA Astrophysics Data System (ADS)

    Maurya, A.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Pani, M.; Costa, G. A.

    2017-03-01

    Single crystals of the new compound CeCu0.18Al0.24Si1.58 have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi2 (tetragonal α-ThSi2-type, Pearson symbol tI12, space group I41/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi2 is a well-known valence-fluctuating paramagnetic compound, the CeCu0.18Al0.24Si1.58 phase orders ferromagnetically at TC=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K2) show that CeCu0.18Al0.24Si1.58 is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of TC in CeCu0.18Al0.24Si1.58.

  18. Finite-temperature time-dependent variation with multiple Davydov states

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Fujihashi, Yuta; Chen, Lipeng; Zhao, Yang

    2017-03-01

    The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.

  19. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America

    NASA Astrophysics Data System (ADS)

    Skansi, María de los Milagros; Brunet, Manola; Sigró, Javier; Aguilar, Enric; Arevalo Groening, Juan Andrés; Bentancur, Oscar J.; Castellón Geier, Yaruska Rosa; Correa Amaya, Ruth Leonor; Jácome, Homero; Malheiros Ramos, Andrea; Oria Rojas, Clara; Pasten, Alejandro Max; Sallons Mitro, Sukarni; Villaroel Jiménez, Claudia; Martínez, Rodney; Alexander, Lisa V.; Jones, P. D.

    2013-01-01

    Here we show and discuss the results of an assessment of changes in both area-averaged and station-based climate extreme indices over South America (SA) for the 1950-2010 and 1969-2009 periods using high-quality daily maximum and minimum temperature and precipitation series. A weeklong regional workshop in Guayaquil (Ecuador) provided the opportunity to extend the current picture of changes in climate extreme indices over SA. Our results provide evidence of warming and wetting across the whole SA since the mid-20th century onwards. Nighttime (minimum) temperature indices show the largest rates of warming (e.g. for tropical nights, cold and warm nights), while daytime (maximum) temperature indices also point to warming (e.g. for cold days, summer days, the annual lowest daytime temperature), but at lower rates than for minimums. Both tails of night-time temperatures have warmed by a similar magnitude, with cold days (the annual lowest nighttime and daytime temperatures) seeing reductions (increases). Trends are strong and moderate (moderate to weak) for regional-averaged (local) indices, most of them pointing to a less cold SA during the day and warmer night-time temperatures. Regionally-averaged precipitation indices show clear wetting and a signature of intensified heavy rain events over the eastern part of the continent. The annual amounts of rainfall are rising strongly over south-east SA (26.41 mm/decade) and Amazonia (16.09 mm/decade), but north-east Brazil and the western part of SA have experienced non-significant decreases. Very wet and extremely days, the annual maximum 5-day and 1-day precipitation show the largest upward trends, indicating an intensified rainfall signal for SA, particularly over Amazonia and south-east SA. Local trends for precipitation extreme indices are in general less coherent spatially, but with more general spatially coherent upward trends in extremely wet days over all SA.

  20. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    PubMed

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  1. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction

    PubMed Central

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results. PMID:26105141

  2. Thermal regulation in Macaca mulatta during space flight

    NASA Technical Reports Server (NTRS)

    Klimovitsky, V. Y.; Alpatov, A. M.; Hoban-Higgins, T. M.; Utekhina, E. S.; Fuller, C. A.

    2000-01-01

    The results of studies of body temperature and thermal regulation in Macaca mulatta flown on biosatellites Bion 6-11 are presented. The effect of microgravity on deep body temperature as compared to skin temperature was investigated. In most animals, deep body temperature declined moderately and then tended to return to normal. Brain temperature/ankle temperature correlation changed. The system of thermal regulation was found to function adequately in space.

  3. PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.L.

    1961-02-01

    BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less

  4. Granite-hosted molybdenite mineralization from Archean Bundelkhand craton-molybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz

    NASA Astrophysics Data System (ADS)

    Pati, J. K.; Panigrahi, M. K.; Chakarborty, M.

    2014-06-01

    The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite-trondhjemite-granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O-CO2), hypersaline and moderate temperature (100°-300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.

  5. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    DOE PAGES

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; ...

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag 16Al 16Si 24O 8·16H 2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag + is reduced to metallic Ag and possibly oxidized to Ag 2+. In contrast to krypton, xenon is retained within themore » pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.« less

  6. Configurations and Dynamics of Semi-Flexible Polymers in Good and Poor Solvents

    NASA Astrophysics Data System (ADS)

    Larson, Ronald

    We develop coarse-graining procedures for determining the conformational and dynamic behavior of semi-flexible chains with and without flow using Brownian dynamics (BD) simulations that are insensitive to the degree of coarse-graining. In the absence of flow, in a poor solvent, we find three main collapsed states: torus, bundle, and globule over a range of dimensionless ratios of the three energy parameters, namely solvent-polymer surface energy, energy of polymer folds, and polymer bending energy or persistence length. A theoretical phase diagram, confirmed by BD simulations, captures the general phase behavior of a single long chain (>10 Kuhn lengths) at moderately high (order unity) dimensionless temperature, which is the ratio of thermal energy to the attractive interaction between neighboring monomers. We also find converged results for polymer conformations in shear or extensional flow in solvents of various qualities and determine scaling laws for chain dimensions for low, moderate, and high Weissenberg numbers Wi. We also derive scaling laws to describe chains dimensions and tumbling rates in these regimes.

  7. Investigating Runoff Efficiency in Upper Colorado River Streamflow Over Past Centuries

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.

    2018-01-01

    With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.

  8. Investigating runoff efficiency in upper Colorado River streamflow over past centuries

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.

    2018-01-01

    With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.

  9. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  10. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  11. Stabilization of lead in incineration fly ash by moderate thermal treatment with sodium hydroxide addition

    PubMed Central

    Yang, Yuanyi; He, Yong; Sun, Xiaolong; Ge, Li-Ya; Zhang, Kewei; Yang, Weizhong

    2017-01-01

    Municipal solid waste (MSW) incineration fly ash (IFA) can be potentially reused as a substitute for some raw materials, but treatment for detoxification is indispensable owing to high contents of heavy metals in fly ash. In the present work, due to excessive leaching concentration of lead (Pb), a moderate thermal treatment with sodium hydroxide (NaOH) addition was employed to stabilize Pb in IFA. The moderate thermal treatment was performed under relatively low temperature ranging from 300 to 500°C and at retention time from 1 to 3 h with NaOH addition in a range of 1 to 9%. Leaching results showed that leaching concentrations of Pb in IFA leachates decreased below the standard for hazardous waste identification (5 mg/L) in China under all treatment scenarios. With the increase of temperature, retention time and the amount of NaOH, the concentration of Pb were further suppressed in IFA leachates. Especially, at 500°C for 3 h with 9% NaOH addition, the concentration of Pb dropped to 0.18 mg/L, which was below the standard for sanitary landfill (0.25 mg/L) in China. In thermal process, needle-like crystallites melted to form granules and clumps with compacter structure and less pores. After the thermal treatment, water-soluble and exchangeable fractions of Pb significantly decreased. Therefore, the thermal treatment coupled with NaOH could be applied to realize the environmentally sound management of MSW IFA. PMID:28586368

  12. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  13. Stabilization of lead in incineration fly ash by moderate thermal treatment with sodium hydroxide addition.

    PubMed

    Gong, Bing; Deng, Yi; Yang, Yuanyi; He, Yong; Sun, Xiaolong; Ge, Li-Ya; Zhang, Kewei; Yang, Weizhong

    2017-01-01

    Municipal solid waste (MSW) incineration fly ash (IFA) can be potentially reused as a substitute for some raw materials, but treatment for detoxification is indispensable owing to high contents of heavy metals in fly ash. In the present work, due to excessive leaching concentration of lead (Pb), a moderate thermal treatment with sodium hydroxide (NaOH) addition was employed to stabilize Pb in IFA. The moderate thermal treatment was performed under relatively low temperature ranging from 300 to 500°C and at retention time from 1 to 3 h with NaOH addition in a range of 1 to 9%. Leaching results showed that leaching concentrations of Pb in IFA leachates decreased below the standard for hazardous waste identification (5 mg/L) in China under all treatment scenarios. With the increase of temperature, retention time and the amount of NaOH, the concentration of Pb were further suppressed in IFA leachates. Especially, at 500°C for 3 h with 9% NaOH addition, the concentration of Pb dropped to 0.18 mg/L, which was below the standard for sanitary landfill (0.25 mg/L) in China. In thermal process, needle-like crystallites melted to form granules and clumps with compacter structure and less pores. After the thermal treatment, water-soluble and exchangeable fractions of Pb significantly decreased. Therefore, the thermal treatment coupled with NaOH could be applied to realize the environmentally sound management of MSW IFA.

  14. Production of chitosan-based non-woven membranes using the electrospinning process

    NASA Astrophysics Data System (ADS)

    Pakravan Lonbani, Mehdi

    Chitosan is a modified natural polymer mainly produced from chitin, one of the most abundant organic materials in the world. Highly porous chitosan mats present the specific physicochemical properties of the base material and also benefit from the physical characteristics of nanoporous membranes. Electrospinning is a novel technique developed long time ago and revisited recently that can generate polymeric fibers with nanometric size. The ultimate purpose of this work is to fabricate microporous non-woven chitosan membranes for wound healing dressings and heavy metal ion removal from drinking water. In this dissertation, two approaches have been utilized to prepare chitosan-based nanofibers; blending and co-axial electrospinning of chitosan solution with a readily electrospinnable solution, i.e. an aqueous solution of polyethylene oxide (PEO). Consequently, understanding the phase behavior and miscibility of aqueous acidic solutions of chitosan and PEO and their blends is of crucial importance, as any phase separation occurring during the electrospinning process greatly changes the morphology and physico-mechanical properties of the final products. First we employed the rheological approach on a well-known aqueous PEO solution to develop the experimental protocol. By comparing these critical points with that obtained from other experimental techniques, we showed that rheological measurements can sensitively detect early stages of phase separation. Subsequently the method was applied to 50 wt% aqueous acetic acid solutions of PEO, chitosan and their blends at different ratios. These solutions showed a lower critical solution temperature (LCST) phase diagram that is attributed to the existence of hydrogen bonds between active groups on chitosan and PEO backbone and the solvent. Critical decomposition temperatures for binodal and spinodal points were estimated from isochronal temperature sweep experiments. The obtained binodal temperatures confirmed that chitosan/PEO solutions are miscible and stable at moderate temperatures and phase separate at higher temperatures of 60-75 °C. Then, we intended to obtain a thorough understanding of chitosan/PEO solution properties that lead to a successful electrospinning process, i.e. continuous and stable, and which produces defect free uniform beadless nanofibers. The effect of blend composition and acetic acid concentration on properties such as surface tension and conductivity and, ultimately, on electrospinnability were investigated. A highly deacetylated chitosan (DDA=97.5 %) in 50% acetic acid was used, which is the maximum deacetylated chitosan grade that has been reported for the preparation of electrospun chitosan-based nanofibers. The rheological characteristics of the chitosan/PEO solutions as a controlling parameter in the electrospinning process were examined and their relationships to electrospinnability presented. As we showed that chitosan/PEO solutions are miscible and stable at moderate temperatures, a modified electrospinning set up to electrospin at temperatures of 25-70 °C was designed to achieve content as high as 90 wt% of chitosan in beadless chitosan/PEO nanofibers of 60-80 nm in diameter. It was also found that increasing chitosan/PEO ratio from 50/50 to 90/10 led to a remarkable diameter reduction from 123 to 63 nm at room temperature. Additionally, we found that moderate process temperatures help to stabilize the electrospinning process of these solutions and produce beadless nanofibers. However, at higher temperatures, the electrospun jet became unstable and beaded fiber morphology was obtained. This phenomena occurs closely at the temperature range of phase separation, previously determined by rheology studies. Therefore, temperature-induced phase separation of these solutions is considered as the reason for that observation. On the other hand, an FTIR study at room temperature on cast films and nanofibers of chitosan/PEO blends at room temperature showed the presence of hydrogen bonding interactions between chitosan and PEO that could be an another indication of miscibility between these two polymers in solution at moderate temperatures. Finally, in order to remove the blending step, reducing the amount of chitosan used and also to put chitosan right on the outer surface of the nanofibers for further related applications, a co-axial electrospinning technique was employed. By using a one-step co-axial electrospinning process, for the first time core-shell structured PEO-chitosan nanofibers from aqueous solutions were produced in which chitosan is located at the shell (outer layer) and PEO at the core (inner layer). Uniform sized defect-free nanofibers of 100-190 nm diameter were produced. The core-shell nanostructure and existence of chitosan on the shell layer were confirmed by TEM images obtained before and after washing the PEO content with water. The presence of chitosan on the surface of the composite nanofibers was further supported by XPS studies. Bulk and local compositional analysis is performed by thermal gravimetry (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively, to examine the homogeneity of the nanofibers. Additionally, it was shown that hollow chitosan nanofibers could be obtained by PEO washing of the co-axial PEO/chitosan nanofibers, which could also be of great interest in applications such as blood purification in hemodialysis.

  15. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  16. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  17. X-ray Scintillation in Lead Halide Perovskite Crystals

    PubMed Central

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-01-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications. PMID:27849019

  18. The wavelength of supercritical surface tension driven Benard convection

    NASA Technical Reports Server (NTRS)

    Koschmieder, E. L.

    1991-01-01

    The size or the wavelength of moderately supercritical surface tension driven Benard convection has been investigated experimentally in a thin fluid layer of large aspect ratio. It has been found that the number of the hexagonal convection cells increases with increased temperature differences, up to 1.3 times the critical temperature difference. That means that the wavelength of surface tension driven convection decreases after onset of the instability for moderately nonlinear conditions. This result is in striking contrast to the well-known increase of the wavelength of buoyancy driven Rayleigh-Benard convection.

  19. Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes

    USGS Publications Warehouse

    Bice, Karen L.; Arthur, Michael A.; Marincovich, Louie

    1996-01-01

    Late Paleocene high-latitude (80°N) Arctic Ocean shallow-marine temperatures are estimated from molluscan δ18O time series. Sampling of individual growth increments of two specimens of the bivalve Camptochlamys alaskensis provides a high-resolution record of shell stable isotope composition. The heavy carbon isotopic values of the specimens support a late Paleocene age for the youngest marine beds of the Prince Creek Formation exposed near Ocean Point, Alaska. The oxygen isotopic composition of regional freshwater runoff is estimated from the mean δ18O value of two freshwater bivalves collected from approximately coeval fluviatile beds. Over a 30 – 34‰ range of salinity, values assumed to represent the tolerance of C. alaskensis, the mean annual shallow-marine temperature recorded by these individuals is between 11° and 22°C. These values could represent maximum estimates of the mean annual temperature because of a possible warm-month bias imposed on the average δ18O value by slowing or cessation of growth in winter months. The amplitude of the molluscan δ18O time series probably records most of the seasonality in shallow-marine temperature. The annual temperature range indicated is approximately 6°C, suggesting very moderate high-latitude marine temperature seasonality during the late Paleocene. On the basis of analogy with modern Chlamys species, C. alaskensis probably inhabited water depths of 30–50 m. The seasonal temperature range derived from δ18O is therefore likely to be damped relative to the full range of annual sea surface temperatures. High-resolution sampling of molluscan shell material across inferred growth bands represents an important proxy record of seasonality of marine and freshwater conditions applicable at any latitude. If applied to other regions and time periods, the approach used here would contribute substantially to the paleoclimate record of seasonality.

  20. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    DOE PAGES

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; ...

    2016-04-10

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer,more » corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.« less

  1. Proteomic and Glycomic Characterization of Rice Chalky Grains Produced Under Moderate and High-temperature Conditions in Field System.

    PubMed

    Kaneko, Kentaro; Sasaki, Maiko; Kuribayashi, Nanako; Suzuki, Hiromu; Sasuga, Yukiko; Shiraya, Takeshi; Inomata, Takuya; Itoh, Kimiko; Baslam, Marouane; Mitsui, Toshiaki

    2016-12-01

    Global climate models predict an increase in global mean temperature and a higher frequency of intense heat spikes during this century. Cereals such as rice (Oryza sativa L.) are more susceptible to heat stress, mainly during the gametogenesis and flowering stages. During periods of high temperatures, grain filling often causes serious damage to the grain quality of rice and, therefore, yield losses. While the genes encoding enzymes involved in carbohydrate metabolism of chalky grains have been established, a significant knowledge gap exists in the proteomic and glycomic responses to warm temperatures in situ. Here, we studied the translucent and opaque characters of high temperature stressed chalky grains of 2009 and 2010 (ripening temperatures: 24.4 and 28.0 °C, respectively). Appearance of chalky grains of both years showed some resemblance, and the high-temperature stress of 2010 remarkably extended the chalking of grain. Scanning electron microscopic observation showed that round-shaped starch granules with numerous small pits were loosely packed in the opaque part of the chalky grains. Proteomic analyzes of rice chalky grains revealed deregulations in the expression of multiple proteins implicated in diverse metabolic and physiological functions, such as protein synthesis, redox homeostasis, lipid metabolism, and starch biosynthesis and degradation. The glycomic profiling has shown slight differences in chain-length distributions of starches in the grains of 2009-to-2010. However, no significant changes were observed in the chain-length distributions between the translucent and opaque parts of perfect and chalky grains in both years. The glucose and soluble starch contents in opaque parts were increased by the high-temperature stress of 2010, though those in perfect grains were not different regardless of the environmental changes of 2009-to-2010. Together with previous findings on the increased expression of α-amylases in the endosperm, these results suggested that unusual starch degradation rather than starch synthesis is involved in occurring of chalky grains of rice under the high-temperature stress during grain filling period.

  2. Remote sensing of forest dynamics and land use in Amazonia

    NASA Astrophysics Data System (ADS)

    Toomey, Michael Paul

    The rich, vast Amazonian ecosystem is directly and indirectly threatened by human activities; remote sensing serves as an essential tool for monitoring, understanding and mitigating these threats. A multi-faceted body of work is described here, addressing three major issues that employ and advance remote sensing techniques for the study of Amazonia and other tropical rainforest regions. In Chapter 2, canopy reflectance modeling and satellite observations were used to quantify the effect of epiphylls on remote sensing of humid forests. Modeling simulations demonstrated sensitivity of canopy-level near infrared and green reflectance to epiphylls on leaves. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and vegetation indices which must be accounted for when using optical remote sensing in humid forests. In Chapter 4, 11 years (2000--2010) of MODIS land surface temperature (LST) data covering the entire Amazon basin were used to ascertain the role of heat stress during droughts in 2005 and 2010. Preliminary accuracy assessments showed that LST data provided reasonably accurate estimates of daytime air temperatures (RMSE = 1.45°C; Chapter 3). There were moderate to strong correlations between LST-based air temperature estimates and tower measurements (mean r = 0.64), illustrating a sensitivity to temporal variability. During both droughts, MODIS LST data detected anomalously high daytime and nighttime canopy temperatures throughout drought-affected regions. Multivariate linear models of LST and precipitation anomalies explained 65.1% of the variability in forest biomass losses, as determined from a wide network of forest inventory plots. These results suggest that models should incorporate both heat and moisture to predict drought effects on tropical forests. In Chapter 5, I performed high spatial and temporal resolution modeling of carbon stocks and fluxes in the state of Rondonia, Brazil for the period 1985--2009. Based on this analysis, Rondonia contributed ˜4% of pan-tropical humid forest deforestation emissions while carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Spatial analysis of land cover change demonstrated the necessity for fine resolution carbon monitoring in tropical regions dominated by non-mechanized, smallholder land uses.

  3. Effects of Hydrostatic Pressure on Growth and Luminescence of a Moderately-Piezophilic Luminous Bacteria Photobacterium phosphoreum ANT-2200

    PubMed Central

    Martini, Séverine; Al Ali, Badr; Garel, Marc; Nerini, David; Grossi, Vincent; Pacton, Muriel; Casalot, Laurence; Cuny, Philippe; Tamburini, Christian

    2013-01-01

    Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean. PMID:23818946

  4. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize

    PubMed Central

    Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D.

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003–2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change. PMID:27606598

  5. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    PubMed

    Baumann, Justin H; Townsend, Joseph E; Courtney, Travis A; Aichelman, Hannah E; Davies, Sarah W; Lima, Fernando P; Castillo, Karl D

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change.

  6. Lattice anharmonicity, phonon dispersion, and thermal conductivity of PbTe studied by the phonon quasiparticle approach

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Sun, Tao; Zhang, Dong-Bo

    2018-05-01

    We investigated the vibrational property of lead telluride (PbTe) with a focus on lattice anharmonicity at moderate temperatures (300

  7. First Principles Simulations of P-V-T Unreacted Equation of State of LLM-105

    NASA Astrophysics Data System (ADS)

    Manaa, Riad; Kuo, I.-Feng; Fried, Laurence

    2015-03-01

    Equations of states (EOS) of unreacted energetic materials extending to high-pressure and temperatures regimes are of particular interest since they provide fundamental information about the associated thermodynamic properties of these materials at extreme conditions. Very often, experimental and computational studies focus only on determining a pressure-volume relationship at ambient to moderate temperatures. Adding elevated temperature data to construct a P-V-T EOS is highly desirable to extend the range of materials properties. Atomic scale molecular dynamics simulations are particularly suited for such a construct since EOSs are the manifestation of the underlying atomic interactions. In this work, we report dispersion-corrected density functional theoretical calculations of unreacted equation of state (EOS) of the energetic material 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105). We performed large-scale constant-volume and temperature molecular dynamics simulations for pressures ranging from ambient to 35 GPa, and temperatures ranging from 300 K to 1000 K. These calculations allowed us to construct an unreacted P-V-T EOS and obtain bulk modulus for each P-V isotherm. We also report the thermal expansion coefficient of LLM-105 in the temperature range of this study. This work performed under the auspices of the U.S. Department of Energy Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. The effect of sub-floor heating on house-dust-mite populations on floors and in furniture.

    PubMed

    de Boer, Rob

    2003-01-01

    It is well known that dehydrating conditions for house dust mites can be created by simply raising the temperature, causing loss of body water and eventually death. Thus, it can be expected that conditions for dust mites are less favourable on floors supplied with sub-floor heating. This was examined in a study of 16 houses with sub-floor heating and 21 without. The pattern of changes in air humidity and temperature on the floors was investigated and compared to known data of the tolerance of dust mites. Also the resident mite populations were compared. Floors with sub-floor heating had, on average, fewer mites, but the difference with unheated floors was small. It was remarkable that mite numbers were also lower in upholstered furniture. Another important observation was that some houses with sub-floor heating had high mite numbers, indicating that this type of heating is compatible with a thriving mite population. Temperature and humidity conditions of heated floors may allow mites not only to survive, but also to remain active in winter. A moderate increase in temperature, a moderate decrease in (absolute) air humidity, or a combination of both, will suffice to keep the humidity all winter below the Critical Equilibrium Humidity, the level of air humidity that is critical for mite growth and reproduction, hence for allergen production. However, it is argued that measures to suppress allergen production by house dust mites are likely to be far more effective if taken in summer rather than in winter.

  9. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  10. Some Like It Hot, Some Like It Warm: Phenotyping to Explore Thermotolerance Diversity

    PubMed Central

    Yeh, Ching-Hui; Kaplinsky, Nicholas J.; Hu, Catherine; Charng, Yee-yung

    2012-01-01

    Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: 1) the heat stress regime used, 2) the developmental stage of the plants being studied, and 3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance. PMID:22920995

  11. Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fan, Shufen; Zhao, Junnan; Yan, Qingyu; Ma, Jan; Hng, Huey Hoon

    2011-05-01

    n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3- x Se x materials are used.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano-Sánchez, F.; Gharsallah, M.; Nemes, N. M.

    SnSe has been prepared by arc-melting, as mechanically robust pellets, consisting of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy, and transport measurements. A microscopic analysis from NPD data demonstrates a quite perfect stoichiometry SnSe{sub 0.98(2)} and a fair amount of anharmonicity of the chemical bonds. The Seebeck coefficient reaches a record maximum value of 668 μV K{sup −1} at 380 K; simultaneously, this highly oriented sample exhibits an extremely low thermal conductivity lower than 0.1 W m{sup −1} K{sup −1} around room temperature, which are two of the main ingredients of good thermoelectric materials. Thesemore » excellent features exceed the reported values for this semiconducting compound in single crystalline form in the moderate-temperatures region and highlight its possibilities as a potential thermoelectric material.« less

  13. Bosch CO2 Reduction System Development

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; King, C. D.; Keller, E. E.

    1975-01-01

    Refinements in the design of a Bosch CO2 reduction unit for spacecraft O2 production are described. Sealing of the vacuum insulation jacket was simplified so that high vacuum and high insulation performance are easily maintained. The device includes a relatively simple concentric shell recuperative heat exchanger which operates at approximately 95% temperature effectiveness and helps lower power consumption. The influence of reactor temperature, pressure, and recycle gas composition on power consumption was investigated. In general, precise control is not required since power consumption is not very sensitive to moderate variations of these parameters near their optimum values. There are two process rate control modes which match flow rate to process demand. Catalyst conditioning, support, and packing pattern developments assure consistent starts, reduced energy consumption, and extended cartridge life. Operation levels for four or five men were maintained with overall power input values of 50 to 60 watts per man.

  14. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  15. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  16. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    NASA Astrophysics Data System (ADS)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be transmuted; this burnup is slightly superior to that attainable in helium-cooled reactors. A preliminary analysis of the modular variant for the PB-AHTR investigated the triple heterogeneity of this design and determined its performance characteristics.

  17. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez

    2017-09-01

    Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  18. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  19. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae.

    PubMed

    Pollo, Stephen M J; Zhaxybayeva, Olga; Nesbø, Camilla L

    2015-09-01

    Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.

  20. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  1. Evaluation of a new ballistic vest design for compliance with Standard No. PN-V-87000:2011 using physiological tests.

    PubMed

    Marszałek, Anna; Grabowska, Grażyna; Łężak, Krzysztof

    2018-05-09

    Research into newly developed ballistic vests to be worn by police officers under clothing was carried out with air temperature conditions of +20 °C. A ballistic vest should incorporate protective features, comfort and ergonomics. The thermal strain on users who wore the vests was evaluated as an average and individually, after they had been conditioned in high (+50 °C), low (-40 °C) or neutral (+20 °C) air temperatures, while performing various occupational activities. Research involved six police officers aged 36-42 years, who wore civilian clothing used in moderate environmental conditions. During the tests, physiological parameters (internal temperature, local skin temperatures and amount of sweat secreted) were determined. The ease of doing exercises while wearing the vests, vest service and level of discomfort in use were assessed. Research showed that the vests tested, both as an average and individually, meet the requirements of Standard No. PN-V-87000:2011 (clause 4.5).

  2. Low-Temperature Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  3. Mars south polar spring and summer temperatures - A residual CO2 frost

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.

    1979-01-01

    Viking infrared thermal mapper (IRTM) energy measurements over the Mars south polar cap throughout the Martian spring and summer revealed complex spatial, spectral, and temporal variations. High albedos did not directly correspond with low temperatures, and as the cap shrank to its residual position, it maintained large differences in brightness temperature between the four IRTM surface-sensing bands at 7, 9, 11, and 20 microns. The late summer infrared spectral pattern can be matched by a surface consisting of CO2 frost with 20 micron emissivity of 0.8 and about 6% dark, warm soil under a dusty atmosphere of moderate infrared opacity and spectral properties similar to those measured for the Martian global dust storms. Low temperature, the absence of appreciable water vapor in the south polar atmosphere, and the absence of surface warming expected if H2O were to become exposed, all imply that the residual south polar cap was covered by solid CO2.

  4. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos

    2016-10-01

    An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 < ΔFQM < +2.0). On the other hand, the RPSD plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.

  5. Toward a mineral physics reference model for the Moon's core.

    PubMed

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-03-31

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  6. Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants

    DOE PAGES

    d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce; ...

    2018-01-11

    Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less

  7. Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce

    Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less

  8. Investigating the Temperature Problem in Narrow Line Emitting AGN

    NASA Astrophysics Data System (ADS)

    Jenkins, Sam; Richardson, Chris T.

    2018-06-01

    Our research investigates the physical conditions in gas clouds around the narrow line region of AGN. Specifically, we explore the necessary conditions for anomalously high electron temperatures, Te, in those clouds. Our 321 galaxy data set was acquired from SDSS DR14 after requiring S/N > 5.0 in [OIII] 4363 and S/N > 3.0 in all BPT diagram emission lines, to ensure both accurate Te and galaxy classification, with 0.04 < z < 1.0. Interestingly, our data set contained no LINERs. We ran simulations using the simulation code Cloudy, and focused on matching the emission exhibited by the hottest of the 70 AGN in our data set. We used multicore computing to cut down on run time, which drastically improved the efficiency of our simulations. We varied hydrogen density, ionization parameter, and metallicity, Z, only to find these three parameters alone were incapable of recreating anomalously high Te, but successfully matched galaxies showing low- to moderate Te. These highest temperature simulations were at low Z, and were able to facilitate higher temperatures because they avoided the cooling effects of high Z. Our most successful simulations varied Z and grain content, which matched approximately 10% of our high temperature data. Our simulations with the highest grain content produced the highest Te because of the photoelectric heating effect that grains provide, which we confirmed by monitoring each heating mechanism as a function of depth. In the near future, we plan to run simulations varying grain content and ionization parameter in order to study the effects these conditions have on gas cloud Te.

  9. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Williams; Zhao, Ji-Cheng

    Cost effective and high performance alloys that are capable of operating at 760 °C or higher for extended periods of time under a very aggressive environment are critically required for the design and development of advanced ultrasupercritical (AUSC) boilers and steam turbines. Finely dispersed Laves phase precipitates have been shown by Takeyama and co-workers to be a viable strengthening mechanism in high temperature austenitic steels. There is currently no straightforward theory that can predict what other intermetallic phases can serve as potent precipitation-strengthening phases for steels; thus we employed a highly effective dual-anneal diffusion multiple (DADM) approach to screen formore » viable strengthening precipitates over a wide range of compositions. From the Fe-Co-Cr-Ni-Mo DADMs, the Fe-Cr-Mo based Chi phase was identified as a new strengthening phase for high temperature ferritic steels; and from the Fe-Mn-Cr-Nb-Ni-Mo-FeAl DADMs, the Laves phase was identified as a viable strengthening precipitate in Fe-Mn and Fe-Ni based austenitic steels. After identification of viable strengthening phases from the DADMs that covered compositions in the basic ternary and quaternary systems, we employed computation thermodynamics to perform multicomponent alloy design and optimization. For the new the Chi-phase strengthened steels, we performed thermodynamic calculations to vary the volume fraction of the Chi phase and introduced Nb and carbon to promote the formation of stable carbides for grain size control during solution heat treatment. For the Fe-Ni-Mn based austenitic steels, we performed extensive parametric optimization of compositions in order to reduce the expensive Ni content, add Cr and Al for oxidation resistance, and balance the alloying contents (Ni, Mn, Cr, Al, Mo) to suppress the ferritic phase and promote the austenitic matrix phase. Four steels (two ferritic + two austenitic) were designed and tested. The two Chi-phase strengthened ferritic steels exhibited excellent oxidation resistance and good creep-rupture strength at moderate temperatures, considering their ferritic matrix that usually results in lower creep resistance than austenitic steels. These steels showed brittleness and sample-to-sample variability in ductility. The low ductility might be due to the macro segregation during solidification or the significant grain growth during the solution heat treatments. We believe there is no inherent brittleness based on the chemistry of the steels. The creep-rupture performance of the steels is comparable to the 9Cr steels. Due to their ferritic matrix, the new Chi-phase strengthened ferritic steels may not be suited for the 760 °C AUSC applications, but they are very good candidates for intermediate temperature applications due to their outstanding oxidation resistance and high strength. Further study is required to find the source of low and highly variable ductility. We believe the compositions of the Chi-phase strengthened steels are not inherently brittle. The Chi-phase strengthened ferritic steels may also be excellent candidates for intermediate-temperature and room-temperature cast stainless steels, thus we highly recommend further investigations. The two Mn-containing austenitic steels based on the Laves phase showed good ductility, excellent oxidation resistance (slightly inferior to the two ferritic steels) at high temperatures and moderate creep strength. The creep-strength of the two austenitic steels based on the Larson-Miller parameters is higher than that of the traditional 316 stainless steels, but lower than the alumina-forming alloys (AFAs) developed at Oak Ridge National Laboratories. We do not recommend high priority in further studying these compositions unless higher Cr alloys are required for hot-corrosion resistance.« less

  11. Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Luo, Yao; Wang, Shuxiao; Wang, Zhiqi; Hao, Jiming; Duan, Lei

    2018-01-01

    Mercury (Hg) exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM) was used to continuously observe gaseous elemental mercury (GEM) fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ) and a moderately polluted site (Huitong, HT, near a large Hg mine) in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT) when compared with that in the mildly polluted site (QYZ) may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration in polluted areas because of Hg emission abatement in the future.

  12. Search for the algorithm of genes distribution during the process of microbial evolution

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.

    2015-09-01

    Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently, accumulation of data for genome sequences is in progress: about 3,500 draft sequences of genomes are available (of the total 12,000 species Bacteria and Archaea). The possibility of confirmation of the previously proposed mathematical model with an approach for genes screening in determined key groups of microorganisms in genomes databases is outlined and discussed in this article.

  13. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  14. Spatial-temporal variations of particle number concentrations between a busy street and the urban background

    NASA Astrophysics Data System (ADS)

    Dos Santos-Juusela, Vanessa; Petäjä, Tuukka; Kousa, Anu; Hämeri, Kaarle

    2013-11-01

    To estimate spatial-temporal variations of ultrafine particles (UFP) in Helsinki, we measured particle total number concentrations (PNC) continuously in a busy street and an urban background site for six months, using condensation particle counters (CPC). We also evaluated the effects of temperature, wind speed and wind direction on PNC, as well as the correlation between PNC and PM2.5, PM10 and black carbon (BC) at the street. We found that on weekdays, hourly median PNC were highly correlated with BC (r = 0.88), moderately correlated with PM2.5 (r = 0.59) and weakly correlated with PM10 (r = 0.22). Number concentrations at the street were inversely proportional to temperature and wind speed, and highly dependent on wind direction. The highest PNC occurred during northeastern winds while the lowest occurred during southwestern winds. As these wind directions are nearly perpendicular to the street axis, the formation of wind vortices may have influenced the dispersion of UFP in the site. Although the temporal correlation for PNC was moderately high between the sites (r = 0.71), the median concentration at the street was 3 times higher than the urban background levels. The results indicate that people living or passing by the busy street are exposed to UFP concentrations well above the urban background levels. Thus, the study suggests that urban microenvironments should be considered in epidemiological studies. In addition the results emphasize that regulations based solely on PM2.5 and PM10 concentrations may be insufficient for preventing the adverse health effects of airborne particles.

  15. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.

    2003-01-01

    In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.

  16. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  17. Criticality calculations of the Very High Temperature reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI

    DOE PAGES

    Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; ...

    2015-12-30

    Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less

  18. The ecology and diversity of microbial eukaryotes in geothermal springs.

    PubMed

    Oliverio, Angela M; Power, Jean F; Washburne, Alex; Cary, S Craig; Stott, Matthew B; Fierer, Noah

    2018-04-16

    Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupō Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.

  19. Achieving accuracy in first-principles calculations for EOS: basis completeness at high temperatures

    NASA Astrophysics Data System (ADS)

    Wills, John; Mattsson, Ann

    2013-06-01

    First-principles electronic structure calculations can provide EOS data in regimes of pressure and temperature where accurate experimental data is difficult or impossible to obtain. This lack, however, also precludes validation of calculations in those regimes. Factors that influence the accuracy of first-principles data include (1) theoretical approximations and (2) computational approximations used in implementing and solving the underlying equations. In the first category are the approximate exchange/correlation functionals and approximate wave equations approximating the Dirac equation; in the second are basis completeness, series convergence, and truncation errors. We are using two rather different electronic structure methods (VASP and RSPt) to make definitive the requirements for accuracy of the second type, common to both. In this talk, we discuss requirements for converged calculation at high temperature and moderated pressure. At convergence we show that both methods give identical results. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Thermal sensitivity of mitochondrial respiration efficiency and protein phosphorylation in the clam Mercenaria mercenaria.

    PubMed

    Ulrich, P N; Marsh, A G

    2009-01-01

    The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15 degrees C, 18 degrees C, and 21 degrees C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18 degrees C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.

  1. Enhancing Rubisco activity at higher temperatures by re-engineering of Rubisco activase

    USDA-ARS?s Scientific Manuscript database

    This report discusses the possibility of increasing plant performance under moderate heat stress by improving the thermal stability of Rubisco activase. • The research is driven by the observation that photosynthesis is acutely sensitive to inhibition by moderate heat stress and that this inhibitio...

  2. Design guide for high pressure oxygen systems

    NASA Technical Reports Server (NTRS)

    Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.

    1983-01-01

    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.

  3. Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Dellacorte, Christopher

    1995-01-01

    A sputter deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperature. The proposed lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters; temperature, load, and sliding velocity were varied over a wide range in order to determine the performance envelope on the gold/chromium (Au/Cr) solid lubricant film. The tribo-tests were run in an air atmosphere at temperatures of 25 to 1000 C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 m/sec. Post test analyses included surface profilometry, wear factor determination and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) examination of worn surfaces. Compared to unlubricated Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000 C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coating life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low speed applications operating at temperatures as high as 1000 C.

  4. Malleable Curie Temperatures of Natural Titanomagnetites: Occurrences, Modes, and Mechanisms

    NASA Astrophysics Data System (ADS)

    Jackson, Mike; Bowles, Julie

    2018-02-01

    Intermediate-composition titanomagnetites have Curie temperatures (Tc) that depend not only on composition but also on thermal history, with increases of 100°C or more in Tc produced by moderate-temperature (300-400°C) annealing in the laboratory or in slow natural cooling and comparable decreases produced by more rapid cooling ("quenching") from higher temperatures. New samples spanning a range of titanomagnetite compositions exhibit reversible changes in Tc comparable to those previously documented for pyroclastic samples from Mt. St. Helens and Novarupta. Additional high- and low-temperature measurements help to shed light on the nanoscale mechanisms responsible for the observed changes in Tc. High-T hysteresis measurements exhibit a peak in high-field slope khf(T) at the Curie temperature, and the peak magnitude decreases as Tc increases with annealing. Sharp changes in low-T magnetic behavior are also strongly affected by prior annealing or quenching, suggesting that these treatments affect the intrasite cation distributions. We have examined the effects of oxidation state and nonstoichiometry on the magnitude of Tc changes produced by quenching/annealing in different atmospheres. Treatments in air generally cause large changes (ΔTc > 100°). In an inert atmosphere, the changes are similar in many samples but strongly diminished in others. When the samples are embedded in a reducing material, ΔTc becomes insignificant. These results strongly suggest that cation vacancies play an essential role in the cation rearrangements responsible for the observed changes in Tc. Some form of octahedral-site chemical clustering or short-range ordering appears to be the best way to explain the large observed changes in Tc.

  5. Relative Reactivity of Benzothiophene-Fused Enediynes in the Bergman Cyclization.

    PubMed

    Lyapunova, Anna G; Danilkina, Natalia A; Rumyantsev, Andrey M; Khlebnikov, A F; Chislov, Mikhail V; Starova, Galina L; Sambuk, Elena V; Govdi, Anastasia I; Bräse, Stefan; Balova, Irina A

    2018-03-02

    To find promising analogues of naturally occurring enediyne antibiotics with a sufficient reactivity in the Bergman cyclization and moderately stable under isolation and storage, a scale of relative enediynes reactivity was created on the basis of calculated free activation energies for the Bergman cyclization within 12 known and new benozothiophene, benzene, and cinnoline annulated 9- and 10-membered enediynes. To verify the predicted reactivity/stability balance, three new carbocyclic enediynes fused to a benzothiophene core bearing 3,4,5-trimethoxybenzene, fluoroisopropyl, and isopropenyl substituents were synthesized using the Nicholas-type macrocyclization. It was confirmed that annulation of a 3,4,5-trimethoxybenzene moiety to a 10-membered enediyne macrocycle imparts high reactivity to an enediyne while also conferring instability under ambient temperature. Fluoroisopropyl-substituted 10-membered enediyne from the opposite end of the scale was found to be stable while moderately reactive in the Bergman cyclization. Along with the experimentally confirmed moderate reactivity (DSC kinetic studies), (fluoroisopropyl)enediyne showed a significant DNA damaging activity in plasmid cleavage assays comparable with the known anticancer drug Zeocin.

  6. Microbial Communities in Long-Term, Water-Flooded Petroleum Reservoirs with Different in situ Temperatures in the Huabei Oilfield, China

    PubMed Central

    Tang, Yue-Qin; Li, Yan; Zhao, Jie-Yu; Chi, Chang-Qiao; Huang, Li-Xin; Dong, Han-Ping; Wu, Xiao-Lei

    2012-01-01

    The distribution of microbial communities in the Menggulin (MGL) and Ba19 blocks in the Huabei Oilfield, China, were studied based on 16S rRNA gene analysis. The dominant microbes showed obvious block-specific characteristics, and the two blocks had substantially different bacterial and archaeal communities. In the moderate-temperature MGL block, the bacteria were mainly Epsilonproteobacteria and Alphaproteobacteria, and the archaea were methanogens belonging to Methanolinea, Methanothermobacter, Methanosaeta, and Methanocella. However, in the high-temperature Ba19 block, the predominant bacteria were Gammaproteobacteria, and the predominant archaea were Methanothermobacter and Methanosaeta. In spite of shared taxa in the blocks, differences among wells in the same block were obvious, especially for bacterial communities in the MGL block. Compared to the bacterial communities, the archaeal communities were much more conserved within blocks and were not affected by the variation in the bacterial communities. PMID:22432032

  7. Pressure and temperature dependence of the Ce valence and c -f hybridization gap in Ce T2In5(T =Co ,Rh ,Ir ) heavy-fermion superconductors

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Yamamoto, Y.; Schwier, E. F.; Honda, F.; Zekko, Y.; Ohta, Y.; Lin, J.-F.; Nakatake, M.; Iwasawa, H.; Arita, M.; Shimada, K.; Hiraoka, N.; Ishii, H.; Tsuei, K.-D.; Mizuki, J.

    2015-12-01

    Pressure- and temperature-induced changes in the Ce valence and c -f hybridization of the Ce115 superconductors have been studied systematically. Resonant x-ray-emission spectroscopy indicated that the increase of the Ce valence with pressure was significant for CeCoIn5, and moderate for CeIr (In0.925Cd0.075)5 . We found no abrupt change of the Ce valence in the Kondo regime for CeIr (In0.925Cd0.075)5 , which suggests that valence fluctuations are unlikely to mediate the superconductivity in this material. X-ray-diffraction results were consistent with the pressure-induced change in the Ce valence. High-resolution photoelectron spectroscopy revealed a temperature-dependent reduction of the spectral intensity at the Fermi level, indicating enhanced c -f hybridization on cooling.

  8. Reliability Testing of NASA Piezocomposite Actuators

    NASA Technical Reports Server (NTRS)

    Wilkie, W.; High, J.; Bockman, J.

    2002-01-01

    NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.

  9. Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

    NASA Astrophysics Data System (ADS)

    Medved', Igor; Trník, Anton

    2018-07-01

    Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

  10. Influence of temperature during grain filling on gluten viscoelastic properties and gluten protein composition.

    PubMed

    Koga, Shiori; Böcker, Ulrike; Moldestad, Anette; Tosi, Paola; Shewry, Peter R; Mosleth, Ellen F; Uhlen, Anne Kjersti

    2016-01-15

    The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax ) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperatures. © 2015 Society of Chemical Industry.

  11. Calcic micas in the Allende meteorite - Evidence for hydration reactions in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Buseck, Peter R.

    1991-01-01

    Two calcic micas, clintonite and margarite, have been identified in alteration products in a calcium- and aluminum-rich inclusion (CAI) in the Allende meteorite. Clintonite replaces grossular in alteration veins, and margarite occurs as lamellae in anorthite. Their occurrence suggests that, in addition to undergoing high-temperature alteration by a volatile and iron-rich vapor that produced the grossular and anorthite, some CAIs underwent alteration at moderate temperatures (400 K or less). Petrographic evidence suggests that the calcic micas formed before accretion but after the formation of the layered rim sequences that surround the CAI. These calcic micas provide strong evidence that, contrary to theoretical calculations, some hydration reactions occurred in the early solar nebula.

  12. Catalytic autothermal reforming increases fuel cell flexibility

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, M.; Voecks, G. E.

    1981-01-01

    Experimental results are presented for the autothermal reforming (ATR) of n-hexane, n-tetradecane, benzene and benzene solutions of naphthalene. The tests were run at atmospheric pressure and at moderately high reactant preheat temperatures in the 800-900 K range. Carbon formation lines were determined for paraffinic and aromatic liquids. Profiles were determined for axial bed temperature and composition. Space velocity efforts were assessed, and the locations and types of carbon were recorded. Significant reactive differences between hydrocarbons were identified. Carbon formation characteristics were hydrocarbon specific. The differing behavior of paraffinic and aromatic fuels with respect to their carbon formation may be important in explaining the narrow range of carbon-free operating conditions found in the ATR of number two fuel oil.

  13. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  14. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  15. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  16. Resolving uncertainties in the urban air quality, climate, and vegetation nexus through citizen science, satellite imagery, and atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Jenerette, D.; Wang, J.; Chandler, M.; Ripplinger, J.; Koutzoukis, S.; Ge, C.; Castro Garcia, L.; Kucera, D.; Liu, X.

    2017-12-01

    Large uncertainties remain in identifying the distribution of urban air quality and temperature risks across neighborhood to regional scales. Nevertheless, many cities are actively expanding vegetation with an expectation to moderate both climate and air quality risks. We address these uncertainties through an integrated analysis of satellite data, atmospheric modeling, and in-situ environmental sensor networks maintained by citizen scientists. During the summer of 2017 we deployed neighborhood-scale networks of air temperature and ozone sensors through three campaigns across urbanized southern California. During each five-week campaign we deployed six sensor nodes that included an EPA federal equivalent method ozone sensor and a suite of meteorological sensors. Each node was further embedded in a network of 100 air temperature sensors that combined a randomized design developed by the research team and a design co-created by citizen scientists. Between 20 and 60 citizen scientists were recruited for each campaign, with local partners supporting outreach and training to ensure consistent deployment and data gathering. We observed substantial variation in both temperature and ozone concentrations at scales less than 4km, whole city, and the broader southern California region. At the whole city scale the average spatial variation with our ozone sensor network just for city of Long Beach was 26% of the mean, while corresponding variation in air temperature was only 7% of the mean. These findings contrast with atmospheric model estimates of variation at the regional scale of 11% and 1%. Our results show the magnitude of fine-scale variation underestimated by current models and may also suggest scaling functions that can connect neighborhood and regional variation in both ozone and temperature risks in southern California. By engaging citizen science with high quality sensors, satellite data, and real-time forecasting, our results help identify magnitudes of climate and air quality risk variation across scales and can guide individual decisions and urban policies surrounding vegetation to moderate these risks.

  17. Firefighter feedback during active cooling: a useful tool for heat stress management?

    PubMed

    Savage, Robbie J; Lord, Cara; Larsen, Brianna L; Knight, Teagan L; Langridge, Peter D; Aisbett, Brad

    2014-12-01

    Monitoring an individual's thermic state in the workplace requires reliable feedback of their core temperature. However, core temperature measurement technology is expensive, invasive and often impractical in operational environments, warranting investigation of surrogate measures which could be used to predict core temperature. This study examines an alternative measure of an individual's thermic state, thermal sensation, which presents a more manageable and practical solution for Australian firefighters operating on the fireground. Across three environmental conditions (cold, warm, hot & humid), 49 Australian volunteer firefighters performed a 20-min fire suppression activity, immediately followed by 20 min of active cooling using hand and forearm immersion techniques. Core temperature (Tc) and thermal sensation (TS) were measured across the rehabilitation period at five minute intervals. Despite the decline in Tc and TS throughout the rehabilitation period, there was little similarity in the magnitude or rate of decline between each measure in any of the ambient conditions. Moderate to strong correlations existed between Tc and TS in the cool (0.41, p<0.05) and hot & humid (0.57, p<0.05) conditions, however this was resultant in strong correlation during the earlier stages of rehabilitation (first five minutes), which were not evident in the latter stages. Linear regression revealed TS to be a poor predictor of Tc in all conditions (SEE=0.45-0.54°C) with a strong trend for TS to over-predict Tc (77-80% of the time). There is minimal evidence to suggest that ratings of thermal sensation, which represent a psychophysical assessment of an individual's thermal comfort, are an accurate reflection of the response of an individual's core temperature. Ratings of thermal sensation can be highly variable amongst individuals, likely moderated by local skin temperature. In account of these findings, fire managers require a more reliable source of information to guide decisions of heat stress management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mortality risk attributable to high and low ambient temperature: a multicountry observational study

    PubMed Central

    Gasparrini, Antonio; Guo, Yuming; Hashizume, Masahiro; Lavigne, Eric; Zanobetti, Antonella; Schwartz, Joel; Tobias, Aurelio; Tong, Shilu; Rocklöv, Joacim; Forsberg, Bertil; Leone, Michela; De Sario, Manuela; Bell, Michelle L; Guo, Yue-Liang Leon; Wu, Chang-fu; Kan, Haidong; Yi, Seung-Muk; de Sousa Zanotti Stagliorio Coelho, Micheline; Saldiva, Paulo Hilario Nascimento; Honda, Yasushi; Kim, Ho; Armstrong, Ben

    2015-01-01

    Summary Background Although studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures. Methods We collected data for 384 locations in Australia, Brazil, Canada, China, Italy, Japan, South Korea, Spain, Sweden, Taiwan, Thailand, UK, and USA. We fitted a standard time-series Poisson model for each location, controlling for trends and day of the week. We estimated temperature–mortality associations with a distributed lag non-linear model with 21 days of lag, and then pooled them in a multivariate metaregression that included country indicators and temperature average and range. We calculated attributable deaths for heat and cold, defined as temperatures above and below the optimum temperature, which corresponded to the point of minimum mortality, and for moderate and extreme temperatures, defined using cutoffs at the 2·5th and 97·5th temperature percentiles. Findings We analysed 74 225 200 deaths in various periods between 1985 and 2012. In total, 7·71% (95% empirical CI 7·43–7·91) of mortality was attributable to non-optimum temperature in the selected countries within the study period, with substantial differences between countries, ranging from 3·37% (3·06 to 3·63) in Thailand to 11·00% (9·29 to 12·47) in China. The temperature percentile of minimum mortality varied from roughly the 60th percentile in tropical areas to about the 80–90th percentile in temperate regions. More temperature-attributable deaths were caused by cold (7·29%, 7·02–7·49) than by heat (0·42%, 0·39–0·44). Extreme cold and hot temperatures were responsible for 0·86% (0·84–0·87) of total mortality. Interpretation Most of the temperature-related mortality burden was attributable to the contribution of cold. The effect of days of extreme temperature was substantially less than that attributable to milder but non-optimum weather. This evidence has important implications for the planning of public-health interventions to minimise the health consequences of adverse temperatures, and for predictions of future effect in climate-change scenarios. Funding UK Medical Research Council. PMID:26003380

  19. Psychrophily and catalysis.

    PubMed

    Gerday, Charles

    2013-04-16

    Polar and other low temperature environments are characterized by a low content in energy and this factor has a strong incidence on living organisms which populate these rather common habitats. Indeed, low temperatures have a negative effect on ectothermic populations since they can affect their growth, reaction rates of biochemical reactions, membrane permeability, diffusion rates, action potentials, protein folding, nucleic acids dynamics and other temperature-dependent biochemical processes. Since the discovery that these ecosystems, contrary to what was initially expected, sustain a rather high density and broad diversity of living organisms, increasing efforts have been dedicated to the understanding of the molecular mechanisms involved in their successful adaptation to apparently unfavorable physical conditions. The first question that comes to mind is: How do these organisms compensate for the exponential decrease of reaction rate when temperature is lowered? As most of the chemical reactions that occur in living organisms are catalyzed by enzymes, the kinetic and thermodynamic properties of cold-adapted enzymes have been investigated. Presently, many crystallographic structures of these enzymes have been elucidated and allowed for a rather clear view of their adaptation to cold. They are characterized by a high specific activity at low and moderate temperatures and a rather low thermal stability, which induces a high flexibility that prevents the freezing effect of low temperatures on structure dynamics. These enzymes also display a low activation enthalpy that renders them less dependent on temperature fluctuations. This is accompanied by a larger negative value of the activation entropy, thus giving evidence of a more disordered ground state. Appropriate folding kinetics is apparently secured through a large expression of trigger factors and peptidyl-prolyl cis/trans-isomerases.

  20. Effect of the Temperature of the Moderator on the Velocity Distribution of Neutrons with Numerical Calculations for H as Moderator

    DOE R&D Accomplishments Database

    Wigner, E. P.; Wilkins, J. E. Jr.

    1944-09-14

    In this paper we set up an integral equation governing the energy distribution of neutrons that are being slowed down uniformly throughout the entire space by a uniformly distributed moderator whose atoms are in motion with a Maxwellian distribution of velocities. The effects of chemical binding and crystal reflection are ignored. When the moderator is hydrogen, the integral equation is reduced to a differential equation and solved by numerical methods. In this manner we obtain a refinement of the dv/v{sup 2} law. (auth)

  1. Marine Corps CASEVAC: Determining Medical Supply Requirements for Long-Range Casualty Evacuation Aircraft

    DTIC Science & Technology

    2003-08-01

    Force of blades Extreme Moderate Moderate Moderate Temperature Heating, no A/C Heating, no A/C Heating, no A/C Heating, no A/C In-flight refueling Yes...CASEVAC CUBE CASEVAC PRICE 6515013215211 Airway Kit Percutaneous Emergency Adult Sterile Disposable 1.00 EA 0.2000 0.0500 $206.27 6515011676637...UI CASEVAC WEIGHT CASEVAC CUBE CASEVAC PRICE 6515014661488 Crystalloid and Colloid Pump Cartridges And IV Sets for the Power Infuser. Sterile

  2. High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers

    PubMed Central

    2017-01-01

    We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 1010 cm–2, the highest peak output power of 151 mW is found for 7.3 × 1010 cm–2. Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures. PMID:28470028

  3. High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers.

    PubMed

    Deutsch, Christoph; Kainz, Martin Alexander; Krall, Michael; Brandstetter, Martin; Bachmann, Dominic; Schönhuber, Sebastian; Detz, Hermann; Zederbauer, Tobias; MacFarland, Donald; Andrews, Aaron Maxwell; Schrenk, Werner; Beck, Mattias; Ohtani, Keita; Faist, Jérôme; Strasser, Gottfried; Unterrainer, Karl

    2017-04-19

    We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 10 10 cm -2 , the highest peak output power of 151 mW is found for 7.3 × 10 10 cm -2 . Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures.

  4. Plastic Flow and Microstructure Evolution during Thermomechanical Processing of a PM Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; McClary, K. E.; Rollett, A. D.; Roberts, C. G.; Payton, E. J.; Zhang, F.; Gabb, T. P.

    2013-06-01

    Plastic flow and microstructure evolution during sub- and supersolvus forging and subsequent supersolvus heat treatment of the powder-metallurgy superalloy LSHR (low-solvus, high-refractory) were investigated to develop an understanding of methods that can be used to obtain a moderately coarse gamma grain size under well-controlled conditions. To this end, isothermal, hot compression tests were conducted over broad ranges of temperature [(1144 K to 1450 K) 871 °C to 1177 °C] and constant true strain rate (0.0005 to 10 s-1). At low temperatures, deformation was generally characterized by flow softening and dynamic recrystallization that led to a decrease in grain size. At high subsolvus temperatures and low strain rates, steady-state flow or flow hardening was observed. These latter behaviors were ascribed to superplastic deformation and microstructure evolution characterized by a constant grain size or concomitant dynamic grain growth, respectively. During supersolvus heat treatment following subsolvus deformation, increases in grain size whose magnitude was a function of the prior deformation conditions were noted. A transition in flow behavior from superplastic to nonsuperplastic and the development during forging at a high subsolvus temperature of a wide (possibly bi- or multimodal) gamma-grain-size distribution having some large grains led to a substantially coarser grain size during supersolvus annealing in comparison to that produced under all other forging conditions.

  5. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    PubMed Central

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002

  6. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    PubMed

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  7. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    NASA Astrophysics Data System (ADS)

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-09-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  8. The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review

    NASA Astrophysics Data System (ADS)

    Giuliani, Gaston; Dubessy, Jean; Ohnenstetter, Daniel; Banks, David; Branquet, Yannick; Feneyrol, Julien; Fallick, Anthony E.; Martelat, Jean-Emmanuel

    2018-01-01

    The mineral and fluid inclusions trapped by gemstones during the metamorphism of carbonate platform successions are precious markers for the understanding of gem genesis. The nature and chemical composition of inclusions highlight the major contribution of evaporites through dissolution or fusion, depending on the temperature of formation from greenschist to granulite facies. The fluids are highly saline NaCl-brines circulating either in an open system in the greenschist facies (Colombian and Afghan emeralds) and with huge fluid-rock metasomatic interactions, or sulphurous fluids (ruby, garnet tsavorite, zoisite tanzanite and lapis-lazuli) or molten salts formed in a closed system with a low fluid mobility (ruby in marble) in the conditions of the amphibolite to granulite facies. These chloride-fluoride-sulphate ± carbonate-rich fluids scavenged the metals essential for gem formation. At high temperature, the anions SO4 2-, NO3 -, BO3 - and F- are powerful fluxes which lower the temperature of chloride- and fluoride-rich ionic liquids. They provided transport over a very short distance of aluminium and/or silica and transition metals which are necessary for gem growth. In summary, the genetic models proposed for these high-value and ornamental gems underline the importance of the metamorphism of evaporites formed on continental carbonate shelves and emphasise the chemical power accompanying metamorphism at moderate to high temperatures of evaporite-rich and organic matter-rich protoliths to form gem minerals.

  9. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  10. Outdoor temperature, precipitation, and wind speed affect physical activity levels in children: a longitudinal cohort study

    PubMed Central

    Edwards, Nicholas M.; Myer, Gregory D.; Kalkwarf, Heidi J.; Woo, Jessica G.; Khoury, Philip R.; Hewett, Timothy E.; Daniels, Stephen R.

    2015-01-01

    Objective Evaluate effects of local weather conditions on physical activity in early childhood. Methods Longitudinal prospective cohort study of 372 children, 3 years old at enrollment, drawn from a major US metropolitan community. Accelerometer-measured (RT3) physical activity was collected every 4 months over 5 years and matched with daily weather measures: day length, heating/cooling degrees (degrees mean temperature < 65°F or ≥ 65°F, respectively), wind, and precipitation. Mixed regression analyses, adjusted for repeated measures, were used to test the relationship between weather and physical activity. Results Precipitation and wind speed were negatively associated with total physical activity and moderate-vigorous physical activity (P<0.0001). Heating and cooling degrees were negatively associated with total physical activity and moderate-vigorous physical activity and positively associated with inactivity (all P<0.0001), independent of age, sex, race, BMI, day length, wind, and precipitation. For every 10 additional heating degrees there was a five-minute daily reduction in moderate-vigorous physical activity. For every additional 10 cooling degrees there was a 17-minute reduction in moderate-vigorous physical activity. Conclusions Inclement weather (higher/lower temperature, greater wind speed, more rain/snow) is associated with less physical activity in young children. These deleterious effects should be considered when planning physical activity research, interventions, and policies. PMID:25423667

  11. Tamper resistant magnetic stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naylor, R.B.; Sharp, D.J.

    1999-11-09

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180{degree} opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40 C, is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable timemore » limits.« less

  12. Phase 0 study for a geothermal superheated water proof of concept facility

    NASA Technical Reports Server (NTRS)

    Douglass, R. H.; Pearson, R. O.

    1974-01-01

    A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation.

  13. Tamper resistant magnetic stripes

    DOEpatents

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  14. Relationship between ambient temperature and frequency and severity of cardiovascular emergencies: A prospective observational study based on out-of-hospital care data.

    PubMed

    Hensel, Mario; Stuhr, Markus; Geppert, Daniel; Kersten, Jan F; Lorenz, Jürgen; Kerner, Thoralf

    2017-02-01

    To test the hypothesis that more cardiovascular emergencies occur at low rather than at high temperatures under moderate climatic conditions. This was a prospective observational study performed in a prehospital setting. Data from the Emergency Medical Service in Hamburg (Germany) and from the local weather station were evaluated over a 5-year period. Temperature data were matched with the associated rescue mission data. Lowess-Regression analysis was performed to assess the relationship between the temperature and the frequency of individual cardiovascular emergencies. In addition, three threshold-temperatures (0°C, 10°C, 20°C) were defined in order to determine the frequency of cardiovascular emergencies above and below each cut-off value. The severity of emergencies was assessed using the National Advisory Committee for Aeronautics (NACA) scoring system. A total of 35,390 cardiovascular emergencies were treated by Emergency Physicians. Transient Loss of Consciousness increased at high temperatures (above 20°C): +43% (95%-CI: [27%; 59%]). In contrast, Coronary Artery Disease +26% (95%-CI: [17%; 34%]), Cardiac Pulmonary Edema +21% (95%-CI: [14%; 27%]), Hypertensive Urgency +18% (95%-CI: [10%; 25%]) and Cerebrovascular Accident +17% (95%-CI: [8%; 24%]) increased at low temperatures, particularly below 10°C (significance level for all: p<0.001). No temperature-related effect was seen in Cardiac Arrhythmia and Pulmonary Embolism and no significant correlation was found between the severity of emergencies and temperature. Our findings suggest that some cardiovascular emergencies such as Coronary Artery Disease, Cardiac Pulmonary Edema, Hypertensive Urgency and Cerebrovascular Accident are more frequent in low temperatures even under mild climatic conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernnat, W.; Buck, M.; Mattes, M.

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less

  16. Regulating low-NOx and high-burnout deep-air-staging combustion under real-furnace conditions in a 600 MWe down-fired supercritical boiler by strengthening the staged-air effect.

    PubMed

    Kuang, Min; Wang, Zhihua; Zhu, Yanqun; Ling, Zhongqian; Li, Zhengqi

    2014-10-21

    A 600 MW(e) down-fired pulverized-coal supercritical boiler, which was equipped with a deep-air-staging combustion system for reducing the particularly high NOx emissions, suffered from the well-accepted contradiction between low NOx emissions and high carbon in fly ash, in addition to excessively high gas temperatures in the hopper that jeopardized the boiler's safe operations. Previous results uncovered that under low-NOx conditions, strengthening the staged-air effect by decreasing the staged-air angle and simultaneously increasing the staged-air damper opening alleviated the aforementioned problems to some extent. To establish low-NOx and high-burnout circumstances and control the aforementioned hopper temperatures, a further staged-air retrofit with horizontally redirecting staged air through an enlarged staged-air slot area was performed to greatly strengthen the staged-air effect. Full-load industrial-size measurements were performed to confirm the availability of this retrofit. The present data were compared with those published results before the retrofit. High NOx emissions, low carbon in fly ah, and high hopper temperatures (i.e., levels of 1036 mg/m(3) at 6% O2, 3.72%, and about 1300 °C, respectively) appeared under the original conditions with the staged-air angle of 45° and without overfire air (OFA) application. Applying OFA and reducing the angle to 20° achieved an apparent NOx reduction and a moderate hopper temperature decrease while a sharp increase in carbon in fly ash (i.e., levels of 878 mg/m(3) at 6% O2, about 1200 °C, and 9.81%, respectively). Fortunately, the present staged-air retrofit was confirmed to be applicable in regulating low-NOx, high-burnout, and low hopper temperature circumstances (i.e., levels of 867 mg/m(3) at 6% O2, 5.40%, and about 1100 °C, respectively).

  17. High temperature polymers - A review of novel thermally stable hexafluoroisopropylidene-containing polymers

    NASA Technical Reports Server (NTRS)

    Kane, K. M.; Cassidy, P. E.; Tullos, G. L.; Reynolds, D. W.

    1990-01-01

    The synthesis and properties to date of several novel HFIP-containing polymers and copolymers are presented. Thermal analyses of polyether ketones (PEK), aromatic polyesters, and polymers from a novel 18F-diacid were performed on a thermal analyzer. All three polymer types exhibited enhanced solubility, thermal stability, and low dielectric constants that are predicted for polymers containing the HFIP moiety. The moderate thermal stability observed in the polymers derived from the 18F-diacid is attributed to the oxidatively weak methylene linkage between the HFIP groups and the phenyl rings. PEKs and polyarylates show potential as high emissivity coatings under conditions where atomic oxygen is present.

  18. Properties of iron alloys under the Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann

    2014-05-01

    The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.

  19. Hydrogen storage with trilithium aluminum hexahydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathaniel, T.A.

    1998-05-14

    Fuel cells have good potential to replace batteries for many applications requiring moderate, portable electric power. Applications being researched can range from cellular telephones and radios to power generators for large camps. The primary advantages of fuel cells include high power density, low temperature operation, silent operation, no poisonous exhausts, high electric efficiency, and fast start-up capability. While many commercial industries are just beginning to look at the opportunities fuel cells present, the space program has driven the development of fuel cell technology. The paper discusses the status of the fuel cell and in particular, the technology for hydrogen storagemore » for fuel cell use.« less

  20. Neutron Time-of-Flight Diffractometer HIPPO at LANSCE

    NASA Astrophysics Data System (ADS)

    Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf

    2004-03-01

    The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.

Top