NASA Technical Reports Server (NTRS)
Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.
1993-01-01
We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.
NASA Astrophysics Data System (ADS)
Minitti, Michelle E.; Rutherford, Malcolm J.; Taylor, Bruce E.; Dyar, M. Darby; Schultz, Peter H.
2008-02-01
Kaersutitic amphiboles found within a subset of the Martian meteorites have low water contents and variably heavy hydrogen isotope compositions. In order to assess if impact shock-induced devolatilization and hydrogen isotope fractionation were determining factors in these water and isotopic characteristics of the Martian kaersutites, we conducted impact shock experiments on samples of Gore Mountain amphibolite in the Ames Vertical Gun Range (AVGR). A parallel shock experiment conducted on an anorthosite sample indicated that contamination of shocked samples by the AVGR hydrogen propellant was unlikely. Petrographic study of the experimental amphibolite shock products indicates that only ˜ 10% of the shock products experienced levels of damage equivalent to those found in the most highly shocked kaersutite-bearing Martian meteorites (30-35 GPa). Ion microprobe studies of highly shocked hornblende from the amphibolite exhibited elevated water contents (ΔH 2O ˜ 0.1 wt.%) and enriched hydrogen isotope compositions (Δ D ˜ + 10‰) relative to unshocked hornblende. Water and hydrogen isotope analyses of tens of milligrams of unshocked, moderately shocked, and highly shocked hornblende samples by vacuum extraction/uranium reduction and isotope ratio mass spectrometry (IRMS), respectively, are largely consistent with analyses of single grains from the ion microprobe. The mechanisms thought to have produced the excess water in most of the shocked hornblendes are shock-induced reduction of hornblende Fe and/or irreversible adsorption of hydrogen. Addition of the isotopically enriched Martian atmosphere to the Martian meteorite kaersutites via these mechanisms could explain their enriched and variable isotopic compositions. Alternatively, regrouping the water extraction and IRMS analyses on the basis of isotopic composition reveals a small, but consistent, degree of impact-induced devolatilization (˜ 0.1 wt.% H 2O) and H isotope enrichment (Δ D ˜ + 10‰). Extrapolating the shock signature of the regrouped data to grains that experienced Martian meteorite-like shock pressures suggests that shock-induced water losses and hydrogen isotope enrichments could approach 1 wt.% H 2O and Δ D = + 100‰, respectively. If these values are valid, then impact shock effects could explain a substantial fraction of the low water contents and variable hydrogen isotope compositions of the Martian meteorite kaersutites.
Sonna, Larry A; Kuhlmeier, Matthew M; Khatri, Purvesh; Chen, Dechang; Lilly, Craig M
2010-09-01
The gene expression changes produced by moderate hypothermia are not fully known, but appear to differ in important ways from those produced by heat shock. We examined the gene expression changes produced by moderate hypothermia and tested the hypothesis that rewarming after hypothermia approximates a heat-shock response. Six sets of human HepG2 hepatocytes were subjected to moderate hypothermia (31 degrees C for 16 h), a conventional in vitro heat shock (43 degrees C for 30 min) or control conditions (37 degrees C), then harvested immediately or allowed to recover for 3 h at 37 degrees C. Expression analysis was performed with Affymetrix U133A gene chips, using analysis of variance-based techniques. Moderate hypothermia led to distinct time-dependent expression changes, as did heat shock. Hypothermia initially caused statistically significant, greater than or equal to twofold changes in expression (relative to controls) of 409 sequences (143 increased and 266 decreased), whereas heat shock affected 71 (35 increased and 36 decreased). After 3 h of recovery, 192 sequences (83 increased, 109 decreased) were affected by hypothermia and 231 (146 increased, 85 decreased) by heat shock. Expression of many heat shock proteins was decreased by hypothermia but significantly increased after rewarming. A comparison of sequences affected by thermal stress without regard to the magnitude of change revealed that the overlap between heat and cold stress was greater after 3 h of recovery than immediately following thermal stress. Thus, while some overlap occurs (particularly after rewarming), moderate hypothermia produces extensive, time-dependent gene expression changes in HepG2 cells that differ in important ways from those induced by heat shock.
Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi
2015-06-01
Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.
Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi
2015-01-01
Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916
Harniman, Elaine; Carette, Simon; Kennedy, Carol; Beaton, Dorcas
2004-01-01
The authors conducted a systematic review to assess the effectiveness of extracorporeal shock wave therapy (ESWT) for the treatment of calcific and noncalcific tendonitis of the rotator cuff. Conservative treatment for rotator cuff tendonitis includes physiotherapy, nonsteroidal antiinflammatory drugs, and corticosteroid injections. If symptoms persist with conservative treatment, surgery is often considered. Extracorporeal shock wave therapy has been suggested as a treatment alternative for chronic rotator cuff tendonitis, which may decrease the need for surgery. Articles for this review were identified by electronically searching Medline, EMBASE, Cumulative Index to Nursing & Allied Health Literature (CINAHL), and Evidence Based Medicine (EBM) and hand-screening references. Two reviewers selected the trials that met the inclusion criteria, extracted the data, and assessed the methodological quality of the selected trials. Finally, the strength of scientific evidence was appraised. Evidence was classified as strong, moderate, limited, or conflicting. Sixteen trials met the inclusion criteria. There were only five randomized, controlled trials and all involved chronic (>/=3 months) conditions, three for calcific tendonitis and two for noncalcific tendonitis. For randomized, controlled trials, two (40%) were of high quality, one (33%) for calcific tendonitis and one (50%) for noncalcific tendonitis. The 11 nonrandomized trials included nine that involved calcific tendonitis and two that involved both calcific and noncalcific tendonitis. Common problem areas were sample size, randomization, blinding, treatment provider bias, and outcome measures. There is moderate evidence that high-energy ESWT is effective in treating chronic calcific rotator cuff tendonitis when the shock waves are focused at the calcified deposit. There is moderate evidence that low-energy ESWT is not effective for treating chronic noncalcific rotator cuff tendonitis, although this conclusion is based on only one high-quality study, which was underpowered. High-quality randomized, controlled trials are needed with larger sample sizes, better randomization and blinding, and better outcome measures.
Ar-Ar Analysis of Chelyabinsk: Evidence for a Recent Impact
NASA Technical Reports Server (NTRS)
Beard, S. P.; Kring, D. A.; Isachsen, C. E.; Lapen, T. J.; Zolensky, M. E.; Swindle, T. D.
2014-01-01
The Chelyabinsk meteorite is an LL5 ordinary chondrite that fell as a spectacular fireball on February 15th, 2013, over the Ural region in Russia. The meteoroid exploded at an altitude of 25-30 km, producing shockwaves that broke windowpanes in Chelyabinsk and surrounding areas, injuring some 1500 people. Analyses of the samples show that the meteorite underwent moderate shock metamorphism (stage S4; 25-35 GPa) [1]. Most of the samples have a fusion crust ranging from 0.1-1mm thick, and roughly a third of the samples were composed of a dark fine-grained impact melt with chondrule fragments which were targeted for chronometry. A Pb-Pb age obtained by [2] of a shock-darkened and potentially melted sample of Chelyabinsk is reported as 4538.3 +/- 2.1 Ma, while a U-Pb study [3] gave an upper concordia intercept of 4454 +/- 67 Ma and a lower intercept of 585 +/- 390. Galimov et al. 2013 [1] suggest the Sm-Nd system records a recent impact event [290 Ma] that may represent separation from the parent body, while the Rb-Sr isotopic system is disturbed and does not give any definitive isochron. In order to better understand its history, we have performed 40Ar-39Ar analysis on multiple splits of two Chelyabinsk samples; clast- rich MB020f,2 and melt-rich MB020f,5. The term "clast-rich" lithology is meant to indicate a mechanical mixture of highly shock-darkened and less shocked components, both with some shock melt veining.
Muscle oxygenation as an early predictor of shock severity in trauma patients
Arakaki, Lorilee S. L.; Bulger, Eileen M.; Ciesielski, Wayne A.; Carlbom, David J.; Fisk, Dana M.; Sheehan, Kellie L.; Asplund, Karin M.; Schenkman, Kenneth A.
2016-01-01
Introduction We evaluated the potential utility of a new prototype noninvasive muscle oxygenation (MOx) measurement for the identification of shock severity in a population of patients admitted to the trauma resuscitation rooms of a Level I regional trauma center. The goal of this project was to correlate MOx with shock severity as defined by standard measures of shock: systolic blood pressure, heart rate, and lactate. Methods Optical spectra were collected from subjects by placement of a custom-designed optical probe over the first dorsal interosseous muscles on the back of the hand. Spectra were acquired from trauma patients as soon as possible upon admission to the trauma resuscitation room. Patients with any injury were eligible for study. MOx was determined from the collected optical spectra with a multi-wavelength analysis that used both visible and near-infrared regions of light. Shock severity was determined in each patient by a scoring system based on combined degrees of hypotension, tachycardia, and lactate. MOx values of patients in each shock severity group (mild, moderate, and severe) were compared using two-sample t-tests. Results In 17 healthy control patients, the mean MOx value was 91.0 ± 5.5%. A total of 69 trauma patients were studied. Patients classified as having mild shock had a mean MOx of 62.5 ± 26.2% (n = 33), those classified as in moderate shock had a mean MOx of 56.9 ± 26.9% (n = 25) and those classified as in severe shock had a MOx of 31.0 ± 17.1% (n = 11). Mean MOx for each of these groups was statistically different from the healthy control group (p<0.05). Receiver operating characteristic (ROC) analyses show that MOx and shock index (heart rate/systolic blood pressure) identified shock similarly well (area under the curves (AUC) = 0.857 and 0.828, respectively). However, MOx identified mild shock better than shock index in the same group of patients (AUC = 0.782 and 0.671, respectively). Conclusions The results obtained from this pilot study indicate that MOx correlates with shock severity in a population of trauma patients. Noninvasive and continuous MOx holds promise to aid in patient triage and to evaluate patient condition throughout the course of resuscitation. PMID:27820776
Brygoo, Stephanie; Millot, Marius; Loubeyre, Paul; ...
2015-11-16
Megabar (1 Mbar = 100 GPa) laser shocks on precompressed samples allow reaching unprecedented high densities and moderately high ~10 3–10 4 K temperatures. We describe in this paper a complete analysis framework for the velocimetry (VISAR) and pyrometry (SOP) data produced in these experiments. Since the precompression increases the initial density of both the sample of interest and the quartz reference for pressure-density, reflectivity, and temperature measurements, we describe analytical corrections based on available experimental data on warm dense silica and density-functional-theory based molecular dynamics computer simulations. Finally, using our improved analysis framework, we report a re-analysis of previouslymore » published data on warm dense hydrogen and helium, compare the newly inferred pressure, density, and temperature data with most advanced equation of state models and provide updated reflectivity values.« less
Dynamical efficiency of collisionless magnetized shocks in relativistic jets
NASA Astrophysics Data System (ADS)
Aloy, Miguel A.; Mimica, Petar
2011-09-01
The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.
Morken, Ingvild M; Bru, Edvin; Norekvål, Tone M; Larsen, Alf I; Idsoe, Thormod; Karlsen, Bjørg
2014-02-01
To investigate (1) the extent to which shock anxiety and perceived support from healthcare professionals are related to post-traumatic stress disease (PTSD) symptoms and (2) the extent to which perceived support from healthcare professionals moderates the relationship between shock anxiety and PTSD symptoms in implantable cardioverter defibrillator recipients. An additional aim was to describe the level of PTSD symptoms and perceptions of support from healthcare professionals. Studies examining PTSD symptoms among implantable cardioverter defibrillator recipients are still sparse. In addition, little is known about how perceived support from healthcare professionals is related to PTSD symptoms. Cross-sectional survey design. Recipients (n = 167) with implantable cardioverter defibrillator attending an outpatient device clinic completed questionnaires assessing shock anxiety, PTSD symptoms and perceived support from healthcare professionals. The results indicated that between ten and 15% of the recipients experienced moderate to severe symptoms of PTSD. Although a majority perceived constructive support from healthcare professionals, 12% perceived nonconstructive support. Regression analysis demonstrated that shock anxiety and perceived nonconstructive support from healthcare professionals had a statistically significant (p < 0·01) association with PTSD symptoms. Moreover, the results suggest that associations between shock anxiety and PTSD symptoms were significantly (p < 0·01) moderated by perceived nonconstructive support from healthcare professionals. Young age, short time since implantation and secondary prevention indication were also significantly associated with PTSD symptoms. The results indicate that nonconstructive support from healthcare professionals can increase the tendency to develop PTSD symptoms, particularly in those who experience shock anxiety. Healthcare professionals should pay more attention to the way in which they communicate information to the recipients during follow-up visits. Clinically based strategies and interventions targeting shock anxiety and PTSD symptoms should be carried out. © 2013 John Wiley & Sons Ltd.
El-Assmy, Ahmed; El-Nahas, Ahmed R; Sheir, Khaled Z
2006-11-01
We performed a prospective, randomized clinical trial to evaluate the outcome of ureteral stents for solitary ureteral stones 2 cm or less in moderately or severely obstructed systems using shock wave lithotripsy. Between 2001 and 2004, 186 patients who met study criteria were randomized into 2 groups. Group 1 received a pre-shock wave lithotripsy 6Fr Double-J stent and group 2 had no stent. Patients were treated with a Dornier MFL 5000 lithotripter. Results were compared in terms of clearance rates, number of shock waves and sessions, irritative voiding symptoms, incidence of complications and secondary interventions. Failure was defined as the need for additional procedure(s) for stone extraction. Overall 164 patients (88.2%) became stone-free after shock wave lithotripsy. Complete stone fragmentation was achieved after 1 to 3 and more than 3 session in 108 (58.1%), 30 (16.1%), 13 (7%) and 14 patients (7.5%), respectively. Ureteral stent insertion did not affect the stone-free rate, which was 84.9% and 91.4% in groups 1 and 2, respectively (p = 0.25). There was no statistical difference in the re-treatment rate, flank pain or temperature in the 2 groups. However, all patients in the stented group significantly complained of side effects attributable to the stent, including dysuria, suprapubic pain, hematuria, pyuria and positive urinary culture. Pretreatment stenting provides no advantage over in situ shock wave lithotripsy for significantly obstructing ureteral calculi. Shock wave lithotripsy is reasonable initial therapy for ureteral stones 2 cm or less that cause moderate or severe hydronephrosis.
Morken, Ingvild M; Norekvål, Tone M; Bru, Edvin; Larsen, Alf I; Karlsen, Bjørg
2014-09-01
To investigate the extent to which perceived support from healthcare professionals and shock anxiety is related to device acceptance among implantable cardioverter defibrillator recipients. Device acceptance can be influenced by several factors, one of which is shock anxiety associated with poor device acceptance. Reduced shock anxiety, as well as increased device acceptance, has been reported after psycho-educational programmes. As healthcare professionals appear to play a significant role in providing support and education during regular follow-up visits, they may constitute an important social support system that could be another factor influencing device acceptance. However, little is known about the relationship between perceived support from healthcare professionals and device acceptance among recipients. A cross-sectional survey design. A sample comprising implantable cardioverter defibrillator recipients completed questionnaires assessing perceived support from healthcare professionals, shock anxiety and device acceptance. Demographic and clinical data were collected by self-report and from medical records in September-October 2010. The descriptive results indicated that approximately 85% of the recipients experienced high device acceptance. Regression analysis demonstrated that constructive support from healthcare professionals was positively associated with device acceptance and moderated the negative relationship between shock anxiety and device acceptance. Non-constructive support and shock anxiety had a negative statistical association with device acceptance. Healthcare professionals may represent a valuable constructive support system that can enhance device acceptance among implantable cardioverter defibrillator recipients, partly by preventing shock anxiety from leading to poor device acceptance. Non-constructive communication on the part of healthcare professionals could hinder device acceptance. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Holtom, Brooks C.; Burton, James P.; Crossley, Craig D.
2012-01-01
We integrated the unfolding model of turnover, job embeddedness theory and affective events theory to build and test a model specifying the relationship between negative shocks, on-the-job embeddedness and important employee behaviors. The results showed that embeddedness mediates the relationship between negative shocks and job search behaviors…
Electron dropout echoes induced by interplanetary shock: A statistical study
NASA Astrophysics Data System (ADS)
Liu, Z. Y.; Zong, Q.-G.; Hao, Y. X.; Zhou, X.-Z.; Ma, X. H.; Liu, Y.
2017-08-01
"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the outer radiation belt region has been investigated systematically. The electron moderate dropout and its echoes are usually found for higher-energy (>300 keV) channel fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. The electron dropout echo events are found to be usually associated with the interplanetary shocks arrival. The 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on the Los Alamos National Laboratory satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the ˜1 min electric field impulse induced by the interplanetary shock produces a more pronounced inward migration of electrons at the duskside, resulting in the observed duskside moderate dropout of electron flux and its consequent echoes.
Herschel Shines Light on the Episodic Evolutionary Sequence of Protostars
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT; FOOSH; COPS Teams
2014-01-01
New far-infrared and submillimeter spectroscopic capabilities, along with moderate spatial and spectral resolution, provide the opportunity to study the diversity of shocks, accretion processes, and compositions of the envelopes of developing protostellar objects in nearby molecular clouds. We present the "COPS" (CO in Protostars) sample; a statistical analysis of the full sample of 30 Class 0/I protostars from the "DIGIT" Key project using Herschel-PACS/SPIRE 50-700 micron spectroscopy. We consider the sample as a whole in characteristic spectral lines, using a standardized data reduction procedure for all targets, and analyze the differences in the continuum and gas over the full sample, presenting an overview of trends. We compare the sources in evolutionary state, envelope mass, and gas properties to more evolved sources from the"FOOSH'' (FUor) samples.
Fundamental structure of steady plastic shock waves in metals
NASA Astrophysics Data System (ADS)
Molinari, A.; Ravichandran, G.
2004-02-01
The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of materials subjected to very high strain rates from shock wave experiments is discussed.
Seveso, Davide; Montano, Simone; Strona, Giovanni; Orlandi, Ivan; Galli, Paolo; Vai, Marina
2016-08-01
Climate changes have increased the intensity/frequency of extreme thermal events, which represent serious threats to the health of reef-building corals. Since the vulnerability of corals exposed to thermal stresses are related to their ability to regulate Heat shock proteins (Hsps), we have analyzed together the time related expression profiles of the mitochondrial Hsp60 and the associated changes in tissue pigmentation in Seriatopora caliendrum subjected to 48 h of heat and cold treatments characterized by moderate (±2 °C) and severe (±6 °C) shocks. For the first time, an Hsp60 response was observed in a scleractinian coral exposed to cold stresses. Furthermore, the Hsp60 modulations and the changes in the tissue coloration were found to be specific for each treatment. A strong down-regulation at the end of the treatments was observed following both the severe shocks, but only the severe heat stress led to bleaching in concert with the lowest levels of Hsp60, suggesting that a severe heat shock can be more deleterious than an exposure to a severe cold temperature. On the contrary, a moderate cold stress seems to be more harmful than a moderate temperature increase, which could allow coral acclimation. Our results can provide a potential framework for understanding the physiological tolerance of corals under possible future climate changes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marciante, Mathieu; Murillo, Michael Sean
2017-01-10
Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marciante, Mathieu; Murillo, Michael Sean
Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less
The structure of cosmic ray shocks
NASA Astrophysics Data System (ADS)
Axford, W. I.; Leer, E.; McKenzie, J. F.
1982-07-01
The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).
Temperature maxima in stable two-dimensional shock waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-07-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}
Chelyabinsk - a rock with many different (stony) faces: An infrared study
NASA Astrophysics Data System (ADS)
Morlok, Andreas; Bischoff, Addi; Patzek, Markus; Sohn, Martin; Hiesinger, Harald
2017-03-01
In order to provide spectral ground truth data for remote sensing applications, we have measured mid-infrared spectra (2-18 μm) of three typical, well-defined lithologies from the Chelyabinsk meteorite that fell on February 15, 2013, near the city of Chelyabinsk, southern Urals, Russia. These lithologies are classified as (a) moderately shocked, light lithology, (b) shock-darkened lithology, and (c) impact melt lithology. Analyses were made from bulk material in four size fractions (0-25 μm, 25-63 μm, 63-125 μm, and 125-250 μm), and from additional thin sections. Characteristic infrared features in the powdered bulk material of the moderately shocked, light lithology, dominated by olivine, pyroxene and feldspathic glass, are a Christiansen feature (CF) between 8.5 and 8.8 μm; a transparency feature (TF) in the finest size fraction at ∼13 μm, and strong reststrahlen bands (RB) at ∼9.1 μm, 9.5 μm, 10.3 μm, 10.8 μm, 11.2-11.3 μm, 12 μm, and between 16 and 17 μm. The ranges of spectral features for the micro-FTIR spots show a wider range than those obtained in diffuse reflectance, but are generally similar. With increasing influence of impact shock from 'pristine' LL5 (or LL6) material (which have a low or moderate degree of shock) to the shock-darkened lithology and the impact melt lithology as endmembers, we observe the fading/disappearing of spectral features. Most prominent is the loss of a 'twin peak' feature between 10.8 and 11.3 μm, which turns into a single peak. In addition, in the 'pure' impact melt "endmember lithology" features at ∼9.6 μm and ∼9.1 μm are also lost. These losses are most likely correlated with decreasing amounts of crystal structure as the degree of shock melting increases. These changes could connect mid-infrared features with stages for shock metamorphism (Stöffler et al., 1991): Changes up to shock stage S4 would be minor, the shock darkened lithology could represent S5 and the impact melt lithology S6 and higher. Similarities of the Chelyabinsk spectra to those of other LL chondrites indicate that the findings of this study could be related to this group of meteorites in general.
Plasma ion stratification by weak planar shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.
We derive fluid equations for describing steady-state planar shocks of a moderate strength (0 < M - 1 ≲ 1 with M the shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks (0 < M - 1 <
Plasma ion stratification by weak planar shocks
NASA Astrophysics Data System (ADS)
Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; Chacón, Luis
2017-09-01
We derive fluid equations for describing steady-state planar shocks of a moderate strength ( 0
Plasma ion stratification by weak planar shocks
Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; ...
2017-08-01
We derive fluid equations for describing steady-state planar shocks of a moderate strength (0 < M - 1 ≲ 1 with M the shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks (0 < M - 1 <
Hom, Lindsay L; Lee, Elaine Choung-Hee; Apicella, Jenna M; Wallace, Sean D; Emmanuel, Holly; Klau, Jennifer F; Poh, Paula Y S; Marzano, Stefania; Armstrong, Lawrence E; Casa, Douglas J; Maresh, Carl M
2012-01-01
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.
Emissivity measurements of shocked tin using a multi-wavelength integrating sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seifter, A; Holtkamp, D B; Iverson, A J
Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed”more » scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.« less
Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona
NASA Technical Reports Server (NTRS)
Reames, Donald V.; Ng, C. K.; Tylka, A. J.
2000-01-01
We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.
NASA Astrophysics Data System (ADS)
Morajkar, Rohan
Flow separation in the scramjet air intakes is one of the reasons of failure of these engines which rely on shock waves to achieve flow compression. The shock waves interact with the boundary layers (Shock/ Boundary Layer Interaction or SBLI) on the intake walls inducing adverse pressure gradients causing flow separation. In this experimental study we investigate the role of secondary flows associated with the corners of ducted flows and identify the mechanisms by which they affect flow separation induced by a shock wave interacting with the boundary layers developing along supersonic inlets. The coupling between flow three-dimensionality, shock waves and secondary flows is in fact a key aspect that limits the performance and control of supersonic inlets. The study is conducted at the University of Michigan Glass Supersonic Wind Tunnel (GSWT). This facility replicates some of the features of the three-dimensional (3D) flow-field in a low aspect ratio supersonic inlet. The study uses stereoscopic particle image velocimetry (SPIV) to measure the three-component (3C) velocity field on several orthogonal planes, and thus allows us to identify the length scales of separation, its locations and statistical properties. Furthermore, these measurements allow us to extract the 3D structure of the underlying vortical features, which are important in determining the overall structure of separated regions and their dynamics. The measurements and tools developed are used to study flow fields of three cases: (1) Moderately strong SBLI (Mach 2.75 with 6° deflection), (2) weak SBLI (Mach 2.75 with 4.6° deflection) and (3) secondary corner flows in empty channels. In the configuration of the initial work (moderately strong SBLI), the shock wave system interacts with the boundary layers on the sidewall and the floor of the duct (inlet), thus generating both a swept-shock and an incident-shock interactions. Furthermore, the swept-shock interaction taking place on the sidewalls interacts with the secondary flows in the corners of the tunnel, which are prone to separation. This interaction causes major flow separation on the sidewall as fluid is swept from the sidewall. Flow separation on the floor should be expected given the strength of the SBLI (moderately strong case), but it is instead not observed in the mean flow fields. Our hypothesis is that interacting secondary flows are one of the factors responsible for the sidewall separation and directing the incoming flow towards the center-plane to stabilize and energize the flow on the center of the duct, thus preventing or at least reducing, flow separation on the floor. The secondary flows in an empty tunnel are then investigated to study their evolution and effects on the primary flow field to identify potential separation sites. The results from the empty tunnel experiments are then used to predict locations of flow separations in the moderately strong and weak SBLIs. The predictions were found to be in agreement with the observations.
Plasma Ion Stratification by Weak Planar Shocks
NASA Astrophysics Data System (ADS)
Simakov, A. N.; Keenan, B. D.; Taitano, W. T.; Chacón, L.
2017-10-01
We derive fluid equations for describing steady-state planar shocks of a moderate strength (0
X-ray diffraction studies of shocked lunar analogs
NASA Technical Reports Server (NTRS)
Hanss, R. E.
1979-01-01
The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.
NASA Astrophysics Data System (ADS)
Yuan, V. W.
2002-12-01
In previous attempts to determine the internal temperature in systems subjected to dynamic loading, experimenters have usually relied on surface-based optical techniques that are often hampered by insufficient information regarding the emissivity of the surfaces under study. Neutron Resonance Spectroscopy (NRS) is a technique that uses Doppler-broadened neutron resonances to measure internal temperatures in dynamically-loaded samples. NRS has developed its own target-moderator assembly to provide single pulses with an order of magnitude higher brightness than the Lujan production target. The resonance line shapes from which temperature information is extracted are also influenced by non-temperature-dependent broadening from the moderator and detector phosphorescence. Dynamic NRS experiments have been performed to measure the temperature in a silver sheet jet and behind the passage of a shock wave in molybdenum.
Mechanochemistry for shock wave energy dissipation
NASA Astrophysics Data System (ADS)
Shaw, William L.; Ren, Yi; Moore, Jeffrey S.; Dlott, Dana D.
2017-01-01
Using a laser-driven flyer-plate apparatus to launch 75 μm thick Al flyers up to 2.8 km/s, we developed a technique for detecting the attenuation of shock waves by mechanically-driven chemical reactions. The attenuating sample was spread on an ultrathin Au mirror deposited onto a glass window having a known Hugoniot. As shock energy exited the sample and passed through the mirror, into the glass, photonic Doppler velocimetry monitored the velocity profile of the ultrathin mirror. Knowing the window Hugoniot, the velocity profile could be quantitatively converted into a shock energy flux or fluence. The flux gave the temporal profile of the shock front, and showed how the shock front was reshaped by passing through the dissipative medium. The fluence, the time-integrated flux, showed how much shock energy was transmitted through the sample. Samples consisted of microgram quantities of carefully engineered organic compounds selected for their potential to undergo negative-volume chemistry. Post mortem analytical methods were used to confirm that shock dissipation was associated with shock-induced chemical reactions.
Petrology of unshocked crystalline rocks and shock effects in lunar rocks and minerals
Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D.; Raleigh, C.B.
1970-01-01
On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.
Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L.B., III
2012-01-01
We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.
The interaction of moderately strong shock waves with thick perforated walls of low porosity
NASA Technical Reports Server (NTRS)
Grant, D. J.
1972-01-01
A theoretical prediction is given of the flow through thick perforated walls of low porosity resulting from the impingement of a moderately strong traveling shock wave. The model was a flat plate positioned normal to the direction of the flow. Holes bored in the plate parallel to the direction of the flow provided nominal hole length-to-diameter ratios of 10:1 and an axial porosity of 25 percent of the flow channel cross section. The flow field behind the reflected shock wave was assumed to behave as a reservoir producing a quasi-steady duct flow through the model. Rayleigh and Fanno duct flow theoretical computations for each of three possible auxiliary wave patterns that can be associated with the transmitted shock (to satisfy contact surface compatibility) were used to provide bounding solutions as an alternative to the more complex influence coefficients method. Qualitative and quantitative behavior was verified in a 1.5- by 2.0-in. helium shock tube. High speed Schlieren photography, piezoelectric pressure-time histories, and electronic-counter wave speed measurements were used to assess the extent of correlation with the theoretical flow models. Reduced data indicated the adequacy of the bounding theory approach to predict wave phenomena and quantitative response.
NASA Astrophysics Data System (ADS)
Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping
2018-05-01
The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.
NASA Technical Reports Server (NTRS)
Bell, M. S.
2015-01-01
Calciumphosphate (likely chloroapatite) is formed in the alteration experiments and is more abundant in the altered and shocked sample probably due to increased surface area exposed to alteration fluids resulting from shock damage in the form of both brittle and structural deformation to the starting material (Figs 1 & 3). Apatite forms in basic conditions so the closed system alteration experiment must be buffered by the basalt starting material to create a fluid chemistry environment evolving from neutral at the start to alkaline after 21 days at 160 C. Plagioclase feldspar in the unshocked sample (Fig. 2) has undergone a solid-state transformation to maskelynite, a disordered phase that is not manifest in the XRD pattern of the shocked sample (Fig.4). Olivine and ulvospinel that are present in the starting material can be detected by XRD in the shocked and altered sample (Fig. 4). Tungsten from the sample holder used in the shock experiments dominates the XRD pattern of the shocked and altered sample (Fig. 4). Samples were weighed after the alteration experiments to determine mass loss and predict the amount of material available for the planned analyses from the shock experiments. Within the constraints of these experiments, mass loss is negligible. The samples will next be characterized by Moessbauer and Vis-Near IR spectroscopy, the results of which will be compared to the Mars Exploration Rovers and Mars Reconnaissance Orbiter data sets respectively.
NASA Technical Reports Server (NTRS)
Bell, M. S.
2015-01-01
Calcium phosphate (likely chloroapatite) is formed in the alteration experiments and is more abundant in the altered and shocked sample probably due to increased surface area exposed to alteration fluids resulting from shock damage in the form of both brittle and structural deformation to the starting material (Figs 1 & 3). Apatite forms in basic conditions so the closed system alteration experiment must be buffered by the basalt starting material to create a fluid chemistry environment evolving from neutral at the start to alkaline after 21 days at 160 degrees Centigrade. Plagioclase feldspar in the unshocked sample (Fig. 2) has undergone a solid-state transformation to maskelynite, a disordered phase that is not manifest in the X-ray diffraction pattern of the shocked sample (Fig.4). Olivine and ulvospinel that are present in the starting material can be detected by X-ray diffraction in the shocked and altered sample (Fig. 4). Tungsten from the sample holder used in the shock experiments dominates the X-ray diffraction pattern of the shocked and altered sample (Fig. 4). Samples were weighed after the alteration experiments to determine mass loss and predict the amount of material available for the planned analyses from the shock experiments. Within the constraints of these experiments, mass loss is negligible. The samples will next be characterized by Moessbauer and Vis-Near Infrared spectroscopy, the results of which will be compared to the Mars Exploration Rovers and Mars Reconnaissance Orbiter data sets respectively.
Lonar Lake, India: An impact Crater in basalt
Fredriksson, K.; Dube, A.; Milton, D.J.; Balasundaram, M.S.
1973-01-01
Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.
Probing the underlying physics of ejecta production from shocked Sn samples
NASA Astrophysics Data System (ADS)
Zellner, M. B.; McNeil, W. Vogan; Hammerberg, J. E.; Hixson, R. S.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.
2008-06-01
This effort investigates the underlying physics of ejecta production for high explosive (HE) shocked Sn surfaces prepared with finishes typical to those roughened by tool marks left from machining processes. To investigate the physical mechanisms of ejecta production, we compiled and re-examined ejecta data from two experimental campaigns [W. S. Vogan et al., J. Appl. Phys. 98, 113508 (1998); M. B. Zellner et al., ibid. 102, 013522 (2007)] to form a self-consistent data set spanning a large parameter space. In the first campaign, ejecta created upon shock release at the back side of HE shocked Sn samples were characterized for samples with varying surface finishes but at similar shock-breakout pressures PSB. In the second campaign, ejecta were characterized for HE shocked Sn samples with a constant surface finish but at varying PSB.
Fast Sampling Gas Chromatography (GC) System for Speciation in a Shock Tube
2016-10-31
capture similar ethylene decomposition rates for temperature-dependent shock experiments. (a) Papers published in peer-reviewed journals (N/A for none...3 GC Sampling System Validation Experiments ............................................................................... 5 Ethylene ...results for cold shock experiments, and both techniques capture similar ethylene decomposition rates for temperature-dependent shock experiments. Problem
Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study
NASA Astrophysics Data System (ADS)
Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.
2017-12-01
"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.
Double Shock Experiments on PBX Explosive JOB-9003
NASA Astrophysics Data System (ADS)
Zhang, Xu
2017-06-01
One-dimensional plate impact experiments have been performed to study the double shock to detonation transition and Hugoniot state in the HMX-based explosive JOB-9003. The flyer was a combination with sapphire and Kel-F which could pass two different pressure waves into PBX Explosive JOB-9003 sample after impact. The particle velocities at interface and different depths in the PBX JOB-9003 sample were measured with Al-based electromagnetic particle velocity gauge technique, thus obtaining particle velocity - time diagram. According to the diagram, the corresponding Hugoniot state can be determined based on the particle velocity and shock wave velocity in the sample. Comparing with the single shock experiments, PBX Explosive JOB-9003 shows desensitization features due to the pre-pressed shock wave, the shock to detonation transition distance is longer than those single shock experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terao, K.; Nagao, T.; Toba, Y.
2016-12-20
One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J -band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257 μ m and [P ii]1.188 μ m, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition tomore » our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.« less
Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup
2015-10-01
We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.
Shock Magnetization and Demagnetization of Rocks: What we Have Learnt From Experimental Studies
NASA Astrophysics Data System (ADS)
Gattacceca, J.; Rochette, P.; Boustie, M.; Berthe, L.; Natalia, B.; de Resseguier, T.
2008-12-01
We will present new results of simultaneous shock magnetization and shock demagnetization experiments performed on titanomagnetite-bearing basalt samples with a pulsed laser in controlled magnetic field. These new results provide the opportunity to discuss the main properties of the these two phenomena. What is the efficiency of the acquisition of shock remanent magnetization (SRM) acquisition with respect to thermoremanent magnetization? Is shock demagnetization equivalent to shock magnetization in zero field? Do we observe scattered SRM direction in shocked samples? Can we predict the shock demagnetization/remagnetization behavior of a rock knowing its rock magnetic properties? Eventually we will discuss the implications of these results for the understanding of the paleomagnetic signal of shocked rocks (meteorites in paticular) and of the magnetic anomalies above impact basins.
Explosively Driven Shock Induced Damage in OFHC Copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, D. D.; Hixson, R. S.; Gray, G. T. III
OFHC Cu samples were subjected to shock loading using plane wave HE lenses to produce a uniaxial Taylor wave profile (shock followed by immediate release). Upon arrival of the shock wave at the free surface of the sample, the wave is reflected and propagates back into the sample as a release wave. It is the interaction of initial and reflected release waves that place the material in a localized state of tension which can ultimately result in damage and possibly complete failure of the material. The peak tensile stress and its location in the material are determined by the wavemore » shape. Damage evolution processes and localized behavior are discussed based on results from time-resolved free surface velocity (VISAR) interferometry and post shock metallurgical analysis of the soft recovered samples.« less
Impact and Collisional Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
A series of impact experiments on anhydrite CaSO4, in which vaporized sample accelerates an element in a velocity interferometer, generate velocity data that we have recently reanalyzed using an explicit entropy generating finite difference code. The shock pressure required from the onset, and complete vaporization of 30% porous and 70% crystal density anhydrite is 52 +/- 3 and 122 +/- 13 GPa. Using observed acid leaching in non-marine K/T ejecta in North America, and the sharp global increase in Sr-87/Sr-86 ratios recorded at 65 Ma in marine rocks, we demonstrated that global acidification is primarily due to the SO2 released by anhydrite volatilization, and not HNO3 formed from bolide-induced air pyrolysis. Shock temperatures for crystal CaCO3 are measured from 3000 to 7000 K in the 90 to 160 GPa pressure range. These temperatures are much lower than calculated theoretically indicating that possibly bond breakdown at the shock front is occurring. This is the first mineral in which this effect has ever been seen. New data defining the ion species which are produced upon impact of volatilization of metals and minerals using a pulse ultraviolet laser to simulate intense shock heating from a projectile impact indicate that in shock experiments we can for the first time study the speciation of neutrals using a moderate resolution time-of-flight mass spectrometer. Measurements of the gas species from a series of proposed impact experiments appear to be quite feasible. We will attempt these experiments in the next year. Measurements of the impact induced shock wave decay in SiO2 and GeO2 glass are underway to measure these pure oxide properties. Predictive calculations indicate that the pressure will decay as r(exp -2.7) in the phase transition regime, versus a much lower rate of r(exp -1.18), if a phase transition does not occur.
Intermittent laser-plasma interactions and hot electron generation in shock ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Li, J.; Ren, C.
We study laser-plasma interactions and hot electron generation in the ignition phase of shock ignition through 1D and 2D particle-in-cell simulations in the regime of long density scale length and moderately high laser intensity. These long-term simulations show an intermittent bursting pattern of laser-plasma instabilities, resulting from a coupling of the modes near the quarter-critical-surface and those in the lower density region via plasma waves and laser pump depletion. The majority of the hot electrons are found to be from stimulated Raman scattering and of moderate energies. However, high energy electrons of preheating threat can still be generated from themore » two-plasmon-decay instability.« less
Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography
NASA Astrophysics Data System (ADS)
Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.
2018-05-01
The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.
Metallic copper in ordinary chondrites
NASA Technical Reports Server (NTRS)
Rubin, Alan E.
1994-01-01
Metallic Cu of moderately high purity (approximately 985 mg/g Cu, approximately 15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically less than or equal to 20 micrometers) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 x 10(exp -4) vol%, corresponding to only 4 - 5 % of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/sq mm have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilte; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.
Remotely triggered earthquakes following moderate main shocks
Hough, S.E.
2007-01-01
Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.
Agreement in electrocardiogram interpretation in patients with septic shock.
Mehta, Sangeeta; Granton, John; Lapinsky, Stephen E; Newton, Gary; Bandayrel, Kristofer; Little, Anjuli; Siau, Chuin; Cook, Deborah J; Ayers, Dieter; Singer, Joel; Lee, Terry C; Walley, Keith R; Storms, Michelle; Cooper, Jamie; Holmes, Cheryl L; Hebert, Paul; Gordon, Anthony C; Presneill, Jeff; Russell, James A
2011-09-01
The reliability of electrocardiogram interpretation to diagnose myocardial ischemia in critically ill patients is unclear. In adults with septic shock, we assessed intra- and inter-rater agreement of electrocardiogram interpretation, and the effect of knowledge of troponin values on these interpretations. Prospective substudy of a randomized trial of vasopressin vs. norepinephrine in septic shock. Nine Canadian intensive care units. Adults with septic shock requiring at least 5 μg/min of norepinephrine for 6 hrs. Twelve-lead electrocardiograms were recorded before study drug, and 6 hrs, 2 days, and 4 days after study drug initiation. Two physician readers, blinded to patient data and group, independently interpreted electrocardiograms on three occasions (first two readings were blinded to patient data; third reading was unblinded to troponin). To calibrate and refine definitions, both readers initially reviewed 25 trial electrocardiograms representing normal to abnormal. Cohen's Kappa and the φ statistic were used to analyze intra- and inter-rater agreement. One hundred twenty-one patients (62.2 ± 16.5 yrs, Acute Physiology and Chronic Health Evaluation II 28.6 ± 7.7) had 373 electrocardiograms. Blinded to troponin, readers 1 and 2 interpreted 46.4% and 30.0% of electrocardiograms as normal, and 15.3% and 12.3% as ischemic, respectively. Intrarater agreement was moderate for overall ischemia (κ 0.54 and 0.58), moderate/good for "normal" (κ 0.69 and 0.55), fair to good for specific signs of ischemia (ST elevation, T inversion, and Q waves, reader 1 κ 0.40 to 0.69; reader 2 κ 0.56 to 0.70); and good/very good for atrial arrhythmias (κ 0.84 and 0.79) and bundle branch block (κ 0.88 and 0.79). Inter-rater agreement was fair for ischemia (κ 0.29), moderate for ST elevation (κ 0.48), T inversion (κ 0.52), and Q waves (κ 0.44), good for bundle branch block (κ 0.78), and very good for atrial arrhythmias (κ 0.83). Inter-rater agreement for ischemia improved from fair to moderate (κ 0.52, p = .028) when unblinded to troponin. In patients with septic shock, inter-rater agreement of electrocardiogram interpretation for myocardial ischemia was fair, and improved with troponin knowledge.
Holographic studies of shock waves within transonic fan rotors
NASA Technical Reports Server (NTRS)
Benser, W. A.; Bailey, E. E.; Gelder, T. F.
1974-01-01
NASA has funded two separate contracts to apply pulsed laser holographic interferometry to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface.
Wiewelhove, Thimo; Raeder, Christian; Meyer, Tim; Kellmann, Michael; Pfeiffer, Mark; Ferrauti, Alexander
2016-11-01
To investigate the effect of repeated use of active recovery during a 4-d shock microcycle with 7 high-intensity interval-training (HIT) sessions on markers of fatigue. Eight elite male junior tennis players (age 15.1 ± 1.4 y) with an international ranking between 59 and 907 (International Tennis Federation) participated in this study. After each training session, they completed 15 min of either moderate jogging (active recovery [ACT]) or passive recovery (PAS) with a crossover design, which was interrupted by a 4-mo washout period. Countermovement-jump (CMJ) height, serum concentration of creatine kinase (CK), delayed-onset muscle soreness (DOMS), and perceived recovery and stress (Short Recovery and Stress Scale) were measured 24 h before and 24 h after the training program. The HIT shock microcycle induced a large decrease in CMJ performance (ACT: effect size [ES] = -1.39, P < .05; PAS: ES = -1.42, P < .05) and perceived recovery (ACT: ES = -1.79, P < .05; PAS: ES = -2.39, P < .05), as well as a moderate to large increase in CK levels (ACT: ES = 0.76, P > .05; PAS: ES = 0.81, P >.05), DOMS (ACT: ES = 2.02, P < .05; PAS: ES = 2.17, P < .05), and perceived stress (ACT: ES = 1.98, P < .05; PAS: ES = 3.06, P < .05), compared with the values before the intervention. However, no significant recovery intervention × time interactions or meaningful differences in changes were noted in any of the markers between ACT and PAS. Repeated use of individualized ACT, consisting of 15 min of moderate jogging, after finishing each training session during an HIT shock microcycle did not affect exercise-induced fatigue.
Xia, Z G; Zhou, X L; Kong, W C; Li, X Z; Song, J H; Fang, L S; Hu, D L; Cai, C; Tang, Y Z; Yu, Y X; Wang, C H; Xu, Q L
2018-03-20
Objective: To explore the influence of three-level collaboration network of pediatric burns in Anhui province on treatment effects of burn children. Methods: The data of medical records of pediatric burn children transferred from Lu'an People's Hospital and Fuyang People's Hospital to the First Affiliated Hospital of Anhui Medical University from January 2014 to December 2015 and January 2016 to September 2017 (before and after establishing three-level collaboration network of pediatric burns treatment) were analyzed: percentage of transferred burn children to hospitalized burn children in corresponding period, gender, age, burn degree, treatment method, treatment result, occurrence and treatment result of shock, and operative and non-operative treatment time and cost. Rehabilitation result of burn children transferred back to local hospitals in 2016 and 2017. Data were processed with t test, chi-square test, Mann-Whitney U test, and Fisher's exact test. Results: (1) Percentage of burn children transferred from January 2014 to December 2015 was 34.3% (291/848) of the total number of hospitalized burn children in the same period of time, which was close to 30.4% (210/691) of burn children transferred from January 2016 to September 2017 ( χ (2)=2.672, P >0.05). (2) Gender, age, burn degree, and treatment method of burn children transferred from the two periods of time were close ( χ (2)=3.382, Z =-1.917, -1.911, χ (2)=3.133, P >0.05). (3) Cure rates of children with mild, moderate, and severe burns transferred from January 2016 to September 2017 were significantly higher than those of burn children transferred from January 2014 to December 2015 ( χ (2)=11.777, 6.948, 4.310, P <0.05). Cure rates of children with extremely severe burns transferred from the two periods of time were close ( χ (2)=1.181, P >0.05). (4) Children with mild and moderate burns transferred from the two periods of time were with no shock. The incidence of shock of children with severe burns transferred from January 2014 to December 2015 was 6.0% (4/67), and 3 children among them were cured. The incidence of shock of children with severe burns transferred from January 2016 to September 2017 was 3.9% (2/51), and both children were cured. The incidences and cures of shock of children with severe burns transferred from the two periods of time were close ( χ (2)=0.006, P >0.05). Incidence of shock of children with extremely severe burns transferred from January 2014 to December 2015 was 57.1% (32/56), significantly higher than that of burn children transferred from January 2016 to September 2017 [34.5% (10/29), χ (2)=3.925, P <0.05]. Shock of 25 children with extremely severe burns transferred from January 2014 to December 2015 were cured, and shock of 9 children with extremely severe burns transferred from January 2016 to September 2017 were cured. The cures of shock of children with extremely severe burns transferred from the two periods of time were close ( χ (2)=0.139, P >0.05). (5) Time of operative treatment of children with moderate, severe, and extremely severe burns transferred from January 2014 to December 2015 was obviously longer than that of burn children transferred from January 2016 to September 2017 ( t =2.335, 2.065, 2.310, P <0.05). Time of operative treatment of children with mild burns transferred from the two periods of time was close ( Z =-0.417, P >0.05). Costs of operative treatment of children with moderate and severe burns transferred from January 2014 to December 2015 were significantly more than those of burn children transferred from January 2016 to September 2017 ( Z =-3.324, t =2.167, P <0.05). Costs of operative treatment of children with mild and extremely severe burns transferred from the two periods of time were close ( t =0.627, 0.808, P >0.05). (6)Time of non-operative treatment of children with mild, moderate, and severe burns transferred from January 2014 to December 2015 was obviously longer than that of burn children transferred from January 2016 to September 2017 ( t =2.335, Z =-2.095, t =2.152, P <0.05). Time of non-operative treatment of children with extremely severe burns transferred from the two periods of time was close ( t =0.450, P >0.05). Costs of non-operative treatment of children with moderate and severe burns transferred from January 2014 to December 2015 were obviously higher than those of burn children transferred from January 2016 to September 2017 ( Z =-2.164, t =2.040, P <0.05). Costs of non-operative treatment of children with mild and extremely severe burns transferred from the two periods of time were close ( t =0.146, 1.235, P >0.05). (7) Sixty-seven burn children transferred from January 2016 to September 2017 were transferred back to local hospitals for rehabilitation under the guidance of experts of the First Affiliated Hospital of Anhui Medical University, with 25 patients in 2016 and 42 patients in 2017. Effective rehabilitation rates of burn children transferred back to local hospitals for rehabilitation in 2016 and 2017 were both 100%. Conclusions: The three-level collaboration network of pediatric burns treatment in Anhui province can effectively increase cure rate of children with mild, moderate, and severe burns, reduce incidence of shock of children with extremely severe burns, shorten time of operative treatment of burn children with moderate, severe, and extremely severe burns, and time of non-operative treatment of children with mild, moderate, and severe burns, reduce treatment costs of children with moderate and severe burns, and improve rehabilitation effectiveness of children transferred from Lu'an People's Hospital and Fuyang People's Hospital to the the First Affiliated Hospital of Anhui Medical University.
STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.
2016-07-20
We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radiomore » jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H{sub 2} line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H{sub 2} emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.« less
Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage
NASA Technical Reports Server (NTRS)
Polanskey, Carol A.; Ahrens, Thomas J.
1994-01-01
Carbonate samples from the 8.9-Mt nuclear (near-surface explosion) crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance (EPR). Samples from below the OAK apparent crater floor were obtained from six boreholes, as well as ejecta recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to the spectra of Solenhofen and Kaibab limestone, which had been skocked to known pressures. Analysis of the OAK Crater borehole samples has identified a thin zone of allocthonous highly shocked (10-13 GPa) carbonate material underneath the apparent crater floor. This approx. 5- to 15-m-thick zone occurs at a maximum depth of approx. 125 m below current seafloor at the borehole, sited at the initial position of the OAK explosive, and decreases in depth towards the apparent crater edge. Because this zone of allocthonous shocked rock delineates deformed rock below, and a breccia of mobilized sand and collapse debris above, it appears to outline the transient crater. The transient crater volume inferred in this way is found to by 3.2 +/- 0.2 times 10(exp 6)cu m, which is in good agreement with a volume of 5.3 times 10(exp 6)cu m inferred from gravity scaling of laboratory experiments. A layer of highly shocked material is also found near the surface outside the crater. The latter material could represent a fallout ejecta layer. The ejecta boulders recovered from the present crater floor experienced a range of shock pressures from approx. 0 to 15 GPa with the more heavily shocked samples all occurring between radii of 360 and approx. 600 m. Moreover, the fossil content, lithology and Sr isotopic composition all demonstrate that the initial position of the bulk of the heavily shocked rock ejecta sampled was originally near surface rock at initial depths in the 32 to 45-m depth (below sea level) range. The EPR technique is also sensitive to prehistoric shock damage. This is demonstrated by our study of shocked Kaibab limestone from the 49,000-year-old Meteor (Barringer) Crater Arizona.
Metallographic cooling rates of L-group ordinary chondrites
NASA Technical Reports Server (NTRS)
Bennett, Marvin E.; Mcsween, Harry Y., Jr.
1993-01-01
Shock metamorphism appears to be a ubiquitous feature in L-group ordinary chondrites. Brecciation and heterogeneous melting obscure much of the early history of this meteorite group and have caused confusion as to whether L chondrites have undergone thermal metamorphism within onion-shell or rubble-pile parent bodies. Employing the most recent shock criteria, we have examined 55 Antarctic and 24 non-Antarctic L chondrites in order to identify those which have been least affected by post-accretional shock. Six low-shock samples (those with shock grade less than S4) of petrographic types L3-L5 were selected from both populations and metallographic cooling rates were obtained following the technique of Willis and Goldstein. All non-Antarctic L6 chondrites inspected were too heavily shocked to be included in this group. However, 4 shocked L6 chondrites were analyzed in order to determine what effects shock may impose on metallographic cooling rates. Metallographic cooling rates were derived by analyzing the cores of taenite grains and then measuring the distance to the nearest grain edge. Taenites were identified using backscatter imaging on a Cameca SX-50 electron microprobe. Using backscatter we were able to locate homogeneous, rust-free, nearly spherical grains. M-shaped profiles taken from grain traverses were also used to help locate the central portions of selected grains. All points which contained phosphorus above detection limits were discarded. Plots of cooling-rate data are summarized and data from the high-shock samples are presented. The lack of coherency of cooling rates for individual samples is indicative of heterogeneous cooling following shock. The data confirms the statement expressed by numerous workers that extreme care must be taken when selecting samples of L chondrites for cooling-rate studies. Data for the 6 non-Antarctic low-shock samples are also presented. The samples display a general trend in cooling rates. The lowest metamorphic grade yielded the slowest cooling rates and an increase in grade follows an increase in cooling rate. This is the opposite relationship to that predicted by the onion-shell model.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, David S.; Schmidt, Stephen C.
1985-01-01
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, D.S.; Schmidt, S.C.
1983-12-16
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
NASA Astrophysics Data System (ADS)
Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.
2016-12-01
Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities, consistent with shock-induced hardening. However, shock does not alter the intrinsic shape of coercivity and the shape of FORC contours (apart from field scaling) while heating does, which is seen as a significant alteration of FORC contours. Reference: [1] Swanson-Hysell N. L. et al. 2014. G3 15:2039-2047.
NASA Astrophysics Data System (ADS)
Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.
2009-12-01
Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.
Local seismicity preceding the March 14, 1979, Petatlan, Mexico Earthquake (Ms = 7.6)
NASA Astrophysics Data System (ADS)
Hsu, Vindell; Gettrust, Joseph F.; Helsley, Charles E.; Berg, Eduard
1983-05-01
Local seismicity surrounding the epicenter of the March 14, 1979, Petatlan, Mexico earthquake was monitored by a network of portable seismographs of the Hawaii Institute of Geophysics from 6 weeks before to 4 weeks after the main shock. Prior to the main shock, the recorded local seismic activity was shallow and restricted within the continental plate above the Benioff zone. The relocated main shock hypocenter also lay above the Benioff zone, suggesting an initial failure within the continental lithosphere. Four zones can be recognized that showed relatively higher seismic activity than the background. Activity within these zones has followed a number of moderate earthquakes that occurred before or after the initial deployment of the network. Three of these moderate earthquakes were near the Mexican coastline and occurred sequentially from southeast to northwest during the three months before the Petatlan earthquake. The Petatlan event occurred along the northwestern extension of this trend. We infer a possible connection between this observed earthquake migration pattern and the subduction of a fracture zone because the 200-km segment that includes the aftershock zones of the Petatlan earthquake and the three preceding moderate earthquakes matches the intersection of the southeastern limb of the Orozco Fracture Zone and the Middle America Trench. The Petatlan earthquake source region includes the region of the last of the three near-coast seismic activities (zone A). Earthquakes of zone A migrated toward the Petatlan main shock epicenter and were separated from it by an aseismic zone about 10 km wide. We designate this group of earthquakes as the foreshocks of the Petatlan earthquake. These foreshocks occurred within the continental lithosphere and their observed characteristics are interpreted as due to the high-stress environment before the main shock. Pre-main shock seismicity of the Petatlan earthquake source region shows a good correlation with the aftershocks in their spatial distribution. This suggests that an asperity existing along the Benioff zone may have affected both the pre-main shock activity in the continental lithosphere and the aftershocks along the Benioff zone. Although major thrust earthquakes at trenches occur along Benioff zones, in the present study we find little activity on this interplate boundary before the Petatlan earthquake. The overlying continental block, on the contrary, is very active seismically. Our data suggest that the activity is probably governed by the stress transmitted from below due to coupling between two plates and the heterogeneity within the continental lithosphere. The continental material is probably the more likely place for precursors.
NASA Astrophysics Data System (ADS)
Josephsen, Gary D.; Josephsen, Kelly A.; Beilman, Greg J.; Taylor, Jodie H.; Muiler, Kristine E.
2005-12-01
This is a report of the adaptation of microwave processing in the preparation of liver biopsies for transmission electron microscopy (TEM) to examine ultrastructural damage of mitochondria in the setting of metabolic stress. Hemorrhagic shock was induced in pigs via 35% total blood volume bleed and a 90-min period of shock followed by resuscitation. Hepatic biopsies were collected before shock and after resuscitation. Following collection, biopsies were processed for TEM by a rapid method involving microwave irradiation (Giberson, 2001). Samples pre- and postshock of each of two animals were viewed and scored using the mitochondrial ultrastructure scoring system (Crouser et al., 2002), a system used to quantify the severity of ultrastructural damage during shock. Results showed evidence of increased ultrastructural damage in the postshock samples, which scored 4.00 and 3.42, versus their preshock controls, which scored 1.18 and 1.27. The results of this analysis were similar to those obtained in another model of shock (Crouser et al., 2002). However, the amount of time used to process the samples was significantly shortened with methods involving microwave irradiation.
A new shock wave assisted sandalwood oil extraction technique
NASA Astrophysics Data System (ADS)
Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.
A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.
Udlis, Kimberly A
2013-01-01
The impact of implantable cardioverter defibrillator (ICD) technology on the quality of life (QOL) experienced by recipients has been a major focus of recent research. Numerous studies have found psychological distress to be important in determining QOL in persons receiving ICDs, yet the source of psychological distress is not well understood. The aim of this study was to determine the impact of technology dependency on psychological outcomes in ICD recipients. With the use of a cross-sectional design, 161 ICD recipients from 1 device clinic were mailed self-administered questionnaires, including the Dependency on Technology Scale, Brief Illness Perception Questionnaire, Florida Shock Anxiety Scale, Florida Patient Acceptance Survey, and Short Form-12 (SF-12). Hierarchical multiple regressions and analyses of variance were performed. The final sample size was 101 participants. Mean (SD) age was 68 (13) years; 72% of the participants were men, 99% were white, and 30% reported receiving a shock(s). A total of 80% reported positive attitudes toward technology dependency; 14%, neutral; and 6%, negative (Dependency on Technology Scale). Illness perceptions were positive (Brief Illness Perception Questionnaire; mean[SD], 34.5 [12.6]), shock anxiety was elevated (Florida Shock Anxiety Scale; mean [SD], 16.5 [6.7]), and device acceptance was good (Florida Patient Acceptance Survey; mean [SD], 74.9 [17.0]). Physical health QOL was low (SF-12; mean [SD], 38.6 [11.3]) and mental health QOL was moderate (SF-12; mean [SD], 50.6 [10.0]). Attitudes toward technology dependency significantly accounted for the variance seen in device acceptance and mental health QOL beyond age, gender, number of shocks, illness perceptions, and shock anxiety by 5.7% (P = .001) and 3.3% (P = .04), respectively. Significant differences were seen in device acceptance between those with negative and neutral attitudes (P = .001) and those with negative and positive attitudes (P < .001) and in shock anxiety and mental health QOL between those with negative and those with positive attitudes (P < .001). Attitudes toward technology dependency is significantly associated with psychological outcomes and may explain the psychological distress in some ICD recipients. Degree of positivity toward technology dependency influences these outcomes. Research evaluating attitudes toward technology dependency and testing of interventions focusing on these attitudes is warranted.
Evidence for Coordination and Redox Changes of Iron in Shocked Feldspar from Synchrotron MicroXANES
NASA Technical Reports Server (NTRS)
Delaney, J. S.; Dyar, M. D.; Hoerz, F.; Johnson, J. R.
2003-01-01
Shock modification of feldspar has been documented and experimentally reproduced in many studies since the recognition of maskelynite in Shergotty. Experimentally shocked feldspar samples have been well studied using chemical and crystallographic techniques. The crystallographic, site-specific characterization of major and minor elements is less well documented. We present early x-ray absorption (XAS) spectral data for a suite of albitite samples that were experimentally shocked at pressures between 17 and 50 Gpa.
NASA Astrophysics Data System (ADS)
Threadgill, James; Doerhmann, Adam; Little, Jesse
2017-11-01
A detailed experimental investigation of an impinging oblique Shock/Boundary Layer Interaction (SBLI) with 30° sweep in Mach 2.3 flow has been conducted. Despite its non-dimensional form, this canonical SBLI configuration has attracted little attention and remains poorly understood. Using a 12 .5° shock generator mounted in the freestream over a turbulent boundary layer, the interaction has been characterized with oil flow visualization, fast-response pressure transducers, and particle image velocimetry. Velocity vectors are used to extract the 3D interaction structure. These data are compared to wall pressure measurements and surface skin-friction streamlines. A local collapse of data normal to separation indicates a swept equivalence to Free Interaction Theory, albeit at a lower angle of sweep than imposed by the shock generator. Conditions at reattachment align with the imposed shock. Low-frequency shock motion near separation is observed, analogous to unswept SBLIs, with significant correlations that indicate spanwise traveling ripples in the shock foot. However, the magnitude of wall-pressure unsteadiness in this location is lower and shifted to higher frequencies than observed in equivalent unswept SBLI counterparts. Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430).
Holographic studies of shock waves within transonic fan rotors
NASA Technical Reports Server (NTRS)
Benser, W. A.; Bailey, E. E.; Gelder, T. F.
1973-01-01
Pulsed laser holographic interferometry has been applied to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. Much of the region of interest was in the shadow of the blade leading edge and could not be visualized. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface. Reasonable details of the shock patterns were obtained from holograms which were made without extensive rig modifications.
NASA Astrophysics Data System (ADS)
Owens, F. J.; Sharma, J.
1980-03-01
Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.
Velocity structure in long period variable star atmospheres
NASA Technical Reports Server (NTRS)
Pilachowski, C.; Wallerstein, G.; Willson, L. A.
1980-01-01
A regression analysis of the dependence of absorption line velocities on wavelength, line strength, excitation potential, and ionization potential is presented. The method determines the region of formation of the absorption lines for a given data and wavelength region. It is concluded that the scatter which is frequently found in velocity measurements of absorption lines in long period variables is probably the result of a shock of moderate amplitude located in or near the reversing layer and that the frequently observed correlation of velocity with excitation and ionization are a result of the velocity gradients produced by this shock in the atmosphere. A simple interpretation of the signs of the coefficients of the regression analysis is presented in terms of preshock, post shock, or across the shock, together with criteria for evaluating the validity of the fit. The amplitude of the reversing layer shock is estimated from an analysis of a series of plates for four long period variable stars along with the most probable stellar velocity for these stars.
Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru;
2018-01-01
We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.
Experimental Data in Support of the 1991 Shock Classification of Chondrites
NASA Astrophysics Data System (ADS)
Schmitt, R. T.; Stoffler, D.
1995-09-01
We present results of shock recovery experiments performed on the H6(S1) chondrite Kernouv . These data and new observations on ordinary chondrites confirm the recently proposed classification system [1] and provide additional criteria for determining the shock stage, the shock pressure, and, under certain conditions, also the ambient (pre-shock) temperature during shock metamorphism of any chondrite sample. Two series of experiments at 293 K and 920 K and 10, 15, 20, 25, 30, 45, and 60 GPa were made with a high explosive device [2] using 0.5 mm thick disks of the Kernouv chondrite. Shock effects in olivine, orthopyroxene, plagioclase, and troilite and shock-induced melt products were studied by optical [3], electron optical and X-ray diffraction methods. All essential characteristics of the six progressive stages of shock metamorphism (S1 - S6) observed in natural samples of chondrites [1] have been reproduced experimentally except for opaque shock veins and the high pressure polymorphs of olivine and pyroxene (ringwoodite/wadsleyite and majorite), well known from naturally shocked chondrites. This is probably due to the special sample and containment geometry and the extremely short pressure pulses (0.2 - 0.8 microseconds) in the experiments. The shock experiments provided a clear understanding of the shock wave behavior of troilite and of the shock-induced melting, mobilization, and exsolution-recrystallization of composite troilite-metal grains. At 293 K troilite is monocrystalline up to 35 GPa displaying undulatory extinction from 10 to 25 GPa, partial recrystallization from 30 - 45 GPa, and complete recrystallization above 45 GPa. Local melting of troilite/metal grains starts at 30 GPa and composite grains displaying exsolution textures of both phases are formed which get mobilized and deposited into fractures of neighbouring silicate grains above 45 GPa. For a pre-shock temperature of 293 K the pressure at which diagnostic shock effects are formed, is somewhat lower in the experimentally shocked Kernouve than in single crystals [1] (Table 1). Based on the Kernouve calibration and on new observations made in natural samples of shocked chondrites an updated version of the 1991 shock classification system is given in Table 1 which holds for low temperatures. In general, the increase of the pre-shock temperature (e.g., 920 K) leads to a distinct decrease of the pressure at which certain shock effects are produced (Table 1). This effect, most distinct for recrystallization and melting phenomena in olivine and troilite, can be used as a pre-shock thermometer. Provided that a post-shock thermal event can be excluded, an estimate of the pre-shock ambient temperature of chondrites of shock stages S2 - S5 can be made by monitoring the texture of troilite. If troilite is monocrystalline, this temperature was low. Polycrystalline troilite indicates a pre-shock temperature higher than 300 K, probably as high as some 900 K. For chondrites of shock stage S6, the ambient pre-shock temperature exceeded 300 K distinctly if olivine near local melt zones lacks the yellow-brown staining characteristic for shock metamorphism at low temperatures. References: [1] Stoffler D. et al. (1991) GCA, 55, 3845-3867. [2] Stoffler D. and Langenhorst F. (1994) Meteoritics, 29, 155-181. [3] Schmitt R. T. et al. (1993) Meteoritics, 29, 529-530.
Quantifying the Hydrodynamic Performance of an Explosively-Driven Two-Shock Source
NASA Astrophysics Data System (ADS)
Furlanetto, Michael; Bauer, Amy; King, Robert; Buttler, William; Olson, Russell; Hagelberg, Carl
2015-06-01
An explosively-driven experimental package capable of generating a tunable two-shock drive would enable a host of experiments in shock physics. To make the best use of such a platform, though, its symmetry, reproducibility, and performance must be characterized thoroughly. We report on a series of experiments on a particular two-shock design that used shock reverberation between the sample and a heavy anvil to produce a second shock. Drive package diameters were varied between 50 and 76 mm in order to investigate release wave propagation. We used proton radiography to characterize the detonation and reverberation fronts within the high explosive elements of the packages, as well as surface velocimetry to measure the resulting shock structure in the sample under study. By fielding more than twenty channels of velocimetry per shot, we were able to quantify the symmetry and reproducibility of the drive.
NASA Astrophysics Data System (ADS)
Moreau, J.; Kohout, T.; Wünnemann, K.
2017-11-01
We determined the shock-darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post-shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock-darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not-shock-related triggers for iron melt.
Shock effects on hydrous minerals and implications for carbonaceous meteorites
NASA Technical Reports Server (NTRS)
Lange, M. A.; Ahrens, T. J.; Lambert, P.
1985-01-01
The effect of shock loading over the pressure range of 29-59 GPa on the shock-recovered specimens of antigorite serpentine, Mg3Si2O5(OH)4, were investigated employing infrared (IR) spectroscopy, thermogravimetric analysis, and optical and scanning electron microscopy. With increasing shock pressure, there was an increase in H2O IR absorption peaks at the expense of OH peaks, while the changes in SiO bond vibration modes were identical to those seen for other, nonhydrous minerals. Thermogravimetric results on vented assembly samples showed linear relationships between the shock pressure and both the length of dehydration interval and the effective activation energy for releasing post-shock structural water. Optical and scanning electron microscopy revealed gas bubbles, which appeared to be injected into zones of partial melting, and vesicular dark veins distributed throughout the shocked samples. It is suggested that shock loading of hydrous minerals would release and redistribute free water in the regoliths of carbonaceous chondrite parent bodies, giving rise to observed hydrous alterations.
Mechanical Properties of Shock Treated Aluminium Alloy Al 2024-T4
NASA Astrophysics Data System (ADS)
Joshi, K. D.; Mukhopadhyay, A. K.; Dey, A.; Rav, Amit S.; Biswas, S.; Gupta, Satish C.
2012-07-01
Plate impact experiment has been carried out on Al 2024-T4 alloy using single stage gas gun. The dynamic yield strength and spall strength of Al 2024-T4 sample has been determined to be 0.35 GPa and 1.43 GPa, respectively, from free surface velocity history measured using VISAR. The sample recovered after unloading from peak shock pressure of 4.4 GPa along with an unshocked sample is analyzed for mechanical properties using nano-indentation and scanning electron microscopy (SEM). The nano-indentation measurements reveal that the hardness and Young's modulus for unshocked sample remains unchanged as a function of load (equivalently depth), however, the same for shocked sample decreases monotonically with increase of load up to ~40 mN and on further increase of load it remains unchanged, suggesting the (i) increase in hardness of shock loaded sample; (ii) the increase in hardness is limited to certain depth, which in our case is 845.12 ± 43.16 nm.
Biomechanics of stair walking and jumping.
Loy, D J; Voloshin, A S
1991-01-01
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.
Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas
NASA Astrophysics Data System (ADS)
Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup
2016-10-01
Collisionless electrostatic shock ion acceleration has become a major regime of laser-driven ion acceleration owing to generation of quasi-monoenergetic ion beams from moderate parametric conditions of lasers and plasmas in comparison with target-normal-sheath-acceleration or radiation pressure acceleration. In order to construct the shock, plasma heating is an essential condition for satisfying Mach number condition 1.5
NASA Astrophysics Data System (ADS)
Wessley, G. Jims John
2017-10-01
The propagation of shock waves through any media results in an instantaneous increase in pressure and temperature behind the shockwave. The scope of utilizing this sudden rise in pressure and temperature in new industrial, biological and commercial areas has been explored and the opportunities are tremendous. This paper presents the design and testing of a portable semi-automatic shock tube on water samples mixed with salt. The preliminary analysis shows encouraging results as the salinity of water samples were reduced up to 5% when bombarded with 250 shocks generated using a pressure ratio of 2. 5. Paper used for normal printing is used as the diaphragm to generate the shocks. The impact of shocks of much higher intensity obtained using different diaphragms will lead to more reduction in the salinity of the sea water, thus leading to production of potable water from saline water, which is the need of the hour.
Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite
NASA Astrophysics Data System (ADS)
Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.
2018-03-01
Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.
Incipient Melt Formation and Devitrification at the Wanapitei Impact Structure, Ontario, Canada
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Schuraytz, B. C.; Crabtree, D.
1997-01-01
The Wanapitei impact structure is approximately 8 km in diameter and lies within Wanapitei Lake, approximately 34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of approximately 50-60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 C and 800 C.
Altayyar, Sultan; Al-Omari, Awad; Alqahtani, Abdulrahman M; Rochwerg, Bram; Alnasser, Sami; Alqahtani, Zuhoor; Fox-Robichaud, Alison; Alhazzani, Waleed
2015-01-01
Cardiogenic shock is associated with significant mortality, particularly when caused by myocardial infarction. Intraaortic balloon pump (IABP) is the primary hemodynamic adjunct in patients with cardiogenic shock; however, evidence suggests that IABP may not improve mortality in this population. We conducted an electronic search of the Medline, EMBASE, and Cochrane trial registry databases. Two reviewers independently screened citations and identified eligible trials. The same reviewers abstracted data independently. We pooled the data using a fixed effect model and reported dichotomous outcomes as risk ratios (RRs) with 95% confidence intervals (CIs). Subsequently, we used the GRADE approach to judge the quality of evidence. We included 4 randomized trials with 735 patients. The use of IABP did not reduce the risk of death in patients with cardiogenic shock secondary to cardiac ischemia when compared with usual care (RR, 0.94; 95% CI, 0.79-1.13; P = 0.52; I² = 0%; moderate confidence). The use of IABP was not associated with an increased risk of stroke (RR, 0.77; 95% CI 0.22-2.69; P = 0.68; I² = 48%; very low confidence), limb ischemia (RR, 1.24; 95% CI, 0.59-2.59; P = 0.58; I² = 0%; low confidence), or major bleeding (RR, 0.76; 95% CI, 0.34-1.72; P = 0.52; I² = 0%; low confidence). The use of IABP in patients with cardiogenic shock complicating myocardial ischemia does not reduce mortality (moderate confidence) and is not associated with a higher risk of complications (very low to low confidence). The results should be interpreted with caution owing to limitations such as imprecision, risk of bias, and clinical heterogeneity.
Effect of hypothermia on splenic leukocyte modulation and survival duration in severely septic rats.
Willis, Rhett N; Charles, Eric J; Guidry, Christopher A; Chordia, Mahendra D; Davies, Stephen W; Yang, Zequan; Sawyer, Robert G
2017-07-01
Therapeutic hypothermia (HT) in severe septic shock is associated with prolonged survival. We hypothesized that moderate HT would prolong survival and modulate the inflammatory response in rats with septic shock by exerting its therapeutic effect on splenic leukocytes. Severe septic shock was created in rats by cecal ligation and incision (CLI). One hour after CLI or laparotomy, rats were randomized to sham, normothermia (NT), or 4 h of HT followed by 2 h of rewarming. HT (31 ± 1°C) was induced using a cooling blanket and monitored via a rectal temperature probe. Survival duration was 2.78 ± 1.0 h in NT rats and 8.33 ± 0.32 h in HT rats (n = 8/group, P < 0.0001). In separate groups, 3 h after CLI, the spleen weight was significantly smaller in NT rats (769 ± 100 mg) than in HT rats (947 ± 157 mg, P = 0.04). Fluorescent immunostaining of formyl peptide receptors on leukocytes in spleen tissue showed considerably higher formyl peptide receptor expression in HT rats than in NT rats. Significantly elevated proinflammatory cytokines and myeloperoxidase enzyme in plasma were found in NT rats compared with HT rats. Anti-inflammatory cytokine, interleukin-10, was significantly higher in HT rats. Both proinflammatory cytokines and plasma myeloperoxidase were significantly reduced in splenectomized NT rats. Moderate hypothermic therapy significantly prolongs the survival duration of rats with severe septic shock. HT dampens the inflammatory response during septic shock by modulating the spleen to an anti-inflammatory mode and preventing the spleen from releasing activated splenic leukocytes into the blood. Copyright © 2017 Elsevier Inc. All rights reserved.
MHD heat flux mitigation in hypersonic flow around a blunt body with ablating surface
NASA Astrophysics Data System (ADS)
Bityurin, V. A.; Bocharov, A. N.
2018-07-01
One of the possible applications of magnetohydrodynamic flow control is considered. Namely, the surface heat flux mitigation by means of magnetohydrodynamic (MHD) interaction in hypersonic flow around a blunt body. The 2D computational model realizes a coupled solution of chemically non-equilibrium ionized airflow in magnetic field. Heat- and mass-transfer due to the ablation of materials from the body surface is taken into account. Two cases of free-stream flow conditions are considered: moderate free-stream velocity (7500 m s‑1) case and high free-stream velocity (11 000 m s‑1) case. It is shown that the first flow case results in moderate ionization in the shock layer, while the second flow case results in high ionization. In the first case, the Hall effect is significant, and effective electrical conductivity in the shock layer is rather low. In the second case, the Hall effect reduces, and effective conductivity is high. Even if the Hall effect is strong, as in the first case, intensive MHD deceleration of the flow behind the shock is provided due to the presence of insulating boundaries, the bow shock front and non-conductive wall of the blunt body. In the second case, high effective conductivity provides a high intensity of MHD flow deceleration. In both cases, a strong effect of MHD interaction on the flow structure is observed. As a consequence, a noticeable reduction of the surface heat flux is revealed for reasonable values of magnetic induction. The new treatment of mechanism for the surface heat flux reduction is proposed, which is different from commonly used one assuming that MHD interaction increases the bow shock stand-off distance, and, consequently results in a decrease of the mean temperature drop across the shock layer. The new effect of ‘saturation of heat flux’ is discussed.
Laser shock compression experiments on precompressed water in ``SG-II'' laser facility
NASA Astrophysics Data System (ADS)
Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu
2017-06-01
Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.
2015-08-15
The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less
NASA Astrophysics Data System (ADS)
Lembège, Bertrand; Yang, Zhongwei
2016-08-01
The nonstationary dynamics of the heliospheric termination shock in the presence of pickup ions (PUI) is analyzed by using a one-dimensional particle-in-cell simulation code. This work initially stimulated by Voyager 2 data focusses on this nonstationarity for different percentages of PUIs and for different Alfvén Mach numbers M A. Solar wind ions (SWIs) and PUIs are described, respectively, as Maxwellian and shell distributions (with a zero/finite thickness). For a moderate M A, present results show that (1) the shock front is still nonstationary even in the presence of 25% of PUIs; its instantaneous velocity varies, which is in favor for shock multicrossing; (2) the presence of PUIs tends to smooth out the time fluctuations of field amplitude and of microstructure widths at the front and overshoot; (3) the shock has a multiple overshoot, which is analyzed by identifying the contributions of SWIs and the PUIs; (4) as the PUI percentage increases, the shock moves faster and the downstream compression becomes weaker, which is explained by a Rankine-Hugoniot model; (5) the reflection rate of SWIs and PUIs decreases as the PUI percentage increases; (6) the shock structure is almost insensitive to the shell thickness and (7) for the PUIs dominated shock case (PUI = 55%), the shock becomes stationary. However, for higher M A regime, the front nonstationarity persists even in the PUI = 55% case. In summary, high M A regime allows to compensate the smoothing of the microstructures and the time fluctuations of the shock front brought by the presence of PUIs.
Manicouagan impact melt, Quebec. I - Stratigraphy, petrology, and chemistry
NASA Technical Reports Server (NTRS)
Floran, R. J.; Grieve, R. A. F.; Dence, M. R.; Phinney, W. C.; Warner, J. L.; Blanchard, D. P.; Simonds, C. H.
1978-01-01
A sheet of clast-laden impact melt 230 m thick and 55 km in diameter forms an annular plateau surrounding an uplift of shocked anorthosite within the moderately eroded Manicouagan structure. Three gradational units of the melt sheet are characterized with respect to grain size, inclusions, texture, and mineralogy. The melt rocks as a group are chemically homogeneous with a bulk composition similar to that of latite and with no statistically significant regional chemical variations. The melt is not completely chemically homogeneous as a local mafic variant represented by two samples with poikilitic texture was found. These poikilitic rocks texturally resemble some Apollo 17 impact melt rocks and are inferred to have had a similar origin and thermal history.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Singh, Shashwat K.; Mitra, S.; Priestley, K. F.; Dayal, Shankar
2017-02-01
The 2015 Gorkha earthquake (Mw 7.8) occurred by thrust faulting on a ˜150 km long and ˜70 km wide, locked downdip segment of the Main Himalayan Thrust (MHT), causing the Himalaya to slip SSW over the Indian Plate, and was followed by major-to-moderate aftershocks. Back projection of teleseismic P-wave and inversion of teleseismic body waves provide constraints on the geometry and kinematics of the main-shock rupture and source mechanism of aftershocks. The main-shock initiated ˜80 km west of Katmandu, close to the locking line on the MHT and propagated eastwards along ˜117° azimuth for a duration of ˜70 s, with varying rupture velocity on a heterogeneous fault surface. The main-shock has been modelled using four subevents, propagating from west-to-east. The first subevent (0-20 s) ruptured at a velocity of ˜3.5 km s- 1 on a ˜6°N dipping flat segment of the MHT with thrust motion. The second subevent (20-35 s) ruptured a ˜18° W dipping lateral ramp on the MHT in oblique thrust motion. The rupture velocity dropped from 3.5 km s- 1 to 2.5 km s- 1, as a result of updip propagation of the rupture. The third subevent (35-50 s) ruptured a ˜7°N dipping, eastward flat segment of the MHT with thrust motion and resulted in the largest amplitude arrivals at teleseismic distances. The fourth subevent (50-70 s) occurred by left-lateral strike-slip motion on a steeply dipping transverse fault, at high angle to the MHT and arrested the eastward propagation of the main-shock rupture. Eastward stress build-up following the main-shock resulted in the largest aftershock (Mw 7.3), which occurred on the MHT, immediately east of the main-shock rupture. Source mechanisms of moderate aftershocks reveal stress adjustment at the edges of the main-shock fault, flexural faulting on top of the downgoing Indian Plate and extensional faulting in the hanging wall of the MHT.
NASA Astrophysics Data System (ADS)
Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng
2018-02-01
The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.
Optical and TEM study of shock metamorphism from the Sedan test site
NASA Technical Reports Server (NTRS)
Gratz, A. J.
1992-01-01
Thus far, detailed petrologic studies of shock metamorphism have been performed on samples recovered from laboratory experiments and on a few natural impactites. The loading history of these samples is quite different: In particular, laboratory experiments spend only a short time (less than 1 microsec) at peak pressure, whereas natural impactites may have stress pulses from 0.1 - 1 ms. On the other hand, laboratory experiments have known stress histories; natural impactites do not. Natural samples are also subjected to thousands or millions of years of postshock annealing and/or weathering. A useful intermediate case is that of nuclear detonation. Stress pulses for these events can reach 0.1 ms or higher, and samples are obtained in pristine condition. All three types of loading produce stresses of hundreds of kilobars. Samples studied were taken from the Sedan nulcear test site, and consist of a coarse-grained granodiorite containing quartz, K-feldspar, cordierite, and hornblende. Samples were studied optically in this section, then were thinned with an ion mill and studied by transmission electron microscopy (TEM). Optically, quartz and K-feldspar displayed numerous sets of planar deformation features (PDF's) identical to the nondecorated PDF's seen in laboratory samples and many natural impactites. TEM study showed that the PDF's in quartz and feldspar corresponded to densely packed wide transformation lamellae identical to those described in laboratory studies. The transformation lamellae in both minerals were amorphous, with no sign of high-pressure phases. In the case of K-feldspar only, narrow sublamellae extended outward from some wide lamellae. Quartz, which was more abundant and studied more extensively, contained no shock-induced dislocations. Some planar features were also seen in cordierite, but could not be identified due to rapid beam damage. No shock defects were seen in hornblende in TEM. The shock-induced defects present at the Sedan site are very similar to those seen in shock recovery experiments, and also to those present at certain natural events (e.g., Meteor Crater). This suggests that shock deformation in quartz is not strongly dependent on shock pulse duration, and that laboratory recovery experiments are useful simulations of natural impact events.
Disintegration of Dust Aggregates in Interstellar Shocks and the Lifetime of Dust Grains in the ISM
NASA Technical Reports Server (NTRS)
Dominik, C.; Jones, A. P.; Tielens, A. G. G. M.; Cuzzi, Jeff (Technical Monitor)
1994-01-01
Interstellar grains are destroyed by shock waves moving through the ISM. In fact, the destruction of grains may be so effective that it is difficult to explain the observed abundance of dust in the ISM as a steady state between input of grains from stellar sources and destruction of grains in shocks. This is especially a problem for the larger grains. Therefore, the dust grains must be protected in some way. Jones et al. have already considered coatings and the increased post-shock drag effects for low density grains. In molecular clouds and dense clouds, coagulation of grains is an important process, and the largest interstellar grains may indeed be aggregates of smaller grains rather than homogeneous particles. This may provide a means to protect the larger grains, in that, in moderate velocity grain-grain collisions in a shock the aggregates may disintegrate rather than be vaporized. The released small particles are more resilient to shock destruction (except in fast shocks) and may reform larger grains later, recovering the observed size distribution. We have developed a model for the binding forces in grain aggregates and apply this model to the collisions between an aggregate and fast small grains. We discuss the results in the light of statistical collision probabilities and grain life times.
Aftershock patterns and main shock faulting
Mendoza, C.; Hartzell, S.H.
1988-01-01
We have compared aftershock patterns following several moderate to large earthquakes with the corresponding distributions of coseismic slip obtained from previous analyses of the recorded strong ground motion and teleseismic waveforms. Our results are consistent with a hypothesis of aftershock occurrence that requires a secondary redistribution of stress following primary failure on the earthquake fault. Aftershocks followng earthquakes examined in this study occur mostly outside of or near the edges of the source areas indicated by the patterns of main shock slip. The spatial distribution of aftershocks reflects either a continuation of slip in the outer regions of the areas of maximum coseismic displacement or the activation of subsidiary faults within the volume surrounding the boundaries of main shock rupture. -from Authors
Incident shock strength evolution in overexpanded jet flow out of rocket nozzle
NASA Astrophysics Data System (ADS)
Silnikov, Mikhail V.; Chernyshov, Mikhail V.
2017-06-01
The evolution of the incident shock in the plane overexpanded jet flow or in the axisymmetric one is analyzed theoretically and compared at the whole range of governing flow parameters. Analytical results can be applied to avoid jet flow instability and self-oscillation effects at rocket launch, to improve launch safety and to suppress shock-wave induced noise harmful to environment and personnel. The mathematical model of ;differential conditions of dynamic compatibility; was applied to the curved shock in non-uniform plane or axisymmetrical flow. It allowed us to study such features of the curved incident shock and flow downstream it as shock geometrical curvature, jet boundary curvature, local increase or decrease of the shock strength, flow vorticity rate (local pressure gradient) in the vicinity of the nozzle lip, static pressure gradient in the compressed layer downstream the shock, and many others. All these quantities sufficiently depend on the flow parameters (flow Mach number, jet overexpansion rate, nozzle throat angle, and ration of gas specific heats). These dependencies are sometimes unusual, especially at small Mach numbers. It was also surprising that there is no great difference among all these flowfield features in the plane jet and in the axisymmetrical jet flow out of a nozzle with large throat angle, but all these parameters behave in a quite different way in an axisymmetrical jet at small and moderate nozzle throat angles.
Nature of the wiggle instability of galactic spiral shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr
Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gasmore » in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.« less
Impact of surface energy on the shock properties of granular explosives.
Bidault, X; Pineau, N
2018-01-21
This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.
Impact of surface energy on the shock properties of granular explosives
NASA Astrophysics Data System (ADS)
Bidault, X.; Pineau, N.
2018-01-01
This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti-Lopez, L.; Ocana, R.; Porro, J. A.
2009-07-01
We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.
Picosecond Vibrational Spectroscopy of Shocked Energetic Materials
NASA Astrophysics Data System (ADS)
Franken, Jens; Hare, David; Hambir, Selezion; Tas, Guray; Dlott, Dana
1997-07-01
We present a new technique which allows the study of the properties of shock compressed energetic materials via vibrational spectroscopy with a time resolution on the order of 25 ps. Shock waves are generated using a near-IR laser at a repetition rate of 80 shocks per second. Shock pressures up to 5 GPa are obtained; shock risetimes are as short as 25 ps. This technique enables us to estimate shock pressures and temperatures as well as to monitor shock induced chemistry. The shock effects are probed by ps coherent anti-Stokes Raman spectroscopy (CARS). The sample consists of four layers, a glass plate, a thin polycrystalline layer of an energetic material, a buffer layer and the shock generating layer. The latter is composed of a polymer, a near-IR absorbing dye and a high explosive (RDX) as a pressure booster. The main purpose of the buffer layer, which consists of an inert polymer, is to delay the arrival of the shock wave at the sample by more than 1 ns until after the shock generating layer has ablated away. High quality, high resolution (1 cm-1) low-background vibrational spectra could be obtained. So far this technique has been applied to rather insensitive high explosives such as TATB and NTO. In the upcoming months we are hoping to actually observe chemistry in real time by shocking more sensitive materials. This work was supported by the NSF, the ARO and the AFOSR
Frequency shift measurement in shock-compressed materials
Moore, David S.; Schmidt, Stephen C.
1985-01-01
A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.
Post-Shock Sampling of Shock-Heated Hydrocarbon Fuels
2016-07-07
on the ability to measure key hydrocarbon fragments (e.g. ethylene , methane, and acetylene) over a wide range of temperatures and pressures. The...series of experiments was conducted to validate the sampling system results and explore the thermal decomposition of ethylene and methane. Initially, a...1% ethylene /0.1% methane/balance argon fuel mixture was shock-heated to ~960 K – a temperature low enough that no reaction would occur. GC analysis
Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur
NASA Astrophysics Data System (ADS)
Jetté, F. X.; Goroshin, S.; Higgins, A. J.
2007-12-01
Equimolar mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2-3.0 GPa (pressures were estimated using LS-DYNA simulations of samples with 100% TMD).
Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching
Gratz, A.J.; Fisler, D.K.; Bohor, B.F.
1996-01-01
Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.
NASA Astrophysics Data System (ADS)
Niihara, Takafumi; Kaiden, Hiroshi; Misawa, Keiji; Sekine, Toshimori; Mikouchi, Takashi
2012-08-01
Shock-recovery and annealing experiments on basalt-baddeleyite mixtures were undertaken to evaluate shock effects on U-Pb isotopic systematics of baddeleyite. Shock pressures up to 57 GPa caused fracturing of constituent phases, mosaicism of olivine, maskelynitization of plagioclase, and melting, but the phase transition from monoclinic baddeleyite structure to high-pressure/temperature polymorphs of ZrO2 was not confirmed. The U-Pb isotopic systems of the shock-loaded baddeleyite did not show a large-scale isotopic disturbance. The samples shock-recovered from 47 GPa were then employed for annealing experiments at 1000 or 1300 °C, indicating that the basalt-baddeleyite mixture was almost totally melted except olivine and baddeleyite. Fine-grained euhedral zircon crystallized from the melt was observed around the relict baddeleyite in the sample annealed at 1300 °C for 1 h. The U-Pb isotopic systems of baddeleyite showed isotopic disturbances: many data points for the samples annealed at 1000 °C plotted above the concordia. Both radiogenic lead loss/uranium gain and radiogenic lead gain/uranium loss were observed in the baddeleyite annealed at 1300 °C. Complete radiogenic lead loss due to shock metamorphism and subsequent annealing was not observed in the shock-loaded/annealed baddeleyites studied here. These results confirm that the U-Pb isotopic systematics of baddeleyite are durable for shock metamorphism. Since shergottites still preserve Fe-Mg and/or Ca zonings in major constituent phases (i.e. pyroxene and olivine), the shock effects observed in Martian baddeleyites seem to be less intense compared to that under the present experimental conditions. An implication is that the U-Pb systems of baddeleyite in shergottites will provide crystallization ages of Martian magmatic rocks.
New Occurrence of Shocked Graphite Aggregates at Barringer Crater
NASA Astrophysics Data System (ADS)
Miura, Y.; Noma, Y.; Iancu, O. G.
1993-07-01
High-pressure carbon minera]s are considered to be formed by solid-solid transformation under static or impact high-pressure condition, but shocked quartz aggregates of impact craters are considered to be formed by quenched accretion of various aggregates by dynamic impact process [1-3]. The main purpose of this study is to elucidate new findings and occurrences of shocked graphite (SG) aggregates [2,3] at the Barringer meteorite crater. The graphite nodule block of Barringer Crater used in this study is collected near the rim. The sample is compared with standard graphite samples of Korea, Madagascar, and artificial impact graphites. There are four different mineral aggregates of the Barringer graphite nodule sample: (1) shocked graphite-1, (2) shocked graphite-2 and hexagonal diamond in the vein, (3) shocked quartz-1 (with kamacite) in the rim, and (4) calcite in the rim (Table 1). X-ray diffraction peaks of shocked graphite reveal low X-ray intensity, high Bragg-angle shift of X-ray diffraction peak, and multiple splitting of X-ray diffraction peaks. X-ray calculated density (rho) has been determined by X-ray diffractometer by the equation of density deviation Delta rho (%) = 100 x {(rho-rho(sub)0)/rho(sub)0}, where standard density rho(sub)0 is 2.255 g/cm^3 in Korean graphite [2,3]. The high-density value of shocked graphite grain obtained in Barringer is Delta rho = +0.6 +/- 0.1%. Shocked hexagonal diamonds (chaoite) show a high value of Delta rho = +0.6 +/- 0.9%. Analytical electron microscopy data reveal three different aggregates in the graphite nodule samples (Table 1): (1) shocked graphite-1 in the matrix, which contains uniformly Fe and Ca elements formed under gas state; (2) shocked graphite-2 in the vein, where crystallized shocked graphites and hexagonal diamonds are surrounded by kamacite-rich metals formed under gas-melt states of mixed compositions from iron meteorite and target rocks; and (3) shocked quartz-1 and kamacite in the rim, where coexisted elements are supplied from kamacite, sandstone, and limestone. The shocked quartz-1 grains with high density contain Fe and Ca elements that are different from the shocked quartz-2 of pure silica [1] formed at the final stage from the Coconino sandstone. (4) Limestone in the rim is attached from Kaibab limestone. The present shocked graphites with high density are the same as artificial fine-grained shocked graphites (Delta rho = +0.7%). Table 1, which appears here in the hard copy, shows formation stages with two shocked graphites in the Barringer Crater. Formation of shocked aggregates with chemical contamination indicate dynamic accretion processes of quenching and depression at impact. The existence of two shocked graphites indicates the two formation stages of the first gas-state and the second gas-melt states with quenching processes. The origin of carbon in the shocked graphites is considered in this study to be from Kaibab limestone. References: [1] Miura Y. (1991) Shock Waves, 1, 35-41. [2] Miura Y. (1992) Proc. Shock Waves (Japan), 2, 54-57. [3] Miura Y. et al. (1993) Symp. NIPR Antarctic Meteorite (Tokyo), in press. [4] Foote A. E. (1891) Am. J. Sci., 42, 413-417. [5] Hannemann R. E. et al. (1967) Science, 155, 995-997.
Aletti, Federico; Conti, Costanza; Ferrario, Manuela; Ribas, Vicent; Bollen Pinto, Bernardo; Herpain, Antoine; Post, Emiel; Romay Medina, Eduardo; Barlassina, Cristina; de Oliveira, Eliandre; Pastorelli, Roberta; Tedeschi, Gabriella; Ristagno, Giuseppe; Taccone, Fabio S; Schmid-Schönbein, Geert W; Ferrer, Ricard; De Backer, Daniel; Bendjelid, Karim; Baselli, Giuseppe
2016-01-28
The ShockOmics study (ClinicalTrials.gov identifier NCT02141607) is a multicenter prospective observational trial aimed at identifying new biomarkers of acute heart failure in circulatory shock, by means of a multiscale analysis of blood samples and hemodynamic data from subjects with circulatory shock. Ninety septic shock and cardiogenic shock patients will be recruited in three intensive care units (ICU) (Hôpital Erasme, Université Libre de Bruxelles, Belgium; Hospital Universitari Mutua Terrassa, Spain; Hôpitaux Universitaires de Genève, Switzerland). Hemodynamic signals will be recorded every day for up to seven days from shock diagnosis (time T0). Clinical data and blood samples will be collected for analysis at: i) T1 < 16 h from T0; ii) T2 = 48 h after T0; iii) T3 = day 7 or before discharge or before discontinuation of therapy in case of fatal outcome; iv) T4 = day 100. The inclusion criteria are: shock, Sequential Organ Failure Assessment (SOFA) score > 5 and lactate levels ≥ 2 mmol/L. The exclusion criteria are: expected death within 24 h since ICU admission; > 4 units of red blood cells or >1 fresh frozen plasma transfused; active hematological malignancy; metastatic cancer; chronic immunodepression; pre-existing end stage renal disease requiring renal replacement therapy; recent cardiac surgery; Child-Pugh C cirrhosis; terminal illness. Enrollment will be preceded by the signature of the Informed Consent by the patient or his/her relatives and by the physician in charge. Three non-shock control groups will be included in the study: a) healthy blood donors (n = 5); b) septic patients (n = 10); c) acute myocardial infarction or patients with prolonged acute arrhythmia (n = 10). The hemodynamic data will be downloaded from the ICU monitors by means of dedicated software. The blood samples will be utilized for transcriptomics, proteomics and metabolomics ("-omics") analyses. ShockOmics will provide new insights into the pathophysiological mechanisms underlying shock as well as new biomarkers for the timely diagnosis of cardiac dysfunction in shock and quantitative indices for assisting the therapeutic management of shock patients.
Magnetized SASI: its mechanism and possible connection to some QPOs in XRBs
NASA Astrophysics Data System (ADS)
Dhang, Prasun; Sharma, Prateek; Mukhopadhyay, Banibrata
2018-05-01
The presence of a surface at the inner boundary, such as in a neutron star or a white dwarf, allows the existence of a standing shock in steady spherical accretion. The standing shock can become unstable in 2D or 3D; this is called the standing accretion shock instability (SASI). Two mechanisms - advective-acoustic and purely acoustic - have been proposed to explain SASI. Using axisymmetric hydrodynamic and magnetohydrodynamic simulations, we find that the advective-acoustic mechanism better matches the observed oscillation time-scales in our simulations. The global shock oscillations present in the accretion flow can explain many observed high frequency (≳100 Hz) quasi-periodic oscillations (QPOs) in X-ray binaries. The presence of a moderately strong magnetic field adds more features to the shock oscillation pattern, giving rise to low frequency modulation in the computed light curve. This low frequency modulation can be responsible for ˜100 Hz QPOs (known as hHz QPOs). We propose that the appearance of hHz QPO determines the separation of twin peak QPOs of higher frequencies.
Microenergetic Shock Initiation Studies on Deposited Films of PETN
NASA Astrophysics Data System (ADS)
Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne M.; Long, Gregory T.; Knepper, Robert; Brundage, Aaron L.; Jones, David A.
2009-06-01
Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.
Luminescence from edge fracture in shocked lithium fluoride crystals
Turley, W. D.; Stevens, G. D.; Capelle, G. A.; ...
2013-04-03
Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28 GPa followed by complete stress release at the edges. We examined the light using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrummore » is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Moreover, experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. Finally, this background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.« less
NASA Technical Reports Server (NTRS)
Neiner, G. H.; Cole, G. L.; Arpasi, D. J.
1972-01-01
Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.
Parameters of hormetic stress and resilience to trauma in rats.
Plumb, Traci N; Cullen, Patrick K; Minor, Thomas R
2015-01-01
Hormesis is the process by which small stresses build resilience to large stresses. We pre-exposed rats to various parameters of mild-to-moderate stress prior to traumatic stress in the present experiments to assess the potential benefits of hormetic training on resilience to traumatic, uncontrollable stress. Rats underwent varying stress pre-training parameters prior to exposure to uncontrollable traumatic stress in the learned helplessness procedure. The ability to prevent the exaggerated fear responding and escape deficits that normally follow experience with traumatic stress were used as a measure of the benefits of hormetic training. Four experiments examined the effects of number of training sessions, stressor severity and pattern of rest between pre-training stress sessions. Repeated exposure to mild restraint stress or moderate shock stress eliminated both the enhanced fear conditioning and shuttle-escape deficits that result from exposure to traumatic, inescapable shock. The pattern of rest did not contribute to resilience when the pre-exposure stressor was mild, but was vital when the pre-exposure stressor was moderate, with an alternation of stress and rest being the most effective procedure. The data also suggest that the level of resilience may increase with the number of pre-exposure sessions.
X-ray diffraction from shock-loaded polycrystals.
Swift, Damian C
2008-01-01
X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.
Forsterite and Enstatite Shock Temperatures: Implications for Planetary Impact Melting
NASA Astrophysics Data System (ADS)
Davies, Erik; Root, Seth; Kraus, Rick; Spaulding, Dylan; Stewart, Sarah; Jacobsen, Stein; Mattsson, Thomas; Lemke, Ray
2017-06-01
We present experimental results on enstatite and forsterite to probe extreme conditions in the laboratory in order to examine melting and vaporization of rocky planet mantles upon shock and release. Flyer plate impact experiments are carried out on the Z-Machine at Sandia National Laboratory. Planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Shock velocity of the sample is measured using laser interferometry, and the pressure and particle velocity are derived through impedance matching to the aluminum flyer. Temperature of the shocked state is measured with a streaked visible spectrum and calibrated with a quartz standard, mounted downrange from the sample. Preliminary analysis shows that current equation of state models underestimate the entropy gain, which suggests that for shock pressures above 250 GPa, a higher degree of impact vaporization will be reached. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation for the U.S. DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Linear shock wave therapy in the treatment of erectile dysfunction.
Pelayo-Nieto, M; Linden-Castro, E; Alias-Melgar, A; Espinosa-Pérez Grovas, D; Carreño-de la Rosa, F; Bertrand-Noriega, F; Cortez-Betancourt, R
2015-09-01
Linear Shock Wave Therapy (LSWT) is a new noninvasive therapy that uses low-intensity shock waves to induce local angiogenesis promising modality in the treatment of erectile dysfunction (ED). To evaluate the effectiveness of LSWT in men with vasculogenic erectile dysfunction (ED), in a Tertiary Care Center. Included 15 men aged 45-70 years, sexually active with mild and moderate vascular ED evaluated with the International Index of Erectile Function (IIEF). The study was conducted in three stage: screening, treatment and results. Treatment stage: 4 weekly sessions LSWT (RENOVA ®) 5000 waves (.09mJ/mm(2)). Erectile function was assessed with IIEFF-EF, SEP (Sexual Encounter Profile) and GAQ (Global Assessment Questions) at one and six months after treatment. The rate of success was 80% (12/15). Patients with mild ED (6/15) 40% and moderate ED (9/15) 60%. We found a positive association between IIEF-Basal (average 14.23 pts) and IIEF at one month and six months after therapy (19.69 pts) a difference of 5.46 pts. (P<.013). The feasibility and tolerability of this treatment, and rehabilitation potential features, make it this an attractive new treatment option for patients with ED. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Edwards, Meghan; Ley, Eric; Mirocha, James; Hadjibashi, Anoushiravan Amini; Margulies, Daniel R; Salim, Ali
2010-10-01
Hypotension, defined as systolic blood pressure less than 90 mm Hg, is recognized as a sign of hemorrhagic shock and is a validated prognostic indicator. The definition of hypotension, particularly in the elderly population, deserves attention. We hypothesized that the systolic blood pressure associated with increased mortality resulting from hemorrhagic shock increases with increasing age. The Los Angeles County Trauma Database was queried for all moderate to severely injured patients without major head injuries admitted between 1998 and 2005. Several fit statistic analyses were performed for each systolic blood pressure from 50 to 180 mm Hg to identify the model that most accurately defined hypotension for three age groups. The optimal definition of hypotension for each group was determined from the best fit model. A total of 24,438 patients were analyzed. The optimal definition of hypotension was systolic blood pressure of 100 mm Hg for patients 20 to 49 years, 120 mm Hg for patients 50 to 69 years, and 140 mm Hg for patients 70 years and older. The optimal systolic blood pressure for improved mortality in hemorrhagic shock increases significantly with increasing age. Elderly trauma patients without major head injuries should be considered hypotensive for systolic blood pressure less than 140 mm Hg.
NASA Astrophysics Data System (ADS)
Benfedda, A.; Abbes, K.; Bouziane, D.; Bouhadad, Y.; Slimani, A.; Larbes, S.; Haddouche, D.; Bezzeghoud, M.
2017-03-01
On August 1st, 2014, a moderate-sized earthquake struck the capital city of Algiers at 05:11:17.6 (GMT+1). The earthquake caused the death of six peoples and injured 420, mainly following a panic movement among the population. Following the main shock, we surveyed the aftershock activity using a portable seismological network (short period), installed from August 2nd, 2014 to August 21st, 2015. In this work, first, we determined the main shock epicenter using the accelerograms recorded by the Algerian accelerograph network (under the coordination of the National Center of Applied Research in Earthquake Engineering-CGS). We calculated the focal mechanism of the main shock, using the inversion of the accelerograph waveforms in displacement that provides a reverse fault with a slight right-lateral component of slip and a compression axis striking NNW-SSE. The obtained scalar seismic moment ( M o = 1.25 × 1017 Nm) corresponds to a moment magnitude of M w = 5.3. Second, the analysis of the obtained aftershock swarm, of the survey, suggests an offshore ENE-WSW, trending and NNW dipping, causative active fault in the bay of Algiers, which may likely correspond to an offshore unknown segment of the Sahel active fault.
Radiation Belt response to the July 2017 Coronal Mass Ejection and the Interplanetary Shock
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Baker, D. N.; Jones, A. D.; Schiller, Q. A.; Sibeck, D. G.; Elkington, S. R.; Hoxie, V. C.; Jaynes, A. N.; Li, X.; Zhao, H.; Blake, J. B.; Claudepierre, S. G.; Fennell, J. F.; Turner, D. L.
2017-12-01
A coronal mass ejection that erupted on July 14, 2017 impacted the radiation belts on July 16, 2017 and resulted in a moderate geomagnetic storm. The immediate response of the energetic electrons to the interplanetary shock ahead of the CME, showed hock-induced energization as well as drift echoes in the L range of 4 to 5 . Increased electron fluxes were seen to energies up to 5 MeV as observed by the Relativistic Electron and Proton Telescope and the Magnetic Electron and Ion Sensors on board NASA's Van Allen Probes. We report on these observations, both immediately after the IP shock passage and the more gradual response to the CME. we discuss the observation in the context of electron dynamics in the terrestrial radiation belts.
Refractory Cardiogenic Shock During Tramadol Poisoning: A Case Report.
Belin, Nicolas; Clairet, Anne-Laure; Chocron, Sidney; Capellier, Gilles; Piton, Gaël
2017-04-01
Tramadol is a weak opioid analgesic indicated for the treatment of moderate to severe pain. Tramadol intoxication can be lethal, and this drug is frequently involved in voluntary overdose. Classically, tramadol intoxication is associated with neurological and respiratory side effects. In contrast, cardiac effects are poorly documented in the literature. We report a case of severe tramadol intoxication, with plasma concentration 20 times the toxic threshold, complicated by refractory cardiogenic shock, successfully treated by extra corporeal life support (ECLS) with a favorable cardiac outcome and ECLS weaning at day 10. Seizure, clonus, and nonreactive mydriasis were present during 4 days, and complete awakening was delayed to day 15. Poisoning caused by high doses of tramadol can lead to refractory cardiogenic shock, and ECLS can be considered as effective rescue therapy in this context.
NASA Astrophysics Data System (ADS)
Orlando, S.; Sacco, G. G.; Argiroffi, C.; Reale, F.; Peres, G.; Maggio, A.
2010-02-01
Context. Plasma accreting onto classical T Tauri stars (CTTS) is believed to impact the stellar surface at free-fall velocities, generating a shock. Current time-dependent models describing accretion shocks in CTTSs are one-dimensional, assuming that the plasma moves and transports energy only along magnetic field lines (β ≪ 1). Aims: We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of β ⪆ 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. Methods: We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). Results: The dynamics and stability of the accretion shock strongly depend on the plasma β. In the case of shocks with β > 10, violent outflows of shock-heated material (and possibly MHD waves) are generated at the base of the accretion column and intensely perturb the surrounding stellar atmosphere and the accretion column itself (therefore modifying the dynamics of the shock). In shocks with β ≈ 1, the post-shock region is efficiently confined by the magnetic field. The shock oscillations induced by cooling instability are strongly influenced by β: for β > 10, the oscillations may be rapidly dumped by the magnetic field, approaching a quasi-stationary state, or may be chaotic with no obvious periodicity due to perturbation of the stream induced by the post-shock plasma itself; for β≈ 1 the oscillations are quasi-periodic, although their amplitude is smaller and the frequency higher than those predicted by 1D models. Three movies are only available in electronic form at http://www.aanda.org
Effect of alcohol dose on deliberate self-harm in men and women.
Berman, Mitchell E; Fanning, Jennifer R; Guillot, Casey R; Marsic, Angelika; Bullock, Joshua; Nadorff, Michael R; McCloskey, Michael S
2017-09-01
Nonexperimental survey and field research support the notion that alcohol use may be associated with deliberate self-harm (DSH) across the spectrum of lethality, from nonsuicidal self-injury (NSSI) through suicide. Nonexperimental studies, however, provide limited information about potential causal relationships between alcohol consumption and DSH. Two previous experiments showed that a relatively high-dose of alcohol increases the likelihood of engaging in DSH in men, with DSH defined by the self-administration of a "painful" shock (the self-aggression paradigm [SAP]; Berman & Walley, 2003; McCloskey & Berman, 2003). In this study, we examined whether (a) lower doses of alcohol also elicit DSH, (b) this effect occurs for women as well as men, and (c) individual differences in past nonsuicidal self-injury (NSSI) moderate alcohol's effects on DSH. Nonalcohol dependent men and women (N = 210) were assigned either to .00%, .05%, .075%, or .100% blood alcohol concentration (BAC) drink conditions and completed a self-rating scale of NSSI (the Deliberate Self-Harm Inventory [DSHI]; Gratz, 2001). As in previous SAP studies, DSH was operationalized by shock setting behavior during a competitive reaction time (RT) game. Overall, a greater proportion of participants in the .075% and .100% (but not .050%) alcohol conditions self-selected a "painful" shock to administer compared to participants in the placebo condition. NSSI predicted self-administration of painful shocks, but did not moderate the alcohol effect. Results provide experimental evidence to support the notion that interventions for self-harm should include processes to monitor and limit alcohol intake. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Analyzing Raman - Infrared spectral correlation in the recently found meteorite Csátalja
NASA Astrophysics Data System (ADS)
Kereszturi, A.; Gyollai, I.; Kereszty, Zs.; Kiss, K.; Szabó, M.; Szalai, Z.; Ringer, M.; Veres, M.
2017-02-01
Correlating the Raman and infrared spectra of shocked minerals in Csátalja ordinary chondrite (H4, S2, W2) with controlling the composition by EPMA measurements, we identified and improved various shock indicators, as infrared spectro-microscopic analysis has been poorly used for shock impact alteration studies of meteorites to date. We also provide reference spectra as SOM for the community with local mineralogical and shock alteration related context to support further standardization of the IR ATR based measurements. Raman band positions shifted in conjunction with the increase in full width half maximum (FWHM) with shock stage in olivine minerals while in the infrared spectra when comparing the IR band positions and IR maximal absorbance, increasing correlation was found as a function of increasing shock effects. This is the first observational confirmation with the ATR method of the already expected shock related disordering. In the case of shocked pyroxenes the well-known peak broadening and peak shift was confirmed by Raman method, beyond the level that could have been produced by only chemical changes. With increasing shock level the 852-864 cm- 1 and 1055-1071 cm- 1 FTIR bands finally disappeared. From the shock effect occasionally mixed mineral structures formed, especially feldspars together with pyroxene. Feldspars were only present in the shock melted volumes, thus produced by the shock effect itself. Based on the above mentioned observations in Csátalja meteorite the less shocked (only fractured) part witnessed 2-6 GPa shock pressure with temperature below 100 °C. The moderately shocked parts (minerals with mosaicism and mechanical twins) witnessed 5-10 GPa pressure and 900 °C temperature. The strongly shocked area (many olivine and pyroxene grains) was subject to 10-15 GPa and 1000 °C. The existence of broad peak near 510 cm- 1 and disappearance of other peaks of feldspar at 480 and 570 cm- 1 indicate the presence of maskelynite, which proposes that the peak shock pressure could reach 20 GPa at certain locations. We identified higher shock levels than earlier works in this meteorite and provided examples how heterogeneous the shock effect and level could be at small spatial scale. The provided reference spectra support the future improvement for the standardization of infrared ATR based methods and the understanding of shock-related mineral alterations beyond the optical appearance.
Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU
Lugaz, N.; Farrugia, C. J.; Winslow, R. M.; Al-Haddad, N.; Kilpua, E. K. J.; Riley, P.
2018-01-01
We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward Bz. Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of −88 nT, pushes the subsolar magnetopause location to 6.3 RE, i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of −1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth’s radiation belts. PMID:29629250
Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU.
Lugaz, N; Farrugia, C J; Winslow, R M; Al-Haddad, N; Kilpua, E K J; Riley, P
2016-11-01
We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward B z . Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of -88 nT, pushes the subsolar magnetopause location to 6.3 R E , i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of -1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth's radiation belts.
PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.
2016-02-20
We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermalmore » profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.« less
On the siting of gases shock-emplaced from internal cavities in basalt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, R.C.
1988-12-01
Noble gases were extracted by stepped combustion and crushing from basalts which contained gas-filled cavities of controlled sizes prior to shock at 40 GPa. Analysis of fractions enriched and depleted in shock glass from a single sample gave a factor of 2 higher gas abundances in the glass-rich separate. Release patterns were nearly identical, suggesting similar siting (in glass) in both fractions. Crushing of a sample released {approximately}45% of implanted noble gases, but only {approximately}17% of N{sub 2}, indicating that most or all of the noble gas was trapped in vesicles. Analysis by SEM/EDS confirmed the presence of vesicles inmore » glassy areas, with an average diameter of {approximately}10 {mu}m. Samples with relatively large pre-shock cavities were found to consist of up to 70-80% glass locally and generally exhibit greater local shock effects than solid and densely-packed particulate targets at the same shock pressure, though the latter give higher glass emplacement efficiencies. The petrographic results indicate that in situ production of glassy pockets grossly similar to those in the shergottite EETA 79001 is possible from shock reverberations in the vicinity of a vug. However, the siting of the gases points to a more complex scenario, in which SPB gas and melt material were probably injected into EETA 79001.« less
Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.
Morgan, Dane V; Macy, Don; Stevens, Gerald
2008-11-01
A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.
Shock wave induced phase transition in α -FePO 4
NASA Astrophysics Data System (ADS)
Joshi, K. D.; Suresh, N.; Jyoti, G.; Kulshreshtha, S. K.; Gupta, S. C.; Sikka, S. K.
Shock wave induced response of the berlinite form of FePO 4 has been investigated up to 8.5 GPa. The X-ray diffraction measurements on the shock recovered samples reveal transition to the mixture of an amorphous phase and an orthorhombic phase around 5 GPa. The proportion of the amorphous material in the recovered sample is found to decrease at higher pressure. The results are interpreted in terms of a three-level free energy diagram for the crystal to amorphous transitions.
A Fracture Mechanics Approach to Thermal Shock Investigation in Alumina-Based Refractory
NASA Astrophysics Data System (ADS)
Volkov-Husović, T.; Heinemann, R. Jančić; Mitraković, D.
2008-02-01
The thermal shock behavior of large grain size, alumina-based refractories was investigated experimentally using a standard water quench test. A mathematical model was employed to simulate the thermal stability behavior. Behavior of the samples under repeated thermal shock was monitored using ultrasonic measurements of dynamic Young's modulus. Image analysis was used to observe the extent of surface degradation. Analysis of the obtained results for the behavior of large grain size samples under conditions of rapid temperature changes is given.
Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur
NASA Astrophysics Data System (ADS)
Jette, Francois-Xavier; Goroshin, Samuel; Higgins, Andrew
2007-06-01
Stoichiometric mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in the absence of porosity. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2 - 3.8 GPa (pressures were estimated using LS-DYNA simulations). In the cases where the shock was too weak to cause ignition in the ampoule, the sample was extracted and its ignition temperature was determined using a differential thermal analyzer.
Thermal infrared spectroscopy and modeling of experimentally shocked basalts
Johnson, J. R.; Staid, M.I.; Kraft, M.D.
2007-01-01
New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.
Koo, Hyunmin; Hakim, Joseph A; Fisher, Phillip R E; Grueneberg, Alexander; Andersen, Dale T; Bej, Asim K
2016-01-01
In this study, we report the distribution and abundance of cold-adaptation proteins in microbial mat communities in the perennially ice-covered Lake Joyce, located in the McMurdo Dry Valleys, Antarctica. We have used MG-RAST and R code bioinformatics tools on Illumina HiSeq2000 shotgun metagenomic data and compared the filtering efficacy of these two methods on cold-adaptation proteins. Overall, the abundance of cold-shock DEAD-box protein A (CSDA), antifreeze proteins (AFPs), fatty acid desaturase (FAD), trehalose synthase (TS), and cold-shock family of proteins (CSPs) were present in all mat samples at high, moderate, or low levels, whereas the ice nucleation protein (INP) was present only in the ice and bulbous mat samples at insignificant levels. Considering the near homogeneous temperature profile of Lake Joyce (0.08-0.29 °C), the distribution and abundance of these proteins across various mat samples predictively correlated with known functional attributes necessary for microbial communities to thrive in this ecosystem. The comparison of the MG-RAST and the R code methods showed dissimilar occurrences of the cold-adaptation protein sequences, though with insignificant ANOSIM (R = 0.357; p-value = 0.012), ADONIS (R(2) = 0.274; p-value = 0.03) and STAMP (p-values = 0.521-0.984) statistical analyses. Furthermore, filtering targeted sequences using the R code accounted for taxonomic groups by avoiding sequence redundancies, whereas the MG-RAST provided total counts resulting in a higher sequence output. The results from this study revealed for the first time the distribution of cold-adaptation proteins in six different types of microbial mats in Lake Joyce, while suggesting a simpler and more manageable user-defined method of R code, as compared to a web-based MG-RAST pipeline.
Plasma properties of driver gas following interplanetary shocks observed by ISEE-3
NASA Technical Reports Server (NTRS)
Zwickl, R. D.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.
1983-01-01
Plasma fluid parameters calculated from solar wind and magnetic field data to determine the characteristic properties of driver gas following a select subset of interplanetary shocks were studied. Of 54 shocks observed from August 1978 to February 1980, 9 contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature. While helium enhancements were present downstream of the shock in all 9 of these events, only about half of them contained simultaneous changes in the two quantities. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance, by a small decrease in the variance of the bulk velocity, and by an increase in the ratio of parallel to perpendicular temperature. The cold driver gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.
Deem, Samuel; Defade, Brian; Modak, Asmita; Emmett, Mary; Martinez, Fred; Davalos, Julio
2011-10-01
To compare the outcomes of percutaneous nephrolithotomy (PNL) and extracorporeal shock wave lithotripsy (ESWL) for moderate sized (1-2 cm) upper and middle pole renal calculi in regards to stone clearance rate, morbidity, and quality of life. All patients diagnosed with moderate sized upper and middle pole kidney stones by computed tomography (CT) were offered enrollment. They were randomized to receive either ESWL or PNL. The SF-8 quality of life survey was administered preoperatively and at 1 week and 3 months postoperatively. Abdominal radiograph at 1 week and CT scan at 3 months were used to determine stone-free status. All complications and outcomes were recorded. PNL established a stone-free status of 95% and 85% at 1 week and 3 months, respectively, whereas ESWL established a stone-free status of 17% and 33% at 1 week and 3 months, respectively. Retreatment in ESWL was required in 67% of cases, with 0% retreatment in PNL. Stone location, stone density, and skin-to-stone distance had no impact on stone-free rates at both visits, irrespective of procedure. Patient-reported outcomes, including overall physical and mental health status, favored a better quality of life for patients who had PNL performed. PNL more often establishes stone-free status, has a more similar complication profile, and has similar reported quality of life at 3 months when compared with ESWL for moderate-sized kidney stones. PNL should be offered as a treatment option to all patients with moderate-sized kidney stones in centers with experienced endourologists. Copyright © 2011 Elsevier Inc. All rights reserved.
Cohen, B. A.; James, O.B.; Taylor, L.A.; Nazarov, M.A.; Barsukova, L.D.
2004-01-01
Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post-shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post-shock heating raised the rock's temperature to about 1200 ??C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene-rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine-grained, subophitic-poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name "impact melt" has, in past studies, been applied only to rocks in which the melt fraction formed by shock-induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name "impact melt" be restricted to rocks in which the bulk of the melt formed by shock-induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes. ?? Meteoritical Society, 2004.
Higgins, LeeAnn; Markowski, Todd; Brambl, Robert
2016-01-01
A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869
Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe
2017-12-01
Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.
Rebar, A.H.; Lipscomb, T.P.; Harris, R.K.; Ballachey, Brenda E.
1995-01-01
Following the Exxon Valdez oil spill, 347 oiled sea otters (Enhydra lutris) were treated in rehabilitation centers. Of these, 116 died, 94 within 10 days of presentation. Clinical records of 21 otters dying during the first 10 days of rehabilitation were reviewed to define the laboratory abnormalities and clinical syndromes associated with these unexpected deaths. The most common terminal syndrome was shock characterized by hypothermia, lethargy, and often hemorrhagic diarrhea. In heavily and moderately oiled otters, shock developed within 48 hours of initial presentation, whereas in lightly oiled otters shock generally occurred during the second week of captivity. Accompanying laboratory abnormalities included leukopenia with increased numbers of immature neutrophils (degenerative left shift), lymphopenia, anemia, azotemia (primarily prerenal), hyperkalemia, hypoproteinemia/hypoalbuminemia, elevations of serum transaminases, and hypoglycemia. Shock associated with hemorrhagic diarrhea probably occurred either as a direct primary effect of oiling or as an indirect effect secondary to confinement and handling in the rehabilitation centers. Lightly oiled otters were less likely to die from shock than were heavily oiled otters (22% vs. 72%, respectively). Heavily oiled otters developed shock more rapidly and had greater numbers of laboratory abnormalities, suggesting that exposure to oil was an important contributing factor.
Fatal streptococcal toxic shock syndrome from an intrauterine device.
Cho, Elizabeth E; Fernando, Dinali
2013-04-01
The occurrence of toxic shock syndrome from an intrauterine device (IUD) is very rare. To raise awareness of the risk of toxic shock syndrome caused by an IUD, to educate others about when to suspect this complication, and to provide treatment recommendations. A 49-year-old woman presented to the Emergency Department in septic shock after complaining of 5 days of nausea, vomiting, and diarrhea. Physical examination findings included a diffusely tender and rigid abdomen with free fluid on bedside sonogram. She was found, on computed tomography of her abdomen and pelvis, to have an IUD with moderate ascites. The IUD was removed, and both her IUD and her blood cultures grew out group A Streptococcus. Despite aggressive medical management, which included multiple vasopressors and broad-spectrum antibiotics, she died from group A streptococcal sepsis, with the IUD as her most likely source. Her clinical presentation and laboratory findings meet the Centers for Disease Control and Prevention diagnostic criteria for streptococcal toxic shock syndrome. Her diagnosis was confirmed by autopsy. IUDs should be considered as a possible source of infection in patients with an IUD who present with symptoms consistent with toxic shock syndrome. These patients need to be aggressively managed with early surgical intervention. Copyright © 2013. Published by Elsevier Inc.
Pernet-Fisher, J F; Joy, K H; Martin, D J P; Donaldson Hanna, K L
2017-07-19
Our understanding of the formation and evolution of the primary lunar crust is based on geochemical systematics from the lunar ferroan anorthosite (FAN) suite. Recently, much effort has been made to understand this suite's petrologic history to constrain the timing of crystallisation and to interpret FAN chemical diversity. We investigate the shock histories of lunar anorthosites by combining Optical Microscope (OM) 'cold' cathodoluminescence (CL)-imaging and Fourier Transform Infrared (FTIR) spectroscopy analyses. In the first combined study of its kind, this study demonstrates that over ~4.5 Ga of impact processing, plagioclase is on average weakly shocked (<15 GPa) and examples of high shock states (>30 GPa; maskelynite) are uncommon. To investigate how plagioclase trace-element systematics are affected by moderate to weak shock (~5 to 30 GPa) we couple REE+Y abundances with FTIR analyses for FAN clasts from lunar meteorite Northwest Africa (NWA) 2995. We observe weak correlations between plagioclase shock state and some REE+Y systematics (e.g., La/Y and Sm/Nd ratios). This observation could prove significant to our understanding of how crystallisation ages are evaluated (e.g., plagioclase-whole rock Sm-Nd isochrons) and for what trace-elements can be used to differentiate between lunar lithologies and assess magma source compositional differences.
Edwards, Mark S; Burt, Jennifer S; Lipp, Ottmar V
2010-05-01
We investigated selective attention for masked and unmasked, threat, and positively valenced words, in high trait anxious (HTA) and low trait anxious (LTA) individuals using the emotional Stroop colour-naming task. State anxiety was varied within participants through the threat of electric shock. To investigate whether the sequencing of the state anxiety manipulation affected colour-naming latencies, the ordering of the shock threat and shock safe conditions was counterbalanced across participants. The results indicated that the ordering of the state anxiety manipulation moderated masked and unmasked threat bias effects. Specifically, relative to LTA individuals, HTA individuals showed a threat interference effect, but this effect was limited to those who performed under the threat of shock in the later stages of the experiment. Irrespective of exposure mode and state anxiety status, all individuals showed interference for threat in the early stages of the experiment, relative to a threat facilitation effect in the later stages of the experiment. For the unmasked trials alone, the data also revealed a significant threat interference effect for the HTA group relative to the LTA group in the shock threat condition, and this effect was evident irrespective of shock threat order. The results are discussed with respect to the automatic nature of emotional processing in anxiety.
Dynamic Electromechanical Characterization of the Ferroelectric Ceramic PZT 95/5
NASA Astrophysics Data System (ADS)
Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.
1997-07-01
Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in a number of pulsed power applications. The dynamic behavior of the poled ceramic is complex, with nonlinear coupling between mechanical and electrical variables. Recent efforts to improve numerical simulations of this process have been limited by the scarcity of relevant experimental studies within the last twenty years. Consequently, we have initiated an extensive experimental study of the dynamic electromechanical behavior of this material. Samples of the poled ceramic are shocked to axial stresses from 0.5 to 5 GPa in planar impact experiments and observed with laser interferometry (VISAR) to obtain transmitted wave profiles. Current generation due to shock-induced depoling is observed using different external loads to vary electric field strengths within the samples. Experimental configurations either have the remanent polarization parallel to the direction of shock motion (axially poled) or perpendicular (normally poled). Initial experiments on unpoled samples utilized PVDF stress gauges as well as VISAR, and extended prior data on shock loading and release behavior. (Supported by the U. S. Department of Energy under contract DE-AC04-94AL85000). abstract.
Development of a broadband reflectivity diagnostic for laser driven shock compression experiments
Ali, S. J.; Bolme, C. A.; Collins, G. W.; ...
2015-04-16
Here, a normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450–1150 nm with up to 16 time displaced spectramore » during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.« less
NASA Technical Reports Server (NTRS)
Tingle, Tracy N.; Tyburczy, James A.; Ahrens, Thomas J.; Becker, Christopher H.
1992-01-01
The fate of organic matter in carbonaceous meteorites during hypervelocity (1-2 km/sec) impacts is investigated using results of experiments in which three samples of the Murchison (CM2) carbonaceous chondrite were shocked to 19, 20, and 36 GPa and analyzed by highly sensitive thermal-desorption photoionization mass spectrometry (SALI). The thermal-desorptive SALI mass spectra of unshocked CM2 material revealed presence of indigenous aliphatic, aromatic, sulfur, and organosulfur compounds, and samples shocked to about 20 GPa showed little or no loss of organic matter. On the other hand, samples shocked to 36 GPa exhibited about 70 percent loss of organic material and a lower alkene/alkane ratio than did the starting material. The results suggest that it is unlikely that the indigenous organic matter in carbonaceous chondritelike planetesimals could have survived the impact on the earth in the later stages of earth's accretion.
On the shock response of pisum sativum and lepidium sativum
NASA Astrophysics Data System (ADS)
Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James
2012-03-01
The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.
Kink-bands: Shock deformation of biotite resulting from a nuclear explosion
Cummings, D.
1965-01-01
Microscopic examination of granodiorite samples from the shock region around a nuclear explosion reveals sharply folded lens-shaped zones (kink-bands) in the mineral biotite. Fifty percent of these zones are oriented approximately 90?? to the direction of shock-wave propagation, but other zones are symmetrically concentrated at shear angles of 50?? and 70?? to the direction of shock-wave propagation.
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Arballo, J.
1994-01-01
We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.
Bahekar, Amol; Singh, Mukesh; Singh, Sarabjeet; Bhuriya, Rohit; Ahmad, Khraisat; Khosla, Sandeep; Arora, Rohit
2012-03-01
Intra-aortic balloon pump (IABP) has been widely used ever since it was first developed in 1962 and became part of clinical practice in 1968. It is used to treat patients with complications of acute myocardial infarction (AMI) such as cardiogenic shock, refractory left ventricular failure, and for high-risk patients undergoing angioplasty and coronary artery bypass grafting. However, current literature demonstrates a significant variance in terms of indications for using IABP and its outcomes. The aim of this study is to review the existing literature to analyze whether the use of IABP offers any cardiovascular benefit to the patients with AMI and the complications associated with the use of IABP. Material and A systematic review of literature identified 16 studies. We analyzed the primary endpoint (in-hospital mortality, reinfarction, recurrent ischemia) and secondary endpoint (incidence of moderate and severe bleeding during hospitalization at 7 days). We estimated the proportion of between-study inconsistency (heterogeneity) due to true differences between studies (rather than differences due to random error or chance) using the I2 statistic. Mantel-Haenszel fixed-effect model was used to calculate the combined relative risks (RRs) when studies were homogenous, and the random effect model was used when studies were heterogenic. A 2-sided α error <.05 was considered statistically significant. Meta-analysis revealed that in-hospital mortality of patients with AMI with and without cardiogenic shock did not differ between IABP group as compared to no IABP group (RR: 1.11; confidence interval [CI]: 0.69-1.78; P = .67). However, analysis of patients with AMI with cardiogenic shock showed statistically significant improvement in mortality (RR: 0.72; CI: 0.60-0.86; P < .0004). There was no significant reduction in the rate of reinfarction (RR: 0.81; CI: 0.30-2.17; P = .67) or recurrent ischemia (RR: 0.78; CI: 0.34-1.78; P = .55) using IABP. Intra-aortic balloon pump was found to significantly increase the risk of moderate bleeding (RR: 1.71; CI: 1.03-2.85; P = .04) and major bleeding (RR: 4.01; CI: 2.66-6.06; P < .0001). The present meta-analysis suggests that patients with high-risk AMI without cardiogenic shock do not seem to benefit from the use of IABP as measured by in-hospital mortality, rate of reinfarction, and recurrent angina. However, in patients with AMI with cardiogenic shock (systolic blood pressure [SBP] < 90), there was significant reduction in mortality using IABP. The use of IABP is associated with increase in the rate of both moderate and severe bleeding.
A comparative study on laser induced shock cleaning of radioactive contaminants in air and water
NASA Astrophysics Data System (ADS)
Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.
2018-03-01
Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.
NASA Astrophysics Data System (ADS)
Min, Kyoungwon; Farah, Annette E.; Lee, Seung Ryeol; Lee, Jong Ik
2017-01-01
Shock conditions of Martian meteorites provide crucial information about ejection dynamics and original features of the Martian rocks. To better constrain equilibrium shock temperatures (Tequi-shock) of Martian meteorites, we investigated (U-Th)/He systematics of moderately-shocked (Zagami) and intensively shocked (ALHA77005) Martian meteorites. Multiple phosphate aggregates from Zagami and ALHA77005 yielded overall (U-Th)/He ages 92.2 ± 4.4 Ma (2σ) and 8.4 ± 1.2 Ma, respectively. These ages correspond to fractional losses of 0.49 ± 0.03 (Zagami) and 0.97 ± 0.01 (ALHA77005), assuming that the ejection-related shock event at ∼3 Ma is solely responsible for diffusive helium loss since crystallization. For He diffusion modeling, the diffusion domain radius is estimated based on detailed examination of fracture patterns in phosphates using a scanning electron microscope. For Zagami, the diffusion domain radius is estimated to be ∼2-9 μm, which is generally consistent with calculations from isothermal heating experiments (1-4 μm). For ALHA77005, the diffusion domain radius of ∼4-20 μm is estimated. Using the newly constrained (U-Th)/He data, diffusion domain radii, and other previously estimated parameters, the conductive cooling models yield Tequi-shock estimates of 360-410 °C and 460-560 °C for Zagami and ALHA77005, respectively. According to the sensitivity test, the estimated Tequi-shock values are relatively robust to input parameters. The Tequi-shock estimates for Zagami are more robust than those for ALHA77005, primarily because Zagami yielded intermediate fHe value (0.49) compared to ALHA77005 (0.97). For less intensively shocked Zagami, the He diffusion-based Tequi-shock estimates (this study) are significantly higher than expected from previously reported Tpost-shock values. For intensively shocked ALHA77005, the two independent approaches yielded generally consistent results. Using two other examples of previously studied Martian meteorites (ALHA84001 and Los Angeles), we compared Tequi-shock and Tpost-shock estimates. For intensively shocked meteorites (ALHA77005, Los Angeles), the He diffusion-based approach yield slightly higher or consistent Tequi-shock with estimations from Tpost-shock, and the discrepancy between the two methods increases as the intensity of shock increases. The reason for the discrepancy between the two methods, particularly for less-intensively shocked meteorites (Zagami, ALHA84001), remains to be resolved, but we prefer the He diffusion-based approach because its Tequi-shock estimates are relatively robust to input parameters.
Mild Developmental Hypothyroidism and Trace Fear Conditioning: Role of Gender and Shock Duration.
Rodent models of developmental thyroid hormone (TH) deficiency aptly reflect the deleterious effects of severe TH deficiencies on brain structure and function in humans. However, the impact of moderate TH insufficiencies on neurodevelopmental outcomes has proven more difficult to...
Long-Term Interference Effect: An Alternative to "Learned Helplessness"
ERIC Educational Resources Information Center
Glazer, Howard I.; Weiss, Jay M.
1976-01-01
Presents three experiments that explore whether inescapable shock of long duration and moderate intensity (LoShk) produces an avoidance-escape deficit (called an interference effect) by causing animals to learn to respond less actively or by causing them to learn to be "helpless". (Editor)
In vitro studies on the putative function of N-acetylaspartate as an osmoregulator.
Tranberg, Mattias; Abbas, Abdul-Karim; Sandberg, Mats
2007-07-01
Efflux and tissue content of N-acetylaspartate (NAA) and amino acids were evaluated from cultured and acutely prepared hippocampal slices in response to changes in osmolarity. The osmoregulator taurine, but not NAA, was lost from both types of slices after moderate reductions in extracellular osmolarity (-60 mOsm) for 10-48 h. Hypoosmotic shock (-166 mOsm) for 5 min resulted in unselective efflux of several amino acids from acutely prepared slices. Notably, the efflux of taurine, but not NAA, was prominent also after the shock. Efflux of NAA was markedly enhanced by NMDA and high K(+), in particular after the stimulation period. The high K(+)-mediated efflux was decreased by high extracellular osmolarity and a NMDA-receptor antagonist. The results indicate that NAA efflux can be induced by a sudden non-physiological decrease in extracellular osmolarity but not by prolonged more moderate changes in osmolarity. The mechanisms behind the efflux of NAA by high K(+) are complex and may involve both swelling and activation of NMDA-receptors.
Do oil shocks predict economic policy uncertainty?
NASA Astrophysics Data System (ADS)
Rehman, Mobeen Ur
2018-05-01
Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.
Computation of nonstationary strong shock diffraction by curved surfaces
NASA Technical Reports Server (NTRS)
Yang, J. Y.; Lombard, C. K.; Bershader, D.
1986-01-01
A two-dimensional, high resolution shock-capturing algorithm was used on a supercomputer to solve Eulerian gasdynamic equations in order to simulate nonstationary strong shock diffraction by a circular arc model in a shock tube. The hypersonic Mach shock wave was assumed to arrive at a high angle of incidence, and attention was given to the effect of varying values of the ratio of specific heats on the shock diffraction process. Details of the conservation equations of the numerical algorithm, written in curvilinear coordinates, are provided, and model output is illustrated with the results generated for a Mach shock encountering a 15 deg circular arc. The sample graphics include isopycnics, a shock surface density profile, and pressure and Mach number contours.
Hidalgo, Alejandro; Melo, Angélica; Romero, Fernando; Hidalgo, Víctor; Villanueva, José; Fonseca-Salamanca, Flery
2018-03-01
The extraction of DNA in taeniid eggs shows complications attached to the composition of stool samples and the high resistance of eggs to degradation. The objective of this study was to test a method of DNA extraction in taeniid eggs by applying a thermal shock to facilitate the chemical-enzymatic degradation of these elements. A group of six tubes containing 1 ml of dog stool sample was spiked with eggs of Echinococcus granulosus and another group of six with Taenia pisiformis. Samples were floated with supersaturated sugar solution and centrifuged. The upper portion of each tube (500 μl) was aspirated and deposited in 1.5 ml tubes. Three tubes from each group were incubated at -20 °C and then at 90 °C, the remaining three from each group, incubated at room temperature. Proteinase K and lysis buffer were added to each tube and incubated for 12 h at 58 °C. The lysis effect was evaluated by microscopy at 3, 6 and 12 h and integrity by electrophoresis in 1% agarose gels. With the same experimental scheme, the thermal shock effect was evaluated in extractions of 1, 2, 3 and 4 eggs of each species and the DNA was quantified. Additionally, the protocol was applied in samples of 4 dogs diagnosed with natural infection by Taeniidae worms. Finally, all the extractions were tested by PCR amplification. Both E. granulosus and T. pisiformis eggs showed a similar response in the tests. In samples without treatment, the lysis effect was poor and showed no differences over time, but in those subjected to thermal shock, eggs degradation increased with time. In both treatments, there was no DNA loss integrity. The protocol applied to limited amounts of eggs yielded PCR products in 100% of the samples exposed to thermal shock, allowing PCR amplifications up to 1 egg. In non-exposed samples, the results were not replicable. However, DNA quantification showed low values in both treatments. In turn, DNA extractions with thermal shock in infected dog samples finally yielded PCR amplifications in 100%. It was concluded that thermal shock facilitates the DNA extraction for molecular analysis in taeniid eggs. The technique is effective extracting DNA even from a single egg and also to analyze natural infections samples with a relatively simple implementation. Published by Elsevier Inc.
Orsi, Giovanni Battista; Vitali, Matteo; Marinelli, Lucia; Ciorba, Veronica; Tufi, Daniela; Del Cimmuto, Angela; Ursillo, Paolo; Fabiani, Massimo; De Santis, Susi; Protano, Carmela; Marzuillo, Carolina; De Giusti, Maria
2014-07-16
To control the presence of Legionella in an old hospital water system, an integrated strategy of water disinfection-filtration was implemented in the university hospital Umberto I in Rome. Due to antiquated buildings, hospital water system design and hospital extension (38 buildings), shock hyperchlorination (sodium hypochlorite, 20-50 ppm of free chlorine at distal points for 1-2 h) followed by continuous hyperchlorination (0.5-1.0 mg/L at distal points) were adopted, and microbiological and chemical monitoring of the water supply was carried out in the university hospital (December 2006-December 2011). Overall, 1308 samples of cold <20°C (44.5%), mixed ≥20°C ≤ 45°C (37.7%) and hot >45°C (17.8%) water were collected, determining residual free chlorine (0.43 ± 0.44 mg/L), pH (7.43 ± 0.29) and trihalomethanes (8.97 ± 18.56 μg/L). Legionella was isolated in 102 (9.8%) out of 1.041 water samples without filters (L. pneumophila sg 1 17.6%, L. pneumophila sg 2-14 28.4%, L. non pneumophila 53.9%), and in none of the 267 samples with filters. Legionella was recovered in 23 buildings out of 38 and 29 samples (28.4%) exceeded 103 cfu/L. When considering the disinfection treatment Legionella was isolated: before shock hyperchlorination (21.1%), 15 days after shock hyperchlorination (7.8%), 30 days after shock hyperchlorination (3.5%), during continuous hyperchlorination (5.5%) and without continuous hyperchlorination (27.3%). Continuous hyperchlorination following the shock treatment achieved >70% reduction of positive samples, whereas no continuous hyperchlorination after shock treatment was more frequently associated to Legionella isolation (OR 6.41; 95% CI 3.10-13.26; p <0.001). Independent risk factors for Legionella isolation were: residual free chlorine <0.5 mg/L (OR 13.0; 95% CI 1.37 - 123.2; p <0.03), water T° ≥20°C ≤ 45°C (OR 12.0; 95% CI 1.28 - 111.48; p <0.03) and no continuous hyperchlorination after shock treatment (OR 10.3; 95% CI 1.06 - 100.05; p <0.05). Shock and continuous hyperchlorination achieved significant Legionella reduction, but effective chlorine levels (>0.5 < 1.0 mg/L) deteriorated water quality (organoleptic and chemical). However, shock and continuous hyperchlorination remains a valid-term option in old buildings with no water system rational design, managing problems due to hospital extension and absence of a proper hot water recirculation system.
NASA Technical Reports Server (NTRS)
Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.
1985-01-01
Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.
Characterizing acoustic shocks in high-performance jet aircraft flyover noise.
Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; Wall, Alan T; McInerny, Sally Anne
2018-03-01
Acoustic shocks have been previously documented in high-amplitude jet noise, including both the near and far fields of military jet aircraft. However, previous investigations into the nature and formation of shocks have historically concentrated on stationary, ground run-up measurements, and previous attempts to connect full-scale ground run-up and flyover measurements have omitted the effect of nonlinear propagation. This paper shows evidence for nonlinear propagation and the presence of acoustic shocks in acoustical measurements of F-35 flyover operations. Pressure waveforms, derivatives, and statistics indicate nonlinear propagation, and the resulting shock formation is significant at high engine powers. Variations due to microphone size, microphone height, and sampling rate are considered, and recommendations for future measurements are made. Metrics indicating nonlinear propagation are shown to be influenced by changes in sampling rate and microphone size, and exhibit less variation due to microphone height.
Strength and viscosity effects on perturbed shock front stability in metals
Opie, Saul; Loomis, Eric Nicholas; Peralta, Pedro; ...
2017-05-09
Here, computational modeling and experimental measurements on metal samples subject to a laser-driven, ablative Richtmyer-Meshkov instability showed differences between viscosity and strength effects. In particular, numerical and analytical solutions, coupled with measurements of fed-through perturbations, generated by perturbed shock fronts onto initially flat surfaces, show promise as a validation method for models of deviatoric response in the post shocked material. Analysis shows that measurements of shock perturbation amplitudes at low sample thickness-to-wavelength ratios are not enough to differentiate between strength and viscosity effects, but that surface displacement data of the fed-through fed-thru perturbations appears to resolve the ambiguity. Additionally, analyticalmore » and numerical results show shock front perturbation evolution dependence on initial perturbation amplitude and wavelength is significantly different in viscous and materials with strength, suggesting simple experimental geometry changes should provide data supporting one model or the other.« less
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Hagiya, Kenji; Sitzman, Scott; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi;
2017-01-01
We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction techniques. We are making measurements of olivine crystal structures and using these to elucidate critical regolith impact processes. We use electron back-scattered diffraction (EBSD) and synchrotron X-ray diffraction (SXRD). We are comparing the Itokawa samples to L and LL chondrite meteorites chosen to span the shock scale experienced by Itokawa, specifically Chainpur (LL3.4, Shock Stage 1), Semarkona (LL3.00, S2), Kilabo (LL6, S3), NWA100 (L6, S4) and Chelyabinsk (LL5, S4). In SXRD we measure the line broadening of olivine reflections as a measure of shock stage. In this presentation we concentrate on the EBSD work. We employed JSC's Supra 55 variable pressure FEG-SEM and Bruker EBSD system. We are not seeking actual strain values, but rather indirect strain-related measurements such as extent of intra-grain lattice rotation, and determining whether shock state "standards" (meteorite samples of accepted shock state, and appropriate small grain size) show strain measurements that may be statistically differentiated, using a sampling of particles (number and size range) typical of asteroid regoliths. Using our system we determined that a column pressure of 9 Pa and no C-coating on the sample was optimal. We varied camera exposure time and gain to optimize mapping performance, concluding that 320x240 pattern pixilation, frame averaging of 3, 15 kV, and low extractor voltage yielded an acceptable balance of hit rate (>90%), speed (11 fps) and map quality using an exposure time of 30 ms (gain 650). We found that there was no strong effect of step size on Grain Orientation Spread (GOS) and Grain Reference Orientation Deviation angle (GROD-a) distribution; there was some effect on grain average Kernel Average Misorientation (KAM) (reduced with smaller step size for the same grain), as expected. We monitored GOS, Maximum Orientation Spread (MOS) and GROD-a differences between whole olivine grains and sub-sampled areas, and found that there were significant differences between the whole grain dataset and subsets, as well as between subsets, likely due to sampling-related "noise". Also, in general (and logically) whole grains exhibit greater degrees of cumulative lattice rotation. Sampling size affects the apparent strain character of the grain, at least as measured by GOS, MOS and GROD-a. There were differences in the distribution frequencies of GOS and MOS between shock stages, and in plots of MOS and GOS vs. grain diameter. These results are generally consistent with those reported this year. However, it is unknown whether the differences between samples of different shock states exceeds the clustering of these values to the extent that shock stage determinations can still be made with confidence. We are investigating this by examination of meteorites with higher shock stage 4 to 5. Our research will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results will directly enrich the ongoing asteroid and comet exploration missions by NASA and JAXA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.
Bugbuster: Survivability of Living Bacteria Upon Shock Compression
NASA Astrophysics Data System (ADS)
Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.
2003-12-01
Survivability of bacteria during impact events has implications both for the transport of life between planets and development of organisms on Hadean Earth and other planets during the period of heavy bombardment which ended 3.5 Gyr before the present [1]. We envision that life existed within internal rock surfaces immersed in the early ocean. We performed shock recovery experiments on live E. coli bacteria to determine survival rate vs. shock pressure. Samples of 2x107 cells were suspended in ˜10-5 l of a buffer solution (TE: a 10:1 solution of Tris and EDTA), sealed into stainless steel chambers that are impacted by 1.5 mm thick flyer plates at 670-760 m s-1 using a 20 mm gun. Recovered liquid was mixed with a nutrient broth (LB: growth medium containing tryptone, yeast extract and NaCl) and spread on a Petrie dish containing agar (a polysaccharide growth medium extracted from marine algae Rhodophyceae). Recovered samples were cultured for ˜16 hours at 37° C. In addition, sample bacteria studied under an optical microscope with DAPI fluorescent stain to verify presence of bacteria in shock recovered samples. Initial and reverberated shock pressures in H2O varied from 0.2 to 2.0 and 2.4 to 14.9 GPa respectively. We modeled the bacteria cell walls with stilbene, ρ 0=1.16 g cm-3, US=2.866+1.588uP and the cell interiors as water. Upon initial loading the net strain imposed on E. coli that just caused non-survival for 10-6 s duration stress was 2.8. If this strain is characteristic of that tolerable by E. coli, we predict that shock stresses of 25 MPa, 25 kPa and 25 Pa are sustainable upon shock loading by 0.1 ms, 0.1 s and 100 s shock duration pulses. Such shock durations are induced by 2.5 m, 2.5 km and 2,500 km diameter silicate impactors. References: [1] Maher K.A. & Stevenson D.J., Nature, 331, pp.612-614, 1988
System for determining position of normal shock in supersonic flow
NASA Technical Reports Server (NTRS)
Iverson, Jr., Donald G. (Inventor); Daiber, Troy D. (Inventor)
1991-01-01
Light from a plurality of light emitting diodes is transmitted through optical cables (12) to a lens system. The lenses (56, 58) expand and collimate the light and project it in a sheet (16) across the supersonic inlet of an aircraft power plant perpendicular to incoming airflow. A normal shock bends a portion of the sheet of light (16). A linear array of a multiplicity of optical fiber ends collects discrete samples of light. The samples are processed and compared to a predetermined profile to determine the shock location.
2014-01-01
Poor health is a source of impoverishment among households in low -and middle- income countries (LMICs) and a subject of voluminous literature in recent years. This paper reviews recent empirical literature on measuring the economic impacts of health shocks on households. Key inclusion criteria were studies that explored household level economic outcomes (burden of out-of-pocket (OOP) health spending, labour supply responses and non-medical consumption) of health shocks and sought to correct for the likely endogeneity of health shocks, in addition to studies that measured catastrophic and impoverishment effects of ill health. The review only considered literature in the English language and excluded studies published before 2000 since these have been included in previous reviews. We identified 105 relevant articles, reports, and books. Our review confirmed the major conclusion of earlier reviews based on the pre-2000 literature - that households in LMICs bear a high but variable burden of OOP health expenditure. Households use a range of sources such as income, savings, borrowing, using loans or mortgages, and selling assets and livestock to meet OOP health spending. Health shocks also cause significant reductions in labour supply among households in LMICs, and households (particularly low-income ones) are unable to fully smooth income losses from moderate and severe health shocks. Available evidence rejects the hypothesis of full consumption insurance in the face of major health shocks. Our review suggests additional research on measuring and harmonizing indicators of health shocks and economic outcomes, measuring economic implications of non-communicable diseases for households and analyses based on longitudinal data. Policymakers need to include non-health system interventions, including access to credit and disability insurance in addition to support formal insurance programs to ameliorate the economic impacts of health shocks. PMID:24708831
Alam, Khurshid; Mahal, Ajay
2014-04-03
Poor health is a source of impoverishment among households in low -and middle- income countries (LMICs) and a subject of voluminous literature in recent years. This paper reviews recent empirical literature on measuring the economic impacts of health shocks on households. Key inclusion criteria were studies that explored household level economic outcomes (burden of out-of-pocket (OOP) health spending, labour supply responses and non-medical consumption) of health shocks and sought to correct for the likely endogeneity of health shocks, in addition to studies that measured catastrophic and impoverishment effects of ill health. The review only considered literature in the English language and excluded studies published before 2000 since these have been included in previous reviews. We identified 105 relevant articles, reports, and books. Our review confirmed the major conclusion of earlier reviews based on the pre-2000 literature--that households in LMICs bear a high but variable burden of OOP health expenditure. Households use a range of sources such as income, savings, borrowing, using loans or mortgages, and selling assets and livestock to meet OOP health spending. Health shocks also cause significant reductions in labour supply among households in LMICs, and households (particularly low-income ones) are unable to fully smooth income losses from moderate and severe health shocks. Available evidence rejects the hypothesis of full consumption insurance in the face of major health shocks. Our review suggests additional research on measuring and harmonizing indicators of health shocks and economic outcomes, measuring economic implications of non-communicable diseases for households and analyses based on longitudinal data. Policymakers need to include non-health system interventions, including access to credit and disability insurance in addition to support formal insurance programs to ameliorate the economic impacts of health shocks.
Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing.
Wang, Lin; Qin, Ling; Lu, Hong-bin; Cheung, Wing-hoi; Yang, Hu; Wong, Wan-nar; Chan, Kai-ming; Leung, Kwok-sui
2008-02-01
Extracorporeal shock wave therapy is indicated for treatment of chronic injuries of soft tissues and delayed fracture healing and nonunion. No investigation has been conducted to study the effect of shock wave on delayed healing at the bone-tendon junction. Shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling of healing tissue in delayed healing of bone-tendon junction surgical repair. Controlled laboratory study. Twenty-eight mature rabbits were used for establishing a delayed healing model at the patella-patellar tendon complex after partial patellectomy and then divided into control and shock wave groups. In the shock wave group, a single shock wave treatment was given at week 6 postoperatively to the patella-patellar tendon healing complex. Seven samples were harvested at week 8 and 7 samples at week 12 for radiologic, densitometric, histologic, and mechanical evaluations. Radiographic measurements showed 293.4% and 185.8% more new bone formation at the patella-patellar tendon healing junction in the shock wave group at weeks 8 and 12, respectively. Significantly better bone mineral status was found in the week 12 shock wave group. Histologically, the shock wave group showed more advanced remodeling in terms of better alignment of collagen fibers and thicker and more mature regenerated fibrocartilage zone at both weeks 8 and 12. Mechanical testing showed 167.7% and 145.1% higher tensile load and strength in the shock wave group at week 8 and week 12, respectively, compared with controls. Extracorporeal shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling in the delayed bone-to-tendon healing junction in rabbits. These results provide a foundation for future clinical studies toward establishment of clinical indication for treatment of delayed bone-to-tendon junction healing.
Calibration of PCB-132 Sensors in a Shock Tube
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Schneider, Steven P.
2012-01-01
While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.
Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres
NASA Technical Reports Server (NTRS)
Lange, M. A.; Ahrens, T. J.
1984-01-01
Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.
Micro-FTIR Spectroscopy of Experimentally Shocked Basaltic Andesite (SP Flow, AZ)
NASA Astrophysics Data System (ADS)
Johnson, J. R.; Jaret, S.; Glotch, T. D.; Sims, M.
2017-12-01
As part of an ongoing systematic study of experimental shock transformations in plagioclase using micro-Raman and micro-FTIR thermal infrared hyperspectral imaging and point spectroscopy [1-7], we report new micro-FTIR results on experimentally shocked, fine-grained basaltic andesite from SP Flow (AZ). This sample has relatively high primary glass content and an average plagioclase composition of labradorite/bytownite. The powder propellant gun at the Johnson Space Center was used to conduct the original shock experiments at peak pressures from 15 to 60 GPa [6-8], from which <10 mm fragments were recovered. Polished thin sections were made from portions of these fragments, and micro-FTIR point spectra were collected from 400-4000 cm-1 (2.5-25 µm) using a spot size of 40 x 40 mm at 8 cm-1 spectral sampling. Micro-FTIR hyperspectral maps of thin sections were acquired using the same instrument equipped with a 16 pixel HgCdTe linear array detector to provide spectra between 7000 and 715 cm-1 (1.4-14.0 µm) at 25 µm/pixel and 8 cm-1 spectral sampling (see figure for color composite and band depth images from unshocked sample). Micro-FTIR results show that the unshocked sample is dominated by the glassy matrix (light green in the color composite), with contributions from plagioclase and pyroxene. Initial analyses suggest that the SP Flow samples become dominantly amorphous at relatively low shock pressures, reflective of the high primary glass content and consistent with macro-scale spectra from [7]. Results from additional shock pressures and Raman spectra will be presented at the conference. Future work will include (1) Raman and FTIR analyses of basalt from Grand Falls (AZ), which has minimal primary glass content and relatively higher calcic plagioclase than SP Flow; and (2) comparison of these basalts to results from shocked plagioclase and to similar analyses of naturally shocked samples from Ries and Lonar Craters. [1] Jaret, S. et al., 11th Internat. GeoRaman Conf., #5095, 2014; [2] Jaret, S., et al., LPSC # 2056, 2015; [3] Jaret, S., et al., LPSC #1530, 2016; [4] Jaret, S., et al., LPSC, abs. #2484, 2017; [5] Jaret, S., et al. GSA, abstract #267947, 2015; [6] Johnson, J., et al., Amer. Mineral., 88, 1575-1582, 2003; [7] Johnson, J., Icarus 221 359-364, 2012; [8] Johnson, J., et al., Amer. Mineral., 92, 1148-1157, 2007.
Shocked materials from the Dutch Peak diamictite, Utah
NASA Technical Reports Server (NTRS)
Hoerz, F.; Bunch, T. E.; Oberbeck, V. R.
1994-01-01
Evidence of shock metamorphism in the Dutch Peak diamictite in the Sheeprock Mountains, Utah, is reported. The Dutch Peak diamictite is of Proterozoic age and is a minor part of the Dutch Peak formation. A shocked sample, specimen A250, was collected during a brief visit of the Harker Canyon area of the Sheeprock Mountains. This sample consists of equant, anhedral grains of quartz, K-feldspar, and plagioclase. The crystallographic orientation of 244 lamellae systems in 106 grains was measured. It is presently difficult to evaluate the significance of this single specimen. Without additional and substantial field work, and petrographic characterization of this formation, a number of scenarios for the presence of a shocked clast and the emplacement of the entire formation remain viable.
A SEM-ATEM and stable isotope study of carbonates from the Haughton impact crater, Canada
NASA Astrophysics Data System (ADS)
Martinez, Isabelle; Agrinier, Pierre; Schärer, Urs; Javoy, Marc
1994-02-01
Highly and intermediately shocked carbonate-rich fragments of the allochtonous polymict breccia from the Haughton impact crater (Canada) were studied by Scanning Electron Microscopy (SEM), Analytical Transmission Electron Microscopy (ATEM) and analyses of carbon and oxygen stable isotopes ( δ13C and δ18O). In areas subjected to severe shock conditions, carbonates represent only about 10 vol% of the shocked samples and they are located in holes and fractures within a matrix of SiO 2-rich glass. Shock features are absent in these crystals. High-temperature reactions have occurred between molten silicates and carbonates, producing Ca sbnd Mg-rich glasses, or crystalline phases such as augite and larnite (Ca 2SiO 4). The carbonates are dominated by calcite and they generally have significantly positive δ13C, ranging up to +9‰, with a weighted average value of +1.75‰. Their δ18O values range between +15‰ and +20‰ and they are about 5‰ lower than in unshocked reference sediments, a trend consistent with that resulting from silicate-carbonate reactions. The microstructures of the carbonates suggest that they did not undergo shock conditions but, instead, were produced by back-reactions between impact-released CO 2 and highly reactive residual oxides. Such a process would introduce isotope fractionations, which might explain the positive δ13C values observed. A simple kinetic fractionation model involving a Rayleigh distillation process is used to estimate the CO 2 fraction actually lost from the carbonates. It appears that this fraction is related to the amount of high-temperature carbonate-silicate reactions. Moderately shocked fragments from other areas of the polymict breccia consist of 40-81 vol% carbonates. Their δ13C values lie in the range of unshocked reference sediments between -2‰ and -4‰, whereas their δ18O values are by about 5‰ lower than in the unshocked equivalents. No evidence for important decarbonatization is observed from 13C, and 18O is again buffered by isotope exchange reactions between molten silicates and carbonate crystals producing Ca and Mg enriched SiO 2 glass and Ca sbnd Mg silicate crystals such as monoclinic pigeonite, which is indicative of fast cooling. This study indicates that significant evidence for outgassing is limited to a narrow zone in the centre of the crater, where peak shock pressures reached 50-60 GPa. Moreover, we suggest that, within this area, a large fraction of the shock-produced gas recombines with the highly reactive residual oxides and, in consequence, that such back-reactions might be a general mechanism for retaining impact-produced volatiles during impact events.
Deng, Mi; Chen, Pei-Chao; Xie, Sisi; Zhao, Junqiong; Gong, Lili; Liu, Jinping; Zhang, Lan; Sun, Shuming; Liu, Jiao; Ma, Haili; Batra, Surinder K; Li, David Wan-Cheng
2010-01-01
The small heat shock protein alphaA-crystallin is a structural protein in the ocular lens. In addition, recent studies have also revealed that it is a molecular chaperone, an autokinase and a strong anti-apoptotic regulator. Besides its lenticular distribution, a previous study demonstrates that a detectable level of alphaA-crystallin is found in other tissues including thymus and spleen. In the present study, we have re-examined the distribution of alphaA-crystallin in various normal human and mouse tissues and found that the normal pancreas expresses a moderate level of alphaA-crystallin. Moreover, alphaA-crystallin is found significantly downregulated in 60 cases of pancreatic carcinoma of different types than it is in 11 normal human pancreas samples. In addition, we demonstrate that alphaA-crystallin can enhance the activity of the activating protein-1 (AP-1) through modulating the function of the MAP kinase, and also upregulates components of TGFbeta pathway. Finally, expression of alphaA-crystallin in a pancreatic cancer cell line, MiaPaCa, results in retarded cell migration. Together, these results suggest that alphaA-crystallin seems to negatively regulate pancreatic carcinogenesis. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M.
2015-01-14
We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamondmore » anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.« less
Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat
2008-10-01
To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.
Li, Wenwen; Janardhan, Ajit H.; Fedorov, Vadim V.; Sha, Qun; Schuessler, Richard B.; Efimov, Igor R.
2011-01-01
Background Implantable device therapy of atrial fibrillation (AF) is limited by pain from high-energy shocks. We developed a low-energy multi-stage defibrillation therapy and tested it in a canine model of AF. Methods and Results AF was induced by burst pacing during vagus nerve stimulation. Our novel defibrillation therapy consisted of three stages: ST1 (1-4 low energy biphasic shocks), ST2 (6-10 ultra-low energy monophasic shocks), and ST3 (anti-tachycardia pacing). Firstly, ST1 testing compared single or multiple monophasic (MP) and biphasic (BP) shocks. Secondly, several multi-stage therapies were tested: ST1 versus ST1+ST3 versus ST1+ST2+ST3. Thirdly, three shock vectors were compared: superior vena cava to distal coronary sinus (SVC>CSd), proximal coronary sinus to left atrial appendage (CSp>LAA) and right atrial appendage to left atrial appendage (RAA>LAA). The atrial defibrillation threshold (DFT) of 1BP shock was less than 1MP shock (0.55 ± 0.1 versus 1.38 ± 0.31 J; p =0.003). 2-3 BP shocks terminated AF with lower peak voltage than 1BP or 1MP shock and with lower atrial DFT than 4 BP shocks. Compared to ST1 therapy alone, ST1+ST3 lowered the atrial DFT moderately (0.51 ± 0.46 versus 0.95 ± 0.32 J; p = 0.036) while a three-stage therapy, ST1+ST2+ST3, dramatically lowered the atrial DFT (0.19 ± 0.12 J versus 0.95 ± 0.32 J for ST1 alone, p=0.0012). Finally, the three-stage therapy ST1+ST2+ST3 was equally effective for all studied vectors. Conclusions Three-stage electrotherapy significantly reduces the AF defibrillation threshold and opens the door to low energy atrial defibrillation at or below the pain threshold. PMID:21980076
Study of magnetized accretion flow with variable Γ equation of state
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Chattopadhyay, Indranil
2018-05-01
We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.
NASA Astrophysics Data System (ADS)
Sharp, T. G.; Hu, J.; Walton, E. L.
2013-12-01
Martian meteorites are important samples for understanding the origin and age of the Martian crust. All of these samples have been shocked to some degree during their ejection from Mars or earlier. Tissint, a picritic shergottite, has many high-pressure phases that have been used to constrain shock conditions and suggest a deep crustal origin [1] and to argue for multiple impact events [2]. Here we investigate the products and mechanisms of various olivine transformation reactions. Olivine in and adjacent to shock-melt veins and pockets is transformed into high-pressure minerals. In the hottest parts of the sample, olivine dissociated into 50-nm crystals of magnesiowüstite intergrown with either a pyroxene-composition glass or with low-Ca clinopyroxene. In both cases, the olivine is inferred to have transformed to silicate perovskite + magnesiowüstite during shock with subsequent breakdown of the perovskite after pressure release. Olivine along the margins of shock veins transformed into ringwoodite. Polycrystalline ringwoodite formed at the olivine-melt interface wheras coherent ringwoodite lamellae formed farther from the melt. These ringwoodite lamellae have the same topotaxial relationship to olivine as seen in static high-pressure experiments [3] and shocked meteorites [4]: (100)Ol || {111}Rw and [011]Ol || <110>Rw. The various olivine reactions can be explained by a single shock to above 24 GPa where only the highest temperatures allowed the dissociation of olivine to silicate-perovskite plus magnesiowüstite. The silicate perovskite in the melt pocket transformed to pyroxene because the melt pocket remained very hot after pressure release. At lower temperatures, the kinetically easier polymorphic transformation of olivine to metastable ringwoodite occurred. At the lowest temperatures, this reaction was facilitated by nucleation of ringwoodite lamellae on stacking faults in olivine. The variation in assemblages that we see are consistent with a single shock and a relatively short shock pulse. References: [1] Baziotis1, I. P. et. al 2013 Nature Communications 4:1404, [2] El Goresey, A. et. al 2013 #1037. 44th LPSC. [3] Kerschhofer, L. et. al 1996 Science 274, 79-81. [4] Miyahara et. al, 2010 EPSL. 295, 321-327.
High-Pressure Minerals in Meteorites: Constraints on Shock Conditions and Duration
NASA Technical Reports Server (NTRS)
Sharp, Thomas G.
2004-01-01
The objective of this research was to better understand the conditions and duration of shock metamorphism in meteorites through microstructural and microanalytical characterization of high-pressure minerals. A) Continue to investigate the mineralogy and microstructures of melt-veins in a suite of chondritic samples ranging from shock grades S3 through S6 to determine how the mineral assemblages that crystallize at high-pressure and are related to shock grade. B) Investigate the chemical, mineralogical, and microstructural heterogeneities that occur across melt veins to interpret crystallization histories. C) Use static high-pressure experiments to simulate crystallization of melt veins for mineralogical and textural comparisons with the melt veins of naturally shocked samples. D) Characterize the compositions and defect microstructures of polycrystalline ringwoodite, wadsleyite, majorite, (Mg,Fe)Si03-ilmenite and (Mg,Fe)SiO3-perovskite in S6 samples to understand the mechanisms of phase transformations that occur during shock. These results will combined with kinetic data to constrain the time scales of kinetic processes. E) Investigate the transformations of metastable high-pressure minerals back to low- pressure forms to constrain post-shock temperatures and estimates of the peak shock pressure. Of these objectives, we have obtained publishable data on A, B and D. I am currently doing difficult high-pressure melting and quench experiments on an L chondrite known as Mbale. These experiments will provide additional constraints on the mineral assemblages that are produced during rapid quench of an L chondrite at pressures of 16 to 25 GPa. Results from published or nearly published research is presented below. Lists of theses, dissertations and publications are given below.
Mortality Measures to Profile Hospital Performance for Patients With Septic Shock.
Walkey, Allan J; Shieh, Meng-Shiou; Liu, Vincent X; Lindenauer, Peter K
2018-04-30
Sepsis care is becoming a more common target for hospital performance measurement, but few studies have evaluated the acceptability of sepsis or septic shock mortality as a potential performance measure. In the absence of a gold standard to identify septic shock in claims data, we assessed agreement and stability of hospital mortality performance under different case definitions. Retrospective cohort study. U.S. acute care hospitals. Hospitalized with septic shock at admission, identified by either implicit diagnosis criteria (charges for antibiotics, cultures, and vasopressors) or by explicit International Classification of Diseases, 9th revision, codes. None. We used hierarchical logistic regression models to determine hospital risk-standardized mortality rates and hospital performance outliers. We assessed agreement in hospital mortality rankings when septic shock cases were identified by either explicit International Classification of Diseases, 9th revision, codes or implicit diagnosis criteria. Kappa statistics and intraclass correlation coefficients were used to assess agreement in hospital risk-standardized mortality and hospital outlier status, respectively. Fifty-six thousand six-hundred seventy-three patients in 308 hospitals fulfilled at least one case definition for septic shock, whereas 19,136 (33.8%) met both the explicit International Classification of Diseases, 9th revision, and implicit septic shock definition. Hospitals varied widely in risk-standardized septic shock mortality (interquartile range of implicit diagnosis mortality: 25.4-33.5%; International Classification of Diseases, 9th revision, diagnosis: 30.2-38.0%). The median absolute difference in hospital ranking between septic shock cohorts defined by International Classification of Diseases, 9th revision, versus implicit criteria was 37 places (interquartile range, 16-70), with an intraclass correlation coefficient of 0.72, p value of less than 0.001; agreement between case definitions for identification of outlier hospitals was moderate (kappa, 0.44 [95% CI, 0.30-0.58]). Risk-standardized septic shock mortality rates varied considerably between hospitals, suggesting that septic shock is an important performance target. However, efforts to profile hospital performance were sensitive to septic shock case definitions, suggesting that septic shock mortality is not currently ready for widespread use as a hospital quality measure.
Effectiveness of Avoidant Thinking and Redefinition in Coping with Stress.
ERIC Educational Resources Information Center
Burish, Thomas G.; And Others
After receiving a sample shock, subjects in a Threat Condition were told that they would receive additional painful shocks while subjects in a Nonthreat Condition were not threatened with additional shocks. Subjects in an Avoidant Thinking Condition were then instructed to read and think about an amusing story, subjects in a Situation Redefinition…
On the mechanism of flow evolution in shock-tube experiments
NASA Astrophysics Data System (ADS)
Kiverin, Alexey; Yakovenko, Ivan
2018-02-01
The paper studies numerically the flow development behind the shock wave propagating inside the tube. The detailed analysis of the flow patterns behind the shock wave allows determination of the gas-dynamical origins of the temperature non-uniformities responsible for the subsequent localized start of chemical reactions in the test mixture. In particular, it is shown that the temperature field structure is determined mainly by the mechanisms of boundary layer instability development. The kinetic energy dissipation related to the flow deceleration inside boundary layer results in local heating of the test gas. At the same time, the heat losses to the tube wall lead to the cooling of the gas. Therefore the temperature stratification takes place on the scales of the boundary layer. As soon as the shock wave reflected from the end-wall of the tube interacts with the developed boundary layer the localized hot regions arise at a certain distance from the end wall. The position of these hot regions is associated with the zones of shock wave interaction with roller vortices at the margin between the boundary layer and the bulk flow. Formulated mechanism of the temperature field evolution can be used to explain the peculiarities of non-steady shock-induced ignition of combustible mixtures with moderate ignition delay times, where the ignition starts inside localized kernels at distance from the end wall.
Qualitative and quantitative aspects of pain in lateral posterior thoracotomy patients.
Xavier, Thaiza Teixeira; Torres, Gilson de Vasconcelos; da Rocha, Vera Maria
2006-01-01
Descriptive study that proposed to compare the qualitative and quantitative behavior of the pain in lateral posterior thoracotomy patients. The sample was consisted of 18 individuals with an average age of 44 years. The instruments used were physiotherapy evaluation form, numerical pain scale and McGill questionnaire for pain. The pain on the numerical pain scale was considered moderate(5) for both sexes. The descriptors of the McGill questionnaire choosen by the patients with higher frequency were: in the sensorial component, beat4, pointed1, shock2, final and pull2; in the afetive component, tired1, bored1, punishald1 and miserable1 and in the evaluative component was flat. The characteristics of pain in the sensorial group were more evidents on male group. No significant statistical difeferences were observed between quantitative answers concerning pain between the men and women. On the qualitative aspects , was observed an predominancy of the same descriptors of pain in afetive component for both sexes. Pain intensity was categorized as moderate. No significant statistical difference were observed between the pain on the post-operatory lateral posterior thoracotomy. These data demonstrate a necessity for an analysis with a larger study group.
Shock Pressures, Temperatures and Durations in L Chondrites: Constraints from Shock-Vein Mineralogy
NASA Astrophysics Data System (ADS)
Xie, Z.; Aramovish Weaver, C.; Decarli, P. S.; Sharp, T. G.
2003-12-01
Shock effects in meteorites provide a record of major impact events on meteorite parent bodies. Shock veins in chondrites, which result from local melting during shock loading, are the location of all high-pressure minerals. Shock veins contain igneous assemblages, produced by the crystallization of shock-induced melt, and metamorphic assemblages, produced by solid-state transformation in entrained host-rock clasts and wall rock. The mineralogy, distribution of high-pressure minerals and microstructures in shock veins provide a record of crystallization pressures and quench histories that can be used to constrain shock pressures and pulse duration. Here we report mineralogical and microstructural studies of shock-induced melt veins in L chondrites that provide insight into the impact history of the L-chondrite parent body. Eight L6 chondrites were investigated using FESEM and TEM and Raman spectroscopy: RC 106 (S6), Tenham (S6), Umbarger (S4-S6), Roy (S3-S5), Ramsdorf (S4), Kunashak (S4), Nakhon Pathon (S4) and La Lande (S4). Igneous melt-vein assemblages, combined with published phase equilibrium data (Agee et al. 1996), indicate crystallization pressures from less than 2.5 GPa for Kunashack and LaLande to approximately 25 GPa for Tenham. Because shock veins quench primarily by thermal conduction, crystallization starts at vein edges and progresses inward. Variation in the igneous assemblage across shock veins, combined with thermal modelling, provides constraints on quench times and pressure variation during quench. Most samples appear to have crystallized prior to shock release, whereas Kunashack and LaLande apparently crystallized after pressure release. RC 106 and Tenham (both S6), which have thick melt veins with uniform igneous assemblages, crystallized under equilibrium shock pressures of approximately 22-25 GPa during shock events that lasted at least 500 ms and 50ms, respectively. The fact that S6 samples do not appear to have crystallized at a pressures greater than about 25 GPa, suggest that the impacts that produced shock veins in chondrites had low relative impact velocities.
NASA Technical Reports Server (NTRS)
Bell, Mary Sue
2007-01-01
Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron-carbonate were initiated. Naturally occurring siderite was first characterized by electron microprobe (EMP), transmission electron microscopy (TEM), Mossbauer spectroscopy, and magnetic susceptibility measurements to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W=90%, Ni=6%, Cu=4%) to further insure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Previously reported results of TEM analyses on 49 GPa experiments indicated the presence of nano-phase spinel-structured iron oxide. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are greater than 50% Fe sup(+2) in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of single-domain, superparamagnetic sizes (approx. 50 100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) or magnetites grown naturally by MV1 magnetotactic bacteria, and as the magnetites in Martian meteorite ALH84001. Fritz et al. (2005) previously concluded that ALH84001 experienced approx. 32 GPa pressure and a resultant thermal pulse of approx. 100 - 110 C. However, ALH84001 contains evidence of local temperature excursions high enough to 1 melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to greater than 470 C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH84001 could be a product of shock devolatilization of siderite as well.
Influence of exothermic chemical reactions on laser-induced shock waves.
Gottfried, Jennifer L
2014-10-21
Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.
NASA Astrophysics Data System (ADS)
Fazio, Agnese; Folco, Luigi; D'Orazio, Massimo; Frezzotti, Maria Luce; Cordier, Carole
2014-12-01
Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz-rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high-pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s-1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.
Shock Initiation of Thermally Expanded TATB
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2011-06-01
The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.
Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks
NASA Astrophysics Data System (ADS)
de Rességuier, T.; Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P.
2014-01-01
When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.
NASA Astrophysics Data System (ADS)
Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.
2015-06-01
Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.
Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rességuier, T. de, E-mail: resseguier@ensma.fr; Lescoute, E.; Sollier, A.
2014-01-28
When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, verymore » high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.« less
NASA Astrophysics Data System (ADS)
Holm-Alwmark, S.; Ferrière, L.; Alwmark, C.; Poelchau, M. H.
2018-01-01
Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.
Simulation of Forward and Inverse X-ray Scattering From Shocked Materials
NASA Astrophysics Data System (ADS)
Barber, John; Marksteiner, Quinn; Barnes, Cris
2012-02-01
The next generation of high-intensity, coherent light sources should generate sufficient brilliance to perform in-situ coherent x-ray diffraction imaging (CXDI) of shocked materials. In this work, we present beginning-to-end simulations of this process. This includes the calculation of the partially-coherent intensity profiles of self-amplified stimulated emission (SASE) x-ray free electron lasers (XFELs), as well as the use of simulated, shocked molecular-dynamics-based samples to predict the evolution of the resulting diffraction patterns. In addition, we will explore the corresponding inverse problem by performing iterative phase retrieval to generate reconstructed images of the simulated sample. The development of these methods in the context of materials under extreme conditions should provide crucial insights into the design and capabilities of shocked in-situ imaging experiments.
Predictions of lithium interactions with earth's bow shock in the presence of wave activity
NASA Technical Reports Server (NTRS)
Decker, R. B.; Lui, A. T. Y.; Vlahos, L.
1984-01-01
The results of a test-particle simulation studying the movement of a lithium tracer ion injected upstream of the bow shock are reported. Wave activity consists of parallel and antiparallel propagating Alfven waves characterized by a frequency power spectrum within a frequency or range of amplitudes defined separately in the upstream and downstream regions. The results show that even a moderate level of wave activity can substantially change the results obtained in the absence of waves. Among the effects observed are: (1) increased ion transmission; (2) both the average energy gain and spread about the average are increased for transmitted and reflected particles; (3) the average final pitch angle for transmitted particles tends to 90 deg, and the spread of reflected particles is reduced; and (4) the spatial dispersion of the ions on the bow shock after a single encounter is increased.
Analytical scalings of the linear Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Cobos, Francisco; Wouchuk, Juan Gustavo
2017-11-01
In the linear Richtmyer-Meshkov instability (RMI), hydrodynamic perturbations are generated behind the transmitted and reflected rippled fronts. The contact surface reaches an asymptotic normal velocity and two different tangential velocities at each side, which are always different for moderate to strong levels of compression, depending on the amount of vorticity generated by the corrugated shocks. We show analytical scaling laws for the ripple velocity (δvi∞)in different physical limits and approximate formulas are provided, valid for arbitrary initial pre-shock parameters. An asymptotic growth for the contact surface ripple of the form ψi(t) ψ∞ + δ vi∞t is obtained. The quantity ψ∞ is in general different from the initial post-shock ripple amplitude, in agreement with the early finding of. Comparison to simulations and experimental work is shown. F.C. acknowledges support from UCLM for a predoctoral fellowship. This work has received support from MINECO, JCCM, and UCLM (Spain).
Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets.
Lee, Kanani K M; Benedetti, L Robin; Jeanloz, Raymond; Celliers, Peter M; Eggert, Jon H; Hicks, Damien G; Moon, Stephen J; Mackinnon, Andrew; Da Silva, Luis B; Bradley, David K; Unites, Walter; Collins, Gilbert W; Henry, Emeric; Koenig, Michel; Benuzzi-Mounaix, Alessandra; Pasley, John; Neely, David
2006-07-07
Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semiconductor<-->electronic conductor transition in water, and is found at pressures above approximately 130 GPa for single-shocked samples precompressed to 1 GPa. Our results indicate that conductivity in the deep interior of "icy" giant planets is greater than realized previously because of an additional contribution from electrons.
Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.
He, Lan; Sewell, Thomas D; Thompson, Donald L
2011-03-28
The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (~15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (~6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated as a function of time since shock wave passage in planes perpendicular to the direction of shock propagation, show that the molecular translational mobility in the picoseconds following shock wave passage is greatest for [001] and least for the [010] case. In all cases the root-mean-square center-of-mass displacement is small compared to the molecular diameter of nitromethane on the time scale of the simulations. The calculated time scales for the approach to thermal equilibrium are generally consistent with the predictions of a recent theoretical analysis due to Hooper [J. Chem. Phys. 132, 014507 (2010)].
Vasopressin: Its current role in anesthetic practice
Mitra, Jayanta K.; Roy, Jayeeta; Sengupta, Saikat
2011-01-01
Vasopressin or antidiuretic hormone is a potent endogenous hormone, which is responsible for regulating plasma osmolality and volume. In high concentrations, it also raises blood pressure by inducing moderate vasoconstriction. It acts as a neurotransmitter in the brain to control circadian rhythm, thermoregulation and adrenocorticotropic hormone release. The therapeutic use of vasopressin has become increasingly important in the critical care environment in the management of cranial diabetes insipidus, bleeding abnormalities, esophageal variceal hemorrhage, asystolic cardiac arrest and septic shock. After 10 years of ongoing research, vasopressin has grown to a potential component as a vasopressor agent of the anesthesiologist's armamentarium in the treatment of cardiac arrest and severe shock states. PMID:21814369
Directly susceptible, noncarbon metal ceramic composite crucible
Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald
1999-01-01
A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.
2014-01-01
Background To control the presence of Legionella in an old hospital water system, an integrated strategy of water disinfection-filtration was implemented in the university hospital Umberto I in Rome. Methods Due to antiquated buildings, hospital water system design and hospital extension (38 buildings), shock hyperchlorination (sodium hypochlorite, 20–50 ppm of free chlorine at distal points for 1–2 h) followed by continuous hyperchlorination (0.5-1.0 mg/L at distal points) were adopted, and microbiological and chemical monitoring of the water supply was carried out in the university hospital (December 2006-December 2011). Results Overall, 1308 samples of cold <20°C (44.5%), mixed ≥20°C ≤ 45°C (37.7%) and hot >45°C (17.8%) water were collected, determining residual free chlorine (0.43 ± 0.44 mg/L), pH (7.43 ± 0.29) and trihalomethanes (8.97 ± 18.56 μg/L). Legionella was isolated in 102 (9.8%) out of 1.041 water samples without filters (L. pneumophila sg 1 17.6%, L. pneumophila sg 2–14 28.4%, L. non pneumophila 53.9%), and in none of the 267 samples with filters. Legionella was recovered in 23 buildings out of 38 and 29 samples (28.4%) exceeded 103 cfu/L. When considering the disinfection treatment Legionella was isolated: before shock hyperchlorination (21.1%), 15 days after shock hyperchlorination (7.8%), 30 days after shock hyperchlorination (3.5%), during continuous hyperchlorination (5.5%) and without continuous hyperchlorination (27.3%). Continuous hyperchlorination following the shock treatment achieved >70% reduction of positive samples, whereas no continuous hyperchlorination after shock treatment was more frequently associated to Legionella isolation (OR 6.41; 95% CI 3.10–13.26; p <0.001). Independent risk factors for Legionella isolation were: residual free chlorine <0.5 mg/L (OR 13.0; 95% CI 1.37 – 123.2; p <0.03), water T° ≥20°C ≤ 45°C (OR 12.0; 95% CI 1.28 – 111.48; p <0.03) and no continuous hyperchlorination after shock treatment (OR 10.3; 95% CI 1.06 – 100.05; p <0.05). Conclusions Shock and continuous hyperchlorination achieved significant Legionella reduction, but effective chlorine levels (>0.5 < 1.0 mg/L) deteriorated water quality (organoleptic and chemical). However, shock and continuous hyperchlorination remains a valid-term option in old buildings with no water system rational design, managing problems due to hospital extension and absence of a proper hot water recirculation system. PMID:25027499
Shock melting and vaporization of metals.
NASA Technical Reports Server (NTRS)
Ahrens, T. J.
1972-01-01
The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.
Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments
NASA Astrophysics Data System (ADS)
Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.
2010-12-01
Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the temperature on the liquid-vapor phase boundary (e.g., [3]) at much higher pressures than previously possible using a 2 stage gas gun [4, 5]. The density on the liquid-vapor phase boundary is constrained by comparing the velocity at the silica-LiF interface to numerical simulations that use equations of state with systematically varied liquid-vapor phase boundaries. We present the results within the context of understanding vaporization during giant impact events. [1] Brannon, R.M. and L.C. Chhabildas (1995) Int. J. Impact Engng. 17, 109-120. [2] Kurosawa, K. and S. Sugita (2010) J. Geophys. Res. in press. [3] Stewart, S.T., A. Seifter, and A.W. Obst (2008) Geophys. Res. Lett., 35, (23). [4] Lyzenga, G.A., T.J. Ahrens, and A.C. Mitchell (1983) J. Geophys. Res. , 88, (NB3), 2431-2444. [5] Boslough, M.B. (1988) J. Geophys. Res., 93, (B6), 6477-6484.
Mixing-model Sensitivity to Initial Conditions in Hydrodynamic Predictions
NASA Astrophysics Data System (ADS)
Bigelow, Josiah; Silva, Humberto; Truman, C. Randall; Vorobieff, Peter
2017-11-01
Amagat and Dalton mixing-models were studied to compare their thermodynamic prediction of shock states. Numerical simulations with the Sandia National Laboratories shock hydrodynamic code CTH modeled University of New Mexico (UNM) shock tube laboratory experiments shocking a 1:1 molar mixture of helium (He) and sulfur hexafluoride (SF6) . Five input parameters were varied for sensitivity analysis: driver section pressure, driver section density, test section pressure, test section density, and mixture ratio (mole fraction). We show via incremental Latin hypercube sampling (LHS) analysis that significant differences exist between Amagat and Dalton mixing-model predictions. The differences observed in predicted shock speeds, temperatures, and pressures grow more pronounced with higher shock speeds. Supported by NNSA Grant DE-0002913.
EVIDENCE FOR CO SHOCK EXCITATION IN NGC 6240 FROM HERSCHEL SPIRE SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meijerink, R.; Spaans, M.; Kristensen, L. E.
2013-01-10
We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 lines are detected, including CO J = 4 - 3 through J = 13 - 12, 6 H{sub 2}O rotational lines, and [C I] and [N II] fine-structure lines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the CO ladders of NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for the excitation of the gas in NGC 6240. We applied both C and J shockmore » models to the H{sub 2} v = 1-0 S(1) and v = 2-1 S(1) lines and the CO rotational ladder. The CO ladder is best reproduced by a model with shock velocity v{sub s} = 10 km s{sup -1} and a pre-shock density n{sub H} = 5 Multiplication-Sign 10{sup 4} cm{sup -3}. We find that the solution best fitting the H{sub 2} lines is degenerate. The shock velocities and number densities range between v{sub s} = 17-47 km s{sup -1} and n{sub H} = 10{sup 7}-5 Multiplication-Sign 10{sup 4} cm{sup -3}, respectively. The H{sub 2} lines thus need a much more powerful shock than the CO lines. We deduce that most of the gas is currently moderately stirred up by slow (10 km s{sup -1}) shocks while only a small fraction ({approx}< 1%) of the interstellar medium is exposed to the high-velocity shocks. This implies that the gas is rapidly losing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.« less
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.
2010-01-01
The Earth Observing System (EOS) Terra spacecraft was launched on an Atlas IIAS launch vehicle on its mission to observe planet Earth in late 1999. Prior to launch, the new design of the spacecraft's pyroshock separation system was characterized by a series of 13 separation ground tests. The analysis methods used to evaluate this unusually large amount of shock data will be discussed in this paper, with particular emphasis on population distributions and finding statistically significant families of data, leading to an overall shock separation interface level. The wealth of ground test data also allowed a derivation of a Mission Assurance level for the flight. All of the flight shock measurements were below the EOS Terra Mission Assurance level thus contributing to the overall success of the EOS Terra mission. The effectiveness of the statistical methodology for characterizing the shock interface level and for developing a flight Mission Assurance level from a large sample size of shock data is demonstrated in this paper.
Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin
NASA Astrophysics Data System (ADS)
He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu
2017-06-01
This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.
Shock and statistical acceleration of energetic particles in the interplanetary medium
NASA Technical Reports Server (NTRS)
Valdes-Galicia, J. F.; Moussas, X.; Quenby, J. J.; Neubauer, F. M.; Schwenn, R.
1985-01-01
Definite evidence for particle acceleration in the solar wind came around a decade ago. Two likely sources are known to exist: particles may be accelerated by the turbulence resulting from the superposition of Alfven and Magnetosonic waves (Statistical Acceleration) or they may be accelerated directly at shock fronts formed by the interaction of fast and slow solar wind (CIR's) or by traveling shocks due to sporadic coronal mass ejections. Naurally both mechanisms may be operative. In this work the acceleration problem was tackled numerically using Helios 1 and 2 data to create a realistic representation of the Heliospheric plasma. Two 24 hour samples were used: one where there are only wave like fluctuations of the field (Day 90 Helios 1) and another with a shock present in it (Day 92 of Helios 2) both in 1976 during the STIP 2 interval. Transport coefficients in energy space have been calculated for particles injected in each sample and the effect of the shock studied in detail.
Tilman, Gaëlle; Arnoult, Nausica; Lenglez, Sandrine; Van Beneden, Amandine; Loriot, Axelle; De Smet, Charles; Decottignies, Anabelle
2012-08-01
Epigenetic dysfunctions, including DNA methylation alterations, play major roles in cancer initiation and progression. Although it is well established that gene promoter demethylation activates transcription, it remains unclear whether hypomethylation of repetitive heterochromatin similarly affects expression of non-coding RNA from these loci. Understanding how repetitive non-coding RNAs are transcriptionally regulated is important given that their established upregulation by the heat shock (HS) pathway suggests important functions in cellular response to stress, possibly by promoting heterochromatin reconstruction. We found that, although pericentromeric satellite 2 (Sat2) DNA hypomethylation is detected in a majority of cancer cell lines of various origins, DNA methylation loss does not constitutively hyperactivate Sat2 expression, and also does not facilitate Sat2 transcriptional induction upon heat shock. In melanoma tumor samples, our analysis revealed that the HS response, frequently upregulated in tumors, is probably the main determinant of Sat2 RNA expression in vivo. Next, we tested whether HS pathway hyperactivation may drive Sat2 demethylation. Strikingly, we found that both hyperthermia and hyperactivated RasV12 oncogene, another potent inducer of the HS pathway, reduced Sat2 methylation levels by up to 27% in human fibroblasts recovering from stress. Demethylation occurred locally on Sat2 repeats, resulting in a demethylation signature that was also detected in cancer cell lines with moderate genome-wide hypomethylation. We therefore propose that upregulation of Sat2 transcription in response to HS pathway hyperactivation during tumorigenesis may promote localized demethylation of the locus. This, in turn, may contribute to tumorigenesis, as demethylation of Sat2 was previously reported to favor chromosomal rearrangements.
NASA Technical Reports Server (NTRS)
Haas, M. R.; Hollenbach, D. J.; Erickson, E. F.
1985-01-01
The first detection of the ground state fine structure transition of Si+ at a rest wavelength determined to be 34.815 + or - 0.004 micron are reported. These observations were obtained with the facility spectrometer on NASA's Kuiper Airborne Observatory. A 6' NW-SE strip scan across the Orion-KL region shows SiII emission from both the extended photodissociation region surrounding theta 1 Ori C and from the shocked gas NW of BN-KL. The inferred gas-phase silicon elemental abundance relative to hydrogen in the dense 10 to the 5/cc primarily neutral photodissociation region is approximately 2.6 x to the -6, a factor of 0.075 times the solar value and 3.4 times greater than the abundance in the moderate density approx. 10 to the 3/cc cloud toward zeta Oph. The silicon abundance in the shocked gas is approximately solar, indicating that any pre-existing grains have been destroyed in the shock wave or that the preshock gas carries a near solar abundance of gas phase silicon. The shock-excited SiII (34.8 micron) emission may arise from shocked wind material in the outflow around IRc2, with wind velocities approx. 100 km/s.
The bactericidal effect of shock waves
NASA Astrophysics Data System (ADS)
Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Goff, M. J.; Hameed, A.; Hazell, P. J.
2014-05-01
There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case.
A Morphological Analysis of Gamma-Ray Burst Early-optical Afterglows
NASA Astrophysics Data System (ADS)
Gao, He; Wang, Xiang-Gao; Mészáros, Peter; Zhang, Bing
2015-09-01
Within the framework of the external shock model of gamma-ray burst (GRB) afterglows, we perform a morphological analysis of the early-optical light curves to directly constrain model parameters. We define four morphological types, i.e., the reverse shock-dominated cases with/without the emergence of the forward shock peak (Type I/Type II), and the forward shock-dominated cases without/with νm crossing the band (Type III/IV). We systematically investigate all of the Swift GRBs that have optical detection earlier than 500 s and find 3/63 Type I bursts (4.8%), 12/63 Type II bursts (19.0%), 30/63 Type III bursts (47.6%), 8/63 Type IV bursts (12.7%), and 10/63 Type III/IV bursts (15.9%). We perform Monte Carlo simulations to constrain model parameters in order to reproduce the observations. We find that the favored value of the magnetic equipartition parameter in the forward shock ({ɛ }B{{f}}) ranges from 10-6 to 10-2, and the reverse-to-forward ratio of ɛB ({{R}}B) is about 100. The preferred electron equipartition parameter {ɛ }{{e}}{{r},{{f}}} value is 0.01, which is smaller than the commonly assumed value, e.g., 0.1. This could mitigate the so-called “efficiency problem” for the internal shock model, if ɛe during the prompt emission phase (in the internal shocks) is large (say, ˜0.1). The preferred {{R}}B value is in agreement with the results in previous works that indicate a moderately magnetized baryonic jet for GRBs.
NASA Astrophysics Data System (ADS)
Zuo, Zhifeng; Maekawa, Hiroshi
2014-02-01
The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.
Frequency shift measurement in shock-compressed materials
Moore, D.S.; Schmidt, S.C.
1984-02-21
A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.
Evidence for Impact Shock Melting in CM and CI Chondrite Regolith Samples
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Le, Loan
2014-01-01
C class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be near-Earth asteroid 1999 JU3, the target of the Hayabusa II sample return mission [1], although not all spectra indicate this. In fact most spectra of 1999 JU3 are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C class asteroids - impact shock melting. Impact shock melting has been proposed to explain some mineralogical characteristics of CB chondrites, but has not been considered a major process for hydrous carbonaceous chondrites. What evidence is there for significant shock melting in the very abundant CMs, or less abundant but still important CI chondrites?
The Septic Shock 3.0 Definition and Trials: A Vasopressin and Septic Shock Trial Experience.
Russell, James A; Lee, Terry; Singer, Joel; Boyd, John H; Walley, Keith R
2017-06-01
The Septic Shock 3.0 definition could alter treatment comparisons in randomized controlled trials in septic shock. Our first hypothesis was that the vasopressin versus norepinephrine comparison and 28-day mortality of patients with Septic Shock 3.0 definition (lactate > 2 mmol/L) differ from vasopressin versus norepinephrine and mortality in Vasopressin and Septic Shock Trial. Our second hypothesis was that there are differences in plasma cytokine levels in Vasopressin and Septic Shock Trial for lactate less than or equal to 2 versus greater than 2 mmol/L. Retrospective analysis of randomized controlled trial. Multicenter ICUs. We compared vasopressin-to-norepinephrine group 28- and 90-day mortality in Vasopressin and Septic Shock Trial in lactate subgroups. We measured 39 cytokines to compare patients with lactate less than or equal to 2 versus greater than 2 mmol/L. Patients with septic shock with lactate greater than 2 mmol/L or less than or equal to 2 mmol/L, randomized to vasopressin or norepinephrine. Concealed vasopressin (0.03 U/min.) or norepinephrine infusions. The Septic Shock 3.0 definition would have decreased sample size by about half. The 28- and 90-day mortality rates were 10-12 % higher than the original Vasopressin and Septic Shock Trial mortality. There was a significantly (p = 0.028) lower mortality with vasopressin versus norepinephrine in lactate less than or equal to 2 mmol/L but no difference between treatment groups in lactate greater than 2 mmol/L. Nearly all cytokine levels were significantly higher in patients with lactate greater than 2 versus less than or equal to 2 mmol/L. The Septic Shock 3.0 definition decreased sample size by half and increased 28-day mortality rates by about 10%. Vasopressin lowered mortality versus norepinephrine if lactate was less than or equal to 2 mmol/L. Patients had higher plasma cytokines in lactate greater than 2 versus less than or equal to 2 mmol/L, a brisker cytokine response to infection. The Septic Shock 3.0 definition and our findings have important implications for trial design in septic shock.
Johnson, J. R.; Horz, F.; Lucey, P.G.; Christensen, P.R.
2002-01-01
The feldspar and pyroxene mineralogies on Mars revealed by the Thermal Emission Spectrometer (TES) on Mars Global Surveyor likely record a variety of shock effects, as suggested by petrologic analyses of the Martian meteorites and the abundance of impact craters on the planet's surface. To study the effects of shock pressures on thermal infrared spectra of these minerals, we performed shock recovery experiments on orthopyroxenite and anorthosite samples from the Stillwater Complex (Montana) over peak pressures from 17 to 63 GPa. We acquired emissivity and hemispherical reflectance spectra (350-1400 cm-1; ???7-29 ??m) of both coherent chips and fine-grained powders of shocked and unshocked samples. These spectra are more directly comparable to remotely sensed data of Mars (e.g., TES) than previously acquired absorption or transmission spectra of shocked minerals. The spectra of experimentally shocked feldspar show systematic changes with increasing pressure due to depolymerization of the silica tetrahedra. For the spectra of chips, this includes the disappearance of small bands in the 500-650 cm-1 region and a strong band at 1115 cm-1, and changes in positions of a strong band near 940 cm-1 and the Christiansen feature near 1250 cm-1. Spectra of the shocked powders show the gradual disappearance of a transparency feature near 830 cm-1. Fewer changes are observed in the pyroxene spectra at pressures as high as 63 GPa. Spectra of experimentally shocked minerals will help identify more precisely the mineralogy of rocks and soils not only from TES but also from Mars instruments such as miniTES and THEMIS.
Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya
2018-04-01
The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.
Microstructural effects on damage evolution in shocked copper polycrystals
Lieberman, Evan J.; Lebensohn, Ricardo A.; Menasche, David B.; ...
2016-07-01
Three-dimensional crystal orientation fields of a copper sample, characterized before and after shock loading using High Energy Diffraction Microscopy, are used for input and validation of direct numerical simulations using a Fast Fourier Transform (FFT)-based micromechanical model. The locations of the voids determined by X-ray tomography in the incipiently-spalled sample, predominantly found near grain boundaries, were traced back and registered to the pre-shocked microstructural image. Using FFT-based simulations with direct input from the initial microstructure, micromechanical fields at the shock peak stress were obtained. Statistical distributions of micromechanical fields restricted to grain boundaries that developed voids after the shock aremore » compared with corresponding distributions for all grain boundaries. Distributions of conventional measures of stress and strain (deviatoric and mean components) do not show correlation with the locations of voids in the post-shocked image. Neither does stress triaxiality, surface traction or grain boundary inclination angle, in a significant way. On the other hand, differences in Taylor factor and accumulated plastic work across grain boundaries do correlate with the occurrence of damage. As a result, damage was observed to take place preferentially at grain boundaries adjacent to grains having very different plastic response.« less
Effect of Shock Waves on Dielectric Properties of KDP Crystal
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.
2018-05-01
An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.
Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation
Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...
2017-11-14
Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite onmore » shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.« less
Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, A. E.; Bolme, C. A.; Lee, H. J.
Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite onmore » shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.« less
Shock-produced olivine glass: First observation
Jeanloz, R.; Ahrens, T.J.; Lally, J.S.; Nord, G.L.; Christie, J.M.; Heuer, A.H.
1977-01-01
Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg0.88Fe 0.12SiO4 recovered from peak pressures of about 56 ?? 109 pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation ofolivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 ?? 109 pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.
2015-01-01
Purpose To evaluate the efficacy, safety and patient satisfaction outcomes following low intensity extracorporeal shock wave therapy (LiESWT) in men with Peyronie's disease (PD) using a standardised protocol. Materials and Methods In this open-label single arm prospective study, patients with PD were enrolled following informed consent. Patient demographics, change in penile curvature and plaque hardness, International Index of Erectile Function (IIEF)-5 score, and overall satisfaction score (on a 5-point scale) were recorded. Treatment template consists of 3000 shock waves to the Peyronie's plaque over 20 minutes, twice weekly for 6 weeks. Results The majority of patients have PD history longer than 6 months (mean, 12.8 months; range, 6-28 months). Two thirds of patients have received and failed oral medical therapy. There were improvements in penile curvature (more than 15 degrees in 33% of men), plaque hardness (60% of men) and penile pain (4 out of 6 men) following LiESWT. There was a moderate improvement in IIEF-5 score (>5 points reported in 20% of men). No complication was reported and the majority of patients were satisfied (rated 4 out of 5; 70% of men) and would recommend this therapy to others. Conclusions In a carefully selected group of men with PD, LiESWT appears to be safe, has moderate efficacy and is associated with high patient satisfaction rate in the short term. PMID:26568796
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
Karayekov, Elizabeth; Sellaro, Romina; Legris, Martina; Yanovsky, Marcelo J.; Casal, Jorge J.
2013-01-01
Moderately warm constant ambient temperatures tend to oppose light signals in the control of plant architecture. By contrast, here we show that brief heat shocks enhance the inhibition of hypocotyl growth induced by light perceived by phytochrome B in deetiolating Arabidopsis thaliana seedlings. In darkness, daily heat shocks transiently increased the expression of PSEUDO-RESPONSE REGULATOR7 (PRR7) and PRR9 and markedly enhanced the amplitude of the rhythms of LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) expression. In turn, these rhythms gated the hypocotyl response to red light, in part by changing the expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5. After light exposure, heat shocks also reduced the nuclear abundance of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and increased the abundance of its target ELONGATED HYPOCOTYL5 (HY5). The synergism between light and heat shocks was deficient in the prr7 prr9, lhy cca1, pif4 pif5, cop1, and hy5 mutants. The evening element (binding site of LHY and CCA1) and G-box promoter motifs (binding site of PIFs and HY5) were overrepresented among genes with expression controlled by both heat shock and red light. The heat shocks experienced by buried seedlings approaching the surface of the soil prepare the seedlings for the impending exposure to light by rhythmically lowering LHY, CCA1, PIF4, and PIF5 expression and by enhancing HY5 stability. PMID:23933882
NASA Technical Reports Server (NTRS)
Cavalleri, R. J.; Agnone, A. M.
1972-01-01
A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation.
Interaction of two laser shocks inside iron samples
NASA Astrophysics Data System (ADS)
de Rességuier, T.; Hallouin, M.
2001-11-01
The interaction of two plane symmetric shocks in a solid sample induces a significant increase of both the pressure and the temperature in the central zone where the incident compressive pulses cross each other. In iron samples, such loading conditions may produce typical structural defects (twins, dislocations) and phase transitions that can be revealed by posttest examination of the recovered targets. We have used two high-power laser beams to irradiate simultaneously both surfaces of thin iron foils. The recovered samples have been sectioned and observed in optical microscopy. A very dense twin distribution in the central zone has confirmed the pressure amplification due to the interaction of the incident shocks. The occurrence of a phase transition has been inferred from the presence of short characteristic twins. Spall fraction has been observed near both irradiated surfaces, and additional damage has been evidenced at the center of the samples. Numerical tools have been adapted to simulate the experiments. Computations have provided estimates of the stress histories inside the samples, and the ability of simple twin, phase change, and spall models has been tested to predict the observed results.
Mani-Babu, Sethu; Morrissey, Dylan; Waugh, Charlotte; Screen, Hazel; Barton, Christian
2015-03-01
There is accumulating evidence for the effectiveness of extracorporeal shock wave therapy (ESWT) when treating lower limb tendinopathies including greater trochanteric pain syndrome (GTPS), patellar tendinopathy (PT), and Achilles tendinopathy (AT). To evaluate the effectiveness of ESWT for lower limb tendinopathies. Systematic review and meta-analysis. PubMed (Medline), Embase, Web of Knowledge, Cochrane, and CINAHL were searched from inception to February 2013 for studies of any design investigating the effectiveness of ESWT in GTPS, PT, and AT. Citation tracking was performed using PubMed and Google Scholar. Animal and non-English language studies were excluded. A quality assessment was performed by 2 independent reviewers, and effect size calculations were computed when sufficient data were provided. A total of 20 studies were identified, with 13 providing sufficient data to compute effect size calculations. The energy level, number of impulses, number of sessions, and use of a local anesthetic varied between studies. Additionally, current evidence is limited by low participant numbers and a number of methodological weaknesses including inadequate randomization. Moderate evidence indicates that ESWT is more effective than home training and corticosteroid injection in the short (<12 months) and long (>12 months) term for GTPS. Limited evidence indicates that ESWT is more effective than alternative nonoperative treatments including nonsteroidal anti-inflammatory drugs, physical therapy, and an exercise program and equal to patellar tenotomy surgery in the long term for PT. Moderate evidence indicates that ESWT is more effective than eccentric loading for insertional AT and equal to eccentric loading for midportion AT in the short term. Additionally, there is moderate evidence that combining ESWT and eccentric loading in midportion AT may produce superior outcomes to eccentric loading alone. Extracorporeal shock wave therapy is an effective intervention and should be considered for GTPS, PT, and AT particularly when other nonoperative treatments have failed. © 2014 The Author(s).
Kataja, Anu; Tarvasmäki, Tuukka; Lassus, Johan; Cardoso, Jose; Mebazaa, Alexandre; Køber, Lars; Sionis, Alessandro; Spinar, Jindrich; Carubelli, Valentina; Banaszewski, Marek; Marino, Rossella; Parissis, John; Nieminen, Markku S; Harjola, Veli-Pekka
2017-01-01
Critically ill patients often present with hyperglycemia, regardless of previous history of diabetes mellitus (DM). Hyperglycemia has been associated with adverse outcome in acute myocardial infarction and acute heart failure. We investigated the association of admission blood glucose level with the clinical picture and short-term mortality in cardiogenic shock (CS). Consecutively enrolled CS patients were divided into five categories according to plasma glucose level at the time of enrolment: hypoglycemia (glucose <4.0mmol/L), normoglycemia (4.0-7.9mmol/L), mild (8.0-11.9mmol/L), moderate (12.0-15.9mmol/L), and severe (≥16.0mmol/L) hyperglycemia. Clinical presentation, biochemistry, and short-term mortality were compared between the groups. Plasma glucose level of 211 CS patients was recorded. Glucose levels were distributed equally between normoglycemia (26% of patients), mild (27%), moderate (19%) and severe (25%) hyperglycemia, while hypoglycemia (2%) was rare. Severe hyperglycemia was associated with higher blood leukocyte count (17.3 (5.8) E9/L), higher lactate level (4.4 (3.3-8.4) mmol/L) and lower arterial pH (7.23 (0.14)) compared with normoglycemia or mild to moderate hyperglycemia (p<0.001 for all). In-hospital mortality was highest among hypoglycemic (60%) and severely hyperglycemic (56%) patients, compared with 22% in normoglycemic group (p<0.01). Severe hyperglycemia was an independent predictor of in-hospital mortality (OR 3.7, 95% CI 1.19-11.7, p=0.02), when adjusted for age, gender, LVEF, lactate, and DM. Admission blood glucose level has prognostic significance in CS. Mortality is highest among patients with severe hyperglycemia or hypoglycemia. Severe hyperglycemia is independently associated with high in-hospital mortality in CS. It is also associated with biomarkers of systemic hypoperfusion and stress response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
In-situ x-ray diffraction of a shock-induced phase transition in fluorite, CaF2
NASA Astrophysics Data System (ADS)
Glam, Benny; June Tracy, Sally; Turneaure, Stefan; Duffy, Thomas
2017-06-01
The difluorides are an important class of ionic compounds that show extensive polymorphism under both static and dynamic loading. In this study, the shock-induced phase transitions in CaF2 were investigated by in situ x-ray diffraction measurements in plate impact experiments carried out with the two-stage gas gun at the Dynamic Compression Sector of Argonne National Laboratory. Single-crystal samples in (100) and (111) orientations were shock loaded to pressures between 32 GPa to 70 GPa. The particle velocities at the interface between the sample and a LiF window were measured by VISAR and PDV. Synchrotron x-ray diffraction data were recorded at 153.4 ns intervals using a four-frame detector. The measured diffraction patterns show a high degree of sample texturing at all pressures. We observe evidence for a transition to a high-pressure phase followed by reverse transformation at late times during release. This study provides the first direct constraints on the high-pressure lattice structure of fluorite under shock compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, P.; Nath, M.; Ghosh, A.
2015-03-15
Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{submore » 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.« less
Thermodynamic and Optical Response of Multiply Shocked Liquid Nitromethane
NASA Astrophysics Data System (ADS)
Flanders, B. M.; Winey, J. M.; Gupta, Y. M.
2015-06-01
To investigate the thermodynamic and optical response of multiply shocked liquids, particle velocity profiles were measured for liquid nitromethane (NM) subjected to stepwise loading to a peak pressure of 10 GPa. Using a multi-point velocity interferometer (VISAR), wave profiles were obtained at both the front and rear interfaces of the thin (200 μm) liquid sample to obtain data regarding the thermodynamic response and the refractive index at the intermediate stepwise loading states, in addition to the peak state. Changes in the apparent velocity at the front sample interface were well accounted for by using a Gladstone-Dale relationship to describe the NM index of refraction. The thermodynamic states of multiply shocked NM were examined by comparing the measured wave profiles to those calculated using a published NM equation of state. Although the calculated and measured particle velocity states are in good overall agreement, comparison of the calculated shock wave reverberation times at the front and rear sample interfaces with the measured values suggests that the published NM equation of state can be improved. Work supported by DOE/NNSA.
Infrared Emissivity of Tin upon Release of a 25 GPa Shock into a LiF Window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turley, W. D., Holtkamp, D. B., Marshall, B. R., Stevens, G. D., Veeser, L. R.
We measured the emissivity of a tin sample at its interface with a lithium-fluoride window upon release of a 25 GPa shock wave from the tin into the window. Measurements were made over four wavelength bands between 1.2 and 5.4 μm. Thermal emission backgrounds from the tin, glue, and lithium fluoride were successfully removed from the reflectance signals. Emissivity changes for the sample, which was initially nearly specular, were small except for the longest wavelength band, where uncertainties were high because of poor signal-to-noise ratio at that wavelength. A thin glue layer, which bonds the sample to the window, wasmore » found to heat from reverberations of the shock wave between the tin and the lithium fluoride. At approximately 3.4 μm the thermal emission from the glue was large compared to the tin, allowing a good estimate of the glue temperature from the thermal radiance. The glue appears to remain slightly colder than the tin, thereby minimizing heat conduction into or out of the tin immediately after the shock passage.« less
Shock anxiety among implantable cardioverter defibrillator recipients with recent tachyarrhythmia.
Morken, Ingvild M; Isaksen, Kjetil; Karlsen, Bjørg; Norekvål, Tone M; Bru, Edvin; Larsen, Alf Inge
2012-11-01
Shock anxiety has been documented irrespective of shock exposure in implantable cardioverter defibrillator (ICD) recipients. The presence of tachyarrhythmia may lead to an anticipation of receiving a shock and thereby give rise to shock anxiety. The aims were to assess: (1) the level of shock anxiety in a sample of ICD recipients, (2) the relationship between such anxiety and shock exposure, and (3) the relationship between recent tachyarrhythmia and shock anxiety. ICD recipients (n = 167) completed the Florida Shock Anxiety Scale measure of shock anxiety. The recipients were divided into three groups: (1) Recipients with no documented tachyarrhythmia over the previous 12 months (n = 56), (2) recipients with documented tachyarrhythmia over the previous twelve months (n = 54), and (3) recipients with any history of shocks (n = 57). Of the recipients, 44% experienced some form of shock anxiety, whereas 15% reported general shock anxiety. Analyses of covariance revealed that recipients with recent tachyarrhythmia (F = 7.675 df = 9/100, P = 0.007) as well as recipients with a shock history (F = 9.976, df = 9/103, P = 0.002) reported higher levels of shock anxiety than recipients with no recent tachyarrhythmia. This study indicates that although a substantial proportion of the ICD recipients experienced some form of shock anxiety, only a relatively small proportion reported general shock anxiety. ICD recipients with recent tachyarrhythmia, in addition to recipients with shock history, appear to be at greater risk for development of shock anxiety. This implies that these recipients may profit from clinical-based strategies and interventions targeting shock anxiety. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
On high-pressure melting of tantalum
NASA Astrophysics Data System (ADS)
Luo, Sheng-Nian; Swift, Damian C.
2007-01-01
The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.
A method for calculating aerodynamic heating on sounding rocket tangent ogive noses.
NASA Technical Reports Server (NTRS)
Wing, L. D.
1973-01-01
A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN IV for an IBM 360/91 computer.
A method for calculating aerodynamic heating on sounding rocket tangent ogive noses
NASA Technical Reports Server (NTRS)
Wing, L. D.
1972-01-01
A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN 4 for an IBM 360/91 computer.
Control of the transition between regular and mach reflection of shock waves
NASA Astrophysics Data System (ADS)
Alekseev, A. K.
2012-06-01
A control problem was considered that makes it possible to switch the flow between stationary Mach and regular reflection of shock waves within the dual solution domain. The sensitivity of the flow was computed by solving adjoint equations. A control disturbance was sought by applying gradient optimization methods. According to the computational results, the transition from regular to Mach reflection can be executed by raising the temperature. The transition from Mach to regular reflection can be achieved by lowering the temperature at moderate Mach numbers and is impossible at large numbers. The reliability of the numerical results was confirmed by verifying them with the help of a posteriori analysis.
NASA Astrophysics Data System (ADS)
Stöffler, Dieter; Hamann, Christopher; Metzler, Knut
2018-01-01
We reevaluate the systematics and geologic setting of terrestrial, lunar, Martian, and asteroidal "impactites" resulting from single or multiple impacts. For impactites derived from silicate rocks and sediments, we propose a unified and updated system of progressive shock metamorphism. "Shock-metamorphosed rocks" occur as lithic clasts or melt particles in proximal impactites at impact craters, and rarely in distal impactites. They represent a wide range of metamorphism, typically ranging from unshocked to shock melted. As the degree of shock metamorphism, at a given shock pressure, depends primarily on the mineralogical composition and the porosity of a rock or sediment sample, different shock classification systems are required for different types of planetary rocks and sediments. We define shock classification systems for eight rock and sediment classes which are assigned to three major groups of rocks and sediments (1) crystalline rocks with classes F, M, A, and U; (2) chondritic rocks (class C); and (3) sedimentary rocks and sediments with classes SR, SE, and RE. The abbreviations stand for felsic (F), mafic (M), anorthositic (A), ultramafic (U), sedimentary rocks (SR), unconsolidated sediments (SE), and regoliths (RE). In each class, the progressive stages of shock metamorphism are denominated S1 to Sx. These progressive shock stages are introduced as: S1-S7 for F, S1-S7 for M, S1-S6 for A, S1-S7 for U, S1-S7 for C, S1-S7 for SR, S1-S5 for SE, and S1-S6 for RE. S1 stands for "unshocked" and Sx (variable between S5 and S7) stands for "whole rock melting." We propose a sequence of symbols characterizing the degree of shock metamorphism of a sample, i.e., F-S1 to F-S7 with the option to add the tabulated pressure ranges (in GPa) in parentheses.
High-energy synchrotron X-ray radiography of shock-compressed materials
NASA Astrophysics Data System (ADS)
Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.
2015-06-01
This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.
The Bactericidal Effect of Shock Waves
NASA Astrophysics Data System (ADS)
Leighs, James; Appleby-Thomas, Gareth; Wood, David; Goff, Michael; Hameed, Amer; Hazell, Paul
2013-06-01
There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary impacts. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shock waves has produced conflicting conclusions. The work presented here used an established technique, in combination with a single stage gas gun to shock load and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling, validated via Heterodyne velocimetry measurements. Survival data against peak sample pressure for recovered samples is presented alongside control tests.
Explosive-induced shock damage in copper and recompression of the damaged region
Turley, William D.; Stevens, Gerald D.; Hixson, Robert Stewart; ...
2016-08-31
Here, we have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continuesmore » to run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less
Explosive-induced shock damage in copper and recompression of the damaged region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turley, William D.; Stevens, Gerald D.; Hixson, Robert Stewart
Here, we have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continuesmore » to run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less
Explosive-induced shock damage in copper and recompression of the damaged region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turley, W. D., E-mail: turleywd@nv.doe.gov; Stevens, G. D.; La Lone, B. M.
We have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continues tomore » run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less
Propagation and dispersion of shock waves in magnetoelastic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, R. S.; Domann, J. P.; Carman, G. P.
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
Propagation and dispersion of shock waves in magnetoelastic materials
NASA Astrophysics Data System (ADS)
Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.
2017-12-01
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.
Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment
NASA Astrophysics Data System (ADS)
Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping
2017-08-01
In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.
The α–ω phase transition in shock-loaded titanium
Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.; ...
2017-07-28
Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less
Propagation and dispersion of shock waves in magnetoelastic materials
Crum, R. S.; Domann, J. P.; Carman, G. P.; ...
2017-11-15
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
Thermal shock behaviour of H and H/He-exposed tungsten at high temperature
NASA Astrophysics Data System (ADS)
Lemahieu, N.; Greuner, H.; Linke, J.; Maier, H.; Pintsuk, G.; Wirtz, M.; Van Oost, G.; Noterdaeme, J.-M.
2016-02-01
Polycrystalline tungsten samples were characterized and exposed to a pure H beam or mixed H/He beam containing 6% He in GLADIS at a surface temperature of 600 °C, 1000 °C, or 1500 °C. After 5400 s of exposure time with a heat flux of 10.5 MW m-2, the total accumulated fluence of 2 × 1025 m-2 was reached. Thereafter, edge localized mode (ELM)-like thermal shocks with a duration of 1 ms and an absorbed power density of 190 MW m-2 and 380 MW m-2 were applied on the samples in JUDITH 1. During the thermal shocks, the base temperature was kept at 1000 °C. The ELM-experiments with the lowest transient power density did not result in any detected damage. The other tests showed the beginning of crack formation for every sample, except the sample pre-exposed with the pure H-beam at 1500 °C in GLADIS. This sample was roughened, but did not show any crack initiation. With exception to the roughened sample, the category of ELM-induced damage for the pre-exposed samples is identical to the reference tests without pre-exposure to a particle flux.
NASA Astrophysics Data System (ADS)
Dürrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof
2011-08-01
A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.
Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.
2007-01-01
The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.
2016-06-15
The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wavemore » pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.« less
Ar-40/Ar-39 Age of Hornblende-bearing R Chondrite LAP 04840
NASA Technical Reports Server (NTRS)
Righter, K.; Cosca, M.
2014-01-01
Chondrites have a complex chronology due to several variables affecting and operating on chondritic parent bodies such as radiogenic heating, pressure and temperature variation with depth, aqueous alteration, and shock or impact heating [1]. Unbrecciated chondrites can record ages from 4.56 to 4.4 Ga that represent cooling in small parent bodies. Some brecciated chondrites exhibit younger ages (<<4 to 4.4 Ga) that may reflect the age of brecciation, disturbance, or shock and impact events (<< 4 Ga). A unique R chondrite was recently found in the LaPaz Icefield of Antarctica - LAP 04840 [2]. This chondrite contains approx.15% hornblende and trace amounts of biotite, making it the first of its kind. Studies have revealed an equigranular texture, mineral equilibria yielding equilibration near 650-700 C and 250-500 bars, hornblende that is dominantly OH-bearing (very little Cl or F), and high D/H ratios [8,9,10]. To help gain a better understanding of the origin of this unique sample, we have measured the Ar-40/Ar-39 age. Age of 4.290 +/- 0.030 Ga is younger than one would expect for a sample that has cooled within a small body [4], and one might instead attribute the age to a younger shock event, On the other hand, there is no evidence for extensive shock in this meteorite (shock stage S2; [3]), so this sample may have been reannealed after the shock event. This age is similar to Ar-Ar ages determined for some other R chondrites
Cosmic ray acceleration in magnetic circumstellar bubbles
NASA Astrophysics Data System (ADS)
Zirakashvili, V. N.; Ptuskin, V. S.
2018-03-01
We consider the diffusive shock acceleration in interstellar bubbles created by powerful stellar winds of supernova progenitors. Under the moderate stellar wind magnetization the bubbles are filled by the strongly magnetized low density gas. It is shown that the maximum energy of particles accelerated in this environment can exceed the "knee" energy in the observable cosmic ray spectrum.
The Treatment of Self-Injurious Behavior in Profoundly Retarded Autistic Children.
ERIC Educational Resources Information Center
Holden, E. Wayne; And Others
Three aversive conditioning programs were conducted to deal with self-injurious behavior at a residential facility for autistic, brain damaged and retarded children and adolescents. In study 1, mild electric shock paired with a neutral stimulus was moderately effective in decreasing lip biting and head striking in an autistic 15-year-old. Case 2…
Seismicity parameters preceding moderate to major earthquakes
NASA Astrophysics Data System (ADS)
von Seggern, David; Alexander, Shelton S.; Baag, Chang-Eob
1981-10-01
Seismic events reported in the bulletins of the two large arrays, LASA and NORSAR, were merged with those from the NEIS bulletin for the period 1970-1977. Using a lower cutoff of mb = 5.8, 510 `main shocks' within the P range of LASA or NORSAR were selected for this period; and various seismicity trends prior to them were investigated. A search for definite foreshocks, based on a significantly short time delay to the main shock, revealed that the true rate of foreshock occurrence was less than 20%. Foreshocks are almost exclusively associated with shallow (h < 100 km) main shocks. To establish common features, a method of averaging seismicity from many regions was used to suppress the randomness of the seismic behavior of each region. This averaging shows that the seismicity level around the main shock increases somewhat for 10 days before main shocks; this feature peaks in the last 3-4 hours prior to the main shocks. The averaging also reveals that the mean magnitude of events near the main shock increases prior to main shocks but only by a few hundredths of a magnitude unit. Again by averaging, the seismicity about main shocks is shown to tend with time toward the main shock as its origin time is approached, but the average effect is small (˜10% change). By expanding or contracting each region's time scale before averaging to relate to the magnitude of the main shock, these features are enhanced. Using a new variable to track the departures from both spatial and temporal randomness, the Poisson-like behavior of deeper seismicity (>100 km) was demonstrated. For shallow events (<100 km) this variable reveals numerous instances of clustering and spatial-temporal seismic gaps, with little tendency toward a uniformity of behavior prior to main shocks. A statistical test of the validity of seismic precursors was performed for approximately 90 main shock regions which had sufficient seismicity. Using a five-variable vector (interevent time, interevent distance, magnitude, epicentral distance to main shock, and depth difference relative to main shock) for each event in a `precursory' time window of 500 days before the main shock and for each event in a `normal' time window of 500 days before that, the null hypothesis of equal vector means between the two groups was tested. At 90% confidence level, less than 30% of the main shock regions were thus found to exhibit precursory seismicity changes. Appendices are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J81-007; $1.00. Payment must accompany order.
Which blood oxygen can sensitively indicate shock severity?
NASA Astrophysics Data System (ADS)
Pan, Boan; Li, Kai; Gao, Yuan; Ruan, Zhengshang; Li, Ting
2016-03-01
Clinical shock-monitoring mainly depends on measuring oxygen saturations from SVC blood samples invasively. The golden standard indicator is the central internal jugular vein oxygenation (SjvO2). Using near-infrared spectroscopy (NIRS) also can monitor shock in some papers published, but there is no discussion about which oxygen saturation (cerebral venous oxygen saturation, ScvO2; tissue oxygen saturation of internal jugular area; tissue oxygen saturation of extremities areas) can monitor shock patient more sensitively and accurately. The purpose of this paper is to examine which one is most effective. In order to discuss the problem, we continuously detected 56 critical patients who may be into shock state using NIRS oximeter at prefrontal, internal jugular vein area and forearm, and chose 24 patients who were into shock and then out of shock from the 56 critical patients. Combined with the patients' condition, the pulse oxygen saturation is most sensitively to monitoring shock than the others, and the internal jugular vein area oxygen saturation is most effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanborn, Brett; Song, Bo; Smith, Scott
Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less
Measurements of the Shock Release Of Quartz and Paralyene-N
NASA Astrophysics Data System (ADS)
Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim
2017-06-01
The shock and release properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies single shock or multiple shock conditions. The challenge with measuring release properties is unlike shocks which have a single interface from which to measure the properties, the release establishes gradients in the sample. The streaked x-ray imaging capability of the NIKE laser allow the interface between quartz and CH to be measured during the release, giving measurements of the interface velocity and CH density. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography Work supported by DOE/NNSA.
Sanborn, Brett; Song, Bo; Smith, Scott
2015-12-29
Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less
Boundary-Layer Instability Measurements in a Mach-6 Quiet Tunnel
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Ward, Christopher, A. C.; Luersen, Ryan P. K.; Chou, Amanda; Abney, Andrew D.; Schneider, Steven P.
2012-01-01
Several experiments have been performed in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University. A 7 degree half angle cone at 6 degree angle of attack with temperature-sensitive paint (TSP) and PCB pressure transducers was tested under quiet flow. The stationary crossflow vortices appear to break down to turbulence near the lee ray for sufficiently high Reynolds numbers. Attempts to use roughness elements to control the spacing of hot streaks on a flared cone in quiet flow did not succeed. Roughness was observed to damp the second-mode waves in areas influenced by the roughness, and wide roughness spacing allowed hot streaks to form between the roughness elements. A forward-facing cavity was used for proof-of-concept studies for a laser perturber. The lowest density at which the freestream laser perturbations could be detected was 1.07 x 10(exp -2) kilograms per cubic meter. Experiments were conducted to determine the transition characteristics of a streamwise corner flow at hypersonic velocities. Quiet flow resulted in a delayed onset of hot streak spreading. Under low Reynolds number flow hot streak spreading did not occur along the model. A new shock tube has been built at Purdue. The shock tube is designed to create weak shocks suitable for calibrating sensors, particularly PCB-132 sensors. PCB-132 measurements in another shock tube show the shock response and a linear calibration over a moderate pressure range.
Unraveling shock-induced chemistry using ultrafast lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, David Steven
The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation offast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state ofmore » materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to microengineered interfaces in tunable energetic mixtures. Recent results will be presented, and future trends outlined.« less
Plasma properties of driver gas following interplanetary shocks observed by ISEE-3
NASA Technical Reports Server (NTRS)
Zwickl, R. D.; Ashbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.
1982-01-01
Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.
Building disaster-resilient micro enterprises in the developing world.
Prasad, Sameer; Su, Hung-Chung; Altay, Nezih; Tata, Jasmine
2015-07-01
Family-owned micro enterprises operating within the informal sector of most developing countries provide millions of citizens with a livelihood and are the economic backbone of many communities. Yet, the turbulence that emanates up or down respective supply chains following a disaster can cause these entities to fail. This study develops a model that recognises the relative weakness of micro enterprises to such disaster-related shocks. The model proposes that micro enterprises can moderate the effect of such shocks by creating resilience through cognitive preparation, continuous learning, and the generation of various forms of social capital (cognitive, relational, and structural). The propositions for the model are established through an extensive literature review, coupled with examples drawn from the documents of humanitarian agencies performing disaster relief work in India. This model also serves as a preliminary basis with which to derive metrics to set benchmarks or to assess the viability of a micro enterprise's ability to survive disaster-related shocks. © 2015 The Author(s). Disasters © Overseas Development Institute, 2015.
Design of a Sample Recovery Assembly for Magnetic Ramp-Wave Loading
NASA Astrophysics Data System (ADS)
Chantrenne, S.; Wise, J. L.; Asay, J. R.; Kipp, M. E.; Hall, C. A.
2009-06-01
Characterization of material behavior under dynamic loading requires studies at strain rates ranging from quasi-static to the limiting values of shock compression. For completeness, these studies involve complementary time-resolved data, which define the mechanical constitutive properties, and microstructural data, which reveal physical mechanisms underlying the observed mechanical response. Well-preserved specimens must be recovered for microstructural investigations. Magnetically generated ramp waves produce strain rates lower than those associated with shock waves, but recovery methods have been lacking for this type of loading. We adapted existing shock recovery techniques for application to magnetic ramp loading using 2-D and 3-D ALEGRA MHD code calculations to optimize the recovery design for mitigation of undesired late-time processing of the sample due to edge effects and secondary stress waves. To assess the validity of our simulations, measurements of sample deformation were compared to wavecode predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogorodnikov, V. A., E-mail: root@gdd.vniief.ru; Mikhailov, A. L.; Sasik, V. S.
2016-08-15
In view of the possible effect of contamination of a plasma by metal particles on the operation of a number of facilities or on the detection of the motion of liners by Doppler methods, a particular attention has been recently focused on the problem of the ejection of particles from the shock-loaded free surface of a sample or on the “dusting” problem. Most information concerns the dusting source associated with the roughness of the surface, manufacturing technology, and the defectiveness and aging of a material. Factors affecting this process such as the profile and amplitude of the pressure on themore » front of the shock wave arriving at the free surface of the sample, the presence of the gas in front of the free surface, and the pressure in this gas are less studied.« less
NASA Astrophysics Data System (ADS)
Fahr, Hans J.; Richardson, John D.; Verscharen, Daniel
2015-07-01
In the majority of the literature on plasma shock waves, electrons play the role of "ghost particles", since their contribution to mass and momentum flows is negligible, and they have been treated as only taking care of the electric plasma neutrality. In some more recent papers, however, electrons play a new important role in the shock dynamics and thermodynamics, especially at the solar-wind termination shock. They react on the shock electric field in a very specific way, leading to suprathermal nonequilibrium distributions of the downstream electrons, which can be represented by a kappa distribution function. In this paper, we discuss why this anticipated hot electron population has not been seen by the plasma detectors of the Voyager spacecraft downstream of the solar-wind termination shock. We show that hot nonequilibrium electrons induce a strong negative electric charge-up of any spacecraft cruising through this downstream plasma environment. This charge reduces electron fluxes at the spacecraft detectors to nondetectable intensities. Furthermore, we show that the Debye length λDκ grows to values of about λDκ/λD ≃ 106 compared to the classical value λD in this hot-electron environment. This unusual condition allows for the propagation of a certain type of electrostatic plasma waves that, at very large wavelengths, allow us to determine the effective temperature of the suprathermal electrons directly by means of the phase velocity of these waves. At moderate wavelengths, the electron-acoustic dispersion relation leads to nonpropagating oscillations with the ion-plasma frequency ωp, instead of the traditional electron plasma frequency.
Daoud, E G; Timmermans, C; Fellows, C; Hoyt, R; Lemery, R; Dawson, K; Ayers, G M
2000-09-19
A recent study has shown that the implantable atrial defibrillator can restore sinus rhythm in patients with recurrent atrial fibrillation when therapy was delivered under physician observation. The objective of this study was to evaluate the safety and efficacy of ambulatory use of the implantable atrial defibrillator. An atrial defibrillator was implanted in 105 patients (75 men; mean age, 59+/-12 years) with recurrent, symptomatic, drug-refractory atrial fibrillation. After successful 3-month testing, patients could transition to ambulatory delivery of shock therapy. Patients completed questionnaires regarding shock therapy discomfort and therapy satisfaction using a 10-point visual-analog scale (1 represented "not at all," 10 represented "extremely") after each treated episode of atrial fibrillation. During a mean follow-up of 11.7 months, 48 of 105 patients satisfied criteria for transition and received therapy for 275 episodes of atrial fibrillation. Overall shock therapy efficacy was 90% with 1.6+/-1.2 shocks delivered per episode (median, 1). Patients rated shock discomfort as 5.2+/-2.4 for successful therapy and 4.2+/-2.2 for unsuccessful therapy (P:>0.05). The satisfaction score was higher for successful versus unsuccessful therapy (3.4+/-3. 3 versus 8.7+/-1.3, P:<0.05). There was no ventricular proarrhythmia observed throughout the course of this study. Ambulatory use of an implantable atrial defibrillator can safely and successfully convert most episodes of atrial fibrillation, often requiring only a single shock. Successful therapy is associated with high satisfaction and only moderate discomfort.
PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafikov, Roman R., E-mail: rrr@ias.edu
2016-11-10
Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1%more » level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.« less
Vasoactive mediators and splanchnic perfusion.
Reilly, P M; Bulkley, G B
1993-02-01
To provide an overview of the splanchnic hemodynamic response to circulatory shock. Previous studies performed in our own laboratory, as well as a computer-assisted search of the English language literature (MEDLINE, 1966 to 1991), followed by a selective review of pertinent articles. Studies were selected that demonstrated relevance to the splanchnic hemodynamic response to circulatory shock, either by investigating the pathophysiology or documenting the sequelae. Article selection included clinical studies as well as studies in appropriate animal models. Pertinent data were abstracted from the cited articles. The splanchnic hemodynamic response to circulatory shock is characterized by a selective vasoconstriction of the mesenteric vasculature mediated largely by the renin-angiotensin axis. This vasospasm, while providing a natural selective advantage to the organism in mild-to-moderate shock (preserving relative perfusion of the heart, kidneys, and brain), may, in more severe shock, cause consequent loss of the gut epithelial barrier, or even hemorrhagic gastritis, ischemic colitis, or ischemic hepatitis. From a physiologic standpoint, nonpulsatile cardiopulmonary bypass, a controlled form of circulatory shock, has been found experimentally to significantly increase circulating levels of angiotensin II, the hormone responsible for this selective splanchnic vasoconstriction. While angiotensin II has been viewed primarily as the mediator responsible for the increased total vascular resistance seen during (and after) cardiopulmonary bypass, it may also cause the disproportionate decrease in mesenteric perfusion, as measured in human subjects by intraluminal gastric tonometry and galactose clearance by the liver, as well as the consequent development of the multiple organ failure syndrome seen in 1% to 5% of patients after cardiac surgery.
Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J
2015-07-01
Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Velocity measurement using frequency domain interferometer and chirped pulse laser
NASA Astrophysics Data System (ADS)
Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.
2017-02-01
An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.
Van Allen Probes Observations of Radiation Belt Acceleration associated with Solar Wind Shocks
NASA Astrophysics Data System (ADS)
Foster, J. C.; Wygant, J. R.; Baker, D. N.
2017-12-01
During a moderate solar wind shock event on 8 October 2013 the twin Van Allen Probes spacecraft observed the shock-induced electric field in the dayside magnetosphere and the response of the electron populations across a broad range of energies. Whereas other mechanisms populating the radiation belts close to Earth (L 3-5) take place on time scales of months (diffusion) or hours (storm and substorm effects), acceleration during shock events occurs on a much faster ( 1 minute) time scale. During this event the dayside equatorial magnetosphere experienced a strong dusk-dawn/azimuthal component of the electric field of 1 min duration. This shock-induced pulse accelerates radiation belt electrons for the length of time they are exposed to it creating "quasi-periodic pulse-like" enhancements in the relativistic (2 - 6 MeV) electron flux. Electron acceleration occurs on a time scale that is a fraction of their orbital drift period around the Earth. Those electrons whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse stay in the accelerating wave as it propagates tailward and receive the largest increase in energy. Relativistic electron gradient drift velocities are energy-dependent, selecting a preferred range of energies (3-4 MeV) for the strongest enhancement. The time scale for shock acceleration is short with respect to the electron drift period ( 5 min), but long with respect to bounce and gyro periodicities. As a result, the third invariant is broken and the affected electron populations are displaced earthward experiencing an adiabatic energy gain. At radial distances tailward of the peak in phase space density, the impulsive inward displacement of the electron population produces a decrease in electron flux and a sequence of gradient drifting "negative holes".Dual spacecraft coverage of the 8 October 2013 event provided a before/after time sequence documenting shock effects.
Computational Investigation of Shock-Mitigation Efficacy of Polyurea When Used in a Combat Helmet
2012-01-01
Multidiscipline Modeling in Materials and Structures Emerald Article: Computational investigation of shock-mitigation efficacy of polyurea when used...mitigation efficacy of polyurea when used in a combat helmet: A core sample analysis", Multidiscipline Modeling in Materials and Structures, Vol. 8 Iss...to 00-00-2012 4. TITLE AND SUBTITLE Computational investigation of shock-mitigation efficacy of polyurea when used in a combat helmet: A core
The search for shock-excited H{sub 2} in Virgo spirals experiencing ram pressure stripping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, O. Ivy; Kenney, Jeffrey D. P.; Murphy, Eric J.
We investigate the presence of shock-excited H{sub 2} in four Virgo cluster galaxies that show clear evidence of ongoing ram pressure stripping. Mid-infrared spectral mapping of the rotational H{sub 2} emission lines were performed using the Infrared Spectrograph on board the Spitzer Space Telescope. We target four regions along the leading side of galaxies where the intracluster medium appears to be pushing back the individual galaxy's interstellar medium. For comparison purposes, we also study two regions on the trailing side of these galaxies: a region within an edge-on disk and an extraplanar star-forming region. We find a factor of 2.6more » excess of warm H{sub 2}/PAH in our sample relative to the observed fractions in other nearby galaxies. We attribute the H{sub 2}/PAH excess to contributions of shock-excited H{sub 2} which is likely to have been triggered by ongoing ram pressure interaction in our sample galaxies. Ram pressure driven shocks may also be responsible for the elevated ratios of [Fe II]/[Ne II] found in our sample.« less
Morphological changes of olivine grains reacted with amino acid solutions by impact process
NASA Astrophysics Data System (ADS)
Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi
2017-03-01
Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.
Ultrahigh Pressure Dynamic Compression
NASA Astrophysics Data System (ADS)
Duffy, T. S.
2017-12-01
Laser-based dynamic compression provides a new opportunity to study the lattice structure and other properties of geological materials to ultrahigh pressure conditions ranging from 100 - 1000 GPa (1 TPa) and beyond. Such studies have fundamental applications to understanding the Earth's core as well as the interior structure of super-Earths and giant planets. This talk will review recent dynamic compression experiments using high-powered lasers on materials including Fe-Si, MgO, and SiC. Experiments were conducted at the Omega laser (University of Rochester) and the Linac Coherent Light Source (LCLS, Stanford). At Omega, laser drives as large as 2 kJ are applied over 10 ns to samples that are 50 microns thick. At peak compression, the sample is probed with quasi-monochromatic X-rays from a laser-plasma source and diffraction is recorded on image plates. At LCLS, shock waves are driven into the sample using a 40-J laser with a 10-ns pulse. The sample is probed with X-rays form the LCLS free electron laser providing 1012 photons in a monochromatic pulse near 10 keV energy. Diffraction is recorded using pixel array detectors. By varying the delay between the laser and the x-ray beam, the sample can be probed at various times relative to the shock wave transiting the sample. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Ramp compression produces less heating than shock compression, allowing samples to be probed to ultrahigh pressures without melting. Results for iron alloys, oxides, and carbides provide new constraints on equations of state and phase transitions that are relevant to the interior structure of large, extrasolar terrestrial-type planets.
NASA Astrophysics Data System (ADS)
Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William
2008-03-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2008-04-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
The Chassigny meteorite - A cumulate dunite with hydrous amphibole-bearing melt inclusions
NASA Technical Reports Server (NTRS)
Floran, R. J.; Prinz, M.; Hlava, P. F.; Keil, K.; Nehru, C. E.; Hinthorne, J. R.
1978-01-01
The Chassigny meteorite, an iron-rich dunite (Fo 68), is a moderately shocked olivine achondrite or chassignite with features indicative of a cumulate origin with some subsolidus annealing. The evidence that the meteorite experienced shock pressures of approximately 150-200 kbar is described. Kaersutitic amphibole, found only in melt inclusions, represents the first extraterrestrial occurence of hydrous amphibole and the first meteoritic amphibole type other than fluorichterite. Fractionation data indicate that Chassigny formed under relatively more oxidizing conditions than most other achondrites, which implies that its parental melt could not have been directly derived from a chondritic composition in a simple single-stage process. Similarities and differences with the Brachina meteorite, the only other meteorite of the Chassigny type, are considered.
Stiles, B; Heilmann, J; Sparks, R B; Santoso, A; Leopold, R A
1992-01-01
Expression of heat shock proteins (hsp) in the BRL-AG-3C cell line from the cotton boll weevil was examined. It was determined that the maximal expression of endogenous hsp occurred at 41 degrees C. Various transfection methods were then compared using this cell line in conjunction with a transiently expressed bacterial gene marker (chloramphenicol acetyltransferase) which was under the control of the Drosophila hsp 70 gene promoter. The cationic lipid preparation Lipofectin was found to be very efficient at transfecting the boll weevil cells. Polylysine and 20-hydroxyecdysone-conjugated polylysine were moderately effective, whereas polybrene and electroporation, under the conditions reported herein, were ineffective at transfecting this cell line.
Changes in the interstitial fluid and the muscle water in rabbits in hemorrhagic shock.
Wolcott, M W; Malinin, T I; Wu, N M
1976-01-01
Dynamics and changes in the biochemical composition in the interstitial fluid and the muscle water were studied in hemorrhagic shock. The interstitial fluid was collected from implanted perforated capsules. Muscle biopsies were examined with regard to their water content by the steady state magnetic nuclear resonance spectroscopy. The consistent and what appears to be the most significant changes were the fall in the interstitial fluid pressures, the quantitative reduction of muscle water, a sharp fall in the blood and interstitial blood pH, the moderate hyperkalemia and lack of change in blood an interstitial fluid sodium, and the rise in blood glucose levels not accompanied by a rise in the interstitial fluid glucose levels. PMID:11754
Shock Deformation and Volcanism across the Cretaceous - Transition.
NASA Astrophysics Data System (ADS)
Huffman, Alan Royce
1990-01-01
The cause of the Cretaceous-Tertiary (K/T) transition remains one of the most controversial scientific topics in the geosciences. Geological and geophysical evidence associated with the K/T boundary have been used to argue that the extinctions were caused by meteor impact or volcanism. The goal of this study was to assess the viability of a volcanic model for the K/T transition. Comparison of natural and experimentally-shocked quartz and feldspar using optical and transmission electron microscopy (TEM) revealed that the optical and statistical character of shock-induced microstructures in volcanic rocks are different from both classic impact microstructures, and from the Raton K/T samples. A series of 31 high-explosive (HE) shock-recovery experiments at pressures to 25 GPa and temperatures to 750^circC were completed on samples of granite and quartzite. TEM and optical microscopy reveal that pre-shock temperature and pulse duration have a first-order effect on the development of shock-induced microstructures in quartz and feldspar. Application of the experimental results to natural shock-induced microstructures indicates that the volcanic microstructures are probably produced at elevated temperatures and shock pressures that do not exceed 15 GPa. The results also suggest that the Raton K/T deposits were produced at pressures below about 25 GPa. Analysis of samples from the K/T transition at DSDP Site 527 and correlations between biostratigraphy, isotopes, and the data from this study suggest that the decline in marine productivity over an extended period of time may be due to climate changes induced by basaltic volcanism. The eruption of the Deccan Traps is a viable mechanism for the K/T extinctions, and the correlation of flood basalts with every major biotic crisis in the last 250 Ma supports the link between these two phenomena. Eruption of flood basalts enriched in F, Cl, CO_2 , and SO_2, could disrupt the terrestrial ecosystem, and could produce effects including elevated pCO_2, acid rain, ozone depletion, lower ocean alkalinity, and climatic change, which can explain the observation of stepped or gradual extinction.
Shock and thermal metamorphism of basalt by nuclear explosion, Nevada test site
James, O.B.
1969-01-01
Olivine trachybasalt metamorphosed by nuclear explosion is classified into categories of progressive metamorphism: (i) Weak. Plagioclase is microfractured, and augite cotainis fine twin lamellae. (ii) Moderate. Plagioclase is converted to glass, and mafic minerals show intragranular deformation (undulatory extinction, twin lamellae, and, possibly, deformation lamellae), but rock texture is preserved. (iii) Moderately strong. Plagioclase glass shows small-scale flow, mafic minerals are fractured and show intragranular deformation, and rocks contain tension fractures. (iv) Strong. Plagioclase glass is vesicular, augite is minutely fractured, and olivine is coarsely fragmented, shows mosaic extinction, distinctive lamellar structures, and is locally recrystallized. (v) Intense. Rocks are converted to inhomogeneous basaltic glass.
Baratloo, Alireza; Rahmati, Farhad; Rouhipour, Alaleh; Motamedi, Maryam; Gheytanchi, Elmira; Amini, Fariba; Safari, Saeed
2014-01-01
Objective: To determine the correlation between blood gas parameters and central venous pressure (CVP) in patients suffering from septic shock. Methods: Forty adult patients with diagnosis of septic shock who were admitted to the emergency department (ED) of Shohadaye Tajrish Hospital affiliated with Shahid Beheshti University of Medical Sciences, and met inclusion and exclusion criteria were enrolled. For all patients, sampling was done for venous blood gas analysis, serum sodium and chlorine levels. At the time of sampling; blood pressure, pulse rate and CVP were recorded. Correlation between blood gas parameters and hemodynamic indices were. Results: A significant direct correlation between CVP with anion gap (AG) and inversely with base deficit (BD) and bicarbonate. CVP also showed a relative correlation with pH, whereas it was not correlated with BD/ AG ratio and serum chlorine level. There was no significant association between CVP and clinical parameters including shock index (SI) and mean arterial pressure (MAP). Conclusion: It seems that some of non invasive blood gas parameters could be served as alternative to invasive measures such as CVP in treatment planning of patients referred to an ED with septic shock. PMID:27162870
Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*
NASA Astrophysics Data System (ADS)
Belak, J.; Ilavsky, J.; Hessler, J. P.
2005-07-01
Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Effect of shockwave curvature on run distance observed with a modified wedge test
NASA Astrophysics Data System (ADS)
Lee, Richard; Dorgan, Robert J.; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher
2012-03-01
The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the shock from the donor would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor with PMMA spacers placed between the donor and the wedge sample. A high-speed electronic framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of along the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm wide donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.
NASA Astrophysics Data System (ADS)
Wehrenberg, Christopher; Kraus, Richard; Braun, Dave; Rygg, Ryan; Coppari, Federica; Lazicki, Amy; McNaney, James; Eggert, Jon
2016-10-01
A series of experiments were performed on NIF to develop a platform to detect material melting during shock compression using x-ray diffraction. The unique pulse shaping on NIF can be utilized to directly-drive a steady shock into an ablator and material sample while simultaneously creating an x-ray source to probe the material state. Sharp diffraction lines are observed when the material is in the solid state, while broad diffuse lines are seen when in the liquid state, providing an unambiguous signal for shock driven melting. Several shots were performed in which a shock of 50-80 GPa was driven into a Pb sample while a Ge foil was used as an x-ray source probe. Laser conditions were varied to create a suitable x-ray source that provides a short, bright burst of He-alpha emission from the Ge while maintaining a low background level on the image plates contained in the TARDIS diagnostic. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.
Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less
Shock attenuation at the Slate Islands revisited
NASA Technical Reports Server (NTRS)
Wu, S.; Robertson, P. B.; Grieve, R. A. F.
1993-01-01
This study of a more extensive suite of Slate Islands samples confirms previous interpretations. It indicates clearly that recorded shock pressures, as determined by planar deformation feature orientations, increased towards the center. The 'shock center' is very close (considering the structural movements during cavity modification) to that from an independent determination from shatter cone orientations. Shock metamorphism at a higher level in breccia clasts than in the adjacent country rocks is evidence that the shock event preceded the formation of the breccia dikes. These observations, which are consistent with those at other impact structures, are all contrary to the interpretation by Sage that breccia dike formation by diatreme action was the source of the shock event. There is no plausible reason to consider the Slate Islands as anything but the emergent portion of the central uplift of a complex impact crater. It cannot be cited as an example of endogenic shock in arguments regarding evidence of impact in the terrestrial stratigraphic record.
Biological effects of two successive shock waves focused on liver tissues and melanoma cells.
Benes, J; Sunka, P; Králová, J; Kaspar, J; Poucková, P
2007-01-01
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.
NASA Technical Reports Server (NTRS)
Skala, R.; Hoerz, F.
2003-01-01
Cretaceous Tertiary (K/T) boundary is traditionally associated with one of the most dramatic mass extinctions in the Earth history. A number of killing mechanisms have been suggested to contribute to the widespread extinctions of Cretaceous biota at this boundary, including severe, global deterioration of the atmosphere and hydrosphere from the shock-induced release of CO2 and SO(x) from carbonate- and sulfate-bearing target rocks, respectively. Recently carried out calculations revealed that the global warming caused by CO2 release was considerably less important than the cooling due to SO(x) gases release during the Chicxulub impact event. Considering apparent potential importance of the response of sulfates to the shock metamorphism, relative lack of the data on shock behavior of sulfates as well as some general difficulties encountered during thermodynamic modeling of the shock-induced CO2 loss from carbonates we subjected anhydrite to a series of shock experiments designed for complete recovery of the shocked material. We report here on the detail X-ray diffraction analysis of seven samples that were subjected to experimental shock-loading from 10 to 65 GPa.
Early Health Shocks, Intra-household Resource Allocation and Child Outcomes*
Yi, Junjian; Heckman, James J.; Zhang, Junsen; Conti, Gabriella
2016-01-01
An open question in the literature is whether families compensate or reinforce the impact of child health shocks. Discussions usually focus on one dimension of child investment. This paper examines multiple dimensions using household survey data on Chinese child twins whose average age is 11. We find that, compared with a twin sibling who did not suffer from negative early health shocks at ages 0–3, the other twin sibling who did suffer negative health shocks received RMB 305 more in terms of health investments, but received RMB 182 less in terms of educational investments in the 12 months prior to the survey. In terms of financial transfers over all dimensions of investment, the family acts as a net equalizer in response to early health shocks for children. We estimate a human capital production function and establish that, for this sample, early health shocks negatively affect child human capital, including health, education, and socioemotional skills. Compensating investments in health as measured by BMI reduce the adverse effects of health shocks by 50%, but exacerbate the adverse impact of shocks on educational attainment by 30%. PMID:27019517
Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material
NASA Technical Reports Server (NTRS)
Boslough, Mark B.; Bernold, Leonhard E.; Horie, Yasuyuki
1992-01-01
In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith.
Electron heating at interplanetary shocks
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Zwickl, R. D.
1982-01-01
Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons.
Strandberg, G; Larsson, A; Lipcsey, M; Berglund, L; Eriksson, M
2014-03-01
Intraosseous (IO) access is used in emergency situations to allow rapid initiation of treatment. IO access is also sometimes used for blood sampling, although data on accuracy of such sampling in critical illness are limited. There is also a potential risk that bone marrow fragments in IO samples may damage laboratory equipment. It is ethically questionable to perform a simultaneous comparison between IO and arterial/venous sampling in critically ill humans. We have, thus, studied the analytical performance of IO sampling in a porcine septic shock model using a cartridge-based analyser. Eight pigs with endotoxin-induced septic shock were sampled hourly for 6 h, and analysed for blood gases, acid base status, haemoglobin, glucose and lactate using point of care instruments. Samples were taken from three IO cannulae (tibia bilaterally, one with infusion, and humerus), one arterial and one venous. An interaction test was used to assess changes in agreement between methods over time. Bland–Altman plots were constructed to study bias between methods. There were, to a varying extent, differences between IO and arterial/venous levels for all studied variables, but agreement did not change significantly during the experiment. A general finding was a large dispersion of differences between methods. IO sample values should be treated with caution in this setting but may add useful information to the clinical picture. The tibia or humerus may be used for sampling. IO infusion decreases agreement, thus sampling during infusion should be avoided.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.; Bishop, A. R.
1978-01-01
The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.
Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R
2003-01-24
A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.
Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Hoerz, F.; Christensen, P.; Lucey, P. G.
2001-01-01
We performed shock recovery experiments at JSC (17-63 GPa) on samples of Stillwater pyroxenite and anorthosite and acquired their thermal infrared spectra (3-50 micron) to investigate the degradation of spectral features at high pressures. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Taniguchi, Shigeru; Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru
2018-05-01
The shock wave structure in rarefied polyatomic gases is analyzed based on extended thermodynamics (ET). In particular, the case with large relaxation time for the dynamic pressure, which corresponds to large bulk viscosity, is considered by adopting the simplest version of extended thermodynamics with only 6 independent fields (ET6); the mass density, the velocity, the temperature and the dynamic pressure. Recently, the validity of the theoretical predictions by ET was confirmed by the numerical analysis based on the kinetic theory in [S Kosuge and K Aoki: Phys. Rev. Fluids, Vol. 3, 023401 (2018)]. It was shown that numerical results using the polyatomic version of ellipsoidal statistical model agree with the theoretical predictions by ET for small or moderately large Mach numbers. In the present paper, first, we compare the theoretical predictions by ET6 with the ones by kinetic theory for large Mach number under the same assumptions, that is, the gas is polytropic and the bulk viscosity is proportional to the temperature. Second, the shock wave structure for large Mach number in a non-polytropic gas is analyzed with the particular interest in the effect of the temperature dependence of specific heat and the bulk viscosity on the shock wave structure. Through the analysis of the case of a rarefied carbon dioxide (CO2) gas, it is shown that these temperature dependences play important roles in the precise analysis of the structure for strong shock waves.
NASA Astrophysics Data System (ADS)
Tumuklu, Ozgur; Levin, Deborah A.; Theofilis, Vassilis
2018-04-01
Shock-dominated hypersonic laminar flows over a double cone are investigated using time accurate direct simulation Monte Carlo combined with the residuals algorithm for unit Reynolds numbers gradually increasing from 9.35 × 104 to 3.74 × 105 m-1 at a Mach number of about 16. The main flow features, such as the strong bow-shock, location of the separation shock, the triple point, and the entire laminar separated region, show a time-dependent behavior. Although the separation shock angle is found to be similar for all Re numbers, the effects of Reynolds number on the structure and extent of the separation region are profound. As the Reynolds number is increased, larger pressure values in the under-expanded jet region due to strong shock interactions form more prominent λ-shocklets in the supersonic region between two contact surfaces. Likewise, the surface parameters, especially on the second cone surface, show a strong dependence on the Reynolds number, with skin friction, pressure, and surface heating rates increasing and velocity slip and temperature jump values decreasing for increasing Re number. A Kelvin-Helmholtz instability arising at the shear layer results in an unsteady flow for the highest Reynolds number. These findings suggest that consideration of experimental measurement times is important when it comes to determining the steady state surface parameters even for a relatively simple double cone geometry at moderately large Reynolds numbers.
Tungjitwitayakul, Jatuporn; Tatun, Nujira; Vajarasathira, Boongeua; Sakurai, Sho
2015-06-01
The maize weevil, Sitophilus zeamais Motschulsky, is a major pest of rice and other postharvest grain stocks in tropical countries. Heating and cooling treatments have been adopted to control this pest. Because heat shock protein (hsp) genes respond to temperature stress, we examined the association of hsp genes with development and thermal stress in S. zeamais. The temperature response of the insect to heat and cold treatments was assessed at four developmental stages: egg, larva, pupa, and adult. LT50 values at high temperatures were similar among the four developmental stages, while adults were the most tolerant to low temperatures, and eggs, larvae, and pupae exhibited similar LT50 values. Expression levels of three hsps--Szhsp70, Szhsc70, and Szhsp90--fluctuated substantially throughout the four stages at a rearing temperature of 28°C. Heat shock and cold shock increased the expression of all three hsps, and the highest upregulation was observed at 40°C, although the intensity of upregulation varied among the three genes: strongly in Szhsp70, moderately in Szhsp90, and slightly in Szhsc70. Basal expression of the three hsps at 28°C and gene responses to heat and cold shock also varied significantly at the tissue level. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mobilization of lead and other trace elements following shock chlorination of wells
Seiler, R.L.
2006-01-01
Many owners of domestic wells shock chlorinate their wells to treat for bacterial contamination or control bad odors from sulfides. Analysis of well water with four wells from Fallon, Nevada, showed that following recommended procedures for shock chlorinating wells can cause large, short-lasting increases in trace-element concentrations in ground water, particularly for Cu, Fe, Pb, and Zn. Lead concentrations increased up to 745 fold between samples collected just before the well was shock chlorinated and the first sample collected 22-24??h later; Zn concentrations increased up to 252 fold, Fe concentrations increased up to 114 fold, and Cu concentrations increased up to 29 fold. Lead concentrations returned to near background levels following pumping of about one casing volume, however, in one well an estimated 120??mg of excess Pb were pumped before concentrations returned to prechlorination levels. Total Pb concentrations were much greater than filtered (0.45????m) concentrations, indicating the excess Pb is principally particulate. Recommended procedures for purging treated wells following shock chlorination may be ineffective because a strong NaOCl solution can remain in the casing above the pump even following extended pumping. Only small changes in gross alpha and beta radioactivity occurred following shock chlorination. USEPA has not promulgated drinking-water standards for 210Pb, however, measured 210Pb activities in the study area typically were less than the Canadian Maximum Acceptable Concentration of 100??mBq/L. By consuming well water shortly after shock chlorination the public may inadvertently be exposed to levels of Pb, and possibly 210Pb, that exceed drinking-water standards.
Visible/near-infrared spectra of experimentally shocked plagioclase feldspars
Johnson, J. R.; Horz, F.
2003-01-01
High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.
Swept Impinging Oblique Shock/Boundary-Layer Interactions
NASA Astrophysics Data System (ADS)
Little, Jesse; Threadgill, James; Stab, Ilona
2016-11-01
Oblique shock waves impinging on boundary layers are common flow features associated with high-speed flows around complex body geometries and through internal channel flows. The increasingly three-dimensional surface geometries of modern vehicles has led to a prevalence of complex shock/boundary-layer interactions. Sweep has been observed to vary the interaction structure, unsteadinesses, and similarity scalings. Sharp-fins and highly-swept ramps have been noted to induce a quasi-conical development of the interaction, in contrast to a quasi-cylindrical scaling observed in low-sweep interactions. However, swept impinging oblique shock cases have largely been overlooked, with evidence of only cylindrical similarities observed in hypersonic conditions. Flow deflection beyond the maximum turning angle has been proposed as the mechanism for conical interaction development but such behavior has not been established for the present configuration. This study examines the effect of sweep on the interaction induced by a 12.5° generator in Mach 2.3 flow using oil-flow, Schlieren and PIV. Results document the development of similarity scalings at various angles of sweep, and highlight the difficulty in replicating a quasi-infinite span conditions in a moderately sized wind tun Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430) and Raytheon Missile Systems.
NASA Astrophysics Data System (ADS)
Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Sinogeikin, Stanislav V.; Smith, Jesse S.; Taylor, Lawrence A.
2016-07-01
Ahrensite (IMA 2013-028), γ-Fe2SiO4, is the natural Fe-analog of the silicate-spinel ringwoodite (γ-Mg2SiO4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Fe-rich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth ⇒ bridgmanite + wüstite ⇒ ahrensite and/or ringwoodite ⇒ highly-deformed olivine + nanocrystalline ringwoodite ⇒ deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of type ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. Grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1-10 ms).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Chi; Tschauner, Oliver; Beckett, John R.
Ahrensite (IMA 2013-028), gamma-Fe 2SiO 4, is the natural Fe-analog of the silicate-spinel ringwoodite (gamma-Mg 2SiO 4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Ferich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth → bridgmanite + wustite → ahrensite and/or ringwoodite double right arrow highly-deformed olivine + nanocrystalline ringwoodite → deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of typemore » ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. As a result, grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1-10 ms).« less
Ma, Chi; Tschauner, Oliver; Beckett, John R.; ...
2016-04-27
Ahrensite (IMA 2013-028), gamma-Fe 2SiO 4, is the natural Fe-analog of the silicate-spinel ringwoodite (gamma-Mg 2SiO 4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Ferich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth → bridgmanite + wustite → ahrensite and/or ringwoodite double right arrow highly-deformed olivine + nanocrystalline ringwoodite → deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of typemore » ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. As a result, grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1-10 ms).« less
Experimental shock metamorphism of lunar soil
NASA Technical Reports Server (NTRS)
Schaal, R. B.; Horz, F.
1980-01-01
Shock experiments in the pressure range 15-73 GPa were performed on lunar soil 15101 in order to investigate the effect of a single impact event on the formation of soil breccias and agglutinates. The study has demonstrated that the propagation of a shock wave emanating from a single impact in porous particulate samples causes collision and shear of grains, collapse of pore spaces, and compaction which is sufficient to indurate soil at low pressures (15-18 GPa) without significant melting (less than 5%). These low pressures create soil breccias or weakly shocked soil fragments from loose regolith. At pressures above 65 GPa, shock melting produces a pumiceous whole-soil glass which is equivalent to agglutinate glass, glass fragments, or ropy glasses depending on the abundance of lithic fragments and relict grains.
2017-12-01
description in Figure 9 below 2 Full or partial loss of test data due to instrumentation/triggering failures 3 Gages not included in these tests 4...Table 2. Sample properties. Test Description Dimensions Weight (lbs.) Strength (psi) Notes 17 Fully Tempered Glass Window 4-ft x 6-ft x...an estimate of prism strength for medium weight CMU. The reinforced concrete sample was a 5.5-in thick solid panel. To evaluate its strength
Achieving high-density states through shock-wave loading of precompressed samples
Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stéphanie; Loubeyre, Paul
2007-01-01
Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1–1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding. PMID:17494771
Microcracks, micropores, and their petrologic interpretation for 72415 and 15418
NASA Technical Reports Server (NTRS)
Richter, D.; Simmons, G.; Siegfried, R.
1976-01-01
Lunar samples 72415 and 15418 have complex microstructures that indicate a series of fracturing and healing events. Both samples contain relatively few open microcracks but many sealed and healed microcracks. Dunite 72415 contains abundant healed cracks that formed tectonically, symplectic intergrowths spatially and probably genetically related to microcracks, and a cataclastic matrix that has been extensively sintered. Metamorphosed breccia 15418 contains many post-metamorphic healed cracks, large shock induced cracks that have been sealed with glass, and a few younger, thin, open shock induced cracks.
Thermophysical properties of multi-shock compressed dense argon.
Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J
2014-02-21
In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.
Thermophysical properties of multi-shock compressed dense argon
NASA Astrophysics Data System (ADS)
Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.
2014-02-01
In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.
Pyrolysis Gas Flow in Thermally Ablating Media Using Time-Implicit Discontinuous Galerkin Methods
2011-01-01
Aeronautics and Astronautics 2 the dissociated and ionized gas species (present in the shock layer, which is between the bow shock and boundary layer... wind tunnel experiment was conducted in [20] with a carbon-phenolic sample that was exposed to a heat flux of 1400 W/cm 2 . Experiment results were...type of problems [7-10]. In work by Persson and Peraire, they have been applied to various problems of viscous flows, shocks , turbulent flows and
On the Shock Stress, Substructure Evolution, and Spall Response of Commercially Pure 1100-O Aluminum
2014-12-01
recovery experiments were conducted at shock stresses of approxi- mately 4 , 6 , and 9 GPa to study the substructure evolution, while spall recovery...experiments were conducted at shock stresses of approximately 6 and 9 GPa to study the spall fracture surfaces. As shown in Fig. 3, a 4 mm thick by 30 mm...different voltages ranging from 6 –60 V in a TenuPol-3 digitally controlled automatic electropolisher . The hardness of the recovered samples was measured
Low-temperature magnetic study of naturally and experimentally shocked pyrrhotite
NASA Astrophysics Data System (ADS)
Mang, C.; Kontny, A. M.; Hecht, L.
2011-12-01
The most intriguing observation from the suevite unit of the 35 Ma old Chesapeake Bay impact structure (CBIS), Virginia, USA, is the occurrence of "shocked pyrrhotite", which might provide clues for a better understanding of the acquisition of shock-induced remagnetization during an impact event. A large range of differently strong deformed and melted components are mixed in the suevite and maximum shock pressures up to 35 GPa are reported (Wittmann et al. 2009). Pyrrhotite occurs as grains and grain clusters within the suevite matrix and rarely in melt fragments, and abundant lattice defects in pyrrhotite prove a shock-induced deformation. The shocked mineral is characterized by a significant loss of iron and the stoichiometric formula lies between Fe0.808S and Fe0.811S. This composition falls significantly below the Fe/S ratio of regular pyrrhotite (Fe>0.875) and is similar to the one of smythite (Fe9S11). The Curie temperature (TC) is above that of the ferrimagnetic 4C modification (320°C) and lies between 350 and 365°C. However, a transition at 30 K (Rochette et al. 1990), visible in low temperature remanence curves, confirms the presence of ferrimagnetic monoclinic 4C pyrrhotite.The present work aims at the question if all these different features observed in the natural pyrrhotite from the CBIS suevite are impact-related. Therefore we experimentally shocked a pyrrhotite ore from the Cerro de Pasco mine, Peru at 3, 5, 8, 20 and 30 GPa using a high pressure gun and high explosive devices. The obtained samples have been investigated by low-temperature AC susceptibility and remanence measurements (LT). In addition, we determined TC using AC susceptibility as function of temperature. LT experiments of the pyrrhotite ore unfortunately do not only show magnetic transition temperatures related to pure pyrrhotite but additionally of accessory magnetic mineral phases like magnetite (Fe3O4) and pyrophanite (MnTiO3). The contribution of those phases makes especially the LT in-phase and out-of-phase susceptibility measurements hard to interpret. A general feature with increasing shock pressure, however, is a broadening of the temperature interval where transition temperatures occur, as well in the LT remanence and HT susceptibility curves. In the remanence curves of the experimentally shocked samples this behaviour is accompanied by an earlier onset of the 30 K transition. The transition is only visible as a slight bending in the susceptibility curves and with increasing shock pressure this bending disappears continuously and is no longer visible at 8 GPa. Samples shocked above 8 GPa also show a slightly stronger frequency dependency of AC suceptibility. Further TEM studies will show if these observations might give some clues on the lattice defect concentration of pyrrhotite and can be used as shock indicators. Rochette, P.et al., 1990. Earth Planet. Sci. Lett., 98, 319 - 328. Wittmann, A. et al., 2009, Geol. Soc. Am. Spec. Pap. 458, 377 - 396
Zhou, Min; Dai, Ji; Du, Min; Wang, Wei; Guo, Changxing; Wang, Yi; Tang, Rui; Xu, Fengling; Rao, Zhuqing; Sun, Gengyun
2016-08-01
The role of dobutamine in the relief of pulmonary edema during septic shock-induced acute respiratory distress syndrome (ARDS) remains undetermined, due to a lack of controllable and quantitative clinical studies. Our objective was to assess the potential effects of dobutamine on extravascular lung water index (ELWI) in septic shock-induced ARDS, reflecting its importance in pulmonary edema. At the same time, ventilator function and perfusion parameters were evaluated. We designed a prospective, non-randomized, non-blinded, controlled study to compare the differences in PiCCO parameters after 6 h of constant dobutamine infusion (15 μg/kg/min), in the baseline parameters in 26 septic shock-related ARDS patients with cardiac index ≥ 2.5I/min/m(2) and hyperlactatemia. These patients (12 survivors/14 non-survivors) were monitored using the PiCCO catheter system within 48 h of onset of septic shock. The dynamic changes in ELWI, which is typically used for quantifying the extent of pulmonary edema, were evaluated, and the corresponding ventilator function and tissue perfusion parameters were also measured. Decreasing ELWI (p = 0.0376) was accompanied by significantly decreased SVRI (p < 0.0001). Despite a significant increase in cardiac output (p < 0.0001), no differences were found in ITBI or GEDI. Moreover, the required dose of norepinephrine was decreased (p = 0.0389), and urine output was increased (p = 0.0358), accompanied by stabilized lactacidemia and MAP. Additionally, airway pressure was moderately improved. During the early stage of septic shock-induced ARDS, dobutamine treatment demonstrated a beneficial effect by relieving pulmonary edema in patients, without a negative elevation in preload or hemodynamics, which might account for the improvements in ventilator function and tissue hypoperfusion.
Nagendran, Myura; Maruthappu, Mahiben; Gordon, Anthony C; Gurusamy, Kurinchi S
2016-05-01
Septic shock is a life-threatening condition requiring vasopressor agents to support the circulatory system. Several agents exist with choice typically guided by the specific clinical scenario. We used a network meta-analysis approach to rate the comparative efficacy and safety of vasopressors for mortality and arrhythmia incidence in septic shock patients. We performed a comprehensive electronic database search including Medline, Embase, Science Citation Index Expanded and the Cochrane database. Randomised trials investigating vasopressor agents in septic shock patients and specifically assessing 28-day mortality or arrhythmia incidence were included. A Bayesian network meta-analysis was performed using Markov chain Monte Carlo methods. Thirteen trials of low to moderate risk of bias in which 3146 patients were randomised were included. There was no pairwise evidence to suggest one agent was superior over another for mortality. In the network meta-analysis, vasopressin was significantly superior to dopamine (OR 0.68 (95% CI 0.5 to 0.94)) for mortality. For arrhythmia incidence, standard pairwise meta-analyses confirmed that dopamine led to a higher incidence of arrhythmias than norepinephrine (OR 2.69 (95% CI 2.08 to 3.47)). In the network meta-analysis, there was no evidence of superiority of one agent over another. In this network meta-analysis, vasopressin was superior to dopamine for 28-day mortality in septic shock. Existing pairwise information supports the use of norepinephrine over dopamine. Our findings suggest that dopamine should be avoided in patients with septic shock and that other vasopressor agents should continue to be based on existing guidelines and clinical judgement of the specific presentation of the patient.
Cardio-Pulmonary Response to Shock.
1983-09-30
attenuated by inhibition of Tx synthesis . These data indicate that the prostanoids exert direct and indirect acticns in moderating c function...identified as the circulating negative inotropic agent whose production is stimulated by PG synthesis during PEEP. - The large amount of prostacyclin...127 ml - in controls (p < 0.05). The importance of WBC Tx synthesis in the induction of permeability was tested by stimulating isolated WBC with the
Reaction of Shocked but Undetonated HMX-Based Explosive
NASA Astrophysics Data System (ADS)
Taylor, P.; Salisbury, D. A.; Markland, L. S.; Winter, R. E.; Andrew, M. I.
2002-07-01
Cylindrical samples of the pressed plastic bonded HMX based explosive EDC37, backed by metal discs, were shocked through a stainless steel attenuator by an explosive donor. Reaction of the EDC37 sample was diagnosed with embedded PVDF pressure gauges and a distance to detonation for the geometry was determined. Sample length was then reduced to less than the observed detonation distance and laser interferometry was used to record the free surface velocity of the metal backing disc. The results provide data on the metal driving energy liberated by explosive which is shocked and reacting but not detonated. The results are compared with 2-D Eulerian calculations incorporating a 3-term ignition and growth reactive burn model with desensitisation. It is found that a parameter set for the reaction model which replicates the PVDF pressure profiles before reflection also gives good agreement to the metal disc velocity history at early times. The results show that an appreciable fraction of the metal driving potential of an explosive can be released without detonation being established.
Sound velocity of tantalum under shock compression in the 18–142 GPa range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com
2015-05-14
Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in thismore » type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.« less
Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate
Adcock, C. T.; Tschauner, O.; Hausrath, E. M.; ...
2017-03-06
Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite-whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites havemore » experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H + -bearing whitlockite with implications for interpreting meteorites and the need for future sample return.« less
Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adcock, C. T.; Tschauner, O.; Hausrath, E. M.
Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite-whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites havemore » experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H + -bearing whitlockite with implications for interpreting meteorites and the need for future sample return.« less
Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate
Adcock, C. T.; Tschauner, O.; Hausrath, E. M.; Udry, A.; Luo, S. N.; Cai, Y.; Ren, M.; Lanzirotti, A.; Newville, M.; Kunz, M.; Lin, C.
2017-01-01
Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite–whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites have experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H+-bearing whitlockite with implications for interpreting meteorites and the need for future sample return. PMID:28262701
Measurements of Shock Effects Recorded by Hayabusa Samples
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.
2015-01-01
We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.
Measurements of Shock Effects Recorded by Itokawa Samples
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.
2016-01-01
We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD). As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.
Small-scale dynamic confinement gap test
NASA Astrophysics Data System (ADS)
Cook, Malcolm
2011-06-01
Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.
Morphological effects on sensitivity of heterogeneous energetic materials
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Sen, Oishik; Udaykumar, H. S.
2017-06-01
The mesoscale physical response under shock loading in heterogeneous energetics is inherently linked to the microstructural characteristics. The current work demonstrates the connection between the microstructural features of porous energetic material and its sensitivity. A unified levelset based framework is developed to characterize the microstructures of a given sample. Several morphological metrics describing the mesoscale geometry of the materials are extracted using the current tool including anisotropy, tortuosity, surface to volume, nearest neighbors, size and curvature distributions. The relevant metrics among the ones extracted are identified and correlated to the mesoscale response of the energetic materials under shock loading. Two classes of problems are considered here: (a) field of idealized voids embedded in the HMX material and (b) real samples of pressed HMX. The effects of stochasticity associated with void arrangements on the sensitivity of the energetic material samples are shown. In summary, this work demonstrates the relationship between the mesoscale morphology and shock response of heterogeneous energetic materials using a levelset based framework.
Fragmentation Speed at Magmatic Temperatures: an Experimental Determination
NASA Astrophysics Data System (ADS)
Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.
2011-12-01
The propagation speed of the fragmentation front (fragmentation speed) is a controlling factor in the dynamics of explosive volcanic eruptions and can affect the eruptive regime. It is impossible to measure the fragmentation speed directly in natural systems. Thus, laboratory experiments using natural samples represent a unique source of information revealing the dynamics of fragmentation processes. Rapid decompression experiments of natural samples from several volcanoes allowed us to quantify the influence of sample porosity and pressure differential on the fragmentation speed. These previous experiments have been performed almost exclusively at temperatures up to 300 °C. Due to experimental constraints it is not possible to measure directly the fragmentation speed at magmatic temperatures using the same procedure as in the experiments up to moderate temperature. The magmatic temperature for the analyzed rock types varies typically between 700 - 900 °C, reflecting their moderate to high silica content. For this reason, the influence of the temperature on the fragmentation speed had not been investigated systematically. In order to determine the fragmentation speed at magmatic temperatures (700 - 900 °C), we performed rapid decompression experiments of volcanic rocks and measured with a high-speed camera the ejection speed at the front of the gas-particle mixture produced by fragmentation. Then we used a theoretical model based on a 1-D shock-tube theory considering the conservation laws across the fragmentation front that provides a relationship between the fragmentation speed and the ejection speed at the front of the gas-particle mixture. This model has been validated in fragmentation experiments at room temperature where the fragmentation and ejection speed were measured simultaneously. We investigated natural volcanic samples covering a broad range of connected porosity (16 - 65 vol. %) and applied pressures (4-20 MPa) at room temperature and up to 850 °C. To our knowledge, this is the first systematic investigation of the fragmentation speed of volcanic samples at magmatic temperatures. These results enhance our understanding of explosive volcanic eruptions. As has been shown by recent studies, a quantitative knowledge of the dynamics of magma fragmentation is critical for determining the eruptive regime.
The Cape Mendocino, California, earthquakes of April 1992: Subduction at the triple junction
Oppenheimer, D.; Beroza, G.; Carver, G.; Dengler, L.; Eaton, J.; Gee, L.; Gonzalez, F.; Jayko, A.; Li, W.H.; Lisowski, M.; Magee, M.; Marshall, G.; Murray, M.; McPherson, R.; Romanowicz, B.; Satake, K.; Simpson, R.; Somerville, P.; Stein, R.; Valentine, D.
1993-01-01
The 25 April 1992 magnitude 7.1 Cape Mendocino thrust earthquake demonstrated that the North America—Gorda plate boundary is seismogenic and illustrated hazards that could result from much larger earthquakes forecast for the Cascadia region. The shock occurred just north of the Mendocino Triple Junction and caused strong ground motion and moderate damage in the immediate area. Rupture initiated onshore at a depth of 10.5 kilometers and propagated up-dip and seaward. Slip on steep faults in the Gorda plate generated two magnitude 6.6 aftershocks on 26 April. The main shock did not produce surface rupture on land but caused coastal uplift and a tsunami. The emerging picture of seismicity and faulting at the triple junction suggests that the region is likely to continue experiencing significant seismicity.
[Cholera in children. A report of 8 cases].
Lezama-Basulto, L A; Mota-Hernández, F; Bravo-Barrios, E
1993-11-01
Cholera is an acute intestinal infection caused by Vibrio cholerae 01. When an infected person presents severe dehydration and is not adequately treated, he or she will develop hypovolemic shock and eventually could died. There is scarce information concerning this disease in the Pediatric group. Herein we report on eight cases of Pediatric cholera, in children 17 month to four years of age. Seven patients out of eight were admitted presenting dehydration. Four presenting mild or moderate dehydration and three presenting hypovolemic shock. These three patients were rehydrated by intravenous route and thereafter the hydration was maintained by oral therapy. The outcome was uneventful in six patients. One patient developed abdominal distention probably due to hypopotassemia, and another patient presented hyponatremia and seizures. All the patients recovered within five days after admission.
What is worse than the “big one”?
Kerr, R. A.
1988-01-01
The first thought in the minds of many residents of the city of Whittier when the first shock hit them was "Is this the big one?" the San Andreas' once-in-150-years great shaker? It might as well have been for Whittier, which is 20 kilometers east of downtown Los Angeles. The ground shook harder there this month than it will when the big one does strike the distant San Andreas, which lies 50 kilometers on the other side of the mountains. And this was only a moderate, magnitude 6.1 shock. Earthquake of magnitude 7 and large 30 times more powerful, could rupture faults beneath the feet of Angelenos at any time. The loss of life and destruction could exceed that caused by the big one.
NASA Technical Reports Server (NTRS)
Weisberg, M. K.; Kimura, M.
2004-01-01
The CB chondrites are metal-rich chondritic meteorites having characteristics that sharply distinguish them from other chondrites [1], including (1) high metal abundances (60-80 vol.% metal), (2) most chondrules have cryptocrystalline or barred textures, (3) moderately volatile lithophile elements are highly depleted and (4) nitrogen is enriched in the heavy isotope. Similarities in mineral composition, as well as oxygen and nitrogen isotopic compositions of the CB to CR and CH chondrites are consistent with derivation of these chondrite groups from a common nebular reservoir, hence their grouping in the CR clan [1, 2, 3, 4]. CB chondrites have been divided into CBa (Gujba, Bencubbin, Weatherford) and CBb (Hammadah al Hamra 237 and QUE 94411) subgroups based on petrologic characteristics.
Luo, Jinque; Liu, Mei; Wu, Xin; Dou, Yannong; Xia, Yufeng; Dai, Yue; Wei, Zhifeng
2015-12-01
Endotoxin can stimulate inflammatory cytokine release from monocytes/macrophages and result in septic shock. Glycyrrhetinic acid (GA), the main bioactive component of licorice, possesses substantial anti-inflammatory activity. Here, we explored effect of 11-deoxy-18α-glycyrrhetinic acid-30-ethyl ester (DGAEE), a newly synthesized derivative of GA, on septic shock. DGAEE and its main metabolite 11-deoxy-18α-glycyrrhetinic acid (DGA) significantly alleviated septic shock as evidenced by improvements of survival rates, lung histopathological changes and wet/dry ratio in lipopolysaccharide (LPS)/D-galactosamine-stimulated mice, and decreased blood pressure in LPS/D-galactosamine-stimulated rats. The two compounds decreased serum levels of NO, TNF-α, IL-6, IL-1β, and increased the level of IL-10 more potently in mice. In LPS-stimulated RAW 264.7 cells, DGA but not DGAEE showed marked regulation of NO, TNF-α, IL-6 and IL-10 levels, suggesting that DGAEE display anti-shock effect by DGA rather than itself. Moreover, the neutralizing antibody against IL-10 markedly prohibited the inhibitory effect of DGA on the production of cytokines from RAW 264.7 cells, and AS101 (an inhibitor of IL-10 biosynthesis) almost completely reversed the anti-shock effect of DGA in mice. In addition, DGA did not affect activation of NF-κB-p65 and p38 MAPK as well as IκBα degradation, but moderately reduced activation of ERK and JNK, and markedly increased phosphorylation of GSK3β in LPS-stimulated RAW 264.7 cells. LY294002 (an inhibitor of GSK3β phosphorylation) and LiCl (an inhibitor of GSK3β activity) diminished and potentiated increase of IL-10 levels by DGA, respectively. In conclusion, DGAEE alleviates septic shock through DGA in an IL-10-dependent manner, and the mechanism is related to inactivation of GSK3β. Copyright © 2015 Elsevier B.V. All rights reserved.
Yu, Tianzheng; Deuster, Patricia; Chen, Yifan
2016-12-15
Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury. Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress. Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non-acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin-related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1-dependent mitochondrial fission may regulate susceptibility to heat-induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat-related injury. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Yu, Tianzheng; Deuster, Patricia
2016-01-01
Key points Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury.Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress.Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. Abstract The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non‐acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin‐related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1‐dependent mitochondrial fission may regulate susceptibility to heat‐induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat‐related injury. PMID:27730652
Ünver, Ramazan; Deveci, Figen; Kırkıl, Gamze; Telo, Selda; Kaman, Dilara; Kuluöztürk, Mutlu
2016-01-01
OBJECTIVES Chronic Obstructive Pulmonary Disease (COPD) is accompanied by increased cellular stress and inflammation. Most of the Heat Shock Proteins (HSPs) have strong cytoprotective effects. The role of HSPs in COPD pathogenesis has not determined completely. We investigated the serum level of HSPs in COPD patients, smokers without COPD and healthy non-smoking controls. Also, we evaluated the relationship of HSPs with various parameters (inflammatory, oxidative, functional status, quality of life) in COPD patients. MATERIAL AND METHODS The levels of stress protein (HSP27, HSP70, HSP60, HSP90, CyPA), interleukin-6, C-reactive protein and malondialdehyde were measured in 16 healthy non-smoker, 14 smokers without COPD and 50 patients with stable COPD. Pulmonary function tests (PFT) and arterial blood gases parameters were measured. Health Related Quality of Life was evaluated and exercise capacity was measured with 6 minute walking test. RESULTS Only HSP27 levels was significantly higher in COPD patients when compared with both healthy non-smoker and smokers without COPD (for both, p< 0.001). There was a weak-moderate negative correlation between serum levels of HSP27 and PFT parameters and between HSP27 levels and PaO2. Serum levels of HSP27 showed a weak-moderate positive correlation with symptom, activity and total scores. Subjects evaluated only smokers without COPD and patients with COPD; HSP27 had an area under the curve (AUC) in the receiver operating characteristic (ROC) curve of 0.819 (0.702–0.935; 95% CI; p= 0.000). CONCLUSION Increased serum levels of HSP27 was found in COPD patients and our results showed sensitivity and specificity of serum HSP27 as diagnostic markers for COPD. PMID:29404146
Ünver, Ramazan; Deveci, Figen; Kırkıl, Gamze; Telo, Selda; Kaman, Dilara; Kuluöztürk, Mutlu
2016-10-01
Chronic Obstructive Pulmonary Disease (COPD) is accompanied by increased cellular stress and inflammation. Most of the Heat Shock Proteins (HSPs) have strong cytoprotective effects. The role of HSPs in COPD pathogenesis has not determined completely. We investigated the serum level of HSPs in COPD patients, smokers without COPD and healthy non-smoking controls. Also, we evaluated the relationship of HSPs with various parameters (inflammatory, oxidative, functional status, quality of life) in COPD patients. The levels of stress protein (HSP27, HSP70, HSP60, HSP90, CyPA), interleukin-6, C-reactive protein and malondialdehyde were measured in 16 healthy non-smoker, 14 smokers without COPD and 50 patients with stable COPD. Pulmonary function tests (PFT) and arterial blood gases parameters were measured. Health Related Quality of Life was evaluated and exercise capacity was measured with 6 minute walking test. Only HSP27 levels was significantly higher in COPD patients when compared with both healthy non-smoker and smokers without COPD (for both, p< 0.001). There was a weak-moderate negative correlation between serum levels of HSP27 and PFT parameters and between HSP27 levels and PaO 2 . Serum levels of HSP27 showed a weak-moderate positive correlation with symptom, activity and total scores. Subjects evaluated only smokers without COPD and patients with COPD; HSP27 had an area under the curve (AUC) in the receiver operating characteristic (ROC) curve of 0.819 (0.702-0.935; 95% CI; p= 0.000). Increased serum levels of HSP27 was found in COPD patients and our results showed sensitivity and specificity of serum HSP27 as diagnostic markers for COPD.
Heck, Thiago Gomes; Scomazzon, Sofia Pizzato; Nunes, Patrícia Renck; Schöler, Cinthia Maria; da Silva, Gustavo Stumpf; Bittencourt, Aline; Faccioni-Heuser, Maria Cristina; Krause, Mauricio; Bazotte, Roberto Barbosa; Curi, Rui; Homem de Bittencourt, Paulo Ivo
2017-03-01
Exercise stimulates immune responses, but the appropriate "doses" for such achievements are unsettled. Conversely, in metabolic tissues, exercise improves the heat shock (HS) response, a universal cytoprotective response to proteostasis challenges that are centred on the expression of the 70-kDa family of intracellular heat shock proteins (iHSP70), which are anti-inflammatory. Concurrently, exercise triggers the export of HSP70 towards the extracellular milieu (eHSP70), where they work as pro-inflammatory cytokines. As the HS response is severely compromised in chronic degenerative diseases of inflammatory nature, we wondered whether acute exercise bouts of different intensities could alter the HS response of lymphocytes from secondary lymphoid organs and whether this would be related to immunoinflammatory responses. Adult male Wistar rats swam for 20 min at low, moderate, high or strenuous intensities as per an overload in tail base. Controls remained at rest under the same conditions. Afterwards, mesenteric lymph node lymphocytes were assessed for the potency of the HS response (42 °C for 2 h), NF-κB binding activity, mitogen-stimulated proliferation and cytokine production. Exercise stimulated cell proliferation in an "inverted-U" fashion peaking at moderate load, which was paralleled by suppression of NF-κB activation and nuclear location, and followed by enhanced HS response in relation to non-exercised animals. Comparative levels of eHSP70 to iHSP70 (H-index) matched IL-2/IL-10 ratios. We conclude that exercise, in a workload-dependent way, stimulates immunoinflammatory performance of lymphocytes of tissues far from the circulation and this is associated with H-index of stress response, which is useful to assess training status and immunosurveillance balance.
Petersson, Lisa; Carrió, M Mar; Vera, Andrea; Villaverde, Antonio
2004-04-01
We have produced increasing levels of DnaK and its co-chaperone DnaJ along with the model VP1LAC misfolding-prone protein, to explore the role of DnaK on the management of Escherichia coli inclusion bodies. While relative solubility of VP1LAC is progressively enhanced, the heat-shock response is down-regulated as revealed by decreasing levels of GroEL. This is accompanied by an increasing yield of VP1LAC and a non-regular evolution of its insoluble fraction, at moderate levels of DnaK resulting in more abundant inclusion bodies. Also, the impact of chaperone co-expression is much more pronounced in wild type cells than in a DnaK- mutant, probably due to the different background of heat shock proteins in these cells. The involvement of DnaK in the supervision of misfolding proteins is then pictured as a dynamic balance between its immediate holding and folding activities, and the side-effect downregulation of the heat shock response though the limitation of other chaperone and proteases activities.
X-ray Thomson scattering measurement of temperature in warm dense carbon
Falk, Katerina; Fryer, C. L.; Gamboa, E. J.; ...
2016-11-22
Here, a novel platform to measure the equation of state using a combination of diagnostics, where the spectrally resolved x-ray Thomson scattering (XRTS) is used to obtain accurate temperature measurements of warm dense matter (WDM) was developed for the OMEGA laser facility. OMEGA laser beams have been used to drive strong shocks in carbon targets creating WDM and generating the Ni He-alpha x-ray probe used for XRTS. Additional diagnostics including x-ray radiography, velocity interferometry and streaked optical pyrometry provided complementary measurements of density and pressure. The WDM regime of near solid density and moderate temperatures (1–100 eV) is a challengingmore » yet important area of research in inertial confinement fusion and astrophysics. This platform has been used to study off-Hugoniot states of shock-released diamond and graphite at pressures between 1 and 10 Mbar and temperatures between 5 and 15 eV as well as first x-ray Thomson scattering data from shocked low density CH foams reaching five times compression and temperatures of 20–30 eV.« less
Generation of extreme state of water by spherical wire array underwater electrical explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, O.; Gilburd, L.; Efimov, S.
2012-10-15
The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parametersmore » of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.« less
Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.
Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D
2009-12-01
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.
Electron Acceleration and Efficiency in Nonthermal Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
Bykov, A. M.; Meszaros, P.
1996-04-01
In energetic nonthermal sources such as gamma-ray bursts, active galactic nuclei, or galactic jets, etc., one expects both relativistic and transrelativistic shocks accompanied by violent motions of moderately relativistic plasma. We present general considerations indicating that these sites are electron and positron accelerators leading to a modified power-law spectrum. The electron (or e+/-) energy index is very hard, ~ gamma -1 or flatter, up to a comoving frame break energy gamma *, and becomes steeper above that. In the example of gamma-ray bursts, the Lorentz factor reaches gamma * ~ 103 for e+/- accelerated by the internal shock ensemble on subhydrodynamical timescales. For pairs accelerated on hydrodynamical timescales in the external shocks, similar hard spectra are obtained, and the break Lorentz factor can be as high as gamma * <~ 105. Radiation from the nonthermal electrons produces photon spectra with shapes and characteristic energies in qualitative agreement with observed generic gamma-ray burst and blazar spectra. The scenario described here provides a plausible way to solve one of the crucial problems of nonthermal high-energy sources, namely, the efficient transfer of energy from the proton flow to an appropriate nonthermal lepton component.
Impact and collisional processes in the solar system
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Gazis, C.; Pepin, R.; Becker, R.; Cronin, R.; Tyburczy, J.; Tingle, T.; Duffy, T.; Rowan, L.
1991-01-01
As impact cratered terrains have been successively recognized on certain planets and planetary satellites, it has become clear that impact processes are important to the understanding of the accretion and evolution of all solid planets. The noble gases in the normalized atmospheric inventories of the planets and the normalized gas content of meteorites are grossly similar, but demonstrate differences from each other which are not understood. In order to study shock devolatilization of the candidate carrier phases which are principally thought to be carbonaceous or hydrocarbons in planetesimals, experiments were conducted on noble gase implantation in various carbons: carbon black, activated charcoal, graphite, and carbon glass. These were candidate starting materials for impact devolatilization experiments. Initial experiments were conducted on vitreous amorphous carbon samples which were synthesized under vapor saturated conditions using argon as the pressurizing medium. An amino acid and surface analysis by laser ionization analyses were performed on three samples of shocked Murchison meteorite. A first study was completed in which a series of shock loading experiments on a porous limestone and on a non-porous gabbro in one and three dimensions were performed. Also a series of recovery experiments were conducted in which shocked molten basalt a 1700 C is encapsulated in molybdenum containers and shock recovered from up to 6 GPa pressures.
Microbial Diversity of Impact-Generated Habitats
NASA Astrophysics Data System (ADS)
Pontefract, Alexandra; Osinski, Gordon R.; Cockell, Charles S.; Southam, Gordon; McCausland, Phil J. A.; Umoh, Joseph; Holdsworth, David W.
2016-10-01
Impact-generated lithologies have recently been identified as viable and important microbial habitats, especially within cold and arid regions such as the polar deserts on Earth. These unique habitats provide protection from environmental stressors, such as freeze-thaw events, desiccation, and UV radiation, and act to trap aerially deposited detritus within the fissures and pore spaces, providing necessary nutrients for endoliths. This study provides the first culture-independent analysis of the microbial community structure within impact-generated lithologies in a Mars analog environment, involving the analysis of 44,534 16S rRNA sequences from an assemblage of 21 rock samples that comprises three shock metamorphism categories. We find that species diversity increases (H = 2.4-4.6) with exposure to higher shock pressures, which leads to the development of three distinct populations. In each population, Actinobacteria were the most abundant (41%, 65%, and 59%), and the dominant phototrophic taxa came from the Chloroflexi. Calculated porosity (a function of shock metamorphism) for these samples correlates (R2 = 0.62) with inverse Simpson indices, accounting for overlap in populations in the higher shock levels. The results of our study show that microbial diversity is tied to the amount of porosity in the target substrate (as a function of shock metamorphism), resulting in the formation of distinct microbial populations.
NASA Astrophysics Data System (ADS)
Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.
2018-03-01
Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.
NASA Astrophysics Data System (ADS)
Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn
2018-04-01
Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröhlich, Markus G., E-mail: FroehlichM@missouri.edu, E-mail: ThompsonDon@missouri.edu; Sewell, Thomas D., E-mail: SewellT@missouri.edu; Thompson, Donald L., E-mail: FroehlichM@missouri.edu, E-mail: ThompsonDon@missouri.edu
2014-01-14
The mechanical and structural responses of hydroxyl-terminated cis-1,4-polybutadiene melts to shock waves were investigated by means of all-atom non-reactive molecular dynamics simulations. The simulations were performed using the OPLS-AA force field but with the standard 12-6 Lennard-Jones potential replaced by the Buckingham exponential-6 potential to better represent the interactions at high compression. Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied. Supported shock waves were generated by impacting the samples onto stationary pistons at impact velocities of 1.0, 1.5, 2.0, and 2.5 km s{sup −1}, yielding shock pressures between approximately 2.8 GPa and 12.5 GPa. Single-molecule structuralmore » properties (squared radii of gyration, asphericity parameters, and orientational order parameters) and mechanical properties (density, shock pressure, shock temperature, and shear stress) were analyzed using a geometric binning scheme to obtain spatio-temporal resolution in the reference frame centered on the shock front. Our results indicate that while shear stress behind the shock front is relieved on a ∼0.5 ps time scale, a shock-induced transition to a glass-like state occurs with a concomitant increase of structural relaxation times by several orders of magnitude.« less
Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km s-1
NASA Astrophysics Data System (ADS)
Price, M. C.; Solscheid, C.; Burchell, M. J.; Josse, L.; Adamek, N.; Cole, M. J.
2013-01-01
We report on the survivability in hypervelocity impacts of yeast in spore form, and as mature cultures, at impact velocities from 1 to 7.4 km s-1, corresponding to an estimated peak shock pressure of ˜43 GPa. Spores from a yeast strain (BY4743), deficient in an enzyme required for uracil production, were fired into water (to simulate oceanic impact from space) using a light gas gun. The water was then retrieved and filtered and the resulting retentate and filtrate cultured to determine viability and survival rates of remnant spores. Yeast growth (confirmed as coming from the original sample as it had the same enzyme deficiency) was found in recovered samples at all impact speeds, albeit in smaller quantities at the higher speeds. The survival probabilities were measured as ˜50% at 1 km s-1, falling to ˜10-3% at 7.4 km s-1. This follows the pattern observed in previous work on survival of microbial life and spores exposed to extreme shock loading, where there is reasonable survival at low peak shock pressures with more severe lethality above a critical shock pressure at the GPa scale (here between 2 and 10 GPa). These results are explained in the context of a general model for survival against extreme shock and are relevant to the hypotheses of panspermia and litho-panspermia, showing that extreme shocks during transfer across space are not necessarily sterilising.
Shock compression of simulated adobe
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.
2017-01-01
A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.
NASA Technical Reports Server (NTRS)
Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.
1972-01-01
A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.
Shock-wave-induced fracturing of calcareous nannofossils from the Chesapeake Bay impact crater
,
2003-01-01
Fractured calcareous nannofossils of the genus Discoaster from synimpact sediments within the Chesapeake Bay impact crater demonstrate that other petrographic shock indicators exist for the cratering process in addition to quartz minerals. Evidence for shock-induced taphonomy includes marginal fracturing of rosette-shaped Discoaster species into pentagonal shapes and pressure- and temperature-induced dissolution of ray tips and edges of discoasters. Rotational deformation of individual crystallites may be the mechanism that produces the fracture pattern. Shock-wave-fractured calcareous nannofossils were recovered from synimpact matrix material representing tsunami or resurge sedimentation that followed impact. Samples taken from cohesive clasts within the crater rubble show no evidence of shock-induced fracturing. The data presented here support growing evidence that microfossils can be used to determine the intensity and timing of wet-impact cratering.
Optical absorbances of Gd3Ga5O12 single crystals under shock compression to 211 GPa
NASA Astrophysics Data System (ADS)
Liu, Q. C.; Zhou, X. M.; Luo, S. N.
2017-04-01
Shock-induced opacity in Gd3Ga5O12 (GGG) single crystals is investigated by transmission/emission measurements at 16 wavelengths (400-800 nm), as well as complementary particle velocity measurements at 1550 nm, in the pressure range of 47-211 GPa. Optical transmission spectra through the shocked samples are measured with a in-situ, shock-generated light source, and the resultant extinction coefficients of different wavelengths and shock pressures obtained. As shock strength increases, the optical opacity of the shocked GGG increases and peaks at 75 GPa (the transparent-opaque transition), drops at 75-100 GPa (the opaque-transparent transition), and then increases again. The transparency recovery coincides with a solid-solid phase transition. The microstructure changes associated with the solid-solid phase transition and plastic deformation most likely cause the loss and recovery of transparency. GGG can be useful as a high pressure window for laser velocimetry (1550 nm) or optical pyrometry (400-800 nm) in the ranges of 100-140 GPa and 80-120 GPa, respectively.
NASA Astrophysics Data System (ADS)
Austin, Daniel E.; Shen, Andy H. T.; Beauchamp, J. L.; Ahrens, Thomas J.
2012-04-01
We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10-7 Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption.
Bradley, Cathy J; Neumark, David; Motika, Meryl
2012-12-01
Employment-contingent health insurance (ECHI) has been criticized for tying insurance to continued employment. Our research sheds light on two central issues regarding employment-contingent health insurance: whether such insurance "locks" people who experience a health shock into remaining at work; and whether it puts people at risk for insurance loss upon the onset of illness, because health shocks pose challenges to continued employment. We study how men's dependence on their own employer for health insurance affects labor supply responses and health insurance coverage following a health shock. We use the Health and Retirement Study (HRS) surveys from 1996 through 2008 to observe employment and health insurance status at interviews 2 years apart, and whether a health shock occurred in the intervening period between the interviews. All employed married men with health insurance either through their own employer or their spouse's employer, interviewed in at least two consecutive HRS waves with non-missing data on employment, insurance, health, demographic, and other variables, and under age 64 at the second interview are included in the study sample. We then limited the sample to men who were initially healthy. Our analytical sample consisted of 1,582 men of whom 1,379 had ECHI at the first interview, while 203 were covered by their spouse's employer. Hospitalization affected 209 men with ECHI and 36 men with spouse insurance. A new disease diagnosis was reported by 103 men with ECHI and 22 men with other insurance. There were 171 men with ECHI and 25 men with spouse employer insurance who had a self-reported health decline. Labor supply response differences associated with ECHI-with men with health shocks and ECHI more likely to continue working-appear to be driven by specific types of health shocks associated with future higher health care costs but not with immediate increases in morbidity that limit continued employment. Men with ECHI who have a self-reported health decline are significantly more likely to lose health insurance than men with insurance through a spouse. With the passage of health care reform, the tendency of men with ECHI as opposed to other sources of insurance to remain employed following a health shock may be diminished, along with the likelihood of losing health insurance.
Shock recovery of a magnesium-silicate spinelloid
NASA Astrophysics Data System (ADS)
Tschauner, O. D.; Asimow, P. D.; Ahrens, T. J.; Kostandova, N.
2009-12-01
Previously it was believed that some high pressure polymorphs (e.g. of framework silicates) form under shock via growth from shock-induced precursor microscopic melt zones. Since diffusion in the melt was assumed to control crystallization rates, absence of shock recovery of any of those minerals was attributed to the short duration of laboratory shock (0.1 to 1 microsecond) experiments. In contrast to laboratory experiments, grains of high pressure polymorphs of 1 - 100 micrometer diameter have been found in melt veins of shocked meteorites and were widely believed to have formed via diffusion-controlled growth that occurred over seconds to minute time scales. Recently we reported formation of wadsleyite from a shock-generated melt in a laboratory shock experiment by analysis of the recovery products [1]. The growth rate of wadsleyite crystals at the experimental temperature of 2000 to 3000 K was estimated to be several m/s suggesting that diffusion was not the dominant factor in this ultra-rapid crystal growth. Consequently, S6 shock events in chondrites may not always be related to long shock duration and large impactors. Here we report formation of another high-pressure magnesium silicate polymorph in a shock experiment. The starting materials for this 30 GPa shot was single-crystal synthetic forsterite in a NIST 1157 tool-steel chamber. The recovered material was analyzed by micro-Raman spectroscopy and by synchrotron-based micro-X ray diffraction. Diffraction experiments were conducted in Gandolfi-geometry at station B2, CHESS, using a MAR345 image plate detector and a primary beam of 25 keV energy. Melted regions of the sample contained a spinelloid isotypic to a magnesium-gallium germanate spinelloid synthesized at ambient pressure [2]. As in the previous study [1] we observe oxidation of iron from melted metal of the recovery chamber wall entrained by the silicate melt while silicon is partially reduced. The new high-pressure silicate may have formed at less than the peak pressure experienced by the sample. [1]: O.Tschauner, P.D. Asimow, N. Kostandova,T.J. Ahrens, C. Ma, S. Sinogeikin, Z. Liu, S. Fakra, N. Tamura, Proc. Nat. Acad. Sci. USA 106, 13691-5 (2009) , [2]: Barbier, J., Hyde, B.G.,Acta Cryst. B 43, 34-40 (1987).
A search for shocked quartz grains in the Allerød-Younger Dryas boundary layer
NASA Astrophysics Data System (ADS)
Hoesel, Annelies; Hoek, Wim Z.; Pennock, Gillian M.; Kaiser, Knut; Plümper, Oliver; Jankowski, Michal; Hamers, Maartje F.; Schlaak, Norbert; Küster, Mathias; Andronikov, Alexander V.; Drury, Martyn R.
2015-03-01
The Younger Dryas impact hypothesis suggests that multiple airbursts or extraterrestrial impacts occurring at the end of the Allerød interstadial resulted in the Younger Dryas cold period. So far, no reproducible, diagnostic evidence has, however, been reported. Quartz grains containing planar deformation features (known as shocked quartz grains), are considered a reliable indicator for the occurrence of an extraterrestrial impact when found in a geological setting. Although alleged shocked quartz grains have been reported at a possible Allerød-Younger Dryas boundary layer in Venezuela, the identification of shocked quartz in this layer is ambiguous. To test whether shocked quartz is indeed present in the proposed impact layer, we investigated the quartz fraction of multiple Allerød-Younger Dryas boundary layers from Europe and North America, where proposed impact markers have been reported. Grains were analyzed using a combination of light and electron microscopy techniques. All samples contained a variable amount of quartz grains with (sub)planar microstructures, often tectonic deformation lamellae. A total of one quartz grain containing planar deformation features was found in our samples. This shocked quartz grain comes from the Usselo palaeosol at Geldrop Aalsterhut, the Netherlands. Scanning electron microscopy cathodoluminescence imaging and transmission electron microscopy imaging, however, show that the planar deformation features in this grain are healed and thus likely to be older than the Allerød-Younger Dryas boundary. We suggest that this grain was possibly eroded from an older crater or distal ejecta layer and later redeposited in the European sandbelt. The single shocked quartz grain at this moment thus cannot be used to support the Younger Dryas impact hypothesis.
Release Path Temperatures of Shock-Compressed Tin from Dynamic Reflectance and Radiance Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Lone, B. M.; Stevens, G. D.; Turley, W. D.
2013-08-01
Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R0 are < 2%, and uncertainties in absolute reflectance are < 5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stressmore » and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of < 2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.« less
Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur
NASA Astrophysics Data System (ADS)
Jetté, F. X.; Goroshin, S.; Higgins, A. J.
2009-12-01
Equimolar mixtures of manganese powder and sulfur at different starting densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in Self-Propagating High-Temperature Synthesis (SHS) mixtures. Two different sizes of Mn particles were used for these experiments, <10 μm and -325 mesh (<44 μm). This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery capsules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the capsule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation.
Atomic-level deformation of CuxZr100-x metallic glasses under shock loading
NASA Astrophysics Data System (ADS)
Demaske, Brian J.; Wen, Peng; Phillpot, Simon R.; Spearot, Douglas E.
2018-06-01
Plastic deformation mechanisms in CuxZr100-x bulk metallic glasses (MGs) subjected to shock are investigated using molecular dynamics simulations. MGs with Cu compositions between 30 and 70 at. % subjected to shock waves generated via piston velocities that range from 0.125 to 2.0 km/s are considered. In agreement with prior studies, plastic deformation is initiated via formation of localized regions of high von Mises shear strain, known as shear transformation zones (STZs). At low impact velocities, but above the Hugoniot elastic limit, STZ nucleation is dispersed behind the shock front. As impact velocity is increased, STZ nucleation becomes more homogeneous, eventually leading to shock-induced melting, which is identified in this work via high atomic diffusivity. The shear stress necessary to initiate plastic deformation within the shock front is independent of composition at shock intensities near the elastic limit but increases with increasing Cu content at high shock intensities. By contrast, both the flow stress in the plastically deformed MG and the critical shock pressure associated with melting behind the shock front are found to increase with increasing Cu content over the entire range of impact velocities. The evolution of the short-range order in the MG samples during shock wave propagation is analyzed using a polydisperse Voronoi tessellation method. Cu-centered polyhedra with full icosahedral symmetry are found to be most resistant to change under shock loading independent of the MG composition. A saturation is observed in the involvement of select Cu-centered polyhedra in the plastic deformation processes at a piston velocity around 0.75 km/s.
Vaisseau, X; Morace, A; Touati, M; Nakatsutsumi, M; Baton, S D; Hulin, S; Nicolaï, Ph; Nuter, R; Batani, D; Beg, F N; Breil, J; Fedosejevs, R; Feugeas, J-L; Forestier-Colleoni, P; Fourment, C; Fujioka, S; Giuffrida, L; Kerr, S; McLean, H S; Sawada, H; Tikhonchuk, V T; Santos, J J
2017-05-19
Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.5-1 kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.
Cellura, Cinzia; Toubiana, Mylène; Parrinello, Nicolo; Roch, Philippe
2006-01-01
Complete sequence of HSP70 cDNA from the mussel, Mytilus galloprovincialis was established before quantifying its expression following moderate heat shock or injection of heat-killed bacteria. HSP70 cDNA is comprised of 2378 bp including one ORF of 654 aa, with a predicted 70 bp 5'-UTR and a 343 bp 3'-UTR (GenBank, 18 Jan 05, AY861684). Alignment identity ranged from 89% for Crassostrea ariakensis to 72% for C. virginica. Curiously, HSP70 gene and cDNA sequences from M. galloprovincialis, deposited later (03 and 27 May), show only 73% identity with the present sequence. Meanwhile, characteristic motifs of the HSP70 family were located in conserved positions. Expression of HSP70 gene was quantified on circulating hemocyte mRNA using Q-PCR after RT using random hexaprimers. Housekeeping gene was 28S rRNA. Four stresses were applied: heat shock that consisted of immersing mussels for 90 min at 30 degrees C and returning them to 20 degrees C sea water, one injection of heat-killed Gram-negative bacteria, Vibrio splendidus LGP32, one injection of heat-killed Gram-negative bacteria Vibrio anguillarum, one injection of heat-killed Gram-positive bacteria Micrococcus lysodeikticus. We found no significant modification of 28S rRNA gene expression. Significant increase of 5.2 +/- 0.4 fold the ratio HSP70/28S rRNA was observed 6 h after heat shock and was maximum at 15 h (6.1 +/- 1.1), and still significant after 24 h (1.7 +/- 0.03). Similarly, injecting V. anguillarum resulted in a significant increase of 2.7 +/- 0.1 after 12 h. Expression was maximum after 48 h (5.2 +/- 0.05) and returned to baseline after 72 h. In contrast, injecting V. splendidus or M. lysodeikticus failed to significantly modulate HSP70 gene expression at least during the first 3 days post-injection. Consequently, mussel hemocytes appeared to discriminate between pathogenic and non-pathogenic Vibrios, as well as between Gram-negative and Gram-positive bacteria.
Permeability enhancement by shock cooling
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean
2015-04-01
The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of granitic geothermal reservoirs.
High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.
2014-06-01
Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550more » nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.« less
Shocks inside CMEs: A survey of properties from 1997 to 2006
NASA Astrophysics Data System (ADS)
Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.
2015-04-01
We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.
2005-03-23
esuscitation The Kocher clamp was closed for 5 min to crush the por- ion of the rectus abdominus muscle to create a soft tissue njury, and pigs were...continuously monitored. A 3–5 cm lower abdominal incision was made and the left rectus abdomi- nus muscle located. The rectus sheath was mobilized
Superconductivity of Cu/CuOx interface formed by shock-wave pressure
NASA Astrophysics Data System (ADS)
Shakhray, D. V.; Avdonin, V. V.; Palnichenko, A. V.
2016-11-01
A mixture of powdered Cu and CuO has been subjected to shock-wave pressure of 350 kbar with following quenching of the vacuum-encapsulated product to 77 K. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc ≈ 19 K, characterized by glassy dynamics of the shielding currents below Tc . Comparison of the ac susceptibility and the DC magnetization measurements infers that the superconductivity arises within the granular interfacial layer formed between metallic Cu and its oxides due to the shock-wave treatment.
Effects of Alcohol and Sexual Prejudice on Aggression Toward Sexual Minorities
Parrott, Dominic J.; Lisco, Claire G.
2014-01-01
Objective This study was the first to test the moderating effect of acute alcohol intoxication on the relation between heterosexual men’s sexual prejudice and perpetration of aggression toward gay men and lesbians. Method Participants were 320 heterosexual men aged 21-30 recruited from a large southeastern United States city. Participants completed a measure of prejudice toward sexual minorities and were randomly assigned to one of eight experimental groups within a 2 (Beverage: Alcohol, No-Alcohol Control) × 2 (Opponent Gender: Male, Female) × 2 (Opponent Sexual Orientation: Homosexual, Heterosexual) design. Following beverage consumption, participants were provoked via reception of electric shocks from a fictitious opponent. Participants’ physical aggression was measured using a shock-based aggression task. Results The association between sexual prejudice and aggression toward the gay male opponent was stronger among intoxicated, relative to sober, participants. This pattern of association was not observed among participants who competed against the heterosexual male, heterosexual female, or lesbian opponent. Conclusions Findings provide the first experimental evidence that alcohol intoxication moderates sexually-prejudiced aggression toward gay men. These data offer a first step toward understanding how alcohol facilitates bias-motivated aggression. Such knowledge contributes to the empirical foundation needed to guide the development of interventions for alcohol-related aggression toward sexual minorities. PMID:26171278
NASA Astrophysics Data System (ADS)
Chen, Che-Yu; Li, Zhi-Yun; King, Patrick K.; Fissel, Laura M.
2017-10-01
Thin, magnetically aligned striations of relatively moderate contrast with the background are commonly observed in both atomic and molecular clouds. They are also prominent in MHD simulations with turbulent converging shocks. The simulated striations develop within a dense, stagnated sheet in the midplane of the post-shock region where magnetically induced converging flows collide. We show analytically that the secondary flows are an inevitable consequence of the jump conditions of oblique MHD shocks. They produce the stagnated, sheet-like sub-layer through a secondary shock when, roughly speaking, the Alfvénic speed in the primary converging flows is supersonic, a condition that is relatively easy to satisfy in interstellar clouds. The dense sub-layer is naturally threaded by a strong magnetic field that lies close to the plane of the sub-layer. The substantial magnetic field makes the sheet highly anisotropic, which is the key to the striation formation. Specifically, perturbations of the primary inflow that vary spatially perpendicular to the magnetic field can easily roll up the sheet around the field lines without bending them, creating corrugations that appear as magnetically aligned striations in column density maps. On the other hand, perturbations that vary spatially along the field lines curve the sub-layer and alter its orientation relative to the magnetic field locally, seeding special locations that become slanted overdense filaments and prestellar cores through enhanced mass accumulation along field lines. In our scenario, the dense sub-layer, which is unique to magnetized oblique shocks, is the birthplace for both magnetically aligned diffuse striations and massive star-forming structures.
NASA Astrophysics Data System (ADS)
Kylafis, N. D.; Trümper, J. E.; Ertan, Ü.
2014-02-01
Context. In the fallback disk model for the persistent emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), the hard X-ray emission arises from bulk- and thermal Comptonization of bremsstrahlung photons, which are generated in the accretion column. The relatively low X-ray luminosity of these sources implies a moderate transverse optical depth to electron scattering, with photons executing a small number of shock crossings before escaping sideways. Aims: We explore the range of spectral shapes that can be obtained with this model and characterize the most important parameter dependencies. Methods: We use a Monte Carlo code to study the crisscrossing of photons in a radiative shock in an accretion column and compute the resulting spectrum. Results: As expected, high-energy power-law X-ray spectra are produced in radiative shocks with photon-number spectral index Γ ≳ 0.5. We find that the required transverse optical depth is 1 ≲ τ⊥ ≲ 7. Such spectra are observed in low-luminosity X-ray pulsars. Conclusions: We demonstrate here with a simple model that Compton upscattering in the radiative shock in the accretion column can produce hard X-ray spectra similar to those seen in the persistent and transient emission of AXPs and SGRs. In particular, one can obtain a high-energy power-law spectrum, with photon-number spectral-index Γ ~ 1 and a cutoff at 100 - 200 keV, with a transverse Thomson optical depth of ~5, which is shown to be typical in AXPs/SGRs.
NASA Astrophysics Data System (ADS)
Parmar, J. H.; Bhartiya, Sharad; Venkatesh, K. V.
2009-09-01
Adaptation to osmotic shock in Saccharomyces cerevisiae is brought about by the activation of two independent signaling pathways, Sho1 and Sln1, which in turn trigger the high osmolarity glycerol (HOG) pathway. The HOG pathway thereby activates the transcription of Gpd1p, an enzyme necessary to synthesize glycerol. The production of glycerol brings about a change in the intracellular osmolarity leading to adaptation. We present a detailed mechanistic model for the response of the yeast to hyperosmotic shock. The model integrates the two branches, Sho1 and Sln1, of the HOG pathway and also includes the mitogen-activated protein kinase cascade, gene regulation and metabolism. Model simulations are consistent with known experimental results for wild-type strain, and Ste11Δ and Ssk1Δ mutant strains subjected to osmotic stress. Simulation results predict that both the branches contribute to the overall wild-type response for moderate osmotic shock, while under severe osmotic shock, the cell responds mainly through the Sln1 branch. The analysis shows that the Sln1 branch helps the cell in preventing cross-talk to other signaling pathways by inhibiting ste11ste50 activation and also by increasing the phosphorylation of Ste50. We show that the negative feedbacks to the Sho1 branch must be faster than those to the Sln1 branch to simultaneously achieve pathway specificity and adaptation during hyperosmotic shock. Sensitivity analysis revealed that the presence of both branches imparts robust behavior to the cell under osmoadaptation to perturbations.
NASA Astrophysics Data System (ADS)
Caralapatti, Vinodh Krishna; Narayanswamy, Sivakumar
2017-02-01
Magnesium, as a biomaterial has the potential to replace conventional implant materials owing to its numerous advantages. However, high corrosion rate is a major obstacle that has to be addressed for its implementation as implants. This study aims to evaluate the feasibility and effects of High Repetition Laser Shock Peening (HRLSP) on biocompatibility and corrosion resistance of Mg samples and as well as to analyze the effect of operational parameters such as peening with overlap on corrosion rate. From the results obtained using hydrogen evolution and mass loss methods, it was found that corrosion rates of both 0% overlap and 66% overlap peened samples reduced by more than 50% compared to that of unpeened sample and sample peened with 66% overlap exhibited least corrosion. The biocompatibility of peened Mg samples was also enhanced as there was neither rapid pH variation nor large hydrogen bubble formation around samples.
Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa
NASA Astrophysics Data System (ADS)
Root, S.
2005-07-01
Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.
NASA Astrophysics Data System (ADS)
Su, R.; Li, L.; Wang, Y. D.; Nie, Z. H.; Ren, Y.; Zhou, X.; Wang, J.
2018-05-01
The distribution of residual lattice strain as a function of depth were carefully investigated by synchrotron-based high energy X-ray diffraction (HEXRD) in TC11 titanium alloy after laser shock peening (LSP). The results presented big compressive residual lattice strains at surface and subsurface, then tensile residual lattice strains in deeper region, and finally close to zero lattice strains in further deep interior with no plastic deformation thereafter. These evolutions in residual lattice strains were attributed to the balance of direct load effect from laser shock wave and the derivative restriction force effect from surrounding material. Significant intergranular stress was evidenced in the processed sample. The intergranular stress exhibited the largest value at surface, and rapidly decreased with depth increase. The magnitude of intergranular stress was proportional to the severity of the plastic deformation caused by LSP. Two shocks generated larger intergranular stress than one shock.
Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng
2017-04-01
Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.
Plasma Gradient Piston: a new approach to precision pulse shaping
NASA Astrophysics Data System (ADS)
Prisbrey, Shon T.
2011-10-01
We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.
Heal, David J; Goddard, Simon; Brammer, Richard J; Hutson, Peter H; Vickers, Steven P
2016-07-01
Compulsive and perseverative behaviour in binge-eating, female, Wistar rats was investigated in a novel food reward/punished responding conflict model. Rats were trained to perform the conditioned avoidance response task. When proficient, the paradigm was altered to a food-associated conflict test by placing a chocolate-filled jar (empty jar for controls) in one compartment of the shuttle box. Entry into the compartment with the jar triggered the conditioning stimulus after a variable interval, and foot-shock 10 seconds later if the rat did not leave. Residence in the 'safe' compartment with no jar did not initiate trials or foot-shocks. By frequently entering the chocolate-paired compartment, binge-eating rats completed their 10 trials more quickly than non-binge controls. Binge-eating rats spent a greater percentage of the session in the chocolate-paired compartment, received foot-shocks more frequently, and tolerated foot-shocks for longer periods; all consistent with compulsive and perseverative behaviour. The d-amphetamine prodrug, lisdexamfetamine, has recently received US approval for the treatment of moderate to severe binge-eating disorder in adults. Lisdexamfetamine (0.8 mg/kg po [d-amphetamine base]) decreased chocolate consumption by binge-eating rats by 55% and markedly reduced compulsive and perseverative responding in the model. These findings complement clinical results showing lisdexamfetamine reduced compulsiveness scores in subjects with binge-eating disorder. © The Author(s) 2016.
Two-Dimensional Imaging Velocimetry of Heterogeneous Flow and Brittle Failure in Diamond
NASA Astrophysics Data System (ADS)
Ali, S. J.; Smith, R.; Erskine, D.; Eggert, J.; Celliers, P. M.; Collins, G. W.; Jeanloz, R.
2014-12-01
Understanding the nature and dynamics of heterogeneous flow in diamond subjected to shock compression is important for many fields of research, from inertial confinement fusion to the study of carbon rich planets. Waves propagating through a shocked material can be significantly altered by the various deformation mechanisms present in shocked materials, including anisotropic sound speeds, phase transformations, plastic/inelastic flow and brittle failure. Quantifying the spatial and temporal effects of these deformation mechanisms has been limited by a lack of diagnostics capable of obtaining simultaneous micron resolution spatial measurements and nanosecond resolution time measurements. We have utilized the 2D Janus High Resolution Velocimeter at LLNL to study the time and space dependence of fracture in shock-compressed diamond above the Hugoniot elastic limit. Previous work on the OMEGA laser facility (Rochester) has shown that the free-surface reflectivity of μm-grained diamond samples drops linearly with increasing sample pressure, whereas under the same conditions the reflectivity of nm-grained samples remains unaffected. These disparate observations can be understood by way of better documenting fracture in high-strain compression of diamond. To this end, we have imaged the development and evolution of elastic-wave propagation, plastic-wave propagation and fracture networks in the three primary orientations of single-crystal diamond, as well as in microcrystalline and nanocrystalline diamond, and find that the deformation behavior depends sensitively on the orientation and crystallinity of the diamonds.
Kreutziger, Janett; Lederer, Wolfgang; Schmid, Stefan; Ulmer, Hanno; Wenzel, Volker; Nijsten, Maarten W; Werner, Daniel; Schlechtriemen, Thomas
2018-01-01
Deranged glucose metabolism after moderate to severe trauma with either high or low concentrations of blood glucose is associated with poorer outcome. Data on prehospital blood glucose concentrations and trauma are scarce. The primary aim was to describe the relationship between traumatic shock and prehospital blood glucose concentrations. The secondary aim was to determine the additional predictive value of prehospital blood glucose concentration for traumatic shock when compared with vital parameters alone. Retrospective analysis of the predefined, observational database of a nationwide Helicopter Emergency Medical Service (34 bases). Emergency trauma patients treated by Helicopter Emergency Medical Service between 2005 and 2013 were investigated. All adult trauma patients (≥18 years) with recorded blood glucose concentrations were enrolled. Primary outcome: upper and lower thresholds of blood glucose concentration more commonly associated with traumatic shock. Secondary outcome: additional predictive value of prehospital blood glucose concentrations when compared with vital parameters alone. Of 51 936 trauma patients, 20 177 were included. In total, 220 (1.1%) patients died on scene. Hypoglycaemia (blood glucose concentration 2.8 mmol l or less) was observed in 132 (0.7%) patients, hyperglycaemia (blood glucose concentration exceeding 15 mmol l) was observed in 265 patients (1.3%). Blood glucose concentrations more than 10 mmol l (n = 1308 (6.5%)) and 2.8 mmol l or less were more common in patients with traumatic shock (P < 0.0001). The Youden index for traumatic shock ((sensitivity + specificity) - 1) was highest when blood glucose concentration was 3.35 mmol l (P < 0.001) for patients with low blood glucose concentrations and 7.75 mmol l (P < 0.001) for those with high blood glucose concentrations. In logistic regression analysis of patients with spontaneous circulation on scene, prehospital blood glucose concentrations (together with common vital parameters: Glasgow Coma Scale, heart rate, blood pressure, breathing frequency) significantly improved the prediction of traumatic shock in comparison with prediction by common vital parameters alone (P < 0.0001). In adult trauma patients, low and high blood glucose concentrations were more common in patients with traumatic shock. Prehospital blood glucose concentration measurements in addition to common vital parameters may help identify patients at risk of traumatic shock.
Shock Compression of Simulated Adobe
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.
2015-06-01
A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us = 2.26up + 0.33) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement. The research was funded by DSTL through a WSTC contract.
Plane shock loading on mono- and nano-crystalline silicon carbide
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya
2018-03-01
The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data.
Social Skills Difficulty: Model of Culture Shock for International Graduate Students
ERIC Educational Resources Information Center
Chapdelaine, Raquel Faria; Alexitch, Louise R.
2004-01-01
This study expanded and tested Furnham and Bochner's (1982) model of culture shock, employing a sample of 156 male international students in a Canadian university. Path analysis was used to assess the effects of cultural differences, size of co-national group, family status, cross-cultural experience, and social interaction with hosts on culture…
Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant
NASA Astrophysics Data System (ADS)
Miller, P. J.; Lindfors, A. J.
1998-07-01
The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.
NASA Astrophysics Data System (ADS)
Jodar, B.; Loison, D.; Yokoyama, Y.; Lescoute, E.; Nivard, M.; Berthe, L.; Sangleboeuf, J.-C.
2018-02-01
Laser-shock experiments were performed on a ternary {Zr50{Cu}40{Al}10} bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy magnification of fracture surfaces revealed the presence of a peculiar feature known as cup-cone. Cups are found on sample fracture surface while cones are observed on spall. Two distinct regions can be observed on cups and cones: a smooth viscous-like region in the center and a flat one with large vein-pattern in the periphery. Energy dispersive spectroscopy measurements conducted on these features emphasized atomic distribution discrepancies both on the sample and spall. We propose a mechanism for the initiation and the growth of these features but also a process for atomic segregation during spallation. Cup and cones would originate from cracks arising from shear bands formation (softened paths). These shear bands result from a quadrupolar-shaped atomic disorder engendered around an initiation site by shock wave propagation. This disorder turns into a shear band when tensile front reaches spallation plane. During the separation process, temperature gain induced by shock waves and shear bands generation decreases material viscosity leading to higher atomic mobility. Once in a liquid-like form, atomic clusters migrate and segregate due to inertial effects originating from particle velocity variation (interaction of release waves). As a result, a high rate of copper is found in sample cups and high zirconium concentration is found on spall cones.
Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko
2006-04-01
To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.; Dolling, David S.
1992-01-01
A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.
Elastic-plastic deformation of molybdenum single crystals shocked along [100
Mandal, A.; Gupta, Y. M.
2017-01-24
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock
Wang, Hao; Guan, Yuxia; Karamercan, Mehmet Akif; Ye, Lan; Bhatti, Tricia; Becker, Lance B.; Baur, Joseph A.; Sims, Carrie A.
2015-01-01
Objective Hemorrhagic shock may contribute to acute kidney injury by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin-1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. Method Using a decompensated hemorrhagic shock model, male Long-Evans rats (n=6 per group) were sacrificed prior to hemorrhage (Sham), at severe shock, and following either lactated Ringer’s (LR) Resuscitation or LR+RSV Resuscitation (RSV: 30mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen (BUN) and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (CI, CII, and CIV) using high-resolution respirometry. Total mitochondria reactive oxygen species (ROS) were measured using fluorometry and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. qPCR was used quantify mRNA from PGC1-α, SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. Results RSV supplementation during resuscitation restored mitochondrial respiratory capacity, decreased mitochondrial ROS and lipid peroxidation. Compared to standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both SOD2 and catalase expression. Although RSV was associated with decreased lactate production, pH, BUN and serum creatinine values did not differ between resuscitation strategies. Conclusions Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock. PMID:25895148
Time-resolved light emission of a, c, and r-cut sapphires shock-compressed to 65 GPa
NASA Astrophysics Data System (ADS)
Liu, Q. C.; Zhou, X. M.
2018-04-01
To investigate light emission and dynamic deformation behaviors, sapphire (single crystal Al2O3) samples with three crystallographic orientations (a, c, and r-cut) were shock-compressed by the planar impact method, with final stress ranges from 47 to 65 GPa. Emission radiance and velocity versus time profiles were simultaneously measured with a fast pyrometer and a Doppler pin system in each experiment. Wave profile results show anisotropic elastic-plastic transitions, which confirm the literature observations. Under final shock stress of about 52 GPa, lower emission intensity is observed in the r-cut sample, in agreement with the previous report in the literature. When final shock stress increases to 57 GPa and 65 GPa, spectral radiance histories of the r-cut show two stages of distinct features. In the first stage, the emission intensity of r-cut is lower than those of the other two, which agrees with the previous report in the literature. In the second stage, spectral radiance of r-cut increases with time at much higher rate and it finally peaks over those of the a and c-cut. These observations (conversion of intensified emission in the r-cut) may indicate activation of a second slip system and formation of shear bands which are discussed with the resolved shear stress calculations for the slip systems in each of the three cuts under shock compression.
NASA Astrophysics Data System (ADS)
Kubo, Tomoaki; Kono, Mari; Imamura, Masahiro; Kato, Takumi; Uehara, Seiichiro; Kondo, Tadashi; Higo, Yuji; Tange, Yoshinori; Kikegawa, Takumi
2017-11-01
We conducted high-pressure experiments in plagioclase with different anorthite contents at 18-27 GPa and 25-1750 °C using both a laser-heated diamond anvil cell and a Kawai-type multi-anvil apparatus to clarify the formation conditions of the hollandite phase in shocked chondritic and Martian meteorites. Lingunite (NaAlSi3O8-rich hollandite) was found first to crystallize from amorphous oligoclase as a metastable phase before decomposing into the final stable state. This process might account for the origin of lingunite found along with maskelynite in shocked chondritic meteorites. Metastable lingunite appeared at ∼20-24 GPa and ∼1100-1300 °C in laboratory tests lasting tens of minutes; however, it might also form at the higher temperatures and shorter time periods of shock events. In contrast, the hollandite phase was not observed during any stage of crystallization when using albite or labradorite as starting materials. The formation process of (Ca,Na)-hollandite in the labradorite composition found in Martian shergottites remains unresolved. The orthoclase contents of the hollandite phase both in shocked meteorites (2.4-8.2 mol%) and our oligoclase sample (3.9 mol%) are relatively high compared to the albite and labradorite samples (0.6 and 1.9 mol%, respectively). This might critically affect the crystallization kinetics of hollandite phase.
A sealed capsule system for biological and liquid shock-recovery experiments.
Leighs, James A; Appleby-Thomas, Gareth J; Stennett, Chris; Hameed, Amer; Wilgeroth, James M; Hazell, Paul J
2012-11-01
This paper presents an experimental method designed to one-dimensionally shock load and subsequently recover liquid samples. Resultant loading profiles have been interrogated via hydrocode simulation as the nature of the target did not allow for direct application of the diagnostics typically employed in shock physics (e.g., manganin stress gauges or Heterodyne velocimeter (Het-V)). The target setup has been experimentally tested using aluminium flyer plates accelerated by a 50-mm bore single-stage gas-gun reaching projectile impact velocities of up to ~500 ms(-1) (corresponding to peak pressures of up to ca. 4 GPa being experienced by fluid samples). Recovered capsules survived well showing only minor signs of damage. Modelled gauge traces have been validated through the use of a (slightly modified) experiment in which a Het-V facing the rear of the inner capsule was employed. In these tests, good correlation between simulated and experimental traces was observed.
A sealed capsule system for biological and liquid shock-recovery experiments
NASA Astrophysics Data System (ADS)
Leighs, James A.; Appleby-Thomas, Gareth J.; Stennett, Chris; Hameed, Amer; Wilgeroth, James M.; Hazell, Paul J.
2012-11-01
This paper presents an experimental method designed to one-dimensionally shock load and subsequently recover liquid samples. Resultant loading profiles have been interrogated via hydrocode simulation as the nature of the target did not allow for direct application of the diagnostics typically employed in shock physics (e.g., manganin stress gauges or Heterodyne velocimeter (Het-V)). The target setup has been experimentally tested using aluminium flyer plates accelerated by a 50-mm bore single-stage gas-gun reaching projectile impact velocities of up to ˜500 ms-1 (corresponding to peak pressures of up to ca. 4 GPa being experienced by fluid samples). Recovered capsules survived well showing only minor signs of damage. Modelled gauge traces have been validated through the use of a (slightly modified) experiment in which a Het-V facing the rear of the inner capsule was employed. In these tests, good correlation between simulated and experimental traces was observed.
On the chemical composition of L-chondrites
NASA Technical Reports Server (NTRS)
Neal, C. W.; Dodd, R. T.; Jarosewich, E.; Lipschutz, M. E.
1980-01-01
Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites.
Metallization of aluminum hydride AlH3 at high multiple-shock pressures
NASA Astrophysics Data System (ADS)
Molodets, A. M.; Shakhray, D. V.; Khrapak, A. G.; Fortov, V. E.
2009-05-01
A study of electrophysical and thermodynamic properties of alane AlH3 under multishock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa has been measured. High pressures and temperatures were obtained with an explosive device, which accelerates the stainless impactor up to 3 km/s. A strong shock wave is generated on impact with a holder containing alane. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. This compression loads the alane sample by a multishock manner up to pressure 80-90 GPa, heats alane to the temperature of about 1500-2000 K, and lasts 1μs . The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30(Ωcm)-1 . In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500(Ωcm)-1 at 80-90 GPa. In this region, conductivity is interpreted in frames of the conception of the “dielectric catastrophe,” taking into consideration significant differences between the electronic states of isolated molecule AlH3 and condensed alane.
Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur
NASA Astrophysics Data System (ADS)
Jette, Francois-Xavier; Goroshin, Sam; Higgins, Andrew
2009-06-01
Equimolar mixtures of manganese powder and sulfur at different initial densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in SHS mixtures. This mixture composition was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. Two different sizes of Mn particles were used for these experiments, 1-5 μm and -325 mesh (44μm or less). The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation, and that mixtures containing the larger Mn particles were very difficult to initiate in the absence of shock interactions with the capsule walls.
Characteristics of coronal shock waves and solar type 2 radio bursts
NASA Technical Reports Server (NTRS)
Mann, G.; Classen, H.-T.
1995-01-01
In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.
Intracochlear pressure measurements during acoustic shock wave exposure.
Greene, Nathaniel T; Alhussaini, Mohamed A; Easter, James R; Argo, Theodore F; Walilko, Tim; Tollin, Daniel J
2018-05-19
Injuries to the peripheral auditory system are among the most common results of high intensity impulsive acoustic exposure. Prior studies of high intensity sound transmission by the ossicular chain have relied upon measurements in animal models, measurements at more moderate sound levels (i.e. < 130 dB SPL), and/or measured responses to steady-state noise. Here, we directly measure intracochlear pressure in human cadaveric temporal bones, with fiber optic pressure sensors placed in scala vestibuli (SV) and tympani (ST), during exposure to shock waves with peak positive pressures between ∼7 and 83 kPa. Eight full-cephalic human cadaver heads were exposed, face-on, to acoustic shock waves in a 45 cm diameter shock tube. Specimens were exposed to impulses with nominal peak overpressures of 7, 28, 55, & 83 kPa (171, 183, 189, & 192 dB pSPL), measured in the free field adjacent to the forehead. Specimens were prepared bilaterally by mastoidectomy and extended facial recess to expose the ossicular chain. Ear canal (EAC), middle ear, and intracochlear sound pressure levels were measured with fiber-optic pressure sensors. Surface-mounted sensors measured SPL and skull strain near the opening of each EAC and at the forehead. Measurements on the forehead showed incident peak pressures approximately twice that measured by adjacent free-field and EAC entrance sensors, as expected based on the sensor orientation (normal vs tangential to the shock wave propagation). At 7 kPa, EAC pressure showed gain, calculated from the frequency spectra, consistent with the ear canal resonance, and gain in the intracochlear pressures (normalized to the EAC pressure) were consistent with (though somewhat lower than) previously reported middle ear transfer functions. Responses to higher intensity impulses tended to show lower intracochlear gain relative to EAC, suggesting sound transmission efficiency along the ossicular chain is reduced at high intensities. Tympanic membrane (TM) rupture was observed following nearly every exposure 55 kPa or higher. Intracochlear pressures reveal lower middle-ear transfer function magnitudes (i.e. reduced gain relative to the ear canal) for high sound pressure levels, thus revealing lower than expected cochlear exposure based on extrapolation from cochlear pressures measured at more moderate sound levels. These results are consistent with lowered transmissivity of the ossicular chain at high intensities, and are consistent with our prior report measuring middle ear transfer functions in human cadaveric temporal bones with high intensity tone pips. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lopez Ortega, Alejandro
This thesis presents a numerical and analytical study of two problems of interest involving shock waves propagating through elastic-plastic media: the motion of converging (imploding) shocks and the Richtmyer-Meshkov (RM) instability. Since the stress conditions encountered in these cases normally produce large deformations in the materials, an Eulerian description, in which the spatial coordinates are fixed, is employed. This formulation enables a direct comparison of similarities and differences between the present study of phenomena driven by shock-loading in elastic-plastic solids, and in fluids, where they have been studied extensively. In the first application, Whitham's shock dynamics (WSD) theory is employed for obtaining an approximate description of the motion of an elastic-plastic material processed by a cylindrically/spherically converging shock. Comparison with numerical simulations of the full set of equations of motion reveal that WSD is an accurate tool for characterizing the evolution of converging shocks at all stages. The study of the Richtmyer-Meshkov flow (i.e., interaction between the interface separating two materials of different density and a shock wave incoming at an angle) in solids is performed by means of analytical models for purely elastic solids and numerical simulations when plasticity is included in the material model. To this effect, an updated version of a previously developed multi-material, level-set-based, Eulerian framework for solid mechanics is employed. The revised code includes the use of a multi-material HLLD Riemann problem for imposing material boundary conditions, and a new formulation of the equations of motion that makes use of the stretch tensor while avoiding the degeneracy of the stress tensor under rotation. Results reveal that the interface separating two elastic solids always behaves in a stable oscillatory or decaying oscillatory manner due to the existence of shear waves, which are able to transport the initial vorticity away from the interface. In the case of elastic-plastic materials, the interface behaves at first in an unstable manner similar to a fluid. Ejecta formation is appreciated under certain initial conditions while in other conditions, after an initial period of growth, the interface displays a quasi-stationary long-term behavior due to stress relaxation. The effect of secondary shock-interface interactions (re-shocks) in converging geometries is also studied. A turbulent mixing zone, similar to what is observed in gas--gas interfaces, is created, especially when materials with low strength driven by moderate to strong shocks are considered.
Katongo, C.; Koeberl, C.; Witzke, B.J.; Hammond, R.H.; Anderson, R.R.
2004-01-01
The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2, (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*,+Na2O -K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson), or 0.4 to 2.4 cm (for the estimated transient cavity radius). The trend agrees with the observed thicknesses of the basal unit of the Crow Creek Member, but the actually observed thicknesses are larger than the calculated ones, indicating that not all of the basal unit comprises impact ejecta. ?? Meteoritical Society, 2004.
Strengthening silicon carbide by quenching
NASA Technical Reports Server (NTRS)
Gruver, R. M.; Platts, D. R.; Kirchner, H. P.
1974-01-01
Quenching was used to form compressive surface layers in hot-pressed silicon carbide. The presence of the compressive stresses was verified by slotted rod tests. The slotted rod tip deflection was retained at temperatures to at least 1380 C, showing that the stresses are not relieved immediately at elevated temperatures. The flexural strength and impact resistance of specimens quenched from moderate temperatures (2000 C) were increased. Frequently, specimens quenched from higher temperatures were weakened by thermal shock damage.
NASA Technical Reports Server (NTRS)
Meek, T. T.
1990-01-01
The mechanical and thermal properties of lunar simulant material were investigated. An alternative method of examining thermal shock in microwave-sintered lunar samples was researched. A computer code was developed that models how the fracture toughness of a thermally shocked lunar simulant sample is related to the sample hardness as measured by a micro-hardness indentor apparatus. This technique enables much data to be gathered from a few samples. Several samples were sintered at different temperatures and for different times at the temperatures. The melting and recrystallization characteristics of a well-studied binary system were also investigated to see if the thermodynamic barrier for the nucleation of a crystalline phase may be affected by the presence of a microwave field. The system chosen was the albite (sodium alumino silicate) anorthite system (calcium alumino silicate). The results of these investigations are presented.
NASA Astrophysics Data System (ADS)
Howard, Danny Dwayne
Part I - Shock waves are focused in extracorporeal shock wave lithotripsy (ESWL) machines to strengths sufficient to fracture kidney stones. Substantial side effects-most of them acute-have resulted from this procedure, including injury to soft tissue. The focusing of shock waves through various layers of tissue is a complex process which stimulates many bio-mechano-chemical responses.This thesis presents results of an in vitro study of the initial mechanical stimulus. Planar nitrocellulose membranes of order 10 um thick were used as models of thin tissue structures. Two modes of failure were recorded: Failure due to cavitation collapsing on or near the membranes, and failure induced by altering the structure of shock waves. Tests were done in water at and around F2 to characterize the extent of cavitation damage, and was found to be confined within the focal region, 1.2 cm along the axis of focus.Scattering media were used to simulate the effects of acoustic nonuniformity of tissue and to alter the structure of focusing shock waves. 40 um diameter (average) hollow glass spheres were added to ethylene glycol, glycerine and castor oil to vary the properties of the scattering media. Multiple layer samples of various types of phantom tissue were tested in degassed castor oil to gauge the validity of the scattering media. The scattering media and tissue samples increased the rise time decreased strain rate in a similar fashion. Membranes were damaged by the decreased strain rate and accumulated effects of the altered structure: After about 20 or so shocks immersed in the scattering media and after about 100 shocks behind the tissue samples. The mode of failure was tearing with multiple tears in some cases from about .1 cm to about 3 cm depending of the number of shocks and membrane thickness.Part II - This work examines the exsolution of volatiles-carbon dioxide from water-in a cylindrical test cell under different pressure conditions. Water was supersaturated with carbon dioxide under various pressures (620 to 1062 kPa), and depressurized rapidly to investigate how carbon dioxide is undissolved, exsolution, and its effects on the surrounding environment. Cavities grow as a result of convective diffusion: They move before depleting carbon dioxide in a given region. The radius of a cavity in this environment grows at a faster rate [...] than that of a cavity at rest [...]. Bubble growth rates were inferred by measuring the bulk liquid using high speed motion pictures. Water in the test-cell is accelerated as a result of buoyancy induced by cavity growth. Cavities are elliptical in shape and grow until mutual interaction causes them to fragment. Accelerations range from 10 to 100 g were measured with velocities ranging from 7 to 13 m/s.
DSMC simulations of shock tube experiments for the dissociation rate of nitrogen
NASA Astrophysics Data System (ADS)
Bird, G. A.
2012-11-01
The DSMC method has been used to simulate the flow associated with several experiments that led to predictions of the dissociation rate in nitrogen. One involved optical interferometry to determine the density behind strong shock wave and the other involved the measurement of the shock tube end-wall pressure after the reflection of a similar shock wave. DSMC calculations for the un-reflected shock wave were made with the older TCE model that converts rate coefficients to reaction cross-sections, with the newer Q-K model that predicts the rates and with a set of reaction cross-sections for nitrogen dissociation from QCT calculations. A comparison of the resulting density profiles with the measured profile provides a test of the validity of the DSMC chemistry models. The DSMC reaction rates were sampled directly in the DSMC calculation, both far downstream where the flow is in equilibrium and in the non-equilibrium region immediately behind the shock. This permits a critical evaluation of data reduction procedures that were employed to deduce the dissociation rate from the measured quantities.
In situ measurement of plasma and shock wave properties inside laser-drilled metal holes
NASA Astrophysics Data System (ADS)
Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar
2008-10-01
High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.
Experimental shock deformation in zircon: a transmission electron microscopic study
NASA Astrophysics Data System (ADS)
Leroux, H.; Reimold, W. U.; Koeberl, C.; Hornemann, U.; Doukhan, J.-C.
1999-06-01
In recent years, apparently shock-induced and, thus, impact-characteristic microdeformations, in the form of planar microdeformation features and so-called strawberry (granular) texture, have been observed in zircons in rocks from confirmed impact structures and from the K/ T boundary. The nature of the planar microdeformations in this mineral is, however, still unknown, and critical information is needed regarding the shock pressure range in which these deformation effects are produced. We experimentally shock deformed two series of thin zircon (ZrSiO 4) target plates, cut perpendicular to the c-axis, at shock pressures of 20, 40, and 60 GPa. The recovered samples were characterized by optical and scanning electron microscopy. In addition, one sample series was studied by transmission electron microscopy (TEM). Microdeformation effects observed at 20 GPa include pervasive micro-cleavage and dislocation patterns. Plastic deformation is indicated by a high density of straight dislocations in glide configuration. The dominant glide systems are <100>{010}. Micro-cleavages, induced by shear stresses during the compression stage, occur mostly in the {100} planes. The large density of dislocations at crack tips shows that plastic deformation was initiated by the micro-cracking processs. At 40 GPa, the sample was partly transformed from the zircon (z) to a scheelite (CaWO 4)-type (s) structure. Planar deformation features (PDFs) containing an amorphous phase of zircon composition are present in the not yet transformed zircon relics. The phase with scheelite structure, initiated in the {100} planes of zircon, consists of thin (0.1 to several μm) bands that crosscut the zircon matrix. The phase transformation is displacive (martensitic) and can be related by {100} z // {112} s and [001] z // <110> s. The scheelite structure phase is densely twinned, with twins in the (112) plane. The 60-GPa sample consists completely of the scheelite structure phase. Crosscutting and displacing relationships between twins and PDFs demonstrate that PDFs are formed in the zircon structure, i.e., before the phase transformation to the scheelite structure occurred, most likely at the shock front. Crystallographic orientations of optically visible planar features in zircon, in comparison with orientations of planar defects at the TEM scale, suggest that the optically visible features are more likely planar microfractures than PDFs.
What Can We Learn from Hugoniot Temperature as a Function of Shock Velocity?
NASA Astrophysics Data System (ADS)
LI, M.; Jeanloz, R.
2015-12-01
Shock-wave experiments traditionally rely on impact techniques, whereby measured shock velocity (US) can be related to material velocity (up), determined from the impact velocity (= 2up for a symmetric impact), and resulting in the empirically observed linear US-up equation of state: US = c0 + s up. Modern experiments relying on laser-driven compression have the advantage of reaching higher pressures than laboratory impact experiments, but up is typically not determined; instead, Hugoniot temperature (TH) and shock velocity are more readily measured. Assuming a linear US-up equation of state and that the Grüneisen parameter has the volume dependence g(V) = g0 (V/V0), measurements of the Hugoniot temperature as a function of shock velocity provide constraints on the specific heat along the Hugoniot CVH(US) = V0 f(US)[c0 g0 TH - s US dTH/dUS]-1 where the Walsh-Christian (1955) function f(US) = - (US - c0)2 US/(V0 s c0) = TH dSH/dVH gives the entropy change along the Hugoniot (subscripts 0 and H indicate zero-pressure and Hugoniot states, respectively). In this sense, TH(US) measurements are similar to calorimetry experiments. If specific heat and Grüneisen parameter are determined independently (e.g., from wave-velocity measurements and experiments on porous samples), the TH(US) analog to the linear US-up equation of state is TH(US) = {T0 exp(g0 /s) - ò[V0 c0 f(x)/(s x CV)] exp[c0 g0 /(s x)] dx} exp[- c0 g0 /(s US)] where the integration is from x = c0 to x = US. In addition, experiments can be considered with: 1) different initial volume, as in a porous sample; 2) different initial internal energy, as in a sample heated at constant volume; and 3) different initial volume and internal energy, as in a sample initially heated at ambient pressure. From these four initial states, we get four different Hugoniot curves, and can also consider the effect of phase transition latent heat. Temperature as a function of shock velocity may thus be benefit the analysis of melting and other phase transitions with small volume change and finite latent heat.
Role of dorsal hippocampus κ opioid receptors in contextual aversive memory consolidation in rats.
Vanz, Felipe; Bicca, Maíra Assunção; Linartevichi, Vagner Fagnani; Giachero, Marcelo; Bertoglio, Leandro José; Monteiro de Lima, Thereza C
2018-06-01
The main κ opioid receptors (κORs) subtypes already described (κ 1 ORs and κ 2 ORs) are expressed in brain regions involved in aversive memory consolidation, including the dorsal hippocampus (DH). However, the role of DH κORs in consolidation of aversive memories with varied intensity and specificity is still uncertain. The present study aimed to investigate this question using pharmacological agents in rats subjected to a weak, moderate or strong contextual aversive conditioning (CAC) protocol. Antagonizing DH κORs with nor-binaltorphimine (nor-BNI), immediately after, but not 6 h later, a moderate CAC leads to intensified freezing behavior in the re-exposure to the paired context. Thus, indicating that DH κORs have an inhibitory role in the consolidation of an aversive memory. Increased DH κORs expression 1 h and 3 h after the moderate CAC was also observed. This up-regulation was absent in animals only exposed to the shock or to the context, indicating that this phenomenon requires a shock-context pairing to occur. Intra-DH nor-BNI infusion induced no changes following a weak CAC, but it was able to potentiate the expression of freezing behavior in novel and unpaired context after a strong CAC, indicating that DH κORs also modulate the consolidation of a more intense and generalized memory. Moreover, infusing the κ 2 ORs agonist GR 89696, but not the κ 1 ORs agonist U-69593, into the DH reduced the conditioned freezing expression. Nor-BNI pretreatment in a sub-effective dose prevented the κ 2 ORs agonist effects. Altogether, the present findings provide convergent evidence that κORs activation negatively modulates contextual aversive memory consolidation in rat dorsal hippocampus. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Luca, D.; Istrate, B.
2015-10-01
Aluminum alloys are used in the aerospace industry due to their good mechanical properties and their low density compared with the density of steels. Usually the parts made of aluminum alloys contribute to the structural frame of aircrafts and they must withstand static and variable mechanical loads and also mechanical loads applied in a very short time which determine different phenomenon's in the material behavior then static or fatigue loads. This paper analysis the resilience of a 2024 aluminum alloy subjected to shock loads and the way how a coating can improve its behavior. For improving the behavior two coatings were considered: Al2O3 with 99.5% purity and ZrO2/20%Y2O3. The coatings were deposited on the base material by plasma spraying. The samples with and without coating were subject to mechanical shock to determine the resilience of the materials and the cracks propagation was investigated using SEM analysis. To highlight the physical phenomenon's that appear in the samples during the mechanical shock, explicit finite element analysis were done using Ansys 14.5 software.
NASA Astrophysics Data System (ADS)
Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.
2017-12-01
Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core. Our results quantitatively describe the deviatoric stress conditions of rocks in shock, which are consistent with observations of shock deformation. Our integrated analysis provides further support for the dynamic collapse model of peak-ring formation, and places dynamic constraints on the conditions of peak-ring formation.
Shock-induced Plasticity and Brittle Cracks in Aluminum Nitride
NASA Astrophysics Data System (ADS)
Branicio, Paulo; Kalia, Rajiv
2005-03-01
Two hundred and nine million atom molecular-dynamics simulation of hypervelocity projectile impact in aluminum nitride reveals strong interplay between shock-induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics.
Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, Von H; Mcgrane, Shawn D; Moore, David S
2009-01-01
We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, samplemore » quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.« less
Molecular emission in chemically active protostellar outflows
NASA Astrophysics Data System (ADS)
Lefloch, B.
2011-12-01
Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.
Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading
NASA Astrophysics Data System (ADS)
Golubev, Vladimir
2015-06-01
Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.
NASA Astrophysics Data System (ADS)
Prasad, Karothu Durga; Trinath, Jamma; Biswas, Ansuman; Sekar, Kanagaraj; Balaji, Kithiganahalli N.; Guru Row, Tayur N.
2014-11-01
Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.
Ghezzi, Alfredo; Cady, Amanda M.; Najjar, Kristina; Hatch, Michael M.; Shah, Ruchita R.; Bhat, Amar; Hariri, Omar; Haroun, Kareem B.; Young, Melvin C.; Fife, Kathryn; Hooten, Jeff; Tran, Tuan; Goan, Daniel; Desai, Foram; Husain, Farhan; Godinez, Ryan M.; Sun, Jeffrey C.; Corpuz, Jonathan; Moran, Jacxelyn; Zhong, Allen C.; Chen, William Y.; Atkinson, Nigel S.
2012-01-01
Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects. PMID:22624024
NASA Technical Reports Server (NTRS)
Helms, V. T., III; Bradley, P. F.
1984-01-01
Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.
Billington, Serena; Engdahl, E.R.; Price, Stephanie
1981-01-01
On November 4 1977, a magnitude Ms 6.7 (mb 5.7) shallow-focus thrust earthquake occurred in the vicinity of the Adak seismographic network in the central Aleutian island arc. The earthquake and its aftershock sequence occurred in an area that had not experienced a similar sequence since at least 1964. About 13 1/2 months before the main shock, the rate of occurrence of very small magnitude earthquakes increased abruptly in the immediate vicinity of the impending main shock. To search for possible variations in the focal mechanism of small events preceding the main shock, a method was developed that objectively combines first-motion data to generate composite focal-mechanism information about events occurring within a small source region. The method could not be successfully applied to the whole study area, but the results show that starting about 10 1/2 months before the November 1977 earthquake, there was a change in the mechanism of small- to moderate-sized earthquakes in the immediate vicinity of the hypocenter and possibly in other parts of the eventual aftershock zone, but not in the surrounding regions.
Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; ...
2015-08-25
In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D( 3He,p) 4He and D(T,n) 4He occur, as the primary fusion products 3He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (~ 5–100 mg/cm 2), the secondary D- 3He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and appliedmore » to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions,and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 x and 0.33 x the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.« less
Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars
Johnson, J. R.; Horz, F.; Staid, M.I.
2003-01-01
Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.
Shocked Quartz Aggregates of the Cretaceous-Tertiary Boundary at Colorado, USA
NASA Astrophysics Data System (ADS)
Miura, Y.; Okamoto, M.; Iancu, O. G.
1993-07-01
Shock-metamorphosed quartz (i.e., shocked quartz) at the Cretaceous-Tertiary boundary (K/T) at Colorado [1,2] reveals the following mineralogical data by X-ray diffractometry and high-resolution electron micrograph with energy- dispersive spectrometry. 1. Shocked quartz is not normal (perfect crystalline) quartz mineral but various quartz aggregates that show relatively low X-ray intensity (i.e., imperfect crystalline) and shock lamellae with crystalline quartz and amorphous glass [3]. 2. Analytical electron micrographs indicate that crystalline quartz silica with spotty dislocation features is included in dendritic amorphous glasses of potassium (K) feldspar composition. Various compositions of glassy materials are found in shocked quartz aggregates as matrix or alternate shock lamellae, which is important to estimate the target rock of impact. The composition of glassy matrix is dendritic K-feldspar in the K/T boundary at Clear Creak North (CCN), Colorado, whereas that in the Barringer Crater is quartz-rich composition from the target rock of sandstone (or some mixture with iron meteorite), and that in artificial impact rock [3] is dendritic silica composition. It is found in this study that shocked quartz aggregates from the CCN K/T boundary samples are supplied from quartz and K-feldspar-bearing target rock at impact event (Table 1). Table 1, which appears here in the hard copy, shows the compositions, texture, and origin of shocked quartz aggregates. References: [1] Alvarez L. W. et al. (1980) Science, 208, 1095-1107. [2] Izett G. (1989) GSA Spec. Pap. 249, 1-194. [3] Miura Y. (1991) Shock Waves, 1, 35-41, Springer-Verlag.
Thermal shock resistance of ceramic matrix composites
NASA Technical Reports Server (NTRS)
Carper, D. M.; Nied, H. F.
1993-01-01
The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.
NASA Technical Reports Server (NTRS)
Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.;
2012-01-01
The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the diffusion of shock energy from a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind density profile, then X-rays may escape at earlier times than estimated for the wind profile case. Furthermore, if the CSM have a region in which the density profile is very steep, relative to a steady wind density profile, or the CSM is neutral, then the radio free-free absorption may be low enough, and radio emission may be detected.
Numerical Study of Interaction of a Vortical Density Inhomogeneity with Shock and Expansion Waves
NASA Technical Reports Server (NTRS)
Povitsky, A.; Ofengeim, D.
1998-01-01
We studied the interaction of a vortical density inhomogeneity (VDI) with shock and expansion waves. We call the VDI the region of concentrated vorticity (vortex) with a density different from that of ambiance. Non-parallel directions of the density gradient normal to the VDI surface and the pressure gradient across a shock wave results in an additional vorticity. The roll-up of the initial round VDI towards a non-symmetrical shape is studied numerically. Numerical modeling of this interaction is performed by a 2-D Euler code. The use of an adaptive unstructured numerical grid makes it possible to obtain high accuracy and capture regions of induced vorticity with a moderate overall number of mesh points. For the validation of the code, the computational results are compared with available experimental results and good agreement is obtained. The interaction of the VDI with a propagating shock wave is studied for a range of initial and induced circulations and obtained flow patterns are presented. The splitting of the VDI develops into the formation of a non-symmetrical vortex pair and not in a set of vortices. A method for the analytical computation of an overall induced circulation Gamma(sub 1) as a result of the interaction of a moving VDI with a number of waves is proposed. Simplified, approximated, expressions for Gamma(sub 1) are derived and their accuracy is discussed. The splitting of the VDI passing through the Prandtl-Meyer expansion wave is studied numerically. The obtained VDI patterns are compared to those for the interaction of the VDI with a propagating shock wave for the same values of initial and induced circulations. These patterns have similar shapes for corresponding time moments.
The 2012 July 23 Backside Eruption: An Extreme Energetic Particle Event?
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Yashiro, S.; Thakur, N.; Makela, P.; Xie, H.; Akiyama, S.
2016-01-01
The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr).The associated solar energetic particle (SEP) event had a greater than 10 MeV proton flux peaking at approximately 5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to giga-electron volt energies). The times of maximum and fluence spectra in the range 10100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed greater than (2000 km s(exp -1), the initial acceleration (approximately 1.70 km s(exp -2), and the shock-formation height (approximately 1.5 solar radii)were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; Li, Zhi-Yun; King, Patrick K.
2017-10-01
Thin, magnetically aligned striations of relatively moderate contrast with the background are commonly observed in both atomic and molecular clouds. They are also prominent in MHD simulations with turbulent converging shocks. The simulated striations develop within a dense, stagnated sheet in the midplane of the post-shock region where magnetically induced converging flows collide. We show analytically that the secondary flows are an inevitable consequence of the jump conditions of oblique MHD shocks. They produce the stagnated, sheet-like sub-layer through a secondary shock when, roughly speaking, the Alfvénic speed in the primary converging flows is supersonic, a condition that is relativelymore » easy to satisfy in interstellar clouds. The dense sub-layer is naturally threaded by a strong magnetic field that lies close to the plane of the sub-layer. The substantial magnetic field makes the sheet highly anisotropic, which is the key to the striation formation. Specifically, perturbations of the primary inflow that vary spatially perpendicular to the magnetic field can easily roll up the sheet around the field lines without bending them, creating corrugations that appear as magnetically aligned striations in column density maps. On the other hand, perturbations that vary spatially along the field lines curve the sub-layer and alter its orientation relative to the magnetic field locally, seeding special locations that become slanted overdense filaments and prestellar cores through enhanced mass accumulation along field lines. In our scenario, the dense sub-layer, which is unique to magnetized oblique shocks, is the birthplace for both magnetically aligned diffuse striations and massive star-forming structures.« less
THE 2012 JULY 23 BACKSIDE ERUPTION: AN EXTREME ENERGETIC PARTICLE EVENT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalswamy, N.; Yashiro, S.; Thakur, N.
The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr). The associated solar energetic particle (SEP) event had a >10 MeV proton flux peaking at ∼5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to gigaelectronvolt energies). The times of maximum and fluence spectra in the rangemore » 10–100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed (>2000 km s{sup −1}), the initial acceleration (∼1.70 km s{sup −2}), and the shock-formation height (∼1.5 solar radii) were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah
An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO{sub 2} ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positivemore » relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.« less
Are cosmological gas accretion streams multiphase and turbulent?
NASA Astrophysics Data System (ADS)
Cornuault, Nicolas; Lehnert, Matthew D.; Boulanger, François; Guillard, Pierre
2018-03-01
Simulations of cosmological filamentary accretion reveal flows ("streams") of warm gas, T 104 K, which bring gas into galaxies efficiently. We present a phenomenological scenario in which gas in such flows, if it is shocked as it enters the halo as we assume and depending on the post-shock temperature, stream radius, its relative overdensity, and other factors, becomes biphasic and turbulent. We consider a collimated stream of warm gas that flows into a halo from an overdense filament of the cosmic web. The post-shock streaming gas expands because it has a higher pressure than the ambient halo gas and fragments as it cools. The fragmented stream forms a two phase medium: a warm cloudy phase embedded in hot post-shock gas. We argue that the hot phase sustains the accretion shock. During fragmentation, a fraction of the initial kinetic energy of the infalling gas is converted into turbulence among and within the warm clouds. The thermodynamic evolution of the post-shock gas is largely determined by the relative timescales of several processes. These competing timescales characterize the cooling, expansion of the post-shock gas, amount of turbulence in the clouds, and dynamical time of the halo. We expect the gas to become multiphase when the gas cooling and dynamical times are of the same order of magnitude. In this framework, we show that this mainly occurs in the mass range, Mhalo 1011 to 1013 M⊙, where the bulk of stars have formed in galaxies. Because of the expansion of the stream and turbulence, gas accreting along cosmic web filaments may eventually lose coherence and mix with the ambient halo gas. Through both the phase separation and "disruption" of the stream, the accretion efficiency onto a galaxy in a halo dynamical time is lowered. Decollimating flows make the direct interaction between galaxy feedback and accretion streams more likely, thereby further reducing the overall accretion efficiency. As we discuss in this work, moderating the gas accretion efficiency through these mechanisms may help to alleviate a number of significant challenges in theoretical galaxy formation.
Xu, Jing-Yuan; Chen, Qi-Hong; Xie, Jian-Feng; Pan, Chun; Liu, Song-Qiao; Huang, Li-Wei; Yang, Cong-Shan; Liu, Ling; Huang, Ying-Zi; Guo, Feng-Mei; Yang, Yi; Qiu, Hai-Bo
2014-12-15
The aim of this study was to examine whether albumin reduced mortality when employed for the resuscitation of adult patients with severe sepsis and septic shock compared with crystalloid by meta-analysis. We searched for and gathered data from MEDLINE, Elsevier, Cochrane Central Register of Controlled Trials and Web of Science databases. Studies were eligible if they compared the effects of albumin versus crystalloid therapy on mortality in adult patients with severe sepsis and septic shock. Two reviewers extracted data independently. Disagreements were resolved by discussion with other two reviewers until a consensus was achieved. Data including mortality, sample size of the patients with severe sepsis, sample size of the patients with septic shock and resuscitation endpoints were extracted. Data were analyzed by the methods recommended by the Cochrane Collaboration Review Manager 4.2 software. A total of 5,534 records were identified through the initial search. Five studies compared albumin with crystalloid. In total, 3,658 severe sepsis and 2,180 septic shock patients were included in the meta-analysis. The heterogeneity was determined to be non-significant (P = 0.86, I(2) = 0%). Compared with crystalloid, a trend toward reduced 90-day mortality was observed in severe sepsis patients resuscitated with albumin (odds ratio (OR) 0.88; 95% CI, 0.76 to 1.01; P = 0.08). However, the use of albumin for resuscitation significantly decreased 90-day mortality in septic shock patients (OR 0.81; 95% CI, 0.67 to 0.97; P = 0.03). Compared with saline, the use of albumin for resuscitation slightly improved outcome in severe sepsis patients (OR 0.81; 95% CI, 0.64 to 1.08; P = 0.09). In this meta-analysis, a trend toward reduced 90-day mortality was observed in severe sepsis patients resuscitated with albumin compared with crystalloid and saline. Moreover, the 90-day mortality of patients with septic shock decreased significantly.
Bacterial survival following shock compression in the GigaPascal range
NASA Astrophysics Data System (ADS)
Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.
2017-09-01
The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for bacterial cell walls on the order of seconds in the time-dependent strain rate.
Testing and modeling of PBX-9591 shock initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Kim; Foley, Timothy; Novak, Alan
2010-01-01
This paper describes an ongoing effort to develop a detonation sensitivity test for PBX-9501 that is suitable for studying pristine and damaged HE. The approach involves testing and comparing the sensitivities of HE pressed to various densities and those of pre-damaged samples with similar porosities. The ultimate objectives are to understand the response of pre-damaged HE to shock impacts and to develop practical computational models for use in system analysis codes for HE safety studies. Computer simulation with the CTH shock physics code is used to aid the experimental design and analyze the test results. In the calculations, initiation andmore » growth or failure of detonation are modeled with the empirical HVRB model. The historical LANL SSGT and LSGT were reviewed and it was determined that a new, modified gap test be developed to satisfy the current requirements. In the new test, the donor/spacer/acceptor assembly is placed in a holder that is designed to work with fixtures for pre-damaging the acceptor sample. CTH simulations were made of the gap test with PBX-9501 samples pressed to three different densities. The calculated sensitivities were validated by test observations. The agreement between the computed and experimental critical gap thicknesses, ranging from 9 to 21 mm under various test conditions, is well within 1 mm. These results show that the numerical modeling is a valuable complement to the experimental efforts in studying and understanding shock initiation of PBX-9501.« less
Vanadium K Xanes Studies of EET79001 Impact-Melt Glasses Revisited
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Rao, M. N.; Nyquist, L. E.; Ross, D. K.
2016-01-01
Some impact-melt glasses in shergottites are rich in Martian atmospheric noble gases and sulfur suggesting a possible association with regolith-derived secondary mineral assemblages in the shocked samples. Previously, we studied two glasses, # 506 (Lith C in Lith A) and # 507 (Lith C in Lith B) from EET79001 [1,2] and suggested that sulfur initially existed as sulfate in the glass precursor materials and, on shock-melting of the precursors, the sulfate was reduced to sulfides in the shock glasses. To examine the validity of this hypothesis, we used V K microXANES techniques to measure the valence states of vanadium in the Lith C glasses from Lith A and Lith B in EET79001 [3] to complement and com-pare with previous analogous measurements on,78 glass (Lith C in Lith A) [4,5]. We reported the preliminary results in [3]. Vanadium is ideal for addressing the redox issue because it has multiple valence states and is a well-studied element. Vanadium in basalts exists mostly as V(sup 3+), V(sup 4+) and V(sup 5+) in terrestrial samples, mainly as V(sup 3+) with minor V(sup 2+) and minor V(sup 4+) in lunar samples and as roughly equal mixtures of V(sup 3+) and V(sup 4+) in Martian meteorites. In this report, we discuss the application of the V K XANES results to decipher the nature of shock reduction occurring in the silicate glasses during the impact process.
Response and representation of ductile damage under varying shock loading conditions in tantalum
Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; ...
2016-02-25
The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less
A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication
NASA Astrophysics Data System (ADS)
Li, Liang; Wang, Yu; Shao, Lang; Wu, Xue-Feng; Huang, Yong-Feng; Zhang, Bing; Ryde, Felix; Yu, Hoi-Fung
2018-02-01
The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here, we present a large comprehensive catalog of 70 GRBs with multiwavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 96% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43%) and in a constant-density medium (30%), (ii) early dust extinction (12%), (iii) transition from reverse-shock to forward-shock emission (5%), or (iv) an emergent SN emission (10%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB–SN bump, the flare, and early reverse-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index {β }o{CI}, electron spectral indices p CI, etc.) using color indices. Overall, we conclude that ∼90% of colors are constant in time and can be accounted for by the simplest external forward-shock model, while the varying color indices call for more detailed modeling.
Twinning in Zircon: Not a High-Pressure Phenomenon
NASA Astrophysics Data System (ADS)
Jones, G. A.; Moser, D.; Shieh, S. R.; Barker, I.
2017-12-01
Microtwins in zircon are commonly found in shocked terrestrial and extraterrestrial samples and are potentially important for shock history and crater reconstruction. Twinning is easily observed with both the optical microscope and variety of electron beam techniques. Twinning as a deformation mechanism is consistent with the high strain rates generated during impact. No constitutive relationships, or even general limits on the physical conditions required for twinning in zircon are known, however. Present speculation on the critical quantity for twin formation, i.e. 10s of GPa of shock pressure (Moser et al. 2011, Timms et al., 2012), has no basis in the underlying mechanisms of twin nucleation, which are related to the motion of dislocations. This erroneous value is due to conflation of twinning sensu stricto with a phase transformation to reidite. Reidite occurs as twin-like lamellae occupying the {112} planes which are thought to be a mirror plane for twinning. We review the crystallographic theory of twinning in zircon. We then evaulate several theories on the nucleation of twins along with their necessary stresses involved. Our aim is to show that shock microtwins in zircon can be a `low pressure' shock phenomenon. This 'low pressure' hypothesis is supported by natural samples. These zircons are from the lower crust nearly 80 km from the centre of the Vredefort impact structure—the most distal zircon shock microstructures yet found in the lithosphere. Twins are present in 10% of the zircon grains greater than 50 µm in diameter. As an extensive, 'low pressure' phenomenon, twins are an easily recognized and potentially widespread record of Earth's impact history.Moser, D.E., Cupelli, C. L., Barker, I., Flowers, R. M., Mowman, J. R., Wooden, J. and Hart, R. (2011) New zircon shock phenomena and their use for dating and […] analysis of the Vredefort dome, Canadian Journal of Earth Sciences 48(2), 117-139.Timms, N.E., Reddy, S. M., Healy, D., Nemchin, A. A., Grange, M. L., Pidgeon, R. T. and Hart, R. (2012) Resolution of impact-related microstructures in lunar zircon: A shock-deformation mechanism map, Meteoritics & Planetary Science 47(1), 120-141.
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Fat'yanov, O. V.; Su, C.; Ma, X. J.
2017-12-01
Shock temperature measurements in transparent samples provide key constraints on the phase transitions and thermodynamic properties of materials at high pressure and temperature. Such measurements are necessary, for example, to allow equation of state measurements taken along the Hugoniot to be translated to P-V-T space. We have recently completed a detailed study of the accuracy and reproducibility of calibration of our 6-channel fast pyrometer. We have also introduced improved analysis procedures of the time-dependent multi-wavelength radiance signal that avoid the need for a greybody assumption and therefore have better precision than earlier results. This has motivated (a) renewed study of the shock temperature of forsterite in the superheating, partial melting, and complete melting regimes, (b) pre-heated diopside-anorthite glass shock temperature experiments for comparison to pre-heated silicate liquid equation of state results, and (c) new soda-lime glass shock temperature experiments. Single-crystal synthetic forsterite samples were shocked along (100) to pressures between 120 and 210 GPa on the Caltech two-stage light gas gun. Uncertainties on most results are 50 K. Results above the onset of partial melting at 130 GPa are consistent with Lyzenga and Ahrens (1980) data and show a low P-T slope consistent with a partial melting interval. Complete melting may occur, given sufficient time, at about 210 GPa. The experiment at 120-130 GPa is anomalous, showing two-wave structure and time- and wavelength-dependent scattering suggesting a subsolidus phase transition behind the shock front. The amount of super-heating, if any, is far smaller than claimed by Holland and Ahrens (1997). Steady radiation profiles, high emissivity, and consistency from channel to channel provide high precision (±40 K) in diopside-anorthite liquid shocked from just above the glass transition to high pressure. Temperatures are colder than expected for a model with constant heat capacity, providing direct evidence that multicomponent silicate liquids show a major increase in heat capacity in the P-T range appropriate to terrestrial magma oceans (<150 GPa, <5000 K).
Vasan, Akhila; Ingham, Steven C; Ingham, Barbara H
2017-06-01
Thermal tolerance of pathogenic bacteria has been shown to increase after exposure to sublethal elevated temperatures, or heat shock. We evaluated the effect of heat shock at 48°C on thermal tolerance (D 55°C ) of cocktails of O157 and non-O157 Shiga toxigenic Escherichia coli (STEC) and Salmonella in lean ground beef with or without moisture-enhancing ingredients. Beef was moisture enhanced to 110% (w) with a 5% NaCl-2.5% sodium tripolyphosphate (w/w) brine. Meat, with or without added brine, was inoculated (∼10 8 CFU/g) and heat shocked at 48°C for 0, 5, or 30 min, followed by isothermal heating at 55°C. Inoculated control samples were unenhanced and were not subject to heat shock. From the linear portion of the log CFU per gram surviving cells over time plots, D 55°C -values (minutes) were calculated. D 55°C was 20.43, 28.78, and 21.15 min for O157, non-O157, and Salmonella controls, respectively. Overall, heat shock significantly increased D 55°C , regardless of pathogen (P < 0.05). After 30 min of heat shock, D 55°C increased 89 and 160% for O157 STEC, 32 and 49% for non-O157 STEC, and 29 and 57% for Salmonella, in unenhanced and enhanced samples, respectively, relative to the pathogen control. D 55°C for Salmonella was the same or significantly less than for O157 and non-O157 STEC, regardless of heat shock, and was significantly less than for O157 and non-O157 STEC in all trials with moisture-enhanced meat (P < 0.05). Moisture-enhancing ingredients significantly increased D 55°C , regardless of pathogen (P < 0.05). We suggest that thermal processes validated against Salmonella may not prove effective against STEC in all cases and that regulators of the beef industry should focus attention on STEC in nonintact moisture-enhanced beef products.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.
Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; ...
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystallinemore » graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less
Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C
2008-02-01
We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.
Laser-shocked energetic materials with metal additives: evaluation of detonation performance
NASA Astrophysics Data System (ADS)
Gottfried, Jennifer; Bukowski, Eric
A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun
A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1 2 3) and Cu (0 0 1) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and backmore » surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal.« less
NASA Astrophysics Data System (ADS)
Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.
2017-03-01
Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.
NASA Astrophysics Data System (ADS)
Xin, D. Y.; Komatsu, Keiji; Abe, Keita; Costa, Takashi; Ikeda, Yutaka; Nakamura, Atsushi; Ohshio, Shigeo; Saitoh, Hidetoshi
2017-03-01
Recently, a new deposition technique using a metal-ethylenediamine tetraacetic acid (EDTA) complex has been developed. In this study, the heat-shock properties of metal-oxide films synthesized from a metal-EDTA complex were investigated. Y2O3 films were synthesized on stainless-steel (SUS) substrate from EDTA•Y•H through the combustion of H2-O2 gas. A cyclic heat-shock test was conducted on the fabricated Y2O3 films through exposure to the H2-O2 flame. The existence of Y2O3 crystals was confirmed. Surface cracks or damages were not observed in the samples after the cyclic thermal test. Although the number of cross-sectional cracks, crack lengths, and cracks per unit area was increased by the heat shock, delaminations were not observed in the Y2O3 films. The results show that the prepared Y2O3 films have high thermal-shock resistance and are suitable for use as thermal barrier coatings.
Yield strength measurement of shock-loaded metal by flyer-impact perturbation method
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Shi, Zhan
2018-06-01
Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.
2016-01-01
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122
Plasma observations of the solar wind interaction with Mars
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Luhmann, J. G.; Russell, C. T.
1990-01-01
Measurements with the plasma analyzers on the Mars-2, 3 and 5 spacecraft show that Mars deflects a large fraction of the incoming solar wind flow to form a strong bow shock. The bow shock is about 1.41 Rm from the center of the planet at the subsolar point and about 2.40 Rm at the terminator. These distances are similar to those for Venus at times of moderate solar activity. The inferred effective obstacle altitude is about 400-700 km. An ion cushion has been found which is similar in its properties to the Venus magnetic barrier. The formation of this cushion appears to cause the deflection of the solar wind. Inside the cushion but well above the ionosphere is found a region where the ions are at the background, the electrons are cool and the magnetic pressure dominates. This region may resemble a planetary magnetosphere.
Index of Refraction of Shock Loaded Soda-Lime Glass
NASA Astrophysics Data System (ADS)
Alexander, C. S.
2009-12-01
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.
Index of Refraction of Shock Loaded Soda-Lime Glass
NASA Astrophysics Data System (ADS)
Alexander, Scott
2009-06-01
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to approximately 25 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. App. Physics, 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res., 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.
INDEX OF REFRACTION OF SHOCK LOADED SODA-LIME GLASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, C. S.
2009-12-28
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results bymore » Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.« less
PNS predictions for supersonic/hypersonic flows over finned missile configurations
NASA Technical Reports Server (NTRS)
Bhutta, Bilal A.; Lewis, Clark H.
1992-01-01
Finned missile design entails accurate and computationally fast numerical techniques for predicting viscous flows over complex lifting configurations at small to moderate angles of attack and over Mach 3 to 15; these flows are often characterized by strong embedded shocks, so that numerical algorithms are also required to capture embedded shocks. The recent real-gas Flux Vector Splitting technique is here extended to investigate the Mach 3 flow over a typical finned missile configuration with/without side fin deflections. Elliptic grid-generation techniques for Mach 15 flows are shown to be inadequate for Mach 3 flows over finned configurations and need to be modified. Fin-deflection studies indicate that even small amounts of missile fin deflection can substantially modify vehicle aerodynamics. This 3D parabolized Navier-Stokes scheme is also extended into an efficient embedded algorithm for studying small axially separated flow regions due to strong fin and control surface deflections.
NASA Astrophysics Data System (ADS)
Ousadou, F.; Dorbath, L.; Dorbath, C.; Bounif, M. A.; Benhallou, H.
2013-04-01
The October 27, 1985 Constantine earthquake of magnitude MS 5.9 (NEIC) although moderate is the strongest earthquake recorded in the eastern Tellian Atlas (northeast Algeria) since the beginning of instrumental seismology. The main shock locations given by different institutions are scattered and up to 10 km away northwest from the NE-SW 30 km long elongated aftershocks cloud localized by a dedicated temporary portable network. The focal mechanism indicates left-lateral strike-slip on an almost vertical fault with a small reverse component on the northwest dipping plane. This paper presents relocations of the main shock and aftershocks using TomoDD. One hundred thirty-eight individual focal mechanisms have been built allowing the determination of the stress tensor at different scales. A rupture model has been suggested, which explains the different observations of aftershock distribution and stress tensor rotation.
Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence
NASA Astrophysics Data System (ADS)
Borghi, A.; Aoudia, A.; Javed, F.; Barzaghi, R.
2016-05-01
Slow-slip events (SSEs) are common at subduction zone faults where large mega earthquakes occur. We report here that one of the best-recorded moderate size continental earthquake, the 2009 April 6 moment magnitude (Mw) 6.3 L'Aquila (Italy) earthquake, was preceded by a 5.9 Mw SSE that originated from the decollement beneath the reactivated normal faulting system. The SSE is identified from a rigorous analysis of continuous GPS stations and occurred on the 12 February and lasted for almost two weeks. It coincided with a burst in the foreshock activity with small repeating earthquakes migrating towards the main-shock hypocentre as well as with a change in the elastic properties of rocks in the fault region. The SSE has caused substantial stress loading at seismogenic depths where the magnitude 4.0 foreshock and Mw 6.3 main shock nucleated. This stress loading is also spatially correlated with the lateral extent of the aftershock sequence.
Probing the Merger in ACT-CL J0256.5+0006: Understanding Low-Power Radio Halos
NASA Astrophysics Data System (ADS)
Sarazin, Craig
2017-09-01
ACT-CL J0256.5+0006 (J0256) is a moderate redshift (z=0.363) merging cluster. We recently detected a cluster giant radio halo which is one of the weakest known. Based on our ACT SZ detection and a very short XMM observation, J0256 has the weakest SZ and possibly the lowest mass ever observed for a radio halo. Our proposed Chandra observation will give J0256's dynamical merger state and an accurate mass. This may be an early stage merger, which challenges the theory that halos are produced by turbulent re-acceleration after the passage of merger shocks. We will search for shocks and cold fronts, and derive the merger speed. We will learn if this weak radio halo is due to an early-stage merger, a late merger, or a low cluster mass, useful for future low frequency radio surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surikova, N., E-mail: surikova@ispms.tsc.ru; Panin, V., E-mail: paninve@ispms.tsc.ru; Vlasov, I.
2015-10-27
The influence of ultrasonic shock surface treatment (USST) on refine structure and mechanical characteristics of surface layers and deformation behaviour of volume samples of TiNi(Fe, Mo) shape memory effect alloy single crystals is studied using optical and transmission electron microscope, X-ray diffraction, nanoindentation, mechanical attrition testing and experiments on uniaxial tension.
NASA Astrophysics Data System (ADS)
Surikova, N.; Panin, V.; Vlasov, I.; Narkevich, N.; Surikov, N.; Tolmachev, A.
2015-10-01
The influence of ultrasonic shock surface treatment (USST) on refine structure and mechanical characteristics of surface layers and deformation behaviour of volume samples of TiNi(Fe, Mo) shape memory effect alloy single crystals is studied using optical and transmission electron microscope, X-ray diffraction, nanoindentation, mechanical attrition testing and experiments on uniaxial tension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Experimental validation of thermodynamic mixture rules at extreme pressures and densities
NASA Astrophysics Data System (ADS)
Bradley, P. A.; Loomis, E. N.; Merritt, E. C.; Guzik, J. A.; Denne, P. H.; Clark, T. T.
2018-01-01
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (˜1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. This paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ˜3 TPa (˜30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamics code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. The comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.
Experimental validation of thermodynamic mixture rules at extreme pressures and densities
Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine; ...
2018-01-19
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less
Report of the panel on theoretical aerodynamics. [for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Bobbitt, P. J.; Carter, J. E.
1977-01-01
Requirements for flow quality in the National Transonic Facility are explored. Viscous flow effects of concern to theoreticians are discussed. Experiments outlined for theory validation in the facility include validating high aspect ratio wing-body combination; low aspect ratio moderately swept wing; low aspect ratio highly swept wing; high lift systems on high aspect ration wings; Reynolds number scaling; dynamic shock- boundary layer interaction; and the effect of R and M on dynamic stall.
Polydatin Alleviates Small Intestine Injury during Hemorrhagic Shock as a SIRT1 Activator
Zeng, Zhenhua; Chen, Zhongqing; Xu, Siqi; Song, Rui; Yang, Hong; Zhao, Ke-seng
2015-01-01
Objective. To evaluate the role of SIRT1 in small intestine damage following severe hemorrhagic shock and to investigate whether polydatin (PD) can activate SIRT1 in shock treatment. Research Design and Methods. The severe hemorrhagic shock model was reproduced in Sprague Dawley rats. Main Outcome Measures. Two hours after drug administration, half of the rats were assessed for survival time evaluation and the remainder were used for small intestinal tissue sample collection. Results. Bleeding and swelling appeared in the small intestine with epithelial apoptosis and gut barrier disturbance during hemorrhagic shock. SIRT1 activity and PGC-1α protein expression of the small intestine were decreased, which led to an increase in acetylated SOD2 and decreases in the expression and activity of SOD2, resulting in severe oxidative stress. The decreased SIRT1 activity and expression were partially restored in the PD administration group, which showed reduced intestine injury and longer survival time. Notably, the effect of PD was abolished after the addition of Ex527, a selective inhibitor of SIRT1. Conclusions. The results collectively suggest a role for the SIRT1-PGC-1α-SOD2 axis in small intestine injury following severe hemorrhagic shock and that PD is an effective SIRT1 activator for the shock treatment. PMID:26301045
Shocks and Molecules in Protostellar Outflows
NASA Astrophysics Data System (ADS)
Arce, Héctor
2014-06-01
As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Takuya; Shibata, Kazunari; Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp
We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamicsmore » become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.« less
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Qiu, Jiong; Shibata, Kazunari
2017-10-01
We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.
Doino, M; Yokoyama, M; Sasaki, Y; Kondo, K; Yasuda, Y; Arakawa, S
2017-09-01
This study investigated the relationship between the concentration of anti-heat shock protein (HSP) 60 antibody in resting saliva and the severity of Behçet's disease (BD). Sixty-five patients diagnosed with BD at Tokyo Medical and Dental University Hospital were enrolled in this study. Based on clinical severity scores, patients were categorized as having mild, moderate, or severe BD. Periodontal status was evaluated with the Community Periodontal Index (CPI), and anti-HSP60 antibody concentrations in resting saliva were measured with an enzyme-linked immunosorbent assay. The mean antibody concentration in patients in the moderate group was significantly higher than concentrations in the mild and severe groups. No significant difference was found between the mild and severe groups. Gingival inflammation, identified with the CPI, was associated with a higher antibody concentration. The antibody concentration in patients who had stomatitis for more than 2 weeks was significantly higher than in those with stomatitis for less than 2 weeks. The antibody concentration in patients who had taken colchicine was significantly lower than that in subjects who had not. These results suggest that the concentration of anti-HSP60 antibody in resting saliva may be effective as a non-invasive indicator for the diagnosis (screening) and prognostication of BD.
Taghipoor, Kaveh; Keyvanshokooh, Saeed; Salati, Amir Parviz; Pasha-Zanoosi, Hossein; Babaheydari, Samad Bahrami
2016-08-01
The objective of the present study was to examine the antioxidant status of rainbow trout (Oncorhynchus mykiss) during the early stages of development (fertilized egg, eyed egg, alevin and fry) as an effect of triploidy induction. Eggs and milt were taken from eight females and six males. After insemination, the eggs were incubated at 10°C for 10min. Half of the fertilized eggs were then subjected to heat-shock for 10min submerged in a 28°C water bath to induce triploidy. The remainder were incubated normally and used as diploid controls. Three batches of eggs were randomly selected from each group (control and heat-shocked) and were incubated at 10-11°C under the same environmental conditions in hatchery troughs until the fry stage. Triplicate samples of fertilized eggs from each experimental group were randomly selected 1.5h post-fertilization and at the eyed egg stage of development (18 days post-fertilization, dpf). At 27 dpf, triplicate samples of alevins were chosen from each group. Based on ploidy determination experiment performed on both groups, nine diploid and nine triploid fry (76 dpf) were also selected. The triploidy induction success rate was 87.1%. Vitamin C was in lesser concentrations in fertilized eggs and eyed eggs of the heat-shock treatment group as compared with eggs of the diploid group. Alevins of the heat-shock treatment group had a lower superoxide dismutase (SOD) activity than alevins of the diploid group. Glutathione peroxidase (GPx) level was greater in fertilized eggs and alevins of the heat-shock treatment group as compared to diploids. Catalse (CAT) activity was greater in fertilized eggs, alevins and fry of the heat-shock treatment group than those of the diploid group. Malondialdehyde (MDA), as an index of lipid peroxidation, was in greater concentration in fertilized eggs of the group that was heat-shocked, but it was lesser in alevins and fry of the group in which the eggs were heat-shocked as compared to diploid counterparts. The results demonstrate that heat-shock treatment leads to changes in the values of antioxidant enzymes such as SOD, CAT and GPx, and low molecular weight free-radical scavengers such as vitamin C, as well as level of lipid peroxidation. Copyright © 2016 Elsevier B.V. All rights reserved.
Kobza, Richard; Duru, Firat; Erne, Paul
2008-07-01
Physicians who are caring for patients with implantable cardioverter-defibrillators (ICDs) are regularly confronted with questions concerning daily activities. This study evaluates the habits of ICD patients with respect to sports activities, stays at high-altitude, and driving patterns. A survey was performed in 387 patients with ICDs who were followed at two hospitals in Switzerland. The special-designed questionnaire addressed lifestyle practices concerning sports activity, high-altitude visits, and driving motor vehicles. Fifty-nine percent of ICD patients participated in some kind of sports activity; an ICD shock was experienced in 14% of these patients. Fifty-six percent of the patients reported a stay at high altitudes at least 2,000 m above the sea level; 11% of them stayed regularly above 2,500 m; 4% of these patients experienced an ICD shock during high altitude stay. Seventy-nine percent of the patients drove a motor vehicle; 2% of them experienced an ICD shock during driving, but none of them reported loss of consciousness or a traffic accident. It is accepted that ICD patients disqualify for competitive sports. However, the patients may be encouraged to continue leisure-time physical activities at low-to-moderate intensity. Staying at high altitudes and driving motor vehicles are very rarely associated with ICD shocks. Therefore, these activities that are likely to contribute to a better quality of life should not be discouraged in most ICD recipients in the absence of other medical reasons.
A Stochastic Simulator of a Blood Product Donation Environment with Demand Spikes and Supply Shocks
An, Ming-Wen; Reich, Nicholas G.; Crawford, Stephen O.; Brookmeyer, Ron; Louis, Thomas A.; Nelson, Kenrad E.
2011-01-01
The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an -week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during –. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts. PMID:21814550
Fu, Xinmiao; Shi, Xiaodong; Yan, Linxuan; Zhang, Hanlin; Chang, Zengyi
2013-01-01
Small heat shock proteins (sHSPs), as ubiquitous molecular chaperones found in all forms of life, are known to be able to protect cells against stresses and suppress the aggregation of a variety of model substrate proteins under in vitro conditions. Nevertheless, it is poorly understood what natural substrate proteins are protected by sHSPs in living cells. Here, by using a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we identified a total of 95 and 54 natural substrate proteins of IbpB (an sHSP from Escherichia coli) in living cells with and without heat shock, respectively. Functional profiling of these proteins (110 in total) suggests that IbpB, although binding to a wide range of cellular proteins, has a remarkable substrate preference for translation-related proteins (e.g. ribosomal proteins and amino-acyl tRNA synthetases) and moderate preference for metabolic enzymes. Furthermore, these two classes of proteins were found to be more prone to aggregation and/or inactivation in cells lacking IbpB under stress conditions (e.g. heat shock). Together, our in vivo data offer novel insights into the chaperone function of IbpB, or sHSPs in general, and suggest that the preferential protection on the protein synthesis machine and metabolic enzymes may dominantly contribute to the well known protective effect of sHSPs on cell survival against stresses. PMID:24045939
A stochastic simulator of a blood product donation environment with demand spikes and supply shocks.
An, Ming-Wen; Reich, Nicholas G; Crawford, Stephen O; Brookmeyer, Ron; Louis, Thomas A; Nelson, Kenrad E
2011-01-01
The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an 8-week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during 1996-2005. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts.
NASA Astrophysics Data System (ADS)
Vazza, F.; Brunetti, G.; Gheller, C.; Brunino, R.
2010-11-01
We present a sample of 20 massive galaxy clusters with total virial masses in the range of 6 × 10 14 M ⊙ ⩽ Mvir ⩽ 2 × 10 15 M ⊙, re-simulated with a customized version of the 1.5. ENZO code employing adaptive mesh refinement. This technique allowed us to obtain unprecedented high spatial resolution (≈25 kpc/h) up to the distance of ˜3 virial radii from the clusters center, and makes it possible to focus with the same level of detail on the physical properties of the innermost and of the outermost cluster regions, providing new clues on the role of shock waves and turbulent motions in the ICM, across a wide range of scales. In this paper, a first exploratory study of this data set is presented. We report on the thermal properties of galaxy clusters at z = 0. Integrated and morphological properties of gas density, gas temperature, gas entropy and baryon fraction distributions are discussed, and compared with existing outcomes both from the observational and from the numerical literature. Our cluster sample shows an overall good consistency with the results obtained adopting other numerical techniques (e.g. Smoothed Particles Hydrodynamics), yet it provides a more accurate representation of the accretion patterns far outside the cluster cores. We also reconstruct the properties of shock waves within the sample by means of a velocity-based approach, and we study Mach numbers and energy distributions for the various dynamical states in clusters, giving estimates for the injection of Cosmic Rays particles at shocks. The present sample is rather unique in the panorama of cosmological simulations of massive galaxy clusters, due to its dynamical range, statistics of objects and number of time outputs. For this reason, we deploy a public repository of the available data, accessible via web portal at http://data.cineca.it.
Phase transition and strength of vanadium under shock compression up to 88 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yuying, E-mail: yuyinyu@caep.cn; Tan, Ye; Dai, Chengda
A series of reverse-impact experiments were performed on vanadium at shock pressure ranging from 32 GPa to 88 GPa. Particle velocity profiles measured at sample/LiF window interface were used to estimate the sound velocities, shear modulus, and yield stress in shocked vanadium. A phase transition at ∼60.5 GPa that may be the body-centered cubic (BCC) to rhombohedral structure was identified by the discontinuity of the sound velocity against shock pressure. This transition pressure is consistent with the results from diamond anvil cell (DAC) experiments and first-principle calculations. However, present results show that the rhombohedral phase has higher strength and shear modulus than themore » BCC phase, which is contrast to the findings from DAC experiments and theoretical work.« less
Moderate deviations-based importance sampling for stochastic recursive equations
Dupuis, Paul; Johnson, Dane
2017-11-17
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Moderate deviations-based importance sampling for stochastic recursive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Paul; Johnson, Dane
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
NASA Astrophysics Data System (ADS)
Liu, Shenggang; Li, Jiabo; Li, Jun; Xue, Tao; Tao, Tianjiong; Ma, Heli; Wang, Xiang; Weng, Jidong; Li, Zeren
2018-04-01
A novel method based on signal superimposing has been presented to simultaneously measure the dynamic emissivity and the radiance of a shocked sample/window interface in the near-infrared wavelength. In this method, we have used three rectangle laser pulses to illuminate the sample/window interface via an integrating sphere and expect that the reflected laser pulses from the sample/window interface can be superimposed on its thermal radiation at the shocked steady state by time precision synchronization. In the two proving trials, the second laser pulse reflected from the Al/LiF interface has been successfully superimposed on its thermal radiation despite large flyer velocity uncertainty. The dynamic emissivity and the radiance at 1064 nm have been obtained simultaneously from the superimposing signals. The obtained interface temperatures are 1842 ± 82 K and 1666 ± 154 K, respectively, the corresponding release pressures are 65.7 GPa and 62.6 GPa, and the deduced Hugonoit temperatures are consistent with the theoretical calculations. In comparison, the fitting temperatures from the gray body model are 300-500 K higher than our experimental measurement results and the theoretical calculations.
A new shock wave assisted wood preservative injection system
NASA Astrophysics Data System (ADS)
Rao, K. S.; Ravikumar, G.; Lai, Ram; Jagadeesh, G.
Preservative treatment of many tropical hard woods and bamboo pose severe problem. A number of wood preservatives (chemical formulations toxic to wood decay/ destroying organisms like fungi, wood destroying termites, marine borers etc.) and wood impregnating techniques are currently in use for improving bio resistance of timber and bamboo and thereby enhancing service life for different end uses. How ever, some species of tropical hardwoods and many species of bamboo are difficult to treat, posing technical problems. In this paper we report preliminary results of treatment of bamboo with a novel Shockwave assisted injection treatment. Samples (30×2.5×1.00 cm) of an Indian species of bamboo Dendrocalamus strictus prepared from defect free culms of dry bamboo are placed in the driven section of a vertical shock tube filled with the 4Coppepr-Chrome-Arsenic(CCA) preservative solution.The bamboo samples are subjected to repeated shock wave loading (3 shots) with typical over pressures of 30 bar. The results from the study indicate excellent penetration and retention of CCA preservative in bamboo samples. The method itself is much faster compared to the conventional methods like pressure treatment or hot and cold process.
Petrology of the Crystalline Rocks Hosting the Santa Fe Impact Structure
NASA Technical Reports Server (NTRS)
Schrader, C. M.; Cohen, B. A.
2010-01-01
We collected samples from within the area of shatter cone occurrence and for approximately 8 kilometers (map distance) along the roadway. Our primary goal is to date the impact. Our secondary goal is to use the petrology and Ar systematics to provide further insight into size and scale of the impact. Our approach is to: Conduct a detailed petrology study to identify lithologies that share petrologic characteristics and tectonic histories but with differing degrees of shock. Obtain micro-cores of K-bearing minerals from multiple samples for Ar-40/Ar-39 analysis. Examine the Ar diffusion patterns for multiple minerals in multiple shocked and control samples. This will help us to better understand outcrop and regional scale relationships among rocks and their responses to the impact event.
Kim, Eun-Young; Yeo, Jung Hee; Park, Hyunjeong; Sin, Kyung Mi; Jones, Cheryl B
2018-02-01
Reality shock is a critical representation of the gap between nursing education and clinical practice and it is important to explore the level of reality shock among nurses. However, there is no relevant instrument to assess the level of reality shock in South Korea. The purpose of this is to determine the validity and reliability of the Korean version of the Environmental Reality Shock-Related Issues and Concerns instrument. A cross-sectional study design was used in this study. The data collection was conducted in selected 15 hospitals in South Korea. A convenience sample of 216 newly graduated nurses participated in the study. The Korean version of the Environmental Reality Shock-Related Issues and Concerns instrument was developed through the forward-backward translation technique, and revision based on feedback from expert groups. The internal consistency reliability was assessed using Cronbach's alpha, and the construct validity was determined via exploratory and confirmatory factor analysis. The Korean version of the Environmental Reality Shock-Related Issues and Concerns has reliable internal consistency (Cronbach's alpha=0.91). Exploratory factor analysis revealed five factors including job, relationships, expectations, private life, and performance, which explained 61.92% of variance. The factor loadings ranged from 0.451 to 0.832. The five-factor structure was validated by confirmatory factor analysis (RMR<0.05, CFI>0.9). It was concluded that the Korean version of the Environmental Reality Shock-Related Issues and Concerns instrument has satisfactory construct validity and reliability to measure the reality shock of newly graduated nurses in South Korea. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ultrafast Shock Compression Hugoniot Data of beta-CL-20 and TATB Thin Films
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Armstrong, Michael; Grivickas, Paulius; Tappan, Alexander; Kohl, Ian; Rodriguez, Mark; Knepper, Robert; Crowhurst, Jonathan; Stavrou, Elissaios; Bastea, Sorin
2017-06-01
The shock induced initiation threshold of two energetic materials, CL-20 and TATB are remarkably different; CL-20 is a relatively shock sensitive energetic material and TATB is considered an insensitive high explosive (IHE). Here we report ultrafast laser-based shockwave hydrodynamic data on the 100 ps timescale with 10 ps time resolution to further develop density dependent unreacted shock Hugoniot equations of state (UEOS) and to elucidate ultrafast timescale shock initiation processes for these two vastly different HEs. Thin film samples were made by vacuum thermal evaporation of the explosive on a deposited aluminum ablator layer. The deposited explosives were characterized by scanning electron microscopy, surface profilometry, and x-ray diffraction. Our preliminary UEOS results (up range of 1.3 - 1.8 km/s) from shock compressed beta-CL-20 agree reasonably well with extrapolated pseudo-velocities computed from epsilon-CL-20 isothermal diamond-anvil cell EOS measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporati.
A molecular dynamic investigation for shock induced phase transition of water
NASA Astrophysics Data System (ADS)
Mitra, Nilanjan; Neogi, Anupam
2015-06-01
Atomistic equilibrium molecular dynamics (EMD) was carried out to investigate shock induced phase transition of bulk liquid water. Multi-scale shock technique (MSST) was utilized to investigate low (US = 2 . 5km /s) to strong (US = 6 . 5km /s) intensity shock response on an extended flexible three point model up to 100 ns. The thermodynamic pathway of phase transition from liquid water to ice VII was investigated using temporal variation of thermodynamic state variables, power spectrum analyses of O-H bond vibration along with temporal evolution of pair correlation function between O-O, O-H and H-H atoms. Static structure factor along with pair-distribution function extended up to 20 Å was calculated and compared against the ideal ice VII to get information regarding long range ordering. Bragg reflection at different crystal planes were evaluated to investigate percentage of crystallinity of the shocked sample. Specific questions answered in this work involves: What is the exact time frame after the passage of shock at certain intensity in which nucleation of solid phase can be observed? Is it a complete or partial phase transition? Are external nucleators essential for this transformation? What is the percentage of crystallinity of the nucleated phase?
Opie, S.; Gautam, S.; Fortin, E.; ...
2016-05-26
While numerous continuum material strength and phase transformation models have been proposed to capture their complex dependences on intensive properties and deformation history, few experimental methods are available to validate these models particularly in the large pressure and strain rate regime typical of strong shock and ramp dynamic loading. In the experiments and simulations we present, a rippled shock is created by laser-ablation of a periodic surface perturbation on a metal target. The strength of the shock can be tuned to access phase transitions in metals such as iron or simply to study high-pressure strength in isomorphic materials such asmore » copper. Simulations, with models calibrated and validated to the experiments, show that the evolution of the amplitude of imprinted perturbations on the back surface by the rippled shock is strongly affected by strength and phase transformation kinetics. Increased strength has a smoothing effect on the perturbed shock front profile resulting in smaller perturbations on the free surface. Lastly, in iron, faster phase transformations kinetics had a similar effect as increased strength, leading to smoother pressure contours inside the samples and smaller amplitudes of free surface perturbations in our simulations.« less
Shock-induced deformation features in terrestrial peridot and lunar dunite
NASA Technical Reports Server (NTRS)
Snee, L. W.; Ahrens, T. J.
1975-01-01
Single crystals of terrestrial olivine were experimentally shock-loaded along the 010 line to peak pressures 280, 330, and 440 kbar, and the resulting deformation features were compared to those in olivine from lunar dunite 72415. Recovered fragments were examined to determine the orientation of the planar fractures. With increasing pressure the percentage of pinacoids and prisms decreases, whereas the percentage of bipyramids increases. The complexity of the distribution of bipyramids also increases with increasing pressure. Other shock-induced deformation features, including varying degrees of recrystallization, are found to depend on pressure, as observed by others. Lunar dunite 72415 was examined and found to contain olivine with well-developed shock-deformation features. The relative proportion of pinacoid, prism, and bipyramid planar fractures measured for olivine from 72415 indicates that this rock appears to have undergone shock pressure in the range 330-440 kbar. If this dunite was brought to the surface of the moon as a result of excavation of an Imbrium event-sized impact crater, the shock-pressure range experienced by the sample and the results of cratering calculations suggest that it could have originated no deeper than 50-150 km.
Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V
NASA Astrophysics Data System (ADS)
Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu
2018-02-01
Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.
Simulation of Ejecta Production and Mixing Process of Sn Sample under shock loading
NASA Astrophysics Data System (ADS)
Wang, Pei; Chen, Dawei; Sun, Haiquan; Ma, Dongjun
2017-06-01
Ejection may occur when a strong shock wave release at the free surface of metal material and the ejecta of high-speed particulate matter will be formed and further mixed with the surrounding gas. Ejecta production and its mixing process has been one of the most difficult problems in shock physics remain unresolved, and have many important engineering applications in the imploding compression science. The present paper will introduce a methodology for the theoretical modeling and numerical simulation of the complex ejection and mixing process. The ejecta production is decoupled with the particle mixing process, and the ejecta state can be achieved by the direct numerical simulation for the evolution of initial defect on the metal surface. Then the particle mixing process can be simulated and resolved by a two phase gas-particle model which uses the aforementioned ejecta state as the initial condition. A preliminary ejecta experiment of planar Sn metal Sample has validated the feasibility of the proposed methodology.
Blast and Shock Mitigation Through the Use of Advanced Materials
NASA Astrophysics Data System (ADS)
Bartyczak, Susan; Edgerton, Lauren; Mock, Willis
2017-06-01
The dynamic response to low amplitude blast waves of four viscoelastic materials has been investigated: Dragonshield BCTM and three polyurea formulations (P1000, P650, and a P250/1000 blend). A 40-mm-bore gas gun was used as a shock tube to generate planar blast waves, ranging from 1 to 2 bars, that impacted instrumented target assemblies mounted on the gas gun muzzle. Each target assembly consisted of a viscoelastic material sample sandwiched between two gauge assemblies for measuring wave velocity and input/output stresses. Each gauge assembly consisted of one polyvinylidene fluoride (PVDF) stress gauge sandwiched between two 3.25 inch diameter 6061-T6 aluminum discs. Impedance matching techniques were used on the stress measurements to calculate the stresses on the front and back of the samples. The shock velocity-particle velocity relationship, stress-particle velocity relationship, and blast attenuation for each material were determined. The experimental technique, analysis methodology, and results will be presented.
Shock induced damage in copper: A before and after, three-dimensional study
NASA Astrophysics Data System (ADS)
Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.
2016-04-01
We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.
Intense Terahertz Fields for Fast Energy Release
2016-11-01
could allow us to monitor shock propagation in the sample and observe any effects of THz irradiation . In order to optimize the system, we moved a...the response and access for the THz light needed to simultaneously irradiate the sample. Preliminary measurements of sample responses to each of the
3D Printed Shock Mitigating Structures
NASA Astrophysics Data System (ADS)
Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit
Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.
Pontefract, Alexandra; Osinski, Gordon R; Cockell, Charles S; Moore, Casey A; Moores, John E; Southam, Gordon
2014-06-01
The colonization of rocks by endolithic communities is an advantageous trait, especially in environments such as hot or cold deserts, where large temperature ranges, low water availability, and high-intensity ultraviolet radiation pose a significant challenge to survival and growth. On Mars, similar conditions (albeit more extreme) prevail. In these environments, meteorite impact structures could provide refuge for endolithic organisms. Though initially detrimental to biology, an impact event into a rocky body can favorably change the availability and habitability of a substrate for endolithic organisms, which are then able to (re)colonize microfractures and pore spaces created during the impact. Here, we show how shocked gneisses from the Haughton impact structure, Devon Island, Canada, offer significant refuge for endolithic communities. A total of 28 gneiss samples representing a range of shock states were analyzed, collected from in situ, stable field locations. For each sample, the top centimeter of rock was examined with confocal scanning laser microscopy, scanning electron microscopy, and bright-field microscopy to investigate the relationship of biomass with shock level, which was found to correlate generally with increased shock state and particularly with increased porosity. We found that gneisses, which experienced pressures between 35 and 60 GPa, provide the most ideal habitat for endolithic organisms.
NASA Astrophysics Data System (ADS)
Weck, Philippe F.; Cochrane, Kyle R.; Root, Seth; Lane, J. Matthew D.; Shulenburger, Luke; Carpenter, John H.; Sjostrom, Travis; Mattsson, Thomas R.; Vogler, Tracy J.
2018-03-01
The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ =2.5 to 20 g /cm3 . The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.
Shock Initiation of Secondary Explosives by MicroSlapper
NASA Astrophysics Data System (ADS)
Mendes, Ricardo; Campos, Jose; Plaksin, Igor; Ribeiro, Jose
2001-06-01
Using the well known Exploding Foil Initiator (EFI) also called slapper detonator the shock to Detonation Wave (DW) transition in a low dense secondary explosive like PETN and RDX is presented in this study. The EFI formed by a capacitor with capacity up to 0.2μF charged until 3kV was used to burst copper bridges with 0.3x0.3mm and 0.4x0.3mm with 5μm of thickness, and to accelerate Kapton flyer plates with 25μm of thickness until 5mm/μs. The process of Shock to Detonation Transition (SDT) in explosive samples with 5mm of diameter by 10mm of height was characterized by an optical method based on 64 optical fibbers ribbon (250mm of diameter each fibber) connected to a fast electronic streak camera. The obtained results, (x,t) diagrams, with 1ns resolution, show continuously the shock to detonation transition regime and allowed the evaluation of the detonation velocity and the detonation wave front curvature. In that regime DW propagation presents the oscillations in detonation velocity. The results also show the influence of the flyer plate velocity and the initial density of the explosive sample in the process of SDT and front oscillations.
NASA Astrophysics Data System (ADS)
Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza
2017-04-01
In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.
NASA Astrophysics Data System (ADS)
Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.
2017-11-01
The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.