The fate of moderately volatile elements during planetary formation in the inner Solar System
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Moynier, F.
2017-12-01
Moderately volatile element abundances are variable among inner Solar System bodies, with differing degrees of depletion compared to chondrites. These variations are a consequence of the processes of planetary formation. The conditions and the specific mechanisms of planetary accretion and differentiation can be investigated by analyzing the stable isotope compositions of terrestrial and extraterrestrial samples. The moderately volatile lithophile elements are particularly useful to distinguish between the effects of accretion and those of core formation. Recent work has shown isotope variations in inner Solar System bodies for the moderately volatile elements Zn and K. The purely lithophile nature of Rb (in contrast to Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to further study moderately volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. Terrestrial rocks define a narrow range in Rb isotope composition, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). Larger Rb isotope variations are observed in extraterrestrial materials. Carbonaceous chondrites display a trend toward lighter Rb isotope composition coupled with decreasing Rb/Sr, opposite to the effect expected if their volatile element variations were caused by evaporative loss of Rb. This relationship indicates that the volatile element abundance variations in carbonaceous chondrites are not due to evaporation or condensation, but rather are due to the mixing of chemically and isotopically distinct primordial reservoirs. In contrast, there is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. Significant heavy isotope enrichments (up to several per mil for 87Rb/85Rb) are found for volatile-depleted planetesimals, including eucrites. In addition, lunar rocks also display heavy Rb isotope enrichments compared to the BSE. The most likely cause of these variations is Rb isotope fractionation due to evaporation during accretion.
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey
2017-01-01
Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.
NASA Astrophysics Data System (ADS)
Kato, Chizu; Moynier, Frédéric
2017-12-01
The abundance of moderately volatile elements, such as Zn and Ga, show variable depletion relative to CI between the Earth and primitive meteorite (chondrites) parent bodies. Furthermore, the first solar system solids, the calcium-aluminum-rich inclusions (CAIs), are surprisingly rich in volatile element considering that they formed under high temperatures. Here, we report the Ga elemental and isotopic composition of a wide variety of chondrites along with five individual CAIs to understand the origin of the volatile elements and to further characterize the enrichment of the volatile elements in high temperature condensates. The δ71Ga (permil deviation of the 71Ga/69Ga ratio from the Ga IPGP standard) of carbonaceous chondrites decreases in the order of CI >CM >CO >CV and is inversely correlated with the Al/Ga ratio. This implies that the Ga budget of the carbonaceous chondrites parent bodies were inherited from a two component mixing of a volatile rich reservoir enriched in heavy isotope of Ga and a volatile poor reservoir enriched in light isotope of Ga. Calcium-aluminum-rich inclusions are enriched in Ga and Zn compared to the bulk meteorite and are both highly isotopically fractionated with δ71Ga down to -3.56‰ and δ66Zn down to -0.74‰. The large enrichment in the light isotopes of Ga and Zn in the CAIs implies that the moderately volatile elements were introduced in the CAIs during condensation in the solar nebula as opposed to secondary processing in the meteorite parent body and supports a change in gas composition in which CAIs were formed.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.;
2017-01-01
The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions, and any in-sights on the types of samples or experimental studies that will be needed to answer these questions.
NASA Astrophysics Data System (ADS)
Mahan, B. M.; Siebert, J.; Blanchard, I.; Badro, J.; Sossi, P.; Moynier, F.
2017-12-01
Volatile and moderately volatile elements display different volatilities and siderophilities, as well as varying sensitivity to thermodynamic controls (X, P, T, fO2) during metal-silicate differentiation. The experimental determination of the metal-silicate partitioning of these elements permits us to evaluate processes controlling the distribution of these elements in Earth. In this work, we have combined metal-silicate partitioning data and results for S, Sn, Zn and Cu, and input these characterizations into Earth formation models. Model parameters such as source material, timing of volatile delivery, fO2 path, and degree of impactor equilibration were varied to encompass an array of possible formation scenarios. These models were then assessed to discern plausible sets of conditions that can produce current observed element-to-element ratios (e.g. S/Zn) in the Earth's present-day mantle, while also satisfying current estimates on the S content of the core, at no more than 2 wt%. The results of our models indicate two modes of accretion that can maintain chondritic element-to-element ratios for the bulk Earth and can arrive at present-day mantle abundances of these elements. The first mode requires the late addition of Earth's entire inventory of these elements (assuming a CI-chondritic composition) and late-stage accretion that is marked by partial equilibration of large impactors. The second, possibly more intuitive mode, requires that Earth accreted - at least initially - from volatile poor material preferentially depleted in S relative to Sn, Zn, and Cu. From a chemical standpoint, this source material is most similar to type I chondrule rich (and S poor) materials (Hewins and Herzberg, 1996; Mahan et al., 2017; Amsellem et al., 2017), such as the metal-bearing carbonaceous chondrites.
NASA Astrophysics Data System (ADS)
Vollstaedt, Hauke; Mezger, Klaus; Leya, Ingo
2016-09-01
Solar nebula processes led to a depletion of volatile elements in different chondrite groups when compared to the bulk chemical composition of the solar system deduced from the Sun's photosphere. For moderately-volatile elements, this depletion primarily correlates with the element condensation temperature and is possibly caused by incomplete condensation from a hot solar nebula, evaporative loss from the precursor dust, and/or inherited from the interstellar medium. Element concentrations and interelement ratios of volatile elements do not provide a clear picture about responsible mechanisms. Here, the abundance and stable isotope composition of the moderately- to highly-volatile element Se are investigated in carbonaceous, ordinary, and enstatite chondrites to constrain the mechanism responsible for the depletion of volatile elements in planetary bodies of the inner solar system and to define a δ 82 / 78 Se value for the bulk solar system. The δ 82 / 78 Se of the studied chondrite falls are identical within their measurement uncertainties with a mean of - 0.20 ± 0.26 ‰ (2 s.d., n = 14, relative to NIST SRM 3149) despite Se abundance depletions of up to a factor of 2.5 with respect to the CI group. The absence of resolvable Se isotope fractionation rules out a kinetic Rayleigh-type incomplete condensation of Se from the hot solar nebula or partial kinetic evaporative loss on the precursor material and/or the parent bodies. The Se depletion, if acquired during partial condensation or evaporative loss, therefore must have occurred under near equilibrium conditions to prevent measurable isotope fractionation. Alternatively, the depletion and cooling of the nebula could have occurred simultaneously due to the continuous removal of gas and fine particles by the solar wind accompanied by the quantitative condensation of elements from the pre-depleted gas. In this scenario the condensation of elements does not require equilibrium conditions to avoid isotope fractionation. The results further suggest that the processes causing the high variability of Se concentrations and depletions in ordinary and enstatite chondrites did not involve any measurable isotope fractionation. Different degrees of element depletions and isotope fractionations of the moderately-volatile elements Zn, S, and Se in ordinary and enstatite chondrites indicate that their volatility is controlled by the thermal stabilities of their host phases and not by the condensation temperature under canonical nebular conditions.
Detra, D.E.; Cooley, Elmo F.
1988-01-01
A modification of the one-sixth order semi-quantitative emission spectrographic method for the analysis of 30 elements in geologic materials (Grimes and Marranzino 1968) improves the limits of determination of some volatile to moderately volatile elements. The modification uses a compound-pendulum-mounted filter to regulate the amount of emitted light passing into the spectrograph. One hundred percent transmission of emitted light is allowed during the initial 20 seconds of the burn, then continually reduced to 40 percent over the next 32 seconds using the pendulum-mounted filter, and followed by an additional 68 seconds of burn time. The reduction of light transmission during the latter part of the burn decreases spectral background and the line emission of less volatile elements commonly responsible for problem-causing interferences. The sensitivity of the method for some geochemically important trace elements commonly determined in mineral exploration (Ag, As, Au, Be, Bi, Cd, Cr, Cu, Pb, Sb, Sn, and Zn) is improved up to five-fold under ideal conditions without compromising precision or accuracy
Volatile Element Behavior During Melting and Vaporisation on Earth and Protoplanets.
NASA Astrophysics Data System (ADS)
Wood, B. J.; Norris, C. A.
2017-12-01
During accretion the Earth and many of the smaller bodies which were added to it, underwent periods of partial melting, vaporisation and re-condensation. This resulted in patterns of volatile element depletion relative to CI chondrite which are difficult to interpret. The behavior of moderately volatile elements (Pb, Cd, Zn,Cu, In,Tl etc) during these melting, vaporisation and condensation processes is usually approximated by the temperature of condensation from a gas of solar composition. Thus, Tl and In have low condensation temperatures and are regarded as the most volatile of this group. In order to test this volatility approximation we have studied the vaporisation behavior of 13 elements (Ag,Bi,Cd,Cr,Cu,Ga,Ge,In,Pb,Sb,Sn,Tl,Zn) from molten basalt at 1 atm pressure and oxygen fugacities between Ni-NiO and 2 log units below Fe-FeO. The relative volatilities of the elements turn out to be only weakly correlated with condensation temperature, indicating that the latter is a poor proxy for volatility on molten bodies. Cu, Zn and In for example all have similar volatility in the oxygen fugacity range of concern, despite the condensation temperature of Cu (1037K at 10-4bar) being 500K greater than that of In. The oxygen fugacity dependence of volatility indicates that the volatile species are, for all elements more reduced than the melt species. We addressed the differences between condensation temperature and relative volatility in 2 steps. Firstly we used metal-silicate partitioning experiments to estimate the activity coefficients of the trace element oxides in silicate melts. We then used available thermodynamic data to compute the vapor pressures of the stable species of these 13 elements over the silicate melt at oxygen fugacities ranging from Ni-NiO to about 6 log units below Fe-FeO, which approximates the solar gas. Thus we find that presence of Cl and S in the solar gas and the stable Cl and S species of In,Tl Ga Ge Cd and Sn are important contributing factors to volatility in the solar nebula. Our measured volatilities from silicate melt under reducing (S and Cl-absent) conditions are consistent with abundances in the silicate Earth, indicating that these moderately volatile elements were added to Earth in bodies which had undergone episodes of melting and vaporisation.
Distribution of 28 elements in size fractions of lunar mare and highlands soils
NASA Technical Reports Server (NTRS)
Boynton, W. V.; Wasson, J. T.
1977-01-01
Four volatile, six siderophile and 18 generally lithophile elements were determined in six sieve fractions of mare soil 15100 (moderately mature) and seven sieve fractions of highlands soil 66080 (highly mature). Previous work (Boynton et al., 1976) showed that the volatile elements in lunar soils were enriched in the finest size fraction relative to the coarsest factors by up to about 20. The present investigation tests Boynton's interpretation that the distribution pattern of the volatiles indicates the presence of two components: a volume-correlated component having volatile concentrations independent of grain size and a surface-correlated component with concentration increasing with decreasing grain size.
NASA Technical Reports Server (NTRS)
McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.
2017-01-01
Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.
Element Abundances in Meteorites and the Earth: Implication for the Accretion of Planetary Bodies
NASA Astrophysics Data System (ADS)
Mezger, K.; Vollstaedt, H.; Maltese, A.
2017-12-01
Essentially all known inner solar system materials show near chondritic relative abundances of refractory elements and depletion in volatile elements. To a first approximation volatile element depletion correlates with the respective condensation temperature (TC) of the elements. Possible mechanisms for this depletion are incomplete condensation and partial loss by evaporation caused by heating prior to or during the planetesimal accretion. The stable isotope compositions of almost all moderately volatile elements in different meteorite classes show only minor, or no evidence for a Rayleigh-type fractionation that could be attributed to partial condensation or evaporation. The different classes of meteorites also show that the degree of depletion in their parent bodies (i.e. mostly planetesimals) is quite variable, but nevertheless systematic. For primitive and least disturbed carbonaceous chondrites the element depletion pattern is a smooth function of TC. The accessible silicate Earth also shows this general depletion pattern, but in detail it is highly complex and requires differentiation processes that are not solely controlled by TC. If only highly lithophile elements are considered the depletion pattern of the silicate Earth reveals a step function that shows that moderately volatile lithophile elements have abundances that are ca. 0.1 times the chondritic value, irrespective of their TC. This element pattern observed for bulk silicate Earth can be modelled as a mixture of two distinct components: ca. 90% of a strongly reduced planetary body that is depleted in highly volatile elements and ca. 10% of a more volatile element rich and oxidized component. This mixture can account for the apparent Pb- paradox observed in melts derived from the silicate Earth and provides a time constraint for the mixing event, which is ca. 70 My after the beginning of the solar system. This event corresponds to the giant impact that also formed the Moon.
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Moynier, F.
2016-12-01
The Earth-Moon system has a variety of chemical and isotopic characteristics that provide clues to understanding the mechanism of lunar formation. One important observation is the depletion in moderately volatile elements in the Moon compared to the Earth. This volatile element depletion may be a signature of volatile loss during the Moon-forming Giant Impact. Stable isotopes are powerful tracers of such a process, since volatile loss via evaporation enriches the residue in heavy isotopes. However, early studies searching for the fingerprint of volatile loss failed to find any resolvable variations [1]. Recent work has now revealed heavy isotope enrichments in the Moon relative to the Earth for the moderately volatile elements Zn [2,3] and K [4]. The purely lithophile nature of Rb (in contrast to the chalcophile/lithophile nature of Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to study the origin of lunar volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. The Rb isotope compositions of terrestrial rocks define a narrow range, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). There is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. In particular, eucrites are significantly enriched in 87Rb (up to several per mil) relative to chondrites. Similarly, lunar basalts are enriched in 87Rb compared to terrestrial basalts, by 200 ppm for 87Rb/85Rb. These data are the first measurements of a resolvable difference in Rb isotope composition between the Earth and the Moon. The variations in Rb isotope composition between the Earth and the Moon are consistent with Rb isotope fractionation due to evaporation. References: [1] Humayun & Clayton GCA 1995. [2] Paniello et al. Nature 2012. [3] Kato et al. Nat. Comm. 2015. [4] Wang and Jacobsen Nature in press.
Volatile accretion history of the Earth.
Wood, B J; Halliday, A N; Rehkämper, M
2010-10-28
It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.
Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon
Day, James M. D.; Moynier, Frederic
2014-01-01
The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ (238U/204Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss. PMID:25114311
From Dust to Planets: The Tale Told by Moderately Volatile Element Depletion (MOVED)
NASA Technical Reports Server (NTRS)
Yin, Qing-Zhu
2004-01-01
The pronounced depletion of moderately volatile elements (MOVE, that condense or evaporate at temperatures in the range 1350-650K) relative to the average solar composition is a characteristic feature in most primitive chondrites and bulk terrestrial planets. It differs from the composition of the Sun and from the materials further away from the Sun (CI chondrites). None of the remaining planets or even meteorites shows an enrichment of volatile elements that would balance the depletion in the inner Solar System. Whether this depletion occurred in solar nebular stage or in planetary formation stage has been the subject of long lasting debate. The search for mysterite initiated in 1973 continues today in search of lost planets. Here I show that the MOVED patterns demonstrate a clear connection between the rocky materials of the inner solar system and the interstellar dust. The inheritance of interstellar materials by the solar system is not only documented by the presence of presolar grains, various isotopic anomalies, but also expressed in the chemical element distribution in the inner solar system.
Compositional evidence regarding the origins of rims on Semarkona chondrules
Grossman, J.N.; Wasson, J.T.
1987-01-01
The compositions of the interiors and abraded surfaces of 7 chondrules from Semarkona (LL3.0) were measured by neutron activation analysis. For nonvolatile elements, the lithophile and siderophile element abundance patterns in the surfaces are generally similar to those in the corresponding interiors. Siderophile and chalcophile concentrations are much higher in the surfaces, whereas lithophile concentrations are similar in both fractions. Most of the similarities in lithophile patterns and some of the similarities in siderophile patterns between surfaces and interiors may reflect incomplete separation of the fractions in the laboratory, but for 3 or 4 chondrules the siderophile resemblance is inherent, implying that the surface and interior metal formed from a single precursor assemblage. Metal and sulfide-rich chondrule rims probably formed when droplets of these phases that migrated to the chondrule surface during melting were reheated and incorporated into matrix-like material that had accreted onto the surface. The moderately-volatile to volatile elements K, As and Zn tend to be enriched in the surfaces compared with other elements of similar mineral affinity; both enrichments and depletions are observed for other moderately volatile elements. A small fraction of chondrules experienced fractional evaporation while they were molten. ?? 1987.
NASA Astrophysics Data System (ADS)
Mahan, Brandon; Moynier, Frédéric; Beck, Pierre; Pringle, Emily A.; Siebert, Julien
2018-01-01
Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).
Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.
Day, James M D; Moynier, Frederic
2014-09-13
The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ((238)U/(204)Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.; Bajt, Sasa; Sutton, Steve R.; Papike, J. J.
1993-01-01
The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five chondrule rims in the CO3 chondrite ALH A77307 (3.0) using the synchrotron x-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory were determined. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The high concentrations of the highly volatile elements Se and Ga and moderately volatile Zn (1.5 to 2 x CO) in rims show that matrix is the major reservoir of volatile elements in ALH A77307.
Meteoritic Constraints on Models of the Solar Nebula: The Abundances of Moderately Volatile Elements
NASA Technical Reports Server (NTRS)
Cassen, Patrick; Cuzzi, Jeff (Technical Monitor)
1994-01-01
The "moderately volatile" elements are those which condense (or evaporate) in the temperature range 650 - 1350 K, as a mix of material with solar abundances is cooled (or heated) tinder equilibrium conditions. Their relative abundances in chondritic meteorites are solar (or "cosmic", as defined by the composition of Cl meteorites) to within a factor of several, but vary within that range in a way that correlates remarkably well with condensation temperature, independent of chemical affinity. It has been argued that this correlation reflects a systematically selective process which favored the accretion of refractory material over volatile material from a cooling nebula. Wasson and Chou (Meteoritics 9, 69-94, 1974, and Wasson and co-authors in subsequent papers) suggested that condensation and settling of solids contemporaneously with the cooling and removal of nebular gas could produce the observed abundance patterns, but a quantitative model has been lacking. We show that the abundance patterns of the moderately volatile elements in chondritic meteorites can be produced, in some degree of quantitative detail, by models of the solar nebula that are designed to conform to observations of T Tauri stars and the global conservation laws. For example, even if the local surface density of the nebula is not decreasing, condensation and accretion of solids from radially inflowing gas in a cooling nebula can result in depletions of volatiles, relative to refractories, like those observed, The details of the calculated abundance patterns depend on (but are not especially sensitive to) model parameters, and can exhibit the variations that distinguish the meteorite classes. Thus it appears that nebula characteristics such as cooling rates, radial flow velocities, and particle accumulation rates can be quantitatively constrained by demanding that they conform to meteoritic data; and the models, in turn, can produce testable hypotheses regarding the time and location of the formation of the chondrite parent bodies and the planets.
NASA Technical Reports Server (NTRS)
Righter, K.; Shirai, N.; Irving, A.J.
2009-01-01
Angrites are an enigmatic group of achondrites, that constitute the largest group of basalts not affiliated with the Moon, Mars or Vesta (HEDs). Chemically, angrites are exceptionally refractory element- enriched (e.g., Al, Ca) and volatile element-depleted (e.g., Na and K) achondrites. Highly volatile siderophile and chalcophile elements (Zn, Ge and Se) may be less depleted than alkalis and Ga taken to imply a fractionation of plagiophile elements. Core formation on the angrite parent body (APB) is not well understood due to the dearth of moderately siderophile element (Ga, Ge, Mo, Sb, W) data for angrites, with the exception of Ni and Co [2]. In particular, there are no data for Mo abundances of angrites, while Sb and W abundances are reported for only 3 angrites, and have not always been determined on the same sample. The recent increase in angrite numbers (13) has greatly increased our knowledge of the compositional diversity of the angrite parent body (APB). In this study, we report new Co, Ni, Ga, Mo, Sb and W abundances for angrites by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) in order to place constraints on core formation of the APB.
2015-04-16
During the first year of NASA MESSENGER orbital mission, the spacecraft GRS instrument measured the elemental composition of Mercury surface materials. mong the most important discoveries from the GRS was the observation of higher abundances of the moderately volatile elements potassium, sodium, and chlorine than expected from previous scientific models and theories. Particularly high concentrations of these elements were observed at high northern latitudes, as illustrated in this potassium abundance map, which provides a view of the surface centered at 60° N latitude and 120° E longitude. This map was the first elemental map ever made of Mercury's surface and is to-date the only map to report absolute elemental concentrations, in comparison to element ratios. Prior to MESSENGER's arrival at Mercury, scientists expected that the planet would be depleted in moderately volatile elements, as is the case for our Moon. The unexpectedly high abundances observed with the GRS have forced a reevaluation of our understanding of the formation and evolution of Mercury. In addition, the K map provided the first evidence for distinct geochemical terranes on Mercury, as the high-potassium region was later found to also be distinct in its low Mg/Si, Ca/Si, S/Si, and high Na/Si and Cl/Si abundances. Instrument: Gamma-Ray Spectrometer (GRS) http://photojournal.jpl.nasa.gov/catalog/PIA19414
The Origin of Organic Matter in the Solar System: Evidence from Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.; Jacobsen, C.; Wirick, S.
2001-01-01
The origin of the organic matter in interplanetary materials has not been established. A variety of mechanisms have been proposed, with two extreme cases being a Fisher-Tropsch type process operating in the gas phase of the solar nebula or a Miller-Urey type process, which requires interaction with an aqueous fluid, presumably occurring on an asteroid. In the Fisher-Tropsch case, we might expect similar organic matter in hydrated and anhydrous interplanetary materials. However, aqueous alteration is required in the case of the Miller-Urey process, and we would expect to see organic matter preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. The types and abundance of organic matter in meteorites have been used as an indicator of the origin of organic matter in the Solar System. Indigenous complex organic matter, including amino acids, has been found in hydrated carbonaceous chondrite meteorites, such as Murchison. Much lower amounts of complex organic matter, possibly only terrestrial contamination, have been found in anhydrous carbonaceous chondrite meteorites, such as Allende, that contain most of their carbon in elemental form. These results seem to favor production of the bulk of the organic matter in the Solar System by aqueous processing on parent bodies such as asteroids, a Miller-Urey process. However, the hydrated carbonaceous chondrite meteorites have approximately solar abundances of the moderately volatile elements, while all anhydrous carbonaceous chondrite meteorites have significantly lower contents of these moderately volatile elements. Two mechanisms, incomplete condensation or evaporation, both of which involve processing at approx. 1200 C, have been suggested to explain the lower content of the moderately volatile elements in all anhydrous meteorites. Additional information is contained in the original extended abstract.
Sources of volatiles in basalts from the Galapagos Archipelago: deep and shallow evidence
NASA Astrophysics Data System (ADS)
Peterson, M. E.; Saal, A. E.; Hauri, E. H.; Werner, R.; Hauff, S. F.; Kurz, M. D.; Geist, D.; Harpp, K. S.
2010-12-01
The study of volatiles (H2O, CO2, F, S, and Cl) is important because volatiles assert a strong influence on mantle melting and magma crystallization, as well as on the viscosity and rheology of the mantle. Despite this importance, there have been a minimal number of volatile studies done on magmas from the four main mantle sources that define the end member compositions of the Galapagos lavas. For this reason, we here present new volatile concentrations of 89 submarine glass chips from dredges collected across the archipelago during the SONNE SO158, PLUM02, AHA-NEMO, and DRIFT04 cruises. All samples, with the exception of six, were collected at depths greater than 1000m. Major elements (E-probe), and volatile and trace elements (SIMS), are analyzed on the same glass chip, using 4 chips per sample, to better represent natural and analytical variation. Trace element contents reveal three main compositional groups: an enriched group typical of OIB, a group with intermediate compositions, and a group with a depleted trace element composition similar to MORB. The absolute ranges of volatile contents for all three compositional groups are .098-1.15wt% for H2O, 10.7-193.7 ppm for CO2, 61.4-806.5 ppm for F, 715.8-1599.2 ppm for S and 3.8-493.3 for Cl. The effect of degassing, sulfide saturation and assimilation of hydrothermally altered material must be understood before using the volatile content of submarine glasses to establish the primary volatile concentration of basalts and their mantle sources. CO2 has a low solubility in basaltic melts causing it to extensively degas. Based on the CO2/Nb ratio, we estimate the extent of degassing for the Galapagos lavas to range from approximately undegassed to 90% degassed. We demonstrate that 98% of the samples are sulfur undersaturated. Therefore, sulfur will behave as a moderately incompatible element during magmatic processes. Finally, we evaluate the effect of assimilation of hydrothermally altered material on the volatile content of the lavas. This process is evident when volatile/refractory element ratios are compared to the trace elements indicative of interaction between melt and the oceanic lithosphere such as a positive Sr anomaly (Sr*) in a primitive mantle normalized diagram. This is indicative of the interaction of basaltic melts with plagioclase cumulates. For the Galapagos depleted submarine glasses, we find a positive correlation between Sr* and all volatile/refractory element ratios suggesting significant volatile input from melt-lithosphere interaction. These samples, due to their low trace element concentrations, readily show the alteration signature, thus making the establishment of their primitive volatile content difficult. As a result, we will present the primary volatile concentrations for the trace element intermediate and enriched groups after careful consideration for degassing, sulfide saturation, and assimilation of hydrothermally altered material.
Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth
NASA Astrophysics Data System (ADS)
Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric
2018-03-01
The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post nebular volatilization.
Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R
2011-09-30
The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.
ACFER 182/207/214 A Metal-rich, Volatile-poor Chondritic Meteorite, Similar to ALH85085
NASA Astrophysics Data System (ADS)
Palme, H.; Spettel, B.
1992-07-01
The unique Antarctic meteorite ALH85085 was the first chondritic meteorite to contain a significant excess of metallic Fe and associated siderophile elements (e.g., Grossman et al. 1988, Wasson and Kallemeyn 1990). Recently three Sahara meteorites, Acfer 182/207/214, apparently belonging to the same fall, were shown to be chemically and mineralogically very similar to ALHA85085, although minor textural differences appear to exclude a common origin with ALH85085. A mineralogical description and chemical composition of Acfer182/207/214 (henceforth ACFER182) are given in Bischoff et al. (1992). These authors suggested designating ALH85085 and ACFER182 as HH-chondrites reflecting high total Fe and high metal. The Fe/Mg-ratio of ACFER182 is 1.7 times that of CI-chondrites. All metals more refractory than Fe have similar enrichment factors, i.e., non-volatile metals occur in chondritic proportions, except for a slightly lower W enrichment. Metals more volatile than Fe are strongly depleted, with the depletion sequence closely following decreasing condensation temperatures. CI-normalized abundances are: Fe(1.92), Au(1.33), As(1.04), Cu(0.62), Ga(0.38), and the chalcophile Se(0.17). Lithophiles, more refractory than Mg, but including Mg and Cr, also occur in CI-abundance ratios (e.g., Sc/Mg in ACFER182 is 1.05xCI), although their absolute abundances are lower than those of metals. More volatile lithophile elements (Mn, Zn, etc.) decrease in abundance with decreasing condensation temperatures, just as the metals. The parallel (metal and silicate) decrease in moderately volatile element abundances with condensation temperatures suggests a similar nebular history for metal and silicate and is readily understood in a model where nebular gas is continually removed during condensation (Wasson and Chou 1974). Actual mixing of silicate and metal, i.e., agglomeration of silicate and metal grains in non-chondritic proportions (with 70% metal excess) could have occurred at relatively low temperatures, after the chondrule-forming process had transformed silicate grains into chondrules and fine metal grains into coarser metal. Partial loss of volatiles during chondrule formation or reheating of a metal-silicate assemblage with high volatile element abundances are very unlikely to produce the observed depletion sequence as argued by Grossman et al. (1988) for ALH85085. In addition, experiments on artificially heated meteorites produce losses of volatiles that are strongly dependent on fO(sub)2 and are incompatible with the patterns observed in ACFER182 (Wulf and Palme 1991). For example, the observed depletion of Mn in Acfer182 is 0.35 (i.e., 65 % are not condensed). However, Mn loss was never observed in the heating experiments, while large losses of Ga, Se, and Zn were found at temperatures up to 1300 degrees C. At temperatures required for Mn-volatilisation most other moderately volatiles would be quantitatively removed. However, the delicate pattern of moderate volatiles excludes ACFER182 as being a simple mixture of volatile-rich and volatile-poor material. Chemically, ACFER182 and ALHA85085 are related to CR-chondrites. These meteorites follow a trend of increasingly lower contents of volatile elements (e.g., Se, Zn) with decreasing contents of refractory element contents (e.g., Sc), opposite to the major trend in carbonaceous chondrites (from CI to CV). The ACFER182 and ALH85085 meteorites with their low Zn and Se contents and their low Sc abundances appear to form an endmember of this trend. Additional similarities with CR-meteorites in texture, mineralogy, and O, C, and N isotopic compositions (Bischoff et al. 1992; Prinz and Weisberg 1992 and references therein) may indicate that these meteorites are not as unique as originally thought. References: Bischoff A., Palme H., Schultz L., Weber D., Weber H.W. and Spettel B. (submitted to Geochim. Cosmochim. Acta 1992). Grossman J.N., Rubin A.E., MacPherson G.J. (1988) Earth Planet. Sci. Lett. 91, 33-54. Prinz M. and Weisberg M.K. (1992) Lunar. Planet. Sci. (abstract) 23, 1109. Wasson J.T. and Chou C.L. (1974) Meteoritics 9, 69-84. Wasson J.T. and Kallemeyn G.W. (1990) Earth Planet. Sci. Lett. 101, 148-161. Wulf A.-V. and Palme H.(1991) Lunar. Planet. Sci. (abstract) 22, 1527.
Detailed finite element method modeling of evaporating multi-component droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diddens, Christian, E-mail: C.Diddens@tue.nl
The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less
Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment
Taylor, G. Jeffrey; Wieczorek, Mark A.
2014-01-01
New estimates of the thickness of the lunar highlands crust based on data from the Gravity Recovery and Interior Laboratory mission, allow us to reassess the abundances of refractory elements in the Moon. Previous estimates of the Moon fall into two distinct groups: earthlike and a 50% enrichment in the Moon compared with the Earth. Revised crustal thicknesses and compositional information from remote sensing and lunar samples indicate that the crust contributes 1.13–1.85 wt% Al2O3 to the bulk Moon abundance. Mare basalt Al2O3 concentrations (8–10 wt%) and Al2O3 partitioning behaviour between melt and pyroxene during partial melting indicate mantle Al2O3 concentration in the range 1.3–3.1 wt%, depending on the relative amounts of pyroxene and olivine. Using crustal and mantle mass fractions, we show that that the Moon and the Earth most likely have the same (within 20%) concentrations of refractory elements. This allows us to use correlations between pairs of refractory and volatile elements to confirm that lunar abundances of moderately volatile elements such as K, Rb and Cs are depleted by 75% in the Moon compared with the Earth and that highly volatile elements, such as Tl and Cd, are depleted by 99%. The earthlike refractory abundances and depleted volatile abundances are strong constraints on lunar formation processes. PMID:25114309
Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment.
Taylor, G Jeffrey; Wieczorek, Mark A
2014-09-13
New estimates of the thickness of the lunar highlands crust based on data from the Gravity Recovery and Interior Laboratory mission, allow us to reassess the abundances of refractory elements in the Moon. Previous estimates of the Moon fall into two distinct groups: earthlike and a 50% enrichment in the Moon compared with the Earth. Revised crustal thicknesses and compositional information from remote sensing and lunar samples indicate that the crust contributes 1.13-1.85 wt% Al2O3 to the bulk Moon abundance. Mare basalt Al2O3 concentrations (8-10 wt%) and Al2O3 partitioning behaviour between melt and pyroxene during partial melting indicate mantle Al2O3 concentration in the range 1.3-3.1 wt%, depending on the relative amounts of pyroxene and olivine. Using crustal and mantle mass fractions, we show that that the Moon and the Earth most likely have the same (within 20%) concentrations of refractory elements. This allows us to use correlations between pairs of refractory and volatile elements to confirm that lunar abundances of moderately volatile elements such as K, Rb and Cs are depleted by 75% in the Moon compared with the Earth and that highly volatile elements, such as Tl and Cd, are depleted by 99%. The earthlike refractory abundances and depleted volatile abundances are strong constraints on lunar formation processes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing
Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.
2002-01-01
At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low-FeO chondrules appear to have fully altered mesostasis.
Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei
2016-07-01
In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.; Wirick, S.; Jacobsen, C.
2004-01-01
Many anhydrous interplanetary dust particles (IDPs) are the most pristine samples of primitive solar system dust currently available for laboratory analysis. Their primitive nature is demonstrated by: 1) the high content of moderately volatile elements, indicating they have not been heated significantly since formation, 2) the absence of hydrated material, indicating they never experienced aqueous processing, 3) the presence of unequilibrated mineral assemblages, 4) the presence of large isotopic anomalies (e.g., D and 15N enrichment), in these IDPs.
Volatile transport on Venus and implications for surface geochemistry and geology
NASA Technical Reports Server (NTRS)
Brackett, Robert A.; Fegley, Bruce; Arvidson, Raymond E.
1995-01-01
The high vapor pressure of volatile metal halides and chalcogenides (e.g., of Cu, Zn, Sn, Pb, As, Sb, Bi) at typical Venus surface temperatures, coupled with the altitude-dependent temperature gradient of approximately 8.5 K/km, is calculated to transport volatile metal vapors to the highlands of Venus, where condensation and accumulation will occur. The predicted geochemistry of volatile metals on Venus is supported by observations of CuCl in volcanic gases at Kilauea and Nyiragongo, and large enrichments of these and other volatile elements in terrestrial volcanic aerosols. A one-dimensional finite difference vapor transport model shows the diffusive migration of a thickness of 0.01 to greater than 10 microns/yr of moderately to highly volatile phases (e.g., metal halides and chalcogenides) from the hot lowlands (740 K) to the cold highlands (660 K) on Venus. The diffusive transport of volatile phases on Venus may explain the observed low emissivity of the Venusian highlands, hazes at 6-km altitude observed by two Pioneer Venus entry probes, and the Pioneer Venus entry probe anomalies at 12.5 km.
Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules
Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.
1981-01-01
Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe-Ni, whereas the corresponding highly siderophile elements remained sequestered by the surviving metal. The highly siderophile elements may have been introduced by a population of ~103 large (~1022 g) planetisimals, similar to those forming the lunar mare basins. ?? 1981.
NASA Astrophysics Data System (ADS)
Young, E. D.
2017-12-01
Recent advances in our ability to measure stable isotope ratios of light, rock-forming elements, including those for Zn, K, Fe, Si, and Mg, among others, has resulted in an emerging hypothesis that collisions among rocky planetesimals, planetary embryos, and/or proto-planets caused losses of moderately volatile elements (e.g., K) and "common" or moderately refractory elements (e.g., Mg and Si). The primary evidence is in the form of heavy isotope enrichments in rock-forming elements relative to the chondrite groups that are thought to be representative of planetary precursors. Equilibrium volatility-controlled isotope fractionation for planetesimal magma oceans might have occurred for bodies larger than 0.1% of an Earth mass (½ the mass of Pluto) as these bodies had sufficient gravity to overpower the escape velocities of hot gas at 2000K. Both Jean's escape and viscous drag hydrodynamic escape can obviate the escape velocity limit but will fractionate by mass, not by volatility. Equilibrium vapor/melt fractionation is qualitatively consistent with the greater disparity in 29Si/28Si between Earth and chondrites than in 25Mg/24Mg. However, losses of large masses of vapor are required to record the fractionation in the melts. We consider that if Earth was derived from E chondrite-like materials, the bulk composition of the Earth, assuming refractory Ca was retained, requires > 60% loss of Mg. This is a lot of vapor loss for a process relying on at least intermittent equilibrium, although it comports with the isotopic lever-rule requirements. Paradoxically, the alternative of evaporative loss of rock-forming elements requires less total mass loss. For example, the calculated Mg and Si isotopic compositions of residues resulting from evaporation of chondritic melts can fit the Mg and Si isotopic compositions of Earth, Mars, and angrites with varying background pressures and with total mass losses of near 5% or less. These mass losses are closer to, and even lower than, those suggested by Ca concentrations relative to CI chondrite. Equilibrium models achieve greater Si than Mg isotope fractionation by large mass losses while evaporation models produce this effect for small mass losses. Additional constraints involving other isotope systems as well as models for vapor loss can distinguish between the two scenarios.
Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Bleuet, P.; Borg, J.; Bradley, J.; Brenker, F.; Brennan, S.; Bridges, J.; Brownlee, D. E.; Bullock, E.; Clark, B. C.;
2006-01-01
We measured the chemical compositions of material from 23 particles in aerogel and residue in 7 craters in aluminum foil, collected during passage of the Stardust spacecraft through the coma of Comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size-scale analyzed, 180 nanograms. The mean chemical composition of this Wild 2 material agrees with the CI meteorite composition for the refractory elements Mg, Si, Cr, Fe, and Ni to 35%, and for Ca and Mn to 50%. The data suggest the moderately volatile elements Cu, Zn, and Ga may be enriched in this Wild 2 material.
Properties of iron alloys under the Earth's core conditions
NASA Astrophysics Data System (ADS)
Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann
2014-05-01
The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.
Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.
2014-01-01
Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.
On the Impact Origin of Phobos and Deimos. IV. Volatile Depletion
NASA Astrophysics Data System (ADS)
Hyodo, Ryuki; Genda, Hidenori; Charnoz, Sébastien; Pignatale, Francesco C. F.; Rosenblatt, Pascal
2018-06-01
Recent works have shown that the Martian moons Phobos and Deimos may have accreted within a giant impact-generated disk whose composition is about an equal mixture of Martian material and impactor material. Just after the giant impact, the Martian surface heated up to ∼3000–6000 K and the building blocks of moons, including volatile-rich vapor, were heated up to ∼2000 K. In this paper, we investigate the volatile loss from the building blocks of Phobos and Deimos by hydrodynamic escape of vapor and radiation pressure on condensed particles. We show that a non-negligible amount of volatiles (>10% of the vapor with temperature >1000 K via hydrodynamic escape, and moderately volatile dusts that condense at ∼700–2000 K via radiation pressure) could be removed just after the impact during their first single orbit from their pericenters to apocenters. Our results indicate that bulk Phobos and Deimos are depleted in volatile elements. Together with future explorations such as the Japan Aerospace eXploration Agency’s Martian Moons eXploration mission, our results could be used to constrain the origin of Phobos and Deimos.
NASA Astrophysics Data System (ADS)
Pringle, Emily A.; Moynier, Frédéric; Beck, Pierre; Paniello, Randal; Hezel, Dominik C.
2017-06-01
Volatile lithophile elements are depleted in the different planetary materials to various degrees, but the origin of these depletions is still debated. Stable isotopes of moderately volatile elements such as Zn can be used to understand the origin of volatile element depletions. Samples with significant volatile element depletions, including the Moon and terrestrial tektites, display heavy Zn isotope compositions (i.e. enrichment of 66Zn vs. 64Zn), consistent with kinetic Zn isotope fractionation during evaporation. However, Luck et al. (2005) found a negative correlation between δ66Zn and 1/[Zn] between CI, CM, CO, and CV chondrites, opposite to what would be expected if evaporation caused the Zn abundance variations among chondrite groups. We have analyzed the Zn isotope composition of multiple samples of the major carbonaceous chondrite classes: CI (1), CM (4), CV (2), CO (4), CB (2), CH (2), CK (4), and CK/CR (1). The bulk chondrites define a negative correlation in a plot of δ66Zn vs 1/[Zn], confirming earlier results that Zn abundance variations among carbonaceous chondrites cannot be explained by evaporation. Exceptions are CB and CH chondrites, which display Zn systematics consistent with a collisional formation mechanism that created enrichment in heavy Zn isotopes relative to the trend defined by CI-CK. We further report Zn isotope analyses of chondrite components, including chondrules from Allende (CV3) and Mokoia (CV3), as well as an aliquot of Allende matrix. All chondrules are enriched in light Zn isotopes (∼500 ppm on 66Zn/64Zn) relative to the bulk, contrary to what would be expected if Zn were depleted during evaporation, on the other hand the matrix has a complementary heavy isotope composition. We report sequential leaching experiments in un-equilibrated ordinary chondrites, which show sulfides are isotopically heavy compared to silicates and the bulk meteorite by ca. +0.65 per mil on 66Zn/64Zn. We suggest isotopically heavy sulfides were removed from either chondrules or their precursors, thereby producing the light Zn isotope enrichments in chondrules.
Origin and timescale of volatile element depletion in crustal and mantle reservoirs
NASA Astrophysics Data System (ADS)
Moynier, Frederic; Day, James M. D.
2014-05-01
Volatile elements play a fundamental role in the evolution of planets. Understanding of how volatile budgets were set in planets, and how and to what extent planetary bodies became volatile-depleted during the earliest stages of Earth and Solar System formation remain poorly understood, however. It has been proposed that the depletion is due to incomplete condensation (volatile elements were not there in the first place, in which case the timing would have to be fast, <1Myr), or that planetary bodies lost volatile elements through evaporation (post-accretion volatilization). Volatilization is known to fractionate isotopes, thus comparing isotope ratios of volatile element between samples is a powerful tool for understanding the origin of volatile element abundance variations. For example, recent work has shown that lunar basalts are enriched in the heavier isotopes of Zn (~1 ‰ for 66Zn/64Zn) compared to chondrites, terrestrial and martian basalts. We will discuss these Zn isotopic data of crustal and mantle rocks, as well as other stable isotopic systems (e.g., Si) in relation with the giant impact theory of lunar origin, as well as the lunar magma ocean and expand to other parent bodies (e.g., angrites). The timescale of depletion in volatile elements of Solar System material is estimated by using radiogenic systems for which the parent and daughter elements have different volatility. Here we focus on the Rb-Sr and Mn-Cr isotopic systems and discuss the timescales and implications for the origin of volatile element depletion (solar nebula stage vs. planetary stage).
Semi-volatiles at Mercury: Sodium (Na) and potassium (K)
NASA Technical Reports Server (NTRS)
Sprague, A.
1994-01-01
Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.
Zinc and volatile element loss during planetary magma ocean phases
NASA Astrophysics Data System (ADS)
Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric
2016-10-01
Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing during magma ocean phases would have led to volatile-depleted planetesimal feed-stocks that would have profoundly affected the ultimate volatile inventories of larger planetary bodies.
NASA Technical Reports Server (NTRS)
Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.
2012-01-01
There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.
Rare earth element abundances in presolar SiC
NASA Astrophysics Data System (ADS)
Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.
2018-01-01
Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.
Volatile elements in Allende inclusions. [Mn, Na and Cl relation to meteorite evolution
NASA Technical Reports Server (NTRS)
Grossman, L.; Ganapathy, R.
1975-01-01
New data are presented on the relatively volatile elements (Mn, Na, and Cl) in coarse- and fine-grained Ca/Al-rich inclusions of different textures and mineralogy in the Allende meteorite. It is shown that the coarse-grained inclusions condensed from the solar nebula at high temperature and contained vanishingly small quantities of volatile elements at that time. Later, volatiles were added to these during the metamorphism of the Allende parent body. The fine-grained inclusions were also affected by the addition of volatiles during this metamorphism but, unlike the coarse-grained ones, they incorporated large amounts of volatiles when they condensed from the solar nebula, accounting for their higher volatile element contents.
NASA Astrophysics Data System (ADS)
Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.
2017-12-01
Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukasinovic-Pesic, V.; Rajakovic, L.J.
2009-07-01
The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less
Volatile element loss during planetary magma ocean phases
NASA Astrophysics Data System (ADS)
Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric
2018-01-01
Moderately volatile elements (MVE) are key tracers of volatile depletion in planetary bodies. Zinc is an especially useful MVE because of its generally elevated abundances in planetary basalts, relative to other MVE, and limited evidence for mass-dependent isotopic fractionation under high-temperature igneous processes. Compared with terrestrial basalts, which have δ66Zn values (per mille deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard) similar to some chondrite meteorites (∼+0.3‰), lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ (2 st. dev.). Furthermore, mare basalts have average Zn concentrations ∼50 times lower than in typical terrestrial basaltic rocks. Late-stage lunar magmatic products, including ferroan anorthosite, Mg- and Alkali-suite rocks have even higher δ66Zn values (+3 to +6‰). Differences in Zn abundance and isotopic compositions between lunar and terrestrial rocks have previously been interpreted to reflect evaporative loss of Zn, either during the Earth-Moon forming Giant Impact, or in a lunar magma ocean (LMO) phase. To explore the mechanisms and processes under which volatile element loss may have occurred during a LMO phase, we developed models of Zn isotopic fractionation that are generally applicable to planetary magma oceans. Our objective was to identify conditions that would yield a δ66Zn signature of ∼+1.4‰ within the lunar mantle. For the sake of simplicity, we neglect possible Zn isotopic fractionation during the Giant Impact, and assumed a starting composition equal to the composition of the present-day terrestrial mantle, assuming both the Earth and Moon had zinc 'consanguinity' following their formation. We developed two models: the first simulates evaporative fractionation of Zn only prior to LMO mixing and crystallization; the second simulates continued evaporative fractionation of Zn that persists until ∼75% LMO crystallization. The first model yields a relatively homogenous bulk solid LMO δ66Zn value, while the second results in a stratification of δ66Zn values within the LMO sequence. Loss and/or isolation mechanisms for volatiles are critical to these models; hydrodynamic escape was not a dominant process, but loss of a nascent lunar atmosphere or separation of condensates into a proto-lunar crust are possible mechanisms by which volatiles could be separated from the lunar interior. The results do not preclude models that suggest a lunar volatile depletion episode related to the Giant Impact. Conversely, LMO models for volatile loss do not require loss of volatiles prior to lunar formation. Outgassing during planetary magma ocean phases likely played a profound role in setting the volatile inventories of planets, particularly for low mass bodies that experienced the greatest volatile loss. In turn, our results suggest that the initial compositions of planets that accreted from smaller, highly differentiated planetesimals were likely to be severely volatile depleted.
Early accretion of water and volatile elements to the inner Solar System: evidence from angrites
NASA Astrophysics Data System (ADS)
Sarafian, Adam R.; Hauri, Erik H.; McCubbin, Francis M.; Lapen, Thomas J.; Berger, Eve L.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Righter, Kevin; Sarafian, Emily
2017-04-01
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.
Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily
2017-05-28
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb- 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).
Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.
1980-01-01
Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.
Silicon isotopes in angrites and volatile loss in planetesimals
Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix
2014-01-01
Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.; Sutton, S. R.
2004-01-01
Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth s stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to approximately 30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth s atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin (approximately 100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOFSIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the approximately 2 m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile elements Zn and Br, although spatially inhomogeneous, were not concentrated on the surface of any of the IDPs they examined, suggesting that the Zn and the Br enrichments in the IDPs are not due to contamination during stratospheric residence.
Rusty rock 66095 - A paradigm for volatile-element mobility in highland rocks
NASA Astrophysics Data System (ADS)
Hunter, R. H.; Taylor, L. A.
The ultimate goals of Apollo 16 consortia investigations are related to a determination of the nature of the early crust of the moon, taking into account questions regarding the petrogenesis of highland breccias and melt-rocks. In addition to these potential objectives, the consortia study of 66095 has also the goal to provide information for an understanding of the origin of volatile elements. Since 66095 is the most volatile-rich sample returned by the Apollo missions and its elemental ratios mimic those in many Apollo 16 breccias, it was selected as a paradigm for the highland breccias. 66095 is a clast-laden, impact-melt breccia. The volatile-rich nature is manifest in the presence of rust, schreibersite, and minor volatile-bearing compounds, usually in association with native metal and/or troilite. Attention is given to aspects of petrography, mineral chemistry, major element chemistry, the volatile bearing phases, and the history of the volatiles starting with their ultimate origin.
Angrites: A Volatile-rich Variety of Asteroidal Basalt (Except for Alkalis and Gallium!)
NASA Astrophysics Data System (ADS)
Warren, P. H.; Kallemeyn, G. W.
1995-09-01
Angrites are commonly viewed as extremely volatile-depleted, and a related notion is that they formed by differentiation of a very CAI-rich material [e.g., 1]. Partial melting experiments reportedly reproduce the bulk compositions (although not fassaite-rich mineralogy) of angrites with Allende as starting material [2], but highly CAI-rich parent materials are difficult to reconcile with isotopic and REE data [3,4]. Mittlefehldt and Lindstrom [5] inferred from the low Na/Al ratios of angrites that outgassing, and thus primordial magmatism, was more intense on their parent body than on the eucrite parent asteroid. Of seven elements that (a) have been adequately determined in angrites, and (b) are far more volatile (solar-nebula 50% condensation T [6] = 690-430 K) than the alkalis (1000-910 K), four are enriched, and none is significantly depleted, in average angrite compared to average eucrite or low-Ti mare basalt (Figure). Gallium, which is of intermediate volatility (830 K), is depleted to roughly the same extent as Na and K. Results for A881371 [3] are incomplete (Zn, 6 micrograms/g, is near INAA detection limit), but even based only on AdoR and the two LEW angrites, this pattern seems firmly established. Apparent gas cavities in A881371 [7] also suggest that volatiles are far from uniformly depleted. The only elements known to be depleted, as volatiles, by clearly significant factors in angrites versus eucrites or lunar basalts, are alkalis plus gallium. Besides being moderately volatile, a noteworthy characteristic shared among Ga and alkalis (and not shared with elements such as Br, Se, and Zn) is that these elements probably tend to partition into crustal feldspar during gross differentiation of small (low-pressure) bodies. If gallium + alkalis were depleted by a single process starting from "normal" chondritic material, that process would seem to require selective exposure of a feldspar-enriched region (i.e., crust) to extremely high temperature. Igneous crystallization of the angrites occurred when the solar system was still extremely young, and apparently <=2 Ma after the volatile-depletion process [4]. The data of [4] eliminate 26Al as a potential heat source for magmatism. The angrite volatile pattern may be the product of heating by an intense, short-lived heat source that melted and partially vaporized the crust of an asteroid(s) (not necessarily the final angrite asteroid), without much affecting the deep interior(s), which later (through mixing and/or magmatism) replenished the angritic materials in most volatiles, but not alkalis and Ga. Exogenic heating, as in the often-conjectured (but hard to test) hypothesis that a major early heat source was enhanced solar luminosity (as in FU-Orionis cycles), would seem to be required. LEW 87051 and A881371 are rich in compositionally diverse olivine xenocrysts, and A881371 contains a possible FeS xenocryst [7]. These, and the angrites' great siderophile diversity [3], tend to suggest that magmatism and intensely disruptive cratering (with mixing of precursor materials) were contemporaneous. This scenario is admittedly speculative, but the volatile-depletion pattern is difficult to rationalize with any other model. References: [1] Prinz M. and Weisberg M. (1995) Antarct. Meteorites, XX, 207-210. [2] Jurewicz A. et al. (1993) GCA, 57, 2123-2139. [3] Warren P. et al. (1995) Antarct. Meteorites, XX, 261-264. [4] Lugmair G. and Galer S. 1992) GCA, 56, 1673-1694. [5] Mittlefehldt D. and Lindstrom M. (1990) GCA, 54, 3209-3218. [6] Wasson J. (1985) Meteorites. [7] Warren P. and Davis A. (1995) Antarct. Meteorites, XX, 257-260.
Volatile elements in and on lunar volcanic glasses: What do they tell us about lunar genesis?
NASA Technical Reports Server (NTRS)
Koeberl, C.
1984-01-01
There are good reasons to believe that lunar volcanic glasses originated from a deep interior source. The presence of a thin layer of surface correlated elements on these glasses may indicate that the Moon has some reservoirs that are enriched in volatiles. Since the glasses themselves do not show similar enrichment, the source should be of limited extent. Three scenarios are advanced for the origin of these elements. The mechanism for lunar volcanism differs from the mechanism for volcanism on Earth since the former produces bubbling and the latter explosive fountaining. From the condensation behavior of the volatile compounds, which leads to heterogeneous condensation, it is concluded that comparing element ratios of surface correlated elements gives little sense. It seems as if the volatile reservoirs are of rather limited extent and that they do not enlarge the volatile content of the bulk Moon significantly.
NASA Astrophysics Data System (ADS)
McCoy, T. J.; Walker, R. J.; Goldstein, J. I.; Yang, J.; McDonough, W. F.; Rumble, D.; Chabot, N. L.; Ash, R. D.; Corrigan, C. M.; Michael, J. R.; Kotula, P. G.
2011-11-01
We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly siderophile elements (HSE) Re, Os and Ir concentrations vary by nearly three orders of magnitude over the entire range of IVA irons, while Ru, Pt and Pd vary by less than factors of five. Chondrite normalized abundances of HSE form nested patterns consistent with progressive crystal-liquid fractionation. Attempts to collectively model the HSE abundances resulting from fractional crystallization achieved best results for 3 wt.% S, compared to 0.5 or 9 wt.% S. Consistent with prior studies, concentrations of HSE and other refractory siderophile elements estimated for the bulk IVA core and its parent body are in generally chondritic proportions. Projected abundances of Pd and Au, relative to more refractory HSE, are slightly elevated and modestly differ from L/LL chondrites, which some have linked with group IVA, based on oxygen isotope similarities. Abundance trends for the moderately volatile and siderophile element Ga cannot be adequately modeled for any S concentration, the cause of which remains enigmatic. Further, concentrations of some moderately volatile and siderophile elements indicate marked, progressive depletions in the IVA system. However, if the IVA core began crystallization with ˜3 wt.% S, depletions of more volatile elements cannot be explained as a result of prior volatilization/condensation processes. The initial IVA core had an approximately chondritic Ni/Co ratio, but a fractionated Fe/Ni ratio of ˜10, indicates an Fe-depleted core. This composition is most easily accounted for by assuming that the surrounding silicate shell was enriched in iron, consistent with an oxidized parent body. The depletions in Ga may reflect decreased siderophilic behavior in a relatively oxidized body, and more favorable partitioning into the silicate portion of the parent body. Phosphate inclusions in EET show Δ 17O values within the range measured for silicates in IVA iron meteorites. EET has a typical ataxitic microstructure with precipitates of kamacite within a matrix of plessite. Chemical and isotopic evidence for a genetic relation between EET and group IVA is strong, but the high Ni content and the newly determined, rapid cooling rate of this meteorite show that it should continue to be classified as ungrouped. Previously reported metallographic cooling rates for IVA iron meteorites have been interpreted to indicate an inwardly crystallizing, ˜150 km radius metallic body with little or no silicate mantle. Hence, the IVA group was likely formed as a mass of molten metal separated from a much larger parent body that was broken apart by a large impact. Given the apparent genetic relation with IVA, EET was most likely generated via crystal-liquid fractionation in another, smaller body spawned from the same initial liquid during the impact event that generated the IVA body.
Pyroclastic Activity at Home Plate in Gusev Crater, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Aharonson, O.; Clark, B. S.; Cohen, B.; Crumpler, L.; deSouza, P. A.; Farrand, W. H.; Gellert, R.; Grant, J.; Grotzinger, J. P.;
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
Pyroclastic activity at home plate in Gusev crater, Mars
Squyres, S. W.; Aharonson, O.; Clark, B. C.; Cohen, B. A.; Crumpler, L.; de Souza, P.A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Grotzinger, J.P.; Haldemann, A.F.C.; Johnson, J. R.; Klingelhofer, G.; Lewis, K.W.; Li, R.; McCoy, T.; McEwen, A.S.; McSween, H.Y.; Ming, D. W.; Moore, Johnnie N.; Morris, R.V.; Parker, T.J.; Rice, J. W.; Ruff, S.; Schmidt, M.; Schroder, C.; Soderblom, L.A.; Yen, A.
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.
Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon
NASA Technical Reports Server (NTRS)
Righter, Kevin; Pando, K.; Danielson, L.; Nickodem, K.
2014-01-01
Depletions of volatile siderophile elements (VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd) in mantles of Earth and Moon, constrain the origin of volatile elements in these bodies, and the overall depletion of volatile elements in Moon relative to Earth. A satisfactory explanation has remained elusive [1,2]. We examine the depletions of VSE in Earth and Moon and quantify the amount of depletion due to core formation and volatility of potential building blocks. We calculate the composition of the Earth's PUM during continuous accretion scenarios with constant and variable fO2. Results suggest that the VSE can be explained by a rather simple scenario of continuous accretion leading to a high PT metal-silicate equilibrium scenario that establishes the siderophile element content of Earth's PUM near the end of accretion [3]. Core formation models for the Moon explain most VSE, but calculated contents of In, Sn, and Zn (all with Tc < 750 K) are all still too high after core formation, and must therefore require an additional process to explain the depletions in the lunar mantle. We discuss possible processes including magmatic degassing, evaporation, condensation, and vapor-liquid fractionation in the lunar disk.
NASA Technical Reports Server (NTRS)
Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.
2015-01-01
Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.
Volatile elements - water, carbon, nitrogen, noble gases - on Earth
NASA Astrophysics Data System (ADS)
Marty, B.
2017-12-01
Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the inner solar system.
Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong
2016-01-01
Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover, pyrolysis can be a better choice for treatment of solid waster in terms of controlling heavy metals. PVC and Tire should be separated and treated individually due to high possibility of heavy metal emission. This information may then serve as a guideline for the design of the subsequent gas cleaning plant, necessary to reduce the final emissions to the atmosphere to an acceptable level.
The lead isotopic age of the Earth can be explained by core formation alone.
Wood, Bernard J; Halliday, Alex N
2010-06-10
The meaning of the age of the Earth defined by lead isotopes has long been unclear. Recently it has been proposed that the age of the Earth deduced from lead isotopes reflects volatile loss to space at the time of the Moon-forming giant impact rather than partitioning into metallic liquids during protracted core formation. Here we show that lead partitioning into liquid iron depends strongly on carbon content and that, given a content of approximately 0.2% carbon, experimental and isotopic data both provide evidence of strong partitioning of lead into the core throughout the Earth's accretion. Earlier conclusions that lead is weakly partitioned into iron arose from the use of carbon-saturated (about 5% C) iron alloys. The lead isotopic age of the Earth is therefore consistent with partitioning into the core and with no significant late losses of moderately volatile elements to space during the giant impact.
Gallium isotopic evidence for extensive volatile loss from the Moon during its formation
Kato, Chizu; Moynier, Frédéric
2017-01-01
The distribution and isotopic composition of volatile elements in planetary materials holds a key to the characterization of the early solar system and the Moon’s formation. The Moon and Earth are chemically and isotopically very similar. However, the Moon is highly depleted in volatile elements and the origin of this depletion is still debated. We present gallium isotopic and elemental measurements in a large set of lunar samples to constrain the origin of this volatile depletion. We show that while Ga has a geochemical behavior different from zinc, both elements show a systematic enrichment in the heavier isotopes in lunar mare basalts and Mg-suite rocks compared to the silicate Earth, pointing to a global-scale depletion event. On the other hand, the ferroan anorthosites are isotopically heterogeneous, suggesting a secondary distribution of Ga at the surface of the Moon by volatilization and condensation. The isotopic difference of Ga between Earth and the Moon and the isotopic heterogeneity of the crustal ferroan anorthosites suggest that the volatile depletion occurred following the giant impact and during the lunar magma ocean phase. These results point toward a Moon that has lost its volatile elements during a whole-scale evaporation event and that is now relatively dry compared to Earth. PMID:28782027
NASA Astrophysics Data System (ADS)
Stanier, C. O.; Janechek, N. J.; Bryngelson, N.; Marek, R. F.; Lersch, T.; Bunker, K.; Casuccio, G.; Brune, W. H.; Hornbuckle, K. C.
2017-12-01
Cyclic volatile methyl siloxanes are anthropogenic chemicals present in personal care products such as antiperspirants and lotions. These are volatile chemicals that are readily released into the atmosphere by product use. Due to their emission and relatively slow kinetics of their major transformation pathway, reaction with hydroxyl radicals (OH), these compounds are present in high concentrations in indoor environments and widespread in outdoor environments. Cyclic siloxane reaction with OH can lead to secondary organic aerosols, and due to the widespread prevalence of the parent compounds, may be an important source of ambient aerosols. Atmospheric aerosols have important influences to the climate by affecting the radiative balance and by serving as cloud condensation nuclei (CCN) which influence clouds. While the parent compounds have been well-studied, the oxidation products have received much less attention, with almost no ambient measurements or experimental physical property data. We report physical properties of aerosols generated by reacting the cyclic siloxane D5 with OH using a Potential Aerosol Mass (PAM) photochemical chamber. The particles were characterized by SMPS, imaging and elemental analysis using both Transmission Electron Microscopy and Scanning Transmission Electron Microscopy equipped with Energy Dispersive X-ray Spectroscopy systems (TEM-EDS and STEM-EDS), volatility measurements using Volatility Tandem Differential Mobility Analyzer (V-TDMA), and hygroscopicity measurements to determine CCN potential using a Droplet Measurement Technologies Cloud Condensation Nuclei Counter (DMT-CCN). Aerosol yield sensitivity to D5 and OH concentrations, residence time, and seed aerosols were analyzed. TEM-EDS and STEM-EDS analysis show spherical particle morphology with elemental composition consistent with aerosols derived from cyclic siloxane sources. Measured aerosol yields were 20-50% with typical aerosol concentrations 300,000 particles cm-3, up to 200 μg m-3, and diameters of 30-90 nm. Particles experienced little diameter change after heating up to 200°C suggesting low volatility, while particle activation was shifted to higher supersaturations compared to ammonium sulfate suggesting moderate hygroscopicity in line with other secondary organics.
NASA Technical Reports Server (NTRS)
Boujibar, A.; Fei, Y.; Righter, K.; Du, Z.; Bullock, E.
2018-01-01
The abundances of volatile elements in the Earth's mantle are correlated with their temperatures of condensation. This depletion can be due to either incomplete condensation of the elements during the nebula condensation or evaporation processes during planetary growth. Elements that have affinities with metals (siderophile) and sulfides (chalcophile) are additionally depleted due to their segregation into the core. Therefore, study of lithophile elements could be useful to isolate processes of volatilization and their effect on the abundance of the elements in the Earth's mantle. However, the correlation of these lithophile elements including alkali elements, with their temperatures of condensation shows a significant scatter, which is difficult to reconcile with a depletion by vaporization or incomplete condensation alone.
NASA Technical Reports Server (NTRS)
Delano, J. W.; Mcguire, J.
1992-01-01
Six varieties of lunar volcanic glass are known to occur within the Apollo 17 sample collection. Investigations have shown that 25 volatile elements are known to be concentrated on the exterior surfaces of individual volcanic glass spheres. Since bulk analyses of volcanic glass provide an integrated abundance of an element on and with the glass spherules, other methods must be relied on to determine the interior abundance of an element. The interior abundance of an element with a volcanic glass sphere establishes the abundance of that element in the melt at the time of quench. The current study is part of a comprehensive attempt to measure the abundance of three volatile elements (Na, S, and K) within representative spheres of the 25 varieties of lunar volcanic glass currently known to exist at the Apollo landing sites. Comparison of the measured abundances of these elements within the interiors of individual glasses with bulk analyses and crystalline mare basalts will furnish new constraints on the geochemical behavior of volatile elements during lunar mare volcanism.
NASA Astrophysics Data System (ADS)
Jonášová, Šárka; Ackerman, Lukáš; Žák, Karel; Skála, Roman; Ďurišová, Jana; Deutsch, Alexander; Magna, Tomáš
2016-10-01
Internal structure and element chemistry including contents of highly siderophile elements (HSE) and Os isotope ratios have been studied in target rocks and several groups of impact glasses of the Zhamanshin impact structure, Kazakhstan. These include larger irregularly-shaped fragments and blocks of impact glass (zhamanshinites), and three types of tektite-like splash-form glasses, part of fallback ejecta. These glassy objects typically are up to 30 mm large and are shaped as teardrops, irregularly bent and curved glass rods and fibers. They can be subdivided into acidic types (irghizites; typically 69-76 wt.% SiO2), basic splash-forms (typically 53-56 wt.% SiO2), and rarely occurring highly inhomogeneous composites with abundant mineral inclusions. A comparison with the target rocks shows that zhamanshinites and basic splash-forms usually have no detectable admixture of the projectile matter, indicated by major and trace elements as well as highly siderophile element contents, with the exception of one sample containing Fe-, Cr-, Ni- and Ti-enriched particles and elevated HSE contents. In contrast, irghizites exhibit clear admixture of the projectile matter, which was incorporated by complex processes accompanied by strong element fractionations. Microscopic investigations confirm that irghizites were formed mainly by coalescence of smaller molten glass droplets sized typically below 1 mm. Irghizites exhibit significant enrichments in Ni, Co and Cr, whose concentrations are locally elevated in the rims of the original small droplets. A portion of these elements and also part of Fe and Mn and other elements were derived from the impactor, most likely a Ni-rich carbonaceous chondrite. The contents of HSE are low and strongly fractionated, with moderate depletions of Pt and Pd and strong depletions of other HSE with respect to chondritic element ratios. Osmium shows the strongest depletion, likely related to the presence of oxygen in the post-impact atmosphere causing strong Os loss through volatilization. One composite splash-form contains Fe-Ni-S inclusions and exhibits a less fractionated HSE pattern suggesting the lowest degree of melting, volatilization and condensation. The observed structural and microchemical features of irghizites are interpreted to reflect variable proportions of the uppermost target sediments and the projectile matter, with HSE element ratios influenced by evaporation and condensation processes, and differences in volatility of individual HSE elements and/or their compounds. Two possible pathways of incorporation of the projectile matter into the irghizites include either re-condensation of evaporated projectile matter on the surface of glass droplets, or incorporation of less chemically fractionated microparticles dispersed by the explosion.
Late-stage magmatic outgassing from a volatile-depleted Moon
Moynier, Frédéric; Shearer, Charles K.
2017-01-01
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior. PMID:28827322
Late-stage magmatic outgassing from a volatile-depleted Moon.
Day, James M D; Moynier, Frédéric; Shearer, Charles K
2017-09-05
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ 66 Zn = -13.7‰), heavy Cl (δ 37 Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ 66 Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.
Late-stage magmatic outgassing from a volatile-depleted Moon
NASA Astrophysics Data System (ADS)
Day, James M. D.; Moynier, Frédéric; Shearer, Charles K.
2017-09-01
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = -13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.
Simnad, M.T.
1961-08-15
A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)
Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.
2011-01-01
Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.
The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.
Steenstra, Edgar S; Lin, Yanhao; Dankers, Dian; Rai, Nachiketa; Berndt, Jasper; Matveev, Sergei; van Westrenen, Wim
2017-11-06
The Moon bears a striking compositional and isotopic resemblance to the bulk silicate Earth (BSE) for many elements, but is considered highly depleted in many volatile elements compared to BSE due to high-temperature volatile loss from Moon-forming materials in the Moon-forming giant impact and/or due to evaporative loss during subsequent magmatism on the Moon. Here, we use high-pressure metal-silicate partitioning experiments to show that the observed low concentrations of volatile elements sulfur (S), selenium (Se), tellurium (Te), and antimony (Sb) in the silicate Moon can instead reflect core-mantle equilibration in a largely to fully molten Moon. When incorporating the core as a reservoir for these elements, their bulk Moon concentrations are similar to those in the present-day bulk silicate Earth. This suggests that Moon formation was not accompanied by major loss of S, Se, Te, Sb from Moon-forming materials, consistent with recent indications from lunar carbon and S isotopic compositions of primitive lunar materials. This is in marked contrast with the losses of other volatile elements (e.g., K, Zn) during the Moon-forming event. This discrepancy may be related to distinctly different cosmochemical behavior of S, Se, Te and Sb within the proto-lunar disk, which is as of yet virtually unconstrained.
Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-10-01
Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements.
NASA Technical Reports Server (NTRS)
Kornacki, Alan S.; Fegley, Bruce, Jr.
1986-01-01
The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.
Geochemical zoning and early differentiation in the moon
NASA Technical Reports Server (NTRS)
Taylor, S. R.; Jakes, P.
1977-01-01
The volatile elements (e.g., Rb, Pb, Tl, Bi, Cs) seem to have been depleted at the time of lunar accretion. Accordingly, it may be assumed that the moon initially accreted from refractory material. The good correlation between volatile/involatile element ratios (e.g., Cs/U, K/La, K/Zr) in both highland and maria samples means that element distribution in lunar crustal rocks is not governed by volatility differences. This and other evidence encourages the view that the moon was accreted homogeneously. A consequence of homogeneous accretion theories is that very efficient large-scale element fractionation is required to account both for the high near-surface concentrations of refractory elements (e.g., Th, U, REE, Zr, Ba, etc.) and for the Ca-Al-rich crust.
Distribution, movement, and evolution of the volatile elements in the lunar regolith
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.
1975-01-01
The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the moon of these volatile elements are considered.
Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi
2015-12-01
The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Volatile element depletion and K-39/K-41 fractionation in lunar soils
NASA Technical Reports Server (NTRS)
Church, S. E.; Tilton, G. R.; Wright, J. E.; Lee-Hu, C.-N.
1976-01-01
Evidence for selective loss and isotopic fractionation (in the case of K) of volatile elements during formation of agglutinates by micrometeoritic bombardment of lunar soils is presented. Concentrations and isotopic compositions of volatile elements (K, Rb, Pb) and nonvolatile elements (U, Th, Ba, Sr, rare earths) in separates taken from soils 14163, 14259, 15041, 68501, and 71500 are examined. Rayleigh fractionation calculations applied to K-39/K-41 isotopic data indicate ten-fold recycling of bulk soil, to account for observed isotopic anomalies. The lunar soil fines fraction seems to be a site of deposition for volatile or labile Pb produced during agglutination. Local fines (below 75 microns) are viewed as representative of the parent material for agglutinates formed in situ by micrometeoritic impact. Magnetic separation of agglutinates from soil 68501 revealed a bimodal population, with one class comprising welded blocky magnetic glasses.
Volatility in financial markets: stochastic models and empirical results
NASA Astrophysics Data System (ADS)
Miccichè, Salvatore; Bonanno, Giovanni; Lillo, Fabrizio; Mantegna, Rosario N.
2002-11-01
We investigate the historical volatility of the 100 most capitalized stocks traded in US equity markets. An empirical probability density function (pdf) of volatility is obtained and compared with the theoretical predictions of a lognormal model and of the Hull and White model. The lognormal model well describes the pdf in the region of low values of volatility whereas the Hull and White model better approximates the empirical pdf for large values of volatility. Both models fail in describing the empirical pdf over a moderately large volatility range.
Volatile Loss from the Proto-Lunar Disk
NASA Astrophysics Data System (ADS)
Albarede, F.
2016-12-01
Exchange of volatile elements between the Moon and Earth depends on the intrinsic volatility of each element in a H-free tenuous gas, gravitational escape, and the mean free path of elements. The H2 pressure in the gas formed by the giant impact is far too low to allow hydrodynamic entrainment of other species. A condition for gravitational escape is, therefore, that thermal velocity exceeds escape velocity at the base of the exosphere where collisions between atoms cease. Away from the Earth, the vertical pull of the disk is only a small fraction of the radial pull of the Earth, which is strong enough to keep all the elements but H and He in terrestrial orbits, and the disk exosphere is thick. The proportion of gas orbiting above the exosphere is small, its temperature has been strongly reduced by adiabatic expansion, and therefore escape of lunar volatiles to Earth should be very limited. Whether elements have been lost by escape from the Moon to Earth nevertheless can be tested by comparing the relative abundances of elements with very similar chemistry and intrinsic volatility, but with very different atomic masses. Standard sequences of mineral condensation from the Solar Nebula and T50 are irrelevant to the proto-lunar disk. Condensation temperatures in the Solar Nebula are known to vary wildly with PH2, and the PH2 of the Solar Nebula is largely insensitive to the condensation of solid mineral phases, such as those forming the mantle and core of planets. Lunar accretion follows an opposite scenario, with an early and dramatic pressure drop due to metal and silicate condensation, which is the rationale behind the intrinsic volatility scale of Albarede et al. (2015). It is observed that, despite a broad mass range, the degree of depletion in the Moon relative to the Earth or CIs is similar for chemical kins, such as the groups of alkali elements (Li, Na, K, Rb, Cs), halogens (F, Cl, Br, I), or Zn and Cd. This observation argues against massive escape of volatile elements from the Moon to Earth and against massive lunar devolatilization. It is therefore suggested that, in agreement with the mineralogy of most lunar samples, volatile depletion of the Moon is inherited from the impactor rather than a result of the impact itself. Albarède, F., E. Albalat, and C.-T. A. Lee (2015), MAPS 50(4), 568-577.
Alkali element constraints on Earth-Moon relations
NASA Technical Reports Server (NTRS)
Norman, M. D.; Drake, M. J.; Jones, J. H.
1994-01-01
Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.
On volatile element trends in gas-rich meteorites
NASA Technical Reports Server (NTRS)
Bart, G.; Lipschutz, M. E.
1979-01-01
Ten volatile elements (and non-volatile Co) in co-existing light and dark portions of 5 gas-rich chondrites were studied. Patterns of distinct but non-uniform enrichment by dark admixing material are revealed. The dark admixing material is enriched in Cs; Bi and Tl covary in it. It is compositionally unique from known types of primitive materials and is apparently not derived by secondary processes from such materials.
Trace Element Study of H Chondrites: Evidence for Meteoroid Streams.
NASA Astrophysics Data System (ADS)
Wolf, Stephen Frederic
1993-01-01
Multivariate statistical analyses, both linear discriminant analysis and logistic regression, of the volatile trace elemental concentrations in H4-6 chondrites reveal compositionally distinguishable subpopulations. Observed difference in volatile trace element composition between Antarctic and non-Antarctic H4-6 chondrites (Lipschutz and Samuels, 1991) can be explained by a compositionaily distinct subpopulation found in Victoria Land, Antarctica. This population of H4-6 chondrites is compositionally distinct from non-Antarctic H4-6 chondrites and from Antarctic H4 -6 chondrites from Queen Maud Land. Comparisons of Queen Maud Land H4-6 chondrites with non-Antarctic H4-6 chondrites do not give reason to believe that these two populations are distinguishable from each other on the basis of the ten volatile trace element concentrations measured. ANOVA indicates that these differences are not the result of trivial causes such as weathering and analytical bias. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. Given the differences in terrestrial age between Victoria Land, Queen Maud Land, and modern H4-6 chondrite falls, these results are consistent with a variation in H4-6 chondrite flux on a 300 ky timescale. This conclusion requires the existence of co-orbital meteoroid streams. Statistical analyses of the volatile trace elemental concentrations in non-Antarctic modern falls of H4-6 chondrites also demonstrate that a group of 13 H4-6 chondrites, Cluster 1, selected exclusively for their distinct fall parameters (Dodd, 1992) is compositionally distinguishable from a control group of 45 non-Antarctic modern H4-6 chondrites on the basis of the ten volatile trace element concentrations measured. Model-independent randomization-simulations based on both linear discriminant analysis and logistic regression verify these results. While ANOVA identifies two possible causes for this difference, analytical bias and group classification, a test validation experiment verifies that group classification is the more significant cause of compositional difference between Cluster 1 and non-Cluster 1 modern H4-6 chondrite falls. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. This suggests that these meteorites are fragments of a co-orbital meteorite stream derived from a single parent body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.
1986-10-20
The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.
NASA Astrophysics Data System (ADS)
Hao, Hongda; Campbell, Ian H.; Park, Jung-Woo; Cooke, David R.
2017-11-01
Recent studies have shown that platinum-group elements (PGE) can be used to constrain the timing of sulfide saturation in evolving felsic systems. In this study, we report trace-element, PGE, Re and Au data for the barren and ore-associated suites of intermediate to felsic rocks from the Northparkes Cu-Au porphyry region, emphasizing the timing of sulfide saturation and its influence on the tenor of the associated hydrothermal mineralization. Two barren suites, the Goonumbla and Wombin Volcanics and associate intrusive rocks, are found in the region. Geochemical modelling shows that the barren suites are dominated by plagioclase-pyroxene fractionation, whereas the ore-associated Northparkes Cu-Au porphyry suite is characterized by plagioclase-amphibole fractionation, which requires the ore-bearing suite to have crystallized from a wetter magma than barren suites. The concentrations of PGE, Re and Au in the barren suites decrease continuously during fractional crystallization. This is attributed to early sulfide saturation with the fraction of immiscible sulfide precipitation required to produce the observed trend, being 0.13 and 0.16 wt.% for the Goonumbla and Wombin suites, respectively. The calculated partition coefficients for Au and Pd required to model the observed change in these elements with MgO are well below published values, indicating that R, the mass ratio of silicate to sulfide melt, played a significant role in controlling the rate of decline of these elements with fractionation. Palladium in the ore-associated suite, in contrast, first increases with fractionation then decreases abruptly at 1.2 wt.% MgO. The sharp decrease is attributed to the onset of sulfide precipitation. Platinum on the other hand shows a moderate decrease, starting from the highest MgO sample analysed, but then decreasing strongly from 1.2 wt.% MgO. The initial Pt decrease is attributed to precipitation of a platinum-group mineral (PGM), probably a Pt-Fe alloy, and the sharp decrease of both Pt and Pd at 1.2 wt.% MgO to sulfide saturation. We suggest that the Goonumbla and Wombin suites are barren because early sulfide saturation locked most of the Cu and Au in a sulfide phase in the cumulus pile of a deep parental magma chamber, well before volatile saturation, so that when the magma reached volatile saturation, it did not have access to the Cu and Au. This contrasts with the relatively late sulfide saturation in the ore-associated suite, which was followed shortly afterwards by volatile saturation. Rayleigh fractionation concentrated incompatible Cu and Au by at least a factor of five before volatile saturation. The short crystallization interval between immiscible sulfide and volatile saturation allowed some Au and Cu to be stripped from the evolving magma. Gold, with its higher partition coefficient into immiscible sulfide melts, was more affected than Cu. The result is a Cu-Au deposit. Our study also suggests that Rayleigh fractionation is as at least as important as the initial concentration of chalcophile elements in the parent magma in determining the fertility of felsic magma suites.
Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.
Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa
2015-02-01
Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
..., particularly in times of market stress, and exacerbate market volatility.\\8\\ \\7\\ See BATS Letter at 2; Deutsche... Volatility Guard to work within the parameters of the recently adopted single-stock circuit breakers, and to... of individual exchange volatility moderators in times of market stress. In addition, as noted above...
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2015-12-01
Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [2,3]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Hauri et al. 1996, Nature 382, 415-419. [2] Dixon et al. 2002, Nature 420:385-89 [3] Workman et al. 2006, EPSL 241:932-51.
Uncovering the Chemistry of Earth-like Planets
NASA Astrophysics Data System (ADS)
Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein
2015-08-01
We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.
Uncovering the Chemistry of Earth-like Planets
NASA Astrophysics Data System (ADS)
Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.
2015-12-01
We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.
Comparing eruptions of varying intensity at Kilauea via melt inclusion analysis
NASA Astrophysics Data System (ADS)
Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Gonnermann, H. M.; Swanson, D. A.; Blaser, A. P.
2013-12-01
Over the past 500 years explosive summit eruptions from Kilauea volcano, Hawaii, have exhibited a range of eruption magnitudes, from large basaltic sub-plinian events to Hawaiian lava fountains of various intensity. Knowledge of the factors controlling such dramatic changes in explosivity and mass discharge rate is vital for understanding the dynamics of explosive basaltic magma systems, but these remain poorly constrained. At Kilauea this information also has important implications for hazard assessment, as future eruptions may be far larger than those observed historically. To investigate the processes associated with eruptions of varying magnitudes we have analyzed the composition and dissolved volatile contents (H2O-CO2-S-Cl-F) of olivine-hosted melt inclusions, sampled from tephra deposits associated with three eruptions of different sizes: a moderate lava-fountain (1959 Episode of Kilauea Iki); an exceptionally high lava-fountain (1500 CE Keanakāko'i reticulite) and a basaltic sub-plinian eruption (1650 CE Keanakāko'i layer 6 scoria). Over this time period (~500 years) we find no major shifts in the major element composition of primary melts feeding the Kilauea magmatic system, and melt inclusions from all eruptions record similar maximum water (~0.7 wt% H2O) and CO2 (~300 ppm) contents, regardless of eruption magnitude. Co-variations between other volatile species, such as CO2 and S, do not support a role for excess volatiles (i.e. CO2) in the larger eruptions via ';gas-fluxing'. Our data therefore suggests that major shifts in eruptive magnitude are unlikely to be linked to either changes in the primary volatile content of the melts or excess gas supplied by open-system degassing of deeper melts. Rather we find evidence for significant variations in the shallow degassing behavior of magmas associated with the larger Keanakāko'i eruptions (sub-plinian and strong lava-fountaining events) compared to that from less vigorous moderate Kilauea Iki lava-fountaining events. On plots of CO2 versus H2O, Kilauea Iki MI's record volatile contents consistent with equilibrium degassing of magma rising from a depth of ~3 km. In contrast, the volatile contents of melts from the more explosive eruptions appear to be strongly affected by degassing processes at shallow depths (< 300 m), indicating variations in the ascent and storage of melts over this time-period. These changes in storage conditions may be linked to variations in the depth of the summit caldera, which was significantly greater during the older more explosive eruptive phases.
NASA Technical Reports Server (NTRS)
Simon, J. I.; Jordan, M. K.; Tappa, M. J.; Kohl, I. E.; Young, E. D.
2016-01-01
The chemical and isotopic compositions of calcium-aluminum-rich inclusions (CAIs) can be used to understand the conditions present in the protoplantary disk where they formed. The isotopic compositions of these early-formed nebular materials are largely controlled by chemical volatility. The isotopic effects of evaporation/sublimation, which are well explained by both theory and experimental work, lead to enrichments of the heavy isotopes that are often exhibited by the moderately refractory elements Mg and Si. Less well understood are the isotopic effects of condensation, which limits our ability to determine whether a CAI is a primary condensate and/or retains any evidence of its primordial formation history.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.; Bajt, S.
1993-01-01
Trace element abundances in 51 chondritic Interplanetary Dust Particles (IDP's) were measured by Synchrotron X-Ray Fluorescence (SXRF). The data allow us to determine an average composition of chondritic IDP's and to examine the questions of volatile loss during the heating pulse experienced on atmospheric entry and possible element addition due to contamination during atmospheric entry, stratospheric residence, and curation.
Volatility in GARCH Models of Business Tendency Index
NASA Astrophysics Data System (ADS)
Wahyuni, Dwi A. S.; Wage, Sutarman; Hartono, Ateng
2018-01-01
This paper aims to obtain a model of business tendency index by considering volatility factor. Volatility factor detected by ARCH (Autoregressive Conditional Heteroscedasticity). The ARCH checking was performed using the Lagrange multiplier test. The modeling is Generalized Autoregressive Conditional Heteroscedasticity (GARCH) are able to overcome volatility problems by incorporating past residual elements and residual variants.
Rust and schreibersite in Apollo 16 highland rocks - Manifestations of volatile-element mobility
NASA Technical Reports Server (NTRS)
Hunter, R. H.; Taylor, L. A.
1982-01-01
Rust is a manifestation of halogen and volatile-metal mobility in the lunar environment. Schreibersite is stable as the primary phosphorus-bearing phase in the highland rocks, a consequence of the inherently low oxygen fugacity within impact-generated melts. Apatite and whitlockite are subordinate in these rocks. The partitioning of P into phosphide in impact-generated melts, and the failure of phosphate to crystallize, effects a decoupling of the halogens and phosphorus. Of the Apollo 16 rocks, 63% contain rust, 70% contain schreibersite, and 52% contain both phases, thereby establishing the pervasiveness of volatile-elements throughout the highland rocks. The major portion of these volatile-bearing phases occur in impact melt-rocks or in breccia matrices. Rhabdites of schreibersite in some of the FeNi grains indicate that there is a meteoritic contribution to the phosphorus in these rocks. Cl/P2O5 ratios in lunar highland rocks are a function of secondary effects, with any apparent Cl-P correlations being coincidential. The present observations preclude the validity of models based on such elemental ratios in these rocks. The presence of rust in the clast laden matrices of pristine rocks indicates fugitive element localization. Pristine clasts may have been contaminated. The basis for a pristine volatile chemistry is questioned.
Uncovering the Chemistry of Earth-like Planets
NASA Astrophysics Data System (ADS)
Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.
2015-01-01
We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Yoshinori; Korenaga, Jun
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Miyazaki, Yoshinori; Korenaga, Jun
2017-11-01
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.
The Outsized Influence of a Primordial Lunar Atmosphere
NASA Astrophysics Data System (ADS)
Saxena, Prabal; Elkins-Tanton, Linda T.; Petro, Noah; Mandell, Avi
2016-10-01
Immediately following formation of the moon, its surface was subject to radiative influences from the Lunar Magma Ocean, an early Earth that radiated like a mid type M Dwarf Star, and the early Sun. These contributions have been hypothesized to have produced a vapor pressure atmosphere on the Moon. We model the early atmosphere of the Moon using an atmospheric model originally developed for Io. We also use a magma ocean crystallization model that finds that heating from the early Earth delays crystallization of the Lunar Magma Ocean and contributes to a moderate pressure and collapsing metal-dominated atmosphere on the earthside of the Moon until lid formation. The atmosphere is characterized by maximum pressures ~1 bar and strong horizontal supersonic winds that decreased as the Moon's orbital separation increased. Crustal and other compositional asymmetries may have been influenced by this atmosphere. The atmosphere transported significant amounts of mass horizontally and may have been a source for present day depletions and heterogeneities of moderately volatile elements on the lunar surface.
Melt focusing and geochemical evolution at mid-ocean ridges: simulations of reactive two-phase flow
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.; Hirschmann, M. M.
2017-12-01
The geochemical character of MORB and related off-axis volcanic products reflects the signature of chemical reservoirs in the mantle, the processes of melt transport from source to surface, or both. Focusing of partial melt to the ridge axis controls the proportion of deep, volatile- and incompatible-rich melts that contribute to MORB formation. However, the effect of volatiles, including CO2 and H2O, on melt segregation and focusing remains poorly understood. We investigate this transport using 2-D numerical simulations of reactive two-phase flow. The phases are solid mantle and liquid magma. Major elements and volatiles are represented by a system with 4 or 6 pseudo-components. This captures accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Trace element transport is computed for 5 idealized elements between highly incompatible and compatible behavior. Our results indicate that volatiles cause channelized melt transport, which leads to fluctuations in volume and composition of melt focused to the axis. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing. Up to 50% of deep, volatile-rich melts are not focused to the axis, but are emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of volatiles and incompatibles in the deep lithosphere. This has implications for volatile recycling by subduction, seismic properties of the oceanic LAB, and potential sources for seamount volcanism. Results from a suite of simulations, constrained by catalogued observational data [4,5,6], enable prediction of global MORB and volatile output and systematic variations of major, volatile and trace element concentrations as a function of mantle conditions and dynamic properties. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171.
A method for the solvent extraction of low-boiling-point plant volatiles.
Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne
2005-01-01
A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.
Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A
2015-10-22
Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. Copyright © 2015 Elsevier B.V. All rights reserved.
SNC meteorites and their implications for reservoirs of Martian volatiles
NASA Technical Reports Server (NTRS)
Jones, J. H.
1993-01-01
The SNC meteorites and the measurements of the Viking landers provide our only direct information about the abundance and isotopic composition of Martian volatiles. Indirect measurements include spectroscopic determinations of the D/H ratio of the Martian atmosphere. A personal view of volatile element reservoirs on Mars is presented, largely as inferred from the meteoritic evidence. This view is that the Martian mantle has had several opportunities for dehydration and is most likely dry, although not completely degassed. Consequently, the water contained in SNC meteorites was most likely incorporated during ascent through the crust. Thus, it is possible that water can be decoupled from other volatile/incompatible elements, making the SNC meteorites suspect as indicators of water inventories on Mars.
Oxidation/volatilization rates in air for candidate fusion reactor blanket materials, PCA and HT-9
NASA Astrophysics Data System (ADS)
Piet, S. J.; Kraus, H. G.; Neilson, R. M.; Jones, J. L.
1986-11-01
Large uncertainties exist in the quantity of neutron-induced activation products that can be mobilized in potential fusion accidents. The accidental combination of high temperatures and oxidizing conditions might lead to mobilization of a significant amount of activation products from structural materials. Here, the volatilization of constituents of PCA and HT-9 resulting form oxidation in air was investigated. Tests were conducted in flowing air at temperatures from 600 to 1300°C for 1, 5, or 20 h. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy. Molybdenum and manganese were the radiologically significant primary constituents most volatilized, suggesting that molybdenum and manganese should be minimized in fusion steel compositions. Higher chromium content appears beneficial in reducing hazards from mobile activation products. Scanning electron microscopy and energy dispersive spectroscopy were used to study the oxide layer on samples.
Growth history of Kilauea inferred from volatile concentrations in submarine-collected basalts
NASA Astrophysics Data System (ADS)
Coombs, Michelle L.; Sisson, Thomas W.; Lipman, Peter W.
2006-03-01
Major-element and volatile (H 2O, CO 2, S) compositions of glasses from the submarine flanks of Kilauea Volcano record its growth from pre-shield into tholeiite shield-stage. Pillow lavas of mildly alkalic basalt at 2600-1900 mbsl on the upper slope of the south flank are an intermediate link between deeper alkalic volcaniclastics and the modern tholeiite shield. Lava clast glasses from the west flank of Papau Seamount are subaerial Mauna Loa-like tholeiite and mark the contact between the two volcanoes. H 2O and CO 2 in sandstone and breccia glasses from the Hilina bench, and in alkalic to tholeiitic pillow glasses above and to the east, were measured by FTIR. Volatile saturation pressures equal sampling depths (10 MPa = 1000 m water) for south flank and Puna Ridge pillow lavas, suggesting recovery near eruption depths and/or vapor re-equilibration during down-slope flow. South flank glasses are divisible into low-pressure (CO 2 < 40 ppm, H 2O < 0.5 wt.%, S < 500 ppm), moderate-pressure (CO 2 < 40 ppm, H 2O > 0.5 wt.%, S 1000-1700 ppm), and high-pressure groups (CO 2 > 40 ppm, S > ˜1000 ppm), corresponding to eruption ≥ sea level, at moderate water depths (300-1000 m) or shallower but in disequilibrium, and in deep water (> 1000 m). Saturation pressures range widely in early alkalic to strongly alkalic breccia clast and sandstone glasses, establishing that early Kīlauea's vents spanned much of Mauna Loa's submarine flank, with some vents exceeding sea level. Later south flank alkalic pillow lavas expose a sizeable submarine edifice that grew concurrent with nearby subaerial alkalic eruptions. The onset of the tholeiitic shield stage is marked by extension of eruptions eastward and into deeper water (to 5500 m) during growth of the Puna Ridge. Subaerial and shallow water eruptions from earliest Kilauea show that it is underlain shallowly by Mauna Loa, implying that Mauna Loa is larger, and Kilauea smaller, than previously recognized.
Tomei Torres, Francisco A
2017-06-21
Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.
Possible role of plant volatiles in tolerance against huanglongbing in citrus
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
abstract Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas. PMID:26829496
Possible role of plant volatiles in tolerance against huanglongbing in citrus.
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas.
NASA Astrophysics Data System (ADS)
Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.
2004-12-01
Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.
Quantification of Methylated Selenium, Sulfur, and Arsenic in the Environment
Vriens, Bas; Ammann, Adrian A.; Hagendorfer, Harald; Lenz, Markus; Berg, Michael; Winkel, Lenny H. E.
2014-01-01
Biomethylation and volatilization of trace elements may contribute to their redistribution in the environment. However, quantification of volatile, methylated species in the environment is complicated by a lack of straightforward and field-deployable air sampling methods that preserve element speciation. This paper presents a robust and versatile gas trapping method for the simultaneous preconcentration of volatile selenium (Se), sulfur (S), and arsenic (As) species. Using HPLC-HR-ICP-MS and ESI-MS/MS analyses, we demonstrate that volatile Se and S species efficiently transform into specific non-volatile compounds during trapping, which enables the deduction of the original gaseous speciation. With minor adaptations, the presented HPLC-HR-ICP-MS method also allows for the quantification of 13 non-volatile methylated species and oxyanions of Se, S, and As in natural waters. Application of these methods in a peatland indicated that, at the selected sites, fluxes varied between 190–210 ng Se·m−2·d−1, 90–270 ng As·m−2·d−1, and 4–14 µg S·m−2·d−1, and contained at least 70% methylated Se and S species. In the surface water, methylated species were particularly abundant for As (>50% of total As). Our results indicate that methylation plays a significant role in the biogeochemical cycles of these elements. PMID:25047128
Volatile Concentrations and H-Isotope Composition of Unequilibrated Eucrites
NASA Technical Reports Server (NTRS)
Sarafian, Adam R.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Hauri, Erik H.; Righter, Kevin; Berger, Eve L.
2017-01-01
Eucrites are among the oldest and best studied asteroidal basalts (1). They represent magmatism that occurred on their parent asteroid, likely 4-Vesta, starting at 4563 Ma and continuing for approx. 30 Myr. Two hypotheses are debated for the genesis of eucrites, a magma ocean model (2), and a mantle partial melting model. In general, volatiles (H, C, F, Cl) have been ignored for eucrites and 4-Vesta, but solubility of wt% levels of H2O are possible at Vestan interior PT conditions. Targeted measurements on samples could aid our understanding considerably. Recent studies have found evidence of volatile elements in eucrites, but quantifying the abundance of volatiles remains problematic (6). Volatile elements have a disproportionately large effect on melt properties and phase stability, relative to their low abundance. The source of volatile elements can be elucidated by examining the hydrogen isotope ratio (D/H), as different H reservoirs have drastically different H isotope compositions. Recent studies of apatite in eucrites have shown that the D/H of 4-Vesta matches that of Earth and carbonaceous chondrites, however, the D/H of apatites may not represent the D/H of a primitive 4-Vesta melt due to the possibility of degassing prior to the crystallization of apatite. Therefore, the D/H of early crystallizing phases must be measured to determine if the D/H of 4-Vesta is equal to that of the Earth and carbonaceous chondrites.
NASA Astrophysics Data System (ADS)
Kamenetsky, V.; Sobolev, A.; McDonough, W.
2003-04-01
Late Cretaceous komatiites of Gorgona Island are unambiguous samples of ultra-mafic melts related to a hot and possibly 'wet' mantle plume. Despite significant efforts in studying komatiites, their volatile abundances remain largely unknown because of significant alteration of rocks and lack of fresh glasses. This work presents major, trace and volatile element data for 22 partially homogenised (at 1275oC and 1 bar pressure) melt inclusions in olivine (Fo 90.5-91.5) from a Gorgona Isl. komatiite (# Gor 94-3). Major element compositions (except FeO which is notably lower by up to 5 wt% as a result of post-entrapment re-equilibration) and most lithophile trace elements of melt inclusions are indistinguishable from the whole rock komatiites. With the exception of three inclusions that have low Na, H2O, Cl, F and S (likely compromised and degassed during heating) most compositions are characterised by relatively constant and high volatile abundances (H2O 0.4-0.8 wt%, Cl 0.02-0.03 wt%, B 0.8-1.4 ppm). These are interpreted as representative of original volatiles in parental melts because they correspond to the internal volatile pressure in the closed inclusions significantly exceeding 1 bar pressure of heating experiment. Although H2O is strongly enriched (PM-normalised H2O/Ce 10-17) its concentrations correlate well with many elements (e.g. Yb, Er, Y, Ti, Sr, Be). Other positive anomalies on the overall depleted (La/Sm 0.26-0.33) PM normalized compositional spectra of melt inclusions are shown by B (B/K 2.4-5.4) and Cl (Cl/K 11-16). Compositions of melt inclusions, when corrected for Fe loss and recalculated in equilibrium with host olivine, have high MgO (15.4-16.4 wt%; Mg# of 74) and substantial H2O (0.4-0.6 wt%) contents. This together with the data on other 'enriched' elements argues for the presence of previously unknown volatile-enriched component in the parental melts of Gorgona Isl. komatiites. We discuss contamination of magmas by altered oceanic crust in the plumbing system, the involvement of volatile-rich subduction related component(s) in the mantle source, and the geochemical control from residual garnet during the generation of komatiite primary melts.
Trace elements in ocean ridge basalts
NASA Technical Reports Server (NTRS)
Kay, R. W.; Hubbard, N. J.
1978-01-01
A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.
NASA Astrophysics Data System (ADS)
Rubin, Ken
1997-09-01
Recently, it has been reported that the element polonium degasses from mid-ocean ridge and seamount volcanoes during eruptions. Published and new observations on other volatile metal and metalloid elements can also be interpreted as indicating significant degassing of magmatic vapors during submarine eruptions. This process potentially plays an important role in the net transfer of chemical elements from erupting volcanoes to seawater in addition to that arising from sea floor hydrothermal systems. In this paper, a framework is constructed for predicting and assessing semiquantitatively the potential magnitude and chemical fingerprints in the water column of metal and metalloid degassing using (1) predictions from a summary of element volatilities during mafic subaerial volcanism worldwide and (2) limited data from submarine volcanic effusives. The latter include analyses of polonium and trace metals in near-volcano water masses sampled following a submarine eruption at Loihi seamount, Hawaii (1000 m bsl) in 1996. The element volatility predictions and observations show good agreement, considering the limited dataset. Some of the highest volatility main group and transition element enrichments in seawater over Loihi are predicted by the degassing mass transfer model I present. When expanded to cover all submarine volcanic activity, it is predicted that exit fluxes of these elements are up to 10 2-10 3 greater by degassing than by normal MOR hydrothermalism. In contrast, MOR exit fluxes of low volatility alkali and alkaline earth elements are likely 10 2-10 6 greater from hydrothermal inputs. Degassing inputs to the ocean are probably highly episodic, occurring almost entirely during eruptions; these are times of enhanced and abnormal hydrothermalism as well. Although major hydrothermal and degassing events may not be chemically recognizable in real water masses as wholly distinct entities, it is nevertheless possible to predict to what extent each process flavors the effluents of the other. Degassing at mid-ocean ridges may explain a variety of observations previously ascribed to complexities occurring during hydrothermal venting and/or fluid ascent in the buoyant hydrothermal plumes above ridges.
Volatile element content of the heterogeneous upper mantle
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.
2014-12-01
The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper mantle. Lavas from intra-transform faults and off-axis seamounts share a common mantle source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper mantle. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La<0.035) to enriched (EMORB: Th/La>0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived mantle heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) mantle melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper mantle is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual mantle source, but the product of magma mixing between D- and E-MORB. Finally we use the volatile to trace element ratios of our samples to estimate the volatile element budget of the end-member components of the upper mantle. [1] Niu, Y. et al. (2002) EPSL, 199, 327-345. [2] Kamenetsky, V. S. et al. (2000) J. Petrology, 41, 411-430.
A model of the primordial lunar atmosphere
NASA Astrophysics Data System (ADS)
Saxena, Prabal; Elkins-Tanton, Lindy; Petro, Noah; Mandell, Avi
2017-09-01
We create the first quantitative model for the early lunar atmosphere, coupled with a magma ocean crystallization model. Immediately after formation, the moon's surface was subject to a radiative environment that included contributions from the early Sun, a post-impact Earth that radiated like a mid-type M dwarf star, and a cooling global magma ocean. This radiative environment resulted in a largely Earth-side atmosphere on the Moon, ranging from ∼104 to ∼102 pascals, composed of heavy volatiles (Na and SiO). This atmosphere persisted through lid formation and was additionally characterized by supersonic winds that transported significant quantities of moderate volatiles and likely generated magma ocean waves. The existence of this atmosphere may have influenced the distribution of some moderate volatiles and created temperature asymmetries which influenced ocean flow and cooling. Such asymmetries may characterize young, tidally locked rocky bodies with global magma oceans and subject to intense irradiation.
A Model of the Primordial Lunar Atmosphere
NASA Technical Reports Server (NTRS)
Saxena, Prabal; Elkins-Tanton, Lindy; Petro, Noah; Mandell, Avi
2017-01-01
We create the first quantitative model for the early lunar atmosphere, coupled with a magma ocean crystallization model. Immediately after formation, the moon's surface was subject to a radiative environment that included contributions from the early Sun, a post-impact Earth that radiated like a mid-type M dwarf star, and a cooling global magma ocean. This radiative environment resulted in a largely Earth-side atmosphere on the Moon, ranging from approximately 10(exp 4) to approximately 10(exp 2) pascals, composed of heavy volatiles (Na and SiO). This atmosphere persisted through lid formation and was additionally characterized by supersonic winds that transported significant quantities of moderate volatiles and likely generated magma ocean waves. The existence of this atmosphere may have influenced the distribution of some moderate volatiles and created temperature asymmetries which influenced ocean flow and cooling. Such asymmetries may characterize young, tidally locked rocky bodies with global magma oceans and subject to intense irradiation.
NASA Astrophysics Data System (ADS)
Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei; Monteleone, Brian; Shimizu, Nobumichi
2016-10-01
The abundances of volatile elements in the Earth's mantle have been attributed to the delivery of volatile-rich material after the main phase of accretion. However, no known meteorites could deliver the volatile elements, such as carbon, nitrogen, hydrogen and sulfur, at the relative abundances observed for the silicate Earth. Alternatively, Earth could have acquired its volatile inventory during accretion and differentiation, but the fate of volatile elements during core formation is known only for a limited set of conditions. Here we present constraints from laboratory experiments on the partitioning of carbon and sulfur between metallic cores and silicate mantles under conditions relevant for rocky planetary bodies. We find that carbon remains more siderophile than sulfur over a range of oxygen fugacities; however, our experiments suggest that in reduced or sulfur-rich bodies, carbon is expelled from the segregating core. Combined with previous constraints, we propose that the ratio of carbon to sulfur in the silicate Earth could have been established by differentiation of a planetary embryo that was then accreted to the proto-Earth. We suggest that the accretion of a Mercury-like (reduced) or a sulfur-rich (oxidized) differentiated body--in which carbon has been preferentially partitioned into the mantle--may explain the Earth's carbon and sulfur budgets.
NASA Astrophysics Data System (ADS)
Harris, N. B. W.; Marriner, G. F.
1980-10-01
A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.
NASA Astrophysics Data System (ADS)
Guo, Haihao; Audétat, Andreas
2017-02-01
In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in felsic natural samples may be identified by Cu, Se, Te and Cd-enrichment in magmatic sulfides, and by As, Se, Cd and Bi-enrichment in magmatic apatite.
Metal-silicate partitioning and the light element in the core (Invited)
NASA Astrophysics Data System (ADS)
Wood, B. J.; Wade, J.; Tuff, J.
2009-12-01
Most attempts to constrain the concentrations of “light” elements in the Earth’s core rely either on cosmochemical arguments or on arguments based on the densities and equations of state of Fe-alloys containing the element of concern. Despite its utility, the latter approach yields a wide range of permissible compositions and hence weak constraints. The major problem with the cosmochemical approach is that the abundances in the bulk Earth of all the candidate “light” elements- H, C, O, Si and S are highly uncertain because of their volatile behavior during planetary accretion. In contrast, refractory elements appear to be in approximately CI chondritic relative abundances in the Earth. This leads to the potential for using the partitioning of refractory siderophile elements between the mantle and core to constrain the concentrations of light elements in the core. Recent experimental metal-silicate partitioning data, coupled with mantle abundances of refractory siderophile elements (e.g. Wade and Wood, EPSL v.236, 78—95,2005; Kegler et. al. EPSL v.268, 28-40,2008) have shown that the core segregated from the mantle under high pressure conditions (~40 GPa). If a wide range of elements, from very siderophile, (e.g. Mo) through moderately (Ni, Co, W) to weakly siderophile (V, Cr, Nb, Si) are considered, the Earth also appears to have become more oxidized during accretion. Metal-silicate partitioning of some elements is also sensitive to the light element content of the metal. For example, Nb and W partitioning depend strongly on carbon, Mo on silicon and Cr on sulfur. Given the measured mantle abundances of the refractory elements, these observations enable the Si and C contents of the core to be constrained at ~5% and <2% respectively while partitioning is consistent with a cosmochemically-estimated S content of ~2%.
Mix or un-mix? Trace element segregation from a heterogeneous mantle, simulated.
NASA Astrophysics Data System (ADS)
Katz, R. F.; Keller, T.; Warren, J. M.; Manley, G.
2016-12-01
Incompatible trace-element concentrations vary in mid-ocean ridge lavas and melt inclusions by an order of magnitude or more, even in samples from the same location. This variability has been attributed to channelised melt flow [Spiegelman & Kelemen, 2003], which brings enriched, low-degree melts to the surface in relative isolation from depleted inter-channel melts. We re-examine this hypothesis using a new melting-column model that incorporates mantle volatiles [Keller & Katz 2016]. Volatiles cause a deeper onset of channelisation: their corrosivity is maximum at the base of the silicate melting regime. We consider how source heterogeneity and melt transport shape trace-element concentrations in basaltic lavas. We use both equilibrium and non-equilibrium formulations [Spiegelman 1996]. In particular, we evaluate the effect of melt transport on probability distributions of trace element concentration, comparing the inflow distribution in the mantle with the outflow distribution in the magma. Which features of melt transport preserve, erase or overprint input correlations between elements? To address this we consider various hypotheses about mantle heterogeneity, allowing for spatial structure in major components, volatiles and trace elements. Of interest are the roles of wavelength, amplitude, and correlation of heterogeneity fields. To investigate how different modes of melt transport affect input distributions, we compare melting models that produce either shallow or deep channelisation, or none at all.References:Keller & Katz (2016). The Role of Volatiles in Reactive Melt Transport in the Asthenosphere. Journal of Petrology, http://doi.org/10.1093/petrology/egw030. Spiegelman (1996). Geochemical consequences of melt transport in 2-D: The sensitivity of trace elements to mantle dynamics. Earth and Planetary Science Letters, 139, 115-132. Spiegelman & Kelemen (2003). Extreme chemical variability as a consequence of channelized melt transport. Geochemistry Geophysics Geosystems, http://doi.org/10.1029/2002GC000336
Condensation and Evaporation of Solar System Materials
NASA Astrophysics Data System (ADS)
Davis, A. M.; Richter, F. M.
2003-12-01
It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The absence of isotopic fractionation in a volatile element-depleted condensed phase is more a measure of the degree to which the system maintained thermodynamic equilibrium than a diagnostic of whether the path involved condensation or evaporation.The pervasive volatile element depletion of inner solar system planets and the asteroidal parent bodies of most meteorites is a major, but by no means the only reason to consider evaporation and condensation processes in the early history of the solar system. Chondrules appear to have been rapidly heated and then cooled over a period of minutes to hours (see Chapter 1.07). If this occurred in a gas of solar composition under nonequilibrium conditions, chondrules should have partially evaporated and an isotopic fractionation record should remain. The absence of such effects can be used to chonstrain the conditions of chondrule formation (e.g., Alexander et al., 2000; Alexander and Wang, 2001). There is good petrologic, chemical, and isotopic evidence suggesting that certain solar system materials such as the coarse-grained CAIs are likely evaporation residues. For example, the type B CAIs are often found to have correlated enrichments in the heavy isotopes of silicon and magnesium ( Figure 1), and these isotopic fractionations are very much like those of evaporation residues produced in laboratory experiments. Condensation also appears to be a major control of elemental zoning patterns in metal grains in CH chondrites (Meibom et al., 1999, 2001; Campbell et al., 2001; Petaev et al., 2001; Campbell et al., 2002). A more contemporary example is the isotopic and chemical compositions of deep-sea spherules that have been significantly affected by evaporative loss during atmospheric entry ( Davis et al., 1991a; Davis and Brownlee, 1993; Herzog et al., 1994, 1999; Xue et al., 1995; Alexander et al., 2002). (7K)Figure 1. Isotopic mass fractionation effects in CAIs. Most coarse-grained CAIs have enrichments of a few ‰ amu-1 in magnesium and silicon, whereas "fractionation and unknown nuclear" (FUN) CAIs are isotopically heavier. The volatile element depletion patterns of planetary size objects and the chemical and isotopic composition of numerous smaller objects such as chondrules and CAIs provide the motivation to consider evaporation and condensation process in the early solar system. The key point is that the processes that led to chondrules and planets appear to have occurred under conditions very close to equilibrium, whereas the processes that led to CAIs involved significant departures from equilibrium.
NASA Technical Reports Server (NTRS)
Weisberg, M. K.; Kimura, M.
2004-01-01
The CB chondrites are metal-rich chondritic meteorites having characteristics that sharply distinguish them from other chondrites [1], including (1) high metal abundances (60-80 vol.% metal), (2) most chondrules have cryptocrystalline or barred textures, (3) moderately volatile lithophile elements are highly depleted and (4) nitrogen is enriched in the heavy isotope. Similarities in mineral composition, as well as oxygen and nitrogen isotopic compositions of the CB to CR and CH chondrites are consistent with derivation of these chondrite groups from a common nebular reservoir, hence their grouping in the CR clan [1, 2, 3, 4]. CB chondrites have been divided into CBa (Gujba, Bencubbin, Weatherford) and CBb (Hammadah al Hamra 237 and QUE 94411) subgroups based on petrologic characteristics.
A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...
Asteroidal impacts and the origin of terrestrial and lunar volatiles
NASA Astrophysics Data System (ADS)
Albarede, Francis; Ballhaus, Chris; Blichert-Toft, Janne; Lee, Cin-Ty; Marty, Bernard; Moynier, Frédéric; Yin, Qing-Zhu
2013-01-01
Asteroids impacting the Earth partly volatilize, partly melt (O'Keefe, J.D., Ahrens, T.J. [1977]. Proc. Lunar Sci. Conf. 8, 3357-3374). While metal rapidly segregates out of the melt and sinks into the core, the vaporized material orbits the Earth and eventually rains back onto its surface. The content of the mantle in siderophile elements and their chondritic relative abundances hence is accounted for, not by the impactors themselves, as in the original late-veneer model (Chou, C.L. [1978]. Proc. Lunar Sci. Conf. 9, 219-230; Morgan, J.W. et al. [1981]. Tectonophysics 75, 47-67), but by the vapor resulting from impacts. The impactor's non-siderophile volatiles, notably hydrogen, are added to the mantle and hydrosphere. The addition of late veneer may have lasted for 130 Ma after isolation of the Solar System and probably longer, i.e., well beyond the giant lunar impact. Constraints from the stable isotopes of oxygen and other elements suggest that, contrary to evidence from highly siderophile elements, ˜4% of CI chondrites accreted to the Earth. The amount of water added in this way during the waning stages of accretion, and now dissolved in the deep mantle or used to oxidize Fe in the mantle and the core, may correspond to 10-25 times the mass of the present-day ocean. The Moon is at least 100 times more depleted than the Earth in volatile elements with the exception of some isolated domains, such as the mantle source of 74220 pyroclastic glasses, which appear to contain significantly higher concentrations of water and other volatiles.
Volatiles in melt inclusions from Icelandic magmas
NASA Astrophysics Data System (ADS)
Nichols, A. R.; Wysoczanski, R. J.; Carroll, M. R.
2006-12-01
Melt inclusions hosted in olivine crystals from the glassy rims of subglacially erupted pillow basalts on Iceland have been analysed for volatiles, major elements and trace elements. Volatile measurements were undertaken using Fourier-Transform InfraRed spectroscopy utilising a novel technique which enables unexposed and much smaller inclusions than were previously possible to be analysed. Major elements were measured using electron microprobe and trace elements by laser ablation-inductively coupled plasma-mass spectrometry. Comparison between initial results from the inclusions and the compositions of the bulk glasses show that the inclusions are less evolved and contain more H2O at the same MgO content. In addition many of the inclusions have higher H2O/K2O than their bulk glasses and some even contain CO2 (up to 629 ppm), which is below detection limits in the bulk glasses. This indicates that these inclusions are less affected by degassing. Two inclusions have extreme H2O/K2O (> 10), possibly suggesting that they have assimilated hydrous crustal material. The volatile and major element compositions of the bulk glasses have been used to suggest that the Iceland mantle plume is wet. However, trace element measurements show that enriched Iceland magmas have lower H2O/Ce than the adjacent Reykjanes Ridge. This could reflect syn-eruptive degassing or mixing between undegassed and recycled degassed magmas. Alternatively Iceland magmas could be derived from the EM (enriched mantle) component, which is believed to represent recycled oceanic crust. It is suggested that this material is efficiently dehydrated during the subduction process, so even though it has an enriched character, H2O is relatively depleted. As a result, EM melts have higher absolute H2O contents than mid- ocean ridge basalts (MORB), but lower H2O/Ce (or other H2O-incompatible element ratios), which has led to EM plumes being termed `dampspots'. The inclusion data will be presented in this context. Their compositions will show how the melt has evolved, enabling the relative roles of degassing, crystallisation and assimilation in the volatile systematics to be examined.
The role of chondrules in nebular fractionations of volatiles and other elements
NASA Technical Reports Server (NTRS)
Grossman, J. N.
1994-01-01
For at least 30 years, cosmochemists have been grappling with the question of how and why groups of geochemically and volatility related elements became fractionated in the major chondrite groups. At least five relatively independent fractionations are known. Virtually everyone who has thought about these facts has been attempted to attribute at least some of the fractionations to the physical separation or mixing of the visible components. By far the most abundant of these components in meteorites is chondrules, and indeed chondrules have long been suspected of playing a direct role in fractionation of volatile elements. The question addressed here is whether chondrules formed before or after chemical components became separated is of fundamental importance to our understanding of the early solar system, as the answer constrains how, when, where, and from what chondrules formed, and tells us about how materials were processed in the nebula.
CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Laura; Fegley, Bruce, E-mail: laura_s@levee.wustl.ed, E-mail: bfegley@levee.wustl.ed
2009-10-01
We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds suchmore » as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.« less
Barton, H.N.
1986-01-01
Trace levels of chalcophile elements that form volatile sulfide minerals are determined in stream sediments and in the nonmagnetic fraction of a heavy-mineral concentrate of stream sediments by a carrier distillation emission spectrographic method. Photographically recorded spectra of samples are visually compared with those of synthetic standards for the two sample types. Rock and soil samples may also be analyzed by comparison with the stream-sediment standards. A gallium oxide spectrochemical carrier/buffer enhances the early emission of the volatile elements. Detection limits in parts per million attained are: Sb 5, As 20, Bi 0.1, Cd 1, Cu 1, Pb 2, Ag 0.1, Zn 2, and Sn 0.1. A comparison with other methods of analysis, total-burn emission and atomic absorption spectroscopy, shows good correlation for standard reference for materials and samples from a variety of geologic terranes. ?? 1986.
NASA Astrophysics Data System (ADS)
Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.
2017-12-01
The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.
NASA Astrophysics Data System (ADS)
Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.
2016-05-01
The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing elements (e.g., Li and Cu).
Evidence of a Pre-eruptive Fluid Phase for the Millennium Eruption, Paektu Volcano, North Korea
NASA Astrophysics Data System (ADS)
Iacovino, K.; Sisson, T. W.; Lowenstern, J. B.
2014-12-01
We present initial results of a study of comenditic to trachytic melt inclusions from the Millennium Eruption (ME) of Paektu volcano (AD 946; VEI≥7; 25 km3 DRE). Paektu volcano (aka Changbaishan) is a remote and poorly studied intraplate stratovolcano whose 37 km2 caldera is bisected by the political border between North Korea and China, limiting studies of its proximal deposits. ME magmas are predominantly phenocryst-poor (≤3 vol%) comendites plus a volumetrically minor late-stage, more phenocryst-rich (10-20 vol%) trachyte. Sizeable (100-500 µm diameter) glassy but bubble-bearing melt inclusions are widespread in anorthoclase and hedenbergite phenocrysts, as well as in rarer quartz and fayalite phenocrysts. Comparing the relative enrichments of incompatible volatile and non-volatile elements in melt inclusions along a liquid line of descent shows decreasing volatile/Zr ratios suggesting the partitioning of volatiles into a fluid phase. This suggests that current gas-yield estimates (Horn & Schminke, 2000) for the ME, based on the petrologic method (difference in volatiles between melt inclusions and matrix glass), could be severe underestimates. Establishing the composition and quantity of a pre-eruptive fluid phase is the primary goal of this study and has implications for eruption triggering and for modeling the climatic effects of one of the largest eruptions in the last 10,000 years. Including results from Horne and Schminke (2000), melt inclusions from within a single pumice fall unit show a wide range in dissolved volatile contents and magma chemistries. Concentrations of H2O are moderate (2-3.5 wt% via FTIR), with Cl and F ranging from 500-4600 ppm and 1100-4700 ppm (via EPMA). CO2 is below the detection limit of 2 ppm (FTIR with N2 purge) in bubble-bearing melt inclusions, but is detectable (≤56 ppm) in melt inclusions homogenized at 100 MPa and 850-900 °C for ~30 min (conditions also leading to reduction of dissolved H2O to 0.6-2 wt%). Characterization of a co-existing fluid phase in ME magmas is being investigated with further melt inclusion analyses, mineral-melt-fluid equilibrium calculations, and phase equilibrium experiments on fluid-saturated liquid lines of descent and on volatile solubilities of the ME trachyite-comendite suite.
Siderophile Volatile Element Partitioning during Core Formation.
NASA Astrophysics Data System (ADS)
Loroch, D. C.; Hackler, S.; Rohrbach, A.; Klemme, S.
2017-12-01
Since the nineteen sixties it is known, that the Earth's mantle is depleted relative to CI chondrite in numerous elements as a result of accretion and core-mantle differentiation. Additionally, if we take the chondritic composition as the initial solar nebular element abundances, the Earth lacks 85 % of K and up to 98 % of other volatiles. However one potentially very important group of elements has received considerably less attention in this context and these elements are the siderophile but volatile elements (SVEs). SVEs perhaps provide important information regarding the timing of volatile delivery to Earth. Especially for the SVEs the partitioning between metal melt and silicate melt (Dmetal/silicate) at core formation conditions is poorly constrained, never the less they are very important for most of the core formation models. This study is producing new metal-silicate partitioning data for a wide range of SVEs (S, Se, Te, Tl, Ag, As, Au, Cd, Bi, Pb, Sn, Cu, Ge, Zn, In and Ga) with a focus on the P, T and fO2dependencies. The initial hypothesis that we are aiming to test uses the accretion of major portions of volatile elements while the core formation was still active. The key points of this study are: - What are the effects of P, T and fO2 on SVE metal-silicate partioning? - What is the effect of compositional complexity on SVE metal-silicate partioning? - How can SVE's D-values fit into current models of core formation? The partitioning experiments will be performed using a Walker type multi anvil apparatus in a pressure range between 10 and 20 GPa and temperatures of 1700 up to 2100 °C. To determine the Dmetal/silicate values we are using a field emission high-resolution JEOL JXA-8530F EPMA for major elements and a Photon Machines Analyte G2 Excimer laser (193 nm) ablation system coupled to a Thermo Fisher Element 2 single-collector ICP-MS (LA-ICP-MS) for the trace elements. We recently finished the first sets of experiments and can provide the corresponding datasets. Based on the general understanding of Dmetal/silicate values we expect to depend on the composition, in this particular case this means a variation in sulfur and carbon content of the core composition, and also a change of the redox conditions. The major goal however is to derive a model of core formation on Earth that includes and also explains the SVEs.
Isotopic fractionation of volatile species during bubble growth in magmas
NASA Astrophysics Data System (ADS)
Watson, E. B.
2016-12-01
Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.
Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements
NASA Technical Reports Server (NTRS)
Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.
2013-01-01
The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.
Meyer, N K; Ristovski, Z D
2007-11-01
The volatile and hygroscopic properties of diesel nanoparticles were simultaneously determined under a range of engine loads using the volatilization and humidification tandem differential mobility analyzer (VH-TDMA). Additionally, the VH-TDMA was used to measure changes in the hygroscopic behavior of the heterogeneously nucleated diesel nanoparticles as one or more semivolatile species were removed via thermal evaporation or decomposition. Particles produced at high loads exhibited high, dual-step volatility, while those particles produced at low loads were less volatile and exhibited continuous volatilization curves. The hygroscopic growth factor of the particles was shown to be load dependent with high-load particles exhibiting growth factors similar to that of ammonium sulfate. At 85% relative humidity, particles produced at moderate loads exhibited growth factors of approximately 1.1 while low-load particles were shown to be hydrophobic. Growth factors and volatilization temperatures measured for high-load particles clearly indicate that ternary nucleation is involved in particle formation.
Correlating wine quality indicators to chemical and sensory measurements.
Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E; Heymann, Hildegarde
2015-05-12
Twenty-seven commercial Californian Cabernet Sauvignon wines of different quality categories were analyzed with sensory and chemical methods. Correlations between five quality proxies-points awarded during a wine competition, wine expert scores, retail price, vintage, and wine region-were correlated to sensory attributes, volatile compounds, and elemental composition. Wine quality is a multi-faceted construct, incorporating many different layers. Depending on the quality proxy studied, significant correlations between quality and attributes, volatiles and elements were found, some of them previously reported in the literature.
Growth history of Kilauea inferred from volatile concentrations in submarine-collected basalts
Coombs, Michelle L.; Sisson, Thomas W.; Lipman, Peter W.
2006-01-01
Major-element and volatile (H2O, CO2, S) compositions of glasses from the submarine flanks of Kilauea Volcano record its growth from pre-shield into tholeiite shield-stage. Pillow lavas of mildly alkalic basalt at 2600–1900 mbsl on the upper slope of the south flank are an intermediate link between deeper alkalic volcaniclastics and the modern tholeiite shield. Lava clast glasses from the west flank of Papau Seamount are subaerial Mauna Loa-like tholeiite and mark the contact between the two volcanoes. H2O and CO2 in sandstone and breccia glasses from the Hilina bench, and in alkalic to tholeiitic pillow glasses above and to the east, were measured by FTIR. Volatile saturation pressures equal sampling depths (10 MPa = 1000 m water) for south flank and Puna Ridge pillow lavas, suggesting recovery near eruption depths and/or vapor re-equilibration during down-slope flow. South flank glasses are divisible into low-pressure (CO2 <40 ppm, H2O < 0.5 wt.%, S <500 ppm), moderate-pressure (CO2 <40 ppm, H2O >0.5 wt.%, S 1000–1700 ppm), and high-pressure groups (CO2 >40 ppm, S ∼1000 ppm), corresponding to eruption ≥ sea level, at moderate water depths (300–1000 m) or shallower but in disequilibrium, and in deep water (>1000 m). Saturation pressures range widely in early alkalic to strongly alkalic breccia clast and sandstone glasses, establishing that early Kīlauea's vents spanned much of Mauna Loa's submarine flank, with some vents exceeding sea level. Later south flank alkalic pillow lavas expose a sizeable submarine edifice that grew concurrent with nearby subaerial alkalic eruptions. The onset of the tholeiitic shield stage is marked by extension of eruptions eastward and into deeper water (to 5500 m) during growth of the Puna Ridge. Subaerial and shallow water eruptions from earliest Kilauea show that it is underlain shallowly by Mauna Loa, implying that Mauna Loa is larger, and Kilauea smaller, than previously recognized.Keywords
NASA Astrophysics Data System (ADS)
Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling
2016-03-01
We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in volatile and trace element contents. Our results are consistent with previously proposed geodynamical processes acting at mid-ocean ridges and with the generation of the E-DMM. Our observations indicate that the D-DMM and E-DMM have (1) a relatively constant CO2/Cl ratio of ∼57 ± 8, and (2) volatile and ITE element abundance patterns that can be related by a simple melting event, supporting the hypothesis that the E-DMM is a recycled oceanic lithosphere mantle metasomatized by low degree melts. Our calculation and model give rise to a Pacific upper mantle with volatile content of CO2 = 235 ppm, H2O = 191 ppm, F = 13 ppm, Cl = 5 ppm, and S = 114 ppm.
2011-10-01
IGNITION OF FUELS WITH DIFFERENT CETANE NUMBER AND VOLATILITY Chandrasekharan Jayakumar Wayne State University Detroit, MI, USA. Ziliang Zheng...VOLATILITY 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Eric Sattler; Walter Bryzik; Chandrasekharan Jayakumar ...diagnostics, chemical kinetics, and empirical validation”, SAE 1999-01-0509 8. Nargunde, J., Jayakumar , C., et. al., “Comparison between Combustion
Arndt, N.; Chauvel, C.; Czamanske, G.; Fedorenko, V.
1998-01-01
Rocks of two distinctly different magma series are found in a ???4000-m-thick sequence of lavas and tuffs in the Maymecha River basin which is part of the Siberian flood-volcanic province. The tholeiites are typical low-Ti continental flood basalts with remarkably restricted, petrologically evolved compositions. They have basaltic MgO contents, moderate concentrations of incompatible trace elements, moderate fractionation of incompatible from compatible elements, distinct negative Ta(Nb) anomalies, and ??Nd values of 0 to + 2. The primary magmas were derived from a relatively shallow mantle source, and evolved in large crustal magma chambers where they acquired their relatively uniform compositions and became contaminated with continental crust. An alkaline series, in contrast, contains a wide range of rock types, from meymechite and picrite to trachytes, with a wide range of compositions (MgO from 0.7 to 38 wt%, SiO2 from 40 to 69 wt%, Ce from 14 to 320 ppm), high concentrations of incompatible elements and extreme fractionation of incompatible from compatible elements (Al2O3/TiO2 ??? 1; Sm/Yb up to 11). These rocks lack Ta(Nb) anomalies and have a broad range of ??Nd values, from -2 to +5. The parental magmas are believed to have formed by low-degree melting at extreme mantle depths (>200 km). They bypassed the large crustal magma chambers and ascended rapidly to the surface, a consequence, perhaps, of high volatile contents in the primary magmas. The tholeiitic series dominates the lower part of the sequence and the alkaline series the upper part; at the interface, the two types are interlayered. The succession thus provides evidence of a radical change in the site of mantle melting, and the simultaneous operation of two very different crustal plumbing systems, during the evolution of this flood-volcanic province. ?? Springer-Verlag 1998.
Space exploration and the history of solar-system volatiles
NASA Technical Reports Server (NTRS)
Fanale, F. P.
1976-01-01
The thermochemical history of volatile substances in all solar-system planets, satellites, and planetoids is discussed extensively. The volatiles are viewed as an interface between the abiotic and biotic worlds and as a key to the history of bodies of the solar system. A flowsheet of processes and states is exhibited. Differences in bulk volatiles distribution between the planetary bodies and between the interior, surface, and atmosphere of each body are considered, as well as sinks for volatiles in degassing. The volatiles-rich Jovian and Saturnian satellites, the effect of large-planet magnetosphere sweeps on nearby satellites, volatiles of asteroids and comets, and the crucial importance of seismic, gravity, and libration data are treated. A research program encompassing analysis of the elemental and isotopic composition of rare gas in atmospheres, assay of volatiles-containing phases in regoliths, and examination of present or past atmospheric escape/accretion processes is recommended.
Non-volatile, solid state bistable electrical switch
NASA Technical Reports Server (NTRS)
Williams, Roger M. (Inventor)
1994-01-01
A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.
Methods for detecting the mobility of trace elements during medium-temperature pyrolysis
Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola
1983-01-01
The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.
Venus climate stability and volcanic resurfacing rates
NASA Technical Reports Server (NTRS)
Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.
1994-01-01
The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.
Johnson, J. R.; Feldman, W.C.; Lawrence, D.J.; Maurice, S.; Swindle, T.D.; Lucey, P.G.
2002-01-01
Initial studies of neutron spectrometer data returned by Lunar Prospector concentrated on the discovery of enhanced hydrogen abundances near both lunar poles. However, the nonpolar data exhibit intriguing patterns that appear spatially correlated with surface features such as young impact craters (e.g., Tycho). Such immature crater materials may have low hydrogen contents because of their relative lack of exposure to solar wind-implanted volatiles. We tested this hypothesis by comparing epithermal* neutron counts (i.e., epithermal -0.057 ?? thermal neutrons) for Copernican-age craters classified as relatively young, intermediate, and old (as determined by previous studies of Clementine optical maturity variations). The epithermal* counts of the crater and continuous ejecta regions suggest that the youngest impact materials are relatively devoid of hydrogen in the upper 1 m of regolith. We also show that the mean hydrogen contents measured in Apollo and Luna landing site samples are only moderately well correlated to the epithermal* neutron counts at the landing sites, likely owing to the effects of rare earth elements. These results suggest that further work is required to define better how hydrogen distribution can be revealed by epithermal neutrons in order to understand more fully the nature and sources (e.g., solar wind, meteorite impacts) of volatiles in the lunar regolith.
NASA Astrophysics Data System (ADS)
Das Gupta, Rahul; Banerjee, Anupam; Goderis, Steven; Claeys, Philippe; Vanhaecke, Frank; Chakrabarti, Ramananda
2017-10-01
The ∼1.88 km diameter Lonar impact crater formed ∼570 ka ago and is an almost circular depression hosted entirely in the Poladpur suite of the ∼65 Ma old basalts of the Deccan Traps. To understand the effects of impact cratering on basaltic targets, commonly found on the surfaces of inner Solar System planetary bodies, major and trace element concentrations as well as Nd and Sr isotopic compositions were determined on a suite of selected samples composed of: basalts, a red bole sample, which is a product of basalt alteration, impact breccia, and impact glasses, either in the form of spherules (<1 mm in diameter) or non-spherical impact glasses (>1 mm and <1 cm). These data include the first highly siderophile element (HSE) concentrations for the Lonar spherules. The chemical index of alteration (CIA) values for the basalts and impact breccia (36.4-42.7) are low while the red bole sample shows a high CIA value (55.6 in the acid-leached sample), consistent with its origin by aqueous alteration of the basalts. The Lonar spherules are classified into two main groups based on their CIA values. Most spherules show low CIA values (Group 1: 34.7-40.5) overlapping with the basalts and impact breccia, while seven spherules show significantly higher CIA values (Group 2: >43.0). The Group 1 spherules are further subdivided into Groups 1a and 1b, with Group 1a spherules showing higher Ni and mostly higher Cr compared to the Group 1b spherules. Iridium and Cr concentrations of the spherules are consistent with the admixture of 1-8 wt% of a chondritic impactor to the basaltic target rocks. The impactor contribution is most prominent in the Group 1a and Group 2 spherules, which show higher Ni/Co, Ni/Cr and Cr/Co ratios compared to the target basalts. In contrast, the Group 1b spherules show major and trace element compositions that overlap with those of the impact breccia and are characterized by high EFTh (Enrichment Factor for Th defined as the Nb-normalized concentration of Th relative to that of the average basalt) as well as fractionated La/Sm(N), and higher large ion lithophile element (LILE) concentrations compared to the basalts. The relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the impact breccia and non-spherical impact glasses compared to the target basalts are consistent with melting and mixing of the Precambrian basement beneath the Deccan basalt with up to 15 wt% contribution of the basement to these samples. Variations in the moderately siderophile element (MSE) concentration ratios of the impact breccia as well as all the spherules are best explained by contributions from three components - a chondritic impactor, the basaltic target rocks at Lonar and the basement underlying the Deccan basalts. The large variations in concentrations of volatile elements like Zn and Cu and correlated variations of EFCu-EFZn, EFPb-EFZn, EFK-EFZn and EFNa-EFZn, particularly in the Group 1a spherules, are best explained by evaporation-condensation effects during impact. While most spherules, irrespective of their general major and trace element composition, show a loss in volatile elements (e.g., Zn and Cu) relative to the target basalts, some spherules, mainly of Group 1, display enrichments in these elements that are interpreted to reflect the unique preservation of volatile-rich vapour condensates resulting from geochemical fractionation in a vertical direction within the vapour cloud.
NASA Astrophysics Data System (ADS)
Ustunisik, G. K.; Ebel, D. S.; Nekvasil, H.
2014-12-01
The chemical variability of chondrule volatile element contents provide a wealth of information on the processes that shaped the early solar system and its compositional heterogeneity. An essential observation is that chondrule melts contain very low alkalies and other volatile elements (e.g., Cl). The reason for this depletion is the combined effects of cooling rates (10 to 1000K/h), the small size of chondrules, and their high melting temperatures (~1700 to 2100 K) resulting in extensive loss of volatiles at canonical pressures (e.g., 10-4bar). However, we observe some chondrules with significant concentrations of volatiles (Na, Cl), that differ markedly from chondrules dominated by refractory elements. Could such heterogeneity arise from loss of alkalis and Cl to a gas phase that itself later condenses, thereby yielding variations in volatile enrichments in chondrules? Does Cl enhance volatility of the alkalis to varying extents? Experiments on Cl-bearing and Cl-free melts of equivalent composition for 10 min, 4 h, and 6 h reveal systematic effects of Cl on alkali volatility. Cl-bearing melts lose 48% of initial Na2O, 66% of K2O, 96% of Cl within the first 10 minutes of degassing. Then the amount of alkali loss decreases due to the absence of Cl. Cl-free melts loses only 15% of initial Na2O and 33% K2O. After 4 hours, melts lose 1/3 of initial Na2O and 1/2 of K2O. For both systems, Na2O is more compatible in the melt relative to K2O. Therefore, the vapor given off has a K/Na ratio higher than the melt through time in spite of the much higher initial Na abundance in the melt. Enhanced vaporization of alkalis from Cl-bearing melt suggests that Na and K evaporate more readily as volatile chlorides than as monatomic gases. Cl-free initial melts with normative plagioclase of An50Ab44Or6 evolved into slightly normal zoned ones (An49Ab50Or1) while Cl-bearing initial melts normative to albitic plagioclase (An46Ab50Or4) evolved to reverse zoned ones (An54Ab45Or1). The vapor phase over Cl-bearing chondrule melts may have a bimodal character over time. The heteregeneous volatile contents of chondrules may result from quenching of melt droplets at different stages of repeated heating, chondrule fragment recycling, and recondensation of exsolved volatiles.
Long-term anaerobic digestion of food waste stabilized by trace elements.
Zhang, Lei; Jahng, Deokjin
2012-08-01
The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.
Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona
Hinkle, M.E.; Dilbert, C.A.
1984-01-01
Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.
Reconstructing mantle volatile contents through the veil of degassing
NASA Astrophysics Data System (ADS)
Tucker, J.; Mukhopadhyay, S.; Gonnermann, H. M.
2014-12-01
The abundance of volatile elements in the mantle reveals critical information about the Earth's origin and evolution such as the chemical constituents that built the Earth and material exchange between the mantle and exosphere. However, due to magmatic degassing, volatile element abundances measured in basalts usually do not represent those in undegassed magmas and hence in the mantle source of the basalts. While estimates of average mantle concentrations of some volatile species can be obtained, such as from the 3He flux into the oceans, volatile element variability within the mantle remains poorly constrained. Here, we use CO2-He-Ne-Ar-Xe measurements in basalts and a new degassing model to reconstruct the initial volatile contents of 8 MORBs from the Mid-Atlantic Ridge and Southwest Indian Ridge that span a wide geochemical range from depleted to enriched MORBs. We first show that equilibrium degassing (e.g. Rayleigh degassing), cannot simultaneously fit the measured CO2-He-Ne-Ar-Xe compositions in MORBs and argue that kinetic fractionation between bubbles and melt lowers the dissolved ratios of light to heavy noble gas species in the melt from that expected at equilibrium. We present a degassing model (after Gonnermann and Mukhopadhyay, 2007) that explicitly accounts for diffusive fractionation between melt and bubbles. The model computes the degassed composition based on an initial volatile composition and a diffusive timescale. To reconstruct the undegassed volatile content of a sample, we find the initial composition and degassing timescale which minimize the misfit between predicted and measured degassed compositions. Initial 3He contents calculated for the 8 MORB samples vary by a factor of ~7. We observe a correlation between initial 3He and CO2 contents, indicating relatively constant CO2/3He ratios despite the geochemical diversity and variable gas content in the basalts. Importantly, the gas-rich popping rock from the North Atlantic, as well as the average mantle ratio computed from the ridge 3He flux and independently estimated CO2 content fall along the same correlation. This observation suggests that undegassed CO2 and noble gas concentrations can be reconstructed in individual samples through measurement of noble gases and CO2 in erupted basalts.
Rowan, Daryl D.
2011-01-01
Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243
NASA Astrophysics Data System (ADS)
Bebout, Gray E.
The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.
Thermal breeder fuel enrichment zoning
Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.
1992-01-01
A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.
Efficient growth of HTS films with volatile elements
Siegal, M.P.; Overmyer, D.L.; Dominguez, F.
1998-12-22
A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.
Volatile Content of 4-Vesta: Evidence from Unequilibrated Eucrites
NASA Technical Reports Server (NTRS)
Sarafian, A. R.; Nielsen, S. G.; Marschall, H. R.; Gaetani, G. A.; Hauri, E. H.; Righter, K.; Berger, E. L.
2017-01-01
Eucrites are a class of basaltic meteorites that, along with the howardites and diogenites, likely derive from the asteroid 4-Vesta. This asteroid is depleted in moderately volatile elements relative to the Earth and carbonaceous chondrites. Extrapolation of this depletion trend predicts that bulk silicate 4-Vesta (BSV) contains at most 250-1000 µg/g H2O, which is approximately a factor of two lower than the H2O content of Earth. To obtain more accurate H2O and F estimates for BSV, we examined four unequilibrated antarctic meteorites, Yamato(Y)-793548, Y-82210, Y-75011, and Y-74450, by EPMA and SIMS. Pyroxenes contain MgO-rich cores and FeO-rich rims, consistent with primary magmatic zoning. Volatile concentrations generally follow patterns expected for growth zoning with lower values in the cores and higher in the rims. These features indicate that thermal metamorphism and other post-crystallization processes did not significantly perturb the volatile contents of these unequilibrated eucrite pyroxenes. We used these data to derive best estimates for the BSV H2O and F content based on experimentally determined pyroxene-melt partition coefficients and models for magma generation on Vesta. In addition, we measured D/H in the early crystallizing pyroxenes and late crystallzing apatites. We find that the D/H of pyroxene and apatite are within error of one another as well as previous measurements of apatite in equilibrated eucrites. These results imply that degassing was minimal or did not fractionate D/H. Degassing may have been limited if eucrites were shallowly emplaced sills or dykes, or the total H2O content of the magmas was too low for vapor saturation. An alternative mechanism for limited D/H fractionation is that degassing did occur, but the H2/H2O of the exsolved vapor was approximately 15:85, as predicted from experiments.
The origin of volatiles in the Earth's mantle
NASA Astrophysics Data System (ADS)
Hier-Majumder, Saswata; Hirschmann, Marc M.
2017-08-01
The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.
Clark, J.R.; Viets, J.G.
1981-01-01
The Methyl isobutyl ketone-Amine synerGistic Iodkte Complex (MAGIC) extraction system offers the advantage that a large number of trace elements can be rapidly determined with a single sample preparation procedure. However, many of the elements extracted by the MAGIC system form volatile organometallic halide salts when the organic extract is heated in the graphite furnace. High concentrations of some elements such as Cu and Zn extracted by the system from anomalous geological samples produce serious interferences when certain other elements are determined by flameless atomic absorption. Stripping systems have been developed using solutions of HNO3, H2SO4, and CH3COOH individually or combined with H2O2 in order to circumvent these problems. With these systems most of the elements in the organic extract can be sequentially stripped into an aqueous phase. Organometallic volatilization and the most serious interelement interferences, therefore, can be eliminated by stripping with various combinations of reagents in a series of steps.
Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility
NASA Astrophysics Data System (ADS)
Verma, Monika; Hertel, Thomas; Diffenbaugh, Noah
2014-05-01
Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.
Thomson, Wallace B.
2004-03-16
A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.
Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes.
Ollivier, Patrick R L; Bahrou, Andrew S; Marcus, Sarah; Cox, Talisha; Church, Thomas M; Hanson, Thomas E
2008-12-01
Microbial resistance to tellurite, an oxyanion of tellurium, is widespread in the biosphere, but the geochemical significance of this trait is poorly understood. As some tellurite resistance markers appear to mediate the formation of volatile tellurides, the potential contribution of tellurite-resistant microbial strains to trace element volatilization in salt marsh sediments was evaluated. Microbial strains were isolated aerobically on the basis of tellurite resistance and subsequently examined for their capacity to volatilize tellurium in pure cultures. The tellurite-resistant strains recovered were either yeasts related to marine isolates of Rhodotorula spp. or gram-positive bacteria related to marine strains within the family Bacillaceae based on rRNA gene sequence comparisons. Most strains produced volatile tellurides, primarily dimethyltelluride, though there was a wide range of the types and amounts of species produced. For example, the Rhodotorula spp. produced the greatest quantities and highest diversity of volatile tellurium compounds. All strains also produced methylated sulfur compounds, primarily dimethyldisulfide. Intracellular tellurium precipitates were a major product of tellurite metabolism in all strains tested, with nearly complete recovery of the tellurite initially provided to cultures as a precipitate. Different strains appeared to produce different shapes and sizes of tellurium containing nanostructures. These studies suggest that aerobic marine yeast and Bacillus spp. may play a greater role in trace element biogeochemistry than has been previously assumed, though additional work is needed to further define and quantify their specific contributions.
van Wesenbeeck, Ian; Driver, Jeffrey; Ross, John
2008-04-01
Volatilization of chemicals can be an important form of dissipation in the environment. Rates of evaporative losses from plant and soil surfaces are useful for estimating the potential for food-related dietary residues and operator and bystander exposure, and can be used as source functions for screening models that predict off-site movement of volatile materials. A regression of evaporation on vapor pressure from three datasets containing 82 pesticidal active ingredients and co-formulants, ranging in vapor pressure from 0.0001 to >30,000 Pa was developed for this purpose with a regression correlation coefficient of 0.98.
MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR
Balent, R.
1963-03-12
This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)
Headridge, J B; Smith, D R
1971-03-01
An induction furnace coupled to a Unicam SP90 atomic-absorption spectrophotometer is described for the determination of traces of volatile elements in solutions and volatile matrices. The apparatus has been used to obtain calibration graphs for 1-20 and 50-750 ng of cadmium in microl-volumes of solution, the 228.8 and 326.2 nm resonance lines respectively being used, and to determine cadmium in 5-mg samples of zinc-base metals within the concentration range 5-400 microg g by using the less sensitive 326-2-nm line. A furnace temperature of 1,350 degrees was used. Data on accuracy and precision are presented. The apparatus could readily be used to determine trace elements in volatile materials at concentrations of 10-1000 ng/g .
NASA Astrophysics Data System (ADS)
Murphy, Ryan; Supertiger Collaboration
2017-01-01
We report Galactic Cosmic Ray (GCR) abundances of elements from 26Fe to 40Zr measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. SuperTIGER measures charge (Z) and energy (E) using a combination of three scintillator and two Cherenkov detectors, and employs a scintillating fiber hodoscope for event trajectory determination. These observations resolve elemental abundances in this charge range with single-element resolution and good statistics. We also derived GCR source abundances, which support a model of cosmic-ray origin in which the source material consists of a mixture of 19-6+ 11 % material from massive stars and 81% normal interstellar medium (ISM) material with solar system abundances. The results also show a preferential acceleration, ordered by atomic mass (A), of refractory elements over volatile elements by a factor of 4. Both the refractory and volatile elements show a mass-dependent enhancement with similar mass dependence. (now AIP Congressional Science Fellow).
Chemical characteristics and origin of H chondrite regolith breccias
NASA Technical Reports Server (NTRS)
Lipschutz, M. E.; Biswas, S.; Mcsween, H. Y., Jr.
1983-01-01
Petrologic data and contents of Ag, Bi, Cd, Co, Cs, Ga, In, Rb, Se, Te, Tl and Zn-trace elements spanning the volatility/mobility range-in light and dark portions of H chondrite regolith breccias and L chondrite fragmental breccias are reported. The chemical/petrologic characteristics of H chondrite regolith breccias differ from those of nonbrecciated chondrites or fragmental breccias. Petrologic characteristics and at least some trace element contents of H chondrite regolith breccias reflect primary processes; contents of the most volatile/mobile elements may reflect either primary or secondary processing, possibly within layered H chondrite parent object(s). Chemical/petrologic differences existed in different regions of the parent(s). Regoligh formation and gardening and meteoroid compaction were not so severe as to alter compositions markedly.
Volatile Element Geochemistry in the Lower Atmosphere of Venus
NASA Technical Reports Server (NTRS)
Schaefer, L.; Fegley, B., Jr.
2004-01-01
We computed equilibrium abundances of volatile element compounds as a function of altitude in Venus lower atmosphere. The elements included are generally found in volcanic gases and sublimates on Earth and may be emitted in volcanic gases on Venus or volatilized from its hot surface. We predict: 1) PbS, Bi2S3, or possibly a Pb-Bi sulfosalt are the radar bright heavy metal frost in the Venusian highlands; 2) It should be possible to determine Venus' age by Pb-Pb dating of PbS condensed in the Venusian highlands, which should be a representative sample of Venusian lead; 3) The gases HBr, PbCl2, PbBr2, As4O6, As4S4, Sb4O6, BiSe, InBr, InCl, Hg, TlCl, TlBr, SeS, Se2-7, HI, I, I2, ZnCl2, and S2O have abundances greater than 0.1 ppbv in our nominal model and may be spectroscopically observable; 4) Cu, Ag, Au, Zn, Cd, Ge, and Sn are approx. 100 % condensed at the 740 K (0 km) level on Venus.
Curtin, G.C.; King, H.D.; Mosier, E.L.
1974-01-01
Exudates from conifer trees, presumably consisting largely of volatile materials, were sampled at 19 subalpine localitites in Colorado and Idaho where anomalous amounts of several metals were determined in vegetation and mull during previous geochemical testing. The trees sampled were lodgepole pine (Pinus contorta), Engelmann spruce (Picea engelmannii) and Douglas fir (Pseudotsuga menziesii). The condensed exudates were passed through No. 40 Whatman filters, and through 5-micron, 0.45-micron, and 0.05-micron average-pore-diameter membrane filters, evaporated to dryness, and each residue was ashed and analyzed by a semiquantitative spectrographic method. The ashed residues of the exudates contain lithium, beryllium, boron, sodium, magnesium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, arsenic, strontium, yttrium, zirconium, molybdenum, silver, lead, bismuth, cadmium, tin, antimony, barium, and lanthanum. The presence of these elements suggests that volatile exudates from vegetation are a medium for the transport of elements in the biogeochemical cycle in subalpine environments. Thus, air sampling and analysis of aerosols derived from volatile exudates may be a useful tool in geochemical exploration. ?? 1974.
Composition and quality of coals in the Huaibei Coalfield, Anhui, China
Zheng, Lingyun; Liu, Gaisheng; Wang, L.; Chou, C.-L.
2008-01-01
The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust. ?? 2007 Elsevier B.V. All rights reserved.
Volatilization of oxides during oxidation of some superalloys at 1200 C
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1977-01-01
Volatilization of oxides during cyclic oxidation of commercial Nichrome, Inconel 750, Rene 41, Stellite 6B, and GE-1541 was studied at 1200 C in static air. Quantitative analysis of oxide vapor deposits revealed that oxides of tungsten, molybdenum, niobium, manganese, and chromium volatilized preferentially from the oxide scales. Aluminum and silicon were not detected in vapor deposits. For all the alloys except GE-1541 chromium was found to be the main metallic element in the oxide scales.
Volatilization of oxides during oxidation of some superalloys at 1200 C
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1977-01-01
Volatilization of oxides during cyclic oxidation of commercial Nichrome, Inconel 750, Rene 41, Stellite 6B, and GE-1541 was studied at 1200 C in static air. Quantitative analysis of oxide vapor deposits revealed that oxides of tungsten, molybdenum, niobium, manganese, and chromium volatilized preferentially from the oxide scales. Aluminum and silicon were not detected in vapor deposits. For all the alloys except GE-1541, chromium was found to be the main metallic element in the oxide scales.
NASA Technical Reports Server (NTRS)
Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.; Chidester, B.
2016-01-01
During the early stages of the Solar System formation, especially during the T-Tauri phase, the Sun emitted strong solar winds, which are thought to have expelled a portion of the volatile elements from the inner solar system. It is therefore usually believed that the volatile depletion of a planet is correlated with its proximity to the Sun. This trend was supported by the K/Th and K/U ratios of Venus, the Earth, and Mars. Prior to the MESSENGER mission, it was expected that Mercury is the most volatile-depleted planet. However, the Gamma Ray Spectrometer of MESSENGER spacecraft revealed elevated K/U and K/Th ratios for the surface of Mercury, much higher than previous expectations. It is possible that the K/Th and K/U ratios on the surface are not a reliable gauge of the bulk volatile content of Mercury. Mercury is enriched in sulfur and is the most reduced of the terrestrial planets, with oxygen fugacity (fO2) between IW-6.3 and IW-2.6 log units. At these particular compositions, U, Th and K behave differently and can become more siderophile or chalcophile. If significant amounts of U and Th are sequestered in the core, the apparent K/U and K/Th ratios measured on the surface may not represent the volatile budget of the whole planet. An accurate determination of the partitioning of these elements between silicate, metal, and sulfide phases under Mercurian conditions is therefore essential to better constrain Mercury's volatile content and assess planetary formation models.
Integrated semiconductor-magnetic random access memory system
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)
2001-01-01
The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.
NASA Technical Reports Server (NTRS)
Thordarson, Th.; Self, S
1996-01-01
In this study we attempt to quantify the amount of S, Cl and F released by the 1300 cu km Roza member (approximately 14.7 Ma) of the Columbia River Basalt Group, which was produced by a moderate-size flood basalt eruption in the mid-Miocene. Our results are the first indication of the potential atmospheric SO2 yield from a flood basalt eruption, and indicate the mechanism by which flood basalt eruptions may have seriously affected the environment. Glass inclusions in phenocrysts and quenched glass in products from various stages of the eruption were analyzed for concentrations of S, Cl and F and major elements. Glass inclusions contain 1965 +/- 110 ppm S, 295 +/- 65 ppm Cl and 1310 +/- 110 ppm F. Groundmass glass of Roza dike selvages contains considerably lower concentrations: 1110 +/- 90 ppm S, 245 +/- 30 ppm Cl and 1020 +/- 25 ppm F. Scoria clasts from near vent deposits contain 665 +/- 75 ppm S, 175 +/- 5 ppm Cl and 950 +/- 20 ppm F, and the groundmass glass of lava selvages contains 520 +/- 30 ppm S, 190 +/- 30 ppm Cl and 890 +/- 55 ppm F. In crystalline lava, the concentrations are 195 ppm S, 100 ppm Cl and 830 ppm F. Volatile element concentrations in these samples represent the progress of degassing through the eruption and can be used to estimate the potential amount of the volatiles S, Cl and F released by the magma into the atmosphere, as well as to evaluate the amount liberated by various phases of the eruption. The total amount of volatiles released by the Roza eruption is estimated to have been approximately 12,420 MtSO2, approximately 710 MtHCI and approximately 1780 MtHF. The Roza magma liberated approximately 9620 MtSO, (77% of the total volatile mass released), approximately 400 MtHCI (56%) and approximately 1450 MtHF (81%) at the vents and lofted by the eruption columns to altitudes of 7-13 km. Degassing of the lava is estimated to have released an additional approximately 2810 MtSO2, approximately 310 MtHCI and approximately 330 MtHF. The Roza eruption is likely to have lasted for approximately 10 years, indicating an annual H2SO4-mass loading of approximately 1800 Mt. Thus, the atmospheric perturbations associated with the Roza eruption may have been of the magnitude predicted for a severe "nuclear" or "volcanic" winter, but lasting up to a decade or more.
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Nagle, A.; Forsyth, D. W.; Niu, Y.
2011-12-01
Off-axis seamounts and intra-transform lavas provide more direct geochemical information of the mantle than axial lavas. These smaller volumes of melts undergo lower extent of crystal fractionation and mixing compared to basalts erupting within the ridge axis due to a lack of long-lived magma chambers or along axis melt migration. Therefore, their study provide not only a more reliable approach to determine the volatile content of the intrinsic components forming the Earth's upper mantle, but also help constrain mantle convection, heterogeneity, and crustal recycling. Samples from the Quebrada-Discovery-Gofar (QDG) transform fault system (EPR 3°-5°S) and from northern EPR seamounts (5°-15° N) were collected during KN182-13 (R/V Knorr) and RAIT 02 (R/V Thomas Washington) expeditions, respectively. 159 submarine glasses were analyzed for major elements, trace elements, and volatile elements by triplicate analyses, as well as for Sr and Nd isotopes in a subset of samples. The QDG and northern EPR seamounts have similar trace element and isotopic composition that is consistent with melting of two-component mantle common to both regions. The degree of trace element enrichment (e.g. Th/La), isotopic composition, and depth of melt segregation (e.g. Sm/Yb) have a positive correlation and range from ultra depleted to relatively enriched compositions. In order to investigate the primary volatile content of submarine glasses we first considered shallow level processes, such as volatile degassing, sulfide saturation and interaction of melt with hydrothermally altered material. The vapor-melt equilibrium pressure (Dixon et al., 1995) indicates that the majority of the samples were super-saturated in CO2-H2O vapor at the pressure of eruption, which implies rapid magma ascent rate that prevented complete CO2 degassing. Samples that were sulfide saturated (Liu et al., 2007) and contaminated by seawater or seawater derived material (high Cl/K) were filtered out. F/Nd, Cl/K, and H2O/Ce ratios in our samples positively correlate with Th/La, Sm/Yb, and isotope ratios suggesting that the enriched mantle component is also enriched in volatile contents. S/Dy ratios are the exception, with relatively constant values in both enriched, and depleted basalts. Although it has been argued that correlation between Sr, Nd and Pb isotope ratios and fractionation corrected major element in seamount samples indicate different mantle lithologies under the mid-ocean ridges, we will show that such correlation might be an artifact of ignoring the effect of water during the correction for fractional crystallization. [1] Dixon et al. (1995) J. Pet., 36, 1607-1631. [2] Liu et al. (2007) Geochim Cosmochim Ac., 71, 1783-1799.
Leverage effect and its causality in the Korea composite stock price index
NASA Astrophysics Data System (ADS)
Lee, Chang-Yong
2012-02-01
In this paper, we investigate the leverage effect and its causality in the time series of the Korea Composite Stock Price Index from November of 1997 to September of 2010. The leverage effect, which can be quantitatively expressed as a negative correlation between past return and future volatility, is measured by using the cross-correlation coefficient of different time lags between the two time series of the return and the volatility. We find that past return and future volatility are negatively correlated and that the cross correlation is moderate and decays over 60 trading days. We also carry out a partial correlation analysis in order to confirm that the negative correlation between past return and future volatility is neither an artifact nor influenced by the traded volume. To determine the causality of the leverage effect within the decay time, we additionally estimate the cross correlation between past volatility and future return. With the estimate, we perform a statistical hypothesis test to demonstrate that the causal relation is in favor of the return influencing the volatility rather than the other way around.
Toxicity and bioavailability of metals in the Missouri River adjacent to a lead refinery
Chapman, Duane C.; Allert, Ann L.; Fairchild, James F.; May, Thomas W.; Schmitt, Christopher J.; Callahan, Edward V.
2001-01-01
This study is an evaluation of the potential environmental impacts of contaminated groundwater from the ASARCO metals refining facility adjacent to the Missouri River in Omaha, Nebraska. Surface waters, sediments, and sediment pore waters were collected from the Burt-Izard drain, which transects the facility, and from the Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic contaminants, and the toxicity of the waters was evaluated with the Ceriodaphnia dubia 7-day test. Concentrations of several elemental contaminants were highly elevated in the groundwater, but not in river sediment pore waters. Lead concentrations were moderately elevated in whole sediment at one site, but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to C. dubia, causing 100% mortality. Even at the lowest groundwater concentration tested (6.25%) C. dubia survival was reduced; however, at that concentration, reproduction was not significantly different from upstream porewater reference samples. Sediment pore waters were not toxic, except reproduction in pore water collected from one downstream site was somewhat reduced. The decrease in reproduction could not be attributed to measured elemental contaminants.
Non-volatile copolymer compositions for fabricating gel element microarrays
Golova, Julia B.; Chernov, Boris K.; Perov, Alexander N.; Reynolds, Jennifer; Linger, Yvonne L.; Kukhtin, Alexander; Chandler, Darrell P.
2011-01-01
By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer (2-(hydroxyethyl) methacrylamide; HEMAA) was used that possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers. Probe immobilization efficiency within the new polymer was 55%, equivalent to that obtained with acrylamide (AA) and methacrylamide (MA) monomers. Non-specific binding of single stranded targets was equivalent for all monomers. Increasing cross-linker chain length improved hybridization kinetics and end-point signal intensities relative to N,N-methylenebisacrylamide (Bis). The new copolymer formulation was successfully applied to a model orthopox array. Because HEMAA greatly simplifies gel element array manufacture, we expect it (in combination with new cross-linkers described herein) to find widespread application in microarray science. PMID:22033291
Volatile organic compounds and trace metal level in some beers collected from Romanian market
NASA Astrophysics Data System (ADS)
Voica, Cezara; Kovacs, Melinda; Vadan, Marius
2013-11-01
Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.
NASA Astrophysics Data System (ADS)
Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G.
1998-05-01
We have used an ArF excimer laser coupled to a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) for the measurement of a range of elements during excavation of a deepening ablation pit in a synthetic glass (NIST 612). Analyte behaviour shows progressive volatile element enrichment at shallow hole depths, with a change to refractory element enrichment as the ablation pit deepens further. Examination of ablation pit morphology and the surface condensate deposited around the ablation site reveals the importance of sequential condensation of refractory, then volatile phases from the cooling plasma plume after the end of the laser pulse. We interpret the observed element fractionation behaviour to reflect a change in ablation processes from photothermal dominated to plasma dominated mechanisms. The development of the surface deposit is greatly reduced by ablating in an ambient atmosphere of He instead of Ar and is accompanied by a two- to four-fold increase in ICP-MS sensitivity.
NASA Astrophysics Data System (ADS)
Creon, L.; Levresse, G.; Carrasco Nuñez, G.
2016-12-01
Volatile contents and magma degassing behavior are known to affect the style, frequency, and intensity of near-surface magmatic processes. For this reason, much effort have been devoted to characterize the volatile evolution of shallow magmatic systems to better constrain volcanic history. Silicate melt inclusions (SMI) represent samples of melt that were isolated from the bulk magma at depth, thus preserving the PTX conditions of the pre-eruptive material. SMI are often affected by the formation of a bubble after trapping; this is a natural consequence of the PVTX properties of crystal-melt-volatile systems. Previous workers have recognized that bubble formation is an obstacle, which affects the interpretation of SMI trapping conditions based only on analysis of the glass phase. Indeed, they explained that bubbles can contain a significant percentage of the volatiles, particularly for those with low solubility in the melt (e.g. CO2). In this study, we propose to define the pre-eruptive PTX conditions of Los Humeros magma chamber using SMI from the various eruption events within 460 and 30 Ka. An innovative analytical coupling has been used in order to determine: (1) the volume of the SMI glass and bubble, using high resolution 3D X-ray microtomography; (2) the density and composition of the bubbles, using Raman spectroscopy; (3) the volatile element contents in glass, using NanoSIMS; and, (4) the major elements composition of the glass, using EPMA. The recalculated volatile concentrations of the total SMI (glass + bubble), illustrate clearly that the volatile content determinations using only the glass phase, underestimate drastically the total volatile content and therefore induce significant error on the determination of the pre-eruptive volcanic budget and on the constrain on the volcanic and thermal history. This study had moreover highlighted the complex evolution of Los Humeros composite magma chamber and, gave constrains for geothermal exploration purpose.
Technical product bulletin: this moderately volatile oil spill control agent is for use in cleanups on fresh or salt water. Treatment may reduce the emulsification and dispersion of oil, and its penetration into porous soils and sandy beaches.
Volatilization and Precipitation of Tellurium by Aerobic, Tellurite-Resistant Marine Microbes▿ †
Ollivier, Patrick R. L.; Bahrou, Andrew S.; Marcus, Sarah; Cox, Talisha; Church, Thomas M.; Hanson, Thomas E.
2008-01-01
Microbial resistance to tellurite, an oxyanion of tellurium, is widespread in the biosphere, but the geochemical significance of this trait is poorly understood. As some tellurite resistance markers appear to mediate the formation of volatile tellurides, the potential contribution of tellurite-resistant microbial strains to trace element volatilization in salt marsh sediments was evaluated. Microbial strains were isolated aerobically on the basis of tellurite resistance and subsequently examined for their capacity to volatilize tellurium in pure cultures. The tellurite-resistant strains recovered were either yeasts related to marine isolates of Rhodotorula spp. or gram-positive bacteria related to marine strains within the family Bacillaceae based on rRNA gene sequence comparisons. Most strains produced volatile tellurides, primarily dimethyltelluride, though there was a wide range of the types and amounts of species produced. For example, the Rhodotorula spp. produced the greatest quantities and highest diversity of volatile tellurium compounds. All strains also produced methylated sulfur compounds, primarily dimethyldisulfide. Intracellular tellurium precipitates were a major product of tellurite metabolism in all strains tested, with nearly complete recovery of the tellurite initially provided to cultures as a precipitate. Different strains appeared to produce different shapes and sizes of tellurium containing nanostructures. These studies suggest that aerobic marine yeast and Bacillus spp. may play a greater role in trace element biogeochemistry than has been previously assumed, though additional work is needed to further define and quantify their specific contributions. PMID:18849455
Carbon and sulfur distributions and abundances in lunar fines
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Moore, G. W.
1973-01-01
Total sulfur abundances have been determined for 20 Apollo 14, 15, and 16 soil samples and one Apollo 14 breccia. Sulfur concentrations range from 474 to 844 microg S/g. Volatilization experiments on selected samples have been carried out using step-wise heating. Sample residues have been analyzed for their total carbon and sulfur abundances to establish the material balance in lunar fines for these two elements. Volatilization experiments have established that between 31 to 54 microg C/g remains in soils which have been heated at 1100 C for 24 hours under vacuum. The residual carbon is believed to be indigenous lunar carbon whereas all forms of carbon lost from samples below 1100 C is extralunar carbon. Total carbon and sulfur abundances taken from the literature have been used to show the depletion of volatile elements with increasing grade for the Apollo 14 breccias.
NASA Technical Reports Server (NTRS)
Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.
2016-01-01
During formation of the solar system, the Sun produced strong solar winds, which stripped away a portion of the volatile elements from the forming planets. Hence, it was expected that planets closest to the sun, such as Mercury, are more depleted in volatile elements in comparison to other terrestrial planets. However, the MESSENGER mission detected higher than expected K/U and K/Th ratios on Mercury's surface, indicating a volatile content between that of Mars and Earth. Our experiments aim to resolve this discrepancy by experimentally determining the partition coefficients (D(sup met/sil)) of K, U, and Th between metal and silicate at varying pressure (1 to 5 GPa), temperature (1500 to 1900 C), oxygen fugacity (IW-2.5 to IW-6.5) and sulfur-content in the metal (0 to 33 wt%). Our data show that U, Th, and K become more siderophile with decreasing fO2 and increasing sulfur-content, with a stronger effect for U and Th in comparison to K. Using these results, the concentrations of U, Th, and K in the bulk planet were calculated for different scenarios, where the planet equilibrated at a fO2 between IW-4 and IW-7, assuming the existence of a FeS layer, between the core and mantle, with variable thickness. These models show that significant amounts of U and Th are partitioned into Mercury's core. The elevated superficial K/U and K/Th values are therefore only a consequence of the sequestration of U and Th into the core, not evidence of the overall volatile content of Mercury.
Little Chondrules and Giant Impacts
NASA Astrophysics Data System (ADS)
Taylor, G. J.
2005-10-01
Alexander (Sasha) Krot (University of Hawaii), Yuri Amelin (University of Toronto), Pat Cassen (SETI Institute), and Anders Meibom (Museum National d'Histoire Naturelle, Paris) studied and then extracted frozen droplets of molten silicate (chondrules) from unusual meteorites rich in metallic iron-nickel. Called CB (Bencubbin-like) chondrites, these rare but fascinating meteorites contain chondrules with different properties than those in other types of chondrites. Most notably, the chondrules contain very small concentrations of volatile elements and variable concentrations of refractory elements. (Volatile elements condense from a gas at a relatively low temperature, or are boiled out of solids or liquids at relatively low temperature. Refractory elements are the opposite.) Some of the metal grains in CB chondrites are chemically zoned, indicating that they formed by condensation in a vapor cloud. The most intriguing feature of chondrules in CB chondrites is their relatively young age. Lead-lead isotopic dating of chondrules separated from two CB chondrites show that they formed 5 million years after formation of the first solids in the solar system (calcium-aluminum-rich inclusions), which is about at least two million years after formation of other chondrules, and after energetic events in the solar nebula stopped. Krot and his colleagues suggest that the CB chondrules formed as the result of an impact between Moon- to Mars-sized protoplanets. Such impacts were so energetic that huge amounts of material were vaporized and then condensed as chondrules or chemically zoned metal grains. This event enriched refractory elements and depleted volatile elements. Such large impacts appear to play important roles in planet formation, including the formation of the Moon.
System for loading executable code into volatile memory in a downhole tool
Hall, David R.; Bartholomew, David B.; Johnson, Monte L.
2007-09-25
A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.
Mars and Earth: origin and abundance of volatiles.
Anders, E; Owen, T
1977-11-04
Mars, like Earth, may have received its volatiles in the final stages of accretion, as a veneer of volatile-rich material similar to C3V carbonaceous chondrites. The high (40)Ar/(36)Ar ratio and low (36)Ar abundance on Mars, compared to data for other differentiated planets, suggest that Mars is depleted in volatiles relative to Earth-by a factor of 1.7 for K and 14 other moderately volatile elements and by a factor of 35 for (36)Ar and 15 other highly volatile elements. Using these two scaling factors, we have predicted martian abundances of 31 elements from terrestrial abundances. Comparison with the observed (36)Ar abundance suggests that outgassing on Mars has been about four times less complete than on Earth. Various predictions of the model can be checked against observation. The initial abundance of N, prior to escape, was about ten times the present value of 0.62 ppb, in good agreement with an independent estimate based on the observed enhancement in the martian (15)N/(14)N ratio (78,79). The initial water content corresponds to a 9-m layer, close to the value of >/=13 m inferred from the lack of an (18)O/(16)O fractionation (75). The predicted crustal Cl/S ratio of 0.23 agrees exactly with the value measured for martian dust (67); we estimate the thickness of this dust layer to be about 70 m. The predicted surface abundance of carbon, 290 g/cm(2), is 70 times greater than the atmospheric CO(2) value, but the CaCO(3) content inferred for martian dust (67) could account for at least one-quarter of the predicted value. The past atmospheric pressure, prior to formation of carbonates, could have been as high as 140 mbar, and possibly even 500 mbar. Finally, the predicted (129)Xe/(132)Xe ratio of 2.96 agrees fairly well with the observed value of 2.5(+2)(-1) (85). From the limited data available thus far, a curious dichotomy seems to be emerging among differentiated planets in the inner solar system. Two large planets (Earth and Venus) are fairly rich in volatiles, whereas three small planets (Mars, the moon, and the eucrite parent body-presumably the asteroid 4 Vesta) are poorer in volatiles by at least an order of magnitude. None of the obvious mechanisms seems capable of explaining this trend, and so we can only speculate that the same mechanism that stunted the growth of the smaller bodies prevented them from collecting their share of volatiles. But why then did the parent bodies of the chondrites and shergottites fare so much better? One of the driving forces behind the exploration of the solar system has always been the realization that these studies can provide essential clues to the intricate network of puzzles associated with the origin of life and its prevalence in the universe. In our own immediate neighborhood, Mars has always seemed to be the planet most likely to harbor extraterrestrial life, so the environment we have found in the vicinity of the two Viking landers is rather disappointing in this context. But the perspective we have gained through the present investigation suggests that this is not a necessary condition for planets at the distance of Mars from a solar-type central star. In other words, if it turns out that Mars is completely devoid of life, this does not mean that the zones around stars in which habitable planets can exist are much narrower than has been thought (114). Suppose Mars had been a larger planet-the size of Earth or Venus-and therefore had accumulated a thicker veneer and had also developed global tectonic activity on the scale exhibited by Earth. A much larger volatile reservoir would now be available, there would be repeated opportunities for tapping that reservoir, and the increased gravitational field would limit escape from the upper atmosphere. Such a planet could have produced and maintained a much thicker atmosphere, which should have permitted at least an intermittently clement climate to exist. How different would such a planet be from the present Mars? Could a stable, warm climate be maintained? It seems conceivable that an increase in the size of Mars might have compensated for its greater distance from the sun and that the life zone around our star would have been enlarged accordingly.
IN SITU HIGH TEMPORAL RESOLUTION ANALYSIS OF ELEMENTAL MERCURY IN NATURAL WATER (R827915)
Volatilization of elemental Hg represents an important Hg flux for many aquatic systems. In order to model this flux accurately, it is necessary to measure elemental Hg concentrations in air and water, as well as meteorological variables. Up to now, temporal r...
Volatile inventory and early evolution of the planetary atmospheres
NASA Astrophysics Data System (ADS)
Marov, Mikhail Ya.; Ipatov, Sergei I.
Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-02-01
A nuclear reactor core composed of a number of identical elements of solid moderator material fitted together was designed. Each moderator element is apertured to provide channels for fuel and coolant. The elements have an external shape which permits them to be stacked in layers with similar elements, with the surfaces of adjacent elements fitting and in contact with each other. The cross section of the element is of a general hexagonal shape with identations and protrusions, so that the elements can be fitted together. The described core should not be liable to fracture under transverse loading. Specific arrangements ofmore » moderator elements and fuel and coolant apertures are described. (M.P.G.)« less
NASA Astrophysics Data System (ADS)
Gerasimov, Mikhail
Introduction: The discovery of noticeable hydrogen concentration (believed to be in the form of water) in the polar regions was among the most exciting recent events in the exploration of the Moon. Concentration of water in polar regolith was estimated at a level of 4-6 wt.% [1,2]. Such high concentration of water in polar regolith on volatiles depleted Moon is probably a result of migration of water molecules from its hot equatorial latitudes to cold traps of the northern and southern polar regions. These depositions of volatiles on one hand contain important information on the evolution of the Moon and on the other hand their utilization can be a bases for the future human exploration. The question about diversity and source of the volatiles is still open. Sources of lunar volatiles: Three main possible sources of the Lunar polar volatiles are: Degassing of the interior. Endogenous source of volatiles is provided by degassing of heated interior of planetary bodies. In this case chemical composition of released gases reflects thermodynamic equilibrium of gases over typical magmas at temperatures around 1000°C. The composition of such gas mixtures is characterized by domination of H2O, CO2, and SO2 over other H, C, and S containing components. CO/CO2 ratio here is typically far below 0.1 level. Hydrocarbons are mainly aromatic hydrocarbons, alkanes, and cycloalkanes. Sulfur containing gases are mainly SO2, H2S, and Sx. Isotopic ratios of volatile elements should be the same as for the bulk Moon. Interaction of solar wind protons with surface rocks. Energetic solar wind protons with the absence of an atmospheric shield can react with oxygen of surface rocks and produce water molecules as end product. Such a mechanism provides a source of mainly water on the Moon with solar hydrogen isotopes and Moon rocks oxygen isotopes. Degassing of impacting meteorites and comets. Volatiles of impacting meteorites and comets are released into transient atmosphere. It was shown experimentally [3] that the forming gases are qualitatively similar for various rocky materials including meteorites of different classes. Such gas mixtures have the following characteristics: the CO/CO2 ratio is ³1, hydrocarbons are presented mainly by alkenes and PAHs, sulfur containing gases are presented by SO2, CS2, H2S, and COS in decreasing sequence, production of HCN, and noticeable release of water. Isotopic composition of volatile elements reflects the projectile to target proportion of their source. Gas-analytic package (GAP) of the Lunar-Resource mission: It is very important to investigate all the inventory of polar volatiles as well as isotopic composition of volatile elements to understand the real source of lunar volatiles and to evaluate their validity as a resource for the Moon exploration. The GAP is aimed on comprehensive investigation of the inventory of volatiles in the regolith of polar regions. It consists of three instruments: 1) Thermal Analyzer; 2) Gas Chromatograph with Tunable Diode Laser Absorption Spectrometer for isotopic measurements of H, O, and C in evolved gases; and 3) Neutral Gas Mass-Spectrometer. References: [1] Mitrofanov, I. G. et al. 2010. Science 330: 483-486. [2] Colaprete, A. et al. 2010. Science 330: 463-468. [3] Gerasimov, M.V. 2002. Geological Society of America Special Paper 356: 705-716. Acknowledgements: This work was supported by P-22 Program of the RAS.
Snow Peak, OR: Miocene and Pliocene Tholeiitic Volcanism in the Cascadia Forearc
NASA Astrophysics Data System (ADS)
Hatfield, A. K.; Kent, A. J.; Nielsen, R. L.; Rowe, M. C.; Duncan, R. A.
2007-12-01
Snow Peak is a voluminous (>150 km3), glacially dissected shield volcano located approximately 50 km southeast of Salem, OR, with a summit height of 1,310 m above sea level. Snow Peak lies approximately 60 km west of the current High Cascade arc axis. Lavas from the southeast face of Snow Peak have been previously dated using K-Ar at ~3 Ma. New Ar-Ar dating indicates that lavas from the northwest face are ~5.4 Ma, and the summit plug is ~6 Ma. Snow Peak volcanics unconformably overlie western Cascade volcanics aged from middle to late Miocene (~10- 17 Ma). The age of Snow Peak is broadly contemporaneous with the initiation of modern High Cascade volcanism. Snow Peak's location provides a rare opportunity to study magmas produced within the modern High Cascades forearc region. The goal of this investigation is to characterize the composition and timing of volcanism at Snow Peak and the role of volatiles in magma genesis. Hypotheses for the formation of Snow Peak include flux melting associated with the Cascadia subduction zone and/or decompression melting associated with extensional faulting. Preliminary geochemical data on the basalts from Snow Peak indicate that they are low-to-medium-K tholeiites (SiO2 47.9-51.7 wt.%, MgO 5.5- 8.3 wt.%, K2O, 0.36-0.55 wt.%) and that they range from primitive to moderately evolved (Mg# 0.51-0.61). Common phenocryst phases are plagioclase, olivine, and clinopyroxene. Textures are typically hypocrystalline, and fine-grained to porphyritic. Mantle-normalized multi-element plots indicate Snow Peak lavas are generally HFSE depleted and LILE enriched. These data are consistent with a preliminary interpretation of a subduction zone signature, yet the major element composition most closely resembles high alumina olivine tholeiite (HAOT), more indicative of extensional environments. The degree of LILE enrichment is significantly lower than in calc alkaline lavas from the High Cascades and western Cascades. Determining the petrogenesis of this forearc center will include a comprehensive analysis of the volcano's major and trace element geochemistry, and additional age dating to constrain eruption rates. Direct measurement of volatiles in olivine-hosted melt inclusions will complement the major and trace element geochemistry in order to measure pre-eruptive water contents.
Implications of a reducing and warm (not hot) Archaean ambient mantle for ancient element cycles
NASA Astrophysics Data System (ADS)
Aulbach, Sonja
2016-04-01
There is considerable uncertainty regarding the oxygen partial pressure (fO2) and potential temperature (TP) of the ambient convecting mantle throughout Earth's history. Rare Archaean eclogite suites have elemental and isotopic compositions indicative of formation of crustal protoliths in oceanic spreading ridges, hence unaffected by continental sources. These include some eclogite xenoliths derived from cratonic mantle lithosphere and orogenic eclogites marking the exhumation of oceanic crust at Pacific-type margins. Their compositions may retain a memory of the thermal and redox state of the Archaean convecting mantle sources that gave rise to their low-pressure protoliths. Archaean eclogites have TiO2-REE relationships consistent with fractional crystallisation of olivine±plagioclase and cpx during formation of picritic protoliths from a melt that separated from a garnet-free peridotite source, implying intersection of the solidus at ≤2.5 to 3.0 GPa [1]. Low melt fractions (<0.25) inferred from samples with the least fractionated (lowest TiO2) protoliths further argue against deep intersection of the mantle solidus. This suggests a moderately elevated TP ~ 1420-1470 degrees C (lower than some estimates for the ambient convecting mantle at that time [2]), which would support an early onset of plate tectonics [3] and emergence of continents [4], heralding a transition to modern chemical cycles. Moderate TP further indicates that deep recycling of carbon and water, though reduced compared to today, may have been possible in the Archaean [5,6]. Carefully screened eclogites have V/Sc (reflecting the redox state of the ambient mantle during protolith formation [7]) corresponding to ΔFMQ corrected to 1 GPa as low as -1.7 at 3 Ga [1]. Such low oxygen fugacities have consequences for the location of the peridotite solidus and for the types of melts generated during redox melting [5,8]. They also modulate the redox state of volatiles liberated at oceanic spreading ridges [7] in the Archaean, with implications for the composition and oxygenation of the palaeo-atmosphere. Subsequent subduction of such reducing oceanic crust must have also affected the cycling of volatile elements (soluble instead of molecular species [9]) and of redox-sensitive ore-forming metals [10] during metamorphic dehydration and melting reactions. [1] Aulbach&Viljoen (2015) Earth Planet Sci Lett 431; [2] Herzberg et al. (2010) Earth Planet Sci Lett 292; [3] Sizova et al. (2010) Lithos 116; [4] Rey&Coltice (2008) Geology 36; [5] Dasgupta (2013) RIMG 75; [6] Magni et al. (2014) G3 15; [7] Li&Lee (2004) EPSL 228; [8] Stagno et al. (2013) Nature 493; [9] Sverjensky et al. (2014) Nat Geosci 7; [10] Evans & Tomkins (2011) Earth Planet Sci Lett 308.
Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands
NASA Astrophysics Data System (ADS)
Longpré, Marc-Antoine; Stix, John; Klügel, Andreas; Shimizu, Nobumichi
2017-02-01
Basaltic volcanoes transfer volatiles from the mantle to the surface of the Earth. The quantification of deep volatile fluxes relies heavily on estimates of the volatile content of primitive magmas, the best archive of which is provided by melt inclusions. Available data from volcanoes producing mafic alkaline lavas in a range of tectonic settings suggest high volatile fluxes, but information remains sparse, particularly for intraplate ocean islands. Here we present measurements of volatile and trace element concentrations, as well as sulphur speciation, in olivine-hosted melt inclusions and matrix glasses from quenched basanite lava balloon samples from the 2011-2012 submarine eruption at El Hierro, Canary Islands. The results reveal remarkably high concentrations of dissolved volatiles and incompatible trace elements in this magma, with ∼80 ppm Nb and up to 3420 ppm CO2, 3.0 wt.% H2O and 5080 ppm S. Reconstructed primitive CO2 contents, considering CO2/Nb systematics and possible CO2 sequestration in shrinkage bubbles, reach weight percent levels, indicating that carbon is a major constituent of Canary Island magmas at depth and that exsolution of a CO2-rich fluid begins in the mantle at pressures in excess of 1 GPa. Correlations between sulphur concentration, sulphur speciation and water content suggest strong reduction of an initially oxidised mantle magma, likely controlled by coupled H2O and S degassing. This late-stage redox change may have triggered sulphide saturation, recorded by globular sulphide inclusions in clinopyroxene and ulvöspinel. The El Hierro basanite thus had a particularly high volatile-carrying capacity and released a minimum of 1.3-2.1 Tg CO2 and 1.8-2.9 Tg S to the environment, causing substantial stress on the local submarine ecosystem. These results highlight the important contribution of alkaline ocean island volcanoes, such as the Canary Islands, to volatile fluxes from the mantle.
Response of corn markets to climate volatility under alternative energy futures.
Diffenbaugh, Noah S; Hertel, Thomas W; Scherer, Martin; Verma, Monika
2012-07-01
Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.
SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions
NASA Technical Reports Server (NTRS)
Smialek, James L.; Robinson, R. Craig; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.
1999-01-01
SiC and Si3N4 materials were tested under various turbine engine combustion environments, chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high speed aircraft. Representative CVD, sintered, and composite materials were evaluated in both furnace and high pressure burner rig exposure. While protective SiO2 scales form in all cases, evidence is presented to support paralinear growth kinetics, i.e. parabolic growth moderated simultaneously by linear volatilization. The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were used to map SiO2 volatility (and SiC recession) over a range of temperature, pressure, and velocity. The functional dependency of material recession (volatility) that emerged followed the form: exp(-QIRT) * P(exp x) * v(exp y). These empirical relations were compared to rates predicted from the thermodynamics of volatile SiO and SiO(sub x)H(sub Y) reaction products and a kinetic model of diffusion through a moving, boundary layer. For typical combustion conditions, recession of 0.2 to 2 micron/h is predicted at 1200- 1400C, far in excess of acceptable long term limits.
Response of corn markets to climate volatility under alternative energy futures
Diffenbaugh, Noah S.; Hertel, Thomas W.; Scherer, Martin; Verma, Monika
2012-01-01
Recent price spikes1,2 have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades3,4. However, commodity price volatility is also influenced by other factors5,6, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change. PMID:23243468
Fenske, Myles P.; Hewett Hazelton, Kristen D.; Hempton, Andrew K.; Shim, Jae Sung; Yamamoto, Breanne M.; Riffell, Jeffrey A.; Imaizumi, Takato
2015-01-01
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia. PMID:26124104
Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato
2015-08-04
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.
Heavy element affinities in Apollo 17 samples
NASA Technical Reports Server (NTRS)
Allen, R. O., Jr.; Jovanovic, S.; Reed, G. W., Jr.
1975-01-01
Pb-204, Bi, Tl, and Zn in samples from the Apollo 17 site exhibit relationships not found in samples from other sites. Pb-204, Tl, and Zn in residues remaining after dilute acid leaching are correlated with one another. Orange soil 74220, which is enriched in Pb-204, Tl, and Zn, is included in these relationships. In addition, the submicron metallic phase generally associated with agglutinate formation is correlated with all three of these elements; this relationship has already been reported for Pb-204 in other samples. Thus, orange soil and agglutinates appear to be involved in concentrating heavy volatile metals. A process other than mixing is required to account for this. As a consequence of the isolation of the landing site by the surrounding massifs, local supply and recycling of volatile trace elements in soils may account for some of the interelement relations.
The abundance of interstellar sulphur and zinc in high density sight-lines
NASA Technical Reports Server (NTRS)
Harris, A. W.; Mashesse, J. M.
1986-01-01
On the basis of early absorption line studies of individual lines of sight with the Copernicus satellite, chlorine, sulphur and zinc were classed together as elements which showed little or no depletion, relative to hydrogen, in the interstellar medium. The abundances of other less volatile elements, such as Fe and Mg were found to vary widely from one sight-line to another with gas-phase abundances in some cases being orders of magnitude below their solar counterparts. Detailed studies are reported of the depletion/density behavior of two other volatile elements which were previously considered to be virtually undepleted, S and Zn, using equivalent width data from both Copernicus and IUE observations. The results provide further evidence that the established dependence of depletion on n bar (H) extends to volatile elements and show that their use as tracers of metallicity, or for estimating hydrogen column densities, may lead to large errors in sight-lines through dense regions. It now appears that such elements may take part in the surface chemistry of grains and be important constituents of grain mantle material, although they probably do not contribute significantly to the bulk mass of grains. Due to the very similar atomic masses and ionization potentials of sulphur and phosphorous, the thermal velocity distributions of the singly ionized species of these elements in interstellar clouds should be very similar. However, a comparison of Doppler widths (b-values) derived for SIT and PIT in the same sight-lines from the Bohlin et al Copernicus equivalent width measurements has revealed an unexpected systematic discrepancy of a factor of approx. 1.7. This Discrepancy indicates that the normally adopted oscillators strengths of the PII lambda lambda 1153 and 1302 A lines may require revision.
Resource Prospector, the Decadal Survey and the Scientific Context for the Exploration of the Moon
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Andrews, D. R.
2017-01-01
The Inner Planets Panel of the Planetary Exploration Decadal Survey defined several science questions related to the origins, emplacement, and sequestration of lunar polar volatiles: 1. What is the lateral and vertical distribution of the volatile deposits? 2. What is the chemical composition and variability of polar volatiles? 3. What is the isotopic composition of the volatiles? 4. What is the physical form of the volatiles? 5. What is the rate of the current volatile deposition? A mission concept study, the Lunar Polar Volatiles Explorer (LPVE), defined a approximately $1B New Frontiers mission to address these questions. The NAS/NRC report, 'Scientific Context for the Exploration of the Moon' identified he lunar poles as special environments with important implications. It put forth the following goals: Science Goal 4a-Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar polar regions. Science Goal 4b-Determine the source(s) for lunar polar volatiles. Science Goal 4c-Understand the transport, retention, alteration, and loss processes that operate on volatile materials at permanently shaded lunar regions. Science Goal 4d-Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. Science Goal 4e-Determine what the cold polar regolith reveals about the ancient solar environment.
NASA Astrophysics Data System (ADS)
Niinemets, Ülo
2017-04-01
Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near future. Quantitative models that link stress severity, plant volatile emissions and climatic feedbacks are currently being developed, and this presentation argues that incorporating stress-dependent feedbacks in Earth system models in inevitable to simulate future climates.
Detecting macroeconomic phases in the Dow Jones Industrial Average time series
NASA Astrophysics Data System (ADS)
Wong, Jian Cheng; Lian, Heng; Cheong, Siew Ann
2009-11-01
In this paper, we perform statistical segmentation and clustering analysis of the Dow Jones Industrial Average (DJI) time series between January 1997 and August 2008. Modeling the index movements and log-index movements as stationary Gaussian processes, we find a total of 116 and 119 statistically stationary segments respectively. These can then be grouped into between five and seven clusters, each representing a different macroeconomic phase. The macroeconomic phases are distinguished primarily by their volatilities. We find that the US economy, as measured by the DJI, spends most of its time in a low-volatility phase and a high-volatility phase. The former can be roughly associated with economic expansion, while the latter contains the economic contraction phase in the standard economic cycle. Both phases are interrupted by a moderate-volatility market correction phase, but extremely-high-volatility market crashes are found mostly within the high-volatility phase. From the temporal distribution of various phases, we see a high-volatility phase from mid-1998 to mid-2003, and another starting mid-2007 (the current global financial crisis). Transitions from the low-volatility phase to the high-volatility phase are preceded by a series of precursor shocks, whereas the transition from the high-volatility phase to the low-volatility phase is preceded by a series of inverted shocks. The time scale for both types of transitions is about a year. We also identify the July 1997 Asian Financial Crisis to be the trigger for the mid-1998 transition, and an unnamed May 2006 market event related to corrections in the Chinese markets to be the trigger for the mid-2007 transition.
NASA Astrophysics Data System (ADS)
Esposito, R.; Badescu, K.; Steele-MacInnis, M.; Lima, A.; De Vivo, B.; Cannatelli, C.; Manning, C. E.; Bodnar, R. J.
2017-12-01
The active Campi Flegrei (CF) volcanic field in southern Italy has been intensively studied owing to the volcanic risk to which the 1.5 million people in the area are exposed. The volcanic Island of Procida (IP) is located just southwest from CF but shows no signs of volcanic activity today. The IP volcanic products are the most primitive volcanic products of these two related volcanic fields. In this study, the major and minor element and volatile (H2O, CO2, S, Cl and F) compositions of melt inclusions (MI) hosted in sanidine, clinopyroxene, plagioclase and olivine were determined. MI data from this study and from the literature were compared with bulk rock data to test for agreement between MI compositions and compositions of CF and IP magmas determined by bulk rock analyses. Although MI compositions overlap with those of the bulk rock, some MI show anomalous compositions for one or a combination of Al2O3, FeO, P2O5, and TiO2. These MI represent melts produced by dissolution-reaction-mixing and were not included for the interpretation of volatile contents. Major elements and volatile concentrations of bubble-free MI that are interpreted to be representative of CF and IP were compared to crystal host compositions and to melt compositions obtained using rhyolite-MELTS simulations. Data suggest that less evolved magmas beneath the studied area crystallize either isobarically at ≥200 MPa (≥7.5 km) or polybarically during ascent to shallow depths under volatile-saturated conditions. Bubble-free MI representative of the least differentiated magmas can be divided into two groups. One group of MI is representative of simple fractional crystallization under volatile-saturated conditions from a primitive trachybasaltic melt. The other group of MI is representative of recharge of a primitive basaltic magma mixing with the preexisting primitive trachybasaltic magma before eruption. We suggest that the mixing process occurred at relatively great depth. Extensive isobaric crystallization of the trachybasaltic magmas beneath CF at 7.5 km may have generated trachy-phonolitic magmas, such as those associated with the Neapolitan Yellow Tuff that is characterized by a relatively high H2O content. These volatile saturated trachy-phonolitic magmas ascend through the crust and trigger high-magnitude eruptions.
Chemical studies of elements with Z ⩾ 104 in gas phase
NASA Astrophysics Data System (ADS)
Türler, Andreas; Eichler, Robert; Yakushev, Alexander
2015-12-01
Chemical investigations of superheavy elements in the gas-phase, i.e. elements with Z ≥ 104, allow assessing the influence of relativistic effects on their chemical properties. Furthermore, for some superheavy elements and their compounds quite unique gas-phase chemical properties were predicted. The experimental verification of these properties yields supporting evidence for a firm assignment of the atomic number. Prominent examples are the high volatility observed for HsO4 or the very weak interaction of Cn with gold surfaces. The unique properties of HsO4 were exploited to discover the doubly-magic even-even nucleus 270Hs and the new isotope 271Hs. The combination of kinematic pre-separation and gas-phase chemistry allowed gaining access to a new class of relatively fragile compounds, the carbonyl complexes of elements Sg through Mt. A not yet resolved issue concerns the interaction of Fl with gold surfaces. While competing experiments agree on the fact that Fl is a volatile element, there are discrepancies concerning its adsorption on gold surfaces with respect to its daughter Cn. The elucidation of these and other questions amounts to the fascination that gas-phase chemical investigations exert on current research at the extreme limits of chemistry today.
Major and trace element chemistry of separated fragments from a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.; Allen, J. M.
1978-01-01
The major and trace elements of separated fragments and a bulk sample from CG-11, a hibonite-bearing inclusion in the Allende meteorite, were analyzed. Major element abundances were used to determine the minerology of separated fragments. The high degree of correlation between Eu/Sm ratios and Lu/Yb ratios for the samples studied indicates that their rare earth element (REE) distributions are governed by two components. One, Lu-, Eu-rich, is probably hibonite; the other, depleted in these elements, seems to be associated with the secondary alteration phases, grossular, nepheline and anorthite. The REE distribution in CG-11 precludes melting events after formation of the secondary alteration phases, but a melting event involving the primary minerals cannot be excluded. The enrichment of Lu with respect to other measured REE in hibonite can be explained by present REE condensation models. Two Hf-bearing components, most likely hibonite and perovskite, are necessary to account for variations in Sc/Hf ratios in the fragments studied. The lithophile volatiles Na, Mn, Fe, Zn, and probably Cr increase in the same order as the amount of secondary alteration minerals; the volatile siderophile elements Co and Au, however, do not.
NASA Technical Reports Server (NTRS)
O'D. Alexander, Conel
2003-01-01
The chondrites are aggregates of components (e.g. chondrules, chondrule rims and matrix) that formed in the nebula but, at present, there is no consensus on how any of these components formed or whether their formation produced or post dated the chemical fractionations between the chondrites. Chondrites are, at present, the most primitive Solar System objects available for laboratory study and the conditions under which their principle components formed would provide the most direct constraints for models of nebula formation and evolution. The conditions under which chondrules formed is of particular importance because, if their relative abundance in chondrites approximates that in the nebula, they are the products of one of the most energetic and pervasive processes that operated in the early Solar System. The goal of this proposal was to combine theoretical modeling with a comprehensive study of the elemental and isotopic compositions of the major components in unequilibrated ordinary chondrites (UOCs), with the aim of determining the conditions in the nebula at the time of their formation. The isotopes of volatile and moderately volatile elements should be particularly revealing of conditions during chondrule formation, as evaporation under most conditions would lead to isotopic mass fractionation. Modeling of chondrule and matrix formation requires the development of a kinetic model of evaporation and condensation, and calibration of this model against experiments. Cosmic spherules present an opportunity to test our evaporation models under flash heating conditions that would be difficult to simulate experimentally. However, there is surprisingly little known about the isotopic compositions of silicate cosmic spherules, and a number of questions need to be addressed. Is the range of compositions they exhibit due to evaporation? If they are, are the relative volatilities consistent with the models/experiments and are the isotopic fractionations consistent with Rayleigh conditions? For instance, do the alkalis and S evaporate prior to significant melting so that conditions did not meet the Rayleigh criteria of rapid diffusion? If so, their isotopic fractionation might be considerably suppressed. Could this mechanism of K loss apply to chondrule formation? The Fe isotopic fractionation during evaporation of silicates has not been measured, so cosmic spherules might provide a clue to whether FeO diffusion is fast enough to maintain Rayleigh conditions during evaporation. And so on.
The thermal evolution and dynamo generation of Mercury with an Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurrien
2017-04-01
The present day partially liquid (as opposed to fully solidified) Fe-rich core of Mercury is traditionally explained by assuming a substantial amount of S to be present in the core (e.g. Grott et al., 2011), because S lowers the core's melting temperature. However, this assumption has problematic implications: Mercury's large Fe-rich core and measured low FeO surface content are indicative of an oxygen poor bulk composition, which is consistent with the volatile-poor material that is expected to have condensed from the solar nebula close to the Sun. In contrast, S is a moderately volatile element. Combined with the high S content of Mercury's crust and (likely) mantle, as indicated by the measured high S/Si surface fraction, the resulting high planetary S abundance is difficult to reconcile with a volatile poor origin of the planet. Additionally, the observed low magnetic field strength is most easily explained if compositional buoyancy fluxes are absent [Manglik et al., 2010], yet such fluxes are produced upon solidifying a pure Fe inner core from Fe-S liquid. Alternatively, both Mercury's high S/Si and Mg/Si surface ratios (Nittler et al., 2011) may indicate that a siderophile fractionation of Si and lithophile fractionation of S took place during Mercury's core-mantle differentiation. This fractionation behaviour of these elements is supported by metal/silicate partitioning experiments that have been performed at the low oxygen conditions inferred for Mercury [e.g. Chabot et al., 2014]. Mercury's bulk composition, in terms of S/Si and Fe/Si ratios, would also approach that of meteorites that are considered as potential building blocks of the planet if the core is Si-rich and S-poor. Here we simulate the thermal evolution of Mercury with an Fe-Si core. Results show that an Fe-Si core can remain largely molten until present, without the need for S. An Fe-Si core also has interesting implications for Mercury's core-convection regime and magnetic field generation. The non-preferential Si fractionation between solid and liquid metal does not produce a compositional gradient, such that compositional buoyancy fluxes are negligible. Additionally, thermally driven core convection is more efficient as a result of a high latent heat release upon solidifying Si-rich metal. Implications of this scenario for Mercury's magnetic field strength and geometry need to be further examined.
A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter
NASA Astrophysics Data System (ADS)
Wisthaler, A.; Eichler, P.; Müller, M.
2015-12-01
Semi-volatile organic molecules bound to particles are difficult to measure, especially if they are reactive in nature. Any technique based on aerosol collection onto a substrate generates sampling artifacts due to surface reactions and ad- and desorption of semi-volatile analytes. On-line sampling without sample pre-collection, as for example implemented in the AMS, has greatly reduced many sampling artifacts. AMS measurements of organics do, however, suffer from the drawback that molecular-level information is, in most cases, lost during hard ionization events. As a consequence, only little speciated and thus mechanistically informative data on organic matter is obtained. PTR-ToF-MS is a well-established on-line measurement technique for gas-phase organics. Soft ionization via gas-phase hydronium ions preserves, to a large extent, molecular-level information and thus allows identifying organic compounds at an elemental composition level. We have recently developed a particle inlet system for PTR-ToF-MS instruments (doi:10.5194/amt-8-1353-2015). The CHARON ("Chemical Analysis of Aerosol On-line") inlet consists of a gas-phase denuder, an aerodynamic lens and a thermodesorption unit. In its latest version, it includes a heatable tube upstream of the denuder to form a thermodenuder. Over the last year, the CHARON PTR-ToF-MS system has been successfully used in a series of measurement campaigns to characterize i) POA emitted from a marine diesel engine, ii) SOA generated from the photo-oxidation of toluene, iii) SOA generated from the photo-oxidation of selected amines, iv) ambient aerosol in two major European cities and v) SOA generated from the photo-oxidation of biogenic VOCs. These measurements have demonstrated that the CHARON PTR-ToF-MS system i) generates on-line and real-time elemental composition information of semi-volatile organics in submicron particles (both POA and SOA), ii) detects 80-100 % of the organic mass as measured by the AMS and iii) generates volatility information of semi-volatile organics at an elemental composition level. Selected application examples will be shown.
Integrated system for the destruction of organics by hydrolysis and oxidation with peroxydisulfate
Cooper, John F.; Balazs, G. Bryan; Hsu, Peter; Lewis, Patricia R.; Adamson, Martyn G.
2000-01-01
An integrated system for destruction of organic waste comprises a hydrolysis step at moderate temperature and pressure, followed by direct chemical oxidation using peroxydisulfate. This system can be used to quantitatively destroy volatile or water-insoluble halogenated organic solvents, contaminated soils and sludges, and the organic component of mixed waste. The hydrolysis step results in a substantially single phase of less volatile, more water soluble hydrolysis products, thus enabling the oxidation step to proceed rapidly and with minimal loss of organic substrate in the off-gas.
Fractionation in the solar nebula. II - Condensation of Th, U, Pu and Cm
NASA Technical Reports Server (NTRS)
Boynton, W. V.
1978-01-01
Reasonable assumptions concerning activity coefficients allow the calculation of the relative volatility of the actinide elements under conditions expected during the early history of the solar system. Several of the light rare earths have volatilities similar to Pu and Cm and can be used as indicators of the degree of fractionation of these extinct elements. Uranium is considerably more volatile than either Pu or Cm, leading to fractionations of about a factor of 50 and 90 in the Pu/U and Cm/U ratio in the earliest condensates from the solar nebula. Ca,Al-rich inclusions from the Allende meteorite, including the coarse-grained inclusions, have a depletion of U relative to La of about a factor of three, suggesting that these inclusions may have been isolated from the nebular gas before condensation of U was complete. The inclusions, however, can be used to determine solar Pu/U and Cm/U ratios if the rare earth patterns are determined in addition to the other normal measurements.
DEMONSTRATION BULLETIN: AQUADETOX®/ SVE SYSTEM and AWD Technologies, Inc.
The AWD technology simultaneously treats groundwater and soil-gas contaminated with volatile or ganic compounds (VOC), such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This technology integrates two processes: (1) AquaDetox®, a moderate vacuum (pressure about 50 ...
SEASONAL MONITORING OF ELEMENTS AT THREE CONSTRUCTED TREATMENT WETLANDS: 1999-2001
A suite of major, minor, and trace elements in sediment, pore water, and overlying water were monitored during winter and summer over a three year period at three different types of constructed treatment wetlands to evaluate their efficacy with season. Acid-volatile sulfide (AVS)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Soko; Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk
2016-02-10
Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of thesemore » elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.« less
The Earth's missing lead may not be in the core.
Lagos, M; Ballhaus, C; Münker, C; Wohlgemuth-Ueberwasser, C; Berndt, J; Kuzmin, Dmitry V
2008-11-06
Relative to the CI chondrite class of meteorites (widely thought to be the 'building blocks' of the terrestrial planets), the Earth is depleted in volatile elements. For most elements this depletion is thought to be a solar nebular signature, as chondrites show depletions qualitatively similar to that of the Earth. On the other hand, as lead is a volatile element, some Pb may also have been lost after accretion. The unique (206)Pb/(204)Pb and (207)Pb/(204)Pb ratios of the Earth's mantle suggest that some lead was lost about 50 to 130 Myr after Solar System formation. This has commonly been explained by lead lost via the segregation of a sulphide melt to the Earth's core, which assumes that lead has an affinity towards sulphide. Some models, however, have reconciled the Earth's lead deficit with volatilization. Whichever model is preferred, the broad coincidence of U-Pb model ages with the age of the Moon suggests that lead loss may be related to the Moon-forming impact. Here we report partitioning experiments in metal-sulphide-silicate systems. We show that lead is neither siderophile nor chalcophile enough to explain the high U/Pb ratio of the Earth's mantle as being a result of lead pumping to the core. The Earth may have accreted from initially volatile-depleted material, some lead may have been lost to degassing following the Moon-forming giant impact, or a hidden reservoir exists in the deep mantle with lead isotope compositions complementary to upper-mantle values; it is unlikely though that the missing lead resides in the core.
JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS
Szilard, L.; Wigner, E.P.; Creutz, E.C.
1959-05-12
Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.
Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water.
Wu, Bing; Zhang, Xuxiang; Zhang, Xiaolin; Yasun, Aishangjiang; Zhang, Yan; Zhao, Dayong; Ford, Tim; Cheng, Shupei
2009-08-01
Determination of 24 semi-volatile organic compounds (SVOCs) and 24 trace elements in water samples was conducted in order to investigate the quality of the Nanjing source of drinking water taken from Yangtze River. The total concentrations of SVOCs and trace elements were in the range of 1,951-11,098 ng/l and 51,274-72,384 microg/l, respectively. No significant seasonal changes were found for the pollutants' concentrations. A primary health risk assessment was carried out to evaluate potential health effects. Risk quotients involving carcinogenic effects for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, bis(2-ethylhexyl)phthalate and arsenic were >1 under the worst-case scenario. The results of this study demonstrate the importance of further studies on the environmental health effects of exposure to the source water.
El Chichon - Composition of plume gases and particles
NASA Technical Reports Server (NTRS)
Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.
1983-01-01
Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.
Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe
NASA Technical Reports Server (NTRS)
Norman, M. D.; Griffin, W. L.; Ryan, C. G.
1993-01-01
In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.
Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes
NASA Astrophysics Data System (ADS)
Fischer, T.
2001-05-01
Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and 5.4 Mmol/a of non-mantle N2). Other subduction zone volcanoes are currently degassing a much more substantial amount of volatiles. Popocatepetl, Mexico, has degassed approximately 14 Mt of SO2 to the atmosphere over the past 6 years (Witter et al. 2000). Satsuma-Iwojima, Japan, has degassed for longer than 800 years and is currently releasing 500-1000 tones/day (Kazahaya et al. 2000). At these volcanoes CO2 and N2 discharges from the magma should also be balanced by the supply from slab and crustal sources. The rate of subduction off Mexico and Japan, however, is similar to the rate at the Kuriles. Therefore, large amounts of slab derived volatiles must be, in some fashion, stored in the "subduction factory" to supply the large amounts degassing passively from these volcanoes. Kazahaya et al. (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI. Witter et al (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI.
Trace elements in primitive meteorites—VII Antarctic unequilibrated ordinary chondrites
NASA Astrophysics Data System (ADS)
Wang, Ming-Sheng; Lipschutz, Michael E.
2007-02-01
We report RNAA results for Co, Au, Sb, Ga, Rb, Cs, Se, Ag, Te, Zn, In, Bi, Tl and Cd (in increasing order of metamorphic mobility) in 22 Antarctic unequilibrated ordinary chondrites (UOC). This brings to 38 the number of UOC for which data for highly volatile elements are known. For elements of lesser mobility (Co to Se, omitting Cs) overall variability in UOC are low, relative standard deviations (one sigma) being no more than a factor of two. For Ag, Te and Zn, relative standard deviations are 2-4×, while for Cs and the four most volatile elements, the variabilities are 8-110×. Elemental abundances do not vary with chemical type (H, L and LL) nor with UOC subtype (3.0-3.9). Contents of all elements reach levels up to, even exceeding, cosmic and all but Cd and the two alkalis, seem unaffected by post-accretionary processes. Contents of highly volatile elements are consistent with the idea that source regions producing contemporary falls and older Antarctic UOC differed in thermal histories. The presence or absence of carbide magnetite assemblages (CMA) generally accords with high or low Cd contents, respectively. This relationship accords with the prior suggestion that CMA formed by alteration of Fe-Ni metal by C-O-H-containing fluids at temperatures <700 K, generated by thermal metamorphism in parent body interiors. The absence of CMA in most UOC (and OC), may indicate that they were subsequently destroyed as metamorphic intensity increased. The high, often supercosmic, Rb and Cs levels in UOC may result from their high solubility in liquid water signalling their redistribution by C-O-H-containing fluid while in the liquid water field. Because of its uniquely high mobility, Cd could have been enriched by the C-O-H fluids and should have been lost from parent regions during later, higher temperature anhydrous metamorphism at temperatures in the 500-600 °C range.
Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)
NASA Astrophysics Data System (ADS)
Marty, B.
2013-12-01
Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes, including the delivery of volatile elements onto planets and atmospheric escape processes, but their cometary inventory is almost not known. The only noble gas (helium and neon) measurement in cometary matter from Stardust suggests that they may be genetically linked to organic matter found in primitive meteorites rather than to the proto-solar gas. Trapping of noble gases in comets is an important issue not only for the physical conditions of cometary formation and evolution, but also for better understanding the possible contribution of cometary matter to Earth and Moon.
U, Th, and K in planetary cores: Implications for volatile elements and heat production
NASA Astrophysics Data System (ADS)
Boujibar, A.; Habermann, M.; Righter, K.; Ross, D. K.; Righter, M.; Chidester, B.; Rapp, J. F.; Danielson, L. R.; Pando, K.; Andreasen, R.
2016-12-01
The accretion of terrestrial planets is known to be accompanied with volatile loss due to strong solar winds produced by the young Sun and due to energetic impacts. It was previously expected that Mercury, the innermost planet is depleted in volatile elements in comparison to other terrestrial planets. These predictions have been recently challenged by the MESSENGER mission to Mercury that detected relatively high K/U and K/Th ratios on Mercury's surface, suggesting a volatile content similar to Earth and Mars. However previous studies showed that Fe-rich metals can incorporate substantial U, Th and K under reducing conditions and with high sulfur contents, which are two conditions relevant to Mercury. In order to quantify the fractionation of these heat-producing elements during core segregation, we determined experimentally their partition coefficients (Dmet/sil) between metal and silicate at varying pressure, temperature, oxygen fugacity and sulfur content. Our data confirm that U, Th, and K become more siderophile with decreasing fO2 and increasing sulfur content, with a stronger effect for U and Th in comparison to K. Hence Mercury's core is likely to have incorporated more U and Th than K, resulting in the elevated K/U and K/Th ratios measured on the surface. The bulk concentrations of U, Th, and K in terrestrial planets (Mercury, Venus, Earth and Mars) are calculated based on geochemical constraints on core-mantle differentiation. Significant amounts of U, Th and K are partitioned into the cores of Mercury, Venus and Earth, but much less into Mars' core. The resulting bulk planet K/U and K/Th correlate with the heliocentric distance, which suggests an overall volatile depletion in the inner Solar System. These results have important implications for internal heat production. The role of impact erosion on the evolution of Th/U ratio will also be addressed.
Yamaoka, Shuhei; Yoshimura, Kazusa; Kondou, Youichi; Onogi, Akio; Matsui, Minami; Iwata, Hiroyoshi; Ban, Tomohiro
2017-01-01
Profiling elemental contents in wheat grains and clarifying the underlying genetic systems are important for the breeding of biofortified crops. Our objective was to evaluate the genetic potential of 269 Afghan wheat landraces for increasing elemental contents in wheat cultivars. The contents of three major (Mg, K, and P) and three minor (Mn, Fe, and Zn) elements in wheat grains were measured by energy dispersive X-ray fluorescence spectrometry. Large variations in elemental contents were observed among landraces. Marker-based heritability estimates were low to moderate, suggesting that the elemental contents are complex quantitative traits. Genetic correlations between two locations (Japan and Afghanistan) and among the six elements were estimated using a multi-response Bayesian linear mixed model. Low-to-moderate genetic correlations were observed among major elements and among minor elements respectively, but not between major and minor elements. A single-response genome-wide association study detected only one significant marker, which was associated with Zn, suggesting it will be difficult to increase the elemental contents of wheat by conventional marker-assisted selection. Genomic predictions for major elemental contents were moderately or highly accurate, whereas those for minor elements were mostly low or moderate. Our results indicate genomic selection may be useful for the genetic improvement of elemental contents in wheat. PMID:28072876
Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues
Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...
Speciation, Characterization, And Mobility Of As, Se, and Hg In Flue Gas Desulphurization Residues
Flue gas from coal combustion contains significant amounts of volatile elements, such as arsenic (As), selenium (Se) and mercury (Hg), which could lead to serious environmental health risks. The capture of these toxic elements in the scrubber with a flue gas desulphurization (FGD...
Organic non-volatile resistive photo-switches for flexible image detector arrays.
Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W
2015-02-01
A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se
Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less
Collisional erosion and the non-chondritic composition of the terrestrial planets.
O'Neill, Hugh St C; Palme, Herbert
2008-11-28
The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations. However, the next stage of planetary accretion is the growth of the terrestrial planets from approximately 102 embryos sourced across wide heliocentric distances, involving energetic collisions, in which material may be lost from a growing planet as well as gained. While this may result in averaging out of the 'chondritic' fractionations, it introduces two non-chondritic chemical fractionation processes: post-nebular volatilization and preferential collisional erosion. In the latter, geochemically enriched crust formed previously is preferentially lost. That post-nebular volatilization was widespread is demonstrated by the non-chondritic Mn/Na ratio in all the small, differentiated, rocky bodies for which we have basaltic samples, including the Moon and Mars. The bulk silicate Earth (BSE) has chondritic Mn/Na, but shows several other compositional features in its pattern of depletion of volatile elements suggestive of non-chondritic fractionation. The whole-Earth Fe/Mg ratio is 2.1+/-0.1, significantly greater than the solar ratio of 1.9+/-0.1, implying net collisional erosion of approximately 10 per cent silicate relative to metal during the Earth's accretion. If this collisional erosion preferentially removed differentiated crust, the assumption of chondritic ratios among all RLEs in the BSE would not be valid, with the BSE depleted in elements according to their geochemical incompatibility. In the extreme case, the Earth would only have half the chondritic abundances of the highly incompatible, heat-producing elements Th, U and K. Such an Earth model resolves several geochemical paradoxes: the depleted mantle occupies the whole mantle, is completely outgassed in (40)Ar and produces the observed (4)He flux through the ocean basins. But the lower radiogenic heat production exacerbates the discrepancy with heat loss.
SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions
NASA Technical Reports Server (NTRS)
Smialek, James L.; Robinson, Raymond C.; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.
1999-01-01
Silicon carbide (SiC) and Si3N4 materials were tested in various turbine engine combustion environments chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high-speed aircraft. Representative chemical vapor-deposited (CVD), sintered, and composite materials were evaluated by furnace and high-pressure burner rig exposures. Although protective SiO2 scales formed in all cases, the evidence presented supports a model based on paralinear growth kinetics (i.e., parabolic growth moderated simultaneously by linear volatilization). The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were thus used to map SiO2 volatility (and SiC recession) over a range of temperatures, pressures, and velocities. The functional dependency of material recession (volatility) that emerged followed the form A[exp(-Q / RT)](P(sup x)v(sup y). These empirical relations were compared with rates predicted from the thermodynamics of volatile SiO and SiOxHy reaction products and a kinetic model of diffusion through a moving boundary layer. For typical combustion conditions, recession of 0.2 to 2 micrometers/hr is predicted at 1200 to 1400 C, far in excess of acceptable long-term limits.
Volatility of source apportioned wintertime organic aerosol in the city of Athens
NASA Astrophysics Data System (ADS)
Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.
2017-06-01
The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1 results in the increase of the average volatility by half an order of magnitude.
NASA Astrophysics Data System (ADS)
O'Sullivan, Edel M.; Goodhue, Robbie; Ames, Doreen E.; Kamber, Balz S.
2016-06-01
The 1.85 Ga Sudbury structure provides a unique opportunity to study the sequence of events that occurred within a hydrothermally active subaqueous impact crater during the late stages of an impact and in its aftermath. Here we provide the first comprehensive chemostratigraphic study for the lower crater fill, represented by the ca. 1.4 km thick Onaping Formation. Carefully hand-picked ash-sized matrix of 81 samples was analysed for major elements, full trace elements and C isotopes. In most general terms, the composition of the clast-free matrix resembles that of the underlying melt sheet. However, many elements show interesting chemostratigraphies. The high field strength element evolution clearly indicates that the crater rim remained intact during the deposition of the entire Onaping Formation, collapsing only at the transition to the overlying Onwatin Formation. An interesting feature is that several volatile metals (e.g., Pb, Sb) are depleted by >90% in the lower Onaping Formation, suggesting that the impact resulted in a net loss of at least some volatile species, supporting the idea of ;impact erosion,; whereby volatile elements were vaporised and lost to space during impact. Reduced C contents in the lower Onaping Formation are low (<0.1 wt%) but increase to 0.5-1 wt% up stratigraphy, where δ13C becomes constant at -31‰, indicating a biogenic origin. Elevated Y/Ho and U/Th require that the ash interacted with saline water, most likely seawater. Redox-sensitive trace metal chemostratigraphies (e.g., V and Mo) suggest that the basin was anoxic and possibly euxinic and became inhabited by plankton, whose rain-down led to a reservoir effect in certain elements (e.g., Mo). This lasted until the crater rim was breached, the influx of fresh seawater promoting renewed productivity. If the Sudbury basin is used as an analogue for the Hadean and Eoarchaean Earth, our findings suggest that hydrothermal systems, capable of producing volcanogenic massive sulphides, could develop within the rims of large to giant impact structures. These hydrothermal systems did not require mid-ocean ridges and implicitly, the operation of plate tectonics. Regardless of hydrothermal input, enclosed submarine impact basins also provided diverse isolated environments (potential future oases) for the establishment of life.
NASA Astrophysics Data System (ADS)
Gauthier, Pierre-Jean; Sigmarsson, Olgeir; Moune, Séverine; Haddadi, Baptiste; Gouhier, Mathieu
2015-04-01
Trace elements are well known to be volatile at magma temperature and enriched in volcanic gases from active volcanoes worldwide. However, little is known so far regarding their volatility at Icelandic volcanoes, mostly because high temperature volcanic gases are often inaccessible. The 2014 Holuhraun eruption that began on August 29 is characterized by both high extrusion rates of lava and intensive degassing which gives rise to a volcanic plume made of volcanic gases, aerosols and fine solid particles. A unique opportunity to sample the diluted plume at the eruption site was given to us on October 2. Volcanic aerosols were collected on washed PTFE membranes by pumping through the diluted plume for 30 minutes to 1 hour. Reactive gases were simultaneously trapped on impregnated filters, yielding a SO2/HCl molar ratio at the eruption site of 29-46 and SO2 concentrations in the diluted plume up to 200 mg/m3 (Haddadi et al., EGU 2015). PTFE filters were leached in 5 ml of a diluted HNO3-HF mixture for one week at 90°C. Solutions were subsequently analyzed by ICP-MS using a synthetic reference solution at 10 ppb for external calibration. Both siderophile (Mo, W, Re) and calchophile trace metals (Cu, Zn, As, Se, Cd, In, Sn, Sb, Te, Tl, Pb, Bi) were found to be significantly enriched in the diluted volcanic plume of Holuhraun compared to the background atmosphere in Iceland. Measured concentrations range from less than 0.1 ng/m3 for W up to 400 ng/m3 of Cd. Enrichment factors (EF) relative to Mg, considered as a strictly lithophile element with extremely low volatility, were computed for all analyzed trace metals. The least volatile elements (W, Cu, Zn, Mo, Ag) have EFs in the range 50-300 while the most volatile elements (Cd, Bi, Re, Se, Te) have EFs as high as 10E6. The overall degassing pattern observed at Holuhraun is consistent with those previously reported for other mantle plume related volcanoes like Kilauea (Mather et al., Geochim. Cosmochim. Acta, 2012) and Erta Ale (Zelenski et al., Chem. Geol., 2013). In contrast, it significantly departs from observations at subduction-related volcanoes where Cl-rich gases enhance the volatility of trace metals. Degassing of trace elements at Holuhraun thus appears to be characteristic of hot spot magmatism where gases exhibit high S/Cl ratios. The volcanic output from the ongoing eruption was estimated by scaling metal-to-SO2 concentration ratios to the flux of SO2 (~1200 kg/s, Gouhier et al., EGU 2015). Daily emissions are in the range 50 g/d (W) - 200 kg/d (Cd), suggesting that the Holuhraun eruption is a major source of pollution to the local environment and atmosphere over Iceland. For instance, from the beginning of the eruptive crisis to the end of 2014, more than 25 tons of highly toxic Cd have been released to the atmosphere. Future work should be devoted to study both the plume dispersion and the long-range transport of metallic aerosols in order to check how this can affect populated areas.
NASA Technical Reports Server (NTRS)
1982-01-01
Non-solar compositional models of the troposphere of Jupiter, halide cloud condensation and volatile element inventories on Venus, and shock-wave processing of interstellar cloud materials are discussed.
Siderophile Element Partitioning between Sulfide- and Silicate melts.
NASA Astrophysics Data System (ADS)
Hackler, S.; Rohrbach, A.; Loroch, D. C.; Klemme, S.; Berndt, J.
2017-12-01
Different theories concerning the formation of the Earth are debated. Either Earth accreted mostly `dry' or volatile elements were delivered late after core formation was largely inactive [1, 2], or volatile rich material was accreted during the main stages of accretion and core formation [3, 4, 5]. The partitioning behavior of siderophile volatile elements (SVE; S, Se, Te, Tl, Ag, Au, Cd, Bi, Pb, Sn, Cu, Ge, and In) may provide first order constraints whether these element concentrations in Earth's mantle were established before or after core-mantle differentiation or perhaps during both periods by multi stage core formation [6]. A special interest is laid into chalcophile element behavior with respective to the possible formation and segregation of a hadean matte [7]. To examine the influence of sulfur on SVE partitioning between metal-silicate melts, we performed experiments simulating a magma ocean stage evolving from sulfur poor- (low fO2) to more oxidizing sulfur rich- (Fe, Ni)-S melts ( 20 wt% S) towards the end of accretion. We carried out partitioning experiments under various P-T-fO2 conditions with a Bristol type end loaded piston cylinder apparatus (<3 GPa) and a 1000 t walker-type multi-anvil press (3-20 GPa). Our results will be presented at the meeting. References: [1] Albarède F. (2009) Nature, 461, 1227-1233. [2] Ballhaus C. et al. (2013) EPSL, 362, 237-245. [3] Fischer-Gödde M. and Kleine T. (2017) Nature, 541, 525 527. [4] Wade J. and Wood B. J. (2005) EPSL, 236, 78-95. [5] Rubie D. et al. (2016) Science, 253, 1141-1144. [6] Rubie D. et al. (2011) EPSL, 301, 31-42. [7] O'Neill H. St. C. (1991) GCA, 55, 1159-1172.
2014-09-17
Dwayne Brown, NASA public affairs officer, moderates a media briefing where panelist outlined activities around the Sunday, Sept. 21 orbital insertion at Mars of the agency’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, Wednesday, Sept. 17, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Bill Ingalls)
It's the little things that matter most: The role of volatiles in volcanoes and their magmatic roots
NASA Astrophysics Data System (ADS)
Keller, T.; Suckale, J.
2017-12-01
Many volcanic eruptions are driven by volatiles - mostly H2O and CO2 - that degas from magmas rising up beneath the volcano. Gas expands during ascent, thus frequently creating lavas with upward of 50% vesicularity. That is a particularly compelling observation considering that volatiles are only present at concentrations of order 100 ppm in the mantle source. Yet, even at these small concentrations, volatiles significantly lower the peridotite solidus. That leads to the production of reactive volatile-rich melts at depth, which has important consequences for melt transport in the asthenosphere. Thus, volatiles have a pivotal role both at the beginning and the end of the magmatic storyline. A growing amount of observational evidence provides various perspectives on these systems. Volcanic products are characterised increasingly well by geochemical and petrological data. And, volcano monitoring now often provides continuous records of degassing flux and composition. What is missing to better interpret these data are coupled fluid mechanic and thermodynamic models that link melt production and reactive transport in the mantle and crust with degassing-driven volcanic activity at the surface. Such models need to describe the deformation and segregation of multiple material phases (liquids, solids, gases) and track the reactive transport of diverse chemical components (major elements, trace elements, volatiles). I will present progress towards a generalization of existing two-phase model for melt transport in the mantle, extending them to three-phase flows appropriate for magma circulation and degassing in volcanoes. What sets the two environments apart is the presence of a compressible vapor in volcanoes. Also, volcanic degassing may occur by convecting suspensions as well as porous segregation. The model framework we are developing for these processes is based on mixture theory. Uncovering the underlying physics that connects these diverse expressions of magma transport will provide an opportunity to gain deeper insights into magmatic and volcanic phenomena as related rather than separate processes. In time we may thus come to more fully understand how it is that the little things that are mantle volatiles do matter most in volcanoes and their magmatic roots.
Resource Prospector: A Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2015-01-01
A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form. extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations
Tin in a chondritic interplanetary dust particle
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1989-01-01
Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.
Clark, Stewart F.; Chalmers, Ann; Mack, Thomas J.; Denner, Jon C.
2005-01-01
The Ethan Allen Firing Range of the Vermont Army National Guard is a weapons-testing and training facility in a mountainous region of Vermont that has been in operation for about 80 years. The hydrologic framework and water quality of the facility were assessed between October 2002 and December 2003. As part of the study, streamflow was continuously measured in the Lee River and 24 observation wells were installed at 19 locations in the stratified drift and bedrock aquifers to examine the hydrogeology. Chemical analyses of surface water, ground water, streambed sediment, and fish tissue were collected to assess major ions, trace elements, nutrients, and volatile and semivolatile compounds. Sampling included 5 surface-water sites sampled during moderate and low-flow conditions; streambed-sediment samples collected at the 5 surface-water sites; fish-tissue samples collected at 3 of the 5 surface-water sites; macroinvertebrates collected at 4 of the 5 surface-water sites; and ground-water samples collected from 10 observation wells, and samples collected at all surface- and ground-water sites. The hydrogeologic framework at the Ethan Allen Firing Range is dominated by the upland mountain and valley setting of the site. Bedrock wells yield low to moderate amounts of water (0 to 23 liters per minute). In the narrow river valleys, layered stratified-drift deposits of sand and gravel of up to 18 meters thick fill the Lee River and Mill Brook Valleys. In these deposits, the water table is generally within 3 meters below the land surface and overall ground-water flow is from east to west. Streamflow in the Lee River averaged 0.72 cubic meters per second (25.4 cubic feet per second) between December 2002 and December 2003. Streams are highly responsive to precipitation events in this mountainous environment and a comparison with other nearby watersheds shows that Lee River maintains relatively high streamflow during dry periods. Concentrations of trace elements and nutrients in surface-water samples are well below freshwater-quality guidelines for the protection of aquatic life. Brook-trout samples collected in 1992 and 2003 show trace-metal concentrations have decreased over the past 11 years. concentrations in water samples are well below levels that restrict swimming at all five stream sites at moderate and low-flow conditions and in all observation wells. Comparisons among surface-water, streambed-sediment, and biological samples collected in 2003 to earlier studies at the Ethan Allen Firing Range indicate water-quality conditions are similar or have improved over the past 15 years. Ground water in the stratified-drift aquifers at the facility is well buffered with relatively high alkalinities and pH greater than 6. Concentrations of arsenic, cadmium, chromium, lead, nickel, uranium, and zinc were below detection levels in ground-water samples. Barium, cobalt, copper, iron, manganese, molybdenum, and strontium were the only trace elements detected in ground-water samples. Cobalt and iron were detected at low levels in two wells near Mill Brook, and copper was detected at the detection limit in one of these wells. These same two wells had concentrations of barium and manganese 2 to 10 times greater than other ground-water samples. Concentrations of nutrients are at or below detection levels in most ground-water samples. Volatile organic compounds and semivolatile organic compounds were not detected in any water samples from the Ethan Allen Firing Range.
Leverage effect in financial markets: the retarded volatility model.
Bouchaud, J P; Matacz, A; Potters, M
2001-11-26
We investigate quantitatively the so-called "leverage effect," which corresponds to a negative correlation between past returns and future volatility. For individual stocks this correlation is moderate and decays over 50 days, while for stock indices it is much stronger but decays faster. For individual stocks the magnitude of this correlation has a universal value that can be rationalized in terms of a new "retarded" model which interpolates between a purely additive and a purely multiplicative stochastic process. For stock indices a specific amplification phenomenon seems to be necessary to account for the observed amplitude of the effect.
Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi
2016-11-01
Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, J.M.
A high volume sampling system was developed for the collection of volcanic plume aerosols from an aircraft sampling platform. Concentrations of up to 30 elements on particles were determined simultaneously with gas-phase concentrations of S, Cl, and Br in the quiescent plumes of five active volcanoes: Mount St. Helens, US; Arenal and Poas, Costa Rica; Colima and El Chichon, Mexico. Volatile and chalcophilic elements were found to be highly enriched, relative to average crustal and bulk pyroclastic material, in the quiescent plumes of all volcanoes studied. Enriched volatile elements were found to be primarily associated with fine (less than ormore » equal to 3-..mu..m diam) particles, those expected to have the longest residence times in the atmosphere. Samples were also collected using the aircraft sampling system in background, mid-tropospheric air. Analysis of these samples revealed that many of the same elements that are enriched in volcanic plumes are also enriched in clean, relatively remote aerosols collected in the free troposphere (5-7 km). Concentrations of sulfates made in the North American free troposphere (280 ng/m/sup 3/) approach those measured at remote background sites.« less
Constraints on Galactic Cosmic-Ray Origins from Elemental Composition Measurements
NASA Astrophysics Data System (ADS)
Binns, W. R.; Christian, E. R.; Cummings, A. C.; Denolfo, G. A.; Israel, M. H.; Lave, K. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.; Wiedenbeck, M. E.
2017-01-01
We present measurements of the abundances of ultra-heavy (Z>29) cosmic rays made by the CRIS instrument on NASA's Advanced Composition Explorer satellite. The data set corresponds to 6413 days of data collection between December 4, 1997 and May 31, 2016. The charge resolution that we obtain is excellent, exhibiting essentially complete separation of adjacent charges in the Z>28 range. We detected 196 events over the charge range of Z =30-40. Our measured abundances show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to a mix of massive star outflow and SN ejecta with normal ISM, rather than pure ISM. Additionally, the refractory and volatile elements have similar slopes and refractory elements are preferentially accelerated by a factor of 4. The measured abundances support a model in which 20% of cosmic ray source material is from massive star outflow and ejecta and 80% is from normal ISM. Our abundances show generally good agreement with the TIGER and SuperTIGER results. This research is supported by NASA under Grant # NNX13AH66G.
Brusotti, Gloria; Ibrahim, Mohammed Farhad; Dentamaro, Alessandra; Gilardoni, Gianluca; Tosi, Solveig; Grisoli, Pietro; Dacarro, Cesare; Guglielminetti, Maria Lidia; Hussain, Faiq Hama Saeed; Caccialanza, Gabriele; Vidari, Giovanni
2013-02-01
The volatile fractions isolated from Prangos peucedanifolia FENZL leaves and flowers were investigated for their phytochemical composition and biological properties. Flower and leaf hydrodistillation afforded 3.14 and 0.49 g of yellowish oils in 1.25 and 0.41% yields, respectively, from dry vegetable materials. According to the GC-FID and GC/MS analyses, 36 (99.35% of the total oil composition) and 26 compounds (89.12%) were identified in the two oils, respectively. The major constituents in the flower volatile fraction were β-pinene (35.58%), α-pinene (22.13%), and β-phellandrene (12.54%), while m-cresol (50.38%) was the main constituent of the leaf volatile fraction. The antimicrobial activity was evaluated against several bacterial and fungal strains, on the basis of the minimum inhibitory concentration (MIC) by the micro- and macrodilution methods. The two volatile fractions showed moderate antifungal and antibacterial activities, especially against Trichophyton rubrum (MIC of 2×10(3) μg/ml), Streptococcus mutans, Streptococcus pyogenes, and Staphylococcus aureus (MIC≤1.9×10(3) μg/ml for all). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Morgan, J.W.; Anders, E.
1979-01-01
The composition of Mars has been calculated from the cosmochemical model of Ganapathy and Anders (1974) which assumes that planets and chondrites underwent the same 4 fractionation processes in the solar nebula. Because elements of similar volatility stay together in these processes, only 4 index elements (U, Fe, K and Tl or Ar36) are needed to calculate the abundances of all 83 elements in the planet. The values chosen are U = 28 ppb, K = 62 ppm (based on K U = 2200 from orbital ??-spectrometry and on thermal history calculations by Tokso??z and Hsui (1978) Fe = 26.72% (from geophysical data), and Tl = 0.14 ppb (from the Ar36 and Ar40 abundances measured by Viking). The mantle of Mars is an iron-rich [Mg/(Mg + Fe) = 0.77] garnet wehrlite (?? = 3.52-3.54 g/cm3), similar to McGetchin and Smyth's (1978) estimate but containing more Ca and Al. It is nearly identical to the bulk Moon composition of Morgan et al. (1978b). The core makes up 0.19 of the planet and contains 3.5% S-much less than estimated by other models. Volatiles have nearly Moon-like abundances, being depleted relative to the Earth by factors of 0.36 (K-group, Tcond = 600-1300 K) or 0.029 (Tl group, Tcond < 600 K). The water abundance corresponds to a 9 m layer, but could be higher by as much as a factor of 11. Comparison of model compositions for 5 differentiated planets (Earth, Venus, Mars, Moon, and eucrite parent body) suggests that volatile depletion correlates mainly with size rather than with radial distance from the Sun. However, the relatively high volatile content of shergottites and some chondrites shows that the correlation is not simple; other factors must also be involved. ?? 1979.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, I.; Badro, J.; Siebert, J.
We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results offer a strong argument for an O- and Si-rich core, formed in a deep terrestrial magma ocean, along with oxidizing conditions.« less
Geochemistry and petrogenesis of lamproites, late cretaceous age, Woodson County, Kansas, U.S.A.
Cullers, R.L.; Ramakrishnan, S.; Berendsen, P.; Griffin, T.
1985-01-01
Lamproite sills and their associated sedimentary and contact metamorphic rocks from Woodson County, Kansas have been analyzed for major elements, selected trace elements, and strontium isotopic composition. These lamproites, like lamproites elsewhere, are alkalic (molecular K2O + Na2O Al2O3 = 1.6-2.6), are ultrapotassic ( K2O Na2O = 9.6-150), are enriched in incompatible elements (LREE or light rare-earth elements, Ba, Th, Hf, Ta, Sr, Rb), and have moderate to high initial strontium isotopic compositions (0.7042 and 0.7102). The silica-saturated magma (olivine-hypersthene normative) of the Silver City lamproite could have formed by about 2 percent melting of a phlogopite-garnet lherzolite under high H2O CO2 ratios in which the Iherzolite was enriched before melting in the incompatible elements by metasomatism. The Rose Dome lamproite probably formed in a similar fashion although the extreme alteration due to addition of carbonate presumably from the underlying limestone makes its origin less certain. Significant fractional crystallization of phases that occur as phenocrysts (diopside, olivine, K-richterite, and phlogopite) in the Silver City magma and that concentrate Co, Cr, and Sc are precluded as the magma moved from the source toward the surface due to the high abundances of Co, Cr, and Sc in the magma similar to that predicted by direct melting of the metasomatized Iherzolite. Ba and, to a lesser extent, K and Rb and have been transported from the intrusions at shallow depth into the surrounding contact metamorphic zone. The Silver City lamproite has vertical fractionation of some elements due either to volatile transport or to variations in the abundance of phenocrysts relative to groundmass most probably due to flow differentiation although multiple injection or fractional crystallization cannot be conclusively rejected. ?? 1985.
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical and physical models of the Jovian subnebula are addressed. Halide cloud condensation and volatile element inventories on Venus and considered. Computation methods for isolated grain condensation behavior are examined.
NASA Astrophysics Data System (ADS)
Gurenko, Andrey A.; Kamenetsky, Vadim S.; Kerr, Andrew C.
2016-11-01
We report O isotopes in olivine grains (Fo89-93) and volatile contents (CO2, H2O, F, S, Cl) in olivine-hosted melt inclusions from one Gorgona picrite and five komatiites with the aim of constraining the origin of H2O in these magmas. These samples have previously been analysed for major and trace elements and volatile concentrations (H2O, S, Cl) and B isotopes in melt inclusions. A distinctive feature of the included melts is relatively high contents of volatile components and boron, which show positive anomalies in, otherwise depleted, primitive mantle normalised trace and rare earth element patterns and range in δ11 B from -11.5 to 15.6‰. In this study, the olivines were systematically analysed for O isotopes (1) in the centre of grains, (2) near the grain boundaries and, (3) as close as possible to the studied melt inclusions. The majority of olivines (∼66%) are ;mantle;-like, 4.8 ‰ ≤δ18 O ≤ 5.5 ‰, with a subordinate but still significant number (∼33%) above, and only 2 grains below, this range. There is no systematic difference between the central and marginal parts of the grains. Higher than ;mantle; δ18OOl values are ascribed to low-T (<300 °C) serpentinisation along inner fractures and grain boundaries of olivine phenocrysts. The measured concentrations of volatile components in the melt inclusions corrected for the effects of post-entrapment crystallisation and H2O-CO2 exsolution in inclusion shrinkage bubbles are: 286-1748 μg/g CO2, 0.2-0.86 wt.% H2O, 48-82 μg/g F, 398-699 μg/g S and 132-198 μg/g Cl. They correspond to a pressure of 86 ± 44MPa or ∼2.5-km crustal depth of olivine crystallisation. The correlations of S and, to a lesser extent, of H2O, with highly incompatible lithophile elements and the correlation of F with Cl, but no relationships of H2O with Cl, rule out shallow depth magma degassing and/or crustal contamination. Our new δ18 O olivine and volatile component data combined with the existing, highly variable δ11 B values for melt inclusions also support the deep mantle origin of H2O (and probably other volatiles) in the Gorgona mafic and ultramafic magmas.
Volatiles in High-K Lunar Basalts
NASA Technical Reports Server (NTRS)
Barnes, Jessica J.; McCubbin, Francis M.; Messenger, Scott R.; Nguyen, Ann; Boyce, Jeremy
2017-01-01
Chlorine is an unusual isotopic system, being essentially unfractionated ((delta)Cl-37 approximately 0 per mille ) between bulk terrestrial samples and chondritic meteorites and yet showing large variations in lunar (approximately -4 to +81 per mille), martian, and vestan (HED) samples. Among lunar samples, the volatile-bearing mineral apatite (Ca5(PO4)3[F,Cl,OH]) has been studied for volatiles in K-, REE-, and P (KREEP), very high potassium (VHK), low-Ti and high-Ti basalts, as well as samples from the lunar highlands. These studies revealed a positive correlation between in-situ (delta)Cl-37 measurements and bulk incompatible trace elements (ITEs) and ratios. Such trends were interpreted to originate from Cl isotopic fractionation during the degassing of metal chlorides during or shortly after the differentiation of the Moon via a magma ocean. In this study, we investigate the volatile inventories of a group of samples for which new-era volatile data have yet to be reported - the high-K (greater than 2000 ppm bulk K2O), high-Ti, trace element-rich mare basalts. We used isotope imaging on the Cameca NanoSIMS 50L at JSC to obtain the Cl isotopic composition [((Cl-37/(35)Clsample/C-37l/(35)Clstandard)-1)×1000, to get a value in per thousand (per mille)] which ranges from approximately -2.7 +/- 2 per mille to +16.1 +/- 2 per mille (2sigma), as well as volatile abundances (F & Cl) of apatite in samples 10017, 10024 & 10049. Simply following prior models, as lunar rocks with high bulk-rock abundances of ITEs we might expect the high-K, high-Ti basalts to contain apatite characterized by heavily fractionated (delta)Cl-37 values, i.e., Cl obtained from mixing between unfractionated mantle Cl (approximately 0 per mille) and the urKREEP reservoir (possibly fractionated to greater than +25 per mille.). However, the data obtained for the studied samples do not conform to either the early degassing or mixing models. Existing petrogentic models for the origin of the high-K, high-Ti basalts do not include urKREEP assimilation into their LMO cumulate sources. Therefore, Cl in these basalts either originated from source region heterogeneity or through assimilation or metasomatism by volatile and incompatible trace element rich materials. The new data presented here could provide evidence for the existence of region(s) in the lunar interior that are ITE-enriched and contain Cl that does not share isotopic affinities with lunar urKREEP, possibly representing the composition of the purported 'neuKREEP'.
Long-term anaerobic digestion of food waste stabilized by trace elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr
Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less
Arsenijević, Jelena; Marković, Jelena; Soštarić, Ivan; Ražić, Slavica
2013-10-01
The volatile fraction of the leaves of Thymus pannonicus All. (Lamiaceae) was analyzed by headspace extraction followed by GC-FID and GC-MS analysis. The different headspace profiles were recognized, with citral and with monoterpene hydrocarbons as dominant compounds. In addition, the determination of Cr, Co, Ni, Mo, Cu, Zn, Mn, Fe, Mg, Ca, K and Na was conducted by spectroscopic techniques (FAAS, GFAAS and ICP-OES). In order to evaluate the relationship between volatile organic compounds and metals, a chemometrics approach was applied. The data obtained by analysis of the headspace and elemental content were subjected to correlation analysis, factor analysis, principal component analysis and cluster analysis. A number of significant correlations of metals with plant volatiles were found. Correlation of Zn with citral, Mn with oxygenated monoterpenes and Mg with β-bourbonene, could be explained by involvement of metals in the biosynthesis of volatile organic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Gleißner, Philipp; Becker, Harry
2017-03-01
Fe-Ni metal-schreibersite-troilite intergrowths in Apollo 16 impact melt rocks and new highly siderophile element (HSE) and S abundance data indicate that millimeter-scale closed-system fractional crystallization processes during cooling of impactor-derived metal melt droplets in impact-melts are the main reason for compositional variations and strong differences in abundances and ratios of HSE in multiple aliquots from Apollo 16 impact melt rocks. Element ratios obtained from linear regression of such data are therefore prone to error, but weighted averages take into account full element budgets in the samples and thus represent a more accurate estimate of their impactor contributions. Modeling of solid metal-liquid metal partitioning in the Fe-Ni-S-P system and HSE patterns in impactites from different landing sites suggest that bulk compositions of ancient lunar impactites should be representative of impact melt compositions and that large-scale fractionation of the HSE by in situ segregation of solid metal or sulfide liquid in impact melt sheets most likely did not occur. The compositional record of lunar impactites indicates accretion of variable amounts of chondritic and non-chondritic impactor material and the mixing of these components during remelting of earlier ejecta deposits. The non-chondritic composition appears most prominently in some Apollo 16 impactites and is characterized by suprachondritic HSE/Ir ratios which increase from refractory to moderately volatile HSE and exhibit a characteristic enrichment of Ru relative to Pt. Large-scale fractional crystallization of solid metal from sulfur and phosphorous rich metallic melt with high P/S in planetesimal or embryo cores is currently the most likely process that may have produced these compositions. Similar materials or processes may have contributed to the HSE signature of the bulk silicate Earth (BSE).
NASA Technical Reports Server (NTRS)
Yang, S.; Humayun, M.; Jefferson, G.; Fields, D.; Righter, K.; Irving, A. J.
2013-01-01
Shergottites represent the majority of recovered Martian meteorites. As basic igneous rocks, they formed from magmas that were emplaced in the Martian crust [1]. Due to the low ambient pressure of the Martian atmosphere, subaerial lavas and shallow magma chambers are expected to outgas volatile metals (e.g., Cd, Te, Re, Bi) [2]. The planetary abundances of the volatile siderophile and chalcophile elements are important at establishing the depth of core formation for Mars, and must be known as a baseline for understanding volcanic outgassing on Mars, particularly the large enrichments of S and Cl observed in modern Martian soils [3]. There is little data on volatile siderophile and chalcophile elements from Martian meteorites, excluding a few well-analyzed samples [2]. Further, a large number of shergottites being recovered from North West Africa are in need of chemical analysis. All of the shergottites are in need of state-of-the art analysis for such ratios as Ge/Si and Ga/Al, which can now be accomplished by LA-ICP-MS [2].
Search for naturally occurring superheavy elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoughton, R.W.; Halperin, J.; Drury, J.S.
1973-11-12
Several ores, minerals, concentrates and special samples were examined for evidence of superheavy elements using a neutron multiplicity counter. This counter contains 20 /sup 3/He detectors in a paraffin matrix, and enables evaluation of the emitted neutron multiplicity spectrum of large samples with littie or no chemical processing. Such measurements provide an effective tool in the search for superheavy elements, since their decay or the decay of daughter nuclides is expected to proceed by spontaneous fission. In a search for Element 114(ekalead) a massive galena sample and a sample of galena-barite were examined, together with some chalcophilic samples, iron andmore » zinc sulphides, cerussite (PbCO/ sub 3/), and flux dust samples in Cottrell precipitators from the roasting of pentlandite (iron nickel sulphide). Element 114 would be expected to be more volatile than Hg, and intermediate between Pb and Au in nobility, and for this reason a technique was applied which was successfully developed to locate Hg ore bodies. This technique is described. In another attempt to detect possible volatile superheavy elements, such as 118 (ekaradon) or 112 (ekamercury) a sample of silica gel was examined, previously used in a plant for the production of noble gases; a gas mixture of crude Xe from the same plant was also investigated. With regard to Element 110 (ekaplatinum) several ultrabasic rocks were examined. For Element 119 (ekafracium) several potash ores were examined, as well as bittern from the Great Salt Lake, Utah. A sample of native Bi, as well as reagent Bi, were examined for Element 115 (ekabismuth). Several special samples included iron-rich meteorites, samples of biotite in which dwarf haloes had been found, some monazite samples associated with giant haloes, and some haematite and magnetite samples; also manganese nodules, sharks' teeth, and carbonaceous chondrite meteorite samples. The latter were particularly interesting since there is a Xe component in some carbonaceous chondrites that shows a higher /sup 136/Xe/sup 134/Xe ratio than Xe from any known fission source, possibly due to fission of one or more relatively volatile superheavy elements. All the results are summarized in tabular form. None of the samples examined showed evidence of spontaneous fission rates in excess of the detection limit. (UK)« less
High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits
NASA Astrophysics Data System (ADS)
Hanley, J. J.; Mungall, J. E.
2004-12-01
The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions are comparable to and often exceed the economic concentrations of the metals within the ores themselves. As a consequence of these results, current genetic models must be revised to consider the role played by hydrous saline melts and magmatic brines in deposit development, and the potential for interaction and competition between sulfide liquids (or PGE-bearing sulfide minerals) and hydrosaline volatiles for available PGE and Au in a crystallizing mafic igneous system must be critically evaluated.
Gas Phase Chromatography of some Group 4, 5, and 6 Halides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylwester, Eric Robert
1998-10-01
Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr 4, HfBr 4, RfBr 4, NbBr 5, TaOBr 3, HaCl 5, WBr 6, FrBr, and BiBr 3. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography.more » Adsorption Enthalpy (ΔH a) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and ΔH a was observed: RfBr 4 > ZrBr 4 > HfBr 4. The ΔH a values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of 261Rf was performed. 261Rf was produced via the 248Cm( 18O, 5n) reaction and observed with a half-life of 74 -6 +7 seconds, in excellent agreement with the previous measurement of 78 -6 +11 seconds. We recommend a new half-life of 75±7 seconds for 261Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and ΔH a of longer-lived isotopes off-line, Future work will include a comparison between the two techniques and the use of thermochromatography to study isotopes in a wider range of half-lives and molecular structures.« less
NASA Astrophysics Data System (ADS)
Day, James M. D.; Walker, Richard J.; Ash, Richard D.; Liu, Yang; Rumble, Douglas; Irving, Anthony J.; Goodrich, Cyrena A.; Tait, Kimberly; McDonough, William F.; Taylor, Lawrence A.
2012-03-01
New major- and trace-element abundances, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances, and oxygen and rhenium-osmium isotope data are reported for oligoclase-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9), six brachinites (Brachina; Elephant Morraine 99402/7; Northwest Africa (NWA) 1500; NWA 3151; NWA 4872; NWA 4882) and three olivine-rich achondrites, which are referred to here as brachinite-like achondrites (NWA 5400; NWA 6077; Zag (b)). GRA 06128/9 represent examples of felsic and highly-sodic melt products from an asteroid that may provide a differentiation complement to brachinites and/or brachinite-like achondrites. The new data, together with our petrological observations, are consistent with derivation of GRA 06128/9, brachinites and the three brachinite-like achondrites from nominally volatile-rich and oxidised 'chondritic' precursor sources within their respective parent bodies. Furthermore, the range of Δ17O values (˜0‰ to -0.3‰) among the meteorites indicates generation from isotopically heterogeneous sources that never completely melted, or isotopically homogenised. It is possible to generate major- and trace-element compositions similar to brachinites and the three studied brachinite-like achondrites as residues of moderate degrees (13-30%) of partial melting of primitive chondritic sources. This process was coupled with inefficient removal of silica-saturated, high Fe/Mg felsic melts with compositions similar to GRA 06128/9. Melting of the parent bodies of GRA 06128/9, brachinites and brachinite-like achondrites halted well before extensive differentiation, possibly due to the exhaustion of the short-lived radionuclide 26Al by felsic melt segregation. This mechanism provides a potential explanation for the cessation of run-away melting in asteroids to preserve achondrites such as GRA 06128/9, brachinites, brachinite-like achondrites, acapulcoite-lodranites, ureilites and aubrites. Moderate degrees of partial melting of chondritic material and generation of Fe-Ni-S-bearing melts are generally consistent with HSE abundances that are within factors of ˜2-10 × CI-chondrite abundances for GRA 06128/9, brachinites and the three brachinite-like achondrites. However, in detail, brachinite-like achondrites NWA 5400, NWA 6077 and Zag (b) are interpreted to have witnessed single-stage S-rich metal segregation, whereas HSE in GRA 06128/9 and brachinites have more complex heritages. The HSE compositions of GRA 06128/9 and brachinites require either: (1) multiple phases in the residue (e.g., metal and sulphide); (2) fractionation after generation of an initial melt, again involving multiple phases; (3) fractional fusion, or; (4) a parent body with non-chondritic relative HSE abundances. Petrological and geochemical observations permit genetic links (i.e., same parent body) between GRA 06128/9 and brachinites and similar formation mechanisms for brachinites and brachinite-like achondrites.
NEUTRONIC REACTOR CONTROL ELEMENT
Newson, H.W.
1960-09-13
A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.
Volatile and Isotopic Imprints of Ancient Mars
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Conrad, Pamela G.
2015-01-01
The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.
Distributed Micro-Processor Applications to Guidance and Control Systems.
1982-07-01
nanoseconds compared with 22 milliseconds for the older type of NMOS non-volatile RAM. This non-volatile RAM is estimated to hold its memory for 100 years...illustrated in figure 1.4.3.3 and compared with the traditional permalog chevron bubble structure. The contiguous element bubble structure is being developed ...M for its 8086 based Digital Advanced Avionics System (DAAS) developed for NASA Ames, but rejected it as being unsuitable. Ada is the new DoD
Gambetta, Joanna M; Cozzolino, Daniel; Bastian, Susan E P; Jeffery, David W
2017-01-31
The relationship between berry chemical composition, region of origin and quality grade was investigated for Chardonnay grapes sourced from vineyards located in seven South Australian Geographical Indications (GI). Measurements of basic chemical parameters, amino acids, elements, and free and bound volatiles were conducted for grapes collected during 2015 and 2016. Multiple factor analysis (MFA) was used to determine the sets of data that best discriminated each GI and quality grade. Important components for the discrimination of grapes based on GI were 2-phenylethanol, benzyl alcohol and C6 compounds, as well as Cu, Zn, and Mg, titratable acidity (TA), total soluble solids (TSS), and pH. Discriminant analysis (DA) based on MFA results correctly classified 100% of the samples into GI in 2015 and 2016. Classification according to grade was achieved based on the results for elements such as Cu, Na, Fe, volatiles including C6 and aryl alcohols, hydrolytically-released volatiles such as (Z)-linalool oxide and vitispirane, pH, TSS, alanine and proline. Correct classification through DA according to grade was 100% for both vintages. Significant correlations were observed between climate, GI, grade, and berry composition. Climate influenced the synthesis of free and bound volatiles as well as amino acids, sugars, and acids, as a result of higher temperatures and precipitation.
Exploring heterogeneous market hypothesis using realized volatility
NASA Astrophysics Data System (ADS)
Chin, Wen Cheong; Isa, Zaidi; Mohd Nor, Abu Hassan Shaari
2013-04-01
This study investigates the heterogeneous market hypothesis using high frequency data. The cascaded heterogeneous trading activities with different time durations are modelled by the heterogeneous autoregressive framework. The empirical study indicated the presence of long memory behaviour and predictability elements in the financial time series which supported heterogeneous market hypothesis. Besides the common sum-of-square intraday realized volatility, we also advocated two power variation realized volatilities in forecast evaluation and risk measurement in order to overcome the possible abrupt jumps during the credit crisis. Finally, the empirical results are used in determining the market risk using the value-at-risk approach. The findings of this study have implications for informationally market efficiency analysis, portfolio strategies and risk managements.
Method for refreshing a non-volatile memory
Riekels, James E.; Schlesinger, Samuel
2008-11-04
A non-volatile memory and a method of refreshing a memory are described. The method includes allowing an external system to control refreshing operations within the memory. The memory may generate a refresh request signal and transmit the refresh request signal to the external system. When the external system finds an available time to process the refresh request, the external system acknowledges the refresh request and transmits a refresh acknowledge signal to the memory. The memory may also comprise a page register for reading and rewriting a data state back to the memory. The page register may comprise latches in lieu of supplemental non-volatile storage elements, thereby conserving real estate within the memory.
Li, Shuai; Harley, Peter C; Niinemets, Ülo
2017-09-01
Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre-exposure to lower O 3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol -1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol -1 O 3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O 3 priming than in light and without priming. After low O 3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. © 2017 John Wiley & Sons Ltd.
Li, Shuai; Harley, Peter C.; Niinemets, Ülo
2018-01-01
Acute ozone exposure triggers major emissions of volatile organic compounds (VOC), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e., pre-exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol-1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol-1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. PMID:28623868
Interplanetary dust - Trace element analysis of individual particles by neutron activation
NASA Technical Reports Server (NTRS)
Ganapathy, R.; Brownlee, D. E.
1979-01-01
Although micrometeorites of cometary origin are thought to be the dominant component of interplanetary dust, it has never been possible to positively identify such micrometer-sized particles. Two such particles have been identified as definitely micrometeorites since their abundances of volatile and nonvolatile trace elements closely match those of primitive solar system material.
Memory switches based on metal oxide thin films
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni (Inventor); Thakoor, Anilkumar P. (Inventor); Lambe, John J. (Inventor)
1990-01-01
MnO.sub.2-x thin films (12) exhibit irreversible memory switching (28) with an OFF/ON resistance ratio of at least about 10.sup.3 and the tailorability of ON state (20) resistance. Such films are potentially extremely useful as a connection element in a variety of microelectronic circuits and arrays (24). Such films provide a pre-tailored, finite, non-volatile resistive element at a desired place in an electric circuit, which can be electrically turned OFF (22) or disconnected as desired, by application of an electrical pulse. Microswitch structures (10) constitute the thin film element, contacted by a pair of separate electrodes (16a, 16b) and have a finite, pre-selected ON resistance which is ideally suited, for example, as a programmable binary synaptic connection for electronic implementation of neural network architectures. The MnO.sub.2-x microswitch is non-volatile, patternable, insensitive to ultraviolet light, and adherent to a variety of insulating substrates (14), such as glass and silicon dioxide-coated silicon substrates.
Analysis of ablation debris from natural and artificial iron meteorites
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Davis, A. S.
1977-01-01
Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.
NASA Astrophysics Data System (ADS)
Johnson, E. R.; Kamenetsky, V.; McPhie, J.; Wallace, P. J.
2009-12-01
The Taupo Volcanic Zone (TVZ) produces the most frequent rhyolitic eruptions on Earth. This volcanic arc is also characterized by bimodal volcanism, with eruptions of andesite (primarily in the NE and SW of the zone) and minor basalt. Here we use melt inclusions (MI) to investigate the magmatic evolution of rhyolites in the TVZ and their link to TVZ basalts. Our study focuses on recent (<50 ka) explosive rhyolitic eruptions, as well as several small-volume explosive basaltic eruptions, from the Okataina Volcanic Centre in the northern part of the TVZ. The rhyolitic melts of the TVZ are thought to be formed via fractionation of a basaltic parent plus assimilation of metasedimentary crust. Trace element data from our TVZ melt inclusions lend support to this idea, with constant ratios of incompatible trace elements (e.g., U/Th) in the TVZ basalts and rhyolites. Assuming that these elements are completely incompatible, we have calculated that the TVZ rhyolites can be produced by ~80% fractional crystallization of a basaltic parent. We have also used MI volatile contents to assess the pressures (and thus depths) in the crust of magma emplacement and differentiation. Both the TVZ rhyolites and basalts are volatile-rich. Quartz-hosted MI in the rhyolites typically contain 5.5- 7.6 wt% H2O and up to 2500 ppm Cl, and olivine-hosted MI in the basalts contain up to 4.5 wt% H2O and 1250 ppm Cl. The H2O concentrations imply crystallization pressures of at least 200-440 MPa for the rhyolites, which correspond to depths of ~8-16 km. However, the presence of rhyolitic MI with lower H2O (3.5-5 wt%) suggests that crystallization may have occurred over a wide range of pressures. Additionally, the basalts erupted in the TVZ likely crystallized at minimum pressures of 100-200 MPa. Together, this suggests that basaltic and rhyolitic melt zones occur over a wide range of depths (~4-16 km). Furthermore, the emplacement of the basaltic parent and the AFC process to create the rhyolites had to occur at depths >8-16 km. Our findings are consistent with geophysical models which suggest partial melts are present at depths of 6-16 km beneath portions of the TVZ (Bannister et al., 2004). We have also used MI analyses and cathodoluminescence (CL) images of quartz to assess degassing, mixing and fractionation in these magma systems. Our MI data indicate that the rhyolites underwent vapour-saturated crystallization. Concentrations of both H2O and Cl increase slightly during crystallization, suggesting that these volatiles behaved as moderately incompatible elements during fractionation. The extents of such fractionation are variable, and in some cases mixing of several rhyolitic magmas occurred, but in general we find that the range in U and Th in MI indicates ~7-20% crystallization from the least to most evolved rhyolitic melt. The results of this study provide important insights into the origin and evolution of rhyolitic magmas in an arc environment.
FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM
Katz, J.J.; Hyman, H.H.; Sheft, I.
1958-04-15
The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.
Elemental, isotopic and molecular abundances in comets
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1986-01-01
The chemical composition of comet nuclei and the factors affecting it are discussed, summarizing the results of recent theoretical, experimental, and observational investigations. Consideration is given to the evidence supporting the view that the nucleus is radially differentiation (except for a thin outer layer), surface differentiation by heat processing and outgassing, and mantle buildup on an undifferentiated core. The nature of the refractory and volatile components is examined, and the elemental and isotopic compositions are given in tables and characterized. The uncertain (except for H2O) molecular composition of the volatile fraction is considered, and it is suggested that some oxides or aldehydes (such as CO, CO2, and H2CO), but no large amounts of fully hydrogenated compounds (such as CH4 and NH3) are included.
Fractionation of highly siderophile and chalcogen elements in components of EH3 chondrites
NASA Astrophysics Data System (ADS)
Kadlag, Yogita; Becker, Harry
2015-07-01
Abundances of highly siderophile elements (HSE: Re, platinum group elements and Au), chalcogens (Te, Se and S), 187Os/188Os and the major and minor elements Mg, Ca, Mn, Fe, Ni and Co were determined in the components of Sahara 97072 (EH3, find) and Kota Kota (EH3, find) in order to understand the element fractionation processes. In a 187Re-187Os isochron diagram, most magnetic components lie close to the 4.56 Ga IIIA iron meteorite isochron, whereas most other components show deviations from the isochron caused by late redistribution of Re, presumably during terrestrial weathering. Metal- and sulfide rich magnetic fractions and metal-sulfide nodules are responsible for the higher 187Os/188Os in bulk rocks of EH chondrites compared to CI chondrites. The HSE and chalcogens are enriched in magnetic fractions relative to slightly magnetic and nonmagnetic fractions and bulk compositions, indicating that Fe-Ni metal is the main host phase of the HSE in enstatite chondrites. HSE abundance patterns indicate mixing of two components, a CI chondrite like end member and an Au-enriched end member. Because of the decoupled variations of Au from those of Pd or the chalcogens, the enrichment of Au in EH metal cannot be due to metal-sulfide-silicate partitioning processes. Metal and sulfide rich nodules may have formed by melting and reaction of pre-existing refractory element rich material with volatile rich gas. A complex condensation and evaporation history is required to account for the depletion of elements having very different volatility than Au in EH chondrites. The depletions of Te relative to HSE, Se and S in bulk EH chondrites are mainly caused by the depletion of Te in metal. S/Se and S/Mn are lower than in CI chondrites in almost all components and predominantly reflect volatility-controlled loss of sulfur. The latter most likely occurred during thermal processing of dust in the solar nebula (e.g., during chondrule formation), followed by the non-systematic loss of S during terrestrial weathering.
Bean, R.W.
1963-11-19
A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)
TSCA Work Plan Chemical Risk Assessment: 1-Bromopropane
1-Bromopropane (CASRN 106-94-5): or 1-BP is a volatile organic chemical that is considered moderately persistent in the environment but does not have the potential to bioaccumulate in fish or other animals. The majority of the 1-BP production volume (~ 47%) is used as a vapor deg...
The "stripmeation" process for removing volatile organic compounds (VOCs) from water has been introduced and studied. An aqueous solution of the VOC is passed through the bores of hydrophobic microporous polypropylene hollow fibers having a plasma polymerized silicone ...
Geochemistry and genesis of the angrites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittlefehldt, D.W.; Lindstrom, M.M.
1990-11-01
The angrites Angra dos Reis, LEW86010, and LEW87051 are petrologically and compositionally similar achondrites. All angrites have high FeO/MnO ratios of 80-94 and very low CI normalized Na/Sm ratios of 0.001-0.003. High abundances of oxidized Fe and low abundances of moderately volatile Na most likely resulted from parent body processes, such as magmatic outgassing, rather than nebular processes. All angrites have fractionated Ca/Al ratios, with Angra dos Reis exhibiting the most extreme ratio (3.1 {times} CI). For Angra dos Reis, cumulus material may be the cause of the high Ca/Al ratio. Refractory element abundances of LEW86010 and LEW87051 show similarmore » patterns, while Angra dos Reis has both greater enrichments in these elements and more fractionated patterns. Compositional and petrologic constraints indicate that LEW86010 and LEW87051 are related via olivine control. The refractory element abundances and mg{number sign} of LEW86010 can be approximated by removal of olivine from LEW87051, suggesting that LEW86010 may be a residual melt from a LEW87051-like precursor. Alternatively, LEW87051 may have formed via olivine accumulation from a LEW86010-like precursor. The differences between the LEW86010-LEW87051 duo and Angra dos Reis suggest that either the angrite parent body was heterogeneous or that Angra dos Reis was formed on a separate parent body. Based on FeO/MnO ratios and normative mineralogies, the angrite parent body(ies) may be similar in bulk composition to one of the carbonaceous chondrite groups, particularly CI-CM-CO.« less
NASA Astrophysics Data System (ADS)
Oh, Semyeong; Price-Whelan, Adrian M.; Brewer, John M.; Hogg, David W.; Spergel, David N.; Myles, Justin
2018-02-01
We report and discuss the discovery of a significant difference in the chemical abundances of a comoving pair of bright solar-type stars, HD 240430 and HD 240429. The two stars have an estimated 3D separation of ≈0.6 pc (≈0.01 pc projected) at a distance of r ≈ 100 pc with nearly identical 3D velocities, as inferred from Gaia TGAS parallaxes and proper motions, and high-precision radial velocity measurements. Stellar parameters determined from high-resolution spectra obtained with the High Resolution Echelle Spectrometer (HIRES) at the Keck Observatory indicate that the two stars are ∼4 Gyr old. The more metal-rich of the two, HD 240430, shows an enhancement of refractory ({T}C> 1200 K) elements by ≈0.2 dex and a marginal enhancement of (moderately) volatile elements ({T}C< 1200 K; {{C}}, {{N}}, {{O}}, {Na}, and {Mn}). This is the largest metallicity difference found in a wide binary pair to date. Additionally, HD 240430 shows an anomalously high surface lithium abundance (A({Li})=2.75), higher than its cooler companion by 0.5 dex. The proximity in phase-space and ages between the two stars suggests that they formed together with the same composition, which is at odds with the observed differences in metallicity and abundance patterns. We therefore suggest that the star HD 240430, “Kronos,” accreted 15 {M}\\oplus of rocky material after birth, selectively enhancing the refractory elements as well as lithium in its surface and convective envelope.
Confirmation of the Decay of 283112 and First Indication for Hg-like Behavior of Element 112
NASA Astrophysics Data System (ADS)
Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dressler, R.; Dmitriev, S. N.; Gäggeler, H. W.; Gorshkov, V. A.; Haenssler, F.; Itkis, M. G.; Lebedev, V. Ya.; Laube, A.; Malyshev, O. N.; Oganessian, Yu. Ts.; Petruschkin, O. V.; Piguet, D.; Rasmussen, P.; Shishkin, S. V.; Shutov, A. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.; Wegrzecki, M.; Yeremin, A. V.
2007-05-01
Two gas phase adsorption chemistry experiments aimed at the chemical characterization of element 112 using its isotope 283112 have been performed at the Flerov Laboratory for Nuclear Reactions (FLNR) Dubna, Russia. The applied Insitu-Volatilization and On-line Detection (IVO) technique is a thermochromatographic system combining the determination of the deposition temperature of volatile elements on a surface along a temperature gradient with an efficient detection of the deposited species by event-by-event alpha and SF-fragment spectroscopy. Two possibilities to produce the isotope 283112 were used: 1.) the direct production reaction 238U( 48Ca,3n) 283112; 2.) the reaction 242Pu( 48Ca,3n), where the primary product 287114, decays via alpha emission to 283112 with a half-life of 0.5 s. The chemistry experiments were aimed at a chemical identification of 283112 and an independent confirmation of its decay properties. In the direct reaction no decays related to 283112 were observed. However, two decay chains unambiguously attributed to the decay of 283112 were observed using the second production path. Previously reported observation of 283112 and 279Ds and their decay properties were confirmed. From its thermochromatorgaphic deposition first thermochemical data were deduced for element 112, unveiling it as a typical group 12 element.
NASA Astrophysics Data System (ADS)
Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.
2010-12-01
The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.
NASA Astrophysics Data System (ADS)
Venugopal, S.; Moune, S.; Williams-Jones, G.
2015-12-01
Cerro Negro, the youngest volcano in the Central American Volcanic Belt, is a polygenetic cinder cone with relatively frequent explosive basaltic eruptions. Las Pilas, on the other hand, is a much larger and older complex with milder and less frequent eruptions. Based on historical data, these two closely spaced volcanoes have shown concurrent eruptive behavior, suggesting a subsurface connection. To further investigate this link, melt inclusions, which are blebs of melt trapped in growing crystals, were the obvious choice for optimal comparison of sources and determination of pre-eruptive volatile contents and magmatic conditions. Olivine-hosted inclusions were chosen for both volcanoes and pyroxene-hosted inclusions were also sampled from Las Pilas to represent the evolved melt. Major, volatile and trace elements reveal a distinct geochemical continuum with Cerro Negro defining the primitive end member and Las Pilas representing the evolved end member. Volatile contents are high for Cerro Negro (up to 1260 ppm CO2, 4.27 wt% H2O and 1700 ppm S) suggesting that volatile exsolution is likely the trigger for Cerro Negro's explosive eruptions. Las Pilas volatile contents are lower but consistent with degassing and evolutionary trends shown by major oxides. Trace element contents are rather unique and suggest Cerro Negro magmas fractionally crystallize while Las Pilas magmas are the products of mixing. Magmatic conditions were estimated with major and volatile contents: at least 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for Las Pilas melts with an overall oxygen fugacity at the NNO buffer. In combination with available literature data, this study suggests an interconnected subsurface plumbing system and thus Cerro Negro should be considered as the newest vent within the Las Pilas-El Hoyo Complex.
Landing Site and Traverse Plan Development for Resource Prospector
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; McGovern, A.; Beyer, R.; Siegler, M. A.
2017-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high [1,2,3]. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
Resource Prospector Landing Site and Traverse Plan Development
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; McGovern, A.; Beyer, R.
2016-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
Landing Site and Traverse Plan Development for Resource Prospector
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; A.McGovern; Beyer, R.; Siegler, M. A.
2017-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
From Purgatory to Paradise: The Volatile Life of Hawaiian Magma
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2014-12-01
Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Dixon et al. 2002, Nature 420:385-89 [2] Workman et al. 2006, EPSL 241:932-51
Lopez, Taryn; Ushakov, Sergey; Izbekov, Pavel; Tassi, Franco; Cahill, Cathy; Neill, Owen; Werner, Cynthia A.
2013-01-01
Direct and remote measurements of volcanic gas composition, SO2 flux, and eruptive SO2 mass from Bezymianny Volcano were acquired between July 2007 and July 2010. Chemical composition of fumarolic gases, plume SO2 flux from ground and air-based ultraviolet remote sensing (FLYSPEC), and eruptive SO2 mass from Ozone Monitoring Instrument (OMI) satellite observations were used along with eruption timing to elucidate magma processes and subsurface conditions, and to constrain total volatile flux. Bezymianny Volcano had five explosive magmatic eruptions between May 2007 and June 2010. The most complete volcanic gas datasets were acquired for the October 2007, December 2009, and May 2010 eruptions. Gas measurements collected prior to the October 2007 eruption have a relatively high ratio of H2O/CO2 (81.2), a moderate ratio of CO2/S (5.47), and a low ratio of S/HCl (0.338), along with moderate SO2 and CO2 fluxes of 280 and 980 t/d, respectively, and high H2O and HCl fluxes of ~ 45,000 and ~ 440 t/d, respectively. These results suggest degassing of shallow magma (consistent with observations of lava extrusion) along with potential minor degassing of a deeper magma source. Gas measurements collected prior to the December 2009 eruption are characterized by relatively low H2O/CO2 (4.13), moderate CO2/S (6.84), and high S/HCl (18.7) ratios, along with moderate SO2 and CO2 fluxes of ~ 220 and ~ 1000 t/d, respectively, and low H2O and HCl fluxes of ~ 1700 and ~ 7 t/d, respectively. These trends are consistent with degassing of a deeper magma source. Fumarole samples collected ~ 1.5 months following the May 2010 eruption are characterized by high H2O/CO2 (63.0), low CO2/S (0.986), and moderate S/HCl (6.09) ratios. These data are consistent with degassing of a shallow, volatile-rich magma source, likely related to the May eruption. Passive and eruptive SO2 measurements are used to calculate a total annual SO2 mass of 109 kt emitted in 2007, with passive emissions comprising ~ 87–95% of the total. Total annual volatile masses for the study period are estimated to range from 1.1 × 106 to 18 × 106 t/year. Annual CO2 masses are ~ 8 to 40 times larger than can be explained by degassing of dissolved CO2 within eruptive magma, suggesting that the eruptive magma contained a significant quantity of exsolved volatiles sourced either from the eruptive melt or unerupted magma at depth. Variable total volatile fluxes ranging from ~ 3000 t/d in 2009 to ~ 49,000 t/d in 2007 are attributed to variations in the depth of gas exsolution and separation from the melt under open-system degassing conditions. We propose that exsolved volatiles are quickly transported to the surface from ascending magma via permeable flow through a bubble and/or fracture network within the conduit and thus retain their equilibrium composition at the time of segregation from melt. The composition of surface CO2 and H2O emissions from 2007 to 2009 are compared with modeled exsolved fluid compositions for a magma body ascending from entrapment depths to estimate depth of fluid exsolution and separation from the melt. We find that at the time of sample collection magma had already begun ascent from the mid-crustal storage region and was located at maximum depths of ~ 3.7 km in August 2007, approximately 2 months prior to the next magmatic eruption, and ~ 4.6 km in July of 2009 approximately five months prior to the next magmatic eruption. These findings suggest that the exsolved gas composition at Bezymianny Volcano may be used to detect magma ascent prior to eruption.
REGENERATION OF REACTOR FUEL ELEMENTS
Lyon, W.L.
1960-04-01
A process is described for concentrating uranium and/or plutonium metal in aluminum alloys in which the actinide content was partially consumed by neutron bombardinent. Two embodiments are claimed: Either the alloy is heated, together with zinc chloride to at least 1000 deg C whereby some aluminum, in the form of aluminum chloride, and any zinc formed volatilize; or else aluminum fluoride is added and reacted at 800 to 1000 deg O and substmospheric pressure whereby pant of the aluminum volatilizes and aluminum subfluoride.
NASA Astrophysics Data System (ADS)
Crowe, Bruce M.; Finnegan, David L.; Zoller, William H.; Boynton, William V.
1987-12-01
Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (7LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 days after episode 11 (cooling vent samples) and (2) the waning stage of episode 13 (active vent samples). Additional samples were collected by aircraft from the gas plume released during the lava fountaining phase of episode 17 (aircraft samples). Element concentrations in the vent gases were > 104 μg m-3 for S, Cl, and F. Enrichment factors (EFs) for the volcanic fume versus the source magma were calculated using the volatile element Br as the reference element for normalization and the U.S. Geological Survey standard BHVO-1 as the magma standard. This removes the ash dilution effect obtained by using an ash constituent (Al, Sc, or Mg) as the reference element. Bromine-normalized EFs (× 105) range from 101 to 102 for Na, K, and Cu; 102 to 105 for Zn, W, Sb, In, Ir, Ag, F, and As; and > 105 for Au, Cd, Re, Cl, Se, and S. The highest enrichment factors are for aircraft samples collected during the most gas-rich phase of an eruption cycle. Metal and volatile-element data form two groups: (1) elements showing little or no variation in abundance ratios with sample type (group 1: Cl, Br, and Re) and (2) elements that show significant variation in abundance ratios by sample type (group 2: Zn, W, Sb, In, Ir, Au, and Cd). Bivariate plots of elements of the first group versus elements of the second group separate by sample type. The separation corresponds to samples collected during eruptive activity versus samples collected during repose periods. Monitoring trace metal ratios in volcanic fume could provide an additional tool for predicting volcanic eruptions. The F/Cl ratio of cooling vent samples is higher than those of active vent or aircraft samples, and the ratio is inversely correlated with EFs for most volatile metals.
NASA Astrophysics Data System (ADS)
Gurenko, Andrey A.; Kamenetsky, Vadim S.
2011-12-01
A fundamental question in the genesis of komatiites is whether these rocks originate from partial melting of dry and hot mantle, 400-500 °C hotter than typical sources of MORB and OIB magmas, or if they were produced by hydrous melting of the source at much lower temperatures, similar or only moderately higher than those known today. Gorgona Island, Colombia, is a unique place where Phanerozoic komatiites occur and whose origin is directly connected to the formation of the Caribbean Large Igneous Province. The genesis of Gorgona komatiites remains controversial, mostly because of the uncertain origin of volatile components which they appear to contain. These volatiles could equally result from shallow level magma contamination, melting of a "damp" mantle or fluid-induced partial melting of the source due to devolatilization of the ancient subducting plate. We have analyzed boron isotopes of olivine-hosted melt inclusions from the Gorgona komatiites. These inclusions are characterized by relatively high contents of volatile components and boron (0.2-1.0 wt.% H 2O, 0.05-0.08 wt.% S, 0.02-0.03 wt.% Cl, 0.6-2.0 μg/g B), displaying positive anomalies in the overall depleted, primitive mantle (PM) normalized trace element and REE spectra ([La/Sm] n = 0.16-0.35; [H 2O/Nb] n = 8-44; [Cl/Nb] n = 27-68; [B/Nb] n = 9-30, assuming 300 μg/g H 2O, 8 μg/g Cl and 0.1 μg/g B in PM; Kamenetsky et al., 2010. Composition and temperature of komatiite melts from Gorgona Island constrained from olivine-hosted melt inclusions. Geology 38, 1003-1006). The inclusions range in δ11B values from - 11.5 to + 15.6 ± 2.2‰ (1 SE), forming two distinct trends in a δ11B vs. B-concentration diagram. Direct assimilation of seawater, seawater-derived components, altered oceanic crust or marine sediments by ascending komatiite magma cannot readily account for the volatile contents and B isotope variations. Alternatively, injection of < 3wt.% of a 11B enriched fluid to the mantle source could be a plausible explanation for the δ11B range that also may explain the H 2O, Cl and B excess.
Melt Heterogeneity and Degassing at MT Etna from Melt Inclusions
NASA Astrophysics Data System (ADS)
Salem, L. C.; Edmonds, M.; Maclennan, J.; Corsaro, R. A.
2014-12-01
The melts feeding Mt Etna, Italy, are rich in volatiles and drive long-lasting powerful eruptions of basaltic magma in both effusive and explosive styles of activity. The volatile systematics of the volcanic system are well understood through melt inclusion and volcanic gas studies. Etna's melts are generated from a complex mantle setting, with subduction-related chemical modifications as well as OIB-type features, and then the melts must travel through thick carbonate-rich crust. The continual influx of mantle-derived volatile-rich magma controls the major compositional and eruptive features of Mount Etna and magma mixing has been recognized as an important process driving large eruptions [Kamenetsky, 2007]. Our study focusses on the 1669 eruption, the largest in historical times. Olivine-hosted melt inclusions were analyzed for volatile, trace and major elements using electron microprobe and ion probe (SIMS). We use volatile systematics and geochemical data to deconvolve mantle-derived heterogeneity from melt mixing and crystal fractionation. Our data are well described by a mixing trend between two distinct melts: a CO2-rich (CO2~1000ppm), incompatible trace element depleted melt (La/Yb~16), and a CO2-poor, enriched melt. The mixing also generates a strong correlation between Sr and CO2 in the melt inclusions dataset, reflecting the presence of a strong Sr anomaly in one of the end-member melts. We investigate the origin of this Sr anomaly by considering plagioclase dissolution and crustal assimilation. We also investigate degassing processes in the crust and plumbing system of the volcano. We compare our results with similar studies of OIB and arc-related basalts elsewhere and assess the implications for linking eruption size and style with the nature of the mantle-derived melts. Kamenetsky et al. (2007) Geology 35, 255-258.
The Chlorine Isotopic Composition Of Lunar UrKREEP
NASA Technical Reports Server (NTRS)
Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.
2016-01-01
Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. Numerous studies have examined the abundances and isotopic compositions of volatiles in lunar apatite, Ca5(PO4)3(F,Cl,OH). In particular, apatite has been used as a tool for assessing the sources of H2O in the lunar interior. However, current models for the Moon's formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. For ex-ample, in the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs (Rare Earth Elements), and P, collectively called KREEP, and in its primitive form - urKREEP, given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon (BSM). In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes in lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.
Search for Nucleosynthetic Cadmium Isotope Variations in Bulk Carbonaceous Chondrites
NASA Astrophysics Data System (ADS)
Toth, E. R.; Schönbächler, M.; Friebel, M.; Fehr, M. A.
2016-08-01
New high-precision Cd isotope data will be presented for bulk carbonaceous chondrites, such as Allende and Murchison. Volatile element isotope anomalies and their potential nucleosynthetic sources will be discussed.
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Anders, E.
1979-01-01
The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.
Process and catalyst for carbonylating olefins
Zoeller, Joseph Robert
1998-06-02
Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.
NASA Astrophysics Data System (ADS)
Jones, M.; Soule, S. A.; Kurz, M. D.; Wanless, V. D.; Le Roux, V.; Klein, F.; Mittelstaedt, E. L.; Curtice, J.
2016-12-01
During a 1985 cruise, the Mid-Atlantic Ridge (MAR) near 14°N yielded an unusually vesicular mid-ocean ridge (MOR) basalt that popped upon recovery from the seafloor due to the release of trapped volatiles. This `popping rock' has been inferred to be representative of primitive, undegassed magmas from the upper mantle due to its high volatile concentrations. Thus, the sample has been used to constrain CO2 flux from the MOR system, upper mantle volatile concentrations, and magma degassing dynamics. However, the lack of geologic context for the original popping rock raises questions about whether it truly reflects the volatile content of its mantle source. Here, we present results from a 2016 cruise to the MAR aimed at characterizing the geologic context of popping rocks and understanding their origins. The newly recovered samples display differences in volatile concentrations and vesicularities between popping and non-popping rocks. These differences may be related to geologic setting and eruption dynamics with potential implications for mantle volatile concentrations. Volatile concentrations in the outer quenched margin of new samples were measured by ion microprobe to elucidate degassing systematics, brine/magma interactions, and popping rock formation. The large variability in dissolved H2O (0.05-0.77 wt%) can be attributed to spatially variable brine contamination. Dissolved CO2 concentrations (153-356 ppm) are likely controlled by initial volatile concentrations and variable degrees of degassing. The subset of popping samples display low dissolved CO2 concentrations (161-178 ppm) and moderate dissolved H2O concentrations (.44-.50 wt%) and are at equilibrium with their eruption depth based on solubility calculations. X-ray microtomography reveals vesicularity in newly collected popping rocks exceeding 19%, making these samples the most highly vesicular recovered from the MAR. The total gas contents in the basaltic glasses are inferred from dissolved volatile concentrations and vesicularity. These calculations are aided by analysis of gas contents in vesicles by confocal Raman spectroscopy and vacuum crushing experiments. The preliminary results and seafloor observations allow an evaluation of the origins of popping rocks and their implications for mantle volatile concentrations.
Moore, R.V.; Bowen, J.H.; Dent, K.H.
1958-12-01
A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the three Sacramento Valley study units, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark. For organic (volatile organic compounds and pesticides) and special-interest (perchlorate) constituents, relative-concentrations were classified as high (greater than 1.0); moderate (equal to or less than 1.0 and greater than 0.1); or low (equal to or less than 0.1). For inorganic (major ion, trace element, nutrient, and radioactive) constituents, the boundary between low and moderate relative-concentrations was set at 0.5. Aquifer-scale proportions were used in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifers that have a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers that have moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based, which used one value per grid cell, and spatially-weighted, which used the full dataset-were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. High and moderate aquifer-scale proportions were significantly greater for inorgani
Ferroelectric tunneling element and memory applications which utilize the tunneling element
Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN
2010-07-20
A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.
NASA Astrophysics Data System (ADS)
Kargel, Jeffrey
2013-04-01
MESSENGER has acquired stunning images of pitted, light-toned and variegated light/dark terrains located primarily on the floors—probably impact-melt sheets—of many of Mercury's large craters. Termed "hollows", the pitted terrains are geomorphologically similar to some on Mars formed by sublimation of ice-rich permafrost and to lowland thermokarst on Earth formed by permafrost thaw; to "swiss cheese" terrain forming by sublimation of frozen CO2 at the Martian South Pole; and to suspected hydrocarbon thermokarst at Titan's poles. I shall briefly review some analogs on these other worlds. The most plausible explanation for Mercury's hollows is terrain degradation involving melting or sublimation of heterogeneous chalcogenide and sulfosalt mineral assemblages. I refer to these Mercurian features as pyrothermokarst; the etymological redundancy distinguishes the conditions and mineral agents from the ice-related features on Earth and Mars, though some of the physical processes may be similar. Whereas ice and sulfur have long been suspected and ice recently was discovered in permanently shadowed craters of Mercury's polar regions, the hollows occur down to the equator, where neither ice nor sulfur is plausible. The responsible volatiles must be only slightly volatile on the surface and/or in the upper crust of Mercury's low to middle latitudes at 400-800 K, but they must be capable of either melting or sublimating on geologically long time scales. Under prevailing upper crustal and surface temperatures, chalcophile-rich "permafrost" can undergo either desulfidation or melting reactions that could cause migration or volume changes of the permafrost, and hence lead to collapse and pitting. I propose the initial emplacement of crater-hosted chalcogenides, sulfosalts and related chalcophile materials such as pnictides, in impact-melt pools (involving solid-liquid and silicate-sulfide fractionation) and further differentiation by associated dry or humid fumaroles (solid-vapor and liquid-vapor fractionation and recondensation). Key phase transitions can occur in the temperature range of Mercury's surface and upper crust. Vapor-solid, vapor-liquid, and solid-liquid transitions of the heated materials resulted in migration and loss of volatiles and anatectic liquids, causing collapse pits to form. Seasonal heating near perihelion may work together with geothermal flux or early impact heating to drive off volatiles and produce the pits. In some cases, local recondensation of moderately volatile materials may have occurred on the rims of the pits; some volatiles may have been transported to the polar regions or lost by exospheric escape. Impacts by comets may have caused local oxidation and formation of oxygenated salts and other minerals, whose local recondensation from fumarole gases can explain the light-toned layers and light-toned rims of many pits. Plating of native volatile metals and semi-metals may also account for some light-toned deposits. Large contrasts in thermal conductivity as well as local topographic shading and latitude controls may result in large differences in element mobility and mineral assemblages. Pyrothermokarst on Mercury may be more chemically heterogeneous and complex in its development than any other thermokarst in the Solar System. Validation of this model would require a future mission with high-resolution multispectral imaging and neutral/ion detection.
Resolving the potential mantle reservoirs that influence volcanism in the West Antarctic Rift System
NASA Astrophysics Data System (ADS)
Maletic, E. L.; Darrah, T.
2017-12-01
Lithospheric extension and magmatism are key characteristics of active continental rift zones and are often associated with long-lasting alkaline magmatic provinces. In these settings, a relationship between lithospheric extension and mantle plumes is often assumed for the forces leading to rift evolution and the existence of a plume is commonly inferred, but typically only extension is supported by geological evidence. A prime example of long-lasting magmatism associated with an extensive area of continental rifting is the West Antarctic Rift System (WARS), a 2000 km long zone of ongoing extension within the Antarctic plate. The WARS consists of high alkaline silica-undersaturated igneous rocks with enrichments in light rare earth elements (LREEs). The majority of previous geochemical work on WARS volcanism has focused on bulk classification, modal mineralogy, major element composition, trace element chemistry, and radiogenic isotopes (e.g., Sr, Nd, and Pb isotopes), but very few studies have evaluated volatile composition of volcanics from this region. Previous explanations for WARS volcanism have hypothesized a plume beneath Marie Byrd Land, decompression melting of a fossilized plume head, decompression melting of a stratified mantle source, and mixing of recycled oceanic crust with one or more enriched mantle sources from the deep mantle, though researchers are yet to reach a consensus. Unlike trace elements and radiogenic isotopes which can be recycled between the crust and mantle and which are commonly controlled by degrees of partial melting and prior melt differentiation, noble gases are present in low concentrations and chemically inert, allowing them to serve as reliable tracers of volatile sources and subsurface processes. Here, we present preliminary noble gas isotope (e.g., 3He/4He, CO2/3He, CH4/3He, 40Ar/36Ar, 40Ar*/4He) data for a suite of lava samples from across the WARS. By coupling major and trace element chemistry with noble gas elemental and isotopic composition and other volatiles from a suite of volcanic rocks in the WARS, we can better constrain a magmatic source and provide geological evidence that could support or oppose the existence of a mantle plume, HIMU plume, or deconvolve mantle-lithosphere interactions.
Tellurium in active volcanic environments: Preliminary results
NASA Astrophysics Data System (ADS)
Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco
2014-05-01
Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First estimates of volcanic flux of tellurium from Etna range from 1 to 5 tons per year, confirming that this volcano is one of the biggest point sources of trace elements to the atmosphere. Analysis of tellurium in soils and plants close to active vents allowed to highlight the impact of this toxic elements, particularly evident close to the craters. Especially, the leaves of plants used as bioaccumulators of trace metals, showed also high enrichment of tellurium in comparison with other toxic elements.
Halogens in chondritic meteorites and terrestrial accretion
NASA Astrophysics Data System (ADS)
Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.
2017-11-01
Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion.
Fragrance materials in asthma: a pilot study using a surrogate aerosol product.
Vethanayagam, Dilini; Vliagoftis, Harissios; Mah, Dennell; Beach, Jeremy; Smith, Ladd; Moqbel, Redwan
2013-11-01
Many household products contain fragrances. Little is known about exposure to fragrances on human health, particularly within the airways. This study aimed to evaluate how common household fragrance products (i.e. air fresheners, cleaning products) affect people with asthma, who frequently report sensitivity to these products. Many of these products have volatile organic compounds or semi-volatile organic compounds. This study evaluated nine fragrance materials in an aerosol formulation to assess effects on airway physiology, airway inflammation and symptom perception in normal controls and those with asthma. The effects of fragrances were evaluated in people without asthma, people with mild asthma and people with moderate asthma in a four-way crossover placebo-controlled study. Subjects were exposed twice to a fragranced aerosol and twice to a placebo aerosol (15 and 30 min each). Subjects completed a questionnaire for 29 symptoms during and up to 3 h after each exposure scenario. Spirometry was performed prior to and 3 h post-exposure; sputum induction was conducted 3 h post-exposure. Nasal symptoms showed the greatest frequency of response in all three subject groups, and moderate asthmatics reported the greatest symptom severity and symptom types. No significant differences were noted in physiology or cellular inflammation. A trend for increased symptoms was noted in moderate asthmatics, suggesting that asthma severity may play a factor in fragrance sensitivity.
Programmable computing with a single magnetoresistive element
NASA Astrophysics Data System (ADS)
Ney, A.; Pampuch, C.; Koch, R.; Ploog, K. H.
2003-10-01
The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such `chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, `chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate.
NASA Astrophysics Data System (ADS)
Iveson, A. A.; Webster, J. D.; Rowe, M. C.; Neill, O. K.
2016-12-01
New experimental data for crystal-melt partitioning behaviour of a suite of trace-elements are presented. Hydrous rhyo-dacitic starting glasses from Mt. Usu, Japan, were doped with Li, Sc, Cr, Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Nb, Mo, Ba, W, and Pb. Aqueous solutions were added such that the volatile phase(s) coexisting with amphibole, plagioclase, and clinopyroxene at run conditions buffered the S, F, and Cl contents of the melts. Internally-heated pressure vessel experiments were conducted at 750-850 °C, 1.0-4.0 Kbar, and ƒO2 ≈ NNO-NNO+2 log units. Major- and minor-element concentrations in the phenocrysts and glasses were analysed by EPMA, and trace-element contents by SIMS and/or LA-ICP-MS. The long run durations, homogeneous glasses, and minimal compositional zonation of crystals suggest that near-equilibrium conditions were achieved. Results of multiple phenocryst and glass analyses show that Nernst-type crystal-melt partition coefficients for these elements range from strongly incompatible e.g. Dmineral/melt ≈ 0 for Nb into plagioclase, to moderately incompatible e.g. Dmineral/melt ≈ 0.75 for Ga into amphibole, to strongly compatible e.g. Dmineral/melt > 50 for Ni into amphibole and clinopyroxene. Furthermore, unlike other elements investigated, partitioning of Li between phenocrysts and melt is similar for all three phases, with average DLicpx/melt ≈ 0.26 > DLiplag/melt ≈ 0.24 > DLiamph/melt ≈ 0.19. Relative to major-element composition of crystalline phases, the temperature, pressure, and ƒO2 conditions do not appear to strongly affect this behaviour. The incorporation of F and Cl into amphiboles is also consistent with the Fe-F and Mg-Cl crystallographic avoidance principles. Importantly, across two orders of magnitude in concentration, partitioning behaviours of all analysed trace-elements appear to obey Henry's Law. The experimental data are integrated with new amphibole, plagioclase, and pyroxene analyses from eruptive products of Augustine and Mt. St. Helens volcanoes. The results are applicable to understanding processes governing melt evolution during shallow magma storage and formation of economic metal deposits, where the crystallisation of porphyry-type magmas leads to fluid exsolution, and enrichment and transport of such trace- and ore-elements.
Fortescue, P.; Zumwalt, L.R.
1961-11-28
A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)
Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN
2011-04-05
A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.
Morphology and composition of condensates on Apollo 17 orange and black glass
NASA Technical Reports Server (NTRS)
Mckay, David S.; Wentworth, Sue J.
1992-01-01
Lunar soil sample 74220 and core samples 74001/2 consist mainly of orange glass droplets, droplet fragments, and their crystallized equivalents. These samples are now generally accepted to be pyroclastic ejecta from early lunar volcanic eruptions. It has been known since early examination of these samples that they contain surface coatings and material rich in volatile condensible phases, including S, Zn, F, Cl, and many volatile metals. The volatiles associated with these orange and black glasses (and the Apollo 15 green glasses) may provide important clues in understanding the differentiation and volcanic history of the Moon. In addition, condensible volatiles can be mobilized and concentrated by volcanic processes. We have reviewed many of our existing photomicrographs and energy dispersive analysis (EDXA) of grain surfaces and have reexamined some of our older SEM mounts using an improved EDXA system capable of light-element detection and analysis (oxygen, nitrogen, and carbon). The results from these investigations are presented.
Estimated content percentages of volatile liquids and fat extractables in ready-to-eat foods.
Daft, J L; Cline, J K; Palmer, R E; Sisk, R L; Griffitt, K R
1996-01-01
Content percentages of volatile liquids and fat extractables in 340 samples of ready-to-eat foods were determined gravimetrically. Volatile liquids were determined by drying samples in a microwave oven with a self-contained balance; results were printed out automatically. Fat extractables were extracted from the samples with mixed ethers; extracts were dried and weighed manually. The samples, 191 nonfat and 149 fatty (containing ca 2% or more fat) foods, represent about 5000 different food items and include infant and toddler, ethnic, fast, and imported items. Samples were initially prepared for screening of essential and toxic elements and chemical contamination by chopping and mixing into homogenous composites. Content determinations were then made on separate portions from each composite. Content results were put into a database for evaluation. Overall, mean results from both determinations agree with published data for moisture and fat contents of similar food items. Coefficients of variation, however, were lower for determination of volatile liquids than for that of fat extractables.
Venus: Halide cloud condensation and volatile element inventories
NASA Technical Reports Server (NTRS)
Lewis, J. S.; Fegley, B., Jr.
1982-01-01
Several Venus cloud condensates, including A12C16 as well as halides, oxides and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may conceivably be sufficiently volatile, but the expected molecular form is gaseous SbS, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of As and Sb. Thus the arguments for a volatile-deficient origin for Venus based on the depletion of water and mercury (relative to Earth) cannot be tested by a search for atmospheric arsenic or antimony.
In situ extraction and analysis of volatile elements and molecules from carbonaceous chondrites
NASA Technical Reports Server (NTRS)
Hartmetz, C. P.; Gibson, E. K., Jr.; Blanford, G. E.
1991-01-01
A laser microprobe mass spectrometer was used to measure volatiles released, on a scale of 30-50 microns, from freshly broken, sawed, and weathered surfaces in fragments of the Allende, Murchison, Coolidge, Felix, and Orgueil carbonaceous chondrites. Samples were heated to about 120 C under a vacuum of 200 ntorr and illuminated with the focused beam of a Q-switched Nd:glass laser of variable energy output (0.1-1.0 J); the gases released were analyzed using a computer-controlled mass-selective detector. The results are presented in tables and graphs and discussed in detail, with particular attention to aqueous alteration; weathering; thermal metamorphism; the distribution of sulfur-bearing phases; and differences in the amounts of volatiles in matrix, inclusions, and chondrules.
A multi-component evaporation model for beam melting processes
NASA Astrophysics Data System (ADS)
Klassen, Alexander; Forster, Vera E.; Körner, Carolin
2017-02-01
In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1986-01-01
It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.
Saqib, Naeem; Bäckström, Mattias
2014-12-01
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.
2013-01-01
Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.
NASA Astrophysics Data System (ADS)
Fiege, A.; Ruprecht, P.; Simon, A. C.; Holtz, F.
2017-12-01
Mafic magma recharge is a common process that triggers physical and chemical mixing in magmatic systems and drives their evolution, resulting in, e.g., hybridization and volcanic eruptions. Once magma-magma contact is initiated, rapid heat-flux commonly leads to the formation of a cooling-induced crystal mush on the mafic side of the interface. Here, on a local scale (µm to cm), at the magma-magma interface, melt-melt diffusive exchange is required to approach equilibrium. Significant chemical potential gradients drive a complex, multi-element mass flux between the two systems (Liang, 2010). This diffusive-equilibration often controls crystal dissolution rates within the boundary layers and, thus, the formation of interconnected melt or fluid networks. Such networks provide important pathways for the transport of volatiles and trace metals from the mafic recharge magma to the felsic host magma, where the latter may feed volcanic activities and ore deposits. While major element diffusion in silicate melts is mostly well understood, even in complex systems, the available data for many trace element metals are limited (Liang, 2010; Zhang et al., 2010). Differences in diffusivity in a dynamic, mixing environment can cause trace element fractionation, in particular during crystallization and volatile exsolution and separation. This may affect trace element signatures in phenocrysts and magmatic volatile phases that can form near a magma-magma boundary. As a result, the chemistry of volcanic gases and magmatic-hydrothermal ore deposits may be partially controlled by such mixing phenomena. We performed melt-melt diffusion-couple experiments at 150 MPa, 1100°C, FMQ, FMQ+1 and FMQ+3 (FMQ: fayalite-magnetite-quartz oxygen fugacity buffer). Hydrated, sulfur-bearing cylinders of dacite and basaltic andesite were equilibrated for up to 20 h. Major and trace element gradients were measured by using laser-ablation ICP-MS and electron microprobe analyses. The results we will present will help to fill data gaps for the diffusivity of certain metals in silicate melts (e.g., V, Mo, W). First data analyses indicate a higher diffusivity of V when compared to W . Liang (2010) Rev Mineral Geochem 72, 409-446; Zhang et al. (2010) Rev Mineral Geochem 72, 311-408.
Pershina, V; Anton, J
2012-01-21
Fully relativistic, four-component density functional theory electronic structure calculations were performed for MBr(5), MOBr(3), MBr(6)(-), KMBr(6), and MBr(5)Cl(-) of group-5 elements Nb, Ta, and element 105, Db, with the aim to predict adsorption behaviour of the bromides in gas-phase chromatography experiments. It was shown that in the atmosphere of HBr/BBr(3), the pentabromides are rather stable, and their stability should increase in the row Nb < Db < Ta. Several mechanisms of adsorption were considered. In the case of adsorption by van der Waals forces, the sequence in volatility of the pentabromides should be Nb < Ta < Db, being in agreement with the sublimation enthalpies of the Nb and Ta pentabromides. In the case of adsorption by chemical forces (on a quartz surface modified with KBr∕KCl), formation of the MBr(5)L(-) (L = Cl, Br) complex should occur, so that the volatility should change in an opposite way, i.e., Nb > Ta > Db. This sequence is in agreement with the one observed in the "one-atom-at-a-time" chromatography experiments. Some other scenarios, such as surface oxide formation were also considered but found to be irrelevant. © 2012 American Institute of Physics
Composition of the core from gallium metal–silicate partitioning experiments
Blanchard, I.; Badro, J.; Siebert, J.; ...
2015-07-24
We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results offer a strong argument for an O- and Si-rich core, formed in a deep terrestrial magma ocean, along with oxidizing conditions.« less
Magmatic volatiles and the weathering of Mars
NASA Technical Reports Server (NTRS)
Clark, B. C.
1993-01-01
The sources for volatiles on Mars have been the subject of many hypotheses for exogenous influences including late accretion of volatile-enriched material, impact devolatilization to create massive early atmospheres, and even major bombardment by comets. However, the inventory of chemically active volatiles observable at the contemporary surface of Mars is consistent with domination by endogenous, subsequent planetary processes, viz., persistent magmatic outgassing. Volcanism on Mars has been widespread in both space and time. Notwithstanding important specific differences between the mantles of Earth and Mars, the geochemical similarities are such that the suite of gases emitted from Martian volcanic activity should include H2O, CO2, S-containing gases (e.g. H2S and/or SO2), and Cl-containing gases (e.g., Cl2 and/or HCl). H2O and CO2 exist in the atmosphere of Mars. Both are also present as surface condensates. However, spectroscopic observations of the Martian atmosphere clearly show that the S- and Cl-containing gases are severely depleted, with upper limits of less than or equal to 10(exp -7) the abundance of CO2. Likewise, there is no evidence of polar condensates of compounds of these elements as there is for CO2 and H2O. Within the soil, on the other hand, there has been direct measurement of incorporated H2O and abundant compounds containing S and Cl. Barring some as yet implausible geochemical sequestering process, the S/Cl ratio of about 6:1 in Martian soils implies a limit of 5% on the contribution of matter of solarlike composition (e.g., carbonaceous chondrite or cometary material) to these volatiles. Hence, exogenous sources are minor or not yet observed. From analysis of elemental trends in Martian soils, it has been recently shown that a simple two-component model can satisfy the Viking in situ measurements. Component A includes Si and most or all the Al, Ca, Ti, and Fe. Component B, taken as 16 +/- 3% by weight of the total, contains S and most or all the Cl and Mg. These results constrain several models of Martian soil mineralogy but are consistent with a mixture of silicates (such as Fe-rich clays and accessory minerals and soluble salts). The overall element profile is notably like shergottites, with significant incorporation of chemically reactive atmospheric gases from magmatic degassing.
NASA Astrophysics Data System (ADS)
Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur
2017-05-01
Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison with most oceanic basalts. Cl and B are unfractionated from similarly compatible trace elements, and preserve records of primary melt heterogeneity. Although primitive plagioclase-hosted melt inclusions from the 10 ka Grímsvötn tephra series record few primary signals in their volatile contents, they nevertheless record information about crustal magma processing that is not captured in olivine-hosted melt inclusions suites.
Investigating Planetary Volatile Accretion Mechanisms Using the Halogens
NASA Astrophysics Data System (ADS)
Ballentine, C. J.; Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Day, J. M.
2014-12-01
Depletion of the volatile elements in the Earth relative to the CI chondrites is roughly correlated with volatility, or decreasing condensation temperature. For the heavy halogen group elements (Cl, Br and I), volatility alone does not account for their apparent depletion, which early data has suggested is far greater than predicted [1-2]. Such depletion has been used to argue for the preferential loss of halogens by, amongst other processes, impact-driven erosive loss from Earth's surface [2]. Little consensus exists as to why the halogens should exhibit such preferential behavior during accretionary processes. Early efforts to constrain halogen abundance and understand their behavior in both Earth and planetary materials [3-6] have been hampered by their typically low abundance (ppb level) in most geologic materials. We present the results of halogen analysis of 23 chondrite samples, selected to represent diverse groups and petrologic type. Halogen abundances were measured by neutron irradiation noble gas mass spectrometry (NI-NGMS). Significant concentration heterogeneity is observed within some samples. However, a single Br/Cl and I/Cl ratio of 1.9 ± 0.2 (x 10-3) and 335 ± 10 (x 10-6) can be defined for carbonaceous chondrites with a good correlation between Br and Cl (R2 = 0.97) and between I and Cl (R2 = 0.84). Ratios of I/Cl overlap with terrestrial estimates of Bulk Silicate Earth and Mid Ocean Ridge Basalts. Similarly, good correlations are derived for enstatite (E) chondrites and a sulfide- and halogen- rich subset of E-chondrites. Chlorine abundances of CI (Orgueil) in this study are lower by factor of ~ 3 than the value of ~ 700 ppm Cl (compilation in [1]). Our results are similar to early discarded low values for Ivuna and Orgueil from [5,6] and agree more closely with values for CM chondrites. Halogens may not be as depleted in Earth as previously suggested, or a high degree of heterogeneity in the abundance of these volatile elements in carbonaceous chondrites should be considered when we assess Earth's halogen abundance relative to CI. [1] Lodders (2003) Astr J 591:1220-47. [2] Sharp et al. (2013) EPSL 369/70: 71-7. [3] Dreibus et al. (1979) Phys Chem Earth 11:33-8. [4] Goles et al. (1967) GCA 31: 1771-7. [5] Reed and Allen (1966) GCA 30: 779-800. [6] Greenland & Lovering (1965) GCA 29: 821-58.
NASA Astrophysics Data System (ADS)
Cerpa, N.; Katz, R. F.; Keller, T.
2017-12-01
Glacial cycles move water between ice sheets and the ocean, and hence cause regional pressure changes in the solid Earth. The rate of sea-level (SL) change during this cycle is comparable to the rate of mantle upwelling beneath mid-ocean ridges (MORs), and hence we expect the induced pressure variations to modify the rate and depth of silicate melting. SL variations may therefore induce changes in the supply and composition of magma at MORs, which could affect the flux of carbon into the climate system. Likewise, the trace-element geochemistry of magmas tapped by ridge volcanism may vary during these cycles due to variations in melt flux. Such variations may have been recorded by sediment-hosted volcanic glass fragments [Ferguson et al., 2017]. We investigate these questions using computational models of melt production and transport in which volatiles participate in the thermodynamics of melting. Published models of the effect of SL on MORs predict up to 10% variation in carbon emission rates for absolute changes in SL of 50-100 m with possible lag times of several tens of kyrs [Burley et al., 2015; Hasenclever et al., 2017]. A major assumption of those models is that water and carbon are passive, incompatible elements. But small concentrations of those volatiles affect the solidus of mantle peridotite and increase the volume of upper mantle undergoing partial melting. Hence the current predictions of variation in MOR carbon emission might be an underestimate. Moreover, published models neglect the effects of volatiles on melt transport. Recents studies have demonstrated that volatiles can induce channelized transport [Keller and Katz 2016], potentially affecting the rate at which carbon is extracted from the mantle. In this study, we investigate the interplay between SL variations, melting, and segregation of volatile-rich melts. We use two-phase magma/mantle dynamics coupled to melting models that treat water and carbon dioxide as thermodynamic components. We compare models of equilibrium and disequilibrium melting to assess the influence of reaction kinetics on magma productivity at MORs during SL variations. Our calculations provide new estimates of the lag and amplitude of carbon emissions during glacial cycles. We address the impact of SL variations on the trace-element composition of magmas.
Chemical diffusion during isobaric degassing of magma
NASA Astrophysics Data System (ADS)
von Aulock, Felix W.; Kennedy, Ben M.; Lavallée, Yan; Henton-de Angelis, Sarah; Oze, Christopher; Morgan, Daniel J.; Clesham, Steve
2014-05-01
During ascent of magma, volatiles exsolve and bubbles form. Volatiles can either escape through a permeable network of bubbles in an open system or be trapped in non-connected pores during closed system degassing. Geochemical studies have shown that in most cases both- open system and closed system degassing take place at the same time. During cooling of the melt, diffusion slows down and eventually diffusional gradients get frozen in, preserving a history of degassing and rehydration during bubble growth, bubble collapse and crystal growth. We present data from experiments in which natural obsidian was degassed at atmospheric pressures at 950ºC over timescales of 3-24h. During bubble growth, a skin formed, at the outer edge of the sample, effectively prohibiting any degassing of its interior. Diffusion gradients were measured across the glass surrounding vesicles, and across this impermeable skin. Water contents were analyzed with synchrotron sourced Fourier transform infrared spectroscopy and several major, minor and trace elements were mapped using synchrotron sourced X-ray fluorescence spectroscopy. The samples show a dimpled surface, as well as signs of oxidation and growth of submicroscopic crystals. Water contents around bubbles decrease in simple heating experiments (from ~0.13 wt. % down to ~0.1 wt. %), whereas slight rehydration of the vesicle wall can be observed when a second, cooler step at 850ºC follows the initial 950ºC. Water gradients towards the outside of the sample decrease linearly to a minimum of ~0.045 wt. %, far below the solubility of water in melts at these temperatures. We mapped the distribution of K, Ca, Fe, Ti, Mn, Rb, Sr, Y and Zr. Especially the trace elements show a decrease towards the outside of the sample, whereas K, Fe, Ca and Ti generally do not show significant partitioning between melt and gas/crystal phase. Several effects could attribute to the distribution of these elements, such as the crystal growth and exchange with atmospheric oxygen, and detailed models of the diffusion of these elements will have to verify the mechanisms of elemental partitioning during degassing Our experiments show that even on a small scale, open system and closed system degassing inherently coexist. This manifests itself in different elemental distribution in the quenched glass. Water distribution gradients can be explained with diffusion during exsolution and rehydration during cooling, however, the surface of the sample is undersaturated in water. Some trace elements follow the same pattern, even though they might not be considered as volatile. Therefore we suggest that chemical gradients may be partially induced by the growth of sub-microscopic crystals and by exchange with the atmosphere. Crystal rich, volatile poor outer skins, as produced in the experiments of this study, have locally drastically increased viscosities and can therefore withstand higher pressures during foaming of the interior of the sample. This self sealing of magma could be an important process on different scales of magma degassing, from bread crust bombs to rising magma in conduits.
Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles
NASA Astrophysics Data System (ADS)
Colaprete, A.; Elphic, R. C.; Andrews, D.; Bluethmann, W.; Quinn, J.; Chavers, D. G.
2017-12-01
Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles. While it is now understood that lunar water and other volatiles have a much greater extent of distribution, possible forms, and concentrations than previously believed, to fully understand how viable these volatiles are as a resource to support human exploration of the solar system, the distribution and form needs to be understood at a "human" scale. That is, the "ore body" must be better understood at the scales it would be worked before it can be evaluated as a potential architectural element within any evolvable lunar or Mars campaign. This talk will provide an overview of the RP mission with an emphasis on mission goals and measurements, and will provide an update as to its current status.
Personal exposures and microenvironment concentrations of PM 2.5, VOC, NO 2 and CO in Oxford, UK
NASA Astrophysics Data System (ADS)
Lai, H. K.; Kendall, M.; Ferrier, H.; Lindup, I.; Alm, S.; Hänninen, O.; Jantunen, M.; Mathys, P.; Colvile, R.; Ashmore, M. R.; Cullinan, P.; Nieuwenhuijsen, M. J.
Between 1998 and 2000 in Oxford, UK, simultaneous personal exposures and microenvironmental measurements (home indoor, home outdoor and work indoor) to fine particulate matters PM 2.5, volatile organic compounds (VOC), nitrogen dioxide (NO 2) and carbon monoxide (CO) were carried out once per person among 50 adults over a 48-h period. Thirty-seven elements in PM 2.5 and 30 different VOCs were analysed. Questionnaires were distributed to record their time-activity patterns and exposure-related information. Results showed that participants spent more time (89.5%) in all indoors than in other microenvironments. Geometric mean (GM) of personal and home indoor levels of PM 2.5, 14 elements (aluminium, arsenic, bromine, calcium, copper, iron, gallium, potassium, sodium, phosphorus, lead, selenium, silicon, titanium), total VOC (TVOC) and 8 individual compounds (nonane, decane, undecane, trimethylbenzene, toluene, benzaldehyde, alpha-pinene and d-limonene) were over 20% higher than their GM outdoor levels. Those of NO 2, 5 aromatic VOCs (benzene, o-xylene, ethylbenzene, propylbenzene, m, p-xylene) and 5 other elements (chlorine, magnesium, manganese, sulphur, zinc) were close to their GM outdoor levels. For PM 2.5 and TVOC, personal exposures and residential indoor levels (in GM) were about 2 times higher among the tobacco-smoke exposed group compared to the non-smoke exposed group, suggesting that smoking is an important determinant of these exposures. Determinants for CO were visualised by real-time monitoring, and we showed that the peak levels of personal exposure to CO were associated with smoking, cooking and transportation activities. Moderate to good correlations were only found between the personal exposures and residential indoor levels for both PM 2.5 ( r=0.60, p<0.001) and NO 2 ( r=0.47, p=0.003).
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Rietmeijer, F. J. M.; Gakin, R.; Lee, K.
2004-01-01
The catastrophic Chicxulub event should have generated a large hydrothermal system with volatile element mobilization, producing interesting alteration materials and clays. The Yaxcopoil-1 (YAX) drill hole is located in the annular trough, about 70 km southwest of the crater center, in an area where the impactite layers are relatively thin (approx. 100 m thick). We have analyzed samples from the YAX drill core and from other impact craters including Mistastin and Lonar to determine the nature of alteration and trace element mobilization.
Davis, Tracy A.; Kulongoski, Justin T.
2016-10-03
Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated in 2011 as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The study unit is mostly in Santa Barbara County and is in the Transverse and Selected Peninsular Ranges hydrogeologic province. The GAMA Priority Basin Project is carried out by the U.S. Geological Survey in collaboration with the California State Water Resources Control Board and Lawrence Livermore National Laboratory.The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of the quality of untreated groundwater in the primary aquifer system of California. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health database for the Santa Barbara study unit. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Santa Barbara study unit, not the treated drinking water delivered to consumers by water purveyors.The status assessment for the Santa Barbara study unit was based on water-quality and ancillary data collected in 2011 by the U.S. Geological Survey from 23 sites and on water-quality data from the California Department of Public Health database for January 24, 2008–January 23, 2011. The data used for the assessment included volatile organic compounds; pesticides; pharmaceutical compounds; two constituents of special interest, perchlorate and N-nitrosodimethylamine (NDMA); and naturally present inorganic constituents, such as major ions and trace elements. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used to evaluate groundwater quality for those constituents that have federal or California regulatory and non-regulatory benchmarks for drinking-water quality. For inorganic, organic, and special-interest constituents, a relative-concentration greater than 1.0 indicates a concentration greater than the benchmark and is classified as high. Inorganic constituents are classified as moderate if relative-concentrations are greater than 0.5 and less than or equal to 1.0 and are classified as low if relative-concentrations are less than or equal to 0.5. For organic and special-interest constituents, the boundary between moderate and low relative-concentrations was set at 0.1.Aquifer-scale proportion was used as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the areal percentage of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents. Moderate and low aquifer-scale proportions were defined as the areal percentage of the primary aquifer system that had moderate and low relative-concentrations, respectively. Two statistical approaches—grid based and spatially weighted—were used to calculate aquifer-scale proportions for individual constituents and constituent classes. Grid-based and spatially weighted estimates were comparable in this the study (within 90-percent confidence intervals). Grid-based results were selected for use in the status assessment unless, as was observed in a few cases, a grid-based result was zero and the spatially weighted result was not zero, in which case, the spatially weighted result was used.Inorganic constituents that have human-health benchmarks were present at high relative-concentrations in 5.3 percent of the primary aquifer system and at moderate concentrations in 32 percent. High aquifer-scale proportions of inorganic constituents primarily were a result of high aquifer-scale proportions of boron (5.3 percent) and fluoride (5.3 percent). Inorganic constituents that have aesthetic-based benchmarks, referred to as secondary maximum contaminant levels, were present at high relative-concentrations in 58 percent of the primary aquifer system and at moderate concentrations in 37 percent. Iron, manganese, sulfate, and total dissolved solids were the inorganic constituents with secondary maximum contaminant levels present at high relative-concentrations.In contrast, organic and special-interest constituents that have health-based benchmarks were not detected at high relative-concentrations in the primary aquifer system. Of the 218 organic constituents analyzed, 10 were detected—9 that had human-health benchmarks. Organic constituents were present at moderate relative-concentrations in 11 percent of the primary aquifer system. The moderate aquifer-scale proportions were a result of moderate relative-concentrations of the volatile organic compounds methyl tert-butyl ether (MTBE, 11 percent) and 1,2-dichloroethane (5.6 percent). The volatile organic compounds 1,1,1-trichloroethane, 1,1-dichloroethane, bromodichloromethane, chloroform, MTBE, and perchloroethene (PCE); the pesticide simazine; and the special-interest constituent perchlorate were detected at more than 10 percent of the sites in the Santa Barbara study unit. Perchlorate was present at moderate relative-concentrations in 50 percent of the primary aquifer system. Pharmaceutical compounds and NDMA were not detected in the Santa Barbara study unit.
Melt inclusion study of the most recent basanites from El Hierro and Lanzarote, Canary Islands
NASA Astrophysics Data System (ADS)
Gomez-Ulla, Alejandra; Sigmarsson, Olgeir; Huertas, Maria Jose; Ancochea, Eumenio
2015-04-01
The latest eruptions of both Lanzarote (one of the oldest and easternmost of the Canary Island archipelago) and El Hierro (the youngest and westernmost) produced basanite lavas. Major, volatile and trace element concentrations of melt inclusion (MI) hosted in olivine for both eruptions have been analysed. The basanites display primitive mantle normalized trace element spectra suggesting a magma source largely composed of recycled oceanic crust. In addition, beneath Lanzarote an interaction with a carbonatitic fluid phase or metasome would explain eccentric Ba/U and other trace element ratios. Contribution of carbonatitic component would readily account for extremely volatile-rich (Cl, F, S) MI from Lanzarote (Cl=1577-2500 ppm) whereas the maximum for El Hierro is 1080 ppm. The submarine character of the 2011-12 eruption off El Hierro appears to have affected the degassing behavior, whereas estimated sulfur emission to the atmosphere during the historical Lanzarote eruptions are amongst the highest observed so far. An estimated magma volume (VDRE) of 0.02 km3 yields atmospheric mass loading of 0.2 Mt SO2 from the 1824 Lanzarote eruption. Scaling the volume of the 1824 Lanzarote eruption to that of the previous Timanfaya eruption (1730-6; 5 km3) results in estimated 12 Mt SO2, an atmospheric mass loading only outnumbered by the historical Laki and Eldgjá eruptions in Iceland. The significantly greater volatile budget of basanites from Lanzarote compared to El Hierro is thus controlled by more fertile source composition closer to the African continent.
Formation of Metal and Silicate Globules in Gujba: A New Bencubbin-like Meteorite Fall
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.; Clayton, Robert N.; Mayeda, Toshiko; Grady, Monica; Verchovsky, Alexander B.; Eugster, Otto; Lorenzetti, Silvio
2006-01-01
Gujba is a coarse-grained meteorite fall composed of 41 vol% large kamacite globules, 20 vol% large light-colored silicate globules with cryptocrystalline, barred pyroxene and barred olivine textures, 39 vol% dark-colored, silicate-rich matrix, and rare refractory inclusions. Gujba resembles Bencubbin and Weatherford in texture, oxygen-isotopic composition and in having high bulk delta N-15 values (approximately +685%0). The He-3 cosmic-ray exposure age of Gujba (26 +/- 7 Ma) is essentially identical to that of Bencubbin, suggesting that they were both reduced to meter-size fragments in the same parent-body collision. The Gujba metal globules exhibit metal-troilite quench textures and vary in their abundances of troilite and volatile siderophile elements. We suggest that the metal globules formed as liquid droplets either via condensation in an impact-generated vapor plume or by evaporation of preexisting metal particles in a plume. The lower the abundance of volatile elements in the metal globules, the higher the globule quench temperature. We infer that the large silicate globules also formed from completely molten droplets; their low volatile-element abundances indicate that they also formed at high temperatures, probably by processes analogous to those that formed the metal globules. The coarse-grained Bencubbin-Weatherford-Gujba meteorites may represent a depositional component from the vapor cloud enriched in coarse and dense particles. A second class of Bencubbin-like meteorites (represented by Hammadah a1 Hamra 237 and QUE 94411) may be a finer fraction derived from the same vapor cloud
Volatile Behavior in Lunar and Terrestrial Basalts During Shock: Implications for Martian Magmas
NASA Technical Reports Server (NTRS)
Chaklader, Johny; Shearer, C. K.; Hoerz, F.; Newsom, H. E.
2004-01-01
The amount of water in martian magmas has significant ramifications for the martian atmosphere-hydrosphere cycle. Large D-enrichments have been observed in kaersutitic amphiboles in Zagami, Chassigny and Shergotty meteorites (delta-D values up to 4400 per mil) suggesting that substantial amounts of H escaped Mars in its past. Furthermore, martian meteorites with inclusions of biotite and apatite imply possible origins in a hydrous mantle. However, whether martian magmas ever possessed considerable proportions of water remains controversial and unclear. The H-content of mica and amphibole melt inclusions has been found to be low, while bulk-rock H2O content is also low ranging from 0.013 to 0.035 wt. % in Shergotty. Hydrous martian magmas were considered responsible for light lithophile element (LLE) zoning patterns observed in Nakhlite and Shergottite pyroxenes. Since LLEs, such as Li and B, partition into aqueous fluids at temperatures greater than 350 C, workers interpreted Li-B depletions in pyroxene rims as evidence that supercritical fluid exsolution occurred during magma degassing. In that many martian basalts experienced substantial shock (15-45 GPa) it is possible that the magmatic volatile record preserved in martian basalts has been disturbed. Previous shock experiments suggest that shock processes may effect water content and H/D. To better understand the possible effects of shock on this volatile record, we are studying the redistribution of volatile elements in naturally and experimentally shocked basalts. Here, we report the initial results from shocked basalts associated with the Lonar Crater, India and an experimentally shocked lunar basalt.
A Comprehensive Program for Measurement of Military Aircraft Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn
2009-11-01
Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicatemore » that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.« less
Michalke, Klaus; Schmidt, Annette; Huber, Britta; Meyer, Jörg; Sulkowski, Margareta; Hirner, Alfred V; Boertz, Jens; Mosel, Frank; Dammann, Philip; Hilken, Gero; Hedrich, Hans J; Dorsch, Martina; Rettenmeier, Albert W; Hensel, Reinhard
2008-05-01
The present study shows that feces samples of 14 human volunteers and isolated gut segments of mice (small intestine, cecum, and large intestine) are able to transform metals and metalloids into volatile derivatives ex situ during anaerobic incubation at 37 degrees C and neutral pH. Human feces and the gut of mice exhibit highly productive mechanisms for the formation of the toxic volatile derivative trimethylbismuth [(CH(3))(3)Bi] at rather low concentrations of bismuth (0.2 to 1 mumol kg(-1) [dry weight]). An increase of bismuth up to 2 to 14 mmol kg(-1) (dry weight) upon a single (human volunteers) or continuous (mouse study) administration of colloidal bismuth subcitrate resulted in an average increase of the derivatization rate from approximately 4 pmol h(-1) kg(-1) (dry weight) to 2,100 pmol h(-1) kg(-1) (dry weight) in human feces samples and from approximately 5 pmol h(-1) kg(-1) (dry weight) to 120 pmol h(-1) kg(-1) (dry weight) in mouse gut samples, respectively. The upshift of the bismuth content also led to an increase of derivatives of other elements (such as arsenic, antimony, and lead in human feces or tellurium and lead in the murine large intestine). The assumption that the gut microbiota plays a dominant role for these transformation processes, as indicated by the production of volatile derivatives of various elements in feces samples, is supported by the observation that the gut segments of germfree mice are unable to transform administered bismuth to (CH(3))(3)Bi.
Potassium isotope cosmochemistry, volatile depletion and the origin of the Earth
NASA Technical Reports Server (NTRS)
Humayun, M.; Clayton, R. N.
1993-01-01
We report the first results obtained by our techniques for the precise and accurate determination of the isotopic composition of potassium to constrain the mechanism of volatile element depletion in the formation of the Earth, Moon, and meteorites. Our measurements of delta(K-41) for six chondrites and ten terrestrial rocks attained an average precision of the individual measurement of plus or minus 0.4 percent (2 sigma; plus or minus 0.2 percent/a.m.u. and yield a net chondrite-Earth difference unresolved at the 99 percent confidence limit, delta(K-41) = 0.32 plus or minus 0.35 percent (3 delta). This sets a firm upper limit of 1.3 plus or minus 1.4 percent Rayleigh evaporation of terrestrial potassium (using alpha = square root of 41/39), compared with an observed approximately equals 85 percent chemical depletion of K relative to C1 chondrites. Similar conclusions are reached for the SNC meteorites, Shergotty and Zagami, for 15495 (lunar mare gabbro), and for the eucrite Juvinas. Our conclusion is that direct evaporation of volatile elements from planets (e.g. from silicate vapor atmospheres following giant impact) can be ruled out, and the cause of volatile loss must be sought elsewhere, e.g. nebular processes. Our present findings do not support the conclusions of Hinton et al., the discrepancy to be resolved at a later date. We also find lunar soil 64801, delta(K-41) = +4.99 plus or minus 0.53 percent, to be distinctly heavy in accord with Garner et al.
Implications for metal and volatile cycles from the pH of subduction zone fluids
NASA Astrophysics Data System (ADS)
Galvez, Matthieu E.; Connolly, James A. D.; Manning, Craig E.
2016-11-01
The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.
Petrology, mineralogy and geochemistry of mined coals, western Venezuela
Hackley, Paul C.; Warwick, Peter D.; González, Eligio
2005-01-01
Upper Paleocene to middle Miocene coal samples collected from active mines in the western Venezuelan States of Táchira, Mérida and Zulia have been characterized through an integrated geochemical, mineralogical and petrographic investigation. Proximate, ultimate, calorific and forms of sulfur values, major and trace element, vitrinite reflectance, maceral concentrations and mineral matter content have been determined for 16 channel samples from 14 mines. Ash yield generally is low, ranging from < 1 to 17 wt.% (mean = 5 wt.%) on a dry basis (db). Total sulfur content is low to moderate, ranging from 1 to 6 wt.%, db (average = 1.7 wt.%). Calorific value ranges from 25.21 to 37.21 MJ/kg (10,840–16,000 Btu/lb) on a moist, mineral-matter-free basis (average = 33.25 MJ/kg, 14,300 Btu/lb), placing most of the coal samples in the apparent rank classification of high-volatile bituminous. Most of the coal samples exhibit favorable characteristics on the various indices developed to predict combustion and coking behavior and concentrations of possible environmentally sensitive elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Th and U) generally are similar to the concentrations of these elements in most coals of the world, with one or two exceptions. Concentrations of the liptinite maceral group range from < 1% to 70 vol.%. Five samples contain > 20 vol.% liptinite, dominated by the macerals bituminite and sporinite. Collotelinite dominates the vitrinite group; telinite was observed in quantities of ≤ 1 vol.% despite efforts to better quantify this maceral by etching the sample pellets in potassium permanganate and also by exposure in an oxygen plasma chamber. Inertinite group macerals typically represent < 10 vol.% of the coal samples and the highest concentrations of inertinite macerals are found in distantly spaced (> 400 km) upper Paleocene coal samples from opposite sides of Lago de Maracaibo, possibly indicating tectonic controls on subsidence related to construction of the Andean orogen. Values of maximum reflectance of vitrinite in oil (Ro max) range between 0.42% and 0.85% and generally are consistent with the high-volatile bituminous rank classification obtained through ASTM methods. X-ray diffraction analyses of low-temperature ash residues indicate that kaolinite, quartz, illite and pyrite dominate the inorganic fraction of most samples; plagioclase, potassium feldspar, calcite, siderite, ankerite, marcasite, rutile, anatase and apatite are present in minor or trace concentrations. Semiquantitative values of volume percent pyrite content show a strong correlation with pyritic sulfur and some sulfide-hosted trace element concentrations (As and Hg). This work provides a modern quality dataset for the western Venezuela coal deposits currently being exploited and will serve as the foundation for an ongoing coal quality research program in Venezuela.
Atmospheric Deposition of Mercury
With the advent of the industrial era, the amount of mercury entering the global environment increased dramatically. Releases of mercury in its elemental form from gold mines and chlor-alkali plants, as sulfides such as mercaptans and agricultural chemicals, and as volatile emiss...
[Coal fineness effect on primary particulate matter features during pulverized coal combustion].
Lü, Jian-yi; Li, Ding-kai
2007-09-01
Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.
Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen
2014-09-01
A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Teodoro, L. A.; Colaprete, A.; Roush, T. L.; Elphic, R. C.; Cook, A.; Kleinhenz, J.; Fritzler, E.; Smith, J. T.; Zacny, K.
2016-12-01
In the context of NASA's Resource Prospector (RP) mission to the high latitudes and permanently shadowed regions of the Moon, we study 3D models of volatile transport in the lunar regolith. This mission's goal is to extract and identify volatile species in the top meter of the lunar regolith layer. Roughly, RP consists of 5 elements: i) the Neutron Spectrometer System will search for high hydrogen concentrations and in turn select optimum drilling locations; ii) The Near Infrared Volatile Spectrometer System (NIRVSS) will characterize the nature of the surficial water ice; iii) The Drill Sub-system will extract samples from the top meter of the lunar surface and deliver them to the Oxygen and Volatile Extraction Node (OVEN); iv) OVEN will heat up the sample and extract the volatiles therein, that will be v) transferred to the Lunar Advanced Volatiles Analysis system for chemical composition analysis. A series of vacuum cryogenic experiments have been carried out at Glenn Research Center with the aim of quantifying the volatile losses during the drilling/sample acquisition phase and sample delivery to crucibles steps. These experiments' outputs include: i) Pressure measurements of several chemical species (e.g. H2O, Ar); ii) Temperature measurements within and at the surface of the lunar simulant using thermocouples; and iii) Surficial temperature NIRVSS measurements. Here, we report on the numerical modeling we are carrying out to understand the physics underpinning these experiments. The models include 2 main parts: i) reliable computation of temperature variation throughout the lunar soil container during the experiment as constrained by temperature measurements; and ii) molecular diffusion of volatiles. The latter includes both Fick's (flight of the molecules in the porous) and Knudsen's (sublimation of volatile molecules at the grain surface) laws. We also mimic the soil porosity by randomly allocating 75 microns particles in the simulation volume. Our preliminary results show both diffusion laws play a major role during the drilling phase.
Multivariate analysis of elemental chemistry as a robust biosignature
NASA Astrophysics Data System (ADS)
Storrie-Lombardi, M.; Nealson, K.
2003-04-01
The robotic detection of life in extraterrestrial settings (i.e., Mars, Europa, etc.) would be greatly simplified if analysis could be accomplished in the absence of direct mechanical manipulation of a sample. It would also be preferable to employ a fundamental physico-chemical phenomenon as a biosignature and depend less on the particular manifestations of life on Earth (i.e. to employ non-earthcentric methods). One such approach, which we put forward here, is that of elemental composition, a reflection of the use of specific chemical elements for the construction of living systems. Using appropriate analyses (over the proper spatial scales), it should be possible to see deviations from the geological background (mineral and geochemical composition of the crust), and identify anomalies that would indicate sufficient deviation from the norm as to indicate a possible living system. To this end, over the past four decades elemental distributions have been determined for the sun, the interstellar medium, seawater, the crust of the Earth, carbonaceous chondrite meteorites, bacteria, plants, animals, and human beings. Such data can be relatively easily obtained for samples of a variety of types using a technique known as laser-induced breakdown spectroscopy (LIBS), which employs a high energy laser to ablate a portion of a sample, and then determine elemental composition using remote optical spectroscopy. However, the elements commonly associated with living systems (H, C, O, and N), while useful for detecting extant life, are relatively volatile and are not easily constrained across geological time scales. This minimizes their utility as fossil markers of ancient life. We have investigated the possibility of distinguishing the distributions of less volatile elements in a variety of biological materials from the distributions found in carbonaceous chondrites and the Earth’s crust using principal component analysis (PCA), a classical multivariate analysis technique capable of optimizing classification using spectral or multiple variable inputs. We present initial results indicating that 21 elements are of particular utility and can produce clear classification with no errors when used in minimum sets of four (4), e.g. [V-23, Ti-22, Cr-24, I-53] or [Al-13, Si-14, P-15, Fe-26]. The detection limits and ease of approach suggest that these methods should be valuable for detection of biological residual signatures against specific Mars mineral backgrounds. Clearly, measurements must be made at the proper spatial scales in order to see these anomalies, and data must be analyzed with no pre-predjudice of what the elemental composition of life should be - both of these potential problems are easily dealt with. Of particular interest is the observation that many non-volatile elements can be effectively used for life detection, suggesting that fossilized (e.g., dead or even extinct) samples may retain these inorganic signatures of past life.
NASA Astrophysics Data System (ADS)
You, C.-F.; Castillo, P. R.; Gieskes, J. M.; Chan, L. H.; Spivack, A. J.
1996-05-01
Chemical evaluation of fluids affected during progressive water-sediment interactions provides critical information regarding the role of slab dehydration and/or crustal recycling in subduction zones. To place some constraints on geochemical processes during sediment subduction, reactions between décollement sediments and synthetic NaCl-CaCl 2 solutions at 25-350°C and 800 bar were monitored in laboratory hydrothermal experiments using an autoclave apparatus. This is the first attempt in a single set of experiments to investigate the relative mobilities of many subduction zone volatiles and trace elements but, because of difficulties in conducting hydrothermal experiments on sediments at high P-T conditions, the experiments could only be designed for a shallow (˜ 10 km) depth. The experimental results demonstrate mobilization of volatiles (B and NH 4) and incompatible elements (As, Be, Cs, Li, Pb, Rb) in hydrothermal fluids at relatively low temperatures (˜ 300°C). In addition, a limited fractionation of light from heavy rare earth elements (REEs) occurs under hydrothermal conditions. On the other hand, the high field strength elements (HFSEs) Cr, Hf, Nb, Ta, Ti, and Zr are not mobile in the reacted fluids. The observed behavior of volatiles and trace elements in hydrothermal fluids is similar to the observed enrichment in As, B, Cs, Li, Pb, Rb, and light REEs and depletion in HFSEs in arc magmas relative to magmas derived directly from the upper mantle. Thus, our work suggests a link between relative mobilities of trace elements in hydrothermal fluids and deep arc magma generation in subduction zones. The experimental results are highly consistent with the proposal that the addition of subduction zone hydrous fluids to the subarc mantle, which has been depleted by previous melting events, can produce the unique characteristics of arc magmas. Moreover, the results suggest that deeply subducted sediments may no longer have the composition necessary to generate the other distinct characteristics, such as the B-δ 11 B and B- 10Be systematics, of arc lavas. Finally, the mobilization of B, Cs, Pb, and light REEs relative to heavy REEs in the hydrothermal fluids fractionate the ratios of B/Be, B/Nb, Cs/Rb, Pb/Ce, La/Ba and LREE/HREE, which behave conservatively during normal magmatic processes. These results demonstrate that the composition of slab-derived fluids has great implications for the recycling of elements; not only in arc magmas but also in mantle plumes.
Krishnakumar, S; Ramasamy, S; Simon Peter, T; Godson, Prince S; Chandrasekar, N; Magesh, N S
2017-12-15
Fifty two surface sediments were collected from the northern part of the Gulf of Mannar biosphere reserve to assess the geospatial risk of sediments. We found that distribution of organic matter and CaCO 3 distributions were locally controlled by the mangrove litters and fragmented coral debris. In addition, Fe and Mn concentrations in the marine sediments were probably supplied through the riverine input and natural processes. The Geo-accumulation of elements fall under the uncontaminated category except Pb. Lead show a wide range of contamination from uncontaminated-moderately contaminated to extremely contaminated category. The sediment toxicity level of the elements revealed that the majority of the sediments fall under moderately to highly polluted sediments (23.07-28.84%). The grades of potential ecological risk suggest that predominant sediments fall under low to moderate risk category (55.7-32.7%). The accumulation level of trace elements clearly suggests that the coral reef ecosystem is under low to moderate risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.;
2014-01-01
Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury's relatively featureless visible-near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size less than 45 micron) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury's surface composition.
Bowman, T; Barringer, S
2012-01-01
Pumpkin (Cucurbita pepo and maxima) seeds are uniquely flavored and commonly consumed as a healthy roasted snack. The objective was to determine dominant volatiles in raw and roasted pumpkin seeds, and the effect of seed coat, moisture content, fatty acid ratio, total lipids, reducing sugars, and harvest year on volatile formation. Sensory was conducted to evaluate overall liking of seed variety and texture. Seed processing included extraction from the fruit, dehydration, and roasting (150 °C). Oil extraction was done using soxhlet, fatty acid profile using Gas Chromatography Flame Ionization Detector, and reducing sugars using 3,5-dinitrosalicylic acid and UV-spectroscopy. Headspace analysis of seeds was performed by selected ion flow tube-mass spectrometry (SIFT-MS). Volatiles dominating in raw pumpkin seeds were lipid aldehydes, ethyl acetate, 2,3-butandione, and dimethylsulfide. Compounds contributing to roasted aroma include alkylpyrazines and Strecker and lipid aldehydes. Overall, hull-less seeds had higher volatile lipid aldehydes and Strecker aldehydes. Seeds dehydrated to a moisture content of 6.5% before roasting had higher initial and final volatile concentrations than seeds starting at 50% moisture. Higher oil content resulted in higher lipid aldehyde formation during roasting with a moderate correlation between free fatty acid ratio and corresponding lipid aldehyde. Harvest year (2009 compared with 2010) had a significant impact on volatile formation in hull-less seeds, but not as much as variety differences. No significant correlation was found between reducing sugars and volatile formation. Sensory showed that hull-less seeds were liked significantly more than hulled seeds. Elucidation of aromatic flavor development during roasting with SIFT-MS provides information on flavor release and offers better control during processing. Knowledge of volatiles in raw and roasted pumpkin seeds and effects of seed coat, moisture content, seed composition, and harvest date will allow for better control over the production/storage/transportation process and a more educated decision during selection of a variety for production of pumpkin seeds in the snack food industry. © 2011 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Schmidt, M. E.; King, P. L.; Gellert, R.; Elliott, B.; Thompson, L.; Berger, J.; Bridges, J.; Campbell, J. L; Grotzinger, J.; Hurowitz, J.;
2013-01-01
The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*).
Volatile organic compound sensor system
Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY
2009-02-10
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
Volatile organic compound sensor system
Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.
2011-03-01
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
Kinetic synergistic transitions in the Ostwald ripening processes
NASA Astrophysics Data System (ADS)
Sachkov, I. N.; Turygina, V. F.; Dolganov, A. N.
2018-01-01
There is proposed approach to mathematical description of the kinetic transitions in Ostwald ripening processes of volatile substance in nonuniformly heated porous materials. It is based upon the finite element method. There are implemented computer software. The main feature of the software is to calculate evaporation and condensation fluxes on the walls of a nonuniformly heated cylindrical capillary. Kinetic transitions are detected for three modes of volatile substances migration which are different by condensation zones location. There are controlling dimensionless parameters of the kinetic transition which are revealed during research. There is phase diagram of the Ostwald ripening process modes realization.
NASA Astrophysics Data System (ADS)
Bali, E.; Hartley, M. E.; Halldórsson, S. A.; Gudfinnsson, G. H.; Jakobsson, S.
2018-02-01
The mass of volatiles emitted during volcanic eruptions is often estimated by comparing the volatile contents of undegassed melt inclusions, trapped in crystals at an early stage of magmatic evolution, with that of the degassed matrix glass. Here we present detailed characterisation of magmatic volatiles (H2O, CO2, S, Fl and Cl) of crystal-hosted melt and fluid inclusions from the 2014-2015 Holuhraun eruption of the Bárðarbunga volcanic system, Iceland. Based on the ratios of magmatic volatiles to similarly incompatible trace elements, the undegassed primary volatile contents of the Holuhraun parental melt are estimated at 1500-1700 ppm CO2, 0.13-0.16 wt% H2O, 60-80 ppm Cl, 130-240 ppm F and 500-800 ppm S. High-density fluid inclusions indicate onset of crystallisation at pressures ≥ 0.4 GPa ( 12 km depth) promoting deep degassing of CO2. Prior to the onset of degassing, the melt CO2 content may have reached 3000-4000 ppm, with the total magmatic CO2 budget estimated at 23-55 Mt. SO2 release commenced at 0.12 GPa ( 3.6 km depth), eventually leading to entrapment of SO2 vapour in low-density fluid inclusions. We calculate the syn-eruptive volatile release as 22.2 Mt of magmatic H2O, 5.9-7.7 Mt CO2, and 11.3 Mt of SO2 over the course of the eruption; F and Cl release were insignificant. Melt inclusion constraints on syn-eruptive volatile release are similar to estimates made during in situ field monitoring, with the exception of H2O, where field measurements may be heavily biased by the incorporation of meteoric water.
Fire- and Heat-Resistant Laminating Resins
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Mikroyannidis, John A.
1987-01-01
Imide compounds containing phosphourus thermally polymerized. New maleimido- or citraconimido-end-capped monomers, have relatively low melting temperatures, polymerized at moderate temperatures to rigid bisimide resins without elimination of volatiles. Monomers dissolve in such solvents as methyl ethyl ketone, acetone, and tetrahydrofuran, suitable and perferred as "varnish solvents" for composite fabrication. Low melting points of these componds allow use as adhesives without addition of solvents.
Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J
2003-01-01
The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.
Exploration of Mercury: The MESSENGER Mission
NASA Astrophysics Data System (ADS)
McNutt, Ralph
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA’s Discovery Program, has been collecting orbital observations of Mercury since March 2011. Elemental remote sensing of Mercury’s surface indicates that the moderately volatile elements Na, K, and S are not depleted relative to other terrestrial planets. Orbital images document widespread evidence for ancient volcanic activity ranging from effusive to explosive eruptions. High-resolution images have revealed the presence of irregular rimless depressions or “hollows” likely produced by the loss to diurnal heating or sputtering of some volatile-rich material. Polar deposits in permanently shadowed high-latitude regions are dominated by water ice on the basis of neutron spectrometry, surface reflectance, and thermal modeling with measured topography; in most locations the ice is covered by 10-30 cm of anomalously dark volatile material postulated to consist of complex organic compounds. The tectonic history of Mercury is dominated by greater planetary contraction than previously recognized; long-wavelength changes in topography postdated the emplacement of large expanses of volcanic plains. Gravity and topography measurements indicate that mascons and crustal thinning are associated with some impact basins. Mercury’s internal magnetic field is that of a dipole offset from the planet’s center by ~0.2 Mercury radii, a geometry difficult to reconcile with existing dynamo models. Magnetospheric measurements have revealed a highly time-variable and spatially structured particle environment. Despite complex feedbacks among the exosphere, magnetosphere, and surface, the large-scale structure of the exosphere - dominated by Na, Ca, and Mg - shows seasonal variations in general agreement with those expected from variations in solar flux with Mercury true anomaly but little variation with changing solar conditions. Energetic electron events are regular features of Mercury’s magnetosphere, but the causative acceleration mechanism remains a topic of study. MESSENGER is now in a second extended mission. Solar gravitational forces reduce the periapsis altitude between successive orbits. Orbit-correction maneuvers will yield four extended intervals when the periapsis altitude will be 15 to 25 km, and once the remaining propellant is consumed the spacecraft will impact the surface in late March 2015. During this low-altitude campaign, the unprecedented high-resolution views of the surface will help elucidate many of the processes that have shaped Mercury’s surface. MESSENGER’s low-altitude observations will also illuminate the consequences of precipitating ions and energetic electrons at Mercury, the response of the exosphere and magnetosphere to solar wind conditions during the declining phase of the solar cycle, and short-wavelength components of the internal magnetic and gravity fields and their implications for crustal magmatism and the mechanical evolution of Mercury’s lithosphere.
Finkelman, R.B.; Bostick, N.H.; Dulong, F.T.; Senftle, F.E.; Thorpe, A.N.
1998-01-01
Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the effects of the intrusions of the inorganic constituents in the coal. Such a study may help to elucidate the behavior of trace elements during in situ gasification of coal and may provide insights into the resources potential for coal and coke affected by the intrusion. To determine the effects of an igneous intrusion on the inorganic chemistry of a coal we used a series of 11 samples of coal and natural coke that had been collected at intervals from 3 to 106 cm from a dike that intruded the bituminous Dutch Creek coal in Pitkin, CO. The samples were chemically analyzed for 66 elements. SEM-EDX and X-ray diffraction analysis were performed on selected samples. Volatile elements such as F, Cl, Hg, and Se are not depleted in the samples (coke and coal) nearest the dike that were exposed to the highest temperatures. Their presence in these samples is likely due to secondary enrichment following volatilization of the elements inherent in the coal. Equilibration with ground water may account for the uniform distribution of Na, B, and Cl. High concentrations of Ca, Mg, Fe, Mn, Sr, and CO2 in the coke region are attributed to the reaction of CO and CO2 generated during the coking of the coal with fluids from the intrusion, resulting in the precipitation of carbonates. Similarly, precipitation of sulfide minerals in the coke zone may account for the relatively high concentrations of Ag, Hg, Cu, Zn, and Fe. Most elements are concentrated at the juncture of the fluidized coke and the thermally metamorphosed coal. Many of the elements enriched in this region (for example, Ga, Ge, Mo, Rb, U, La, Ce, Al, K, and Si) may have been adsorbed on either the clays or the organic matter or on both.Although the effects of igneous dikes on the organic matter in coal have been observed at many localities there is virtually no information on the effects of the intrusions on the inorganic constituents in the coal. Such a study may help to elucidate the behavior of trace elements during in situ gasification of coal and may provide insights into the resource potential of coal and coke affected by the intrusion. To determine the effects of an igneous intrusion on the inorganic chemistry of a coal we used a series of 11 samples of coal and natural coke that had been collected at intervals from 3 to 106 cm from a dike that intruded the bituminous Dutch Creek coal in Pitkin, CO. The samples were chemically analyzed for 66 elements. SEM-EDX and X-ray diffraction analysis were performed on selected samples. Volatile elements such as F, Cl, Hg, and Se are not depleted in the samples (coke and coal) nearest the dike that were exposed to the highest temperatures. Their presence in these samples is likely due to secondary enrichment following volatilization of the elements inherent in the coal. Equilibration with ground water may account for the uniform distribution of Na, B, and Cl. High concentrations of Ca, Mg, Fe, Mn, Sr, and CO2 in the coke region are attributed to the reaction of CO and CO2 generated during the coking of the coal with fluids from the intrusion, resulting in the precipitation of carbonates. Similarly, precipitation of sulfide minerals in the coke zone may account for the relatively high concentrations of Ag, Hg, Cu, Zn, and Fe. Most elements are concentrated at the juncture of the fluidized coke and the thermally metamorphosed coal. Many of the elements enriched in this region (for example, Ga, Ge, Mo, Rb, U, La, Ce, Al, K, and Si) may have been adsorbed on either the clays or the organic matter or on both.
NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR
Szilard, L.; Young, G.J.
1958-03-01
This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.
NASA Astrophysics Data System (ADS)
Mochalov, Leonid; Kudryashov, Mikhail; Logunov, Aleksandr; Zelentsov, Sergey; Nezhdanov, Aleksey; Mashin, Alexandr; Gogova, Daniela; Chidichimo, Giuseppe; De Filpo, Giovanni
2017-11-01
A new plasma-enhanced chemical vapor deposition-based (PECVD) approach for synthesizing of As-S films, with As content in the range 60-40 at.%, is demonstrated. The process has been carried out in a low-temperature Ar-plasma, employing for the first time volatile As and S as precursors. Utilization of inorganic elemental precursors, in contrast to the typically used in CVD metal-organic compounds or volatile hydrides/halides of Va- and VIa-group-elements, gives the possibility to reach the highest quality and purity of the As-S ≿halcogenide films. Quantum-chemical calculations have been performed to gain insight into the PECVD As-S chalcogenide films structure and the mechanism of its formation in the plasma discharge. An additional vibrational band near 650 cm-1 corresponding to cycled 2-dimensional units is observed by Raman spectroscopy. The process developed is cost-efficient one due to the very precise control and the long-term stability of the plasma parameters and it possesses a high potential for large-area applications such as fabrication of miniature integrated optical elements and 2D/3D printing of optical devices.
An inversion-based self-calibration for SIMS measurements: Application to H, F, and Cl in apatite
NASA Astrophysics Data System (ADS)
Boyce, J. W.; Eiler, J. M.
2011-12-01
Measurements of volatile abundances in igneous apatites can provide information regarding the abundances and evolution of volatiles in magmas, with applications to terrestrial volcanism and planetary evolution. Secondary ion mass spectrometry (SIMS) measurements can produce accurate and precise measurements of H and other volatiles in many materials including apatite. SIMS standardization generally makes use of empirical linear transfer functions that relate measured ion ratios to independently known concentrations. However, this approach is often limited by the lack of compositionally diverse, well-characterized, homogeneous standards. In general, SIMS calibrations are developed for minor and trace elements, and any two are treated as independent of one another. However, in crystalline materials, additional stoichiometric constraints may apply. In the case of apatite, the sum of concentrations of abundant volatile elements (H, Cl, and F) should closely approach 100% occupancy of their collective structural site. Here we propose and document the efficacy of a method for standardizing SIMS analyses of abundant volatiles in apatites that takes advantage of this stoichiometric constraint. The principle advantage of this method is that it is effectively self-standardizing; i.e., it requires no independently known homogeneous reference standards. We define a system of independent linear equations relating measured ion ratios (H/P, Cl/P, F/P) and unknown calibration slopes. Given sufficient range in the concentrations of the different elements among apatites measured in a single analytical session, solving this system of equations allows for the calibration slope for each element to be determined without standards, using only blank-corrected ion ratios. In the case that a data set of this kind lacks sufficient range in measured compositions of one or more of the relevant ion ratios, one can employ measurements of additional apatites of a variety of compositions to increase the statistical range and make the inversion more accurate and precise. These additional non-standard apatites need only be wide-ranging in composition: They need not be homogenous nor have known H, F, or Cl concentrations. Tests utilizing synthetic data and data generated in the laboratory indicate that this method should yield satisfactory results provided apatites meet the criteria of the model. The inversion method is able to reproduce conventional calibrations to within <2.5%, a level of accuracy comparable to or even better than the uncertainty of the conventional calibration, and one that includes both error in the inversion method as well as any true error in the independently determined values of the standards. Uncertainties in the inversion calibrations range from 0.1-1.7% (2σ), typically an order of magnitude smaller than the uncertainties in conventional calibrations (~4-5% for H2O, 1-19% for F and Cl). However, potential systematic errors stem from the model assumption of 100% occupancy of this site by the measured elements. Use of this method simplifies analysis of H, F, and Cl in apatites by SIMS, and may also be amenable to other stoichiometrically limited substitution groups, including P+As+S+Si+C in apatite, and Zr+Hf+U+Th in non-metamict zircon.
A volatile-rich Earth's core inferred from melting temperature of core materials
NASA Astrophysics Data System (ADS)
Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.
2016-12-01
Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. McDonough, W. F. Treatise in Geochemistry 2, 547-568 (2003). 7. Anzellini, S., et al Science 340, 464-6 (2013). 8. Morard, G. et al. Phys. Chem. Miner. 38, 767-776 (2011). 9. Badro, J., et al Proc. Natl. Acad. Sci. U. S. A. 111, 7542-5 (2014).
ENVIRONMENTALLY SAFE NO/VOC AUTOMOTIVE COATINGS/PREVENTION AND CONTROLS OF VOCS - PHASE I
Automotive paints provide reasonable protection against the elements but release substantial amounts of dangerous volatile organic components (VOCs) to the atmosphere during application. Foster-Miller proposes to extend their successful development of No VOC aircraft coatings to ...
Semi-continuous mass closure of the major components of fine particulate matter in Riverside, CA
NASA Astrophysics Data System (ADS)
Grover, Brett D.; Eatough, Norman L.; Woolwine, Woods R.; Cannon, Justin P.; Eatough, Delbert J.; Long, Russell W.
The application of newly developed semi-continuous aerosol monitors allows for the measurement of all the major species of PM 2.5 on a 1-h time basis. Temporal resolution of both non-volatile and semi-volatile species is possible. A suite of instruments to measure the major chemical species of PM 2.5 allows for semi-continuous mass closure. A newly developed dual-oven Sunset carbon monitor is used to measure non-volatile organic carbon, semi-volatile organic carbon and elemental carbon. Inorganic species, including sulfate and nitrate, can be measured with an ion chromatograph based sampler. Comparison of the sum of the major chemical species in an urban aerosol with mass measured by an FDMS resulted in excellent agreement. Linear regression analysis resulted in a zero-intercept slope of 0.98±0.01 with an R2=0.86. One-hour temporal resolution of the major species of PM 2.5 may reduce the uncertainty in receptor based source apportionment modeling, will allow for better forecasting of PM 2.5 episodes, and may lead to increased understanding of related health effects.
Comets: Role and importance to exobiology
NASA Technical Reports Server (NTRS)
Delsemme, Armand H.
1992-01-01
The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.
Saitanis, C J; Frontasyeva, M V; Steinnes, E; Palmer, M W; Ostrovnaya, T M; Gundorina, S F
2013-01-01
The well-known moss bags technique was applied in the heavily polluted Thriasion Plain region, Attica, Greece, in order to study the spatiotemporal distribution, in the atmosphere, of the following 32 elements: Na, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Zn, As, Se, Br, Sr, Mo, Sb, I, Ba, La, Ce, Sm, Tb, Dy, Yb, Hf, Ta, Hg, Th, and U. The moss bags were constituted of Sphagnum girgensohnii materials. The bags were exposed to ambient air in a network of 12 monitoring stations scattered throughout the monitoring area. In order to explore the temporal variation of the pollutants, four sets of moss bags were exposed for 3, 6, 9, and 12 months. Instrumental neutral activation analysis was used for the determinations of the elements. The data were analyzed using the Pearson correlations, the partial redundancy analysis, and the biplot statistical methods. Some pairs of elements were highly correlated indicating a probable common source of origin. The levels of the measured pollutants were unevenly distributed throughout the area and different pollutants exhibited different spatial patterns. In general, higher loads were observed in the stations close to and within the industrial zone. Most of the measured elements (e.g., Al, Ca, Ni, I, Zn, Cr, and As) exhibited a monotonic accumulation trend over time. Some elements exhibited different dynamics. The elements Mn, Mo, and Hg showed a decreasing trend, probably due to leaching and/or volatilization processes over time. Na and Br initially showed an increasing trend during the winter and early spring periods but decreased drastically during the late warm period. The results further suggest that the moss bags technique would be considered valuable for the majority of elements but should be used with caution in the cases of elements vulnerable to leaching and/or volatilization. It also suggests that the timing and the duration of the exposure of moss materials should be considered in the interpretation of the results.
Lunar volatiles: balancing science and resource development
NASA Astrophysics Data System (ADS)
Crider, Dana
In the context of human exploration of the moon, the volatiles postulated to exist at the lunar poles have value as resources as well as scientific significance. Once sustained human operations commence on the moon, society will move from a paradigm in which examination of planetary materials has been unconstrained to one where use of those materials will support habitability and further exploration. A framework for the scientific investigation of lunar volatiles that allows for eventual economic exploitation can guide both activities and resolve the conflicts that will inevitably develop if the postulated lunar volatiles prove to be both extant and accessible. Scientific constraints on the framework include characterization at both poles of the isotopes, elements, and molecules in the volatiles, their relative and absolute abundances, and their horizontal and vertical distribution. A subset of this data is necessary in order to assess, develop, and initiate resource exploitation. In addition, the scientific record of volatiles in the cold traps can be contaminated by the cold-trapping of migrating volatiles released from operations elsewhere on the moon even if the indigenous, cold-trapped volatiles are not utilized. Possible decision points defining the transition from science-dominated to exploitation-dominated use include technology limits in the 70K environment, evolving science priorities (funding), and the resolution of major science issues. Inputs to policy development include any North vs. South Pole differences in volatile characteristics and the suitability of the volatiles to enable further scientific exploration of the moon. In the absence of national sovereignty on the moon, enforcement of any framework is an open question, particularly if science and commercial interests are in competition. The framework, processes, and precedent set by how we as a society choose to handle the scientific bounty and resource promise of lunar volatiles may eventually apply to Mars and near-earth asteroids. We believe there are useful lessons to be learned from the terrestrial experience with protected areas such as national parks, wilderness areas, and archeological sites. International agreements such as the Antarctic Treaty (in force since 1961), the Outer Space Treaty (1967), and the Moon Treaty (1979) carry relevant lessons as well.
Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents
NASA Astrophysics Data System (ADS)
Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.
2017-04-01
Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.
TOL, WIETSE A.; KOMPROE, IVAN H.; JORDANS, MARK J.D.; VALLIPURAM, ANAVARATHAN; SIPSMA, HEATHER; SIVAYOKAN, SAMBASIVAMOORTHY; MACY, ROBERT D.; DE JONG, JOOP T.
2012-01-01
We aimed to examine outcomes, moderators and mediators of a preventive school-based mental health intervention implemented by paraprofessionals in a war-affected setting in northern Sri Lanka. A cluster randomized trial was employed. Subsequent to screening 1,370 children in randomly selected schools, 399 children were assigned to an intervention (n=199) or waitlist control condition (n=200). The intervention consisted of 15 manualized sessions over 5 weeks of cognitive behavioral techniques and creative expressive elements. Assessments took place before, 1 week after, and 3 months after the intervention. Primary outcomes included post-traumatic stress disorder (PTSD), depressive, and anxiety symptoms. No main effects on primary outcomes were identified. A main effect in favor of intervention for conduct problems was observed. This effect was stronger for younger children. Furthermore, we found intervention benefits for specific subgroups. Stronger effects were found for boys with regard to PTSD and anxiety symptoms, and for younger children on pro-social behavior. Moreover, we found stronger intervention effects on PTSD, anxiety, and function impairment for children experiencing lower levels of current war-related stressors. Girls in the intervention condition showed smaller reductions on PTSD symptoms than waitlisted girls. We conclude that preventive school-based psychosocial interventions in volatile areas characterized by ongoing war-related stressors may effectively improve indicators of psychological wellbeing and posttraumatic stress-related symptoms in some children. However, they may undermine natural recovery for others. Further research is necessary to examine how gender, age and current war-related experiences contribute to differential intervention effects. PMID:22654944
Evolution of Protein Domain Repeats in Metazoa
Schüler, Andreas; Bornberg-Bauer, Erich
2016-01-01
Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. Key Words: protein evolution, domain rearrangements, protein repeats, concerted evolution. PMID:27671125
Thermodynamics for arsenic and antimony in copper matte converting; Computer simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaubal, P.C.; Nagamori, M.
1989-08-01
In this paper thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As/sub 2/O/sub 3/(g) have been newly assessed. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been solved for successive reaction microsteps whereby the volatilization, slagging, andmore » alloying of the minor elements have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As/sub 2/(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) remain negligibly low. The results of the simulation compare favorably with industrial operating data.« less
[Volatile ashes and their biological effect. 2. Fibrogenic effect of volatile ashes].
Woźniak, H; Wiecek, E; Lao, I; Wojtczak, J
1989-01-01
In experiments on white Wistar rats fibrogenic effects of 6 samples of fly-ashes collected from electric precipitators in power engineering plants have been evaluated. The coal came from different national deposits. All the ashes have been found to contain: quartz and mullite, 3 ashes contained additionally orthoclase, whereas 1, apart from quartz and mullite, contained kaolinite; naturally radioactive elements (Ra226, K40, Th228) and trace elements (As, Ba, Be, Cd, Ce, Cu, Fe, Pa, Mo, Ni, Pb, Se, U Zu). Experimental pneumoconiosis was induced through intratracheal administration of single doses of 50 mg of dust; the experiment was carried out at 3 time intervals of 3, 6 and 9 months. The fibrogenic activity was evaluated both qualitatively (histopathological methods) and quantitatively (lung weight, hydroxyproline content in lungs, dust elimination from lungs); control groups consisted of animals which obtained NaCl solution and quartz sands. Fly-ashes were found to exhibit different fibrogenic effects, yet, their fibrogenic activity was weaker, compared to quartz sands. No clear correlation was found between fibrogenic effects of ashes and test physico-chemical properties, such as the content of SiO2, trace elements or naturally radioactive elements. Analysis of occupational diseases (for the period section): (1979-1983) demonstrated occupational diseases of dust-related aetiology among power engineering workers, pneumoconioses, constituting 7.8% of 127 cases of occupational diseases.
Jiang, Ying; Zhang, Yue; Banks, Charles; Heaven, Sonia; Longhurst, Philip
2017-11-15
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 2 6-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrothermal pretreatment of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, D.S.
1989-12-21
We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility weremore » seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.« less
Sargent, B.P.; Storck, D.A.
1994-01-01
A zone of contaminated ground water at Picatinny Arsenal has resulted from the operation of a metal- plating facility in building 95 during 1960-81, and the wastewater-treatment system that is in and adjacent to the building. Thirty-two monitoring wells were installed in 1989 to supplement 12 previously installed wells. All wells were sampled in 1989 and 1990 for analysis of ground water for inorganic constituents, trace elements, volatile organic compounds, and nutrients. Four wells also were sampled for analysis for base/neutral- and acid-extractable compounds and pesticides, and soil gas from the unsaturated zone at eight sites was analyzed for volatile organic compounds. Concentrations of dissolved solids and sulfate in the study area were consistently above the U.S. Environmental Protection Agency's secondary drinking-water regulations. The areal distribution of sulfate differed from that of the volatile organic compounds. Concentrations of trace elements were not elevated downgradient from the source. The estimated average velocity of contaminant movement is 0.1 to 1.1 feet per day. The major organic contaminants identified in the study area are trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Trichloroethylene was detected in wells upgradient from the wastewater- treatment site. Tetrachloroethylene and 1,1,1-trichloroethane might originate at tanks in the basement of building 95 rather than at the adjacent wastewater-treatment system. The pre- dominant gas-phase contaminant, 1,1,1- trichloroethane, was detected at a maximum con- centration of 15.7 micrograms per liter. Both trichoroethylene and tetrachloroethylene were detected in concentrations greater than 0.10 micrograms per liter in five of the eight soil- gas samples, indicating that volatilization and diffusion through the unsaturated zone could be a significant mechanism of contaminant loss from the aquifer.
Impact glasses from the ultrafine fraction of lunar soils
NASA Technical Reports Server (NTRS)
Norris, J. A.; Keller, L. P.; Mckay, D. S.
1993-01-01
The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes which accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact induced chemical fractionation. Among these are HASP glasses (High-Al, Si-Poor) which are believed to represent the refractory residuum left after the loss of volatile elements (e.g. Si, Fe, N) from the precursor material. In addition to HASP-type glasses, we also observed a group of VRAP glasses (volatile-rich, Al-poor) that represent condensates of vaporized volatile constituents and are complementary to the HASP compositions. High-Ti glasses were also found during the course of the study, and are documented here for the first time.
A room-temperature non-volatile CNT-based molecular memory cell
NASA Astrophysics Data System (ADS)
Ye, Senbin; Jing, Qingshen; Han, Ray P. S.
2013-04-01
Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.
A Brief User's Guide to the Excel ® -Based DF Calculator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, Robert T.
2016-06-01
To understand the importance of capturing penetrating forms of iodine as well as the other volatile radionuclides, a calculation tool was developed in the form of an Excel ® spreadsheet to estimate the overall plant decontamination factor (DF). The tool requires the user to estimate splits of the volatile radionuclides within the major portions of the reprocessing plant, speciation of iodine and individual DFs for each off-gas stream within the Used Nuclear Fuel reprocessing plant. The Impact to the overall plant DF for each volatile radionuclide is then calculated by the tool based on the specific user choices. The Excelmore » ® spreadsheet tracks both elemental and penetrating forms of iodine separately and allows changes in the speciation of iodine at each processing step. It also tracks 3H, 14C and 85Kr. This document provides a basic user's guide to the manipulation of this tool.« less
Ruano, W.J.
1957-12-10
This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.
NASA Astrophysics Data System (ADS)
Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco
2014-05-01
Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.
MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
NASA Astrophysics Data System (ADS)
Schiavi, Federica; Bolfan-Casanova, Nathalie
2017-04-01
The amount and distribution of volatiles (water, carbon dioxide …) in magmas represent key parameters for the understanding of magma processes and dynamics within volcanic plumbing systems. Micro-Raman spectroscopy is an excellent technique for accurate determination of volatile contents in magmas, as it combines several advantages. The technique is non-destructive and requires minimal sample preparation before the analysis. Its high lateral and in-depth spatial resolution is crucial for the study of small objects and samples that are chemically and texturally heterogeneous at the small scale (microns). Moreover, the high confocality allows analysis of sample regions not exposed to the surface and 3D mapping. We present a universal calibration of Raman spectroscopy for quantification of volatiles in silicate glasses. The proposed method is based on internal calibration, i.e., on the correlation between the glass water content and the ratio between the areas of the water and silicate Raman bands. Synthetic glasses with variable major element compositions (basaltic, andesitic, rhyolitic, dacitic ..) bearing different H2O (up to 7 wt%) and CO2 contents are used as standard glasses. Natural silicate glasses, mainly in the form of melt inclusions, are used to test the goodness of the proposed method. In addition to quantification of volatiles in glass, in bubble-bearing melt inclusions we perform micro-Raman spectroscopy investigation of gas-bearing bubbles for accurate determination of total volatile contents in melt inclusions.
Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.
Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C
2017-04-01
Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.
2015-12-01
The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the stability field of garnet and/or spinel lherzolite, suggesting that the source of these lavas may stem from MORB mixing with an enriched plume (OIB) source. The discovery of these magmatic signatures beneath the North Fiji Basin is important in understanding the heterogeneities of volatiles in the mantle, in addition to linking deeper mantle and subsurface crustal processes.
Internal friction in rocks and its relationship to volatiles on the moon
NASA Technical Reports Server (NTRS)
Tittmann, B. R.; Housley, R. M.; Alers, G. A.; Cirlin, E. H.
1974-01-01
The physical properties of lunar rocks were measured using the vibrating bar technique in order to provide data for interpretation of geophysical results such as those from seismic measurements. The effect of volatiles on the mechanical Q in lunar rocks was studied in addition to the effect of exposing a sample to controlled amounts of those gases most likely to be present in the lunar environment or likely to have been outgassed from the lunar interior. The moderate temperatures to which the sample was exposed during the thermal treatment and the small drop in resonant frequency during the course of the outgassing suggests that there was little change in microfracture density. The frequency, composition and texture dependence of the damping were investigated, to study the loss mechanism.
Elemental Compositions of Extrasolar Planetesimals
NASA Astrophysics Data System (ADS)
Xu, Siyi; Jura, M.
2014-01-01
The composition of extrasolar rocky planets is essential for understanding the formation and evolution of these alien worlds. Studying externally-polluted white dwarfs provides the only method to directly measure the elemental compositions of extrasolar planetesimals, the building blocks of planets. The standard model is that some planetesimals can survive to the white dwarf phase, get perturbed, enter into the tidal radius of the white dwarf and get accreted, polluting its pure hydrogen or helium atmosphere. We have been performing high-resolution spectroscopic observations on a number of polluted white dwarfs to measure the bulk compositions of the accreted objects. To have a full picture of the abundance pattern, we gathered data from both Keck/HIRES and HST/COS. I will present the analysis for one of the most interesting objects -- G29-38. It is the first white dwarf identified with an infrared excess from debris of pulverized planetesimals and among the very first identified polluted hydrogen atmosphere white dwarfs. Our analysis indicates that the accreted extrasolar planetesimal is enhanced in refractory elements and depleted in volatile elements. A detailed comparison with solar system objects show that the observed composition can be best interpreted as a blend of chondritic object with some refractory-rich material, a result from post-nebular processing. When all polluted white dwarfs are viewed as an ensemble, we find that the elemental compositions of accreted extrasolar planetesimals resemble to those of solar system objects to zeroth order. (i) The big four elements, O, Fe, Mg and Si are also dominant. Objects with exotic compositions, e.g. diamond planets and refractory-dominated planets, are yet to be found. (ii) Volatiles, such as carbon and water, are only trace constituents. In terms of bulk composition, solar system objects are essentially normal.
NASA Technical Reports Server (NTRS)
Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst
1993-01-01
A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.
Where is the Earth's missing xenon?
NASA Technical Reports Server (NTRS)
Wacker, J. F.; Anders, E.
1984-01-01
Highly volatile elements (e.g., T1, Pb, B, C1, Br, etc.) in the Earth's crust occur in C-chondrite proportions, and so do the atmospheric noble gases Ne, Ar, and Kr. This has led to the suggestion that the Earth acquired its volatiles from a late veneer of C-chondrite-like material. A glaring exception is Xe, which is depleted approx. 20x relative to Ne, Ar, Kr. Three explanations are discussed for the depletion: (1) Xe is preferentially trapped in the crust, either in sediments (3) or in Antarctic ice (4); (2) the Earth's noble gas inventory is non-chondritic (5); or (3) Xe is incompletely outgassed from the mantle.
Electronic structure and properties of MAu and MOH, where M = Tl and Nh: New data
NASA Astrophysics Data System (ADS)
Pershina, V.; Iliaš, M.
2018-02-01
Properties of the MAu and MOH (M = Tl and element 113, Nh) molecules were calculated using the 2c-DFT method. The obtained data are needed for evaluation of reactivity of Nh studied by gas-phase chromatography experiments. Results show that Nh should be less reactive (or more volatile) than Tl, both with respect to gold and the hydroxyl group. The reason for that are strong relativistic effects on the valence 7s and 7p electron shells. In difference to the atoms, NhOH may be less volatile than TlOH due to its larger both dipole moment and anisotropic polarizability.
NASA Astrophysics Data System (ADS)
Lloyd, A. S.; Newcombe, M. E.; Plank, T. A.
2016-12-01
Although olivine-hosted melt inclusions (MIs) remain the gold standard for recovering volatile concentrations of primitive magmas, later-fractionating minerals may be more appropriate for assessing magma storage conditions immediately prior to eruption. We present volatile analyses of MIs entrapped in early (Mg# 81-83) olivine and later (Mg# 70-80) clinopyroxene (Cpx) from the 1977 eruption of Seguam volcano, to assess the ascent history prior to this violent strombolian eruption. The olivine-hosted MIs contain average volatile concentrations (n=16) of 3.79 wt% H2O, 167 ppm CO2, 592 ppm Cl, and 133 ppm F, consistent with an entrapment pressure of 200 to 300 MPa ( 10-13 km depth) if the CO2 contained in the bubble is taken into account (Moore et al., 2015). Cpx phenocrysts contain two distinct MI assemblages; the inner assemblage consists of randomly distributed, rounded MIs which never contain a vapor bubble. Average volatile concentrations of the inner assemblage MIs (n=11) are 0.96 wt% H2O, 98 ppm CO2, 798 ppm Cl, and 280 ppm F, consistent with an entrapment at much shallower depth, 2 km. The outer assemblage contains inclusions too small for routine volatile analysis. Inner assemblage Cpx-hosted MIs preserve average enrichments of 1.3x and 2x for Cl and F respectively, and are similarly enriched in incompatible minor and trace elements (up to a factor of 5x). Two potential scenarios can explain these observations. The enrichments may represent the entrapment of an unrelated highly-fractionated, shallow magma (which is unsupported by the whole rock record at Seguam). A second possibility is enrichment through boundary layer entrapment during a period of rapid crystal growth during ascent through the upper crust. Boundary layer entrapment during MI formation is further supported by a negative correlation between the degree of enrichment and the diffusivity of individual elements, which is consistent with growth rates 10-8 m/s. Although the olivine-hosted MIs record a volatile-rich storage region, the later-fractionating Cpx indicate a phase of rapid crystallization, likely driven by water loss from the melt at shallow depths. This work highlights the information added by analyzing multiple phases in order to reconstruct the degassing path of magma prior to eruption.
NASA Astrophysics Data System (ADS)
Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.
2017-12-01
Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes after decompression in the upper part of the experimental products, indicating that magnetite flotation can be an efficient mechanism to separate and accumulate magnetite. [1] Hurwitz and Navon (1994) Earth Planet. Sci. Lett.122, 267-280 [2] Edmonds et al. (2014) Geol. Soc. London, Spec. Pub. 410. [3] Simon et al. (2004) Geochim. Cosmochim. Acta 68, 4905-4914.
Wintertime hygroscopicity and volatility of ambient urban aerosol particles
NASA Astrophysics Data System (ADS)
Enroth, Joonas; Mikkilä, Jyri; Németh, Zoltán; Kulmala, Markku; Salma, Imre
2018-04-01
Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility-hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014-2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic particles were ordinarily volatile. They could be composed of moderately transformed aged combustion particles consisting of partly oxygenated organics, inorganic salts and soot. The larger particles contained internally mixed non-volatile chemical species as a refractory residual in 20-25 % of the aerosol material (by volume).
Zumwalt, L.R.
1961-08-01
Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)
Ion microprobe mass analysis of lunar samples. Lunar sample program
NASA Technical Reports Server (NTRS)
Anderson, C. A.; Hinthorne, J. R.
1971-01-01
Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.
Treshow, M.
1958-08-19
A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.
TELEPHONIC PRESENTATION: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
Azzollini, Antonio; Boggia, Lorenzo; Boccard, Julien; Sgorbini, Barbara; Lecoultre, Nicole; Allard, Pierre-Marie; Rubiolo, Patrizia; Rudaz, Serge; Gindro, Katia; Bicchi, Carlo; Wolfender, Jean-Luc
2018-01-01
Fungal co-cultivation has emerged as a promising way for activating cryptic biosynthetic pathways and discovering novel antimicrobial metabolites. For the success of such studies, a key element remains the development of standardized co-cultivation methods compatible with high-throughput analytical procedures. To efficiently highlight induction processes, it is crucial to acquire a holistic view of intermicrobial communication at the molecular level. To tackle this issue, a strategy was developed based on the miniaturization of fungal cultures that allows for a concomitant survey of induction phenomena in volatile and non-volatile metabolomes. Fungi were directly grown in vials, and each sample was profiled by head space solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS), while the corresponding solid culture medium was analyzed by liquid chromatography high resolution mass spectrometry (LC-HRMS) after solvent extraction. This strategy was implemented for the screening of volatile and non-volatile metabolite inductions in an ecologically relevant fungal co-culture of Eutypa lata (Pers.) Tul. & C. Tul. (Diatrypaceae) and Botryosphaeria obtusa (Schwein.) Shoemaker (Botryosphaeriaceae), two wood-decaying fungi interacting in the context of esca disease of grapevine. For a comprehensive evaluation of the results, a multivariate data analysis combining Analysis of Variance and Partial Least Squares approaches, namely AMOPLS, was used to explore the complex LC-HRMS and GC-MS datasets and highlight dynamically induced compounds. A time-series study was carried out over 9 days, showing characteristic metabolite induction patterns in both volatile and non-volatile dimensions. Relevant links between the dynamics of expression of specific metabolite production were observed. In addition, the antifungal activity of 2-nonanone, a metabolite incrementally produced over time in the volatile fraction, was assessed against Eutypa lata and Botryosphaeria obtusa in an adapted bioassay set for volatile compounds. This compound has shown antifungal activity on both fungi and was found to be co-expressed with a known antifungal compound, O-methylmellein, induced in solid media. This strategy could help elucidate microbial inter- and intra-species cross-talk at various levels. Moreover, it supports the study of concerted defense/communication mechanisms for efficiently identifying original antimicrobials. PMID:29459851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitz, A.H.; Boynton, W.V.
Six ureilites (ALHA77257, ALHA81101, ALH82130, PCA82506, Kanna, and Novo Urei) were analyzed using neutron activation analysis for Ca, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, REE, W, Re, Os, Ir, and Au. The authors examined bulk samples as well as acid-treated samples. In bulk samples the refractory siderophiles' concentrations range from approximately 0.1 to 1.0 times CI chondrites while the volatile siderophiles' concentrations range from approximately 0.1 to 1.0 times CI chondrites while the volatile siderophiles range from about 0.07 to 0.3 times CI chondrites. Rare earth elements (REEs) in ureilites are quite depleted and display light and heavymore » rare earth enrichments. The Antarctic meteorites display either much less pronounced v-shaped patterns or no enrichment in the light rare earths at all. In terms of the new trace-element results, ureilites do not fall into the coherent groups that other workers have defined by chemical or petrographic characteristics. Trace elements do provide additional constraints on the models for the petrogenesis of ureilites. In particular, the siderophile element abundances call for simplified models of chemical processing rather than the complex, multistage processing called for in silicate fractionation models. REE concentrations, on the other hand, imply multistage processing to produce the ureilites. None of the ureilite petrogenesis models extant account for the trace element data. These new data and the considerations of them with respect to the proposed ureilite petrogenesis models indicate that the direction of modeling should be toward contemplation of mixtures and how the components the authors observe in ureilites behave under such conditions.« less
NASA Astrophysics Data System (ADS)
Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina
2018-04-01
Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.
NASA Astrophysics Data System (ADS)
Glikson, Andrew; Allen, Charlotte
2004-04-01
A stratigraphically consistent <20-cm-thick unit of microkrystite spherule and microtektite-bearing impact fallout ejecta overlying volcanic tuff of the 4th Shale Macroband (DGS4) of the Dales Gorge Member (2.47-2.50 Ga), Brockman Iron Formation, Hamersley Group, Western Australia, displays anomalous platinum group element (PGE) and other trace metal patterns. The unit has high Ir (13 ppb) and Pt (35 ppb), and low Pd (2.7 ppb) and Au (1.55-1.88 ppb). The low Pd/Ir ratios and low Cr/V suggest depletion in volatile PGE and metals relative to refractory PGE and V, contrasted to the ubiquitous high Pd/Ir of most terrestrial rocks. Marked depletion in the volatile Rare Earth Element (REE) abundances in stilpnomelane spherule cores is consistent with this model. The loss of volatile PGE, analogous to relations in 3.24 Ga impact fallout units of the Barberton greenstone belt (S3 and S4), suggests fractionation related to atmospheric spherule condensation. The microkrystite spherule unit locally incorporate fragments and up to meter-scale boulders of banded chert and stromatolite carbonate, suggesting tsunami transport postdating spherule deposition. DGS4 microkrystite spherules are dominated by stilpnomelane mantled by K-feldspar shells, which consist of inward-radiating fibrous feldspar aggregates suggestive of devitrification. The K and REE enrichment of spherule margins are contrasted to flat REE patterns of the stilpnomelane cores, suggesting adsorption of lithophile elements during settling of the spherules through the hydrosphere. K-feldspar shells contain submicron-scale Ni metal, oxide, sulfide and arsenide grains and euhedral needles of feldspar-exsolved ilmenite. Associated magnetite may have high nickel (<1.25% NiO). The generally mafic composition of the spherules and high Ni/Cr and Ni/Co are consistent with a target mafic-ultramafic crust, consistent with the lack of shock-metamorphosed quartz. Mixing calculations suggest a contribution of 2.5-3% projectile component to the impact-generated volatile cloud. Conservative mass balance estimates derived from the Ir and Pt flux, assuming global extent of a 10-cm-thick spherule unit and chondritic projectile composition, suggest an asteroid diameter on the scale of ˜30 km. Similar estimates are obtained from spherule sizes, which in DGS4 reach a mean diameter of ˜2.0 mm in aerodynamically elongate spherules. The evidence implies formation of an impact basin on the scale of 400 km in simatic/oceanic regions of the early Proterozoic crust.
NASA Astrophysics Data System (ADS)
Wang, Zaicong; Becker, Harry
2017-11-01
Silver and Cu show very similar partitioning behavior in sulfide melt-silicate melt and metal-silicate systems at low and high pressure-temperature (P-T) experimental conditions, implying that mantle melting, fractional crystallization and core-mantle differentiation have at most modest (within a factor of 3) effects on Cu/Ag ratios. For this reason, it is likely that Cu/Ag ratios in mantle-derived magmatic products of planetary bodies reflect that of the mantle and, in some circumstances, also the bulk planet composition. To test this hypothesis, new Ag mass fractions and Cu/Ag ratios in different groups of Martian meteorites are presented and compared with data from chondrites and samples from the Earth's mantle. Silver contents in lherzolitic, olivine-phyric and basaltic shergottites and nakhlites range between 1.9 and 12.3 ng/g. The data display a negative trend with MgO content and correlate positively with Cu contents. In spite of displaying variable initial Ɛ143Nd values and representing a diverse spectrum of magmatic evolution and physiochemical conditions, shergottites and nakhlites display limited variations of Cu/Ag ratios (1080 ± 320, 1 s, n = 14). The relatively constant Cu/Ag suggests limited fractionation of Ag from Cu during the formation and evolution of the parent magmas, irrespectively of whether sulfide saturation was attained or not. The mean Cu/Ag ratio of Martian meteorites thus reflects that of the Martian mantle and constrains its Ag content to 1.9 ± 0.7 ng/g (1 s). Carbonaceous and enstatite chondrites display a limited range of Cu/Ag ratios of mostly 500-2400. Ordinary chondrites show a larger scatter of Cu/Ag up to 4500, which may have been caused by Ag redistribution during parent body metamorphism. The majority of chondrites have Cu/Ag ratios indistinguishable from the Martian mantle value, indicating that Martian core formation strongly depleted Cu and Ag contents, but probably did not significantly change the Cu/Ag ratio of the mantle compared to bulk Mars. Bulk Mars is richer in moderately volatile elements than Earth, however, the Martian mantle displays a much stronger depletion of the moderately volatile elements Cu and Ag, e.g., by a factor of 15 for Cu. This observation is consistent with experimental studies suggesting that core formation at low P-T conditions on Mars led to more siderophile behavior of Cu and Ag than at high P-T conditions as proposed for Earth. In contrast, Cu/Ag ratios of the mantles of Mars and Earth (Cu/AgEarth = 3500 ± 1000) display only a difference by a factor of 3, which implies restricted fractionation of Cu and Ag even at high P-T conditions. The concentration data support the notion that siderophile element partitioning during planetary core formation scales with the size of the planetary body, which is particularly important for the differentiation of large terrestrial planets such as Earth. Collectively, the Ag and Cu data on magmatic products from the mantles of Mars and Earth and the data on chondrites confirm experimental predictions and support the limited fractionation of Cu and Ag during planetary core formation and high-temperature magmatic evolution, and probably also in early solar nebular processes.
Park, Kihong; Kim, Jae-Seok; Park, Seung Ho
2009-09-01
The tandem differential mobility analyzer (TDMA) technique was applied to determine the hygroscopicity and volatility of atmospheric ultrafine particles in three sites of urban Gwangju, industrial Yeosu, and coastal Taean in South Korea. A database for the hygroscopicity and volatility of the known compositions and sizes of the laboratory-generated particles wasfirst constructed for comparison with the measured properties of atmospheric ultrafine particles. Distinct differences in hygroscopicity and volatility of atmospheric ultrafine particles werefound between a "photochemical event" and a "combustion event" as well as among different sites. At the Gwangju site, ultrafine particles in the "photochemical event" were determined to be more hygroscopic (growth factor (GF) = 1.05-1.33) than those in the "combustion event" (GF = 1.02-1.12), but their hygroscopicity was not as high as pure ammonium sulfate or sulfuric acid particles in the laboratory-generated database, suggesting they were internally mixed with less soluble species. Ultrafine particles in the "photochemical event" at the Yeosu site, having a variety of SO2, CO, and VOC emission sources, were more hygroscopic (GF = 1.34-1.60) and had a higher amount of volatile species (47-75%)than those observed at the Gwangju site. Ultrafine particle concentration at the Taean site increased during daylight hours with low tide, having a higher GF (1.34-1.80) than the Gwangju site and a lower amount of volatile species (17-34%) than the Yeosu site. Occasionally ultrafine particles were externally mixed according to their hygroscopicity and volatility, and TEM/EDS data showed that each type of particle had a distinct morphology and elemental composition.
Volatile metal species in coal combustion flue gas.
Pavageau, Marie-Pierre; Pécheyran, Christophe; Krupp, Eva M; Morin, Anne; Donard, Olivier F X
2002-04-01
Metals are released in effluents of most of combustion processes and are under intensive regulations. To improve our knowledge of combustion process and their resulting emission of metal to the atmosphere, we have developed an approach allowing usto distinguish between gaseous and particulate state of the elements emitted. This study was conducted on the emission of volatile metallic species emitted from a coal combustion plant where low/medium volatile coal (high-grade ash) was burnt. The occurrence of volatile metal species emission was investigated by cryofocusing sampling procedure and detection using low-temperature packed-column gas chromatography coupled with inductively coupled plasma-mass spectrometry as multielement detector (LT-GC/ICP-MS). Samples were collected in the stack through the routine heated sampling line of the plant downstream from the electrostatic precipitator. The gaseous samples were trapped with a cryogenic device and analyzed by LT-GC/ICP-MS. During the combustion process, seven volatile metal species were detected: three for Se, one for Sn, two for Hg, and one for Cu. Thermodynamic calculations and experimental metal species spiking experiments suggest that the following volatile metal species are present in the flue gas during the combustion process: COSe, CSSe, CSe2, SeCl2, Hg0, HgCl2, CuO-CuSO4 or CuSO4 x H2O, and SnO2 or SnCl2. The quantification of volatile species was compared to results traditionally obtained by standardized impinger-based sampling and analysis techniques recommended for flue gas combustion characterization. Results showed that concentrations obtained with the standard impinger approach are at least 10 times higher than obtained with cryogenic sampling, suggesting the trapping microaerosols in the traditional methods. Total metal concentrations in particles are also reported and discussed.
Halliday, Alex N
2008-11-28
New W isotope data for lunar metals demonstrate that the Moon formed late in isotopic equilibrium with the bulk silicate Earth (BSE). On this basis, lunar Sr isotope data are used to define the former composition of the Earth and hence the Rb-Sr age of the Moon, which is 4.48+/-0.02Ga, or 70-110Ma (million years) after the start of the Solar System. This age is significantly later than had been deduced from W isotopes based on model assumptions or isotopic effects now known to be cosmogenic. The Sr age is in excellent agreement with earlier estimates based on the time of lunar Pb loss and the age of the early lunar crust (4.46+/-0.04Ga). Similar ages for the BSE are recorded by xenon and lead-lead, providing evidence of catastrophic terrestrial degassing, atmospheric blow-off and significant late core formation accompanying the ca 100Ma giant impact. Agreement between the age of the Moon based on the Earth's Rb/Sr and the lead-lead age of the Moon is consistent with no major losses of moderately volatile elements from the Earth during the giant impact. The W isotopic composition of the BSE can be explained by end member models of (i) gradual accretion with a mean life of roughly 35Ma or (ii) rapid growth with a mean life of roughly 10Ma, followed by a significant hiatus prior to the giant impact. The former assumes that approximately 60 per cent of the incoming metal from impactors is added directly to the core during accretion. The latter includes complete mixing of all the impactor material into the BSE during accretion. The identical W isotopic composition of the Moon and the BSE limits the amount of material that can be added as a late veneer to the Earth after the giant impact to less than 0.3+/-0.3 per cent of ordinary chondrite or less than 0.5+/-0.6 per cent CI carbonaceous chondrite based on their known W isotopic compositions. Neither of these on their own is sufficient to explain the inventories of both refractory siderophiles such as platinum group elements and rhenium, and volatiles such as sulphur, carbon and water.
The Origin of the Moon Within a Terrestrial Synestia
NASA Astrophysics Data System (ADS)
Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija
2018-04-01
The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.
PRESENTED 04/05/2006: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
PRODUCTION AND LOSS OF DISSOLVED GASEOUS MERCURY IN COASTAL SEAWATER (R824778)
The formation of dissolved gaseous mercury (DGM, mainly
composed of elemental mercury, Hg0) in the surface
ocean
and its subsequent removal through volatilization is an
important component of the global mercury (Hg) cycle.
We studied DGM production an...
PRESENTED MAY 10, 2005, MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
Co-located measurements of fine particulate matter (PM2.5) organic carbon (OC), elemental carbon, radiocarbon (14C), speciated volatile organic compounds (VOCs),and OH radicals during the CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air ...
Continous Monitoring of Melt Composition
NASA Technical Reports Server (NTRS)
Frazer, R. E.; Andrews, T. W.
1984-01-01
Compositions of glasses and alloys analyzed and corrected in real time. Spectral analysis and temperature measurement performed simultaneously on molten material in container, such as open-hearth furnace, crucible or tank of continuous furnace. Speed of analysis makes it possible to quickly measure concentration of volatile elements depleted by prolonged heating.
Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...
Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...
Chemical equilibrium and reaction modeling of arsenic and selenium in soils
USDA-ARS?s Scientific Manuscript database
The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...
NASA Astrophysics Data System (ADS)
McSween, H. Y., Jr.; McLennan, S. M.
Of all the planets, Mars is the most Earthlike, inviting geochemical comparisons. Geochemical data for Mars are derived from spacecraft remote sensing, surface measurements and Martian meteorites. These analyses of exposed crustal materials enable estimates of bulk planet composition and inferences about its iron-rich mantle and core, as well as constraints on planetary differentiation and crust-mantle evolution. Mars probably had an early magma ocean, but there is no evidence for plate tectonics or crustal recycling any time in its history. The crust is basaltic in composition and lithologically heterogeneous, with radiometric crystallization ages ranging from ~4 billion years to within the last several hundred million years. Mantle sources for magmas vary considerably in incompatible element abundances. Although Mars is volatile element-rich, estimations of the amount of water delivered to the surface by volcanism are controversial. Low-temperature aqueous alteration affected the ancient Martian surface, producing clay minerals, sulfates, and other secondary minerals. Weathering and diagenetic trends are distinct from terrestrial chemical alteration, indicating different aqueous conditions. Organic matter has been found in Martian meteorites, but no geochemical signal of life has yet been discovered. Dynamic geochemical cycles for some volatile elements are revealed by stable isotope measurements. Long-term secular changes in chemical and mineralogical compositions of igneous rocks and sediments have been documented but are not well understood.
Absence of bronchodilation during desflurane anesthesia: a comparison to sevoflurane and thiopental.
Goff, M J; Arain, S R; Ficke, D J; Uhrich, T D; Ebert, T J
2000-08-01
Bronchospasm is a potential complication in anyone undergoing general anesthesia. Because volatile anesthetics relax bronchial smooth muscle, the effects of two newer volatile anesthetics, desflurane and sevoflurane, on respiratory resistance were evaluated. The authors hypothesized that desflurane would have greater bronchodilating effects because of its ability to increase sympathetic nervous system activity. Informed consent was obtained from patients undergoing elective surgery with general anesthesia. We recorded airway flow and pressure after thiopental induction and tracheal intubation (baseline) and for 10 min after beginning volatile anesthesia ( approximately 1 minimum alveolar concentration inspired). Respiratory system resistance was determined using the isovolume technique. Fifty subjects were randomized to receive sevoflurane (n = 20), desflurane (n = 20), or thiopental infusion (n = 10, 0.25 mg. kg-1. h-1). There were no differences between groups for age, height, weight, smoking history, and American Society of Anesthesiologists physical class. On average, sevoflurane reduced respiratory resistance 15% below baseline, whereas both desflurane (+5%) and thiopental (+10%) did not decrease respiratory resistance. The respiratory resistance changes did not differ in patients with and without a history of smoking during sevoflurane or thiopental. In contrast, administration of desflurane to smokers resulted in the greatest increase in respiratory resistance. Sevoflurane causes moderate bronchodilation that is not observed with desflurane or sodium thiopental. The bronchoconstriction produced by desflurane was primarily noted in patients who currently smoked. (Key words: Bronchospasm; respiratory resistance; volatile anesthetics.)
Subduction and volatile recycling in Earth's mantle
NASA Technical Reports Server (NTRS)
King, S. D.; Ita, J. J.; Staudigel, H.
1994-01-01
The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.
Park, Jin Young; Kim, Su Hyeon; Kim, Na Hee; Lee, Sang Woo; Jeun, Yong-Chull; Hong, Jeum Kyu
2017-12-01
The objective of this study was to determine inhibitory activities of four volatile plant essential oils (cinnamon oil, fennel oil, origanum oil and thyme oil) on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt of strawberry plants. Results showed that these essential oils inhibited in vitro conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in a dose-dependent manner. Cinnamon oil was found to be most effective one in suppressing conidial germination while fennel oil, origanum oil and thyme oil showed moderate inhibition of conidial germination at similar levels. Cinnamon oil, origanum oil and thyme oil showed moderate antifungal activities against mycelial growth at similar levels while fennel oil had relatively lower antifungal activity against mycelial growth. Antifungal effects of these four plant essential oils in different combinations on in vitro fungal growth were also evaluated. These essential oils demonstrated synergistic antifungal activities against conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in vitro. Simultaneous application of origanum oil and thyme oil enhanced their antimicrobial activities against conidial germination and fungal mycelial growth. These results underpin that volatile plant essential oils could be used in eco-friendly integrated disease management of Fusarium wilt in strawberry fields.
NASA Astrophysics Data System (ADS)
Hsieh, Y.; Bugna, G.
2006-12-01
Uncertainty of black carbon (BC) research is often plagued by the analytical difficulty associated with separating carbon components in solid samples. A rapid and sensitive multi-elemental scanning thermal analysis (MESTA), originally developed for organic matter analysis in solid samples, was applied to this study. The objective was to identify the chemical signature of biomass burning emitted PM2.5 (aerosols less than 2.5 micron) for tracing purposes. We collected PM2.5 from the burning of various biomass of a pine forest and from the ambient air of an urban campus using a PM sampler. The MESTA provides simultaneous C, N and S thermograms of the PM2.5 samples that can be used for characterization and identification purposes. This study showed that the PM2.5 samples produced from the burning of forest biomass can be characterized by a high temperature (greater than 350 oC) volatile organic component with high C/N ratio and no S content while those produced from the ambient air can be characterized by a low temperature (less than 350 oC) volatile organic component with low C/N ratio and high S content. Burning of the soaked woody debris, however, produced significant amount of the low-temperature volatile organic component similar to that of the ambient air in C/N ratio but different in S content. Most PM2.5 samples have a very low temperature (less than 110 oC) volatile N component that is identified as absorbed ammonia. The absorbed ammonia is most significant in the PM2.5 of the ambient air and the burning of soaked woody debris. All PM2.5 samples have significant amount of BC which volatilized above 500 oC with very high C/N ratio. This study also shows that MESTA can provide an objective means to present the chemical signature of the whole spectrum of OC/BC in the PM2.5 samples.
NASA Astrophysics Data System (ADS)
Kántor, Tibor; de Loos-Vollebregt, Margaretha T. C.
2005-03-01
Carbon tetrachloride vapor as gaseous phase modifier in a graphite furnace electrothermal vaporizer (GFETV) converts heavy volatile analyte forms to volatile and medium volatile chlorides and produces aerosol carrier effect, the latter being a less generally recognized benefit. However, the possible increase of polyatomic interferences in inductively coupled plasma mass spectrometry (GFETV-ICP-MS) by chlorine and carbon containing species due to CCl 4 vapor introduction has been discouraging with the use of low resolution, quadrupole type MS equipment. Being aware of this possible handicap, it was aimed at to investigate the feasibility of the use of this halogenating agent in ICP-MS with regard of possible hazards to the instrument, and also to explore the advantages under these specific conditions. With sample gas flow (inner gas flow) rate not higher than 900 ml min -1 Ar in the torch and 3 ml min -1 CCl 4 vapor flow rate in the furnace, the long-term stability of the instrument was ensured and the following benefits by the halocarbon were observed. The non-linearity error (defined in the text) of the calibration curves (signal versus mass functions) with matrix-free solution standards was 30-70% without, and 1-5% with CCl 4 vapor introduction, respectively, at 1 ng mass of Cu, Fe, Mn and Pb analytes. The sensitivity for these elements increased by 2-4-fold with chlorination, while the relative standard deviation (RSD) was essentially the same (2-5%) for the two cases in comparison. A vaporization temperature of 2650 °C was required for Cr in Ar atmosphere, while 2200 °C was sufficient in Ar + CCl 4 atmosphere to attain complete vaporization. Improvements in linear response and sensitivity were the highest for this least volatile element. The pyrolytic graphite layer inside the graphite tube was protected by the halocarbon, and tube life time was further increased by using traces of hydrocarbon vapor in the external sheath gas of the graphite furnace. Details of the modification of the gas supply for HGA-600MS furnace and the design of the volatilization device are described.
Chou, I.-Ming; Lake, M.A.; Griffin, R.A.
1988-01-01
A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.
Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; Del Hoyo-Meléndez, Julio M
2017-02-01
The goal of this work was to determine the microbial volatile organic compounds emitted by moulds growing on wool in search of particular volatiles mentioned in the literature as indicators of active mould growth. The keratinolytically active fungi were inoculated on two types of media: (1) samples of wool placed on broths, and (2) on broths containing amino acids that are elements of the structure of keratin. All samples were prepared inside 20 mL vials (closed system). In the first case (1) the broths did not contain any sources of organic carbon, nitrogen, or sulfur, i.e. wool was the only nutrient for the moulds. A third type of sample was historical wool prepared in a Petri dish without a broth and inoculated with a keratinolytically active mould (open system). The microbial volatiles emitted by moulds were sampled with the headspace solid-phase microextraction method. Volatiles extracted on solid-phase microextraction fibers were analyzed in a gas chromatography with mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on woollen objects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures
NASA Astrophysics Data System (ADS)
Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.
2018-05-01
Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.
Radio Heating of Lunar Soil to Release Gases
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin
2006-01-01
A report proposes the development of a system to collect volatile elements and compounds from Lunar soil for use in supporting habitation and processing into rocket fuel. Prior exploratory missions revealed that H2, He, and N2 are present in Lunar soil and there are some indications that water ice may also be present. The proposed system would include a shroud that would be placed on the Lunar surface. Inside the shroud would be a radio antenna aimed downward. The antenna would be excited at a suitably high power and at a frequency chosen to optimize the depth of penetration of radio waves into the soil. The radio waves would heat the soil, thereby releasing volatiles bound to soil particles. The escaping volatiles would be retained by the shroud and collected by condensation in a radiatively cooled vessel connected to the shroud. It has been estimated that through radio-frequency heating at a power of 10 kW for one day, it should be possible to increase the temperature of a soil volume of about 1 cubic m by about 200 C -- an amount that should suffice for harvesting a significant quantity of volatile material.
Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses.
Karabagias, Ioannis K; Badeka, Anastasia V; Kontakos, Stavros; Karabournioti, Sofia; Kontominas, Michael G
2014-12-15
The aim of the present study was to investigate the possibility of characterisation and classification of Greek unifloral honeys (pine, thyme, fir and orange blossom) according to botanical origin using volatile compounds, conventional physico-chemical parameters and chemometric analyses (MANOVA and Linear Discriminant Analysis). For this purpose, 119 honey samples were collected during the harvesting period 2011 from 14 different regions in Greece known to produce unifloral honey of good quality. Physico-chemical analysis included the identification and semi quantification of fifty five volatile compounds performed by Headspace Solid Phase Microextraction coupled to gas chromatography/mass spectroscopy and the determination of conventional quality parameters such as pH, free, lactonic, total acidity, electrical conductivity, moisture, ash, lactonic/free acidity ratio and colour parameters L, a, b. Results showed that using 40 diverse variables (30 volatile compounds of different classes and 10 physico-chemical parameters) the honey samples were satisfactorily classified according to botanical origin using volatile compounds (84.0% correct prediction), physicochemical parameters (97.5% correct prediction), and the combination of both (95.8% correct prediction) indicating that multi element analysis comprises a powerful tool for honey discrimination purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.
NEUTRONIC REACTOR WITH ACCESSIBLE THIMBLE AND EMERGENCY COOLING FEATURES
McCorkle, W.H.
1960-02-23
BS>A safety system for a water-moderated reactor is described. The invention comprises a reservoir system for spraying the fuel elements within a fuel assembly with coolant and keeping them in a continuous bath even if the coolant moderator is lost from the reactor vessel. A reservoir gravity feeds one or more nozzels positioned within each fuel assembly which continually forces water past the fuel elements.
Germanium abundances in lunar basalts: Evidence of mantle metasomatism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, T.; Taylor, G.J.; Keil, T.K.
1988-01-01
To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear thatmore » the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.« less
Origin Of Extreme 3He/4He Signatures In Icelandic Lavas: Insights From Melt Inclusion Studies
NASA Astrophysics Data System (ADS)
Harlou, R.; Kent, A. J.; Breddam, K.; Davidson, J. P.; Pearson, D. G.
2003-12-01
Helium isotopes are considered a powerful tool for tracking different mantle domains. Yet, the origin of He isotope variations in many basaltic suites remains enigmatic and often difficult to link with more lithophile chemical and isotopic tracers. One problem is that He isotope ratios are measured from crushed olivines and thus reflect prior fluid and melt fluxes trapped in inclusions within the olivine grains, whereas the lithophile elements mainly reflect the host lava. In an attempt to link He and lithophile element variations, we have characterized the major and trace element composition including volatile elements, of olivine-hosted melt inclusions from three ankaramitic lavas from Vestfirdir, NW-Iceland. Previous studies have reported extreme 3He/4He ratios from NW-Iceland and one ankaramite (SEL97) has been suggested to provide the most precise estimate of the radiogenic (Sr-Nd-Pb) isotopic composition of a relatively undegassed (high 3He/4He) mantle component (C or FOZO) common to several ocean islands (Hilton et al. 1999, EPSL 173, 53-60). The samples investigated here exhibit amongst the highest 3He/4He ratios observed in terrestrial rocks (42.9 and 34.8 R/Ra). A detailed account of the trace element signature of melt inclusions in these samples may thus help explain the origin of FOZO. One sample of similar composition to these, has a lower He content and a relatively poorly defined He isotope composition of 8.15 +/- 5.1 R/Ra (Breddam & Kurz, 2001, EOS, 82, F1315). In terms of major elements, the whole rock data reflect olivine accumulation, whereas the melt inclusion data reflect ol + cpx fractionation. The melt inclusions are generally basaltic (Mg#: 52-62), with primitive mantle normalised trace element concentrations that are broadly parallel the host lavas. There is little compositional difference between melt inclusion populations from high and low 3He/4He lavas, although inclusions of the low 3He/4He lava have lower S and moderately lower Cl. The observed range of trace element ratios: [La/Sm]N 1-4, [La/Yb]N 1-5, Sr/Nd 14-24, Ba/Rb 9-23, and Ce/Pb 5-46, covers much of the range observed in Icelandic alkali basalts. The compositional similarities between inclusions and host lavas suggests that bulk rock compositions are petrogenetically related to the melts sampled by melt inclusions. If He predominantly resides in these inclusions, it suggests that the whole rock composition is an aggregate derived from the same melts that contain the measured He.
NASA Astrophysics Data System (ADS)
Baumgartner, Raphael J.; Fiorentini, Marco L.; Lorand, Jean-Pierre; Baratoux, David; Zaccarini, Federica; Ferrière, Ludovic; Prašek, Marko K.; Sener, Kerim
2017-08-01
The shergottite meteorites are ultramafic to mafic igneous rocks whose parental magmas formed from partial melting of the martian mantle. This study reports in-situ laser ablation inductively coupled plasma mass spectrometry analyses for siderophile and chalcophile major and trace elements (i.e., Co, Ni, Cu, As, Se, Ag, Sb, Te, Pb, Bi, and the highly siderophile platinum-group elements, PGE: Os, Ir, Ru, Rh, Pt and Pd) of magmatic Fe-Ni-Cu sulfide assemblages from four shergottite meteorites. They include three geochemically similar incompatible trace element- (ITE-) depleted olivine-phyric shergottites (Yamato-980459, Dar al Gani 476 and Dhofar 019) that presumably formed from similar mantle and magma sources, and one distinctively ITE-enriched basaltic shergottite (Zagami). The sulfides in the shergottites have been variably modified by alteration on Earth and Mars, as well as by impact shock-shock related melting/volatilization during meteorite ejection. However, they inherit and retain their magmatic PGE signatures. The CI chondrite-normalized PGE concentration patterns of sulfides reproduce the whole-rock signatures determined in previous studies. These similarities indicate that sulfides exerted a major control on the PGE during shergottite petrogenesis. However, depletions of Pt (and Ir) in sulfide relative to the other PGE suggest that additional phases such discrete Pt-Fe-Ir alloys have played an important role in the concentration of these elements. These alloys are expected to have enhanced stability in reduced and FeO-rich shergottite magmas, and could be a common feature in martian igneous systems. A Pt-rich PGM was found to occur in a sulfide assemblage in Dhofar 019. However, its origin may be related to impact shock-related sulfide melting and volatilisation during meteorite ejection. In the ITE-depleted olivine-phyric shergottites, positive relationships exist between petrogenetic indicators (e.g., whole-rock Mg-number) and most moderately to strongly siderophile and chalcophile elements in sulfides. These variations extend to incompatible elements like Te and Pd. The whole-rock concentrations of Pd derived from mass-balance calculations decrease by one order of magnitude in the order Y-980459, DaG 476 and Dhofar 019, and broadly overlap the trends in previously published whole-rock analyses. Mantle heterogeneities, and the timing of sulfide saturation as function of mantle melting and/or magma fractionation following ascent from the mantle, may have been the controlling factors of the siderophile and chalcophile element systematics in the analyzed shergottites.
NASA Astrophysics Data System (ADS)
Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika
2008-09-01
We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also produced and contribute to the metasomatic signature. The metasomatic component is best preserved at the margins of the plume, where low extents of melting of the metasomatized depleted mantle surrounding the plume are sampled during flexural uplift. Formation of carbonatite melts may provide a mechanism to transfer plume He to the margins of the plume.
NASA Technical Reports Server (NTRS)
Coan, Mary R.; Stewart, Elaine M.
2015-01-01
The Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) payload is part of Resource Prospector (RP) along with a rover and a lander that are expected to launch in 2020. RP will identify volatile elements that may be combined and collected to be used for fuel, air, and water in order to enable deeper space exploration. The Resource Prospector mission is a key part of In-Situ Resource Utilization (ISRU). The demand for this method of utilizing resources at the site of exploration is increasing due to the cost of resupply missions and deep space exploration goals. The RESOLVE payload includes the Lunar Advanced Volatile Analysis (LAVA) subsystem. The main instrument used to identify the volatiles evolved from the lunar regolith is the Gas Chromatograph-Mass Spectrometer (GC-MS). LAVA analyzes the volatiles emitted from the Oxygen and Volatile Extraction Node (OVEN) Subsystem. The objective of OVEN is to obtain, weigh, heat and transfer evolved gases to LAVA through the connection between the two subsystems called the LOVEN line. This paper highlights the work completed during a ten week internship that involved the integration, testing, data analysis, and procedure documentation of two candidate mass spectrometers for the LAVA subsystem in order to aid in determining which model to use for flight. Additionally, the examination of data from the integrated Resource Prospector '15 (RP' 15) field test will be presented in order to characterize the amount of water detected from water doped regolith samples.
Chemical systematics of the Shergotty meteorite and the composition of its parent body (Mars)
NASA Technical Reports Server (NTRS)
Laul, J. C.; Smith, M. R.; Waenke, H.; Jagoutz, E.; Dreibus, G.
1986-01-01
Sixty elements in two bulk samples of Shergotty meteorite and 30 elements in various mineral separates of Shergotty were identified, using mainly INAA and RNAA techniques. In addition, elements leached out from powdered samples of Shergotty and EETA 79001 meteorites by 0.1 N HCl, as well as the elements of their residues, were analyzed. The results have indicated that Shergotty meteorite is homogeneous in its major element composition, but heterogeneous with respect to large-ion lithophile elements, such as K, Ba, Sr, Zr, Hf, Ta, Th, and rare-earth elements (REEs). It is even more heterogeneous with respect to volatile elements, such as Cd, Te, Tl, and Bi, and the siderophiles Au and Ag. The REE patterns of the Shergotty and EETA 79001 residues are identical, indicating that the parent magmas of both meteorites are compositionally similar. However, their leachate (phosphate) patterns are different, suggesting two components for the Shergotty, one of which is similar to the EETA 79001 leachate.
Ions, vapors and/or nanoparticles penetrating volcanic edifices?
NASA Astrophysics Data System (ADS)
Obenholzner, Johannes; Edwards, Marc; Parks, J. L.; Fulingati, Paolo
2010-05-01
A top-sealed plastic tube with a diameter of ca. 15 cm had been buried ca. 70 cm deep vertically at the base of La Fossa volcano, Vulcano island, Italy, next to the front of the obsidian flow. The tube had been filled with layered rock and quartz wool to condense vapors emanating from the soil. At ca. 75 cm below the surface the sample had been exposed to vapors from Sept. 2005 to April 2006. The leached sample had not been in touch with the ground. 2 other glass wool cushions (ca. 10 cm thick, uncompacted) had been underneath to minimize capillary effects. A rock wool layer not touching ground revealed nucleated sylvite (KCl ~10 µm in size) and barite (BaSO4 ~5-10 µm in size) crystals by SEM/EDS in its basal portion. Other very small (< 2 µm) particles were observed on the rock wool fibers but we could not identify them because they were suddenly volatilized by the electron beam during the analysis. The bright appearance of these particles in backscattered images suggests that these particles may be metal compounds. The nucleation of sylvite and barite documents the presence of ions. Leaching of the quartz wool at room temperature with deionized H2O and ICP-MS analysis documented positive values for: Mg, Al, Si, P, K, Ca, Cr, Mn, Ni, Cu, Zn, Cd, Sn, Pb and partially W. Leaching with nitric acid documented also V and Fe. Acid leaching produced higher values for all elements, except K and Sn. Negative values had been obtained for As, Se, Mo. Influence from soil breathing can be excluded as the active fumaroles contain As and Se. This experiment documents for the first time an unknown element transport by vapors/gases through a volcanic edifice interacting with hydrothermal and magmatic gases. In comparison with blank data, 4 groups of elements can be distinguished: . positive signal: Mg, K, Ca, Cr, Mn, Ni, (Ba); low to moderate volatility at magmatic conditions. 2. unclear signal: Al, Si, P, Fe; low volatility at magmatic conditions. 3. no signal: V, As, Se, Mo, Co. As, Se, Mo, V are considered to be highly volatile, Co got a low volatiliy. 4. positive signal: Cu, Zn, Cd, Sn, Pb, W; high volatility at magmatic conditions. Charging, and to a lesser degree ions, in volcanic environments had been documented after fracture-charging in eruptive plumes and in phreatomagmatic and steam plumes (James et al., 2000). The sampling site is not within well defined CO2 anomalies around La Fossa v.. The heating events 2005/2006 (Granieri et al., 2006) might have shifted anomalous CO2 degassing in the vicinity. Ba ions exist at very low pH values (0-1). No acidic alteration at the site is detectable at macro-scale. The bottom of the site had been dry even after heavy rainfalls (Sept. 2006). Bottom temperatures at Sept. 2005, April 06 and Sept. 2006 had been 19-21°C (3 measurements). Are ions documented as nucleated particles penetrating the volcanic edifice or are other sources of these ions possible? However, all ions, vapors or nanoparticles have to go through porous systems to nucleate or getting deposited at the experimental site. Why are they not nucleating somewhere at depth? Sea water encountering hot lava is known to produce charged particles. Is seawater reaching magma storage at depth of the edifice? Sylvite and K data of leaching seem to be in correspondence. The leaching technique would not permit dissolution of barite. P data might indicate condensed products of PH3. PH3 had been already detected by Obenholzner et al. (2006). All other elements detected by ICP-MS could be related to sulfates, sulfides and halogenides or to unspecified nanoparticles. Halocarbons and chlorinated benzenes are reported from the base of La Fossa v. (Schwandner et al., 2004). A GeoRef search (geogas) documents element and nanoparticles transport by an even non-volcanic geogas. The origin of ions, the question if ions or nanoparticles are responsible for ICP-MS detected elements, are crucial if there will be future approaches to develop a new generation of chemical or physical sensors to monitor active volcanoes. At the moment glass wool-filled tubes are installed at Vesuvius, Solfatara, La Fossa v. and Vulcanello. A blank experiment is installed at Monte Lattari, Sorrento Peninsula, Italy. However, the geogas makes it difficult to locate a blank volcano or any kind of a blank site on Earth. It remains unknown if elements detected are entering the atmosphere or are getting adsorbed onto the volcanic ash/soil particles derived from reworked surge beds and alteration at La Fossa v.. Theoretical and empirical studies exist if particles from the lithosphere can reach the ionosphere and cause disturbances (Liperovsky et al., 2005; Dautermann et al. 2007). Refined experiments at the base of several volcanoes at different stages of activity are needed. Better EM studies of exposed glass wool are necessary. Geochemical data on recent Vulcano rock coatings suggest that metals and trace elements are at least partially fixed on the surface of the ground (Fulignati et al., 2002). It remains unknown if old, buried rock coatings exist at depth. Soil air sampling through filter-bubbler equipment and subsequent ICP-MS analyses of liquids at the experimental site at the base of La Fossa v. and on Stromboli revealed various trace elements in bubbler liquids. Ref: Dautermann et al., 2007. J. Geophys. Res., Vol. 112, B02106, doi: 10.1029/2006JB004447. Fulignati et al., 2002. JVGR, 115, 397-410. James et al., 2000. J. Geophys. Res., 105, B7, 16641-16649. Granieri et al.,2006. GRL, 33, L13316, doi:10.1029/2006GL026460. Liperovsky et al., 2005. Natural Hazards and Earth System Sciences, 5, 783-789. Obenholzner J.H. et al. (2006). Geophysical Research Abstract, vol. 8, 05721. Schwandner et al., 2004. J. Geophys. Res., 109, D04301, doi:10.1029/2003JD003890.
NASA Astrophysics Data System (ADS)
Liotta, Marcello; Shamavu, Patient; Scaglione, Sarah; D'Alessandro, Walter; Bobrowski, Nicole; Bruno Giuffrida, Giovanni; Tedesco, Dario; Calabrese, Sergio
2017-11-01
The chemical composition of single rainfall events was investigated at Nyiragongo volcano (Democratic Republic of Congo) with the aim of determining the relative contributions of plume-derived elements. The different locations of the sampling sites allowed both plume-affected samples (hereafter referred to as ;fumigated samples;) and samples representative of the local background to be collected. The chemical composition of the local background reflects the peculiar geographic features of the area, being influenced by biomass burning, geogenic dust, and biological activity. Conversely, fumigated samples contain large amounts of volcanogenic elements that can be clearly distinguished from the local background. These elements are released into the atmosphere from the persistently boiling lava lake of the Nyiragongo crater and from the neonate lava lake of Nyamulagira. These emissions result in a volcanic plume that includes solid particles, acidic droplets, and gaseous species. The chemical signature of the volcanic emissions appears in falling raindrops as they interact with the plume. HCl and HBr readily dissolve in water, and so their ratio in rain samples reflects that of the volcanic plume. The transport of HF is mediated by the large amount of silicate particles generated at the magma-air interface. SO2 is partially converted into SO42- that dissolves in water. The refractory elements dissolved in rain samples derive from the dissolution of silicate particles, and most of them (Al, Mg, Ca, and Sr) are present at exactly the same molar ratios as in the rocks. In contrast, elements such as Na, K, Rb, Cu, and Pb are enriched relative to the whole-rock composition, suggesting that they are volatilized during magma degassing. After correcting for the dissolution of silicate particles, we can define that the volatility of the elements decreases in the following order: Pb ≫ Rb > K > Na. This finding, which is the first for a volcanic plume, is consistent with previous measurements in high-temperature fumaroles at other volcanic areas.
Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U
NASA Technical Reports Server (NTRS)
Righter, K.; Yang, S.; Humayun, M.
2016-01-01
Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.
NASA Astrophysics Data System (ADS)
Baker, D. R.
2012-12-01
Measurements of volcanic gas compositions are often presumed to be directly related to equilibrium compositions of fluids exsolved at depth in magmatic systems that rapidly escape into the atmosphere. In particular, changes in the ratios of volatile species concentrations in volcanic gases have been interpreted to reflect influx of new magma batches or changes in the degassing depth. However, other mechanisms can also yield changes in volcanic gas compositions. One such mechanism is diffusive fractionation during rapid bubble growth. Such fractionation can occur because radial growth rates of bubbles in magmas are estimated to be in the range of 10-6 to 10-3 m s-1 and diffusion coefficients of minor volatiles (e.g., Cl, F, S, CO2) are orders of magnitude slower, 10-12 to 10-9 m2 s-1. Thus a bubble that rapidly grows and subsequently loses its volatiles to the surface may contribute a fluid sample whose concentration is affected by the interplay between the kinetics of bubble growth and volatile diffusion in the melt. A finite difference code was developed to calculate the effects of rapid bubble growth on the concentration of minor elements in the bubble for a spherical growth geometry. The bubble is modeled with a fixed growth rate and a constant equilibrium fluid-melt partition coefficient, KD. Bubbles were modeled to grow to a radius of 50 μm, the size at which the dominant bubble growth mechanism appears to change from diffusion to coalescence. The critical variables that control the departure from equilibrium behavior are the K D and the ratio of the growth velocity, V, to the diffusivity, D. Modeling bubble growth in a magma chamber at 100 MPa demonstrates that when KD is in the range of 10 to 1000 at low V/D values (e.g., 103 m-1) the composition of the fluid is at, or near, equilibrium with the melt. However, as V/D increases the bubble composition deviates increasingly from equilibrium. For V/D ratios of 105 and equilibrium KD's of either 50 or 100 (similar to estimates for S), a bubble with a 50 μm radius will contain a fluid whose concentration was apparently determined by a KD of less than 10. These models also demonstrate that the combination of rapid bubble growth with slow diffusion can deplete the melt in the volatile species only within the immediate neighborhood, on the order of 100 μm. If bubbles are spaced further apart the melts may retain significant concentrations of dissolved volatiles, which could lead to secondary and tertiary nucleation events. These models for diffusive fractionation during rapid bubble growth suggest that changes in the ratios of minor elements in volcanic gases may be influenced by bubble growth rate changes. Volatiles with lower diffusivities and volatiles with very high or very low partition coefficients will be more influenced by this process. Diffusive fractionation may be responsible for the drop in the CO2/SO2 ratios sometimes observed prior to large eruptions of Stromboli volcano.
Sulfur and sulfides in chondrules
NASA Astrophysics Data System (ADS)
Marrocchi, Yves; Libourel, Guy
2013-10-01
The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also suggest the occurrence of an external source of iron, very likely gaseous, during chondrule formation. We therefore propose that enrichments in sulfur (and other volatile and moderately volatile elements) from PO to PP type I bulk chondrule compositions towards chondritic values result from progressive reaction between partially depleted olivine-bearing precursors and a volatile-rich gas phase.
Primordial Pb, radiogenic Pb and lunar soil maturation
NASA Technical Reports Server (NTRS)
Reed, G. W., Jr.; Jovanovic, S.
1978-01-01
Pb-204 is directly correlated with the reduced Fe measured by ferromagnetic resonance. A similar correlation has been noted for hydrolyzable carbon (Pillinger et al., 1974). An enrichment of these elements appears to have occurred during soil maturation. In contrast to Pb-204, radiogenic Pb is reported to be lost during soil maturation (Church et al., 1976). Radiogenic Pb is present in mineral grains and may be lost by solar wind sputtering (or volatilization) and not resupplied. Pb-204 coating grain surfaces acts as a reservoir to provide the Pb-204 being extracted in the reduced Fe formation process. Venting or some other volatile release mechanism may replenish the surface-related Pb-204.
A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana, USA
NASA Astrophysics Data System (ADS)
Aird, Hannah M.; Ferguson, Katherine M.; Lehrer, Malia L.; Boudreau, Alan E.
2017-03-01
The sulfide assemblages of the Stillwater Complex away from the well-studied ore zones are composed mainly of variable proportions of pyrrhotite, chalcopyrite, pentlandite, and ±pyrite. Excluding vein assemblages and those affected by greenschist and lower temperature alteration, the majority can be classified into two broad assemblages, defined here as pristine (multiphase, often globular in shape) or volatile-bearing (multiphase, high-temperature, volatile-rich minerals such as biotite, hornblende, or an unmixed calcite-dolomite assemblage). The volatile-bearing assemblages are mainly found within and below the J-M reef, where native copper and sphalerite are also locally present. Pristine sulfides are found throughout the stratigraphy. Both groups can be affected by apparent S loss in the form of pyrite being converted to magnetite and chalcopyrite to a Cu-Fe-oxide (delafossite), with little to no silicate alteration. An upward trend from pentlandite-rich to pyrrhotite-rich to pyrite-rich assemblages is observed in the footwall rocks in upper GN-I, and the same trend repeats from just below the reef and continues into the overlying N-II and GN-II. Modeling suggests that the sulfide Ni in the Peridotite Zone is largely controlled by silicate Ni. When taken together, observations are most readily explained by the remobilization of selected elements by a high-temperature fluid with the apparent loss of S > Cu > Ni. This could concentrate ore metals by vapor refining, eventually producing a platinum group element-enriched sulfide ore zone, such as the J-M reef.
Comet coma sample return instrument
NASA Technical Reports Server (NTRS)
Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.
1994-01-01
The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.
Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006
Nystrom, Elizabeth A.
2007-01-01
The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The trace elements detected with the highest median concentrations were strontium and iron in unfiltered water and strontium and barium in filtered water. Concentrations of trace elements in several samples exceeded U.S. Environmental Protection Agency secondary drinking-water standards, including aluminum (50-200 micrograms per liter, three wells), arsenic (10 micrograms per liter, one well), iron (300 micrograms per liter, three wells), and manganese (50 micrograms per liter, four wells). The median concentration of radon-222 was 1,580 picoCuries per liter. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a maximum contaminant level of 300 picoCuries per liter along with an alternative maximum contaminant level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed maximum contaminant level in all 19 of the samples and exceeded the proposed alternative maximum contaminant level in 1 sample. Eleven pesticides and pesticide degradates were detected in samples from ten wells; all were herbicides or herbicide degradates. Three volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria were detected in samples from five wells, four of which were finished in sand and gravel; Escherichia coli was not detected in any sample.
Metcalf, H.E.
1957-10-01
A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.
Combustion and leaching behavior of elements in the argonne premium coal samples
Finkelman, R.B.; Palmer, C.A.; Krasnow, M.R.; Aruscavage, P. J.; Sellers, G.A.; Dulong, F.T.
1990-01-01
Eight Argonne Premium Coal samples and two other coal samples were used to observe the effects of combustion and leaching on 30 elements. The results were used to infer the modes of occurrence of these elements. Instrumental neutron activation analysis indicates that the effects of combustion and leaching on many elements varied markedly among the samples. As much as 90% of the selenium and bromine is volatilized from the bituminous coal samples, but substantially less is volatilized from the low-rank coals. We interpret the combustion and leaching behavior of these elements to indicate that they are associated with the organic fraction. Sodium, although nonvolatile, is ion-exchangeable in most samples, particularly in the low-rank coal samples where it is likely to be associated with the organic constituents. Potassium is primarily in an ion-exchangeable form in the Wypdak coal but is in HF-soluble phases (probably silicates) in most other samples. Cesium is in an unidentified HNO3-soluble phase in most samples. Virtually all the strontium and barium in the low-rank coal samples is removed by NH4OAc followed by HCl, indicating that these elements probably occur in both organic and inorganic phases. Most tungsten and tantalum are in insoluble phases, perhaps as oxides or in organic association. Hafnium is generally insoluble, but as much as 65% is HF soluble, perhaps due to the presence of very fine grained or metamict zircon. We interpret the leaching behavior of uranium to indicate its occurrence in chelates and its association with silicates and with zircon. Most of the rare-earth elements (REE) and thorium appear to be associated with phosphates. Differences in textural relationships may account for some of the differences in leaching behavior of the REE among samples. Zinc occurs predominantly in sphalerite. Either the remaining elements occur in several different modes of occurrence (scandium, iron), or the leaching data are equivocal (arsenic, antimony, chromium, cobalt, and nickel). The results of these combustion and leaching experiments indicate that some previously held assumptions concerning modes of occurrence of elements in coal should be reconsidered.
Aerial Sampling of Emissions from Biomass Pile Burns in ...
Abstract (already cleared). Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determines the first known in-field emission factors for burning of timber slash piles. The results also document the effect on emissions of covering the piles with polyethylene covers to reduce the moisture content of the biomass.
Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.
1990-01-01
Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.
Li, Jiazhou; Wang, Xiaoyu; Wang, Bing; Zhao, Jiantao; Fang, Yitian
2018-06-01
This study investigates the volatilization behaviors and mineral transformation of vanadium and nickel during co-gasification of petroleum coke with biomass. Moreover, the evolution of occurrence modes of vanadium and nickel was also determined by the method of sequential chemical extraction. The results show that the volatilities of vanadium and nickel in petroleum coke have a certain level of growth with an increase in the temperature. With the addition of biomass, their volatilities both show an obvious decrease. Organic matter and stable forms are the dominant chemical forms of vanadium and nickel. After gasification, organic-bound vanadium and nickel decompose completely and convert into other chemical forms. The crystalline phases of vanadium trioxide, coulsonite, nickel sulfide, and elemental nickel are clearly present in petroleum coke and biomass gasification ashes. When the addition of biomass reaches 60 wt%, the diffraction peaks of orthovanadate are found while that of vanadium trioxide disappear. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achariya Suriyawong; Rogan Magee; Ken Peebles
2009-05-15
This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5more » {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.« less
Potential health impacts of burning coal beds and waste banks
Finkelman, R.B.
2004-01-01
Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.
Giersz, Jacek; Bartosiak, Magdalena; Jankowski, Krzysztof
2017-05-15
Continuous photo-induced generation of mercury cold vapor has been successfully coupled with conventional pneumatic nebulization in programmable temperature spray chamber (PCVG-PN-PTSC) allowing fast, sensitive and easy multi-element analysis. The applied technique enabled simultaneous determination of non-volatile forming elements (Fe, Cu, Mn) and volatile Hg, while 15% v/v formic acid is present in the sample. PTSC elevated temperature (40°C) causes partial conversion of sample matrix into vapor form, thus improving plasma robustness. The efficiency of Hg vapor generation and its transport to the plasma is close to 100%. Moreover, spray chamber temperature stabilization improved the precision of the measurements (Hg signal RSD below 0.5%). The achieved limit of detection for Hg (90pgmL -1 ) at 194.23nm with no monochromator purge is better by almost two orders of magnitude than that obtained by conventional PN-ICP-OES. On the other hand, LODs for non-vapor forming elements are comparable to those obtained with pneumatic nebulization. The linear dynamic ranges for all examined elements are at least three orders of magnitude up to 1000ngmL -1 . None mutual interference between examined analytes (Hg, Fe, Cu, Mn) has been observed. The method was validated by the analysis of two CRM materials of different matrix composition (waste water ERM CA713 and estuarine sediment ERM CC580) giving satisfactory results. As low as 2 ppb of Hg can he directly determined in waste water. The proposed procedure uses mild reagents and allows for fast multi-element analysis, and matches green chemistry requirements. Copyright © 2017 Elsevier B.V. All rights reserved.
Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara
2011-04-01
As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.
Rowe, M.C.; Kent, A.J.R.; Thornber, C.R.
2008-01-01
In order to evaluate and further constrain models for volatile movement and vapor enrichment of magma stored at shallow levels, amphibole phenocrysts from 2004-2005 Mount St. Helens dacite were analyzed for major and selected trace elements (Li, Cu, Zn, Mn, and REE) and Li isotopes. Several recent studies have examined fluid-mobile trace element abundances in phencryst phases and melt inclusions as a means of tracking volatile movement within subvolcanic magmatic systems, and high Li contents in plagioclase phenocrysts from 1980 and 2004 Mount St. Helens dacites have been interpreted as evidence that shallow magma was fluxed by a Li-bearing vapor phase prior to eruption. In amphibole phenocrysts, Zn and Mn behave compatibly, correlating to FeO* and Al2O3, and show no systematic change with time. In contrast, Li and Cu abundances in amphibole vary by up to 3 orders of magnitude (7.6-1140????g/g and 1.7 to 94????g/g, respectively), and do not generally correlate with either major or trace elements. However, they do correlate moderately well (R2 = 0.54, >> 95% confidence) with each other and show systematic temporal variations that are opposite to those observed for plagioclase, precluding a simple 1-step diffusion model for Li enrichment. We propose a Diffusion-Crystallization Multi-Stage (DCMS) model to explain the temporal variations and co-variations of Li and Cu. In early erupted dacite (October-December 2004) profiles of Li isotopes in conjunction with measured 7Li intensities and core-to-rim increases in Li concentration are characteristic of Li diffusion into the amphiboles, consistent with prior models of plagioclase enrichment. In amphiboles from 2005 dacite, average Li and Cu concentrations are high (??? 260-660????g/g and ??? 29-45????g/g, respectively) and in contrast to amphiboles from earlier-erupted dacite, correlate weakly with Al2O3??wt.%. Amphibole Al2O3 concentrations are an indicator of pressure, with high-Al amphiboles crystallizing at higher pressures, and we suggest that Li and Cu are partitioned into a fluid phase during ascent and crystallization of the magma so that amphiboles crystallizing at lower pressure have correspondingly lower Li and Cu concentrations. However, low Li and Cu in amphiboles from the dacite at the start of the eruption also require crystallization from a low Li-Cu bearing melt or residence times long enough for amphiboles to re-equilibrate with a Li-Cu depleted melt. Estimated residence times suggest that amphiboles in early dacite could have been present since the end of the 1980-1986 eruptive episode at Mount St. Helens. ?? 2008 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tappa, M. J.; Mills, R. D.; Ware, B.; Simon, J. I.
2014-01-01
The isotopic compositions of elements are often used to characterize nucelosynthetic contributions in early Solar System objects. Coordinated multiple middle-mass elements with differing volatilities may provide information regarding the location of condensation of early Solar System solids. Here we detail new procedures that we have developed to make high-precision multi-isotope measurements of chromium and calcium using thermal ionization mass spectrometry, and characterize a suite of chondritic and terrestrial material including two fragments of the Chelyabinsk LL-chondrite.
Preliminary Assessment/Site Inspection Health and Safety Plan, Granite Mountain RRS, Alaska
1994-08-01
pain. apple cores. banana peels , lettuce, fish and game carcasses, etc.). Sealed beafproof contuiner: a container sealed to prevent the escap...acrylates, and alcohols . These substances are slightly to highly volatile and are moderately to highly flammable. Primary routes of entry into the body...with copious amounts of water for at least 15 minutes. Get emergency medical assistance. 3 Skin Contact: Flush thoroughly for at least 1S minutes& Wash
Toxicity and Bioavailability of Metals in the Missouri River Adjacent to a Lead Refinery
2001-12-01
Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic...highly elevated in the groundwater , but not in river sediment pore waters . Lead concentrations were moderately elevated in whole sediment at one site...but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to
PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS
Spedding, F.H.; Butler, T.A.; Johns, I.B.
1959-03-10
The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.
This compendium includes descriptions of methods for analyzing metals, pesticides and volatile organic compounds (VOCs) in water. The individual methods covered are these: (1) Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma-mass s...
National Coal Quality Inventory (NACQI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Finkelman
2005-09-30
The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale,more » and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.« less
Iterated reaction graphs: simulating complex Maillard reaction pathways.
Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W
2001-01-01
This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Simon, J. I.; Mills, R. D.; Ross, D. K.; Tappa, M.
2015-01-01
Lunar granitoid lithologies have long been of interest for the information they provide on processes leading to silicic melt compositions on the Moon. The extraction of such melts over time affects the distribution and budget of incompatible materials (i.e., radiogenic heat producing elements and volatiles) of the lunar interior. We have recently shown that in addition to their high concentrations of incompatible lithophile elements, some granitoid clasts in lunar breccias have significant indigenous water contents in their alkali feldspars. This raises the importance of lunar granitoid materials in the expanding search for mineralogic/petrologic hosts of indigenous lunar water-related species. We are undertaking a detailed survey of the petrologic/mineralogical relations of granitoid clasts in lunar breccias to achieve a better understanding of the potential of these diverse assemblages as hosts for volatiles, and as candidates for additional isotope chronology studies. Our preliminary results reported here based on high-resolution field-emission SEM, EPMA and TEM studies uncover immense complexity in these materials at the micrometer to sub-micrometer scale that heretofore have not been fully documented.
Diffusion of Siderophile Elements in Fe Metal: Application to Zoned Metal Grains in Chondrites
NASA Technical Reports Server (NTRS)
Righter, K.; Campbell, A. J.; Humajun, M.
2003-01-01
The distribution of highly siderophile elements (HSE) in planetary materials is controlled mainly by metal. Diffusion processes can control the distribution or re-distribution of these elements within metals, yet there is little systematic or appropriate diffusion data that can be used to interpret HSE concentrations in such metals. Because our understanding of isotope chronometry, redox processes, kamacite/taenite-based cooling rates, and metal grain zoning would be enhanced with diffusion data, we have measured diffusion coefficients for Ni, Co, Ga, Ge, Ru, Pd, Ir and Au in Fe metal from 1200 to 1400 C and 1 bar and 10 kbar. These new data on refractory and volatile siderophile elements are used to evaluate the role of diffusional processes in controlling zoning patterns in metal-rich chondrites.
Effect of Drying Moisture Exposed Almonds on the Development of the Quality Defect Concealed Damage.
Rogel-Castillo, Cristian; Luo, Kathleen; Huang, Guangwei; Mitchell, Alyson E
2017-10-11
Concealed damage (CD), is a term used by the nut industry to describe a brown discoloration of kernel nutmeat that becomes visible after moderate heat treatments (e.g., roasting). CD can result in consumer rejection and product loss. Postharvest exposure of almonds to moisture (e.g., rain) is a key factor in the development of CD as it promotes hydrolysis of proteins, carbohydrates, and lipids. The effect of drying moisture-exposed almonds between 45 to 95 °C, prior to roasting was evaluated as a method for controlling CD in roasted almonds. Additionally, moisture-exposed almonds dried at 55 and 75 °C were stored under accelerated shelf life conditions (45 °C/80% RH) and evaluated for headspace volatiles. Results indicate that drying temperatures below 65 °C decreases brown discoloration of nutmeat up to 40% while drying temperatures above 75 °C produce significant increases in brown discoloration and volatiles related to lipid oxidation, and nonsignificant increases in Amadori compounds. Results also demonstrate that raw almonds exposed to moisture and dried at 55 °C prior to roasting, reduce the visual sign of CD and maintain headspace volatiles profiles similar to almonds without moisture damage during accelerated storage.
Cyclodextrin-based microsensor for volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, B.I.; Li, D.Q.
1996-12-31
The direct covalent attachment of modified {alpha}- and {beta}-cyclodextrin on oxide surfaces has been studied for application in chemical sensors. First, oxide surfaces were treated with a silane coupling layer followed by the addition of cyclodextrin to form a self-assembled monolayer (SAM) of host receptors. Second, the oxide surfaces were reacted with a sol-gel (SG) precursor based on cyclodextrin structure to form a thick film with defined hydrophobic cyclodextrin cavities. The sensing properties of both films (SAM and SG) were examined with surface acoustic wave (SAW) measurement platform. Molecular interactions between an organic guest and a host thin-film on amore » 200 MHZ SAW resonator are being studied as a method of tracking and recognizing the presence of volatile organics. Surface acoustic wave sensors based on the inclusion chemistry of the bucket-type (cyclodextrin) molecules, were capable of detecting volatile organic compounds (VOCs) down to ppb levels. Because the nature of the interactions is moderate but noncovalent, detection of these VOCs was possible using a reversible real-time mode. Pattern recognition with an array of complementary microsensors appears to be a viable approach for identifying and quantifying VOCs. Recent results using optical waveguides for sensor transduction will also be discussed.« less
Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, H.B.; Delanoy, G.A.; Thomas, D.M.
1992-01-01
A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; andmore » a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.« less
Petrology and mineralogy of the Ningqiang carbonaceous chondrite
NASA Astrophysics Data System (ADS)
Wang, Y.; Hsu, W.
2009-07-01
We report detailed chemical, petrological, and mineralogical studies on the Ningqiang carbonaceous chondrite. Ningqiang is a unique ungrouped type 3 carbonaceous chondrite. Its bulk composition is similar to that of CV and CK chondrites, but refractory lithophile elements (1.01 × CI) are distinctly depleted relative to CV (1.29 × CI) and CK (1.20 × CI) chondrites. Ningqiang consists of 47.5 vol% chondrules, 2.0 vol% Ca,Al-rich inclusions (CAIs), 4.5 vol% amoeboid olivine aggregates (AOAs), and 46.0 vol% matrix. Most chondrules (95%) in Ningqiang are Mgrich. The abundances of Fe-rich and Al-rich chondrules are very low. Al-rich chondrules (ARCs) in Ningqiang are composed mainly of olivine, plagioclase, spinel, and pyroxenes. In ARCs, spinel and plagioclase are enriched in moderately volatile elements (Cr, Mn, and Na), and low-Ca pyroxenes are enriched in refractory elements (Al and Ti). The petrology and mineralogy of ARCs in Ningqiang indicate that they were formed from hybrid precursors of ferromagnesian chondrules mixed with refractory materials during chondrule formation processes. We found 294 CAIs (55.0% type A, 39.5% spinel-pyroxene-rich, 4.4% hibonite-rich, and several type C and anorthite-spinelrich inclusions) and 73 AOAs in 15 Ningqiang sections (equivalent to 20 cm2 surface area). This is the first report of hibonite-rich inclusions in Ningqiang. They are texturally similar to those in CM, CH, and CB chondrites, and exhibit three textural forms: aggregates of euhedral hibonite single crystals, fine-grained aggregates of subhedral hibonite with minor spinel, and hibonite ± Al,Ti-diopside ± spinel spherules. Evidence of secondary alteration is ubiquitous in Ningqiang. Opaque assemblages, formed by secondary alteration of pre-existing alloys on the parent body, are widespread in chondrules and matrix. On the other hand, nepheline and sodalite, existing in all chondritic components, formed by alkali-halogen metasomatism in the solar nebula.
Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii
NASA Astrophysics Data System (ADS)
West, H. B.; Delanoy, G. A.; Thomas, D. M.; Gerlach, D. C.; Chen, B.; Takahashi, P.; Thomas, D. M.
1992-03-01
A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of the mixing of at least two, and possibly three, source fluids. These source fluids were recognized as a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibriated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80 percent of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs, yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.
Hydrothermal pretreatment of coal. Quarterly report No. 1, September 21--December 15, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, D.S.
1989-12-21
We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility weremore » seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of ``OH`` seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.« less
A Simulated Chlorine-Saturated Lunar Magmatic System at the Surface and At Depth
NASA Astrophysics Data System (ADS)
DiFrancesco, N.; Nekvasil, H.; Lindsley, D. H.
2016-12-01
Analysis of igneous minerals present in lunar rocks has provided evidence that volatiles such as water, chlorine and fluorine were concentrated in melts present at or near the lunar surface. While at depth, pressure on a magma allows these gases to remain dissolved in a silicate liquid, however as the magma ascends and depressurizes, these components become saturated and begin exsolving. While at pressure, it's possible for these components, specifically Cl, to form complexes in the melt with major cations such as Na, K, and Fe as well as trace elements such as Zn and Li. While dissolved in the melt, it may be possible for the Cl to inhibit the ability for these cations to enter into crystalline phases such as olivine, plagioclase, or pyroxene, potentially altering the composition of minerals associated with the melt. As the magma rises, these compounds are able to boil off from the magma, changing its bulk composition by effectively removing these cations as halides in a vapor phase. The goals of this project are to experimentally ascertain the nature of minerals sublimated by this degassing, and the effects that this process may have on the evolution and liquid line of decent for a cooling lunar magma. This is accomplished by crystallizing volatile-rich synthetic lunar basalts both at high and zero pressure and analyzing both vapor deposits and solidified liquids. Experimental data simulating volatile-rich magma degassing and crystallization at the lunar surface, and within the lunar crust has demonstrated that typical KREEP basalts (potentially rich in Cl) will crystallize more magnesian and calcic phases at high pressure, and subsequently lose alkalis and iron to a vapor phase at low pressure. We see evidence of vapor deposits and volatile element enrichment in returned Apollo samples such as "Rusty Rock", and on the surface of orange glass beads.
C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions
NASA Astrophysics Data System (ADS)
Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.
2016-12-01
Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702
Chemical consequences of compaction within the freezing front of a crystallizing magma ocean
NASA Astrophysics Data System (ADS)
Hier-Majumder, S.; Hirschmann, M. M.
2013-12-01
The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we develop a simple 1-D model of melt retention in the freezing front of a crystallizing magma ocean, and apply it to the thermal and chemical evolution of the early Earth.
NASA Astrophysics Data System (ADS)
Boyce, J. W.; Hervig, R. L.
2006-12-01
In nearly all igneous rock compositions, apatite is the most abundant mineral that regularly incorporates significant quantities of volatile elements into its structure, making it a potentially useful tool for exploring magmatic processing of volatiles (as well as REEs, Sr, Nd, and Pb isotopes, all of which are typically abundant in apatite). We have developed an analytical protocol that permits measurement of C, H, F, S, and Cl in ~8μm diameter regions of apatite using the Cameca 6f SIMS. A primary Cs+ beam (4-10 nA) is used in conjunction with electron gun charge-compensation to sputter negative ions from polished sections and unpolished crystal faces mounted in volatile-free indium mounts. We operated at mass resolving powers sufficient to separate all potential interferences (such as ^{31}PH and 16O2 from ^{32}S, and 17O from 16OH). Quantifying the SIMS data requires a set of standards that are 1) homogeneous at the few-micron scale; and 2) well-calibrated with multiple, reliable, independent volatile content measurements. Using values combed from the literature and other unpublished sources, we have assembled a set of apatite standards, none of which are proven to meet either criteria. Nevertheless, these materials allow us to create calibration curves for all of the volatile elements listed above. Traverses across polished basal sections of apatite phenocrysts from the ~1000 km3 Cerro Galan ignimbrite, Argentina (courtesy of C. Schirnick) yield the following results: Apatites are fluorine-rich, and contain significant and reproducible intracrystalline variations in C, H, S, and Cl. Positive carbon concentration excursions (up to 360 ppm) are factors of 2-7 greater than apatite baseline concentrations (40-60 ppm), the largest of which correlate with position in different grains. In the majority of the traverses, these carbon excursions also correlate spatially with 25-30% increases in sulfur concentration. We suggest that these dramatic increases in carbon and sulfur concentrations record a transient increase in magmatic SO4^{2- } and CO2 activities, perhaps the result of an underplating/recharge event, followed by a return to baseline magma chemistry. Hydrogen-poor rims are observed in all studied crystals, and are accompanied by chlorine-impoverished rims in a majority of the traverses, perhaps recording the pre- or syn-eruption exsolution of a vapor phase enriched in H and Cl.
NASA Astrophysics Data System (ADS)
Grewal, D. S.; Dasgupta, R.; Sun, C.; Tsuno, K.
2017-12-01
Constraining the origin, distribution and evolution of volatiles such as carbon (C), nitrogen (N) and sulfur (S) in terrestrial planets is essential to understand planetary differentiation, habitability and comparative planetology [1]. C/N ratio of Bulk Silicate Earth (BSE) is superchondritic (40 ± 8), while C/S ratio is nearly chondritic (0.49 ± 0.14) [2]. Accretion, core formation, and magma ocean (MO) crystallization are the key processes that could have set the relative budgets of C, N and S in different planetary reservoirs [3]. However, experiments using either C-N or C-S-bearing systems have shown that C is more siderophile than N and S, consequently core formation would have left behind subchondritic C/N and C/S ratios in BSE [4-6]. Accretion of extremely C-rich bodies during core formation or/and as a late veneer along with an early atmospheric blow-off are amongst the scenarios that have been suggested to explain C/N ratio while the addition of a differentiated body with a C-rich mantle has been suggested to explain C/S ratio in BSE [4-6]. However, no internally consistent explanations exist on the origin of all the volatile elements. We performed piston cylinder and multi-anvil experiments, using Fe-Ni-N-C±S alloy with variable amounts of S and mafic-ultramafic silicate mixtures in graphite saturated conditions at 1-7 GPa, 1600-1800 °C, and fO2 ranging from ΔIW of -1.1 to -0.3. EPMA and SIMS were used to determine major elements and volatile abundances in the coexisting alloy and silicate melt phases, while the speciation of the volatiles was determined using Raman spectroscopy. Our experimental data reveals that C becomes less siderophile in the presence of N and S during core-mantle differentiation involving an S-rich alloy. Using a set of inverse Monte-Carlo simulations, we propose that a disequilibrium merger of a Mars-sized planetary embryo with a C-saturated, S-rich core to a volatile-depleted proto-Earth during the main stage of accretion could have simultaneously satisfied C-N-S abundances and ratios in BSE along with setting up the stage of for the presence of NH3 and HCN in the Earth's early atmosphere via MO degassing. [1] Zahnle et al. (2007) Space Sci. Rev. [2] Marty (2012) EPSL. [3] Dasgupta et al. (2013) GCA. [4] Hirschmann (2016) AM. [5] Dalou et al. (2017) EPSL. [6] Li et al. (2016) Nat. Geosci.
Impact and Collisional Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
A series of impact experiments on anhydrite CaSO4, in which vaporized sample accelerates an element in a velocity interferometer, generate velocity data that we have recently reanalyzed using an explicit entropy generating finite difference code. The shock pressure required from the onset, and complete vaporization of 30% porous and 70% crystal density anhydrite is 52 +/- 3 and 122 +/- 13 GPa. Using observed acid leaching in non-marine K/T ejecta in North America, and the sharp global increase in Sr-87/Sr-86 ratios recorded at 65 Ma in marine rocks, we demonstrated that global acidification is primarily due to the SO2 released by anhydrite volatilization, and not HNO3 formed from bolide-induced air pyrolysis. Shock temperatures for crystal CaCO3 are measured from 3000 to 7000 K in the 90 to 160 GPa pressure range. These temperatures are much lower than calculated theoretically indicating that possibly bond breakdown at the shock front is occurring. This is the first mineral in which this effect has ever been seen. New data defining the ion species which are produced upon impact of volatilization of metals and minerals using a pulse ultraviolet laser to simulate intense shock heating from a projectile impact indicate that in shock experiments we can for the first time study the speciation of neutrals using a moderate resolution time-of-flight mass spectrometer. Measurements of the gas species from a series of proposed impact experiments appear to be quite feasible. We will attempt these experiments in the next year. Measurements of the impact induced shock wave decay in SiO2 and GeO2 glass are underway to measure these pure oxide properties. Predictive calculations indicate that the pressure will decay as r(exp -2.7) in the phase transition regime, versus a much lower rate of r(exp -1.18), if a phase transition does not occur.
The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs
NASA Astrophysics Data System (ADS)
Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar
2016-06-01
The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate differentiation processes, such as partial mantle melting and crystal fractionation, can cause stable Cr isotopic fractionation on Earth and other planetary bodies.
NASA Technical Reports Server (NTRS)
Schroder, C.; Di, K.; Morris, R. V.; Klingelhofer, G.; Li, R.
2008-01-01
Home Plate is a light-toned plateau approx.90 m in diameter within the Inner Basin of the Columbia Hills in Gusev crater on Mars. It is the most extensive exposure of layered bedrock encountered by Spirit to date, and it is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. Textural observations suggest an explosive origin and geochemical observations favor volcanism, probably a hydrovolcanic explosion [1]. Since it first arrived at Home Plate on sol 744, Spirit has circumnavigated the plateau (Fig. 1) and is now, since sol 1410, resting at its Winter Haven 3 location at the north end of Home Plate. Results: The MER Moessbauer spectrometers determine Fe oxidation states, identify Fe-bearing mineral phases and quantify the distribution of Fe among oxidation states and mineral phases [2]. Moessbauer spectra of Home Plate bedrock were obtained in five different locations from nine different targets (Fig. 1): Barnhill Ace, Posey Manager, and James Cool Papa Bell Stars at the northwest side of Home Plate; Pesapallo, June Emerson, and Elizabeth Emery on the east side; Texas Chili on the south side; Pecan Pie on the west side; and Chanute on the north side.
The Germanium Dichotomy in Martian Meteorites
NASA Technical Reports Server (NTRS)
Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.
2016-01-01
Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.
NASA Astrophysics Data System (ADS)
Le Voyer, Marion; Cottrell, Elizabeth; Kelley, Katherine A.; Brounce, Maryjo; Hauri, Erik H.
2015-01-01
We report microanalysis of volatile and trace element compositions, as well as Fe3+/ΣFe ratios, from 45 basaltic glasses from cruise RC2806 along the equatorial Mid-Atlantic Ridge. The along-strike variations in volatiles result from the complex geodynamical setting of the area, including numerous transform faults, variations in ridge depth, melting degree, and source composition. The strongest gradient is centered on 1.7°N and encompasses an increase of H2O, Cl, and F contents as well as high F/Zr ratio spatially coincident with radiogenic isotope anomalies. We interpret these variations as source enrichment due to the influence of the nearby high-μ-type Sierra Leone plume. South of the St. Paul fracture zone, H2O and F contents, as well as H2O/Ce and F/Zr ratios, decrease progressively. This gradient in volatiles is consistent with progressive dilution of an enriched component in a heterogeneous mantle due to the progressive increase in the degree of melting. These two large-scale gradients are interrupted by small-scale anomalies in volatile contents attributed to (1) low-degree melts preferentially sampling enriched heterogeneities near transform faults and (2) local assimilation of hydrothermal fluids in four samples from dredge 16D. Finally, 20 RC2806 samples described as "popping rocks" during collection do not show any difference in volatile content dissolved in the glass or in vesicularity when compared to the RC2806 "nonpopping" samples. Our observations lead us to question the interpretation of the CO2 content in the highly vesicular 2πD43 "popping rock" as being representative of the CO2 content of undegassed mid-ocean ridge basalt.
Breath Formate Is a Marker of Airway S-Nitrosothiol Depletion in Severe Asthma
Greenwald, Roby; Fitzpatrick, Anne M.; Gaston, Benjamin; Marozkina, Nadzeya V.; Erzurum, Serpil; Teague, W. Gerald
2010-01-01
Background Children with severe asthma have poor symptom control and elevated markers of airway oxidative and nitrosative stress. Paradoxically, they have decreased airway levels of S-nitrosothiols (SNOs), a class of endogenous airway smooth muscle relaxants. This deficiency results from increased activity of an enzyme that both reduces SNOs to ammonia and oxidizes formaldehyde to formic acid, a volatile carboxylic acid that is more easily detected in exhaled breath condensate (EBC) than SNOs. We therefore hypothesize that depletion of airway SNOs is related to asthma pathology, and breath formate concentration may be a proxy measure of SNO catabolism. Methods and Findings We collected EBC samples from children and adolescents, including 38 with severe asthma, 46 with mild-to-moderate asthma and 16 healthy adolescent controls, and the concentration of ionic constituents was quantified using ion chromatography. The concentrations of EBC components with volatile conjugates were log-normally distributed. Formate was the principal ion that displayed a significant difference between asthma status classifications. The mean EBC formate concentration was 40% higher in samples collected from all asthmatics than from healthy controls (mean = 5.7 µM, mean±standard deviation = 3.1−10.3 µM vs. 4.0, 2.8−5.8 µM, p = 0.05). EBC formate was higher in severe asthmatics than in mild-to-moderate asthmatics (6.8, 3.7−12.3 µM vs. 4.9, 2.8−8.7 µM, p = 0.012). In addition, formate concentration was negatively correlated with methacholine PC20 (r = −0.39, p = 0.002, asthmatics only), and positively correlated with the NO-derived ion nitrite (r = 0.46, p<0.0001) as well as with total serum IgE (r = 0.28, p = 0.016, asthmatics only). Furthermore, formate was not significantly correlated with other volatile organic acids nor with inhaled corticosteroid dose. Conclusions We conclude that EBC formate concentration is significantly higher in the breath of children with asthma than in those without asthma. In addition, amongst asthmatics, formate is elevated in the breath of those with severe asthma compared to those with mild-to-moderate asthma. We suggest that this difference is related to asthma pathology and may be a product of increased catabolism of endogenous S-nitrosothiols. PMID:20689836
Element abundance measurements in gas-rich galaxies at z~5
NASA Astrophysics Data System (ADS)
Poudel, Suraj; Kulkarni, Varsha; Morrison, Sean; Peroux, Celine; Som, Debopam; Rahmani, Hadi; Quiret, Samuel
2018-01-01
Element abundances in high-redshift galaxies offer key constraints on models of the chemical evolution of galaxies. The chemical composition of galaxies at z>~5 are especially important since they constrain the star formation history in the first ~1 Gyr after the Big Bang and the initial mass function of early stars. Observations of damped Lyman-alpha (DLA) absorbers in quasar spectra enable robust measurements of the element abundances in distant gas-rich galaxies. In particular, abundances of volatile elements such as S, O and refractory elements such as Si, Fe allow determination of the dust-corrected metallicity and the depletion strength in the absorbing galaxies. Unfortunately measurements for volatile (nearly undepleted) elements are very sparse for DLAs at z > 4.5. We present abundance measurements of O, C, Si and Fe for three gas-rich galaxies at z~5 using observations from the Very Large Telescope (VLT) X-shooter spectrograph and the Keck Echellette Spectrograph and Imager. Our study has doubled the existing sample of measurements of undepleted elements at z > 4.5. After combining our measurements with those from the literature, we find that the cosmological mean metallicity of z ˜ 5 absorbers is consistent with the prediction based on z < 4.5 DLAs within < 0.5 σ. Thus, we find no significant evidence of a sudden drop in metallicity at z > 4.7 as reported by prior studies. Some of the absorbers show evidence of depletion of elements on dust grains, e.g. low [Si/O] or [Fe/O]. These absorbers along with other z~5 absorbers from the literature show some peculiarities in the relative abundances, e.g. low [C/O] in several absorbers and high [Si/O] in one absorber. We also find that the metallicity vs. velocity dispersion relation of z~5 absorbers may be different from that of lower-redshift absorbers.We acknowledge support from NASA grant NNX14AG74G and NASA/STScI support for HST programs GO-12536, 13801 to the Univ. of South Carolina.
Heckman, T.P.
1961-05-01
A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)
Interpretations of phenocryst embayments
NASA Astrophysics Data System (ADS)
Rust, Alison; Cashman, Katharine
2017-04-01
Phenocryst embayments in volcanic samples tend to be filled with glass, regardless of the crystallinity and vesicularly of the groundmass surrounding the phenocryst. Embayments are important in volcanology and magma petrology because: 1) they often provide the only areas of matrix glass sufficient for compositional analysis in microlite-rich samples; 2) volatile gradients in embayments are used to constrain rates of magma ascent; 3) with further crystal growth, embayments may develop into melt inclusions, an essential source of data on melt composition evolution. Robust interpretations of data from embayments requires an understanding of why they form and why vesiculation and crystallisation are locally suppressed in these melt channels during ascent. We review instabilities in crystal growth and resorption, considering latent heat, local accumulation of elements, and interaction of the crystal growth front with pre-existing bubbles and other crystals. A survey of textures in volcanic samples from several volcanoes suggests that embayment formation by growth is more common than by resorption. Crystal nucleation suppression in the embayment of a growing phenocryst can be explained by buildup of excluded elements and continued growth (rather than nucleation) of the phenocryst phase. However, the suppression of bubble formation despite the accumulation of excluded volatiles is more difficult to explain but could be related to latent heat and difficulties in bubble formation in a restricted space. Finally, we flag complications in interpretations of embayment composition data due to element accumulation and bubble nucleation suppression.
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-07-16
We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-02-18
We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Origin of the Martian Moons and Their Volatile Abundances
NASA Astrophysics Data System (ADS)
Nakajima, M.; Canup, R. M.
2017-12-01
The origin of the Martian moons, Phobos and Deimos, has been actively debated. These moons were initially thought to have been gravitationally captured asteroids given that their spectra appeared to be similar to those of D-type asteroids. However, intact capture is difficult to reconcile with their nearly circular, co-planar orbits. Their orbits may be better explained by recent dynamical studies that suggest that the moons may have instead formed from a disk generated by a large impact, as was likely the case for Earth's Moon. Phobos and Deimos' bulk volatile contents, which are currently very uncertain, would also provide key constraints on their origin. If the moons were captured, their bulk compositions may be similar to those of asteroids, and their sub-surfaces could be volatile-rich. We are here exploring the implications of the alternative impact origin on the moon volatile abundances. We perform numerical simulations to estimate the extent of volatile loss from the moon-forming ejecta produced by a large impact with Mars. We find that hydrogen and water vapor escape hydrodynamically from the disk, leading to moons with dry, hydrogen-depleted bulk compositions. It is thus possible that the moons' mode of origin may be determined by knowledge of their volatile contents, because detection of a substantial (non-exogenically delivered) water content would argue strongly against formation by impact. JAXA's Martian Moons eXploration Mission (MMX) will conduct detailed remote sensing of the moons, including a gamma ray and neutron spectrometer that will for the first time probe their sub-surface elemental compositions, and will return samples from Phobos for laboratory analysis. This should allow for characterization of the moon volatile abundances. We also discuss that the inferred high porosities of these moons could be explained if they are rubble piles formed during accretion from impact-produced ejecta.
Ghader, Masoud; Shokoufi, Nader; Es-Haghi, Ali; Kargosha, Kazem
2017-11-01
A novel and efficient headspace solid-phase microextraction (HS-SPME) method, followed by gas chromatography mass spectrometry (GC-MS), was developed to study volatile organic compounds (VOCs) emerging from microorganisms. Two homemade SPME fibers, a semi-polar poly (dimethylsiloxane) (PDMS) fiber, and a polar polyethylene glycol (PEG) fiber, along with two commercial fibers (PDMS and PDMS/DVB) were used to collect VOCs emerging from Clostridium tetani which was cultured in different media. The adsorbed VOCs were desorbed and identified, in vitro, using GC-MS. The adsorption efficiency was improved by optimizing the time duration of adsorption and desorption. About 50 components were identified by the proposed method. The main detected compounds appeared to be sulfur containing compounds such as butanethioic acid S-methyl ester, dimethyl trisulfide, and dimethyl tetrasulfide. These volatile sulfur containing compounds are derived from amino acids containing the sulfur element, which probably coexist in the mentioned bacterium or are added to the culture media. The developed HS-SPME-GC-MS method allowed the determination of the chemical fingerprint of Clostridium tetani volatile constituents, and thus provides a new, simple, and reliable tool for studying the growth of microorganisms. Graphical abstract Investigation of biogenic VOCs released from Clostridium tetani using SPME-GC-MS.
Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.
Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G
2016-07-01
Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific.
Lam, Kelly Y. C.; Chen, Jianping; Lam, Candy T. W.; Wu, Qiyun; Yao, Ping; Dong, Tina T. X.; Lin, Huangquan; Tsim, Karl W. K.
2016-01-01
Acori Tatarinowii Rhizoma (ATR), the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF) potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB). In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved. PMID:27685847
Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos
2018-01-01
Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759
Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos
2018-01-01
Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender ( Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0-25-50-100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well.
Agile: From Software to Mission System
NASA Technical Reports Server (NTRS)
Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves
2016-01-01
The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.
Determination of lithium in rocks by distillation
Fletcher, M.H.
1949-01-01
A method for the quantitative extraction and recovery of lithium from rocks is based on a high temperature volatilization procedure. The sample is sintered with a calcium carbonate-calcium chloride mixture at 1200?? C. for 30 minutes in a platinum ignition tube, and the volatilization product is collected in a plug of Pyrex glass wool in a connecting Pyrex tube. The distillate, which consists of the alkali chlorides with a maximum of 5 to 20 mg. of calcium oxide and traces of a few other elements, is removed from the apparatus by dissolving in dilute hydrochloric acid and subjected to standard analytiaal procedures. The sinter residues contained less than 0.0005% lithium oxide. Lithium oxide was recovered from synthetic samples with an average error of 1.1%.
Mineral Resource of the Month: Bromine
Schnebele, Emily
2015-01-01
Bromine, along with mercury, is one of only two elements that are liquid at room temperature. Bromine is a highly volatile and corrosive reddish-brown liquid that evaporates easily and converts to a metal at extreme pressures — above about 540,000 times atmospheric pressure. Bromine occurs in seawater, evaporitic (salt) lakes and underground brines associated with petroleum deposits.
NASA Technical Reports Server (NTRS)
Mckay, C. P.
1987-01-01
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) biogenic elements in the interstellar medium; (2) organic material in the solar nebula; (3) volatiles in comets and icy planetesimals; (4) pre-biotic atmospheric chemistry; (5) analysis of cosmic dust particles; and (6) microbial exposure. The required capabilities and desired hardware for the facility are detailed.
Tawse-Smith, A; Atieh, M A; Tompkins, G; Duncan, W J; Reid, M R; Stirling, C H
2016-08-01
To evaluate in vitro topographical and composition changes by piezoelectric ultrasonic instrumentation with metallic and plastic tips on machined and moderately roughened titanium surfaces. Twenty machined and moderately roughened laser-marked titanium discs were ultrasonically instrumented with metallic and plastic tips. Surface instrumentation was carried out with controlled pressure for 20 and 30 seconds at two power settings. For each time and power setting, instrumentation was repeated four times with one instrumentation per disc quadrant. Surface topography analysis was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface roughness measurements were compared between instrumented and non-instrumented surfaces. Surface element composition and rinsing solutions were evaluated using energy-dispersive spectroscopy (EDS) and trace elemental analysis using inductively coupled plasma mass spectrometry (ICPMS), respectively. SEM photomicrographs and CLSM 3D surface plot images of instrumented machined and moderately roughened surfaces demonstrated severe surface topographical alterations with metallic tips and mild to moderate changes for plastic tip instrumented sites. ICPMS analysis of the rinsing solutions identified titanium and other metal traces with the use of metallic tips, and mainly titanium and carbon when plastic tips were used. Surface EDS analysis showed elemental traces of the ultrasonic tips. Ultrasonic instrumentation with metallic or plastic tips created surface topographical and compositional changes. Different changes in surface topography were noted between the surfaces, as the roughness of the machined surfaces increased while the extent of roughness of the moderately roughened surfaces decreased. The clinical relevance of these changes is yet to be determined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Trace element partitioning during the retorting of Julia Creek oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J.H.; Dale, L.S.; Chapman, J.f.
1987-05-01
A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1992-01-01
Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleet, M.E.; Pan, Yuanming
The partitioning of rare earth elements (REEs) between fluorapatite (FAp) and H{sub 2}O- bearing phosphate-fluoride melts has been studied at about 700 and 800{degrees}C and 0.10-0.15 GPa. REE uptake patterns, i.e., plots of D(REE:FAp/melt), are convex upwards and peak near Nd for single-REE substituted FAp at minor (0.03-0.25 wt% REE{sub 2}O{sub 3}) abundances, and binary (LREE + HREE)-substituted FAp, and hexa-REE-substituted FAp at minor to major (0.25-7.8 wt% REE{sub 2}O{sub 3}) abundances. Partition coefficients for minor abundances of REE and depolymerized phosphate melts are about 5, 8, and 1 for La, Nd, and Lu, respectively and broadly comparable to thosemore » for early fluorapatite in the fractionation of melts of basaltic composition. The Ca2 site exerts marked control on the selectivity of apatite for REE because it preferentially incorporates LREE and its effective size varies with substitution of the A-site volatile anion component (F, Cl, OH). Using simple crystal-chemical arguments, melt(or fluid)-normalized REE patterns are predicted to peak near Nd for fluorapatite and be more LREE-enriched for chlorapatite. These predictions are consistent with data from natural rocks and laboratory experiments. The wide variation in D(REE:apatite/melt) in nature (from <1 for whitlockite-bearing lunar rocks to about 100 for evolved alkalic rocks) is attributed largely to the influence of the volatile components. 49 refs., 8 figs., 3 tabs.« less