Sample records for moderator flow measurements

  1. Moderated, Water-Based, Condensational Particle Growth in a Laminar Flow

    PubMed Central

    Hering, Susanne V.; Spielman, Steven R.; Lewis, Gregory S.

    2014-01-01

    Presented is a new approach for laminar-flow water condensation that produces saturations above 1.5 while maintaining temperatures of less than 30°C in the majority of the flow and providing an exiting dew point below 15°C. With the original laminar flow water condensation method, the particle activation and growth occurs in a region with warm, wetted walls throughout, which has the side-effect of heating the flow. The “moderated” approach presented here replaces this warm region with a two sections – a short, warm, wet-walled “initiator”, followed by a cool-walled “moderator”. The initiator provides the water vapor that creates the supersaturation, while the moderator provides the time for particle growth. The combined length of the initiator and moderator sections is the same as that of the original, warm-walled growth section. Model results show that this new approach reduces the added heat and water vapor while achieving the same peak supersaturation and similar droplet growth. Experimental measurements confirm the trends predicted by the modeling. PMID:24839342

  2. Turbulence regeneration in pipe flow at moderate Reynolds numbers.

    PubMed

    Hof, Björn; van Doorne, Casimir W H; Westerweel, Jerry; Nieuwstadt, Frans T M

    2005-11-18

    We present the results of an experimental investigation into the nature and structure of turbulent pipe flow at moderate Reynolds numbers. A turbulence regeneration mechanism is identified which sustains a symmetric traveling wave within the flow. The periodicity of the mechanism allows comparison to the wavelength of numerically observed exact traveling wave solutions and close agreement is found. The advection speed of the upstream turbulence laminar interface in the experimental flow is observed to form a lower bound on the phase velocities of the exact traveling wave solutions. Overall our observations suggest that the dynamics of the turbulent flow at moderate Reynolds numbers are governed by unstable nonlinear traveling waves.

  3. Job characteristics, flow, and performance: the moderating role of conscientiousness.

    PubMed

    Demerouti, Evangelia

    2006-07-01

    The present article aims to show the importance of positive work-related experiences within occupational health psychology by examining the relationship between flow at work (i.e., absorption, work enjoyment, and intrinsic work motivation) and job performance. On the basis of the literature, it was hypothesized that (a) motivating job characteristics are positively related to flow at work and (b) conscientiousness moderates the relationship between flow and other ratings of (in-role and out-of-role) performance. The hypotheses were tested on a sample of 113 employees from several occupations. Results of moderated structural equation modeling analyses generally supported the hypotheses. Motivating job characteristics were predictive of flow, and flow predicted in-role and extra-role performance, for only conscientious employees.

  4. Turbulent channel flow under moderate polymer drag reduction

    NASA Astrophysics Data System (ADS)

    Elsnab, John; Monty, Jason; White, Christopher; Koochesfahani, Manoochehr; Klewicki, Joseph

    2017-11-01

    Streamwise velocity profiles and their wall-normal derivatives are used to investigate the properties of turbulent channel flow under the moderate polymer drag reduction (DR) conditions of 6-27%. Velocity data were obtained over a friction Reynolds number (Re) from 650-1800 using the single velocity component version of molecular tagging velocimetry (MTV). This adaptation of the MTV technique captures instantaneous profiles at high spatial resolution (>800 data points per profile), thus generating well-resolved derivative information. The mean velocity profiles indicate that the extent of the logarithmic region diminishes with increasing polymer concentration, while the logarithmic profile slope increases for drag reductions greater than about 20%. The measurements allow reconstruction of the mean momentum balance for channel flow that provides additional insights regarding the physics described by previous numerical simulation analyses that examined the mean dynamical structure of polymer laden channel flow at low Re. The present findings indicate that the polymer modifies the onset of the inertial domain, and that the extent of this domain shrinks with increasing DR. Once on the inertial domain, self-similar behaviors occur, but modified (sometimes subtly) by the modified distribution of characteristic y-scaling behavior of the Reynolds stress motions.

  5. MODFLOW 2.0: A program for predicting moderator flow patterns

    NASA Astrophysics Data System (ADS)

    Peterson, P. F.; Paik, I. K.

    1991-07-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in the operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  6. Measurements of the near-surface flow over a hill

    NASA Astrophysics Data System (ADS)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL gap 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL lsim 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  7. Measurements of surface-pressure and wake-flow fluctuations in the flow field of a whitcomb supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Roos, F. W.; Riddle, D. W.

    1977-01-01

    Measurements of surface pressure and wake flow fluctuations were made as part of a transonic wind tunnel investigation into the nature of a supercritical airfoil flow field. Emphasis was on a range of high subsonic Mach numbers and moderate lift coefficients corresponding to the development of drag divergence and buffeting. Fluctuation data were analyzed statistically for intensity, frequency content, and spatial coherence. Variations in these parameters were correlated with changes in the mean airfoil flow field.

  8. Mechanism of nonlinear flow pattern selection in moderately non-Boussinesq mixed convection.

    PubMed

    Suslov, Sergey A

    2010-02-01

    Nonlinear (non-Boussinesq) variations in fluid's density, viscosity, and thermal conductivity caused by a large temperature gradient in a flow domain lead to a wide variety of instability phenomena in mixed convection channel flow of a simple gas such as air. It is known that in strongly nonisothermal flows, the instabilities and the resulting flow patterns are caused by competing buoyancy and shear effects [see S. A. Suslov and S. Paolucci, J. Fluid Mech. 302, 91 (1995)]. However, as is the case in the Boussinesq limit of small temperature gradients, in moderately non-Boussinesq regimes, only a shear instability mechanism is active. Yet in contrast to Boussinesq flows, multiple instability modes are still detected. By reducing the system of full governing Navier-Stokes equations to a dynamical system of coupled Landau-type disturbance amplitude equations we compute a comprehensive parametric map of various shear-driven instabilities observed in a representative moderately non-Boussinesq regime. Subsequently, we analyze nonlinear interaction of unstable modes and reveal physical reasons for their appearance.

  9. Correlation of carotid blood flow and corrected carotid flow time with invasive cardiac output measurements.

    PubMed

    Ma, Irene W Y; Caplin, Joshua D; Azad, Aftab; Wilson, Christina; Fifer, Michael A; Bagchi, Aranya; Liteplo, Andrew S; Noble, Vicki E

    2017-12-01

    Non-invasive measures that can accurately estimate cardiac output may help identify volume-responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients (n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. Carotid blood flow was calculated as π × (carotid diameter) 2 /4 × velocity time integral × heart rate. Measurements were obtained using a single carotid waveform and an average of three carotid waveforms for both measures. Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% CI -0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% CI 0.02-0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18-0.63, p = 0.004, and ρ = 0.41, 95% CI 0.16-0.62, p = 0.004, respectively. Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues than corrected carotid flow time.

  10. Flow Disturbance Characterization Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.; Tsoi, Andrew

    2012-01-01

    Recent flow measurements have been acquired in the National Transonic Facility (NTF) to assess the unsteady flow environment in the test section. The primary purpose of the test is to determine the feasibility of the NTF to conduct laminar-flow-control testing and boundary-layer transition sensitive testing. The NTF can operate in two modes, warm (air) and cold/cryogenic (nitrogen) test conditions for testing full and semispan scaled models. The warm-air mode enables low to moderately high Reynolds numbers through the use of high tunnel pressure, and the nitrogen mode enables high Reynolds numbers up to flight conditions, depending on aircraft type and size, utilizing high tunnel pressure and cryogenic temperatures. NASA's Environmentally Responsible Aviation (ERA) project is interested in demonstrating different laminar-flow technologies at flight-relevant operating conditions throughout the transonic Mach number range and the NTF is well suited for the initial ground-based demonstrations. Roll polar data at selected test conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired from the rake probes included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. . Based on the current measurements and previous data, an assessment was made that the NTF is a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.

  11. Flow measuring structures

    NASA Astrophysics Data System (ADS)

    Boiten, W.

    1993-11-01

    The use of flow measuring structures is one of the various methods for the continuous measurement of discharges in open channels. In this report a brief summary of these methods is presented to get some insight in the selection of the most appropriate method. Then the distinct functions of water control structures are described. The flow measuring structures are classified according to international rules. The fields of application are dealt with and the definitions of weir flow are given. Much attention is paid to the aspects of how to select the most suitable flow measuring structure. The accuracy in the evaluation of the discharge has been related to the different error sources. A review of international standards on flow measuring structures concludes the report.

  12. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  13. The effect of stretch-and-flow voice therapy on measures of vocal function and handicap.

    PubMed

    Watts, Christopher R; Diviney, Shelby S; Hamilton, Amy; Toles, Laura; Childs, Lesley; Mau, Ted

    2015-03-01

    To investigate the efficacy of stretch-and-flow voice therapy as a primary physiological treatment for patients with hyperfunctional voice disorders. Prospective case series. Participants with a diagnosis of primary muscle tension dysphonia or phonotraumatic lesions due to hyperfunctional vocal behaviors were included. Participants received stretch-and-flow voice therapy structured once weekly for 6 weeks. Outcome variables consisted of two physiologic measures (s/z ratio and maximum phonation time), an acoustic measure (cepstral peak prominence [CPP]), and a measure of vocal handicap (voice handicap index [VHI]). All measures were obtained at baseline before treatment and within 2 weeks posttreatment. The s/z ratio, maximum phonation time, sentence CPP, and VHI showed statistically significant (P < 0.05) improvement through therapy. Effect sizes reflecting the magnitude of change were large for s/z ratio and VHI (d = 1.25 and 1.96 respectively), and moderate for maximum phonation time and sentence CPP (d = 0.79 and 0.74, respectively). This study provides supporting evidence for preliminary efficacy of stretch-and-flow voice therapy in a small sample of patients. The treatment effect was large or moderate for multiple outcome measures. The data provide justification for larger, controlled clinical trials on the application of stretch-and-flow voice therapy in the treatment of hyperfunctional voice disorders. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Simultaneous measurements of density field and wavefront distortions in high speed flows

    NASA Astrophysics Data System (ADS)

    George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin

    2017-09-01

    This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.

  15. Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping.

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, A.E.; Cheng, C.H.; Hardin, E.

    1987-01-01

    The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors

  16. Initial Simulated FFR Investigation Using Flow Measurements in Patient-specific 3D Printed Coronary Phantoms.

    PubMed

    Shepard, Lauren; Sommer, Kelsey; Izzo, Richard; Podgorsak, Alexander; Wilson, Michael; Said, Zaid; Rybicki, Frank J; Mitsouras, Dimitrios; Rudin, Stephen; Angel, Erin; Ionita, Ciprian N

    2017-02-11

    Accurate patient-specific phantoms for device testing or endovascular treatment planning can be 3D printed. We expand the applicability of this approach for cardiovascular disease, in particular, for CT-geometry derived benchtop measurements of Fractional Flow Reserve, the reference standard for determination of significant individual coronary artery atherosclerotic lesions. Coronary CT Angiography (CTA) images during a single heartbeat were acquired with a 320×0.5mm detector row scanner (Toshiba Aquilion ONE). These coronary CTA images were used to create 4 patient-specific cardiovascular models with various grades of stenosis: severe, <75% (n=1); moderate, 50-70% (n=1); and mild, <50% (n=2). DICOM volumetric images were segmented using a 3D workstation (Vitrea, Vital Images); the output was used to generate STL files (using AutoDesk Meshmixer), and further processed to create 3D printable geometries for flow experiments. Multi-material printed models (Stratasys Connex3) were connected to a programmable pulsatile pump, and the pressure was measured proximal and distal to the stenosis using pressure transducers. Compliance chambers were used before and after the model to modulate the pressure wave. A flow sensor was used to ensure flow rates within physiological reported values. 3D model based FFR measurements correlated well with stenosis severity. FFR measurements for each stenosis grade were: 0.8 severe, 0.7 moderate and 0.88 mild. 3D printed models of patient-specific coronary arteries allows for accurate benchtop diagnosis of FFR. This approach can be used as a future diagnostic tool or for testing CT image-based FFR methods.

  17. The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients.

    PubMed

    Pasha, M Asghar; Jourd'heuil, David; Jourd'heuil, Francis; Mahon, Lori; Romero, Francisco; Feustel, Paul J; Evans, Mary; Smith, Thomas; Mitchell, Jesse; Gendapodi, Pradeep; Demeyere-Coursey, Kelly C; Townley, Robert G

    2014-01-01

    Measurement of fractional nitric oxide concentration in exhaled breath (FENO) is a simple, noninvasive method to evaluate eosinophilic airway inflammation. Nitric oxide (NO) arising from peripheral small airways/alveoli (alveolar NO concentration [CalvNO]) can be estimated using multiple flow rates and a two-compartment model of the airways and alveoli. Omalizumab, a monoclonal anti-IgE antibody, is approved for the treatment of allergic asthma and also has been shown to decrease FENO levels. This study investigates the effects of omalizumab, when added to an inhaled corticosteroid (ICS) ± long-acting beta-adrenergic agonist (LABA) treatment, on peripheral small airway/alveolar inflammation reflected by FENO measurements at higher flow rates. We hypothesized that compared with placebo, omalizumab would decrease CalvNO levels in asthmatic patients on ICS ± LABA. Forty-two patients with moderate-to-severe asthma were randomly assigned 2:1 to either omalizumab (n = 29) or placebo treatment (n = 13) for 16 weeks. Selection criteria included moderate-to-severe asthmatic patients on an ICS ± LABA, positive skin test to one or more perennial allergen, screening FENO of >13 ppb, and a baseline IgE of 30-700 IU/mL. FENO measured at multiple flow rates was used to calculate CalvNO over the course of 16 weeks. FENO levels decrease with increasing flow rates (p < 0.05 repeated measures ANOVA) but no differences between the placebo and treatment groups in overall CalvNO levels or in the changes of CalvNO with time were found. Omalizumab did not lower the CalvNO, which could have been caused by the initial low CalvNO in this asthmatic population. The model used may not be completely sufficient and/or sensitive enough to detect small changes in CalvNO.

  18. Initial simulated FFR investigation using flow measurements in patient-specific 3D printed coronary phantoms

    NASA Astrophysics Data System (ADS)

    Shepard, Lauren; Sommer, Kelsey; Izzo, Richard; Podgorsak, Alexander; Wilson, Michael; Said, Zaid; Rybicki, Frank J.; Mitsouras, Dimitrios; Rudin, Stephen; Angel, Erin; Ionita, Ciprian N.

    2017-03-01

    Purpose: Accurate patient-specific phantoms for device testing or endovascular treatment planning can be 3D printed. We expand the applicability of this approach for cardiovascular disease, in particular, for CT-geometry derived benchtop measurements of Fractional Flow Reserve, the reference standard for determination of significant individual coronary artery atherosclerotic lesions. Materials and Methods: Coronary CT Angiography (CTA) images during a single heartbeat were acquired with a 320x0.5mm detector row scanner (Toshiba Aquilion ONE). These coronary CTA images were used to create 4 patientspecific cardiovascular models with various grades of stenosis: severe, <75% (n=1); moderate, 50-70% (n=1); and mild, <50% (n=2). DICOM volumetric images were segmented using a 3D workstation (Vitrea, Vital Images); the output was used to generate STL files (using AutoDesk Meshmixer), and further processed to create 3D printable geometries for flow experiments. Multi-material printed models (Stratasys Connex3) were connected to a programmable pulsatile pump, and the pressure was measured proximal and distal to the stenosis using pressure transducers. Compliance chambers were used before and after the model to modulate the pressure wave. A flow sensor was used to ensure flow rates within physiological reported values. Results: 3D model based FFR measurements correlated well with stenosis severity. FFR measurements for each stenosis grade were: 0.8 severe, 0.7 moderate and 0.88 mild. Conclusions: 3D printed models of patient-specific coronary arteries allows for accurate benchtop diagnosis of FFR. This approach can be used as a future diagnostic tool or for testing CT image-based FFR methods.

  19. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  20. Stochastic collocation using Kronrod-Patterson-Hermite quadrature with moderate delay for subsurface flow and transport

    NASA Astrophysics Data System (ADS)

    Liao, Q.; Tchelepi, H.; Zhang, D.

    2015-12-01

    Uncertainty quantification aims at characterizing the impact of input parameters on the output responses and plays an important role in many areas including subsurface flow and transport. In this study, a sparse grid collocation approach, which uses a nested Kronrod-Patterson-Hermite quadrature rule with moderate delay for Gaussian random parameters, is proposed to quantify the uncertainty of model solutions. The conventional stochastic collocation method serves as a promising non-intrusive approach and has drawn a great deal of interests. The collocation points are usually chosen to be Gauss-Hermite quadrature nodes, which are naturally unnested. The Kronrod-Patterson-Hermite nodes are shown to be more efficient than the Gauss-Hermite nodes due to nestedness. We propose a Kronrod-Patterson-Hermite rule with moderate delay to further improve the performance. Our study demonstrates the effectiveness of the proposed method for uncertainty quantification through subsurface flow and transport examples.

  1. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  2. Validity and reproducibility of electrical impedance tomography for measurement of calf blood flow in healthy subjects.

    PubMed

    Vonk Noordegraaf, A; Kunst, P W; Janse, A; Smulders, R A; Heethaar, R M; Postmus, P E; Faes, T J; de Vries, P M

    1997-03-01

    The Sheffield electrical impedance tomography; (EIT) system produces images of changes in the distribution of resistivity within tissue. The paper reports on the application of electrical impedance tomography in monitoring volume changes in the limb during venous occlusion. The aim of the study is to assess the feasibility, reproducibility and validity of calf blood flow measurements by EIT. In 14 healthy volunteers calf blood flow is compared, as determined in a calf segment by strain-gauge plethysmography (SGP), with the impedance changes measured by EIT during rest and post-ischaemic hyperaemia. The measurements are repeated to assess reproducibility. The reproducibility for the EIT, assessed from the repeated measurements and expressed as a reproducibility coefficient, is 0.88 during rest and 0.89 during hyperaemia. The reproducibility coefficient for SGP data is 0.83 at rest and 0.67 during hyperaemia. Flow measurements, assessed by means of two methods, correlate well at rest (r = 0.89), but only moderately during hyperaemia (r = 0.51). The correlation coefficient for the pooled flow measurements is 0.98. It is concluded that EIT is a valid and reliable method for assessing blood flow in the limb. Possible applications of EIT in localising fluid changes are discussed.

  3. Flow Measurement

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Macrodyne, Inc.'s laser velocimeter (LV) is a system used in wind tunnel testing of aircraft, missiles and spacecraft employing electro optical techniques to probe the flow field as the tunnel blows air over a model of flight vehicle and to determine velocity of air and its direction at many points around the model. However, current state-of-the-art minicomputers cannot handle the massive flow of real time data from several sources simultaneously. Langley developed instrument Laser Velocimeter Autocovariance Buffer Interface (LVABI). LVABI is interconnecting instrument between LV and computer. It acquires data from as many as six LV channels at high real time data rates, stores it in memory and sends it to computer on command. LVABI has application in variety of research, industrial and defense functions requiring precise flow measurement.

  4. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  5. The Impact of Partial Measurement Invariance on Testing Moderation for Single and Multi-Level Data

    PubMed Central

    Hsiao, Yu-Yu; Lai, Mark H. C.

    2018-01-01

    Moderation effect is a commonly used concept in the field of social and behavioral science. Several studies regarding the implication of moderation effects have been done; however, little is known about how partial measurement invariance influences the properties of tests for moderation effects when categorical moderators were used. Additionally, whether the impact is the same across single and multilevel data is still unknown. Hence, the purpose of the present study is twofold: (a) To investigate the performance of the moderation test in single-level studies when measurement invariance does not hold; (b) To examine whether unique features of multilevel data, such as intraclass correlation (ICC) and number of clusters, influence the effect of measurement non-invariance on the performance of tests for moderation. Simulation results indicated that falsely assuming measurement invariance lead to biased estimates, inflated Type I error rates, and more gain or more loss in power (depends on simulation conditions) for the test of moderation effects. Such patterns were more salient as sample size and the number of non-invariant items increase for both single- and multi-level data. With multilevel data, the cluster size seemed to have a larger impact than the number of clusters when falsely assuming measurement invariance in the moderation estimation. ICC was trivially related to the moderation estimates. Overall, when testing moderation effects with categorical moderators, employing a model that accounts for the measurement (non)invariance structure of the predictor and/or the outcome is recommended. PMID:29867692

  6. The Impact of Partial Measurement Invariance on Testing Moderation for Single and Multi-Level Data.

    PubMed

    Hsiao, Yu-Yu; Lai, Mark H C

    2018-01-01

    Moderation effect is a commonly used concept in the field of social and behavioral science. Several studies regarding the implication of moderation effects have been done; however, little is known about how partial measurement invariance influences the properties of tests for moderation effects when categorical moderators were used. Additionally, whether the impact is the same across single and multilevel data is still unknown. Hence, the purpose of the present study is twofold: (a) To investigate the performance of the moderation test in single-level studies when measurement invariance does not hold; (b) To examine whether unique features of multilevel data, such as intraclass correlation (ICC) and number of clusters, influence the effect of measurement non-invariance on the performance of tests for moderation. Simulation results indicated that falsely assuming measurement invariance lead to biased estimates, inflated Type I error rates, and more gain or more loss in power (depends on simulation conditions) for the test of moderation effects. Such patterns were more salient as sample size and the number of non-invariant items increase for both single- and multi-level data. With multilevel data, the cluster size seemed to have a larger impact than the number of clusters when falsely assuming measurement invariance in the moderation estimation. ICC was trivially related to the moderation estimates. Overall, when testing moderation effects with categorical moderators, employing a model that accounts for the measurement (non)invariance structure of the predictor and/or the outcome is recommended.

  7. Measuring Your Peak Flow Rate

    MedlinePlus

    ... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...

  8. COTS MEMS Flow-Measurement Probes

    NASA Technical Reports Server (NTRS)

    Redding, Chip; Smith, Floyd A.; Blank, Greg; Cruzan, Charles

    2004-01-01

    As an alternative to conventional tubing instrumentation for measuring airflow, designers and technicians at Glenn Research Center have been fabricating packaging components and assembling a set of unique probes that contain commercial off-the-shelf (COTS) microelectromechanical systems (MEMS) sensor chips. MEMS sensor chips offer some compelling advantages over standard macroscopic measurement devices. MEMS sensor technology has matured through mass production and use in the automotive and aircraft industries. At present, MEMS are the devices of choice for sensors in such applications as tire-pressure monitors, altimeters, pneumatic controls, cable leak detectors, and consumer appliances. Compactness, minimality of power demand, rugged construction, and moderate cost all contribute to making MEMS sensors attractive for instrumentation for future research. Conventional macroscopic flow-measurement instrumentation includes tubes buried beneath the aerodynamic surfaces of wind-tunnel models or in wind-tunnel walls. Pressure is introduced at the opening of each such tube. The pressure must then travel along the tube before reaching a transducer that generates an electronic signal. The lengths of such tubes typically range from 20 ft (approx.= 6 m) to hundreds of feet (of the order of 100 m). The propagation of pressure signals in the tubes damps the signals considerably and makes it necessary to delay measurements until after test rigs have reached steady-state operation. In contrast, a MEMS pressure sensor that generates electronic output can take readings continuously under dynamic conditions in nearly real time. In order to use stainless-steel tubing for pressure measurements, it is necessary to clean many tubes, cut them to length, carefully install them, delicately deburr them, and splice them. A cluster of a few hundred 1/16-in.- (approx.=1.6-mm-) diameter tubes (such clusters are common in research testing facilities) can be several inches (of the order of 10

  9. EEG Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate Frontocentral Alpha Rhythm in the Mental Arithmetic Task.

    PubMed

    Katahira, Kenji; Yamazaki, Yoichi; Yamaoka, Chiaki; Ozaki, Hiroaki; Nakagawa, Sayaka; Nagata, Noriko

    2018-01-01

    Flow experience is a subjective state experienced during holistic involvement in a certain activity, which has been reported to function as a factor promoting motivation, skill development, and better performance in the activity. To verify the positive effects of flow and develop a method to utilize it, the establishment of a reliable measurement of the flow state is essential. The present study utilized an electroencephalogram (EEG) during an experimentally evoked flow state and examined the possibility of objective measurement of immediate flow. A total of 16 participants (10 males, 6 females) participated in the experiment that employed a mental arithmetic task developed in a previous study. Post-trial self-report of the flow state and EEG during task execution were measured and compared among three conditions (Boredom, Flow, and Overload) that had different levels of task difficulty. Furthermore, the correlations between subjective flow items and EEG activity were examined. As expected, the ratings on the subjective evaluation items representing the flow state were the highest in the Flow condition. Regarding the EEG data, theta activities in the frontal areas were higher in the Flow and the Overload conditions than in the Boredom condition, and alpha activity in the frontal areas and the right central area gradually increased depending on the task difficulty. These EEG activities correlated with self-reported flow experience, especially items related to the concentration on the task and task difficulty. From the results, the flow state was characterized by increased theta activities in the frontal areas and moderate alpha activities in the frontal and central areas. The former may be related to a high level of cognitive control and immersion in task, and the latter suggests that the load on the working memory was not excessive. The findings of this study suggest the possibility of distinguishing the flow state from other states using multiple EEG activities

  10. EEG Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate Frontocentral Alpha Rhythm in the Mental Arithmetic Task

    PubMed Central

    Katahira, Kenji; Yamazaki, Yoichi; Yamaoka, Chiaki; Ozaki, Hiroaki; Nakagawa, Sayaka; Nagata, Noriko

    2018-01-01

    Flow experience is a subjective state experienced during holistic involvement in a certain activity, which has been reported to function as a factor promoting motivation, skill development, and better performance in the activity. To verify the positive effects of flow and develop a method to utilize it, the establishment of a reliable measurement of the flow state is essential. The present study utilized an electroencephalogram (EEG) during an experimentally evoked flow state and examined the possibility of objective measurement of immediate flow. A total of 16 participants (10 males, 6 females) participated in the experiment that employed a mental arithmetic task developed in a previous study. Post-trial self-report of the flow state and EEG during task execution were measured and compared among three conditions (Boredom, Flow, and Overload) that had different levels of task difficulty. Furthermore, the correlations between subjective flow items and EEG activity were examined. As expected, the ratings on the subjective evaluation items representing the flow state were the highest in the Flow condition. Regarding the EEG data, theta activities in the frontal areas were higher in the Flow and the Overload conditions than in the Boredom condition, and alpha activity in the frontal areas and the right central area gradually increased depending on the task difficulty. These EEG activities correlated with self-reported flow experience, especially items related to the concentration on the task and task difficulty. From the results, the flow state was characterized by increased theta activities in the frontal areas and moderate alpha activities in the frontal and central areas. The former may be related to a high level of cognitive control and immersion in task, and the latter suggests that the load on the working memory was not excessive. The findings of this study suggest the possibility of distinguishing the flow state from other states using multiple EEG activities

  11. A moderate dose of red wine, but not de-alcoholized red wine increases coronary flow reserve.

    PubMed

    Kiviniemi, Tuomas O; Saraste, Antti; Toikka, Jyri O; Saraste, Markku; Raitakari, Olli T; Pärkkä, Jussi P; Lehtimäki, Terho; Hartiala, Jaakko J; Viikari, Jorma; Koskenvuo, Juha W

    2007-12-01

    Red wine consumption is associated with reduced cardiovascular disease mortality. Its cardioprotective properties may be partly related to its ability to improve endothelial function. The purpose of this randomized controlled cross-over study was to determine whether moderate doses of red wine and de-alcoholized red wine improve coronary flow velocity reserve (CFR). Using transthoracic Doppler echocardiography, 176 CFR measurements were made in 22 healthy men before and after ingestion of a moderate (4.0+/-0.4 dl) and an escalating high dose (total amount 8.1+/-0.9 dl) of alcohol-containing red wine and de-alcoholized red wine, which contained similar amounts of phenolic substances. The difference in plasma antioxidant capacity was determined by colorimetric assay kit. Red wine increased CFR from 3.8+/-1.4 to 4.5+/-1.4 (p<0.01) and 4.0+/-1.2 (p=NS) after moderate and high doses, respectively; whereas de-alcoholized red wine had no significant effects on CFR (4.0+/-0.7, 4.3+/-1.3 and 4.5+/-1.4, respectively). Plasma antioxidant capacity increased significantly after high dose of red wine (27.5+/-14.7%, p<0.001), but not after de-alcoholized red wine (0.5+/-10.5%, p=NS) despite similar amounts of phenolic substances. Differences between CFR and plasma antioxidant capacities before and after drinking had no significant association. A moderate dose of red wine, but not de-alcoholized red wine increases CFR. The increase of CFR is probably mediated by other than direct antioxidant properties of polyphenols, because the simultaneous increase of CFR and plasma antioxidant capacity were not associated.

  12. Prevalence, clinical and echocardiographic characteristics of various flow and gradient patterns in mild or moderate aortic stenosis with normal left ventricular ejection fraction.

    PubMed

    Tan, Yong-Qiang Benjamin; Ngiam, Jinghao Nicholas; Kong, William K F; Yeo, Tiong-Cheng; Poh, Kian-Keong

    2016-10-15

    Paradoxical low-flow aortic stenosis (AS) with preserved left ventricular ejection fraction (LVEF) has only been described in severe AS. Controversy surrounds prognosis and management but no studies have reported this phenomenon in mild or moderate AS. We investigated the prevalence of flow and gradient patterns in this population, characterising their clinical and echocardiographic profile. Consecutive subjects (n=1362) with isolated AS: mild (n=462, aortic valve area≥1.5cm(2), 2.5m/smoderate (n=900, 1cm(2)≤aortic valve area<1.5cm(2)) and normal LVEF (≥50%) were studied. Subjects with low-flow (stroke volume index<35ml/m(2)) were identified. Univariate and multivariate analyses were employed to compare the flow and gradient patterns. In mild AS, 130 (28%) had low-flow. Lower left ventricular mass index (LVMI) (97.0±28.5vs116.4±2.3g/m(2),p<0.001), higher percentage of concentric remodelling (40%vs6%,p<0.001) and hypertrophy (43%vs40%,p<0.001) and lower end-systolic wall stress (ESWS) (57.6±1.60vs67.7±19.6dyn/cm(2),p=0.014) were independently associated with low-flow. Similarly, in moderate AS, 297 (33%) had low-flow. Older age (73.4±14.8vs69.5±16.5,p=0.027), lower LVMI (88.6±25.9vs118.0±36.5,p<0.001), higher percentage of concentric remodelling (46%vs8%,p<0.001) and lower ESWS (59.9±18.3vs70.5±19.7,p<0.001) were independently associated with low-flow. Despite moderate AS, most had lower mean pressure gradients, especially subjects with concentric remodelling. In the entire cohort, low-flow patients had more concentric remodelling (43%vs7%,p<0.001) and less eccentric hypertrophy (2%vs27%,p<0.001) compared to normal flow. Low-flow AS with normal LVEF is observed in mild or moderate AS, in up to a third of the cases. These patients had different LV structure compared to normal-flow, with more concentric remodelling. Further studies are warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Moderate hyperventilation during intravenous anesthesia increases net cerebral lactate efflux.

    PubMed

    Grüne, Frank; Kazmaier, Stephan; Sonntag, Hans; Stolker, Robert Jan; Weyland, Andreas

    2014-02-01

    Hyperventilation is known to decrease cerebral blood flow (CBF) and to impair cerebral metabolism, but the threshold in patients undergoing intravenous anesthesia is unknown. The authors hypothesized that reduced CBF associated with moderate hyperventilation might impair cerebral aerobic metabolism in patients undergoing intravenous anesthesia. Thirty male patients scheduled for coronary surgery were included in a prospective, controlled crossover trial. Measurements were performed under fentanyl-midazolam anesthesia in a randomized sequence aiming at partial pressures of carbon dioxide of 30 and 50 mmHg. Endpoints were CBF, blood flow velocity in the middle cerebral artery, and cerebral metabolic rates for oxygen, glucose, and lactate. Global CBF was measured using a modified Kety-Schmidt technique with argon as inert gas tracer. CBF velocity of the middle cerebral artery was recorded by transcranial Doppler sonography. Data were presented as mean (SD). Two-sided paired t tests and one-way ANOVA for repeated measures were used for statistical analysis. Moderate hyperventilation significantly decreased CBF by 60%, blood flow velocity by 41%, cerebral oxygen delivery by 58%, and partial pressure of oxygen of the jugular venous bulb by 45%. Cerebral metabolic rates for oxygen and glucose remained unchanged; however, net cerebral lactate efflux significantly increased from -0.38 (2.18) to -2.41(2.43) µmol min 100 g. Moderate hyperventilation, when compared with moderate hypoventilation, in patients with cardiovascular disease undergoing intravenous anesthesia increased net cerebral lactate efflux and markedly reduced CBF and partial pressure of oxygen of the jugular venous bulb, suggesting partial impairment of cerebral aerobic metabolism at clinically relevant levels of hypocapnia.

  14. Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy; Schnell, Susanne

    2017-11-01

    4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.

  15. Novel laser Doppler flowmeter for pulpal blood flow measurements

    NASA Astrophysics Data System (ADS)

    Zang, De Yu; Millerd, James E.; Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.

    1996-04-01

    We have proposed and experimentally demonstrated a new configuration of laser Doppler flowmetry for dental pulpal blood flow measurements. To date, the vitality of a tooth can be determined only by subjective thermal or electric tests, which are of questionable reliability and may induced pain in patient. Non-invasive techniques for determining pulpal vascular reactions to injury, treatment, and medication are in great demand. The laser Doppler flowmetry technique is non-invasive; however, clinical studies have shown that when used to measure pulpal blood flow the conventional back-scattering Doppler method suffers from low signal-to-noise ratio (SNR) and unreliable flux readings rendering it impossible to calibrate. A simplified theoretical model indicates that by using a forward scattered geometry the detected signal has a much higher SNR and can be calibrated. The forward scattered signal is readily detectable due to the fact that teeth are relatively thin organs with moderate optical loss. A preliminary experiment comparing forward scattered detection with conventional back- scattered detection was carried out using an extracted human molar. The results validated the findings of the simple theoretical model and clearly showed the utility of the forward scattering geometry. The back-scattering method had readings that fluctuated by as much as 187% in response to small changes in sensor position relative to the tooth. The forward scattered method had consistent readings (within 10%) that were independent of the sensor position, a signal-to-noise ratio that was at least 5.6 times higher than the back-scattering method, and a linear response to flow rate.

  16. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing. Fuel flow is allowed for dilute testing. (b) The fuel flow...

  17. Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.

    2017-10-01

    The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.

  18. A measurement device for electromagnetic flow tomography

    NASA Astrophysics Data System (ADS)

    Vauhkonen, M.; Hänninen, A.; Lehtikangas, O.

    2018-01-01

    Electromagnetic flow meters have succesfully been used in many industries to measure the mean flow velocity of conductive liquids. This technology works reliably in single phase flows with axisymmetric flow profiles but can be inaccurate with asymmetric flows, which are encountered, for example, in multiphase flows, pipe elbows and T-junctions. Some computational techniques and measurement devices with multiple excitation coils and measurement electrodes have recently been proposed to be used in cases of asymmetric flows. In earlier studies, we proposed a computational approach for electromagnetic flow tomography (EMFT) for estimating velocity fields utilizing several excitation coils and a set of measurement electrodes attached to the surface of the pipe. This approach has been shown to work well with simulated data but has not been tested extensively with real measurements. In this paper, an EMFT system with four excitation coils and 16 measurement electrodes is introduced. The system is capable of using both square wave and sinusoidal coil current excitations and all the coils can be excited individually, also enabling parallel excitations with multiple frequencies. The studies undertaken in the paper demonstrate that the proposed EMFT system, together with the earlier introduced velocity field reconstruction approach, is capable of producing reliable velocify field estimates in a laboratory environment with both axisymmetric and asymmetric single phase flows.

  19. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have a...

  20. Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.

    PubMed

    Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst

    2008-04-23

    If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.

  1. Quantitative tomographic measurements of opaque multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less

  2. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The controlling...

  3. IR multiphoton absorption of SF6 in flow with Ar at moderate energy fluences

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Ronander, E.; van Heerden, S. P.; Gouws, M.; van der Merwe, K.

    1997-10-01

    IR multiple photon absorption (MPA) of SF6 in flow with Ar (SF6: Ar=1:100) in conditions of a large vibrational/rotational temperature difference (TV𪒮 K, TR䏐 K) was studied at moderate energy fluences from ۂ.1 to 𪐬 mJ/cm2, which are of interest for isotope selective two-step dissociation of molecules. A 50 cm Laval-type slit nozzle for the flow cooling, and a TEA CO2-laser for excitation of molecules were used in the experiments. The laser energy fluence dependences of the SF6 MPA were studied for several CO2-laser lines which are in a good resonance with the linear absorption spectrum of the Ƚ vibration of SF6 at low temperature. The effect of the laser pulse duration (intensity) on MPA of flow cooled SF6 with Ar was also studied. The results are compared with those obtained in earlier studies.

  4. An electrode polarization impedance based flow sensor for low water flow measurement

    NASA Astrophysics Data System (ADS)

    Yan, Tinghu; Sabic, Darko

    2013-06-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h-1 and remained sensitive at a flow rate of 25.18 l h-1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering.

  5. Structural power flow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falter, K.J.; Keltie, R.F.

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors weremore » found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.« less

  6. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    NASA Astrophysics Data System (ADS)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the

  7. Photoacoustic imaging velocimetry for flow-field measurement.

    PubMed

    Ma, Songbo; Yang, Sihua; Xing, Da

    2010-05-10

    We present the photoacoustic imaging velocimetry (PAIV) method for flow-field measurement based on a linear transducer array. The PAIV method is realized by using a Q-switched pulsed laser, a linear transducer array, a parallel data-acquisition equipment and dynamic focusing reconstruction. Tracers used to track liquid flow field were real-timely detected, two-dimensional (2-D) flow visualization was successfully reached, and flow parameters were acquired by measuring the movement of the tracer. Experimental results revealed that the PAIV method would be developed into 3-D imaging velocimetry for flow-field measurement, and potentially applied to research the security and targeting efficiency of optical nano-material probes. (c) 2010 Optical Society of America.

  8. Measuring sap flow in plants

    USDA-ARS?s Scientific Manuscript database

    Sap flow measurements provide a powerful tool for quantifying plant water use and monitoring qualitative physiological responses of plants to environmental conditions. As such, sap flow methods are widely employed to invesitgate the agronomic, ecological and hydrological outcomes of plant growth. T...

  9. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty.

    PubMed

    Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin

    2017-01-01

    Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person-artifact-task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants ( n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.

  10. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty

    PubMed Central

    Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin

    2017-01-01

    Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person–artifact–task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants (n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity. PMID:28725206

  11. Difference flow measurements under permafrost conditions in the Kangerlussuaq area, West Greenland

    NASA Astrophysics Data System (ADS)

    Lehtinen, A. M.; Rouhiainen, P.; Pöllänen, J.; Heikkinen, P.; Ruskeeniemi, T.; Claesson Liljedahl, L.

    2012-12-01

    To advance the understanding of the impact of glacial processes on the long-term performance of a deep geologic repository, the Greenland Analogue Project (GAP), a four-year field and modeling study of the Greenland ice sheet (2009-2012), was established collaboratively by the Swedish, Finnish and Canadian nuclear waste management organizations (SKB, POSIVA and NWMO, respectively). In order to study how groundwater flow and water chemistry is influenced by an existing ice sheet and continuous permafrost, a 645 m deep drillhole (DH-GAP04) was drilled, hydraulically tested using the Posiva Difference Flowmeter (PFL DIFF) method and instrumented at the ice margin in the Kangerlussuaq area in July 2011. PFL DIFF allows the quick and reliable characterization of flow-yielding fractures in bedrock. PFL DIFF measures the flow rate into or out of defined drillhole sections. The advantage that follows from measuring the flow rate in isolated sections is improved detection of incremental changes of flow along the drillhole. PFL DIFF can measure flows in the range 30 - 300 000 mLh-1. In addition, the PFL DIFF probe can be used to measure the electrical conductivity of both the drillhole water and fracture-specific water, the single point resistance (SPR) of the bedrock, the water pressure profile in a drillhole and the temperature of the drillhole water. Normally, PFL DIFF measurements in a new drillhole are conducted a week after the end of drilling in order to let the groundwater state recover in the drillhole. The PFL DIFF measurements were done in DH-GAP04 already three days after the drilling was completed. This measurement was the first PFL DIFF measurement ever conducted in an area of continuous permafrost and therefore, the measurement program was carefully designed. The length of the section in the flow logging measurements was 10 m and the interval spacing was two meters. Flow into the drillhole or from the drillhole into the bedrock was measured within the section

  12. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  13. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  14. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  16. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 89.415 Section 89.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement...

  17. 40 CFR 90.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 90.417 Section 90.417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Gaseous Exhaust Test Procedures § 90.417 Fuel flow measurement specifications. (a) Fuel flow measurement...

  18. Dual-plane ultrasound flow measurements in liquid metals

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  19. Probe Without Moving Parts Measures Flow Angle

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake

    2003-01-01

    The measurement of local flow angle is critical in many fluid-dynamic applications, including the aerodynamic flight testing of new aircraft and flight systems. Flight researchers at NASA Dryden Flight Research Center have recently developed, flight-tested, and patented the force-based flow-angle probe (FLAP), a novel, force-based instrument for the measurement of local flow direction. Containing no moving parts, the FLAP may provide greater simplicity, improved accuracy, and increased measurement access, relative to conventional moving vane-type flow-angle probes. Forces in the FLAP can be measured by various techniques, including those that involve conventional strain gauges (based on electrical resistance) and those that involve more advanced strain gauges (based on optical fibers). A correlation is used to convert force-measurement data to the local flow angle. The use of fiber optics will enable the construction of a miniature FLAP, leading to the possibility of flow measurement in very small or confined regions. This may also enable the tufting of a surface with miniature FLAPs, capable of quantitative flow-angle measurements, similar to attaching yarn tufts for qualitative measurements. The prototype FLAP was a small, aerodynamically shaped, low-aspect-ratio fin about 2 in. (approximately equal to 5 cm) long, 1 in. (approximately equal to 2.5 cm) wide, and 0.125 in. (approximately equal to 0.3 cm) thick (see Figure 1). The prototype FLAP included simple electrical-resistance strain gauges for measuring forces. Four strain gauges were mounted on the FLAP; two on the upper surface and two on the lower surface. The gauges were connected to form a full Wheatstone bridge, configured as a bending bridge. In preparation for a flight test, the prototype FLAP was mounted on the airdata boom of a flight-test fixture (FTF) on the NASA Dryden F-15B flight research airplane.

  20. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used...

  1. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 91.417 Section 91.417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw...

  2. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  3. Apparatus for measuring fluid flow

    DOEpatents

    Smith, Jack E.; Thomas, David G.

    1984-01-01

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  4. Apparatus for measuring fluid flow

    DOEpatents

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  5. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  6. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  7. Evaluation of a watershed model for estimating daily flow using limited flow measurements

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash-Sutcliffe model Efficiency (NSE) and...

  8. In Situ Measurement of Ground-Surface Flow Resistivity

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.

  9. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  10. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2017-12-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  11. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2018-07-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  12. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  13. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  14. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  15. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  16. Flow tilt angle measurements using lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, Ebba; Mann, Jakob

    2010-05-01

    A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over

  17. Non-unique turbulent boundary layer flows having a moderately large velocity defect: a rational extension of the classical asymptotic theory

    NASA Astrophysics Data System (ADS)

    Scheichl, B.; Kluwick, A.

    2013-11-01

    The classical analysis of turbulent boundary layers in the limit of large Reynolds number Re is characterised by an asymptotically small velocity defect with respect to the external irrotational flow. As an extension of the classical theory, it is shown in the present work that the defect may become moderately large and, in the most general case, independent of Re but still remain small compared to the external streamwise velocity for non-zero pressure gradient boundary layers. That wake-type flow turns out to be characterised by large values of the Rotta-Clauser parameter, serving as an appropriate measure for the defect and hence as a second perturbation parameter besides Re. Most important, it is demonstrated that also this case can be addressed by rigorous asymptotic analysis, which is essentially independent of the choice of a specific Reynolds stress closure. As a salient result of this procedure, transition from the classical small defect to a pronounced wake flow is found to be accompanied by quasi-equilibrium flow, described by a distinguished limit that involves the wall shear stress. This situation is associated with double-valued solutions of the boundary layer equations and an unconventional weak Re-dependence of the external bulk flow—a phenomenon seen to agree well with previous semi-empirical studies and early experimental observations. Numerical computations of the boundary layer flow for various values of Re reproduce these analytical findings with satisfactory agreement.

  18. Measurement uncertainty budget of an interferometric flow velocity sensor

    NASA Astrophysics Data System (ADS)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  19. Adaptation of laser-Doppler flowmetry to measure cerebral blood flow in the fetal sheep.

    PubMed

    Lan, J; Hunter, C J; Murata, T; Power, G G

    2000-09-01

    The purpose of this study was to devise a means to use laser-Doppler flowmetry to measure cerebral perfusion before birth. The method has not been used previously, largely because of intrauterine movement artifacts. To minimize movement artifacts, a probe holder was molded from epoxy putty to the contour of the fetal skull. A curved 18-gauge needle was embedded in the holder. At surgery, the holder, probe, and skull were fixed together with tissue glue. Residual signals were recorded after fetal death and after maternal death 1 h later. These averaged <5% of baseline flow signals, indicating minimal movement artifact. To test the usefulness of the method, cerebral flow responses were measured during moderate fetal hypoxia induced by giving the ewes approximately 10% oxygen in nitrogen to breathe. As fetal arterial PO(2) decreased from 21.1 +/- 0.5 to 10.7 +/- 0.4 Torr during a 30-min period, cerebral perfusion increased progressively to 56 +/- 8% above baseline. Perfusion then returned to baseline levels during a 30-min recovery period. These responses are quantitatively similar to those spot observations that have been recorded earlier using labeled microspheres. We conclude that cerebral perfusion can be successfully measured by using laser-Doppler flowmetry with the unanesthetized, chronically prepared fetal sheep as an experimental model. With this method, relative changes of perfusion from a small volume of the ovine fetal brain can be measured on a continuous basis, and movement artifacts can be reduced to 5% of measured flow values.

  20. CLINICAL AVIATION MEDICINE RESEARCH: COMPARISON OF SIMULTANEOUS MEASUREMENTS OF INTRA-AORTIC AND AUSCULTATORY BLOOD PRESSURES WITH PRESSURE-FLOW DYNAMICS DURING REST AND EXERCISE,

    DTIC Science & Technology

    recorded simultaneously by auscultation of the brachial artery; and (2) to study the pattern of pressure and flow dynamics during bicycle work at moderate...strenuous and maximal intensities. In most instances systolic pressures measured by auscultation were in close agreement with the directly recorded

  1. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  2. Transition and turbulence measurements in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Owen, F. K.

    1990-01-01

    This paper reviews techniques for transitional- and turbulent-flow measurements and describes current research in support of turbulence modeling. Special attention is given to the potential of applying hot wire and laser velocimeter to measuring turbulent fluctuations in hypersonic flow fields. The results of recent experiments conducted in two hypersonic wind tunnels are presented and compared with previous hot-wire turbulence measurements.

  3. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  4. Role of secondary flows on flow separation induced by shock/boundary layer interaction in supersonic inlets

    NASA Astrophysics Data System (ADS)

    Morajkar, Rohan

    Flow separation in the scramjet air intakes is one of the reasons of failure of these engines which rely on shock waves to achieve flow compression. The shock waves interact with the boundary layers (Shock/ Boundary Layer Interaction or SBLI) on the intake walls inducing adverse pressure gradients causing flow separation. In this experimental study we investigate the role of secondary flows associated with the corners of ducted flows and identify the mechanisms by which they affect flow separation induced by a shock wave interacting with the boundary layers developing along supersonic inlets. The coupling between flow three-dimensionality, shock waves and secondary flows is in fact a key aspect that limits the performance and control of supersonic inlets. The study is conducted at the University of Michigan Glass Supersonic Wind Tunnel (GSWT). This facility replicates some of the features of the three-dimensional (3D) flow-field in a low aspect ratio supersonic inlet. The study uses stereoscopic particle image velocimetry (SPIV) to measure the three-component (3C) velocity field on several orthogonal planes, and thus allows us to identify the length scales of separation, its locations and statistical properties. Furthermore, these measurements allow us to extract the 3D structure of the underlying vortical features, which are important in determining the overall structure of separated regions and their dynamics. The measurements and tools developed are used to study flow fields of three cases: (1) Moderately strong SBLI (Mach 2.75 with 6° deflection), (2) weak SBLI (Mach 2.75 with 4.6° deflection) and (3) secondary corner flows in empty channels. In the configuration of the initial work (moderately strong SBLI), the shock wave system interacts with the boundary layers on the sidewall and the floor of the duct (inlet), thus generating both a swept-shock and an incident-shock interactions. Furthermore, the swept-shock interaction taking place on the sidewalls

  5. Ultrasonic Blood Flow Measurement in Haemodialysis

    PubMed Central

    Sampson, D.; Papadimitriou, M.; Kulatilake, A. E.

    1970-01-01

    A 5-megacycle Doppler flow meter, calibrated in-vitro, was found to give a linear response to blood flow in the ranges commonly encountered in haemodialysis. With this, blood flow through artificial kidneys could be measured simply and with a clinically acceptable error. The method is safe, as blood lines do not have to be punctured or disconnected and hence there is no risk of introducing infection. Besides its value as a research tool the flow meter is useful in evaluating new artificial kidneys. Suitably modified it could form the basis of an arterial flow alarm system. PMID:5416812

  6. Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 1, in-situ measurements of flow dynamics, tracer particle movement and video imagery from the summer of 2009

    USGS Publications Warehouse

    McCoy, Scott W.; Coe, Jeffrey A.; Kean, Jason W.; Tucker, Greg E.; Staley, Dennis M.; Wasklewicz, Thad A.

    2011-01-01

    Debris flows initiated by surface-water runoff during short duration, moderate- to high-intensity rainfall are common in steep, rocky, and sparsely vegetated terrain. Yet large uncertainties remain about the potential for a flow to grow through entrainment of loose debris, which make formulation of accurate mechanical models of debris-flow routing difficult. Using a combination of in situ measurements of debris flow dynamics, video imagery, tracer rocks implanted with passive integrated transponders (PIT) and pre- and post-flow 2-cm resolution digital terrain models (terrain data presented in a companion paper by STALEY et alii, 2011), we investigated the entrainment and transport response of debris flows at Chalk Cliffs, CO, USA. Four monitored events during the summer of 2009 all initiated from surface-water runoff, generally less than an hour after the first measurable rain. Despite reach-scale morphology that remained relatively constant, the four flow events displayed a range of responses, from long-runout flows that entrained significant amounts of channel sediment and dammed the main-stem river, to smaller, short-runout flows that were primarily depositional in the upper basin. Tracer-rock travel-distance distributions for these events were bimodal; particles either remained immobile or they travelled the entire length of the catchment. The long-runout, large-entrainment flow differed from the other smaller flows by the following controlling factors: peak 10-minute rain intensity; duration of significant flow in the channel; and to a lesser extent, peak surge depth and velocity. Our growing database of natural debris-flow events can be used to develop linkages between observed debris-flow transport and entrainment responses and the controlling rainstorm characteristics and flow properties.

  7. Measuring Surface Tension of a Flowing Soap Film

    NASA Astrophysics Data System (ADS)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  8. Internal flow measurement in transonic compressor by PIV technique

    NASA Astrophysics Data System (ADS)

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  9. Surface flow measurements from drones

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  10. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  11. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  12. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  13. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  14. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  15. Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers

    NASA Astrophysics Data System (ADS)

    Boiko, A. V.; Akulov, A. E.; Chupakhin, A. P.; Cherevko, A. A.; Denisenko, N. S.; Savelov, A. A.; Stankevich, Yu. A.; Khe, A. K.; Yanchenko, A. A.; Tulupov, A. A.

    2017-03-01

    The accuracies of measuring the velocity field using clinical and research magnetic resonance imagers are compared. The flow velocity of a fluid simulating blood in a carotid artery model connected to a programmable pump was measured. Using phase-contrast magnetic resonance tomography, the velocity distributions in the carotid artery model were obtained and compared with the analytical solution for viscous liquid flow in a cylindrical tube (Poiseuille flow). It is found that the accuracy of the velocity measurement does not depend on the field induction and spatial resolution of the imagers.

  16. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  17. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  18. Attitude importance as a moderator of the relationship between implicit and explicit attitude measures.

    PubMed

    Karpinski, Andrew; Steinman, Ross B; Hilton, James L

    2005-07-01

    The authors examined attitude importance as a moderator of the relationship between the Implicit Association Test (IAT) and explicit attitude measures. In Study 1 (N = 194), as ratings of attitude importance regarding the 2000 presidential election increased, the strength of the relationship between a Bush-Gore IAT and explicit attitude measures also increased. Study 2 provided a conceptual replication of these results using attitudes toward Coke and Pepsi (N = 112). In addition, across both studies, explicit attitude measures were better predictors of deliberative behaviors than IAT scores. In Study 3 (N = 77), the authors examined the role of elaboration as a mechanism by which attitude importance may moderate IAT-explicit attitude correlations. As predicted, increased elaboration resulted in stronger IAT-explicit attitude correlations. Other possible mechanisms by which attitude importance may moderate the IAT-explicit attitude relationship also are discussed.

  19. High Reynolds Number Liquid Flow Measurements

    DTIC Science & Technology

    1988-08-01

    25. .n Fig. 25, the dotted line represents data taken from Eckelmann’s study in the thick viscous sublaver of an oil channel. Scatter in the...measurements of the fundamental physical quantities are not only an essencial part in an understanding of multiphase flows but also in the measurement process...technique. One of the most yloei’ used techniques, however, is some form of flow visualization. This includes the use o: tufts, oil paint films

  20. Measuring Flow With Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.

    1988-01-01

    Spatial resolution sufficient for calculation of vorticity.In laser-speckle velocimetry, pulsed or chopped laser beam expanded in one dimension by cylindrical lens to illuminate thin, fan-shaped region of flow measured. Flow seeded by small particles. Lens with optical axis perpendicular to illuminating beam forms image of illuminated particles on photographic plate. Speckle pattern of laser-illuminiated, seeded flow recorded in multiple-exposure photographs and processed to extract data on velocity field. Technique suited for study of vortical flows like those about helicopter rotor blades or airplane wings at high angles of attack.

  1. Intra- and Inter-rater Agreement of Superior Vena Cava Flow and Right Ventricular Outflow Measurements in Late Preterm and Term Neonates.

    PubMed

    Mahoney, Liam; Fernandez-Alvarez, Jose R; Rojas-Anaya, Hector; Aiton, Neil; Wertheim, David; Seddon, Paul; Rabe, Heike

    2018-02-24

    To explore the intra- and inter-rater agreement of superior vena cava (SVC) flow and right ventricular (RV) outflow in healthy and unwell late preterm neonates (33-37 weeks' gestational age), term neonates (≥37 weeks' gestational age), and neonates receiving total-body cooling. The intra- and inter-rater agreement (n = 25 and 41 neonates, respectively) rates for SVC flow and RV outflow were determined by echocardiography in healthy and unwell late preterm and term neonates with the use of Bland-Altman plots, the repeatability coefficient, the repeatability index, and intraclass correlation coefficients. The intra-rater repeatability index values were 41% for SVC flow and 31% for RV outflow, with intraclass correlation coefficients indicating good agreement for both measures. The inter-rater repeatability index values for SVC flow and RV outflow were 63% and 51%, respectively, with intraclass correlation coefficients indicating moderate agreement for both measures. If SVC flow or RV outflow is used in the hemodynamic treatment of neonates, sequential measurements should ideally be performed by the same clinician to reduce potential variability. © 2018 by the American Institute of Ultrasound in Medicine.

  2. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  3. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  4. Assessing stability in mild and moderate Parkinson's disease: Can clinical measures provide insight?

    PubMed

    Hubble, Ryan P; Silburn, Peter A; Naughton, Geraldine A; Cole, Michael H

    2016-09-01

    This cross-sectional study aimed to investigate the relationship between accelerometer-derived measures of movement rhythmicity and clinical measures of mobility, balance confidence and gait difficulty in people with Parkinson's disease (PD). Twenty-nine independently-living PD patients (Hoehn & Yahr Stages 1-3) with no history of significant injury or orthopaedic/deep brain stimulation surgery were recruited from a database of patients who had expressed an interest to participate in research. Participants completed clinical assessments of mobility, postural stability, balance confidence and symptom severity, while head and trunk rhythmicity was evaluated during gait using accelerometers. Following data collection, patients were stratified based on disease stage into either a Mild (Hoehn & Yahr Stage 1) or Moderate (Hoehn & Yahr Stages 2-3) PD group. The results highlighted that the Moderate PD group had poorer quality of life, reduced balance confidence and increased gait and falls difficulty. Furthermore, for these patients, gait disability and the number of previous falls were both negatively correlated with multiple components of head and trunk rhythmicity. For the Mild PD group, six-meter walk time was positively correlated with ML head rhythmicity and linear regression highlighted a significant predictive relationship between these outcomes. For the Mild and Moderate PD groups, balance confidence respectively predicted anterior-posterior trunk rhythmicity and vertical head rhythmicity. While these findings demonstrate that falls history and the Gait and Falls questionnaire provide moderate insight into head and trunk rhythmicity in Moderate PD patients, objective and clinically-feasible measures of postural instability would assist with the management of these symptoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Slip length measurement of gas flow.

    PubMed

    Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat

    2016-09-16

    In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.

  6. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less

  7. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  8. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  9. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com; Centre for Nuclear Energy, Universiti Tenaga Nasional; Mohamed, Abdul Aziz bin

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried outmore » using a neutron spectrometer.« less

  10. Spectroscopic Measurement Techniques for Aerospace Flows

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha

    2014-01-01

    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  11. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2017-01-01

    Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.

  12. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  13. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  14. Comparison of Two Devices for Intraoperative Portal Venous Flow Measurement in Living-Donor Liver Transplantation: Transit Time Ultrasound and Conventional Doppler Ultrasound.

    PubMed

    Wang, H-K; Chen, C-Y; Lin, N-C; Liu, C-S; Loong, C-C; Lin, Y-H; Lai, Y-C; Chiou, H-J

    2018-05-01

    Intraoperative portal venous flow measurement provides surgeons with instant guidance for portal flow modulation during living-donor liver transplantation (LDLT). In this study, we compared the agreement of portal flow measurement obtained by 2 devices: transit time ultrasound (TTU) and conventional Doppler ultrasound (CDU). Fifty-four recipients of LDLT underwent intraoperative measurement of portal flow after completion of vascular anastomosis of the implanted partial liver graft. Both TTU and CDU were used concurrently. Agreement of TTU and CDU was assessed by intraclass correlation coefficient using a model of 2-way random effects, absolute agreement, and single measurement. A Bland-Altman plot was applied to assess the variability between the 2 devices. The mean, median, and range of portal venous flow was 1456, 1418, and 117 to 2776 mL/min according to TTU; and 1564, 1566, and 119 to 3216 mL/min according to CDU. The intraclass correlation coefficient of portal venous flow between TTU and CDU was 0.68 (95% confidence interval, 0.51-0.80). The Bland-Altman plots revealed an average variation of 4.8% between TTU and CDU but with a rather wide 95% confidence interval of variation ranging from -57.7% to 67.4%. Intraoperative TTU and CDU showed moderate agreement in portal flow measurement. However, a relatively wide range of variation exists between TTU and CDU, indicating that data obtained from the 2 devices may not be interchangeable. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  16. Hepatic blood flow measurement III. Total hepatic blood flow measured by ICG clearance and electromagnetic flowmeters in a canine septic shock model.

    PubMed Central

    Nxumalo, J L; Teranaka, M; Schenk, W G

    1978-01-01

    The validity of the ICG clearance method for the measurement of THBF in abnormal circulatory states remains questionable. In this study THBF measured by this method is compared with the electromagnetic flow technique in a canine spetic model. Good correlation is demonstrated between the two in normal control animals. However, in the septic animals the ICG underestimated the electromagnetic flow result by 20%. This is true in both the high and the low cardiac output septic shock pictures that emerge. In the septic animals, the total hepatic blood flow as measured by the ICG was almost equal to the portal vein flow alone measured by the electromagnetic flowmeters suggesting that this was the quantity it was measuring in this abnormal state. Pathophysiologic mechanisms that may explain the discrepancy are given. PMID:637587

  17. Hydrostatic and Flow Measurements on Wrinkled Membrane Walls

    NASA Astrophysics Data System (ADS)

    Ozsun, Ozgur; Ekinci, Kamil

    2013-03-01

    In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.

  18. New diesel injection nozzle flow measuring device

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2000-04-01

    A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.

  19. Doppler Global Velocimetry Measurements for Supersonic Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2005-01-01

    The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:

  20. Photovoltaic measurement of bandgap narrowing in moderately doped silicon

    NASA Astrophysics Data System (ADS)

    del Alamo, Jesus A.; Swanson, Richard M.; Lietoila, Arto

    1983-05-01

    Solar cells have been fabricated on n-type and p-type moderately doped Si. The shrinkage of the Si bandgap has been obtained by measuring the internal quantum efficiency in the near infrared spectrum ( hv = 1.00-1.25 eV) around the fundamental absorption edge. The results agree with previous optical measurements of bandgap narrowing in Si. It is postulated that this optically-determined bandgap narrowing is the rigid shrinkage of the forbidden gap due to many-body effects. The "device bandgap narrowing" obtained by measuring the pn product in bipolar devices leads to discrepant values because (i) the density of states in the conduction and valence band is modified due to the potential fluctuations originated in the variations in local impurity density, and (ii) the influence of Fermi-Dirac statistics.

  1. Flow measurements in sewers based on image analysis: automatic flow velocity algorithm.

    PubMed

    Jeanbourquin, D; Sage, D; Nguyen, L; Schaeli, B; Kayal, S; Barry, D A; Rossi, L

    2011-01-01

    Discharges of combined sewer overflows (CSOs) and stormwater are recognized as an important source of environmental contamination. However, the harsh sewer environment and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. An in situ system for sewer water flow monitoring based on video images was evaluated. Algorithms to determine water velocities were developed based on image-processing techniques. The image-based water velocity algorithm identifies surface features and measures their positions with respect to real world coordinates. A web-based user interface and a three-tier system architecture enable remote configuration of the cameras and the image-processing algorithms in order to calculate automatically flow velocity on-line. Results of investigations conducted in a CSO are presented. The system was found to measure reliably water velocities, thereby providing the means to understand particular hydraulic behaviors.

  2. Optical measurement of high-temperature melt flow rate.

    PubMed

    Bizjan, Benjamin; Širok, Brane; Chen, Jinpeng

    2018-05-20

    This paper presents an optical method and system for contactless measurement of the mass flow rate of melts by digital cameras. The proposed method is based on reconstruction of melt stream geometry and flow velocity calculation by cross correlation, and is very cost-effective due its modest hardware requirements. Using a laboratory test rig with a small inductive melting pot and reference mass flow rate measurement by weighing, the proposed method was demonstrated to have an excellent dynamic response (0.1 s order of magnitude) while producing deviations from the reference of about 5% in the steady-state flow regime. Similar results were obtained in an industrial stone wool production line for two repeated measurements. Our method was tested in a wide range of melt flow rates (0.05-1.2 kg/s) and did not require very fast cameras (120 frames per second would be sufficient for most industrial applications).

  3. ASRDI oxygen technology survey. Volume 6: Flow measurement instrumentation

    NASA Technical Reports Server (NTRS)

    Mann, D. B.

    1974-01-01

    A summary is provided of information available on liquid and gaseous oxygen flowmetering including an evaluation of commercial meters. The instrument types, physical principles of measurement, and performance characteristics are described. Problems concerning flow measurements of less than plus or minus two percent uncertainty are reviewed. Recommendations concerning work on flow reference systems, the use of surrogate fluids, and standard tests for oxygen flow measurements are also presented.

  4. Methods of blood flow measurement in the arterial circulatory system.

    PubMed

    Tabrizchi, R; Pugsley, M K

    2000-01-01

    The most commonly employed techniques for the in vivo measurement of arterial blood flow to individual organs involve the use of flow probes or sensors. Commercially available systems for the measurement of in vivo blood flow can be divided into two categories: ultrasonic and electromagnetic. Two types of ultrasonic probes are used. The first type of flow probe measures blood flow-mediated Doppler shifts (Doppler flowmetry) in a vessel. The second type of flow probe measures the "transit time" required by an emitted ultrasound wave to traverse the vessel and are transit-time volume flow sensors. Measurement of blood flow in any vessel requires that the flow probe or sensor be highly accurate and exhibit signal linearity over the flow range in the vessel of interest. Moreover, additional desirable features include compact design, size, and weight. An additional important feature for flow probes is that they exhibit good biocompatability; it is imperative for the sensor to behave in an inert manner towards the biological system. A sensitive and reliable method to assess blood flow in individual organs in the body, other than by the use of probes/sensors, is the reference sample method that utilizes hematogeneously delivered microspheres. This method has been utilized to a large extend to assess regional blood flow in the entire body. Obviously, the purpose of measuring blood flow is to determine the amount of blood delivered to a given region per unit time (milliliters per minute) and it is desirable to achieve this goal by noninvasive methodologies. This, however, is not always possible. This review attempts to offer an overview of some of the techniques available for the assessment of regional blood flow in the arterial circulatory system and discusses advantages and disadvantages of these common techniques.

  5. Guide to Flow Measurement for Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  6. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that measures directly or indirectly the volume or flow of urine from a patient, either during the course of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine flow or volume measuring system. 876.1800...

  7. The effects of gender, flow and video game experience on combat identification training.

    PubMed

    Plummer, John Paul; Schuster, David; Keebler, Joseph R

    2017-08-01

    The present study examined the effects of gender, video game experience (VGE), and flow state on multiple indices of combat identification (CID) performance. Individuals were trained on six combat vehicles in a simulation, presented through either a stereoscopic or non-stereoscopic display. Participants then reported flow state, VGE and were tested on their ability to discriminate friend vs. foe and identify both pictures and videos of the trained vehicles. The effect of stereoscopy was not significant. There was an effect of gender across three dependent measures. For the two picture-based measures, the effect of gender was mediated by VGE. Additionally, the effect of gender was moderated by flow state on the identification measures. Overall, the study suggests that gender differences may be overcome by VGE and by achieving flow state. Selection based on these individual differences may be useful for future military simulation. Practitioner Summary: This work investigates the effect of gender, VGE and flow state on CID performance. For three measures of performance, there was a main effect of gender. Gender was mediated by previous VGE on two measures, and gender was moderated by flow state on two measures.

  8. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  9. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  10. Personal Computer System for Automatic Coronary Venous Flow Measurement

    PubMed Central

    Dew, Robert B.

    1985-01-01

    We developed an automated system based on an IBM PC/XT Personal computer to measure coronary venous blood flow during cardiac catheterization. Flow is determined by a thermodilution technique in which a cold saline solution is infused through a catheter into the coronary venous system. Regional temperature fluctuations sensed by the catheter are used to determine great cardiac vein and coronary sinus blood flow. The computer system replaces manual methods of acquiring and analyzing temperature data related to flow measurement, thereby increasing the speed and accuracy with which repetitive flow determinations can be made.

  11. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  12. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  13. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  14. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...

  15. Development of an aerodynamic measurement system for hypersonic rarefied flows

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Fujita, K.; Suzuki, T.

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  16. Laser Doppler pulp vitality measurements: simulation and measurement

    NASA Astrophysics Data System (ADS)

    Ertl, T.

    2017-02-01

    Frequently pulp vitality measurement is done in a dental practice by pressing a frozen cotton pellet on the tooth. This method is subjective, as the patient's response is required, sometimes painful and has moderate sensitivity and specificity. Other methods, based on optical or electrical measurement have been published, but didńt find wide spread application in the dental offices. Laser Doppler measurement of the blood flow in the pulp could be an objective method to measure pulp vitality, but the influence of the gingival blood flow on the measurements is a concern. Therefore experiments and simulations were done to learn more about the gingival blood flow in relation to the pulpal blood flow and how to minimize the influence. First patient measurements were done to show the feasibility clinically. Results: Monte Carlo simulations and bench experiments simulating the blood flow in and around a tooth show that both basic configurations, transmission and reflection measurements are possible. Most favorable is a multi-point measurement with different distances from the gingiva. Preliminary sensitivity / specificity are promising and might allow an objective and painless measurement of tooth vitality.

  17. Experimental Measurement of Small Scale Multirotor Flows

    NASA Astrophysics Data System (ADS)

    Connors, Jacob; Weiner, Joseph; Velarde, John-Michael; Glauser, Mark

    2017-11-01

    Work is being done to create a multirotor Unmanned Air Vehicle (UAV) based anemometer system that would allow for measurement of velocity and spectra in the atmospheric boundary layer. The flow from the UAV's rotors will impact such measurements and hence must be filtered. This study focuses on measuring the fluctuations of the velocity field in the flow both above and below various UAVs to determine first, the feasibility of the creation of the filter, and second, the optimal placement of the system on the body of the UAV. These measurements are taking place in both Syracuse University's subsonic wind tunnel and Skytop Turbulence Lab's Indoor Flow Lab. Constant Temperature Anemometry is being used to measure these velocity field fluctuations across a variety of UAVs with differing characteristics such as size, number of propellers, and rotor blade type. The data from these experiments is being used to define a method to estimate the filter band required to isolate noise from wake effects, and determine ideal sensor placement based on characteristics of the vehicle's design alone. The authors would like to thank The Center for Advanced Systems and Engineering (CASE) at Syracuse University for funding and supporting this work.

  18. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2015-07-01

    Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.

  19. Energy measurement using flow computers and chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeson, J.

    1995-12-01

    Arkla Pipeline Group (APG), along with most transmission companies, went to electronic flow measurement (EFM) to: (1) Increase resolution and accuracy; (2) Real time correction of flow variables; (3) Increase speed in data retrieval; (4) Reduce capital expenditures; and (5) Reduce operation and maintenance expenditures Prior to EFM, mechanical seven day charts were used which yielded 800 pressure and differential pressure readings. EFM yields 1.2-million readings, a 1500 time improvement in resolution and additional flow representation. The total system accuracy of the EFM system is 0.25 % compared with 2 % for the chart system which gives APG improved accuracy.more » A typical APG electronic measurement system includes a microprocessor-based flow computer, a telemetry communications package, and a gas chromatograph. Live relative density (specific gravity), BTU, CO{sub 2}, and N{sub 2} are updated from the chromatograph to the flow computer every six minutes which provides accurate MMBTU computations. Because the gas contract length has changed from years to monthly and from a majority of direct sales to transports both Arkla and its customers wanted access to actual volumes on a much more timely basis than is allowed with charts. The new electronic system allows volumes and other system data to be retrieved continuously, if EFM is on Supervisory Control and Data Acquisition (SCADA) or daily if on dial up telephone. Previously because of chart integration, information was not available for four to six weeks. EFM costs much less than the combined costs of telemetry transmitters, pressure and differential pressure chart recorders, and temperature chart recorder which it replaces. APG will install this equipment on smaller volume stations at a customers expense. APG requires backup measurement on metering facilities this size. It could be another APG flow computer or chart recorder, or the other companies flow computer or chart recorder.« less

  20. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  1. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  2. A comparison of predicted and measured inlet distortion flows in a subsonic axial inlet flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1992-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. These Laser Anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A detailed comparison in the rotor relative reference frame between a Navier-Stokes solver and the measured experimental results showed good agreement between the predicted and measured flows. A primary flow is defined in the rotor and deviations and the computed predictions is made to assess the development of a passage vortex due to the distortion of the inlet flow. Computer predictions indicate that a distorted inlet profile has a minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  3. Off-design flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1995-10-01

    Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16% below and an 11% above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle ismore » used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.« less

  4. Using a high-flow nasal cannula provides superior results to OxyMask delivery in moderate to severe bronchiolitis: a randomized controlled study.

    PubMed

    Ergul, Ayse Betul; Calıskan, Emrah; Samsa, Hasan; Gokcek, Ikbal; Kaya, Ali; Zararsiz, Gozde Erturk; Torun, Yasemin Altuner

    2018-06-18

    The effectiveness of using a face mask with a small diffuser for oxygen delivery (OxyMask) was compared to use of a high-flow nasal cannula (HFNC) in patients with moderate or severe bronchiolitis.The study population in this open, phase 4, randomized controlled trial consisted of 60 patients aged 1-24 months diagnosed with moderate or severe bronchiolitis and admitted to an intensive care unit (ICU) for oxygen therapy. The patients were randomized into two groups according to the method of oxygen delivery: a diffuser mask group and an HFNC group.There were seven failures in the mask group and none in the HFNC group. The survival probability differed significantly between the two treatment methods (p = 0.009).Time to weaning off oxygen therapy was 56 h in the HFNC group and 96 h in the mask group (p < 0.001). HFNC use decreased the treatment failure rate and the duration of both oxygen therapy and ICU treatment compared to the diffuser mask, which implies that an HFNC should be the first choice for treating patients admitted to the ICU with severe bronchiolitis. What is known: • A high-flow nasal cannula (HFNC) does not significantly reduce the time on oxygen compared to standard therapy in children with moderate to severe bronchiolitis. Observational studies show that, since the introduction of HFNC, fewer children with bronchiolitis need intubation. For children with moderate to severe bronchiolitis there is no proof of its benefit. What Is New: • In children with moderate to severe bronchiolitis, HFNC provides faster and more effective improvement than can be achieved with a diffuser mask.

  5. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  6. Development of microcontroller based water flow measurement

    NASA Astrophysics Data System (ADS)

    Munir, Muhammad Miftahul; Surachman, Arif; Fathonah, Indra Wahyudin; Billah, Muhammad Aziz; Khairurrijal, Mahfudz, Hernawan; Rimawan, Ririn; Lestari, Slamet

    2015-04-01

    A digital instrument for measuring water flow was developed using an AT89S52 microcontroller, DS1302 real time clock (RTC), and EEPROM for an external memory. The sensor used for probing the current was a propeller that will rotate if immersed in a water flow. After rotating one rotation, the sensor sends one pulse and the number of pulses are counted for a certain time of counting. The measurement data, i.e. the number of pulses per unit time, are converted into water flow velocity (m/s) through a mathematical formula. The microcontroller counts the pulse sent by the sensor and the number of counted pulses are stored into the EEPROM memory. The time interval for counting is provided by the RTC and can be set by the operator. The instrument was tested under various time intervals ranging from 10 to 40 seconds and several standard propellers owned by Experimental Station for Hydraulic Structure and Geotechnics (BHGK), Research Institute for Water Resources (Pusair). Using the same propellers and water flows, it was shown that water flow velocities obtained from the developed digital instrument and those found by the provided analog one are almost similar.

  7. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  8. COMT ValMet moderation of cannabis-induced psychosis: a momentary assessment study of 'switching on' hallucinations in the flow of daily life.

    PubMed

    Henquet, C; Rosa, A; Delespaul, P; Papiol, S; Fananás, L; van Os, J; Myin-Germeys, I

    2009-02-01

    A functional polymorphism in the catechol-o-methyltransferase gene (COMT Val(158)Met) may moderate the psychosis-inducing effects of cannabis. In order to extend this finding to dynamic effects in the flow of daily life, a momentary assessment study of psychotic symptoms in response to cannabis use was conducted. The experience sampling technique was used to collect data on cannabis use and occurrence of symptoms in daily life in patients with a psychotic disorder (n = 31) and healthy controls (n = 25). Carriers of the COMT Val(158)Met Val allele, but not subjects with the Met/Met genotype, showed an increase in hallucinations after cannabis exposure, conditional on prior evidence of psychometric psychosis liability. The findings confirm that in people with psychometric evidence of psychosis liability, COMT Val(158)Met genotype moderates the association between cannabis and psychotic phenomena in the flow of daily life.

  9. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    NASA Astrophysics Data System (ADS)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  10. Enhancement of flow measurements using fluid-dynamic constraints

    NASA Astrophysics Data System (ADS)

    Egger, H.; Seitz, T.; Tropea, C.

    2017-09-01

    Novel experimental modalities acquire spatially resolved velocity measurements for steady state and transient flows which are of interest for engineering and biological applications. One of the drawbacks of such high resolution velocity data is their susceptibility to measurement errors. In this paper, we propose a novel filtering strategy that allows enhancement of the noisy measurements to obtain reconstruction of smooth divergence free velocity and corresponding pressure fields which together approximately comply to a prescribed flow model. The main step in our approach consists of the appropriate use of the velocity measurements in the design of a linearized flow model which can be shown to be well-posed and consistent with the true velocity and pressure fields up to measurement and modeling errors. The reconstruction procedure is then formulated as an optimal control problem for this linearized flow model. The resulting filter has analyzable smoothing and approximation properties. We briefly discuss the discretization of the approach by finite element methods and comment on the efficient solution by iterative methods. The capability of the proposed filter to significantly reduce data noise is demonstrated by numerical tests including the application to experimental data. In addition, we compare with other methods like smoothing and solenoidal filtering.

  11. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    PubMed

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  12. Flow Measurement. Training Module 3.315.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the principles of liquid flow and the methods of measuring open channel and fuel pipe flow rates. Included are objectives, instructor guides, student handouts, and transparency masters. The module addresses the basic flow formula, and…

  13. Flow Disturbance Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.

    2013-01-01

    Recent flow measurements have been acquired in the National Transonic Facility to assess the test-section unsteady flow environment. The primary purpose of the test is to determine the feasibility of the facility to conduct laminar-flow-control testing and boundary-layer transition-sensitive testing at flight-relevant operating conditions throughout the transonic Mach number range. The facility can operate in two modes, warm and cryogenic test conditions for testing full and semispan-scaled models. Data were acquired for Mach and unit Reynolds numbers ranging from 0.2 less than or equal to M less than or equal to 0.95 and 3.3 × 10(exp 6) less than Re/m less than 220×10(exp 6) collectively at air and cryogenic conditions. Measurements were made in the test section using a survey rake that was populated with 19 probes. Roll polar data at selected conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. This paper focuses primarily on the unsteady pressure and hot-wire results. Based on the current measurements and previous data, an assessment was made that the facility may be a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.

  14. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  15. Flow velocity measurements with stimulated Rayleigh-Brillouin-gain spectroscopy

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Moosmueller, H.; Lee, S. A.; She, C. Y.

    1983-01-01

    Using stimulated Rayleigh-Brillouin-gain spectroscopy, velocity measurements in an atmospheric-pressure subsonic nitrogen flow with 10 percent uncertainty have been conducted. It is shown that the accuracy of the velocity measurements increases with gas pressure, making this spectroscopic technique ideal for measuring velocity and other parameters of high-pressure (greater than 1-atm) atomic or molecular flows.

  16. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    NASA Technical Reports Server (NTRS)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  17. Measuring Taylor Slough boundary and internal flows, Everglades National Park, Florida

    USGS Publications Warehouse

    Tillis, G.M.

    2001-01-01

    Four intensive data-collection efforts, intended to represent the spectrum of precipitation events and associated flow conditions, were conducted during 1997 and 1998 in the Taylor Slough Basin, Everglades National Park. Flow velocities were measured by newly developed, portable Acoustic Doppler Velocity meters along three transects bisecting the Taylor Slough Basin from east to west, roughly perpendicular to the centerline axis of the slough as well as a fourth transect along the slough's axis. These meters provided the required levels of accuracy in flow-velocity measurements while enabling the rapid collection of multiple time series of flow data at remote sites. Concurrently, flow measurements were made along bordering road culverts and under L-31W and Taylor Slough bridges. Flows across the study area's boundaries provided net flow of water into the system and transect measurements provided flow data within the basin. Collected data are available through the World Wide Web (http://sofia.usgs.gov/projects/flow_velocity/). The high-water and low-water events corresponded with the highest and lowest flow velocities, respectively. The July 1998 data had lower than expected flow velocities and, in some cases, strong winds reversed flow direction.

  18. A flight experiment to measure rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.

    1990-01-01

    A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.

  19. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation.

    PubMed

    Newsome, Mary R; Scheibel, Randall S; Chu, Zili; Hunter, Jill V; Li, Xiaoqi; Wilde, Elisabeth A; Lu, Hanzhang; Wang, Zhiyue J; Lin, Xiaodi; Steinberg, Joel L; Vasquez, Ana C; Cook, Lori; Levin, Harvey S

    2012-05-01

    Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (p<.055) in the TBI group. To understand any role reduced CBF may play in diffuse extra-activation, we then related the right non-prefrontal CBF to activation. CBF in the right non-prefrontal region in the TD group was positively associated with prefrontal activation, suggesting an interactive role of non-prefrontal and prefrontal blood flow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole

  20. Fluid Flow Technology that Measures Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  1. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  2. Ultrasonic measurements of the bulk flow field in foams

    NASA Astrophysics Data System (ADS)

    Nauber, Richard; Büttner, Lars; Eckert, Kerstin; Fröhlich, Jochen; Czarske, Jürgen; Heitkam, Sascha

    2018-01-01

    The flow field of moving foams is relevant for basic research and for the optimization of industrial processes such as froth flotation. However, no adequate measurement technique exists for the local velocity distribution inside the foam bulk. We have investigated the ultrasound Doppler velocimetry (UDV), providing the first two-dimensional, non-invasive velocity measurement technique with an adequate spatial (10 mm ) and temporal resolution (2.5 Hz ) that is applicable to medium scale foam flows. The measurement object is dry aqueous foam flowing upward in a rectangular channel. An array of ultrasound transducers is mounted within the channel, sending pulses along the main flow axis, and receiving echoes from the foam bulk. This results in a temporally and spatially resolved, planar velocity field up to a measurement depth of 200 mm , which is approximately one order of magnitude larger than those of optical techniques. A comparison with optical reference measurements of the surface velocity of the foam allows to validate the UDV results. At 2.5 Hz frame rate an uncertainty below 15 percent and an axial spatial resolution better than 10 mm is found. Therefore, UDV is a suitable tool for monitoring of industrial processes as well as the scientific investigation of three-dimensional foam flows on medium scales.

  3. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  4. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Pengmin; McDonald, Timothy; Fulton, John

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  5. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE PAGES

    Pan, Pengmin; McDonald, Timothy; Fulton, John; ...

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  6. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    PubMed Central

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-01-01

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536

  7. Laser Doppler anemometer signal processing for blood flow velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (lasermore » applications and other topics in quantum electronics)« less

  8. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    NASA Astrophysics Data System (ADS)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and

  9. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  10. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  11. Evaluating groundwater flow using passive electrical measurements

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  12. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.

    1996-01-01

    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.

  13. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  14. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  15. Flow field measurements in the cell culture unit

    NASA Technical Reports Server (NTRS)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  16. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  17. Optical measurements in evolving dispersed pipe flows

    NASA Astrophysics Data System (ADS)

    Voulgaropoulos, Victor; Angeli, Panagiota

    2017-12-01

    Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.

  18. Unified Model Deformation and Flow Transition Measurements

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.

    1999-01-01

    The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.

  19. Viscous near-wall flow in a wake of circular cylinder at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Okhotnikov, D. I.; Molochnikov, V. M.; Mazo, A. B.; Malyukov, A. V.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.

  20. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  1. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-08

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Three-dimensional flow measurements in a vaneless radial turbine scroll

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Wood, B.; Vittal, B. V. R.

    1982-01-01

    The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.

  3. Simulations to verify horizontal flow measurements from a borehole flowmeter.

    PubMed

    James, Scott C; Jepsen, Richard A; Beauheim, Richard L; Pedler, William H; Mandell, Wayne A

    2006-01-01

    This paper reports on experiments and simulations of subsurface flow from a slotted acrylic tube deployed in a sand-tank flow chamber for two different purposes. In the first instance, the slotted tube is used to represent a single fracture intersected by an uncased well. In the second instance, the slotted tube is used to represent a multislot well screen within a porous medium. In both cases, the scanning colloidal borescope flowmeter (SCBFM) measures ground water velocity within the well by imaging colloids traveling through a well to measure their speed and direction. Measurements are compared against model simulations. For the case of a slotted tube representing a single fracture, SCBFM and model results agree with respect to the flow direction and to within a factor of 1.5 for the speed near the well's center. Model and experimental agreement lend confidence that for an uncased well drilled in a fractured-rock medium, a calibrated SCBFM could be used to identify and quantify flowing features. Next, the SCBFM was deployed in a four-column multislotted casing with slots aligned with the flow direction. Another numerical model was developed to estimate the flow field within this well screen to evaluate the potential usefulness of employing the SCBFM in a screened well to estimate flow speed and direction in the surrounding porous medium. Results indicate that if the slots are not aligned with the flow, the SCBFM may only provide order-of-magnitude speed measurements and direction measurements with an uncertainty of approximately +/-25 degrees .

  4. Arterial Blood Flow Measurement Using Digital Subtraction Angiography (DSA)

    NASA Astrophysics Data System (ADS)

    Swanson, David K.; Myerowitz, P. David; Van Lysel, Michael S.; Peppler, Walter W.; Fields, Barry L.; Watson, Kim M.; O'Connor, Julia

    1984-08-01

    Standard angiography demonstrates the anatomy of arterial occlusive disease but not its physiological signficance. Using intravenous digital subtraction angiography (DSA), we investigated transit-time videodensitometric techniques in measuring femoral arterial flows in dogs. These methods have been successfully applied to intraarterial DSA but not to intravenous DSA. Eight 20 kg dogs were instrumented with an electromagnetic flow probe and a balloon occluder above an imaged segment of femoral artery. 20 cc of Renografin 76 was power injected at 15 cc/sec into the right atrium. Flow in the femoral artery was varied by partial balloon occlusion or peripheral dilatation following induced ischemia resulting in 51 flow measurements varying from 15 to 270 cc/min. Three different transit-time techniques were studied: crosscorrelation, mean square error, and two leading edge methods. Correlation between videodensitometry and flowmeter measurements using these different techniques ranged from 0.78 to 0.88 with a mean square error of 29 to 37 cc/min. Blood flow information using several different transit-time techniques can be obtained with intravenous DSA.

  5. Three dimensional laser Doppler velocimeter turbulence measurements in a pipe flow

    NASA Technical Reports Server (NTRS)

    Fuller, C. E., III; Cliff, W. C.; Huffaker, R. M.

    1973-01-01

    The mean and turbulent u, v, and w components of a gaseous fully developed turbulent pipe flow were measured with a laser Doppler velocimeter system. Measurements of important system parameters are presented and discussed in relation to the measurement accuracy. Simultaneous comparisons of the laser Doppler and hot wire anemometer measurements in the turbulent flow provided evidence that the two systems were responding to the same flow phenomena.

  6. Detailed flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1994-07-01

    Hot-wire anemometer measurements have been made in the vaneless diffuser of a 1-m-dia low-speed backswept centrifugal compressor using a phase lock loop technique. Radial, tangential, and axial velocity measurements have been made on eight measurement planes through the diffuser. The flow field at the diffuser entry clearly shows the impeller jet-wake flow pattern and the blade wakes. The passage wake is located on the shroud side of the diffuser and mixes out slowly as the flow moves through the diffuser. The blade wakes, on the other hand, distort and mix out rapidly in the diffuser. Contours of turbulent kinetic energymore » are also presented on each of the measurement stations, from which the regions of turbulent mixing can be deduced.« less

  7. PERFORMING QUALITY FLOW MEASUREMENTS AT MINE SITES

    EPA Science Inventory

    Accurate flow measurement data is vital to research, monitoring, and remediation efforts at mining sites. This guidebook has been prepared to provide a summary of information relating to the performance of low measurements, and how this information can be applied at mining sites....

  8. Characterization of Arcjet Flows Using Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bamford, Douglas J.; O'Keefe, Anthony; Babikian, Dikran S.; Stewart, David A.; Strawa, Anthony W.

    1995-01-01

    A sensor based on laser-induced fluorescence has been installed at the 20-MW NASA Ames Aerodynamic Heating Facility. The sensor has provided new, quantitative, real-time information about properties of the arcjet flow in the highly dissociated, partially ionized, nonequilibrium regime. Number densities of atomic oxygen, flow velocities, heavy particle translational temperatures, and collisional quenching rates have been measured. These results have been used to test and refine computational models of the arcjet flow. The calculated number densities, translational temperatures, and flow velocities are in moderately good agreement with experiment

  9. Cold flow properties of biodiesel: A guide to getting an accurate analysis

    USDA-ARS?s Scientific Manuscript database

    Biodiesel has several advantages compared to conventional diesel fuel (petrodiesel). Nevertheless, biodiesel has poor cold flow properties that may restrict its use in moderate climates. It is essential that the cold flow properties of biodiesel and its blends with petrodiesel be measured as accurat...

  10. Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2001-01-01

    A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.

  11. Three-dimensional flow measurements in a tesla turbine rotor

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian

    2015-11-01

    Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.

  12. Time-dependent local density measurements in unsteady flows

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.

    1979-01-01

    A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.

  13. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  14. Measurement and prediction of model-rotor flow fields

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Tauber, M. E.

    1985-01-01

    This paper shows that a laser velocimeter can be used to measure accurately the three-component velocities induced by a model rotor at transonic tip speeds. The measurements, which were made at Mach numbers from 0.85 to 0.95 and at zero advance ratio, yielded high-resolution, orthogonal velocity values. The measured velocities were used to check the ability of the ROT22 full-potential rotor code to predict accurately the transonic flow field in the crucial region around and beyond the tip of a high-speed rotor blade. The good agreement between the calculated and measured velocities established the code's ability to predict the off-blade flow field at transonic tip speeds. This supplements previous comparisons in which surface pressures were shown to be well predicted on two different tips at advance ratios to 0.45, especially at the critical 90 deg azimuthal blade position. These results demonstrate that the ROT22 code can be used with confidence to predict the important tip-region flow field, including the occurrence, strength, and location of shock waves causing high drag and noise.

  15. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  16. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  17. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  18. [Improve, but measure in moderation; quality management in specialty residency training].

    PubMed

    Ter Braak, E W M T

    2017-01-01

    Intuitively, we believe we gain knowledge through taking measurements, and our appetite for quality measurement in general has grown spectacularly. However, this approach has to be qualified. Many aspects of quality are difficult to measure, yet are very important, and choosing what to measure may be heavily influenced by the availability bias of instruments. Moreover, a lot can be known without actually measuring. Quantitative results tend to offer false reassurance simply by their abundance, and results presented by means of Likert scales may obscure the crucial critique of a minority of respondents. Narrative comments in surveys are often much more meaningful as they can foster an open dialogue between residents and their clinical teachers, preferably led by a neutral chairperson. Contrary to what is often claimed, it is even possible to engage in improvement without prior measurement. I propose measuring only in moderation and instead devoting time and money to patient care and educating residents, and on the design and execution of improvement plans.

  19. Sns Moderator Poison Design and Experiment Validation of the Moderator Performance

    NASA Astrophysics Data System (ADS)

    Lu, W.; Iverson, E. B.; Ferguson, P. D.; Crabtree, J. A.; Gallmeier, F. X.; Remec, I.; Baxter, D. V.; Lavelle, C. M.

    2009-08-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory reached 180 kW in August 2007, becoming the brightest pulsed neutron source in the world. At its full power of 1.4 MW, SNS will have thermal neutron fluxes approximately an order of magnitude greater than any existing pulsed spallation source. It thus brings a serious challenge to the lifetime of the moderator poison sheets. The SNS moderators are integrated with the inner reflector plug (IRP) at a cost of $2 million a piece. A replacement of the IRP presents a significant drawback to the facility due to the activation and the operation cost. Although there are many factors limiting the lifetime of the IRP, such as radiation damage to the structural material and helium production in beryllium, the limiting factor is the lifetime of the moderator poison sheets. The current operating target system of SNS was built with thick Gd poison sheets at a projected lifetime of 3 years. A recent design based on the MCNPX calculation proposed to replace the Gd poison sheets with even thicker Cd poison sheets, aiming to extend the poison sheet lifetime from 3 to 4 years accompanied by an approximate 5% gain of the moderator performance. An experiment was carried out to verify the calculated moderator performance at the Low Energy Neutron Source (LENS), Indiana University, where the spectra of two polyethylene moderators were measured. The moderators are Cd-decoupled and are poisoned with 0.8 mm Gd and 1.2 mm Cd, respectively. The preliminary analysis of the experiment data shows that the characteristics of the measured spectra of the Gd- and Cd-poisoned moderators agree well with what the calculation predicted. A better moderator performance is observed in the Cd-poisoned moderator. The measured ratio of Cd over Gd on the moderator performance is in a reasonable agreement with the calculation. Further investigation is underway for a better understanding of the difference between the experiment and the

  20. Evaluation of four fast-response flow measurement devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gero, A.J.; Suppers, K.L.; Tomb, T.F.

    1988-01-01

    The Federal Mine Safety and Health Act of 1977 requires that sampling of dust in coal mine environments be conducted with an approved sampler operating at a flow rate of 2.0 liters of air per minute or at such other flow rate as prescribed by the Secretaries of Labor and of Health and Human Services. Standard procedures for calibration of these samplers within the Mine Safety and Health Administration utilize either a 3.0 liter capacity wet test meter or a 1.0 liter soap film calibrator. Several new flow calibrating devices have become commercially available. This paper describes an evaluation conductedmore » on four such devices: the Mast Model 823-2 bubble flowmeter, the Buck Calibrator, the Kurz Model 541S mass flowmeter and the Kurz Pocket Calibrator. The precision of a series of measurements made with each instrument was compared to the precision of a series of measurements made with the wet test meter. The comparison showed that the variability of calibration measurements obtained with the fast response flow calibrators was between 1.5 and 4.5 times larger than that obtained with the WTM; however, with all of the calibration devices evaluated, three repetitive measurements were sufficient to obtain a precision of {plus minus}0.1 liters per minute. 4 refs., 2 figs., 1 tab.« less

  1. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  2. Measurements of compressible secondary flow in a circular S-duct

    NASA Technical Reports Server (NTRS)

    Vakili, A.; Wu, J. M.; Liver, P.; Bhat, M. K.

    1983-01-01

    This paper presents the results of an experimental study of secondary flow in a circular cross section 30 deg - 30 deg S-duct with entrance Mach number of 0.6. Local flow velocity vectors have been measured along the length of the duct at six stations. These measurements have been made using a five-port cone probe. Static and total pressure profiles in the transverse planes are obtained from the cone probe measurements. Wall static pressure measurements along three azimuth angles of 0 deg, 90 deg, and 180 deg along the duct are also made. Contour plots presenting the three dimensional velocity field as well as the total- and static-pressure fields are obtained. Surface oil flow visualization technique has been used to provide details of the flow on the S-duct boundaries. The experimental observations have been compared with typical computational results.

  3. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  4. Evaluation of contrast-enhanced power Doppler imaging for measuring blood flow

    NASA Astrophysics Data System (ADS)

    Ansaloni, Sara; Arger, Peter H.; Cary, Ted W.; Sehgal, Chandra M.

    2005-04-01

    Power Doppler ultrasound enhanced by microbubble contrast agent has been used to image tissue vascularity and blood flow for the assessment of antivascular therapies. We have proposed a multigating technique that measures bubble concentration as a function of ultrasound exposure for deriving tumor blood flow and vascularity.1 Techniques using ultrasound contrast agent are known to be sensitive to the choice of imaging parameters like mechanical index and tissue attenuation. In this paper, the roles of mechanical index (MI) and tissue attenuation were evaluated experimentally in a rubber tubing flow phantom connected to a mixing chamber and a variable speed pump. The contrast was injected in the mixing chamber and the flow rate was measured using power Doppler imaging. The measurements were repeated at different MIs (0.1 to 1.3), and at different levels of attenuation, obtained with solutions of glycerol-water (10-20%). True flow was measured by collecting liquid flowing out of the phantom over a fixed duration. At low MI (<0.5), the grayscale and Doppler signal were weak, making these images unsuitable for analysis. At higher MI (> 0.8), there was a well-defined enhancement by contrast agent resulting in reproducible flow measurements at variable MIs. A balance between the number of bubbles destroyed and the echo they generate must be achieved for optimal imaging. The increased attenuation of ultrasound by the overlying medium did not influence the flow measurements.

  5. Measurement of flows around modern commercial ship models

    NASA Astrophysics Data System (ADS)

    Kim, W. J.; Van, S. H.; Kim, D. H.

    To document the details of flow characteristics around modern commercial ships, global force, wave pattern, and local mean velocity components were measured in the towing tank. Three modern commercial hull models of a container ship (KRISO container ship = KCS) and of two very large crude-oil carriers (VLCCs) with the same forebody and slightly different afterbody (KVLCC and KVLCC2) having bow and stern bulbs were selected for the test. Uncertainty analysis was performed for the measured data using the procedure recommended by the ITTC. Obtained experimental data will provide a good opportunity to explore integrated flow phenomena around practical hull forms of today. Those can be also used as the validation data for the computational fluid dynamics (CFD) code of both inviscid and viscous flow calculations.

  6. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  7. Mean-flow measurements of the flow field diffusing bend

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.

    1982-01-01

    Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.

  8. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  9. Flow cytometry of mammalian sperm: progress in DNA and morphology measurement.

    PubMed

    Pinkel, D; Dean, P; Lake, S; Peters, D; Mendelsohn, M; Gray, J; Van Dilla, M; Gledhill, B

    1979-01-01

    Variability in DNA content and head shape of mammalian sperm are potentially useful markers for flow cytometric monitoring of genetic damage in spermatogenic cells. The high refractive index and extreme flatness of the sperm heads produce an optical effect which interferes with DNA measurements in flow cytometers which have dye excitation and fluorescence light collection normal to the axis of flow. Orientation of sperm in flow controls this effect and results in coefficients of variation of 2.5% and 4.2%, respectively, for DNA measurements of mouse and human sperm. Alternatively, the optical effect can be used to generate shape-related information. Measurements on randomly oriented sperm from three mammalian species using a pair of fluorescence detectors indicate that large shape differences are detectable. Acriflavine-Feulgen stained sperm nuclei are significantly bleached during flow cytometric measurements at power levels routinely used in many flow cytometers. Dual beam studies of this phenomenon indicate it may be useful in detecting abnormally shaped sperm.

  10. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    NASA Technical Reports Server (NTRS)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  11. Gingival blood flow measurement with a non-contact laser flowmeter.

    PubMed

    Matsuki, M; Xu, Y B; Nagasawa, T

    2001-07-01

    A non-contact laser flowmeter was used to measure the changing of the gingival blood flow. Five university students with healthy oral condition were selected in this study. The blood flow measurement on the extensor digitorum (above the head of third metacarpal), with the changing of distance and angle between the probe and the tissue was used as a pre-study experiment. Blood flow rate was determined in the labial gingiva (2 mm above the cervical line) of upper central incisor using a stent fixing the probe at a 3-mm distance from the tissue. A basal level of gingival blood flow was taken two times each day for 5 days. The effects of water of different temperatures on the gingival blood flow are discussed. With the changing of distance, the blood flow rate became smaller, but there was no significant effect from the angle. The reproducibility was acceptable through the 5-day measurement. After stimulating with warm and body temperature water, the blood flow first increased significantly and then went back to the basal line (faster with the body temperature water). With cold water, different reactions between the subjects were observed.

  12. Can MR Measurement of Renal Artery Flow and Renal Volume Predict the Outcome of Percutaneous Transluminal Renal Angioplasty?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkert, Christoph A.; Debatin, Jorg F.; Schneider, Ernst

    2001-07-15

    : A combination of cine phase-contrast MR renal flow and parenchymal volume measurements enables identification of patients benefiting from PTRA with a high sensitivity and NPV, but only moderate specificity and PPV.« less

  13. Seed Cotton Mass Flow Measurement in the Gin

    USDA-ARS?s Scientific Manuscript database

    Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...

  14. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  15. [Echocardiography in Boid snakes: Demonstration and blood flow measurements].

    PubMed

    Schroff, S; Starck, J M; Krautwald-Junghanns, M-E; Pees, M

    2012-01-01

    Comparative echocardiography and blood flow measurements in different boid species. 51 healthy snakes from seven different species were examined echocardiographically under standardized conditions. The heart and the great vessels were displayed using 2-D-ultrasonography. Pulsed-wave doppler technique measurements of the blood flow within the vessels were performed and results analyzed statistically. The examinations could be performed in non-sedated snakes in ventral recumbency. The best image quality was obtained using the ventrolateral coupling site. An examination scheme applicable to all examined snake species was established. Diversity in the anatomy of vessels could be detected in different snake species. A characteristic shape of the curve demonstrating the blood flow against time could be shown for the respective vessels. There were positive correlations between the size of the snakes and the absolute blood flow (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=0.770; r=0.627; r=0.766; respectively to body mass: p<0.001; r=0.815; r=0.698; r=0.788), as well as negative correlations between the size of the animals and the blood flow relative to body mass (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=-0.533; r=-0.512; r=-0.478; respectively total flow to body mass: p<0.001; r=-0.768). When using standardized conditions, echocardiography in boid snakes is a useful diagnostic tool for the assessment of cardiac function. Reference values provided in this study serve as a basis for ultrasound examination in veterinary practice.

  16. Blood flow velocity measurement by endovascular Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Nolte, Felix; Vuong, Barry; Cheng, Kyle H. Y.; Lee, Kenneth K. C.; Standish, Beau A.; Courtney, Brian; Marotta, Tom R.; Yang, Victor X. D.

    2013-03-01

    Blood flow velocity and volumetric flow measurements are important parameters for assessment of the severity of stenosis and the outcome of interventional therapy. However, feasibility of intravascular flow measurement using a rotational catheter based phase resolved Doppler optical coherence tomography (DOCT) is difficult. Motion artefacts induced by the rotating optical imaging catheter, and the radially dependent noise background of measured Doppler signals are the main challenges encountered. In this study, a custom-made data acquisition system and developed algorithms to remove non-uniform rotational distortion (NURD) induced phase shift artefact by tracking the phase shift observed on catheter sheath. The flow velocity is calculated from Doppler shift obtained by Kasai autocorrelation after motion artefact removal. Blood flow velocity profiles in porcine carotid arteries in vivo were obtained at 100 frames/s with 500 A-lines/frame and DOCT images were taken at 20 frames/s with 2500 A-lines/frame. Time-varying velocity profiles were obtained at an artery branch. Furthermore, the identification of a vein adjacent to the catheterized vessel based on the color Doppler signal was also observed. The absolute measurement of intravascular flow using a rotating fiber catheter can provide insights to different stages of interventional treatment of stenosis in carotid artery.

  17. Evaluation of a method of estimating low-flow frequencies from base-flow measurements at Indiana streams

    USGS Publications Warehouse

    Wilson, John Thomas

    2000-01-01

    A mathematical technique of estimating low-flow frequencies from base-flow measurements was evaluated by using data for streams in Indiana. Low-flow frequencies at low- flow partial-record stations were estimated by relating base-flow measurements to concurrent daily flows at nearby streamflow-gaging stations (index stations) for which low-flowfrequency curves had been developed. A network of long-term streamflow-gaging stations in Indiana provided a sample of sites with observed low-flow frequencies. Observed values of 7-day, 10-year low flow and 7-day, 2-year low flow were compared to predicted values to evaluate the accuracy of the method. Five test cases were used to evaluate the method under a variety of conditions in which the location of the index station and its drainage area varied relative to the partial-record station. A total of 141 pairs of streamflow-gaging stations were used in the five test cases. Four of the test cases used one index station, the fifth test case used two index stations. The number of base-flow measurements was varied for each test case to see if the accuracy of the method was affected by the number of measurements used. The most accurate and least variable results were produced when two index stations on the same stream or tributaries of the partial-record station were used. All but one value of the predicted 7-day, 10-year low flow were within 15 percent of the values observed for the long-term continuous record, and all of the predicted values of the 7-day, 2-year lowflow were within 15 percent of the observed values. This apparent accuracy, to some extent, may be a result of the small sample set of 15. Of the four test cases that used one index station, the most accurate and least variable results were produced in the test case where the index station and partial-record station were on the same stream or on streams tributary to each other and where the index station had a larger drainage area than the partial-record station. In

  18. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  19. Investigating Jupiter's Deep Flow Structure using the Juno Magnetic and Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Duer, K.; Galanti, E.; Cao, H.; Kaspi, Y.

    2017-12-01

    Jupiter's flow below its cloud-level is still largely unknown. The gravity measurements from Juno provide now an initial insight into the depth of the flow via the relation between the gravity field and the flow field. Furthermore, additional constraints could be put on the flow if the expected Juno magnetic measurements are also used. Specifically, the gravity and magnetic measurements can be combined to allow a more robust estimate of the deep flow structure. However, a complexity comes from the fact that both the radial profile of the flow, and it's connection to the induced magnetic field, might vary with latitude. In this study we propose a method for using the expected Juno's high-precision measurements of both the magnetic and gravity fields, together with latitude dependent models that relate the measurements to the structure of the internal flow. We simulate possible measurements by setting-up specific deep wind profiles and forward calculate the resulting anomalies in both the magnetic and gravity fields. We allow these profiles to include also latitude dependency. The relation of the flow field to the gravity field is based on thermal wind balance, and it's relation to the magnetic field is via a mean-field electrodynamics balance. The latter includes an alpha-effect, describing the mean magnetic effect of turbulent rotating convection, which might also vary with latitude. Using an adjoint based optimization process, we examine the ability of the combined magnetic-gravity model to decipher the flow structure under the different potential Juno measurements. We investigate the effect of different latitude dependencies on the derived solutions and their associated uncertainties. The novelty of this study is the combination of two independent Juno measurements for the calculation of a latitudinal dependent interior flow profile. This method might lead to a better constraint of Jupiter's flow structure.

  20. Rotating permanent magnet excitation for blood flow measurement.

    PubMed

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  1. Automated structure and flow measurement - a promising tool in nailfold capillaroscopy.

    PubMed

    Berks, Michael; Dinsdale, Graham; Murray, Andrea; Moore, Tonia; Manning, Joanne; Taylor, Chris; Herrick, Ariane L

    2018-07-01

    Despite increasing interest in nailfold capillaroscopy, objective measures of capillary structure and blood flow have been little studied. We aimed to test the hypothesis that structural measurements, capillary flow, and a combined measure have the predictive power to separate patients with systemic sclerosis (SSc) from those with primary Raynaud's phenomenon (PRP) and healthy controls (HC). 50 patients with SSc, 12 with PRP, and 50 HC were imaged using a novel capillaroscopy system that generates high-quality nailfold images and provides fully-automated measurements of capillary structure and blood flow (capillary density, mean width, maximum width, shape score, derangement and mean flow velocity). Population statistics summarise the differences between the three groups. Areas under ROC curves (A Z ) were used to measure classification accuracy when assigning individuals to SSc and HC/PRP groups. Statistically significant differences in group means were found between patients with SSc and both HC and patients with PRP, for all measurements, e.g. mean width (μm) ± SE: 15.0 ± 0.71, 12.7 ± 0.74 and 11.8 ± 0.23 for SSc, PRP and HC respectively. Combining the five structural measurements gave better classification (A Z  = 0.919 ± 0.026) than the best single measurement (mean width, A Z  = 0.874 ± 0.043), whilst adding flow further improved classification (A Z  = 0.930 ± 0.024). Structural and blood flow measurements are both able to distinguish patients with SSc from those with PRP/HC. Importantly, these hold promise as clinical trial outcome measures for treatments aimed at improving finger blood flow or microvascular remodelling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Validation of thermal techniques for measurement of pelvic organ blood flows in the nonpregnant sheep: comparison with transit-time ultrasonic and microsphere measurements of blood flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, N.J.; Beard, R.W.; Sutherland, I.A.

    1988-03-01

    Data obtained from a thermal system capable of measuring changes in organ temperature as well as tissue thermal clearance in the uterus and vagina have been compared with blood flow measured continuously with a transit-time ultrasound volume-flow sensor placed around the common internal iliac artery and intermittently with radioactive microspheres in the chronically instrumented nonpregnant sheep. Temperature changes in both the uterus and the vagina correlated well with blood flow changes measured by both techniques after intravenous administration of estradiol or norepinephrine. Thermal clearance did not correlate well with blood flow in the vagina or uterus. These methods may havemore » value in the investigation of blood flow patterns in various clinical situations such as the pelvic pain syndrome and early pregnancy.« less

  3. In vitro flow measurements in ion sputtered hydrocephalus shunts

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.

    1989-01-01

    This paper describes an experimental procedure for accurate measurements of the pressure-drop/flow rate relationship in hydrocephalus shunts. Using a fish-hook arrangement, small flow rates in a perforated ion-sputtered Teflon microtubule were measured in vitro in a pressured system and were correlated with pressure in the system. Results indicate that appropriate drainage rates could be obtained in the physiological range for hydrocephalus shunts.

  4. Heat-transfer measurements of the 1983 Kilauea lava flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  5. Heat transfer measurements of the 1983 kilauea lava flow.

    PubMed

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  6. Field Measurements of the 1983 Royal Gardens Lava Flows, Kilauea Volcano, and 1984 Mauna Loa Lava Flow, Hawaii

    NASA Technical Reports Server (NTRS)

    Fink, J.; Zimbelman, J.

    1985-01-01

    Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.

  7. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  8. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  9. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis.

    PubMed

    Chin, Lisa M K; Heigenhauser, George J F; Paterson, Donald H; Kowalchuk, John M

    2010-06-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (VO2p) and leg femoral conduit artery ("bulk") blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) approximately 40 mmHg] and sustained hyperventilation (Hypo; PetCO2 approximately 20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). VO2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Delta[HHb])-, oxy (Delta[O2Hb])-, and total hemoglobin-myoglobin (Delta[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of VO2p, LBF, and Delta[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 VO2p (Hypo, 49+/-26 s; Con, 28+/-8 s) and LBF (Hypo, 46+/-16 s; Con, 23+/-6 s) were greater (P<0.05) in Hypo compared with Con. However, the mean response time for the overall Delta[HHb] response was not different between conditions (Hypo, 23+/-5 s; Con, 24+/-3 s), whereas the Delta[HHb] amplitude was greater (P<0.05) in Hypo (8.05+/-7.47 a.u.) compared with Con (6.69+/-6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given DeltaVO2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of VO2p (and muscle O2 utilization) kinetics.

  10. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  11. Measurement and Computation of Supersonic Flow in a Lobed Diffuser-Mixer for Trapped Vortex Combustors

    NASA Technical Reports Server (NTRS)

    Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.

    2002-01-01

    The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the

  12. Measurements of drag and flow over biofilm

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  13. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  14. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    PubMed

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  15. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    PubMed

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  16. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  17. Measurements of Complex Oceanic Flows, from Turbulence in the Coastal Ocean to Interaction of Zooplankton with its Local Environment

    NASA Astrophysics Data System (ADS)

    Katz, J.

    2004-03-01

    The presentation has two parts, both dealing with flow structure, turbulence and flow-particle interactions in the ocean. The first part examines PIV data obtained in the bottom boundary layer of the coastal ocean in periods when the mean currents are higher, of the same order and weaker than the wave induced motions. The energy spectra display substantial anisotropy at all scales, and the flow consists of periods of "gusts" dominated by large vortical structures, separated by periods of quiescent flows. The frequency of these gusts increases with Reynolds number, and they disappear when the currents are weak. Conditional sampling shows that the Reynolds shear stress, and as a result the shear production, are generated only during periods of gusts. When the mean flow is weak and during quiescent periods of moderate flow the shear stresses are essentially zero. Dissipation, on the other hand, occurs continuously, and increases only slightly during gust periods. The second part focuses on interactions of zooplankton with the local flow. Digital in-line holographic cinematography is used for measuring the three-dimensional trajectory of a free-swimming copepod, and simultaneously the instantaneous 3-D velocity field around this copepod. The velocity field and trajectory of particles entrained by the copepod have a recirculating pattern in the copepod's frame of reference. This pattern is caused by the copepod sinking at a rate that is lower than its terminal sinking speed, due to the propulsive force generated by its feeding current. Consequently, the copepod has to hop periodically to scan different fluid for food. Using Stokeslets to model the velocity field, the measured velocity distributions enable us to estimate the excess weight of the copepod and the propulsive force generated by its feeding appendages. Sponsored in part by the Office of Naval Research and by the National Science Foundation.

  18. PLASMA FLOWS AT VOYAGER 2 AWAY FROM THE MEASURED SUPRATHERMAL PRESSURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D. J.; Schwadron, N. A., E-mail: dmccomas@swri.edu

    2014-11-01

    Plasma flows measured by Voyager 2 show a clear rotation away from radially outward with increasing penetration into the inner heliosheath while the overall flow speed remains roughly constant. However, the direction of rotation is far more into the transverse, and less into the polar direction, than predicted. No current model reproduces the key observational results of (1) the direction of flow rotation or (2) constancy of the flow speed. Here we show that the direction is consistent with flow away from the region of maximum pressure in the inner heliosheath, ∼20° south of the upwind direction, as measured bymore » the Interstellar Boundary Explorer (IBEX). Further, we show that the dominance of the suprathermal ion pressure in the inner heliosheath measured by IBEX can explain both the observed flow rotation and constancy of the flow speed. These results indicate the critical importance of suprathermal ions in the physics of the inner heliosheath and have significant implications for understanding this key region of the heliosphere's interstellar interaction and astrophysical plasmas more broadly.« less

  19. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  20. A database of aerothermal measurements in hypersonic flow for CFD validation

    NASA Technical Reports Server (NTRS)

    Holden, M. S.; Moselle, J. R.

    1992-01-01

    This paper presents an experimental database selected and compiled from aerothermal measurements obtained on basic model configurations on which fundamental flow phenomena could be most easily examined. The experimental studies were conducted in hypersonic flows in 48-inch, 96-inch, and 6-foot shock tunnels. A special computer program was constructed to provide easy access to the measurements in the database as well as the means to plot the measurements and compare them with imported data. The database contains tabulations of model configurations, freestream conditions, and measurements of heat transfer, pressure, and skin friction for each of the studies selected for inclusion. The first segment contains measurements in laminar flow emphasizing shock-wave boundary-layer interaction. In the second segment, measurements in transitional flows over flat plates and cones are given. The third segment comprises measurements in regions of shock-wave/turbulent-boundary-layer interactions. Studies of the effects of surface roughness of nosetips and conical afterbodies are presented in the fourth segment of the database. Detailed measurements in regions of shock/shock boundary layer interaction are contained in the fifth segment. Measurements in regions of wall jet and transpiration cooling are presented in the final two segments.

  1. Moderate Physical Activity and Its Relationship to Select Measures of a Healthy Diet

    ERIC Educational Resources Information Center

    Blakely, Frank; Dunnagan, Tim; Haynes, George; Moore, Sylvia; Pelican, Suzanne

    2004-01-01

    In rural communities, physical activity may influence and predict nutritional behaviors. The purpose of this investigation was to determine if an individual's stage of participation in moderate physical activity was related to select measures of a healthy diet. Data were collected using a mail-in survey from a random sample conducted in the…

  2. Feasibility and accuracy assessment of light field (plenoptic) PIV flow-measurement technique

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra; Ogawa, Syo; Kawaguchi, Tatsuya

    A light field camera can enable measurement of all the three velocity components of a flow field inside a three-dimensional volume when implemented in a PIV measurement. Due to the usage of only one camera, the measurement procedure gets greatly simplified, as well as measurement of the flows with limited visual access also becomes possible. Due to these advantages, light field cameras and their usage in PIV measurements are actively studied. The overall procedure of obtaining an instantaneous flow field consists of imaging a seeded flow at two closely separated time instants, reconstructing the two volumetric distributions of the particles using algorithms such as MART, followed by obtaining the flow velocity through cross-correlations. In this study, we examined effects of various configuration parameters of a light field camera on the in-plane and the depth resolutions, obtained near-optimal parameters in a given case, and then used it to simulate a PIV measurement scenario in order to assess the reconstruction accuracy.

  3. A compact x-ray system for two-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  4. Sensors for Using Times of Flight to Measure Flow Velocities

    NASA Technical Reports Server (NTRS)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  5. In Situ Local Fracture Flow Measurement by the Double Packer Dilution Test

    NASA Astrophysics Data System (ADS)

    Englert, A.; Le Borgne, T.; Bour, O.; Klepikova, M.; Lavenant, N.

    2011-12-01

    For prediction of flow and transport in fractured media, prior estimation of the fracture network is essential, but challenging. Recent developments in hydraulic tomography have shown promising results for understanding connectivities between boreholes. However, as the hydraulic tomographic survey is typically based on the propagation of head only, it becomes a strongly non unique problem. To reduce the non uniqueness of tomographic surveys point conditioning has been found beneficial. Just as well, measurement of local flow in a fracture can serve as point conditioning for hydraulic and tracer tomographic surveys. Nevertheless, only few measurements of local fracture flow have been performed since this type of measurements implies several important technical issues. Dilution test in a packed off interval is a possible method for measuring fracture flow (e.g. Drost et al. 1968, Novakowski et al., 2005). However, a key issue for estimating flow with dilution tests is to ensure a full mixing of the tracer in the packed interval. This is typically done by including a mixing system within the packer. The design of such system can be challenging for deep wells and small diameters. Here, we propose a method where mixing is ensured by a recirculation loop including a surface tank. This method is adapted from the design proposed by Brouyere et al. (2008), who measured dilution in open wells. Dilution is quantified by measuring the concentration in the surface barrel as function of time. Together with the measurement of the circulating flow and the water filled volume in the surface barrel, the measured tracer dilution allows for calculation of the fracture flow. Since the method can be applied using a classical double packer system, it may provide a broader application of local flow measurements in heterogeneous media. We tested the approach on the Ploemeur fractured crystalline rock site. A one meter interval at depth 80 m with a single flowing fracture was isolated with

  6. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  7. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  8. Novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish

    NASA Astrophysics Data System (ADS)

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2006-11-01

    A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.

  9. Measurement Of Multiphase Flow Water Fraction And Water-cut

    NASA Astrophysics Data System (ADS)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  10. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less

  11. Economic method for measuring ultra-low flow rates of fluids

    NASA Technical Reports Server (NTRS)

    Bogdanovic, J. A.; Keller, W. F.

    1970-01-01

    Capillary tube flowmeter measures ultra-low flows of very corrosive fluids /such as chlorine trifluoride and liquid fluorine/ and other liquids with reasonable accuracy. Flowmeter utilizes differential pressure transducer and operates on the principle that for laminar flow in the tube, pressure drop is proportional to flow rate.

  12. Systematic heat flow measurements across the Wagner Basin, northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Sclater, John G.; González-Fernández, Antonio

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Although heat flow data were collected in shallow water, where there are significant temporal variations in bottom water temperature, we use CTD data collected over many years to correct our measurements to yield accurate values of heat flow. After correction for bottom water temperature, the mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220 ± 60, 99 ± 14, 889 ± 419 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Moreover, heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  13. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  14. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G [Augusta, GA; Rossabi, Joseph [Aiken, SC; Riha, Brian D [Augusta, GA

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  15. Apparatus for passive removal of subsurface contaminants and volume flow measurement

    DOEpatents

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining volume flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the volume flow rate to be determined through the retrofitted Baroball valve.

  16. Study on blade surface flow around wind turbine by using LDV measurements

    NASA Astrophysics Data System (ADS)

    Phengpom, Tinnapob; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Nishimura, Shogo; Matsuno, Tasuku

    2015-04-01

    This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine (HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade is a challenging endeavor. In this research, the HAWT model with 2.4 m diameter was tested in the large wind tunnel. The flow around the rotating blade surface was measured simultaneously for three velocity components, and two probes were used for the synchronized measurement of three-dimensional flow components. The local velocity was detected for the single seeding particle measured in the point where three pairs of laser beams intersected. Blade sections of interest in this study are composed of radial positions r/R = 0.3, 0.5 and 0.7. Optimum and low tip speed ratio flow characteristics were also compared. The velocity flow vector, skin friction coefficient and bound circulation were calculated from LDV measurements, and the experimental research showed reasonably and clearly the experimental results.

  17. Heat Flow Measurement and Analysis of Thermal Vacuum Insulation

    NASA Astrophysics Data System (ADS)

    Laa, C.; Hirschl, C.; Stipsitz, J.

    2008-03-01

    A new kind of calorimeter has been developed at Austrian Aerospace to measure specific material parameters needed for the analysis of thermal vacuum insulation. A detailed description of the measuring device and the measurement results will be given in this paper. This calorimeter facility allows to measure the heat flow through the insulation under vacuum conditions in a wide temperature range from liquid nitrogen to ambient. Both boundary temperatures can be chosen within this range. Furthermore the insulation can be characterized at high vacuum or under degraded vacuum, the latter is simulated by using helium or nitrogen gas. The mechanisms of heat transfer have been investigated, namely infrared radiation between the reflective layers of the insulation and conduction through the interleaving spacer material. A mathematical description of the heat flow through the insulation has been derived. Based on this, the heat flow for a typical insulation material has been calculated by finite element analysis by use of the sotware tool Ansys®. Such a transient calculation is needed to determine the time to reach thermal equilibrium, which is mandatory for a proper interpretation and evaluation of the measurement. The new insulation measurement results combined with the proposed type of analysis can be applied to better understand the thermal behavior of any kind of cryogenic system.

  18. Full-thickness small intestine necrosis with midgut volvulus, distributed in a patchy fashion, is reversible with moderate blood flow: resumption of normal function to non-viable intestine.

    PubMed

    Amano, Hizuru; Uchida, Hiroo; Kawashima, Hiroshi; Tanaka, Yujiro; Kishimoto, Hiroshi

    2014-08-01

    Midgut volvulus is a highly life-threatening condition that carries a high risk of short gut syndrome. We report a case of catastrophic neonatal midgut volvulus in which second-look laparotomy revealed apparently non-viable remnant small intestine but with a moderate blood supply. Full-thickness small intestine necrosis was distributed in a patchy fashion, with non-viable and necrotic areas distributed so widely that no portion of the intestine could be resected. A section of full-thickness necrotic intestine preserved at surgery was able to regenerate, and normal function was restored over a period of 1 month. This case indicated that intestinal resumption may be dependent on blood flow. Even when intestinal viability is questionable, preservation enables the chance of regeneration if moderate blood flow is present.

  19. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  20. Measuring peak expiratory flow in general practice: comparison of mini Wright peak flow meter and turbine spirometer.

    PubMed Central

    Jones, K P; Mullee, M A

    1990-01-01

    OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611

  1. L.D.V. measurements of unsteady flow fields in radial turbine

    NASA Astrophysics Data System (ADS)

    Tabakoff, W.; Pasin, M.

    1992-07-01

    Detailed measurements of an unsteady flow field within the inlet guide vanes (IGV) and the rotor of a radial inflow turbine were performed using a three component Laser Doppler Velocimeter (LDV) system together with a rotary encoder. The mean velocity, the flow angle and the turbulence contours for IGV passages are presented at four blade-to-blade planes for different rotor positions to give three dimensional, unsteady behavior of the IGV flow field. These results are compared with the measurements obtained in the same passage in the absence of the rotor. The flow field of the IGV passage was found to be affected by the presence of the rotor. The ratio of the tangential normal stresses to the radial normal stresses at the exit of the IGV was found to be more than doubled when compared to the case without the rotor. The rotor flow field measurements are presented as relative mean velocity and turbulence stress contours at various cross section planes throughout the rotor. The cross flow and turbulence stress levels were found to be influenced by the incidence angle. Transportation of the high turbulence fluid by the cross flow was observed downstream in the rotor blade passages.

  2. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  3. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  4. Turbulence spectra in the noise source regions of the flow around complex surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D. R.

    1983-01-01

    The complex turbulent flow around three complex surfaces was measured in detail with a hot wire. The measured data include extensive spatial surveys of the mean velocity and turbulence intensity and measurements of the turbulence spectra and scale length at many locations. The publication of the turbulence data is completed by reporting a summary of the turbulence spectra that were measured within the noise source locations of the flow. The results suggest some useful simplifications in modeling the very complex turbulent flow around complex surfaces for aeroacoustic predictive models. The turbulence spectra also show that noise data from scale models of moderate size can be accurately scaled up to full size.

  5. Advanced Instrumentation for Molten Salt Flow Measurements at NEXT

    NASA Astrophysics Data System (ADS)

    Tuyishimire, Olive

    2017-09-01

    The Nuclear Energy eXperiment Testing (NEXT) Lab at Abilene Christian University is building a Molten Salt Loop to help advance the technology of molten salt reactors (MSR). NEXT Lab's aim is to be part of the solution for the world's top challenges by providing safe, clean, and inexpensive energy, clean water and medical Isotopes. Measuring the flow rate of the molten salt in the loop is essential to the operation of a MSR. Unfortunately, there is no flow meter that can operate in the high temperature and corrosive environment of a molten salt. The ultrasonic transit time method is proposed as one way to measure the flow rate of high temperature fluids. Ultrasonic flow meter uses transducers that send and receive acoustic waves and convert them into electrical signals. Initial work presented here focuses on the setup of ultrasonic transducers. This presentation is the characterization of the pipe-fluid system with water as a baseline for future work.

  6. Microwave/Sonic Apparatus Measures Flow and Density in Pipe

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.

    2004-01-01

    An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.

  7. Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1976-01-01

    Turbulent intensity and Reynolds shear stress measurements are presented for two nonadiabatic hypersonic shock-wave boundary-layer interaction flows, one with and one without separation. These measurements were obtained using a new hot-wire probe specially designed for heated flows. Comparison of the separated and attached flows shows a significant increase above equilibrium values in the turbulent intensity and shear stress downstream of the interaction region for the attached case, while for the separated case, the turbulent fluxes remain close to equilibrium values. This effect results in substantial differences in turbulence lifetime for the two flows. We propose that these differences are due to a coupling between the turbulent energy and separation bubble unsteadiness, a hypothesis supported by the statistical properties of the turbulent fluctuations.

  8. Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1976-01-01

    Turbulent intensity and Reynolds shear stress measurements are presented for two nonadiabatic hypersonic shock-wave boundary-layer interaction flows, one with and one without separation. These measurements were obtained using a new hot-wire probe specially designed for heated flows. Comparison of the separated and attached flows shows a significant increase above equilibrium values in the turbulent intensity and shear stress downstream of the interaction region for the attached case, while for the separated case, the turbulent fluxes remain close to equilibrium values. This effect results in substantial differences in turbulence lifetimes for the two flows. It is proposed that these differences are due to a coupling between the turbulent energy and separation bubble unsteadiness, a hypothesis supported by the statistical properties of the turbulent fluctuations.

  9. Energy cost and game flow of 5 exer-games in trained players.

    PubMed

    Bronner, Shaw; Pinsker, Russell; Noah, J Adam

    2013-05-01

    To determine energy expenditure and player experience in exer-games designed for novel platforms. Energy cost of 7 trained players was measured in 5 music-based exer-games. Participants answered a questionnaire about "game flow," experience of enjoyment, and immersion in game play. Energy expenditure during game play ranged from moderate to vigorous intensity (4 - 9 MET). Participant achieved highest MET levels and game flow while playing StepMania and lowest MET levels and game flow when playing Wii Just Dance 3(®) and Kinect Dance Central™. Game flow scores positively correlated with MET levels. Physiological measurement and game flow testing during game development may help to optimize exer-game player activity and experience.

  10. A Structured-Grid Quality Measure for Simulated Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A structured-grid quality measure is proposed, combining three traditional measurements: intersection angles, stretching, and curvature. Quality assesses whether the grid generated provides the best possible tradeoffs in grid stretching and skewness that enable accurate flow predictions, whereas the grid density is assumed to be a constraint imposed by the available computational resources and the desired resolution of the flow field. The usefulness of this quality measure is assessed by comparing heat transfer predictions from grid convergence studies for grids of varying quality in the range of [0.6-0.8] on an 8'half-angle sphere-cone, at laminar, perfect gas, Mach 10 wind tunnel conditions.

  11. Basic Requirements for Collecting, Documenting, and Reporting Precipitation and Stormwater-Flow Measurements

    USGS Publications Warehouse

    Church, Peter E.; Granato, Gregory E.; Owens, David W.

    1999-01-01

    Accurate and representative precipitation and stormwater-flow data are crucial for use of highway- or urban-runoff study results, either individually or in a regional or national synthesis of stormwater-runoff data. Equally important is information on the level of accuracy and representativeness of this precipitation and stormwaterflow data. Accurate and representative measurements of precipitation and stormwater flow, however, are difficult to obtain because of the rapidly changing spatial and temporal distribution of precipitation and flows during a storm. Many hydrologic and hydraulic factors must be considered in performing the following: selecting sites for measuring precipitation and stormwater flow that will provide data that adequately meet the objectives and goals of the study, determining frequencies and durations of data collection to fully characterize the storm and the rapidly changing stormwater flows, and selecting methods that will yield accurate data over the full range of both rainfall intensities and stormwater flows. To ensure that the accuracy and representativeness of precipitation and stormwater-flow data can be evaluated, decisions as to (1) where in the drainage system precipitation and stormwater flows are measured, (2) how frequently precipitation and stormwater flows are measured, (3) what methods are used to measure precipitation and stormwater flows, and (4) on what basis are these decisions made, must all be documented and communicated in an accessible format, such as a project description report, a data report or an appendix to a technical report, and (or) archived in a State or national records center. A quality assurance/quality control program must be established to ensure that this information is documented and reported, and that decisions made in the design phase of a study are continually reviewed, internally and externally, throughout the study. Without the supporting data needed to evaluate the accuracy and representativeness

  12. Dual-RiverSonde measurements of two-dimensional river flow patterns

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.

    2008-01-01

    Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.

  13. Pipe flow measurements of turbulence and ambiguity using laser-Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Berman, N. S.; Dunning, J. W.

    1973-01-01

    The laser-Doppler ambiguities predicted by George and Lumley (1973) have been verified experimentally for turbulent pipe flows. Experiments were performed at Reynolds numbers from 5000 to 15,000 at the center line and near the wall. Ambiguity levels were measured from power spectral densities of FM demodulated laser signals and were compared with calculations based on the theory. The turbulent spectra for these water flows after accounting for the ambiguity were equivalent to hot-film measurements at similar Reynolds numbers. The feasibility of laser-Doppler measurements very close to the wall in shear flows is demonstrated.

  14. Measurement of LNAPL flow using single-well tracer dilution techniques.

    PubMed

    Sale, Tom; Taylor, Geoffrey Ryan; Iltis, Gabriel; Lyverse, Mark

    2007-01-01

    This paper describes the use of single-well tracer dilution techniques to resolve the rate of light nonaqueous phase liquid (LNAPL) flow through wells and the adjacent geologic formation. Laboratory studies are presented in which a fluorescing tracer is added to LNAPL in wells. An in-well mixer keeps the tracer well mixed in the LNAPL. Tracer concentrations in LNAPL are measured through time using a fiber optic cable and a spectrometer. Results indicate that the rate of tracer depletion is proportional to the rate of LNAPL flow through the well and the adjacent formation. Tracer dilution methods are demonstrated for vertically averaged LNAPL Darcy velocities of 0.00048 to 0.11 m/d and LNAPL thicknesses of 9 to 24 cm. Over the range of conditions studied, results agree closely with steady-state LNAPL flow rates imposed by pumping. A key parameter for estimating LNAPL flow rates in the formation is the flow convergence factor alpha. Measured convergence factors for 0.030-inch wire wrap, 0.030-inch-slotted polyvinyl chloride (PVC), and 0.010-inch-slotted PVC are 1.7, 0.91, and 0.79, respectively. In addition, methods for using tracer dilution data to determine formation transmissivity to LNAPL are presented. Results suggest that single-well tracer dilution techniques are a viable approach for measuring in situ LNAPL flow and formation transmissivity to LNAPL.

  15. Ultrasound SIV measurement of helical valvular flow behind the great saphenous vein

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong; Kim, Jeong Ju; Lee, Sang Joon; Yeom, Eunseop; Experimental Fluid Mechanics Laboratory Team; LaboratoryMicrothermal; Microfluidic Measurements Collaboration

    2017-11-01

    Dysfunction of venous valve and induced secondary abnormal flow are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most previous studies on venous perivalvular flows were based on qualitative analyses. On the contrary, quantitative analysis on the perivalvular flows has not been fully understood yet. In this study, 3D valvular flows under in vitro and in vivo conditions were experimentally investigated using ultrasound speckle image velocimetry (SIV) for analyzing their flow characteristics. The results for in vitro model obtained by the SIV technique were compared with those derived by numerical simulation and color Doppler method to validate its measurement accuracy. Then blood flow in the human great saphenous vein was measured using the SIV with respect to the dimensionless index, helical intensity. The results obtained by the SIV method are well matched well with those obtained by the numerical simulation and color Doppler method. The hemodynamic characteristics of 3D valvular flows measured by the validated SIV method would be helpful in diagnosis of valve-related venous diseases. None.

  16. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  17. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  18. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  19. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    NASA Astrophysics Data System (ADS)

    Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek

    One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw) rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  20. Systematic Heat Flow Measurements Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Harris, R. N.; Contreras, J.; Sclater, J. G.; Gonzalez-Fernandez, A.

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. Seismic reflection profiles show sediment in excess of 5 s two-way travel time, implying a sediment thickness of > 7 km. The heat flow profile is 40 km long, has a nominal measurement spacing of 1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Most measurements are of good quality in that the probe fully penetrated sediments and measurements were stable enough to invert for heat flow and thermal properties. We have estimated corrections for environmental perturbations due to changes in bottom water temperature and sedimentation. The mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220±60, 99±14, 1058±519 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Based on an observed fault depth of 1.75 km we estimated the maximum Darcy velocities through the western and eastern flanks as 3 and 10 cm yr-1, respectively. Heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  1. Flow measurements in two cambered vane diffusers with different passage widths

    NASA Astrophysics Data System (ADS)

    Stein, W.; Rautenberg, M.

    1985-03-01

    To investigate the influence of the vaneless space between impeller exit and the diffuser vanes, detailed flow measurements in two diffusers with the same vane geometry but different passage width are compared. The three-dimensional character of the flow changes between impeller exit and the entry to the two dimensional vanes depending on the shape of the shroud. After initial measurements with a constant area vaneless space, the width of the vaned diffuser was later on reduced by 10 percent. The compressor maps show increases in overall pressure rise and efficiency with the width reduction. To get further details of the flow field, measurements of the static pressure distribution at hub and shroud have been performed at several operation points for both diffusers. At the same points, the flow angle and total pressure distribution between hub and shroud upstream and downstream of the vanes have been measured with probes. The maximum efficiency of the narrow diffuser is nearly 2 percent higher than for the wide diffuser. The measurements give further details to explain this improvement.

  2. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  3. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  4. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  5. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  6. An angiographic technique for coronary fractional flow reserve measurement: in vivo validation.

    PubMed

    Takarada, Shigeho; Zhang, Zhang; Molloi, Sabee

    2013-03-01

    Fractional flow reserve (FFR) is an important prognostic determinant in a clinical setting. However, its measurement currently requires the use of invasive pressure wire, while an angiographic technique based on first-pass distribution analysis and scaling laws can be used to measure FFR using only image data. Eight anesthetized swine were instrumented with flow probe on the proximal segment of the left anterior descending (LAD) coronary arteries. Volumetric blood flow from the flow probe (Qp), coronary pressure (Pa) and right atrium pressure (Pv) were continuously recorded. Flow probe-based FFR (FFRq) was measured from the ratio of flow with and without stenosis. To determine the angiography-based FFR (FFRa), the ratio of blood flow in the presence of a stenosis (QS) to theoretically normal blood flow (QN) was calculated. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. QS was measured using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. QN was estimated from the total coronary arterial volume using scaling laws. Pressure-wire measurements of FFR (FFRp), which was calculated from the ratio of distal coronary pressure (Pd) divided by proximal pressure (Pa), were continuously obtained during the study. A total of 54 measurements of FFRa, FFRp, and FFRq were taken. FFRa showed a good correlation with FFRq (FFRa = 0.97 FFRq +0.06, r(2) = 0.80, p < 0.001), although FFRp overestimated the FFRq (FFRp = 0.657 FFRq + 0.313, r(2) = 0.710, p < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between FFRa and FFRq. This angiographic technique to measure FFR can potentially be used to evaluate both anatomical and physiological assessments of a coronary stenosis during routine diagnostic cardiac catheterization that requires no pressure wires.

  7. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Self-Contained Compressed-Flow Generation Device for Use in Making Differential Measurements

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2014-01-01

    A device used in making differential measurements of a flow includes a flow obstruction and a support arm. The flow obstruction's forward portion is a nose cone. The flow obstruction's aft portion is coupled to the nose cone. The support arm's first end is coupled to an exterior wall of a conduit, and its second end is coupled to the forward portion of the flow obstruction. The support arm positions the flow obstruction in the conduit such that a flow region is defined around its nose cone, and such that the support arm's first and second end are separated from one another with respect to a length dimension of the conduit. Measurement ports are provided in the support arm and flow obstruction. Manifolds extending through the flow obstruction and support arm couple the ports to points at the exterior wall of the conduit.

  9. Carbon-dioxide flow measurement in geodynamically active area of West Bohemia

    NASA Astrophysics Data System (ADS)

    Vlcek, Josef; Fischer, Tomas; Heinicke, Jens

    2016-04-01

    Geodynamically active area of West Bohemia is interesting not only due to its earthquake swarms occurrence but also due to degassing flux of magmatic origin occurring in natural moffettes and mineral springs. While monitoring of earthquakes is done by a standard local seismic network, monitoring of amount of CO2 is at its initial stage. Despite lack of data, the 2014 earthquake swarm showed also very interesting increase in CO2 flow. This correlation with seismicity motivated us to develop robust and reliable methods of CO2 flow measurement, which would be sufficient to create denser monitoring network. Standard usage of gas-flowmeter for the purpose of gas flow measurement is dependent on the weather and device conditions, which makes the measurement instable in time and unreliable. Although gas-flowmeter is also accompanied with measurement of the gas pressure in the well to check flow rate value, reliability of this method is still low. This problematic behavior of the flow measurement was the reason to test new methods to measure CO2 amount - the first is based on measuring the density water with bubbles in the well by differential pressure gauge. The second one utilizes electric conductivity measurement to determine the density of bubbles in the water-gas mixture. Advantage of these methods is that their probes are directly in the well or moffette, where the concentration is measured. This approach is free of the influence of moving parts and assures the independence of measurements of environmental conditions. In this paper we show examples of obtained data series from selected sites and compare the trend of the curves, the mutual relations of the measured quantities and the influence of environmental conditions.

  10. Coherent Raman spectroscopies for measuring molecular flow velocity

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1982-01-01

    Various types of coherent Raman spectroscopy are characterized and their application to molecular flow velocity and direction measurement and species concentration and temperature determination is discussed.

  11. Measurement of flow separation in a human vocal folds model

    NASA Astrophysics Data System (ADS)

    Šidlof, Petr; Doaré, Olivier; Cadot, Olivier; Chaigne, Antoine

    2011-07-01

    The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluid-structure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.

  12. Fluid flow measurements by means of vibration monitoring

    NASA Astrophysics Data System (ADS)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  13. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    PubMed Central

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately. PMID:26501288

  14. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  15. Phase-measuring laser holographic interferometer for use in high speed flows

    NASA Astrophysics Data System (ADS)

    Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig

    Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.

  16. Eccentricity Fluctuations Make Flow Measurable in High Multiplicity p-p Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2010-03-12

    Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and so far can only be applied to heavy ion collisions. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity (dN{sub ch}/dy>=50) p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of ellipticmore » flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.« less

  17. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis

    PubMed Central

    Chin, Lisa M. K.; Heigenhauser, George J. F.; Paterson, Donald H.

    2010-01-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (V̇o2p) and leg femoral conduit artery (“bulk”) blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) ∼40 mmHg] and sustained hyperventilation (Hypo; PetCO2 ∼20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). V̇o2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Δ[HHb])-, oxy (Δ[O2Hb])-, and total hemoglobin-myoglobin (Δ[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of V̇o2p, LBF, and Δ[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 V̇o2p (Hypo, 49 ± 26 s; Con, 28 ± 8 s) and LBF (Hypo, 46 ± 16 s; Con, 23 ± 6 s) were greater (P < 0.05) in Hypo compared with Con. However, the mean response time for the overall Δ[HHb] response was not different between conditions (Hypo, 23 ± 5 s; Con, 24 ± 3 s), whereas the Δ[HHb] amplitude was greater (P < 0.05) in Hypo (8.05 ± 7.47 a.u.) compared with Con (6.69 ± 6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given ΔV̇o2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of V̇o2p (and muscle O2 utilization) kinetics. PMID:20339012

  18. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  19. Flow among Musicians: Measuring Peak Experiences of Student Performers

    ERIC Educational Resources Information Center

    Sinnamon, Sarah; Moran, Aidan; O'Connell, Michael

    2012-01-01

    "Flow" is a highly coveted yet elusive state of mind that is characterized by complete absorption in the task at hand as well as by enhanced skilled performance. Unfortunately, because most measures of this construct have been developed in physical activity and sport settings, little is known about the applicability of flow scales to the…

  20. Heat flow measurements on the southeast coast of Australia

    USGS Publications Warehouse

    Hyndman, R.D.; Jaeger, J.C.; Sass, J.H.

    1969-01-01

    Three boreholes have been drilled for the Australian National University near the southeast coast of New South Wales, Australia. The heat flows found are 1.1, 1.0, and 1.3 ??cal/cm2sec. The errors resulting from the proximity of the sea and a lake, surface temperature change, conductivity structure and water flow have been examined. The radioactive heat production in some of the intrusive rocks of the area have also been measured. The heat flows are much lower than the values of about 2.0 found elsewhere in south eastern Australia. The lower values appear to be part of a distinct heat flow province in eastern Australia. ?? 1969.

  1. Basic data for some recent Australian heat-flow measurements

    USGS Publications Warehouse

    Munroe, Robert J.; Sass, J.H.; Milburn, G.T.; Jaeger, J.C.; Tammemagi, H.Y.

    1975-01-01

    This report has been compiled to provide background information and detailed temperature and thermal conductivity data for the heat-flow values reported in Sass, Jaeger, and Munroe (in press). The data were collected as part of a joint heat-flow study by the Australian National University (ANU) and the U.S. Geological Survey (USGS) under the direction of J. C. Jaeger (ANU) and J. H. Sass (USGS). The format is similar to that used for basic data from United States heat-flow determinations (Sass and Munroe, 1974). Each section contains a state map showing the geographic distribution of heat-flow data followed by tables which list individual temperatures, thermal conductivities, and radiogenic heat production values. A companion volume (Bunker and others, 1975) gives details of the heat-production measurements together with individual radioelement concentrations. Localities are arranged in alphabetical order within each state. The methods and techniques of measurements have been described by Sass and others (1971a, b). Unusual methods or procedures which differ markedly from these techniques are noted and described in the comments sections of the tables.

  2. In vivo lateral blood flow velocity measurement using speckle size estimation.

    PubMed

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method

  3. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.

    2014-12-01

    Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.

  4. Turbulent Flow Field Measurements of Separate Flow Round and Chevron Nozzles with Pylon Interaction Using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.

    2004-01-01

    Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.

  5. Microprobes For Blood Flow Measurements In Tissue And Small Vessels

    NASA Astrophysics Data System (ADS)

    Oberg, P. A.; Salerud, E. G.

    1988-04-01

    Laser Doppler flowmetry is a method for the continuous and non-invasive recording of tissue blood flow. The method has already proved to be advantageous in a number of clinical as well as theoretical medical disciplines. In dermatology, plastic- and gastrointestinal surgery laser Doppler measurements have substantially contributed to increase knowledge of microvascular perfusion. In experimental medicine, the method has been used in the study of a great variety of microvascular problems. Spontaneous rhythmical variations, spatial and temporal fluctuations in human skin blood flow are mentioned as examples of problem areas in which new knowledge has been generated. The method has facilitated further investigations of the nature of spongeous bone blood flow, testis and kidney cortex blood flow. Recently we have showed that a variant of the laser Doppler method principle, using a single optical fiber, can be advantageous in deep tissue measurements. With this method laser light is transmitted bidirectionally in a single fiber. The tissue trauma which affects blood flow can be minimized by introducing small diameter fibers (0.1-0.5 mm). A special set-up utilizing the same basic principle has been used for the recording of blood flow in small vessels.

  6. Quantification of error associated with stormwater and wastewater flow measurement devices

    EPA Science Inventory

    A novel flow testbed has been designed to evaluate the performance of flumes as flow measurement devices. The newly constructed testbed produces both steady and unsteady flows ranging from 10 to 1500 gpm. Two types of flumes (Parshall and trapezoidal) are evaluated under differen...

  7. Experiment measurement of Alford's force in axial-flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Vance, J. M.; Laudadio, F. J.

    1982-01-01

    Results of experimental measurements made on a small high speed, axial flow test apparatus are presented to verify the existence of Alford's force (that circumferential variation of blade-tip clearances in axial-flow turbomachinery will produce cross-coupled (normal to the eccentricity) aerodynamic forces on the rotor) and to investigate the validity of his mathematical prediction model.

  8. Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter

    PubMed Central

    Li, Ting; Lin, Yu; Shang, Yu; He, Lian; Huang, Chong; Szabunio, Margaret; Yu, Guoqiang

    2013-01-01

    We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~−20%) for the noncontact measurements in Δ[oxygenation], but not in rBF. Other factors that may cause the residual discrepancies between the contact and noncontact measurements were discussed, and further comparisons with other established technologies are needed to identify/quantify these factors. Our research paves the way for noncontact and simultaneous monitoring of blood flow and oxygenation in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:23446991

  9. Flow rate measurement in a volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvez, Cristhian

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate ofmore » the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.« less

  10. Representativeness of wind measurements in moderately complex terrain

    NASA Astrophysics Data System (ADS)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  11. Measurement and Control of Electroosmotic Flow in Plastic Microchannels

    NASA Astrophysics Data System (ADS)

    Ross, David; Barker, Susan; Waddell, Emanuel; Johnson, Tim; Locascio, Laurie

    2000-11-01

    We have measured electroosmotic flow profiles in microchannels fabricated in a variety of commercially available plastics by imprinting using a silicon template and by UV laser ablation. It is possible to achieve nearly ideal plug flow profiles in straight imprinted channels made entirely of one material. In contrast, electroosmotic flow in imprinted channels constructed from two different materials and in channels fabricated using laser ablation show deviations from ideal plug flow resulting from non-uniformity of the surface charge density on the walls of the channels. We have also explored strategies for controlling electroosmotic flow through modification of the surface charge density. The techniques used to alter surface charge include the deposition of polyelectrolyte multilayers on channel surfaces and the use of combinations of imprinting and laser ablation in the fabrication of the channels. We will discuss the effectiveness of these strategies for controlling flow, sample dispersion, and mixing.

  12. Measurement of Air Flow Characteristics Using Seven-Hole Cone Probes

    NASA Technical Reports Server (NTRS)

    Takahashi, Timothy T.

    1997-01-01

    The motivation for this work has been the development of a wake survey system. A seven-hole probe can measure the distribution of static pressure, total pressure, and flow angularity in a wind tunnel environment. The author describes the development of a simple, very efficient algorithm to compute flow properties from probe tip pressures. Its accuracy and applicability to unsteady, turbulent flow are discussed.

  13. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOEpatents

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  14. STORM-SEWER FLOW MEASUREMENT AND RECORDING SYSTEM.

    USGS Publications Warehouse

    Kilpatrick, Frederick A.; Kaehrle, William R.

    1986-01-01

    A comprehensive study and development of instruments and techniques for measuring all components of flow in a storm-sewer drainage system were undertaken by the U. S. Geological Survey under the sponsorship of FHWA. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, and electromagnetic velocity meters as well as the development and calibration of pneumatic bubbler and pressure transducer head-measuring systems. Tracer dilution and acoustic-flowmeter measurements were used in field verification tests. A single micrologger was used to record data from all the instruments and also to activate on command the electromagnetic velocity meter and tracer dilution systems.

  15. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    NASA Astrophysics Data System (ADS)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  16. A new approach for flow-through respirometry measurements in humans

    PubMed Central

    Ingebrigtsen, Jan P.; Bergouignan, Audrey; Ohkawara, Kazunori; Kohrt, Wendy M.; Lighton, John R. B.

    2010-01-01

    Indirect whole room calorimetry is commonly used in studies of human metabolism. These calorimeters can be configured as either push or pull systems. A major obstacle to accurately calculating gas exchange rates in a pull system is that the excurrent flow rate is increased above the incurrent flow rate, because the organism produces water vapor, which also dilutes the concentrations of respiratory gasses in the excurrent sample. A common approach to this problem is to dry the excurrent gasses prior to measurement, but if drying is incomplete, large errors in the calculated oxygen consumption will result. The other major potential source of error is fluctuations in the concentration of O2 and CO2 in the incurrent airstream. We describe a novel approach to measuring gas exchange using a pull-type whole room indirect calorimeter. Relative humidity and temperature of the incurrent and excurrent airstreams are measured continuously using high-precision, relative humidity and temperature sensors, permitting accurate measurement of water vapor pressure. The excurrent flow rates are then adjusted to eliminate the flow contribution from water vapor, and respiratory gas concentrations are adjusted to eliminate the effect of water vapor dilution. In addition, a novel switching approach is used that permits constant, uninterrupted measurement of the excurrent airstream while allowing frequent measurements of the incurrent airstream. To demonstrate the accuracy of this approach, we present the results of validation trials compared with our existing system and metabolic carts, as well as the results of standard propane combustion tests. PMID:20200135

  17. Measurements of Induced-Charge Electroosmotic Flow Around a Metallic Rod

    NASA Astrophysics Data System (ADS)

    Beskok, Ali; Canpolat, Cetin

    2012-11-01

    A cylindrical gold-coated stainless steel rod was positioned at the center of a straight microchannel connecting two fluid reservoirs on either end. The microchannel was filled with 1 mM KCl containing 0.5 micron diameter carboxylate-modified spherical particles. Induced-charge electro-osmotic (ICEO) flow occurred around the metallic rod under a sinusoidal AC electric field applied using two platinum electrodes. The ICEO flows around the metallic rod were measured using micro particle image velocimetry (micro-PIV) technique as functions of the AC electric field strength and frequency. The present study provides experimental data about ICEO flow in the weakly nonlinear limit of thin double layers, in which, the charging dynamics of the double layer cannot be presented analytically. Flow around the rod is quadrupolar, driving liquid towards the rod along the electric field and forcing it away from the rod in the direction perpendicular to the imposed electric field. The measured ICEO flow velocity is proportional to the square of the electric field strength, and depends on the applied AC frequency.

  18. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  19. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    PubMed

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  20. Measurements of noise produced by flow past lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1978-01-01

    Wind tunnel studies have been conducted to determine the specific locations of aerodynamic noise production within the flow field about various lifting-surface configurations. The models tested included low aspect ratio shapes intended to represent aircraft flaps, a finite aspect ratio NACA 0012 wing, and a multi-element wing section consisting of a main section, a leading edge flap, and dual trailing edge flaps. Turbulence was induced on the models by surface roughness. Lift and drag were measured for the flap models. Hot-wire anemometry was used for study of the flap-model vortex roll-up. Apparent noise source distributions were measured by use of a directional microphone system, located outside the tunnel, which was scanned about the flow region to be analyzed under computer control. These distributions exhibited a diversity of pattern, suggesting that several flow processes are important to lifting-surface noise production. Speculation concerning these processes is offered.

  1. Vehicular Traffic Flow Theory and Tunnel Traffic Flow Measurements

    DOT National Transportation Integrated Search

    1971-06-01

    Vehicular traffic flow has been investigated theoretically and experimentally in order that peak hour collective traffic flow dynamics can be understood and that the peak hour flow through the Callahan Tunnel can be improved by means of traffic flow ...

  2. Assessing potential errors of MRI-based measurements of pulmonary blood flow using a detailed network flow model

    PubMed Central

    Buxton, R. B.; Prisk, G. K.

    2012-01-01

    MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64–74% of that in the absence of a gap in the sagittal plane and 53–84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes. PMID:22539167

  3. Assessing potential errors of MRI-based measurements of pulmonary blood flow using a detailed network flow model.

    PubMed

    Burrowes, K S; Buxton, R B; Prisk, G K

    2012-07-01

    MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64-74% of that in the absence of a gap in the sagittal plane and 53-84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes.

  4. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  5. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  6. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

    USGS Publications Warehouse

    McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.

    2010-01-01

    Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.

  7. Numerical Study of Mixed Convective Peristaltic Flow through Vertical Tube with Heat Generation for Moderate Reynolds and Wave Numbers

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Ahmed, B.; Sajid, M.

    2018-04-01

    The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.

  8. A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements

    NASA Astrophysics Data System (ADS)

    Vlasenko, Andrey; Steele, Edward C. C.; Nimmo-Smith, W. Alex M.

    2015-06-01

    The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a ‘black box’ algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements.

  9. Non-intrusive flow measurements on a reentry vehicle

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Satavicca, D. A.; Zimmermann, G. M.

    1983-01-01

    This study evaluates the utility of various non-intrusive techniques for the measurement of the flow field on the windward side of the Space Shuttle or a similar re-entry vehicle. Included are linear (Rayleigh, Raman, Mie, Laser Doppler Velocimetry, Resonant Doppler Velocimetry) and nonlinear (Coherent Anti-Stokes Raman, Laser Induced Fluorescence) light scattering, electron beam fluorescence, thermal emission and mass spectroscopy. Flow field properties are taken from a nonequilibrium flow model by Shinn, Moss and Simmonds at NASA Langley. Conclusions are, when possible, based on quantitative scaling of known laboratory results to the conditions projected. Detailed discussion with researchers in the field contributed further to these conclusions and provided valuable insights regarding the experimental feasibility of each of the techniques.

  10. Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement

    NASA Astrophysics Data System (ADS)

    Lin, Yu; He, Lian; Shang, Yu; Yu, Guoqiang

    2012-01-01

    A noncontact diffuse correlation spectroscopy (DCS) probe has been developed using two separated optical paths for the source and detector. This unique design avoids the interference between the source and detector and allows large source-detector separations for deep tissue blood flow measurements. The noncontact probe has been calibrated against a contact probe in a tissue-like phantom solution and human muscle tissues; flow changes concurrently measured by the two probes are highly correlated in both phantom (R2=0.89, p<10-5) and real-tissue (R2=0.77, p<10-5, n=9) tests. The noncontact DCS holds promise for measuring blood flow in vulnerable (e.g., pressure ulcer) and soft (e.g., breast) tissues without distorting tissue hemodynamic properties.

  11. Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan

    1991-01-01

    The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.

  12. The Feasibility of Performing Particle Tracking Based Flow Measurements with Acoustic Cameras

    DTIC Science & Technology

    2017-08-01

    particles that cannot be assumed to follow the fluid motion) affected by grid-generated turbulent flow in a wind tunnel to compare the particle...over other flow measurements systems, such as hot- wire anemometry, laser Doppler velocimetry, or acoustic Doppler velocimetry, is that PIV produces...Velocimetry Measurements of the Flow around a Rushton Turbine .” Experiments in Fluids 29(5): 478–485. doi:10.1007/s003480000116. Hjemfelt, A. T., and L. F

  13. Torque Transient of Magnetically Drive Flow for Viscosity Measurement

    NASA Technical Reports Server (NTRS)

    Ban, Heng; Li, Chao; Su, Ching-Hua; Lin, Bochuan; Scripa, Rosalia N.; Lehoczky, Sandor L.

    2004-01-01

    Viscosity is a good indicator of structural changes for complex liquids, such as semiconductor melts with chain or ring structures. This paper discusses the theoretical and experimental results of the transient torque technique for non-intrusive viscosity measurement. Such a technique is essential for the high temperature viscosity measurement of high pressure and toxic semiconductor melts. In this paper, our previous work on oscillating cup technique was expanded to the transient process of a magnetically driven melt flow in a damped oscillation system. Based on the analytical solution for the fluid flow and cup oscillation, a semi-empirical model was established to extract the fluid viscosity. The analytical and experimental results indicated that such a technique has the advantage of short measurement time and straight forward data analysis procedures

  14. Nonintrusive Measurements for High-Speed, Supersonic, and Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Bonnet, J. P.; Grésillon, D.; Taran, J. P.

    The need to develop new diagnostics for turbulent flows at supersonic and hypersonic regimes is discussed. New experimental results can be obtained in supersonic flows by using the collective light scattering method. Typical results obtained by this method in a supersonic mixing layer are illustrated. The collective light scattering method is a directional densitometer (with a new type of spectral analysis of density fluctuations), a nonparticle anemometer, a Mach-meter (or thermometer), and a directional remote microphone. Various other optical techniques that can be applied for point, line-of-sight, or imaging measurements are reviewed. For point measurements, light-scattering methods such as Raman, Rayleigh, or electron beam fluorescence are discussed, but only briefly, since they are of little use, especially when enthalpy is very high and flow naturally bright. Emphasis is placed instead on nonlinear laser spectroscopy such as coherent anti-Stokes Raman scattering, which has recently been successful in determining temperature and density in high-enthalpy shocks. A description of diode laser absorption spectroscopy follows. A high data-rate instrument now routinely gives the static temperature and the velocity of the stream in the hot shot facility F4 of ONERA, at stagnation enthalpies in excess of 15 MJ/kg. Finally, electron beam fluorescence imaging in the same facility has made it possible to perform measurements of velocity across the external boundary layer into the flow core using a high-energy-pulsed electron gun.

  15. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    2007-11-01

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode ( φ = -75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1-H1 and S2-H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two anti-symmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  16. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  17. A laser interferometer for measuring skin friction in three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A new, nonintrusive method is described for measuring skin friction in three-dimensional flows with unknown direction. The method uses a laser interferometer to measure the changing slope of a thin oil film applied to a surface experiencing shear stress. The details of the method are described, and skin friction measurements taken in a swirling three-dimensional boundary-layer flow are presented. Comparisons between analytical results and experimental values from the laser interferometer method and from a bidirectional surface-fence gauge are made.

  18. PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-02-01

    Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all

  19. Sap flow sensors: construction, quality control and comparison.

    PubMed

    Davis, Tyler W; Kuo, Chen-Min; Liang, Xu; Yu, Pao-Shan

    2012-01-01

    This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors.

  20. Statistical parameters of thermally driven turbulent anabatic flow

    NASA Astrophysics Data System (ADS)

    Hilel, Roni; Liberzon, Dan

    2016-11-01

    Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.

  1. Assessment of peripheral skeletal muscle microperfusion in a porcine model of peripheral arterial stenosis by steady-state contrast-enhanced ultrasound and Doppler flow measurement.

    PubMed

    Naehle, Claas P; Steinberg, Verena A; Schild, Hans; Mommertz, Gottfried

    2015-05-01

    Noninvasive measurement of peripheral muscle microperfusion could potentially improve diagnosis, management, and treatment of peripheral arterial disease (PAD) and thus improve patient care. Contrast-enhanced ultrasound (CEUS) as a noninvasive diagnostic tool allows quantification of muscle perfusion. Increasing data on bolus technique CEUS reflecting microperfusion are becoming available, but only limited data on steady-state CEUS for assessment of muscle microperfusion are available. Therefore, the aim of this study was to evaluate steady-state CEUS for assessment of peripheral muscle microperfusion in a PAD animal model. In a porcine animal model, peripheral muscle microperfusion was quantified by steady-state CEUS replenishment kinetics (mean transit time [mTT] and wash-in rate [WiR]) of the biceps femoris muscle during intravenous steady-state infusion of INN-sulfur hexafluoride (SonoVue; Bracco, Geneva, Switzerland). In addition, macroperfusion was quantified at the external femoral artery with a Doppler flow probe. Peripheral muscle microperfusion and Doppler flow measurements were performed bilaterally at rest and under adenosine stress (70 μg/kg body weight) before and after unilateral creation of a moderate external iliac artery stenosis. All measurements could be performed completely in 10 pigs. Compared with baseline measurements, peripheral muscle microperfusion decreased significantly during adenosine stress (rest vs adenosine stress: mTT, 7.8 ± 3.3 vs 21.2 ± 17.8 s, P = .0006; WiR, 58.4 ± 38.1 vs 25.3 ± 15.6 arbitrary units [a.u.]/s, P < .0001; Doppler flow, 122.3 ± 31.4 vs 83.6 ± 28.1 mL/min, P = .0067) and after stenosis creation (no stenosis vs stenosis: mTT, 8.1 ± 3.1 vs 29.2 ± 18.0 s, P = .0469; WiR, 53.0 ± 22.7 vs 13.6 ± 8.4 a.u./s, P = .0156; Doppler flow, 124.2 ± 41.8 vs 65.9 ± 40.0 mL/min, P = .0313). After stenosis creation, adenosine stress led to a further significant decrease of peripheral muscle microperfusion but had no

  2. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    NASA Astrophysics Data System (ADS)

    Gu, L. X.; Yan, G. J.; Huang, B.

    2015-12-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.

  3. Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer

    NASA Astrophysics Data System (ADS)

    Ooms, T. A.; Lindken, R.; Westerweel, J.

    2009-12-01

    In this paper, we describe measurements of a three-dimensional (3D) flow in a T-shaped micromixer by means of digital holographic microscopy. Imaging tracer particles in a microscopic flow with conventional microscopy is accompanied by a small depth-of-field, which hinders true volumetric flow measurements. In holographic microscopy, the depth of the measurement domain does not have this limitation because any desired image plane can be reconstructed after recording. Our digital holographic microscope (DHM) consists of a conventional in-line recording system with an added magnifying optical element. The measured flow velocity and the calculated vorticity illustrate four streamwise vortices in the micromixer outflow channel. Because the investigated flow is stationary and strongly 3D, the DHM performance (i.e. accuracy and resolution) can be precisely investigated. The obtained Dynamic spatial range and Dynamic velocity range are larger than 20 and 30, respectively. High-speed multiple-frame measurements illustrate the capability to simultaneously track about 80 particles in a volumetric measurement domain.

  4. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  5. Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter

    2009-01-01

    In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.

  6. Fan Noise Source Diagnostic Test: LDV Measured Flow Field Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary C.; Krupar, Martin J.; Hughes, Christopher E.; Woodward, Richard P.

    2003-01-01

    Results are presented of an experiment conducted to investigate potential sources of noise in the flow developed by two 22-in. diameter turbofan models. The R4 and M5 rotors that were tested were designed to operate at nominal take-off speeds of 12,657 and 14,064 RPMC, respectively. Both fans were tested with a common set of swept stators installed downstream of the rotors. Detailed measurements of the flows generated by the two were made using a laser Doppler velocimeter system. The wake flows generated by the two rotors are illustrated through a series of contour plots. These show that the two wake flows are quite different, especially in the tip region. These data are used to explain some of the differences in the rotor/stator interaction noise generated by the two fan stages. In addition to these wake data, measurements were also made in the R4 rotor blade passages. These results illustrate the tip flow development within the blade passages, its migration downstream, and (at high rotor speeds) its merging with the blade wake of the adjacent (following) blade. Data also depict the variation of this tip flow with tip clearance. Data obtained within the rotor blade passages at high rotational speeds illustrate the variation of the mean shock position across the different blade passages.

  7. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation.

    PubMed

    van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard

    2016-08-20

    The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.

  8. Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.

    USGS Publications Warehouse

    Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.

    2011-01-01

    Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.

  9. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    PubMed

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  10. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    PubMed

    Vitale, Sarah A; Robbins, Gary A

    2017-07-01

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.

  11. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation

    PubMed Central

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-01-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521

  12. Emittance Measurements for a Thin Liquid Sheet Flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.

    1996-01-01

    The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.

  13. [Evaluation and Optimization of Microvascular Arterial Anastomoses by Transit Time Flow Measurement].

    PubMed

    Herberhold, S; Röttker, J; Bartmann, D; Solbach, A; Keiner, S; Welz, A; Bootz, F; Laffers, W

    2016-03-01

    INDRODUCTION: The regular application of transit time flow measurement in microvascular anastomoses during heart surgery has lead to improvements of the outcome of coronary artery bypass grafts. Our study was meant to discover whether this measurement method was also applicable for evaluation and optimization of microvascular arterial anastomoses of radial forearm flaps. In this prospective examination a combining ultrasound imaging and transit time flow measurement device (VeriQ, MediStim) was used during surgery to assess anastomotic quality of 15 radial forearm flaps. Pulsatility index (PI) and mean blood flow were measured immediately after opening the arterial anastomosis as well as 15 min afterwards. Furthermore, application time and description of handling were recorded seperately for every assessment. Mean blood flow immediately after opening the anastomosis and 15 min later were 3.9 and 3.4 ml/min resepectively showing no statistically significant difference (p=0.96). There was no significance in the increase of pulsatility index from 22.1 to 27.2 (p=0.09) during the same time range, either. Due to measurement results showing atypical pulse curves in 2 cases decision for surgical revision of the anastomoses was made. All forearm flaps showed good vascularisation during follow-up. Time for device set up, probe placement and measurements was about 20 min. Handling was described to be uncomplicated without exception. There were no noteworthy problems. Transit time flow measurement contributes to the improvement of anastomotic quality and therefore to the overall outcome of radial forearm flaps. The examined measurement method provides objective results and is useful for documentation purposes. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research

    PubMed Central

    Roach, Michael; Cohen, Wesley M.

    2013-01-01

    This paper assesses the validity and accuracy of firms’ backward patent citations as a measure of knowledge flows from public research by employing a newly constructed dataset that matches patents to survey data at the level of the R&D lab. Using survey-based measures of the dimensions of knowledge flows, we identify sources of systematic measurement error associated with backward citations to both patent and nonpatent references. We find that patent citations reflect the codified knowledge flows from public research, but they appear to miss knowledge flows that are more private and contract-based in nature, as well as those used in firm basic research. We also find that firms’ patenting and citing strategies affect patent citations, making citations less indicative of knowledge flows. In addition, an illustrative analysis examining the magnitude and direction of measurement error bias suggests that measuring knowledge flows with patent citations can lead to substantial underestimation of the effect of public research on firms’ innovative performance. Throughout our analyses we find that nonpatent references (e.g., journals, conferences, etc.), not the more commonly used patent references, are a better measure of knowledge originating from public research. PMID:24470690

  15. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    PubMed

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  16. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  17. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    NASA Astrophysics Data System (ADS)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  18. Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement

    NASA Astrophysics Data System (ADS)

    Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad

    2018-05-01

    In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be  ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.

  19. Copper atom based measurements of velocity and turbulence in arc jet flows

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Allen, Mark G.; Arepalli, Sivaram; Scott, Carl D.

    1991-01-01

    Laboratory and field measurements were combined with a modeling effort to explore the feasibility of using atomic copper laser-induced fluorescence to measure velocity, turbulence, and temperature in arcjet flows. Both CW and pulsed frequency-doubled dye lasers were used to demonstrate the ability to measure velocity with 10 percent accuracy at rates of 200,000 cm/s in a rarefied flow of Cu atoms seeded in He. The pulsed laser established a threshold energy for power-broadening of the absorption line at 3.5 x 10 to the -8th J/sq cm. Field measurements at the NASA/JSC 10-MW arcjet facility demonstrated the ability to perform these measurements under actual test conditions. The use of this technique to measure freestream temperatures in the flow was examined for the 0.08/cm linewidth laser used in the NASA/JSC effort. Finally, single-shot turbulence measurements at the USAF/AEDC 35-MW H2 arcjet facility were measured with 4 percent accuracy using the laser/absorption line-overlap technique.

  20. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Mingde; Marshall, Craig T.; Qi, Yi

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, aremore » invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.« less

  1. The feasibility of measuring renal blood flow using transesophageal echocardiography in patients undergoing cardiac surgery.

    PubMed

    Yang, Ping-Liang; Wong, David T; Dai, Shuang-Bo; Song, Hai-Bo; Ye, Ling; Liu, Jin; Liu, Bin

    2009-05-01

    There is no reliable method to monitor renal blood flow intraoperatively. In this study, we evaluated the feasibility and reproducibility of left renal blood flow measurements using transesophageal echocardiography during cardiac surgery. In this prospective noninterventional study, left renal blood flow was measured with transesophageal echocardiography during three time points (pre-, intra-, and postcardiopulmonary bypass) in 60 patients undergoing cardiac surgery. Sonograms from 6 subjects were interpreted by 2 blinded independent assessors at the time of acquisition and 6 mo later. Interobserver and intraobserver reproducibility were quantified by calculating variability and intraclass correlation coefficients. Patients with Doppler angles of >30 degrees (20 of 60 subjects) were eliminated from renal blood flow measurements. Left renal blood flow was successfully measured and analyzed in 36 of 60 (60%) subjects. Both interobserver and intraobserver variability were <10%. Interobserver and intraobserver reproducibility in left renal blood flow measurements were good to excellent (intraclass correlation coefficients 0.604-0.999). Left renal arterial luminal diameter for the pre, intra, and postcardiopulmonary bypass phases, ranged from 3.8 to 4.1 mm, renal arterial velocity from 25 to 35 cm/s, and left renal blood flow from 192 to 299 mL/min. In patients undergoing cardiac surgery, it was feasible in 60% of the subjects to measure left renal blood flow using intraoperative transesophageal echocardiography. The interobserver and intraobserver reproducibility of renal blood flow measurements was good to excellent.

  2. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  3. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  4. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  5. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  6. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  7. Wall shear measurement in sand-water mixture flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yucel, O.; Grad, W.H.

    1975-07-01

    The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less

  8. Langmuir-Probe Measurements in Flowing-Afterglow Plasmas

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Shunko, E. V.; Gougousi, T.; Golde, M. F.

    1994-01-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing- afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  9. Blood flow measurement using digital subtraction angiography for assessing hemodialysis access function

    NASA Astrophysics Data System (ADS)

    Koirala, Nischal; Setser, Randolph M.; Bullen, Jennifer; McLennan, Gordon

    2017-03-01

    Blood flow rate is a critical parameter for diagnosing dialysis access function during fistulography where a flow rate of 600 ml/min in arteriovenous graft or 400-500 ml/min in arteriovenous fistula is considered the clinical threshold for fully functioning access. In this study, a flow rate computational model for calculating intra-access flow to evaluate dialysis access patency was developed and validated in an in vitro set up using digital subtraction angiography. Flow rates were computed by tracking the bolus through two regions of interest using cross correlation (XCOR) and mean arrival time (MAT) algorithms, and correlated versus an in-line transonic flow meter measurement. The mean difference (mean +/- standard deviation) between XCOR and in-line flow measurements for in vitro setup at 3, 6, 7.5 and 10 frames/s was 118+/-63 37+/-59 31+/-31 and 46+/-57 ml/min respectively while for MAT method it was 86+/-56 57+/-72 35+/-85 and 19+/-129 ml/min respectively. The result of this investigation will be helpful for selecting candidate algorithms while blood flow computational tool is developed for clinical application.

  10. Impact of Pitot tube calibration on the uncertainty of water flow rate measurement

    NASA Astrophysics Data System (ADS)

    de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder

    2015-10-01

    Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.

  11. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  12. An comprehensive time-distance measurement of deep meridional flow and its temporal variation

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhu; Zhao, Junwei

    2016-10-01

    We report our latest results on the Sun's deep solar meridional-flow measurements by time-distance helioseismology technique using 6 years of SDO/HMI Doppler-velocity data. Determination of the meridional flow by time-distance helioseismology depends on a precise measurement of the flow-induced travel-time shifts of acoustic waves traveling in the solar interior. To resolve the weak travel-time-shift signals due to deep meridional flow, we need a high signal-to-noise ratio and a robust removal of the center-to-limb (CtoL) effect, which dominates the travel-time shifts. Here we perform an ultimately comprehensive measurement that tracks acoustic waves between any two points on solar surface. The travel-time shifts are composed of CtoL effect, which is a function of disk-centric distances, and contribution from the flow component parallel to wave traveling direction, which is a function of latitude and orientation. Assuming these two effects are independent, we can derive the CtoL effect and meridional-flow contributions by solving a set of linear equations in a least-square sense. We show the solved CtoL effect and the inversion results for the solar meridional flow, and analyze the annual variation of meridional flow from May 2010 to Apr 2016.

  13. Meridional flow in the solar convection zone. I. Measurements from gong data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholikov, S.; Serebryanskiy, A.; Jackiewicz, J., E-mail: kholikov@noao.edu

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-timemore » differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.« less

  14. Three-phase flow measurement in the petroleum industry

    NASA Astrophysics Data System (ADS)

    Thorn, R.; Johansen, G. A.; Hjertaker, B. T.

    2013-01-01

    The problem of how to accurately measure the flowrate of oil-gas-water mixtures in a pipeline remains one of the key challenges in the petroleum industry. This paper discusses why three-phase flow measurement is still important and why it remains a difficult problem to solve. The measurement strategies and principal base technologies currently used by commercial manufacturers are described, and research developments that could influence future flowmeter design are considered. Finally, future issues, which will need to be addressed by manufacturers and users of three-phase flowmeters, are discussed.

  15. Calibration of nozzle for air mass flow measurement

    NASA Astrophysics Data System (ADS)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  16. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  17. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  18. Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Gizon, Laurent

    1999-01-01

    Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.

  19. Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Kegerise, Michael A.; Wilkinson, Stephen P.

    2011-01-01

    Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented.

  20. Design and application of a fish-shaped lateral line probe for flow measurement

    NASA Astrophysics Data System (ADS)

    Tuhtan, J. A.; Fuentes-Pérez, J. F.; Strokina, N.; Toming, G.; Musall, M.; Noack, M.; Kämäräinen, J. K.; Kruusmaa, M.

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.

  1. Probe for production and measurement of acute mitral regurgitant flow in dog.

    PubMed

    Kléber, A G; Simon, R; Rutishauser, W

    1976-02-01

    A probe for production and measurement of acute mitral regurgitation in dogs is described. It consists of a tube that is introduced into the mitral valve through the left atrial appendage. Regurgitant flow through the tube is measured by an electromagnetic device. Variation of flow and zero flow are achieved by narrowing or occluding the tube with a rubber cuff. In animals weighing 30-50 kg, the probe does not produce significant mitral stenosis and the mitral leaflets fit closely around the probe during ventricular systole. The instantaneous relationship between mitral regurgitant flow (MRF) and the gradient between left ventricular and left atrial pressure shows a marked delay of MRF at the beginning and end of regurgitation. This delay can be attributed to some extent to electrical phase lag and to the small movement of the probe relative to the mitral valve during the cardiac cycle. Measurement of regurgitant stroke volume is affected by this movement only to a small extent.

  2. Improved flow cytometer measurement of binding assays

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.

    1984-05-01

    A method of measuring binding assays is carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also known quantity of smaller particles with a coating of binder reactant. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating.

  3. WIND measurements of proton and alpha particle flow and number density

    NASA Technical Reports Server (NTRS)

    Steinberg, J. T.; Lazarus, A. J.; Ogilvie, J. T.; Lepping, R.; Byrnes, J.; Chornay, D.; Keller, J.; Torbert, R. B.; Bodet, D.; Needell, G. J.

    1995-01-01

    We propose to review measurements of the solar wind proton and alpha particle flow velocities and densities made since launch with the WIND SWE instrument. The SWE Faraday cup ion sensors are designed to be able to determine accurately flow vector directions, and thus can be used to detect proton-alpha particle differential flow. Instances of differential flow, and the solar wind features with which they are associated will be discussed. Additionally, the variability of the percentage of alpha particles as a fraction of the total solar wind ion density will be presented.

  4. Measurement of the para-hydrogen concentration in the ISIS moderators using neutron transmission and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Romanelli, Giovanni; Rudić, Svemir; Zanetti, Matteo; Andreani, Carla; Fernandez-Alonso, Felix; Gorini, Giuseppe; Krzystyniak, Maciej; Škoro, Goran

    2018-04-01

    We present an experimental study to determine the para-hydrogen concentration in the hydrogen moderators at the ISIS pulsed neutron and muon source. The experimental characterisation is based on neutron transmission experiments performed on the VESUVIO spectrometer, and thermal conductivity measurements using the TOSCA para-hydrogen rig. A reliable estimation of the level of para-hydrogen concentration in the hydrogen moderators is of crucial importance in the framework of a current project to completely refurbish the first target station at ISIS. Moreover, we report a new measurement of the total neutron cross section for normal hydrogen at 15 K on the broad energy range 3 meV -10 eV suggesting a revision of the most recent nuclear libraries for incident neutron energies lower than 10 meV. Finally, we characterise systematic errors affecting the para-hydrogen level estimation due to conversion from para to ortho hydrogen, as a function of the time a batch of gas spends in every component of our gas panel and apparatus.

  5. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    PubMed

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  6. Flow measurements in a water tunnel using a holocinematographic velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.; Beeler, George B.

    1987-01-01

    Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.

  7. Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise.

    PubMed

    Chin, Lisa M K; Heigenhauser, George J F; Paterson, Donald H; Kowalchuk, John M

    2013-12-01

    Pulmonary O2 uptake (V(O₂p)) and leg blood flow (LBF) kinetics were examined at the onset of moderate-intensity exercise, during hyperventilation with and without associated hypocapnic alkalosis. Seven male subjects (25 ± 6 years old; mean ± SD) performed alternate-leg knee-extension exercise from baseline to moderate-intensity exercise (80% of estimated lactate threshold) and completed four to six repetitions for each of the following three conditions: (i) control [CON; end-tidal partial pressure of CO2 (P(ET, CO₂)) ~40 mmHg], i.e. normal breathing with normal inspired CO2 (0.03%); (ii) hypocapnia (HYPO; P(ET, CO₂) ~20 mmHg), i.e. sustained hyperventilation with normal inspired CO2 (0.03%); and (iii) normocapnia (NORMO; P(ET, CO₂) ~40 mmHg), i.e. sustained hyperventilation with elevated inspired CO2 (~5%). The V(O₂p) was measured breath by breath using mass spectrometry and a volume turbine. Femoral artery mean blood velocity was measured by Doppler ultrasound, and LBF was calculated from femoral artery diameter and mean blood velocity. Phase 2 V(O₂p) kinetics (τV(O₂p)) was different (P < 0.05) amongst all three conditions (CON, 19 ± 7 s; HYPO, 43 ± 17 s; and NORMO, 30 ± 8 s), while LBF kinetics (τLBF) was slower (P < 0.05) in HYPO (31 ± 9 s) compared with both CON (19 ± 3 s) and NORMO (20 ± 6 s). Similar to previous findings, HYPO was associated with slower V(O₂p) and LBF kinetics compared with CON. In the present study, preventing the fall in end-tidal P(CO₂) (NORMO) restored LBF kinetics, but not V(O₂p) kinetics, which remained 'slowed' relative to CON. These data suggest that the hyperventilation manoeuvre itself (i.e. independent of induced hypocapnic alkalosis) may contribute to the slower V(O₂p) kinetics observed during HYPO.

  8. Measurement of entropy generation within bypass transitional flow

    NASA Astrophysics Data System (ADS)

    Skifton, Richard; Budwig, Ralph; McEligot, Donald; Crepeau, John

    2012-11-01

    A flat plate made from quartz was submersed in the Idaho National Laboratory's Matched Index of Refraction (MIR) flow facility. PIV was utilized to capture spatial vectors maps at near wall locations with five to ten points within the viscous sublayer. Entropy generation was calculated directly from measured velocity fluctuation derivatives. Two flows were studied: a zero pressure gradient and an adverse pressure gradient (β = -0.039). The free stream turbulence intensity to drive bypass transition ranged between 3% (near trailing edge) and 8% (near leading edge). The pointwise entropy generation rate will be utilized as a design parameter to systematically reduce losses. As a second observation, the pointwise entropy can be shown to predict the onset of transitional flow. This research was partially supported by the DOE EPSCOR program, grant DE-SC0004751 and by the Idaho National Laboratory. Center for Advanced Energy Studies.

  9. Detailed flow-field measurements over a 75 deg swept delta wing

    NASA Technical Reports Server (NTRS)

    Kjelgaard, Scott O.; Sellers, William L., III

    1990-01-01

    Results from an experimental investigation documenting the flowfield over a 75 deg swept delta wing at an angle-of-attack of 20.5 deg are presented. Results obtained include surface flow visualization, off-body flow visualization, and detailed flowfield surveys for various Reynolds numbers. Flowfield surveys at Reynolds numbers of 0.5, 1.0, and 1.5 million based on the root chord were conducted with both a Pitot pressure probe and a 5-hole pressure probe; and 3-component laser velocimeter surveys were conducted at a Reynolds number of 1.0 million. The Pitot pressure surveys were obtained at 5 chordwise stations, the 5-hole probe surveys were obtained at 3 chordwise stations and the laser velocimeter surveys were obtained at one station. The results confirm the classical roll up of the flow into a pair of primary vortices over the delta wing. The velocity measurements indicate that Reynolds number has little effect on the global structure of the flowfield for the Reynolds number range investigated. Measurements of the non-dimensional axial velocity in the core of the vortex indicate a jet like flow with values greater than twice freestream. Comparisons between velocity measurements from the 5-hole pressure probe and the laser velocimeter indicate that the pressure probe does a reasonable job of measuring the flowfield quantities where the velocity gradients in the flowfield are low.

  10. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  11. Investigation of the external flow analysis for density measurements at high altitude

    NASA Technical Reports Server (NTRS)

    Bienkowski, G. K.

    1984-01-01

    The results of analysis performed on the external flow around the shuttle orbiter nose regions at the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) inlet orifice are presented. The purpose of the analysis is to quantitatively characterize the flow conditions to facilitate SUMS flight data reduction and subsequent determination of orbiter aerodynamic force coefficients in the hypersonic rarefied flow regime. Experimental determination of aerodynamic force coefficients requires accurate simultaneous measurement of forces (or acceleration) and dynamic pressure along with independent knowledge of density and velocity. The SUMS provides independent measurement of dynamic pressure; however, it does so indirectly and requires knowledge of the relationship between measured orifice conditions and the dynamic pressure which can only be determined on the basis of molecule or theory for a winged configuration. Monte Carlo direct simulation computer codes were developed for both the flow field solution at the orifice and for the internal orifice flow. These codes were used to study issues associated with geometric modeling of the orbiter nose geometry and the modeling of intermolecular collisions including rotational energy exchange and a preliminary analysis of vibrational excitation and dissociation effects. Data obtained from preliminary simulation runs are presented.

  12. Endoscopic digital holography for measuring flows in opaque vessels

    NASA Astrophysics Data System (ADS)

    Arévalo, Laura; Palero, Virginia; Lobera, Julia; Arroyo, M. Pilar

    2012-10-01

    In this work a new application of digital holography for the study of cardio vascular diseases is proposed. The simultaneous measurement of the blood flow velocity and the vein wall deformation can be obtained by combining digital holography and endoscopy. Endoscopes are used for the illumination and recording of digital holograms inside a vein model. Two different endoscopes have been used in different vein models in order to test the technique performance. Preliminary results of flow velocity and wall deformation are presented.

  13. Cross-correlation-based transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device.

    PubMed

    Liang, Jinyang; Zhou, Yong; Maslov, Konstantin I; Wang, Lihong V

    2013-09-01

    A cross-correlation-based method is proposed to quantitatively measure transverse flow velocity using optical resolution photoacoustic (PA) microscopy enhanced with a digital micromirror device (DMD). The DMD is used to alternately deliver two spatially separated laser beams to the target. Through cross-correlation between the slow-time PA profiles measured from the two beams, the speed and direction of transverse flow are simultaneously derived from the magnitude and sign of the time shift, respectively. Transverse flows in the range of 0.50 to 6.84  mm/s are accurately measured using an aqueous suspension of 10-μm-diameter microspheres, and the root-mean-squared measurement accuracy is quantified to be 0.22  mm/s. The flow measurements are independent of the particle size for flows in the velocity range of 0.55 to 6.49  mm/s, which was demonstrated experimentally using three different sizes of microspheres (diameters: 3, 6, and 10 μm). The measured flow velocity follows an expected parabolic distribution along the depth direction perpendicular to the flow. Both maximum and minimum measurable velocities are investigated for varied distances between the two beams and varied total time for one measurement. This technique shows an accuracy of 0.35  mm/s at 0.3-mm depth in scattering chicken breast, making it promising for measuring flow in biological tissue.

  14. In Vivo Validation of Volume Flow Measurements of Pulsatile Flow Using a Clinical Ultrasound System and Matrix Array Transducer.

    PubMed

    Hudson, John M; Williams, Ross; Milot, Laurent; Wei, Qifeng; Jago, James; Burns, Peter N

    2017-03-01

    The goal of this study was to evaluate the accuracy of a non-invasive C-plane Doppler estimation of pulsatile blood flow in the lower abdominal vessels of a porcine model. Doppler ultrasound measurements from a matrix array transducer system were compared with invasive volume flow measurements made on the same vessels with a surgically implanted ultrasonic transit-time flow probe. For volume flow rates ranging from 60 to 750 mL/min, agreement was very good, with a Pearson correlation coefficient of 0.97 (p < 0.0001) and a mean bias of -4.2%. The combination of 2-D matrix array technology and fast processing gives this Doppler method clinical potential, as many of the user- and system-dependent parameters of previous methods, including explicit vessel angle and diameter measurements, are eliminated. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Method and apparatus for detecting and measuring trace impurities in flowing gases

    DOEpatents

    Taylor, Gene W.; Dowdy, Edward J.

    1979-01-01

    Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

  16. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    PubMed Central

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984

  17. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    PubMed

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  18. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (smallmore » ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.« less

  19. Measuring surface flow velocity with smartphones: potential for citizen observatories

    NASA Astrophysics Data System (ADS)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  20. Apparatus for irradiating a continuously flowing stream of fluid

    DOEpatents

    Speir, Leslie G.; Adams, Edwin L.

    1984-01-01

    An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  1. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less

  2. Characterizing pulmonary blood flow distribution measured using arterial spin labeling.

    PubMed

    Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B

    2009-12-01

    The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.

  3. Volume three-dimensional flow measurements using wavelength multiplexing.

    PubMed

    Moore, Andrew J; Smith, Jason; Lawson, Nicholas J

    2005-10-01

    Optically distinguishable seeding particles that emit light in a narrow bandwidth, and a combination of bandwidths, were prepared by encapsulating quantum dots. The three-dimensional components of the particles' displacement were measured within a volume of fluid with particle tracking velocimetry (PTV). Particles are multiplexed to different hue bands in the camera images, enabling an increased seeding density and (or) fewer cameras to be used, thereby increasing the measurement spatial resolution and (or) reducing optical access requirements. The technique is also applicable to two-phase flow measurements with PTV or particle image velocimetry, where each phase is uniquely seeded.

  4. Laser measurements of unsteady flow field in a radial turbine guide vanes

    NASA Astrophysics Data System (ADS)

    Pasin, M.; Tabakoff, W.

    1992-01-01

    Detailed measurements of a unsteady flow field within the inlet guide vanes (IGV) of a radial inflow turbine were performed using a three component Laser Doppler Velocimeter (LDV) system. The mean velocity, the flow angle and the turbulence results are presented at the midspan plane for different rotor positions. These results are compared with the measurements obtained in the same passage in the absence of the rotor.

  5. Laser anemometer measurements in a transonic axial-flow fan rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, Anthony J.; Wood, Jerry R.; Hathaway, Michael D.; Suder, Kenneth L.

    1989-01-01

    Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.

  6. Comparison of different hydrological similarity measures to estimate flow quantiles

    NASA Astrophysics Data System (ADS)

    Rianna, M.; Ridolfi, E.; Napolitano, F.

    2017-07-01

    This paper aims to evaluate the influence of hydrological similarity measures on the definition of homogeneous regions. To this end, several attribute sets have been analyzed in the context of the Region of Influence (ROI) procedure. Several combinations of geomorphological, climatological, and geographical characteristics are also used to cluster potentially homogeneous regions. To verify the goodness of the resulting pooled sites, homogeneity tests arecarried out. Through a Monte Carlo simulation and a jack-knife procedure, flow quantiles areestimated for the regions effectively resulting as homogeneous. The analysis areperformed in both the so-called gauged and ungauged scenarios to analyze the effect of hydrological measures on flow quantiles estimation.

  7. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  8. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  9. Measuring sickle cell morphology in flow using spectrally encoded flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir

    2017-02-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.

  10. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  11. Cross-correlation-based transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device

    PubMed Central

    Liang, Jinyang; Zhou, Yong; Maslov, Konstantin I.

    2013-01-01

    Abstract. A cross-correlation-based method is proposed to quantitatively measure transverse flow velocity using optical resolution photoacoustic (PA) microscopy enhanced with a digital micromirror device (DMD). The DMD is used to alternately deliver two spatially separated laser beams to the target. Through cross-correlation between the slow-time PA profiles measured from the two beams, the speed and direction of transverse flow are simultaneously derived from the magnitude and sign of the time shift, respectively. Transverse flows in the range of 0.50 to 6.84  mm/s are accurately measured using an aqueous suspension of 10-μm-diameter microspheres, and the root-mean-squared measurement accuracy is quantified to be 0.22  mm/s. The flow measurements are independent of the particle size for flows in the velocity range of 0.55 to 6.49  mm/s, which was demonstrated experimentally using three different sizes of microspheres (diameters: 3, 6, and 10 μm). The measured flow velocity follows an expected parabolic distribution along the depth direction perpendicular to the flow. Both maximum and minimum measurable velocities are investigated for varied distances between the two beams and varied total time for one measurement. This technique shows an accuracy of 0.35  mm/s at 0.3-mm depth in scattering chicken breast, making it promising for measuring flow in biological tissue. PMID:24002191

  12. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating.

    PubMed

    Zhao, Jisong

    2018-05-17

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.

  13. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating

    PubMed Central

    Zhao, Jisong

    2018-01-01

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822

  14. Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements

    NASA Astrophysics Data System (ADS)

    Chaves, Arlex; Zahn, Markus; Rinaldi, Carlos

    2008-05-01

    We treat the flow of ferrofluid in a cylindrical container subjected to a uniform rotating magnetic field, commonly referred to as spin-up flow. A review of theoretical and experimental results published since the phenomenon was first observed in 1967 shows that the experimental data from surface observations of tracer particles are inadequate for the assessment of bulk flow theories. We present direct measurements of the bulk flow by using the ultrasound velocity profile method, and torque measurements for water and kerosene based ferrofluids, showing the fluid corotating with the field in a rigid-body-like fashion throughout most of the bulk region of the container, except near the air-fluid interface, where it was observed to counter-rotate. We obtain an extension of the spin diffusion theory of Zaitsev and Shliomis, using the regular perturbation method. The solution is rigorously valid for αK≪√3/2 , where αK is the Langevin parameter evaluated by using the applied field magnitude, and provides a means for obtaining successively higher contributions of the nonlinearity of the equilibrium magnetization response and the spin-magnetization coupling in the magnetization relaxation equation. Because of limitations in the sensitivity of our apparatus, experiments were carried out under conditions for which α ˜1. Still, under such conditions the predictions of the analysis are in good qualitative agreement with the experimental observations. An estimate of the spin viscosity is obtained from comparison of flow measurements and theoretical results of the extrapolated wall velocity from the regular perturbation method. The estimated value lies in the range of 10-8-10-12kgms-1 and is several orders of magnitude higher than that obtained from dimensional analysis of a suspension of noninteracting particles in a Newtonian fluid.

  15. Nonintrusive, multipoint velocity measurements in high-pressure combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.

    1993-01-01

    A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.

  16. Regional Evapotranspiration Estimation by Using Wireless Sap Flow and Soil Moisture Measurement Systems

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Yu, P.; Yang, T.; Davis, T. W.; Liang, X.; Tseng, C.; Cheng, C.

    2011-12-01

    The objective of this study proposed herein is to estimate regional evapotranspiration via sap flow and soil moisture measurements associated with wireless sensor network in the field. Evapotranspiration is one of the important factors in water balance computation. Pan evaporation collected from the meteorological station can only be accounted as a single-point scale measurement rather than the water loss of the entire region. Thus, we need a multiple-site measurement for understanding the regional evapotranspiration. Applying sap flow method with self-made probes, we could calculate transpiration. Soil moisture measurement was used to monitor the daily soil moisture variety for evaporation. Sap flow and soil moisture measurements in multiple sites are integrated by using wireless sensor network (WSN). Then, the measurement results of each site were scaled up and combined into the regional evapotranspiration. This study used thermal dissipation method to measure sap flow in trees to represent the plant transpiration. Sap flow was measured by using the self-made sap probes which needed to be calibrated before setting up at the observation field. Regional transpiration was scaled up through the Leaf Area Index (LAI). The LAI of regional scale was from the MODIS image calculated at 1km X 1km grid size. The soil moistures collected from areas outside the distributing area of tree roots and tree canopy were used to represent the evaporation. The observation was undertaken to collect soil moisture variety from five different soil depths of 10, 20, 30, 40 and 50 cm respectively. The regional evaporation can be estimated by averaging the variation of soil moisture from each site within the region. The result data measured by both sap flow and soil moisture measurements of each site were collected through the wireless sensor network. The WSN performs the functions of P2P and mesh networking. That can collect data in multiple locations simultaneously and has less power

  17. Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs

    NASA Astrophysics Data System (ADS)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-01-01

    The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge-Kutta-Cash-Karp method, and the GPU-accelerated version performed faster than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288 ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide (13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions) oxidation, were computed using the stabilized explicit second-order Runge-Kutta-Chebyshev (RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in performance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger, than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide mechanism. With the methane mechanism, RKC-GPU performed more than 65 and 11 times faster, for problem sizes consisting of 131,072 ODEs and larger, than the single- and six-core RKC-CPU versions, and up to 57 times faster than the six-core CPU-based implicit VODE algorithm on 65,536 ODEs. In the presence of more severe stiffness, such as ethylene oxidation (111 species and 1566 irreversible reactions), RKC-GPU performed more than 17 times faster than RKC-CPU on six cores for 32,768 ODEs and larger, and at best 4.5 times faster than VODE on six CPU cores for 65,536 ODEs. With a larger time step size, RKC-GPU performed at best 2.5 times slower than six-core VODE for 8192 ODEs and larger. Therefore, the need for developing new strategies for integrating stiff chemistry on GPUs was discussed.

  18. Flow profile measurement with multi-Mach probes on the HIST spherical torus device

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Nishioka, T.; Ando, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2008-11-01

    Role of plasma flow during MHD relaxation and magnetic reconnection processes is still underlying physics. The HIST spherical torus can generate various spherical torus (ST) configurations by changing the external toroidal magnetic field. Especially, the flipped ST (F-ST) configuration has been for the first time found in the HIST device [1]. In the present study, plasma flow measurements were performed by multi-Mach probes in the ST and the F-ST configurations. In addition, the measured plasma flow was compared with that evaluated by an ion Doppler spectrometer (IDS) system and plasma images measured by a high-speed camera. As the result, it was shown that the toroidal plasma flow (˜ 20 km/s) at the location far from the plasma gun was clearly reversed after the transition from the ST to the F-ST. However, the direction of the toroidal flow was not changed near the plasma gun. Therefore, it can be considered that there are flipped and non-reversal regions in the plasma. The result agrees well with a magnetic configuration predicted by magnetic field measurements. The plasma images measured by the high-speed camera also indicated that a helically twisted structure appeared from the gun region, and it localized at the edge region. [1] M. Nagata et al., Phys. Rev. Lett. 90, pp. 225001-225004 (2003).

  19. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  20. A fast response miniature probe for wet steam flow field measurements

    NASA Astrophysics Data System (ADS)

    Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.

    2016-12-01

    Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%.

  1. Fully developed pipe and triangular channel flow measurement using Magnetic Resonance Velocimetry

    NASA Astrophysics Data System (ADS)

    Baek, Seungchan; Hwang, Wontae

    2017-11-01

    Magnetic resonance velocimetry (MRV) is a non-intrusive flow visualization method which is able to measure the 3 dimensional 3 component (3D3C) mean velocity field in complex geometries, using a healthcare MRI scanner. Since this technique is based on nuclear magnetic resonance (NMR), it is free from optical distortion and does not require tracer particles. Due to these powerful advantages, MRV usage is gradually expanding from biomedical fields to the engineering domain. In this study, we validate the performance of MRV by measuring fully developed pipe flow and compare measured data with time averaged DNS data. We then investigate the overall flow characteristics in a triangular channel with a sharp corner. At the sharp corner, boundary layer effects dominate and the effect of turbulence is reduced. This information has implications for engineering applications such as flow in a turbine blade internal cooling passage at the sharp trailing edge. This research was supported by the Seoul National University Research Grant in 2017, and Doosan Heavy Industries & Construction. (Contract No. 2016900298 and 2017900095).

  2. The interaction of moderately strong shock waves with thick perforated walls of low porosity

    NASA Technical Reports Server (NTRS)

    Grant, D. J.

    1972-01-01

    A theoretical prediction is given of the flow through thick perforated walls of low porosity resulting from the impingement of a moderately strong traveling shock wave. The model was a flat plate positioned normal to the direction of the flow. Holes bored in the plate parallel to the direction of the flow provided nominal hole length-to-diameter ratios of 10:1 and an axial porosity of 25 percent of the flow channel cross section. The flow field behind the reflected shock wave was assumed to behave as a reservoir producing a quasi-steady duct flow through the model. Rayleigh and Fanno duct flow theoretical computations for each of three possible auxiliary wave patterns that can be associated with the transmitted shock (to satisfy contact surface compatibility) were used to provide bounding solutions as an alternative to the more complex influence coefficients method. Qualitative and quantitative behavior was verified in a 1.5- by 2.0-in. helium shock tube. High speed Schlieren photography, piezoelectric pressure-time histories, and electronic-counter wave speed measurements were used to assess the extent of correlation with the theoretical flow models. Reduced data indicated the adequacy of the bounding theory approach to predict wave phenomena and quantitative response.

  3. Magnetic particle imaging for in vivo blood flow velocity measurements in mice

    NASA Astrophysics Data System (ADS)

    Kaul, Michael G.; Salamon, Johannes; Knopp, Tobias; Ittrich, Harald; Adam, Gerhard; Weller, Horst; Jung, Caroline

    2018-03-01

    Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s‑1 was used for the evaluation of the applied analysis techniques. Time–density and distance–density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s‑1 can be measured by MPI. A time–density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n  =  10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time–density analysis and compared to PC MRI. A Bland–Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0  ±  1.5 cm s‑1 and those measured by MPI of 4.8  ±  1.1 cm s‑1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.

  4. Mach-Number Measurement with Laser and Pressure Probes in Humid Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Herring, G. C.

    2008-01-01

    Mach-number measurements using a nonintrusive optical technique, laser-induced thermal acoustics (LITA), are compared to pressure probes in humid supersonic airflow. The two techniques agree well in dry flow (-35 C dew point), but LITA measurements show about five times larger fractional change in Mach number than that of the pressure-probe when water is purposefully introduced into the flow. Possible reasons for this discrepancy are discussed.

  5. PIV measurements and flow characteristics downstream of mangrove root models

    NASA Astrophysics Data System (ADS)

    Kazemi, Amirkhosro; Curet, Oscar

    2016-11-01

    Mangrove forests attracted attentions as a solution to protect coastal areas exposed to sea-level rising, frequent storms, and tsunamis. Mangrove forests found in tide-dominated flow regions are characterized by their massive and complex root systems, which play a prominent role in the structure of tidal flow currents. To understand the role of mangrove roots in flow structure, we modeled mangrove roots with rigid and flexible arrays of cylinders with different spacing between them as well as different configurations. In this work, we investigate the fluid dynamics downstream of the models using a 2-D time-resolved particle image velocimetry (PIV) and flow visualization. We carried out experiments for four different Reynolds number based on cylinder diameters ranges from 2200 to 12000. We present time-averaged and time-resolved flow parameters including velocity distribution, vorticity, streamline, Reynolds shear stress and turbulent kinetic energy. The results show that the flow structure has different vortex shedding downstream of the cylinders due to interactions of shear layers separating from cylinders surface. The spectral analysis of the measured velocity data is also performed to obtain Strouhal number of the unsteady flow in the cylinder wake.

  6. Modeling and measuring non-Newtonian shear flows of soft interfaces

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Raghunandan, Aditya; Underhill, Patrick; Hirsa, Amir

    2017-11-01

    Soft interfaces of polymers, particles, and proteins between fluid phases are ubiquitous in industrial and natural processes. The flow response of such systems to deformation is often not linear, as one would expect for Newtonian interfaces. The resistance to (pure shear) flow of interfaces is generally characterized by a single intrinsic material property, the surface shear viscosity. Predicted shear responses of Newtonian interfaces have achieved consensus across a wide range of flow conditions and measurement devices, when the nonlinear hydrodynamic coupling to the bulk phase is correctly accounted for. However, predicting the flows of sheared non-Newtonian interfaces remains a challenge. Here, we introduce a computational model that incorporates a non-Newtonian constitutive equation for the sheared interface and properly accounts for the coupled interfacial and bulk phase flows. We compare predictions to experiments performed with a model phospholipid system, DPPC - the main constituent of mammalian lung surfactant. Densely packed films of DPPC are directly sheared in a knife-edge surface viscometer. Yield-stress and shear thinning behaviors are shown to be accurately captured across hydrodynamic regimes straddling the Stokes flow limit to inertia dominated flows. Supported by NASA Grant NNX13AQ22G.

  7. Modeling studies for a Mars penetrator heat flow measurement

    NASA Technical Reports Server (NTRS)

    Keihm, S. J.; Langseth, M. G.

    1976-01-01

    There were, two different design concepts considered for the purpose of measuring heat flow as part of a Mars penetrator mission. The first of the tentative designs utilizes temperature sensors emplaced along the trailing umbilicus at regularly spaced intervals, no greater than 1m, which is thermally coupled to the adjacent regolith radiatively and possibly convectively or conductively. The second of the heat flow designs considered requires the radial deployment of two or more low thermal mass temperature sensors outward from the penetrator body over a vertical (depth) range on the order of 1m.

  8. Two-phase flow measurements with advanced instrumented spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  9. SAPFLUXNET: towards a global database of sap flow measurements.

    PubMed

    Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Steppe, Kathy; Martínez-Vilalta, Jordi

    2016-12-01

    Plant transpiration is the main evaporative flux from terrestrial ecosystems; it controls land surface energy balance, determines catchment hydrological responses and influences regional and global climate. Transpiration regulation by plants is a key (and still not completely understood) process that underlies vegetation drought responses and land evaporative fluxes under global change scenarios. Thermometric methods of sap flow measurement have now been widely used to quantify whole-plant and stand transpiration in forests, shrublands and orchards around the world. A large body of research has applied sap flow methods to analyse seasonal and diurnal patterns of transpiration and to quantify their responses to hydroclimatic variability, but syntheses of sap flow data at regional to global scales are extremely rare. Here we present the SAPFLUXNET initiative, aimed at building the first global database of plant-level sap flow measurements. A preliminary metadata survey launched in December 2015 showed an encouraging response by the sap flow community, with sap flow data sets from field studies representing >160 species and >120 globally distributed sites. The main goal of SAPFLUXNET is to analyse the ecological factors driving plant- and stand-level transpiration. SAPFLUXNET will open promising research avenues at an unprecedented global scope, namely: (i) exploring the spatio-temporal variability of plant transpiration and its relationship with plant and stand attributes, (ii) summarizing physiological regulation of transpiration by means of few water-use traits, usable for land surface models, (iii) improving our understanding of the coordination between gas exchange and plant-level traits (e.g., hydraulics) and (iv) analysing the ecological factors controlling stand transpiration and evapotranspiration partitioning. Finally, SAPFLUXNET can provide a benchmark to test models of physiological controls of transpiration, contributing to improve the accuracy of

  10. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  11. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  12. Response of Sap-Flow Measurements on Environmental Forcings

    NASA Astrophysics Data System (ADS)

    Howe, J. A.; Dragoni, D.; Schmid, H.

    2005-05-01

    The exchange of water between the atmosphere and biosphere is an important determinant of climate and the productivity of vegetation. Both evaporation and transpiration involve substantial amounts of energy exchange at the interface of the biosphere and atmosphere. Knowing how transpiration changes throughout the seasonal and diurnal cycles can help increase the understanding of how a forest reacts to changes in the biosphere and atmosphere. A common way to estimate transpiration is by measuring the sap flowing through the living tissues of trees. A study was conducted at Morgan-Monroe State Forest, a mixed deciduous forest in south central Indiana (USA), to investigate how sap flow in trees responds to changes in meteorological and environmental conditions. The heat -dissipation technique was used to estimate sap velocities from two Big Tooth Aspen (Populus grandidentata) and two Tulip Poplars (Liriodendron tulipifera). Sap velocity patterns (normalized by a reference potential evapo-transpiration) were directly compared with meteorological and ecological measurements, such as vapor pressure deficits, photosynthetic active radiation (PAR), rain fall, and soil moisture content. In this study, we also investigated the uncertainties and problems that arise in using the heat dissipation technique to extrapolate the single-tree measurements to the forest scale.

  13. Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements

    NASA Technical Reports Server (NTRS)

    Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.

    2003-01-01

    It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically

  14. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    PubMed Central

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  15. Microfluidic flows of wormlike micellar solutions.

    PubMed

    Zhao, Ya; Cheung, Perry; Shen, Amy Q

    2014-09-01

    The widespread use of wormlike micellar solutions is commonly found in household items such as cosmetic products, industrial fluids used in enhanced oil recovery and as drag reducing agents, and in biological applications such as drug delivery and biosensors. Despite their extensive use, there are still many details about the microscopic micellar structure and the mechanisms by which wormlike micelles form under flow that are not clearly understood. Microfluidic devices provide a versatile platform to study wormlike micellar solutions under various flow conditions and confined geometries. A review of recent investigations using microfluidics to study the flow of wormlike micelles is presented here with an emphasis on three different flow types: shear, elongation, and complex flow fields. In particular, we focus on the use of shear flows to study shear banding, elastic instabilities of wormlike micellar solutions in extensional flow (including stagnation and contraction flow field), and the use of contraction geometries to measure the elongational viscosity of wormlike micellar solutions. Finally, we showcase the use of complex flow fields in microfluidics to generate a stable and nanoporous flow-induced structured phase (FISP) from wormlike micellar solutions. This review shows that the influence of spatial confinement and moderate hydrodynamic forces present in the microfluidic device can give rise to a host of possibilities of microstructural rearrangements and interesting flow phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Measurement of blood flow from an assist ventricle by computation of pneumatic driving parameters.

    PubMed

    Qian, K X

    1992-03-01

    The measurement of blood flow from an assist ventricle is important but sometimes difficult in artificial heart experiments. Along with the development of a pneumatic cylinder-piston driver coupled with a ventricular assist device, a simplified method for measuring pump flow was established. From driving parameters such as the piston (or cylinder) displacement and air pressure, the pump flow could be calculated by the use of the equation of state for an ideal gas. The results of this method are broadly in agreement with electromagnetic and Doppler measurements.

  17. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for

  18. Geometric scaling of artificial hair sensors for flow measurement under different conditions

    NASA Astrophysics Data System (ADS)

    Su, Weihua; Reich, Gregory W.

    2017-03-01

    Artificial hair sensors (AHSs) have been developed for prediction of the local flow speed and aerodynamic force around an airfoil and subsequent application in vibration control of the airfoil. Usually, a specific sensor design is only sensitive to the flow speeds within its operating flow measurement region. This paper aims at expanding this flow measurement concept of using AHSs to different flow speed conditions by properly sizing the parameters of the sensors, including the dimensions of the artificial hair, capillary, and carbon nanotubes (CNTs) that make up the sensor design, based on a baseline sensor design and its working flow condition. In doing so, the glass fiber hair is modeled as a cantilever beam with an elastic foundation, subject to the distributed aerodynamic drag over the length of the hair. Hair length and diameter, capillary depth, and CNT height are scaled by keeping the maximum compressive strain of the CNTs constant for different sensors under different speed conditions. Numerical studies will demonstrate the feasibility of the geometric scaling methodology by designing AHSs for aircraft with different dimensions and flight conditions, starting from the same baseline sensor. Finally, the operating bandwidth of the scaled sensors are explored.

  19. Application of Manning's Formula for Estimation of Liquid Metal Levels in Electromagnetic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen

    2015-02-01

    Lorentz force velocimetry is a new technique in electromagnetic flow measurements based on exposing an electrical conducting metal to a static magnetic field and measuring the force acting on the magnet system. The calibration procedure of a Lorentz force flowmeter used in industrial open-channel flow measurements is difficult because of the fluctuating liquid level in the channel. In this paper, the application of Manning's formula to estimate the depth of a liquid metal flowing in an open channel is analyzed by using the numerical modeling. Estimations of Manning's n parameter for aluminum show higher values as compared with water flowing in artificial channels. Saint-Venant equations are solved in order to analyze the wave propagation at the free surface of the liquid. Numerical results show a significant damping of waves at the surface of liquid metals as compared with water. Therefore, the Manning formula can be used to correlate the liquid depth and the flow rate in LFF numerical calibration procedure. These results show that the classical formulas, used exclusively to study the water flow in open channels, can be also applied for the liquid metals. The application of Manning's formulas requires experimental measurements of the parameter n, which depends on the channel bed roughness and also on the physical properties of the liquid flowing in channel.

  20. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    NASA Astrophysics Data System (ADS)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  1. Measurement of flows for two irrigation districts in the lower Colorado River basin, Texas

    USGS Publications Warehouse

    Coplin, L.S.; Liscum, Fred; East, J.W.; Goldstein, L.B.

    1996-01-01

    The Lower Colorado River Authority sells and distributes water for irrigation of rice farms in two irrigation districts, the Lakeside district and the Gulf Coast district, in the lower Colorado River Basin of Texas. In 1993, the Lower Colorado River Authority implemented a water-measurement program to account for the water delivered to rice farms and to promote water conservation. During the rice-irrigation season (summer and fall) of 1995, the U.S. Geological Survey measured flows at 30 sites in the Lakeside district and 24 sites in the Gulf Coast district coincident with Lower Colorado River Authority measuring sites. In each district, the Survey made essentially simultaneous flow measurements with different types of meters twice a day once in the morning and once in the afternoon at each site on selected days for comparison with Lower Colorado River Authority measurements. One-hundred pairs of corresponding (same site, same date) Lower Colorado River Authority and U.S. Geological Survey measurements from the Lakeside district and 104 measurement pairs from the Gulf Coast district are compared statistically and graphically. For comparison, the measurement pairs are grouped by irrigation district and further subdivided by the time difference between corresponding measurements less than or equal to 1 hour or more than 1 hour. Wilcoxon signed-rank tests (to indicate whether two groups of paired observations are statistically different) on Lakeside district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological Survey measurements are not statistically different. The median absolute percent difference between the flow measurements is 5.9 percent; and 33 percent of the flow measurements differ by more than 10 percent. Similar statistical tests on Gulf Coast district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological

  2. Measurement with microscopic MRI and simulation of flow in different aneurysm models.

    PubMed

    Edelhoff, Daniel; Walczak, Lars; Frank, Frauke; Heil, Marvin; Schmitz, Inge; Weichert, Frank; Suter, Dieter

    2015-10-01

    The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin-lattice relaxation. The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise

  3. Measurement with microscopic MRI and simulation of flow in different aneurysm models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelhoff, Daniel, E-mail: daniel.edelhoff@tu-dortmund.de; Frank, Frauke; Heil, Marvin

    2015-10-15

    Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was usedmore » to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment

  4. Velocity surveys in a turbine stator annular-cascade facility using laser Doppler techniques. [flow measurement and flow characteristics

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Seasholtz, R. G.; Mclallin, K. L.

    1976-01-01

    A laser Doppler velocimeter (LDV) was used to determine the flow conditions downstream of an annular cascade of stator blades operating at an exit critical velocity ratio of 0.87. Two modes of LDV operation (continuous scan and discrete point) were investigated. Conventional pressure probe measurements were also made for comparison with the LDV results. Biasing errors that occur in the LDV measurement of velocity components were also studied. In addition, the effect of pressure probe blockage on the flow conditions was determined with the LDV. Photographs and descriptions of the test equipment used are given.

  5. Mapping lava flow textures using three-dimensional measures of surface roughness

    NASA Astrophysics Data System (ADS)

    Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.

    2016-12-01

    Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on

  6. Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Thurman, Douglas R.; Poinsatte, Philip E.; Hippensteele, Steven A.

    1998-01-01

    An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45,000, 335,000, and 726,000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45,000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335,000 and 726,000 compared well with the more standard method of measuring pressures by using discrete holes.

  7. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  8. Development and testing of highway storm-sewer flow measurement and recording system

    USGS Publications Warehouse

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  9. Optimal plane search method in blood flow measurements by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz

    2004-07-01

    This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.

  10. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  11. Variability in sublingual microvessel density and flow measurements in healthy volunteers.

    PubMed

    Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C

    2009-02-01

    As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.

  12. Mediated moderation or moderated mediation: relationship between length of unemployment, resilience, coping and health.

    PubMed

    Sojo, Víctor; Guarino, Leticia

    2011-05-01

    The aim of the present research was to evaluate a model of mediated moderation vs. moderated mediation that could explain the relationship between length of unemployment, dispositional resilience, coping styles and depression and social functioning of Venezuelan unemployed individuals. Self-report measures were administered to a sample of 328 unemployed residents in Caracas, Venezuela. Results indicated that emotional coping acted as a mediator in the relationship between resilience and depression. Individuals with greater resilience used more detachment coping when unemployment was longer, while individuals with poorer resilience in the same situation used less avoidance coping. Resilience acted as a protective moderating factor between longer periods of unemployment and social functioning, a process mediated by detachment coping. Overall, results supported a mediated moderation model, with resilience as the moderating factor and coping as the mediator in the relation between stress due to the length of unemployment and well-being.

  13. Flow in a planar convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Kotteda, V. M. K.; Mittal, S.

    2017-05-01

    Flow in a convergent-divergent nozzle is studied for pressure ratios (NPR) of 1-11 and exit-to-throat area ratios of 1.2 to 2.0. The unsteady compressible Navier-Stokes equations along with the Spalart-Allmaras turbulence model are solved using a stabilized finite element method in two dimensions. Asymmetric flow is observed at moderate NPR. The side loads due to the flow asymmetry increase with increases in NPR and area ratio. Various flow regimes that are possible in the entire parameter space are identified. The introduction of boundary layer bleed results in steady and symmetric flow conditions at all NPR. Consequently, the nozzle does not experience a lateral force for any NPR. Application of bleed leads to a significant downstream shift in the shock location at low to moderate NPR. Compared to no-bleed, the nozzle experiences a loss of thrust in this regime. The thrust performance for {NPR} > 6 is, however, unaffected by bleed. The effect of nozzle geometry on the flow at various NPR is studied. Four different geometries with the same area ratio and nozzle length are considered. These geometries differ from each other in terms of the nozzle surface profile, including the discontinuity in slope of the surface. Barring some minor differences at low to moderate NPR, the flow is similar for all the geometries considered.

  14. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2011-03-01

    Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.

  15. Flow and Acoustic Properties of Low Reynolds Number Underexpanded Supersonic Jets. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hu, Tieh-Feng

    1981-01-01

    Jet noise on underexpanded supersonic jets are studied with emphasis on determining the role played by large scale organized flow fluctuations in the flow and acoustic processes. The experimental conditions of the study were chosen as low Reynolds number (Re=8,000) Mach 1.4 and 2.1, and moderate Reynolds number (Re=68,000) Mach 1.6 underexpanded supersonic jets exhausting from convergent nozzles. At these chosen conditions, detailed experimental measurements were performed to improve the understanding of the flow and acoustic properties of underexpanded supersonic jets.

  16. Flow and dynamo measurements during the coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Ando, K.; Higashi, T.; Nakatsuka, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    The current drive by Coaxial Helicity Injection (CHI-CD) was performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms, it is needed to manifest a role of plasma flows in the CHI-CD. For this purpose, we have measured the ion flow and the dynamo electric field using an ion Doppler spectrometer (IDS) system, a Mach probe and a dynamo probe. The new dynamo probe consists of 3-axis Mach probes and magnetic pick-up coils. The flow measurements have shown that the intermittent generation of the flow is correlated to the fluctuation seen on the electron density and current signals during the driven phase. At this time, the toroidal direction of the ion flow in the central open flux column is opposite to that of the toroidal current there, i.e. the same direction as electrons. After the plasma enters to the resistive decay phase, the toroidal flow tends to reverse to the same direction as the toroidal current. The results are consistent with the model of the repetitive plasmoid ejection and coalescence proposed for CHI-CD. The plasma jet emanating from the gun source and magnetic field generations through reconnection during the driven phase is well reflected in the 3D MHD simulation.

  17. Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Davidson, L.

    2003-03-01

    This work compares CFD results with experimental results of the flow in two different kinds of water turbine runners. The runners studied are the GAMM Francis runner and the Hölleforsen Kaplan runner. The GAMM Francis runner was used as a test case in the 1989 GAMM Workshop on 3D Computation of Incompressible Internal Flows where the geometry and detailed best efficiency measurements were made available. In addition to the best efficiency measurements, four off-design operating condition measurements are used for the comparisons in this work. The Hölleforsen Kaplan runner was used at the 1999 Turbine 99 and 2001 Turbine 99 - II workshops on draft tube flow, where detailed measurements made after the runner were used as inlet boundary conditions for the draft tube computations. The measurements are used here to validate computations of the flow in the runner.The computations are made in a single runner blade passage where the inlet boundary conditions are obtained from an extrapolation of detailed measurements (GAMM) or from separate guide vane computations (Hölleforsen). The steady flow in a rotating co-ordinate system is computed. The effects of turbulence are modelled by a low-Reynolds number k- turbulence model, which removes some of the assumptions of the commonly used wall function approach and brings the computations one step further.

  18. Measurements of void fraction distribution in cavitating pipe flow using x-ray CT

    NASA Astrophysics Data System (ADS)

    Bauer, D.; Chaves, H.; Arcoumanis, C.

    2012-05-01

    Measuring the void fraction distribution is still one of the greatest challenges in cavitation research. In this paper, a measurement technique for the quantitative void fraction characterization in a cavitating pipe flow is presented. While it is almost impossible to visualize the inside of the cavitation region with visible light, it is shown that with x-ray computed tomography (CT) it is possible to capture the time-averaged void fraction distribution in a quasi-steady pipe flow. Different types of cavitation have been investigated including cloud-like cavitation, bubble cavitation and film cavitation at very high flow rates. A specially designed nozzle was employed to induce very stable quasi-steady cavitation. The obtained results demonstrate the advantages of the measurement technique compared to other ones; for example, structures were observed inside the cavitation region that could not be visualized by photographic images. Furthermore, photographic images and pressure measurements were used to allow comparisons to be made and to prove the superiority of the CT measurement technique.

  19. Longitudinal decorrelation measures of flow magnitude and event-plane angles in ultrarelativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr; Broniowski, Wojciech

    2018-03-01

    We discuss the forward-backward correlations of harmonic flow in Pb +Pb collisions at the CERN Large Hadron Collider, applying standard multibin measures as well as new measures proposed here. We illustrate the methods with hydrodynamic model simulations based on event-by-event initial conditions from the wounded quark model with asymmetric rapidity emission profiles. Within the model, we examine independently the event-plane angle and the flow magnitude decorrelations. We find a specific hierarchy between various flow decorrelation measures and confirm certain factorization relations. We find qualitative agreement of the model and the data from the ATLAS and CMS Collaborations.

  20. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  1. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers.

    PubMed

    Vega, E J; Acero, A J; Montanero, J M; Herrada, M A; Gañán-Calvo, A M

    2014-06-01

    We analyze both experimentally and numerically the formation of microbubbles in the jetting regime reached when a moderately viscous liquid stream focuses a gaseous meniscus inside a converging micronozzle. If the total (stagnation) pressure of the injected gas current is fixed upstream, then there are certain conditions on which a quasisteady gas meniscus forms. The meniscus tip is sharpened by the liquid stream down to the gas molecular scale. On the other side, monodisperse collections of microbubbles can be steadily produced in the jetting regime if the feeding capillary is appropriately located inside the nozzle. In this case, the microbubble size depends on the feeding capillary position. The numerical simulations for an imposed gas flow rate show that a recirculation cell appears in the gaseous meniscus for low enough values of that parameter. The experiments allow one to conclude that the bubble pinch-off comprises two phases: (i) a stretching motion of the precursor jet where the neck radius versus the time before the pinch essentially follows a potential law, and (ii) a final stage where a very thin and slender gaseous thread forms and eventually breaks apart into a number of micron-sized bubbles. Because of the difference between the free surface and core velocities, the gaseous jet breakage differs substantially from that of liquid capillary jets and gives rise to bubbles with diameters much larger than those expected from the Rayleigh-type capillary instability. The dependency of the bubble diameter upon the flow-rate ratio agrees with the scaling law derived by A. M. Gañán-Calvo [Phys. Rev. E 69, 027301 (2004)], although a slight influence of the Reynolds number can be observed in our experiments.

  2. Acute Increase in Hepatic Arterial Flow During TIPS Identified by Intravascular Flow Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radeleff, Boris, E-mail: Boris_Radeleff@med.uni-heidelberg.de; Sommer, Christof-Matthias; Heye, Tobias

    2009-01-15

    The purpose of this study was to investigate alterations of hepatic arterial flow during transjugular intrahepatic portosystemic stent shunt (TIPS) applying intravascular Doppler sonography. This prospective monocenter study included 25 patients with liver cirrhosis (alcohol induced [n = 19], chronic hepatitis associated [n = 3], primary biliary cirrhosis associated [n = 1], and cryptogenic [n = 2]) successfully treated with TIPS. All patients underwent intravascular hepatic arterial flow measurements during TIPS using an endoluminal flow sensor. The average arterial peak velocity (APV) and the maximum arterial peak velocity (MPV) were registered. Twenty-two patients (88%) showed increased APV, one patient (4%)more » showed unaffected APV, and two patients (8%) showed decreased APV after TIPS. The average portosystemic pressure gradient decreased significantly, from 22.0 {+-} 5.1 mmHg before TIPS to 11.0 {+-} 4.1 mmHg after TIPS (-50.0%; p < 0.0001). The average APV increased significantly, from 41.9 {+-} 17.8 cm/s before TIPS to 60.7 {+-} 19.0 cm/s after TIPS (+44.9%; p < 0.0001). The average MPV increased significantly, from 90.8 {+-} 31.7 cm/s before TIPS to 112.6 {+-} 34.9 cm/s after TIPS (+24.0%; p = 0.0002). These changes in perfusion set in within seconds after TIPS tract formation in all the patients with increased APV. We conclude that TIPS-induced portosystemic decompression leads to a significant increase in hepatic arterial flow. The changes occurred within seconds, suggesting a reflex-like mechanism.« less

  3. Measurement of Two-Phase Flow and Heat Transfer Parameters using Infrared Thermometry

    NASA Technical Reports Server (NTRS)

    Kim, Tae-Hoon; Kommer, Eric; Dessiatoun, Serguei; Kim, Jungho

    2012-01-01

    A novel technique to measure heat transfer and liquid film thickness distributions over relatively large areas for two-phase flow and heat transfer phenomena using infrared (IR)thermometry is described. IR thermometry is an established technology that can be used to measure temperatures when optical access to the surface is available in the wavelengths of interest. In this work, a midwave IR camera (3.6-5.1 microns) is used to determine the temperature distribution within a multilayer consisting of a silicon substrate coated with a thin insulator. Since silicon is largely transparent to IR radiation, the temperature of the inner and outer walls of the multilayer can be measured by coating selected areas with a thin, IR opaque film. If the fluid used is also partially transparent to IR, the flow can be visualized and the liquid film thickness can be measured. The theoretical basis for the technique is given along with a description of the test apparatus and data reduction procedure. The technique is demonstrated by determining the heat transfer coefficient distributions produced by droplet evaporation and flow boiling heat transfer.

  4. Sensor for Direct Measurement of the Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution laser optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  5. Transcutaneous measurement of volume blood flow

    NASA Technical Reports Server (NTRS)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  6. Depth-encoded dual beam phase-resolved Doppler OCT for Doppler-angle-independent flow velocity measurement

    NASA Astrophysics Data System (ADS)

    Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua

    2017-02-01

    Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.

  7. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. Y.; Graduate University of the Chinese Academy of Sciences, Beijing, 100049; Luo, E. C.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermalmore » regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.« less

  8. Moderators of Implicit-Explicit Exercise Cognition Concordance.

    PubMed

    Berry, Tanya R; Rodgers, Wendy M; Markland, David; Hall, Craig R

    2016-12-01

    Investigating implicit-explicit concordance can aid in understanding underlying mechanisms and possible intervention effects. This research examined the concordance between implicit associations of exercise with health or appearance and related explicit motives. Variables considered as possible moderators were behavioral regulations, explicit attitudes, and social desirability. Participants (N = 454) completed measures of implicit associations of exercise with health and appearance and questionnaire measures of health and appearance motives, attitudes, social desirability, and behavioral regulations. Attitudes significantly moderated the relationship between implicit associations of exercise with health and health motives. Identified regulations significantly moderated implicit-explicit concordance with respect to associations with appearance. These results suggest that implicit and explicit exercise-related cognitions are not necessarily independent and their relationship to each other may be moderated by attitudes or some forms of behavioral regulation. Future research that takes a dual-processing approach to exercise behavior should consider potential theoretical moderators of concordance.

  9. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  10. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  11. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  12. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  13. Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1983-01-01

    Various flow visualization techniques were used to define the secondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.

  14. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise.

    PubMed

    Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko

    2017-04-01

    We examined whether a change in posterior cerebral artery flow velocity (PCAv) reflected the posterior cerebral blood flow in healthy subjects during both static and dynamic exercise. PCAv and vertebral artery (VA) blood flow, as an index of posterior cerebral blood flow, were continuously measured during an exercise trial using transcranial Doppler (TCD) ultrasonography and Doppler ultrasound, respectively. Static handgrip exercise significantly increased both PCAv and VA blood flow. Increasing intensity of dynamic exercise further increased VA blood flow from moderate exercise, while PCAv decreased to almost resting level. During both static and dynamic exercise, the PCA cerebrovascular conductance (CVC) index significantly decreased from rest (static and high-intensity dynamic exercise, -11.5 ± 12.2% and -18.0 ± 16.8%, means ± SD, respectively) despite no change in the CVC of VA. These results indicate that vasoconstriction occurred at PCA but not VA during exercise-induced hypertension. This discrepancy in vascular response to exercise between PCA and VA may be due to different cerebral arterial characteristics. Therefore, to determine the effect of exercise on posterior cerebral circulation, at least, we need to carefully consider which cerebral artery to measure, regardless of exercise mode. NEW & NOTEWORTHY We examined whether transcranial Doppler-determined flow velocity in the posterior cerebral artery can be used as an index of cerebral blood flow during exercise. However, the changes in posterior cerebral artery flow velocity during exercise do not reflect vertebral artery blood flow. Copyright © 2017 the American Physiological Society.

  15. Sap flow measurements to determine the transpiration of facade greenings

    NASA Astrophysics Data System (ADS)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  16. Measurements of pore-scale flow through apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnicki, Kirsten

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregularmore » cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.« less

  17. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  18. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    PubMed

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  19. On the Scaling of Small, Heat Simulated Jet Noise Measurements to Moderate Size Exhaust Jets

    NASA Technical Reports Server (NTRS)

    McLaughlin, Dennis K.; Bridges, James; Kuo, Ching-Wen

    2010-01-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions, depending on the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center- in partnership with GE Aviation is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to validate methodology for using data obtained from small and moderate scale experiments to reliably predict the most important components of full scale engine noise. The experimental results presented show reasonable agreement between small scale and moderate scale jet acoustic data, as well as between heated jets and heat-simulated ones. Unresolved issues however are identified that are currently receiving our attention, in particular the effect of the small bypass ratio airflow. Future activities will identify and test promising noise reduction techniques in an effort to predict how well such concepts will work with full scale engines in flight conditions.

  20. Laser Doppler measurements of laminar and turbulent flow in a pipe bend

    NASA Technical Reports Server (NTRS)

    Enayet, M. M.; Gibson, M. M.; Taylor, A. M. K. P.; Yianneskis, M.

    1982-01-01

    The streamwise components of velocity in the flow through a ninety degree bend of circular cross section for which the ratio of radius of curvature to diameter is 2.8 were measured. The development of strong pressure driven secondary flow in the form of a pair of counter rotating vortices in the steamwise direction is shown. Refractive index matching at the fluid wall interface was not employed; the displacement of the measurement volume due to refraction is allowed for in simple geometrical calculations.

  1. Flow Control and Measurement in Electric Propulsion Systems: Towards an AIAA Reference Standard

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Baldwin, Jeff; Frieman, Jason D.; Walker, Mitchell L. R.; Hicks, Nathan S.; Polzin, Kurt A.; Singleton, James T.

    2013-01-01

    Accurate control and measurement of propellant flow to a thruster is one of the most basic and fundamental requirements for operation of electric propulsion systems, whether they be in the laboratory or on flight spacecraft. Hence, it is important for the electric propulsion community to have a common understanding of typical methods for flow control and measurement. This paper addresses the topic of propellant flow primarily for the gaseous propellant systems which have dominated laboratory research and flight application over the last few decades, although other types of systems are also briefly discussed. While most flight systems have employed a type of pressure-fed flow restrictor for flow control, both thermal-based and pressure-based mass flow controllers are routinely used in laboratories. Fundamentals and theory of operation of these types of controllers are presented, along with sources of uncertainty associated with their use. Methods of calibration and recommendations for calibration processes are presented. Finally, details of uncertainty calculations are presented for some common calibration methods and for the linear fits to calibration data that are commonly used.

  2. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.

  3. Landau-Squire jet as a versatile probe to measure flow rate through individual nanochannel and nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Marbach, Sophie; Siria, Alessandro; Bocquet, Lyderic

    2015-11-01

    Over the last decade, nanometric sized channels have been intensively investigated since new model of fluid transport are expected due to the flow confinement at the nanometric scale. Nanoconfinement generates new phenomena, such as superfast flows in carbon nanotubes and slippage over smooth surfaces. However, a major challenge of nanofluidics lies in fabricating nanoscale fluidic devices and developing new velocimetry techniques able to measure flow rates down to femtoL/s. In this work we report the experimental study of the velocity fields generated by pressure driven flow from glass nanochannel with a diameter ranging from 1 μm to 100nm. The flow emerging from these channels can be described by the classical Landau-Squire solution of the Navier-Stokes equation for a point jet. We show that due to the peculiarity of this flow, it can be used as an efficient probe to characterize the permeability of nanochannels. Velocity field is measured experimentally seeding the fluid in the reservoir with 500 nm Polystyrene particles and measuring the velocity with a standard PIV algorithm. Predictions are tested for nanochannels of several dimensions and supported by ionic current measurement. This demonstrates that this technique is a powerful tool to characterize the flow through nanochannels. We finally apply this method to the measurement of the flow emerging from a single carbon nanotube inserted in the nanochannels and present first data of permeability measurement through a single nanotube.

  4. Visualizing and measuring flow in shale matrix using in situ synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Kohli, A. H.; Kiss, A. M.; Kovscek, A. R.; Bargar, J.

    2017-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image

  5. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements

    NASA Technical Reports Server (NTRS)

    Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.

    1992-01-01

    Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.

  6. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  7. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, F.A.; Gray, J.W.

    1983-10-18

    A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)

  8. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1988-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide or Hoechst 33258 is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as halodeoxy-uridine (HdU), more specifically bromodeoxyuridine (BrdU) is used as a probe for the measurement of HdU or BrdU uptake by the cells as a measure of DNA synthesis.

  9. Effect of acute moderate exercise on induced inflammation and arterial function in older adults.

    PubMed

    Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo

    2014-04-01

    Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.

  10. Measurement and Characterization of Apoptosis by Flow Cytometry.

    PubMed

    Telford, William; Tamul, Karen; Bradford, Jolene

    2016-07-01

    Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  11. High-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure for children with moderate-to-severe respiratory distress?*.

    PubMed

    ten Brink, Fia; Duke, Trevor; Evans, Janine

    2013-09-01

    : 21 (57%) weaned successfully and 9 (24%) required escalation. Repeated treatment and crossover were common in this cohort. Throughout the study duration, escalation to a higher level of respiratory support was needed in 26 of 100 high-flow nasal prong treatment episodes (26%) and in 10 of 55 continuous positive airway pressure episodes (18%; p = 0.27). The need for escalation could be predicted by two of failure of normalization of heart rate and respiratory rate, and if the FIO2 did not fall to lower than 0.5, 2 hours after starting high-flow nasal prong therapy. Nasopharyngeal continuous positive airway pressure was required for significantly longer periods than high-flow nasal prong (median 48 and 18 hours, respectively; p ≤ 0.001). High-flow nasal prong therapy is a safe form of respiratory support for children with moderate-to-severe respiratory distress, across a large range of diagnoses, whose increased work of breathing or hypoxemia is not relieved by standard oxygen therapy. About one quarter of all children will require escalation to another form of respiratory support. This can be predicted by simple bedside observations.

  12. Measurement of gas yields and flow rates using a custom flowmeter

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Pinkston, J.C.; Stern, L.A.

    2001-01-01

    A simple gas collection apparatus based on the principles of a Torricelli tube has been designed and built to measure gas volume yields and flow rates. This instrument is routinely used to monitor and collect methane gas released during methane hydrate dissociation experiments. It is easily and inexpensively built, operates at ambient pressures and temperatures, and measures gas volumes of up to 7 L to a precision of about 15 ml (about 0.0025 mol). It is capable of measuring gas flow rates varying from more than 103 to less than 10-1 ml/min during gas evolution events that span minutes to several days. We have obtained a highly reproducible hydrate number of n=5.891 with a propagated uncertainty of ??0.020 for synthetic methane hydrate. ?? 2001 American Institute of Physics.

  13. Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1984-01-01

    Various flow visualization techniques were used to define the seondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious. Previously announced in STAR as N83-14435

  14. A system for the real time, direct measurement of natural gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, T.

    1995-12-31

    PMI/Badger Meter, Inc. with partial sponsorship from the Gas Research Institute, has designed and developed direct measurement total energy flow metering instrumentation. As industry demands for improved accuracy and speed of measurement have increased so has the complexity of the overall hardware and software systems. Considering traditional system approaches, few companies have the in house capability of maintaining a complete system. This paper addresses efforts to implement a direct, total gas energy flow metering system which is simple to use and cost effective.

  15. Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort.

    PubMed

    Dolui, Sudipto; Wang, Ze; Wang, Danny Jj; Mattay, Raghav; Finkel, Mack; Elliott, Mark; Desiderio, Lisa; Inglis, Ben; Mueller, Bryon; Stafford, Randall B; Launer, Lenore J; Jacobs, David R; Bryan, R Nick; Detre, John A

    2016-07-01

    Arterial spin labeling and phase contrast magnetic resonance imaging provide independent non-invasive methods for measuring cerebral blood flow. We compared global cerebral blood flow measurements obtained using pseudo-continuous arterial spin labeling and phase contrast in 436 middle-aged subjects acquired at two sites in the NHLBI CARDIA multisite study. Cerebral blood flow measured by phase contrast (CBFPC: 55.76 ± 12.05 ml/100 g/min) was systematically higher (p < 0.001) and more variable than cerebral blood flow measured by pseudo-continuous arterial spin labeling (CBFPCASL: 47.70 ± 9.75). The correlation between global cerebral blood flow values obtained from the two modalities was 0.59 (p < 0.001), explaining less than half of the observed variance in cerebral blood flow estimates. Well-established correlations of global cerebral blood flow with age and sex were similarly observed in both CBFPCASL and CBFPC CBFPC also demonstrated statistically significant site differences, whereas no such differences were observed in CBFPCASL No consistent velocity-dependent effects on pseudo-continuous arterial spin labeling were observed, suggesting that pseudo-continuous labeling efficiency does not vary substantially across typical adult carotid and vertebral velocities, as has previously been suggested. Although CBFPCASL and CBFPC values show substantial similarity across the entire cohort, these data do not support calibration of CBFPCASL using CBFPC in individual subjects. The wide-ranging cerebral blood flow values obtained by both methods suggest that cerebral blood flow values are highly variable in the general population. © The Author(s) 2016.

  16. Ultraviolet Molecular Rayleigh Scattering Used to Measure Velocity in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1997-01-01

    Molecular Rayleigh scattering offers a means to measure gas flow parameters including density, temperature, and velocity. No seeding of the flow is necessary. The Rayleigh scattered power is proportional to the gas density, the spectral width is related to the gas temperature, and the shift in the frequency of the spectral peak is proportional to one component of the fluid velocity. Velocity measurements based on Rayleigh scattering are more suitable for high-speed flow, where the bulk fluid velocity is on the order of, or larger than, the molecular thermal velocities. Use of ultraviolet wavelengths for Rayleigh scattering diagnostics is attractive for two reasons. First, the Rayleigh scattering cross section is proportional to the inverse 4th power of the wavelength. And second, the reflectivity of metallic surfaces is generally less than it is at longer wavelengths. This is of particular interest in confined flow situations, such as in small wind tunnels and aircraft engine components, where the stray laser light scattered from the windows and internal surfaces in the test facility limits the application of Rayleigh scattering diagnostics. In this work at the NASA Lewis Research Center, molecular Rayleigh scattering of the 266-nm fourth harmonic of a pulsed, injection seeded Nd:YAG (neodymium:yttriumaluminum- garnet) laser was used to measure velocity in a supersonic free air jet with a 9.3- mm exit diameter. The frequency of the Rayleigh scattered light was analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode, with the images recorded on a cooled, high-quantum-efficiency charge-coupled discharge (CCD) camera. In addition, some unshifted light from the same laser pulse was imaged through the interferometer to generate a reference. Data were obtained with single laser pulses at velocities up to Mach 1.3. The measured velocities were in good agreement with velocities calculated from isentropic flow relations. Our conclusion from

  17. Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis.

    PubMed

    Games, Kenneth E; Sefton, JoEllen M; Wilson, Alan E

    2015-05-01

    The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation; however, when the measurement site was considered, muscle oxygenation increased or

  18. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, Stephen A; Fukushima, Eiichi

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models ofmore » suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003

  19. Laser Doppler imaging of genital blood flow: a direct measure of female sexual arousal.

    PubMed

    Waxman, Samantha E; Pukall, Caroline F

    2009-08-01

    Female sexual arousal is a challenging construct to measure, partly because of the subtle nature of its indicators, vaginal lubrication and genital swelling. As a result, many instruments have been used in an attempt to accurately measure it; however, problems are associated with each. Furthermore, the relationship between subjective and physiological indicators of arousal appears to be influenced by the instrument used to measure physiological arousal. Specifically, instruments measuring physiological arousal internally yield lower correlations between measures of physiological and subjective arousal than instruments examining the external genitals. Laser Doppler imaging (LDI) is a direct measure of external genital blood flow. The purpose of this study was to investigate the usefulness of LDI for measuring genital blood flow in women in response to erotic visual stimuli, and to explore the relationship between physiological and subjective sexual arousal. Sixty-five participants watched three 15-minute films during LDI scanning. Two nature films (measuring acclimatization and baseline blood flow levels) and one randomly assigned experimental film (erotic, anxiety, humor, or neutral) were used. Participants rated their level of subjective arousal following the third film. Results indicated a significant effect of film condition on genital blood flow, P < 0.001, with the erotic condition differing significantly from the other three conditions. In terms of the relationship between physiological and subjective sexual arousal, physiological arousal was significantly predicted by subjective ratings of sexual arousal (P < 0.001). LDI appears to be able to differentiate blood flow during erotic and nonerotic conditions. In addition, physiological sexual arousal was significantly predicted by women's reported subjective sexual arousal. These findings suggest that LDI is a useful instrument for measuring female sexual arousal, and that women may be more aware of their level

  20. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    PubMed Central

    Camilli, Richard; Di Iorio, Daniela; Bowen, Andrew; Reddy, Christopher M.; Techet, Alexandra H.; Yoerger, Dana R.; Whitcomb, Louis L.; Seewald, Jeffrey S.; Sylva, Sean P.; Fenwick, Judith

    2012-01-01

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well’s two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well’s oil flow rate was approximately 0.10 ± 0.017 m3 s-1 at seafloor conditions, or approximately 85 ± 15 kg s-1 (7.4 ± 1.3 Gg d-1), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s-1 (2.1 ± 0.37 Gg d-1) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s-1 (9.5 ± 1.6 Gg d-1). PMID:21903931