Science.gov

Sample records for modern bubonic plague

  1. A Deadly Path: Bacterial Spread During Bubonic Plague.

    PubMed

    Gonzalez, Rodrigo J; Miller, Virginia L

    2016-04-01

    Yersinia pestis causes bubonic plague, a fulminant disease where host immune responses are abrogated. Recently developed in vivo models of plague have resulted in new ideas regarding bacterial spread in the body. Deciphering bacterial spread is key to understanding Y. pestis and the immune responses it encounters during infection.

  2. Paleoclimate and bubonic plague: a forewarning of future risk?

    PubMed

    McMichael, Anthony J

    2010-08-27

    Pandemics of bubonic plague have occurred in Eurasia since the sixth century AD. Climatic variations in Central Asia affect the population size and activity of the plague bacterium's reservoir rodent species, influencing the probability of human infection. Using innovative time-series analysis of surrogate climate records spanning 1,500 years, a study in BMC Biology concludes that climatic fluctuations may have influenced these pandemics. This has potential implications for health risks from future climate change.

  3. Human bubonic plague transmitted by a domestic cat scratch.

    PubMed

    Weniger, B G; Warren, A J; Forseth, V; Shipps, G W; Creelman, T; Gorton, J; Barnes, A M

    1984-02-17

    Bubonic plague was transmitted to a 10-year-old girl in Oregon by a scratch wound inflicted by a domestic cat. The cat probably was infected by contact with infected wild rodents or their fleas. Yersinia pestis was identified in Diamanus montanus fleas collected from an abandoned burrow near the patient's home. Domestic cats may infect humans with Y pestis by inoculation from a scratch.

  4. Solar Variability and the Decline of the Bubonic Plague

    NASA Astrophysics Data System (ADS)

    2001-10-01

    The bubonic plague was responsible for the deaths of a very large percentage of the population of Europe in ancient times. Leaders of state made promises to “kill off” the plague, were all unsuccessful. It wasn’t the grand promise of a politician, or some new medicinal invention that was responsible for the final decline of the plague. It appears that a chain of events that began 93,000,000 miles away from Earth exerted an impact that lead to the end of the plague’s activity. Some simple changes in solar activity that began in the early 1300’s started the final to break the stranglehold that the plague had on most of Europe. This chain of events will be presented and discussed in this paper.

  5. Recent results on the spatiotemporal modelling and comparative analysis of Black Death and bubonic plague epidemics

    USGS Publications Warehouse

    Christakos, G.; Olea, R.A.; Yu, H.-L.

    2007-01-01

    Background: This work demonstrates the importance of spatiotemporal stochastic modelling in constructing maps of major epidemics from fragmentary information, assessing population impacts, searching for possible etiologies, and performing comparative analysis of epidemics. Methods: Based on the theory previously published by the authors and incorporating new knowledge bases, informative maps of the composite space-time distributions were generated for important characteristics of two major epidemics: Black Death (14th century Western Europe) and bubonic plague (19th-20th century Indian subcontinent). Results: The comparative spatiotemporal analysis of the epidemics led to a number of interesting findings: (1) the two epidemics exhibited certain differences in their spatiotemporal characteristics (correlation structures, trends, occurrence patterns and propagation speeds) that need to be explained by means of an interdisciplinary effort; (2) geographical epidemic indicators confirmed in a rigorous quantitative manner the partial findings of isolated reports and time series that Black Death mortality was two orders of magnitude higher than that of bubonic plague; (3) modern bubonic plague is a rural disease hitting harder the small villages in the countryside whereas Black Death was a devastating epidemic that indiscriminately attacked large urban centres and the countryside, and while the epidemic in India lasted uninterruptedly for five decades, in Western Europe it lasted three and a half years; (4) the epidemics had reverse areal extension features in response to annual seasonal variations. Temperature increase at the end of winter led to an expansion of infected geographical area for Black Death and a reduction for bubonic plague, reaching a climax at the end of spring when the infected area in Western Europe was always larger than in India. Conversely, without exception, the infected area during winter was larger for the Indian bubonic plague; (5) during the

  6. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague.

    PubMed

    Guinet, Françoise; Avé, Patrick; Filali, Sofia; Huon, Christèle; Savin, Cyril; Huerre, Michel; Fiette, Laurence; Carniel, Elisabeth

    2015-10-01

    Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN) draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla is to protect

  7. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination

    PubMed Central

    Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E.

    2015-01-01

    Background No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. Methodology/Principal Findings The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1—Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. Significance VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection

  8. Travel history key to picking up on signs of bubonic plague.

    PubMed

    2015-11-01

    Health officials note an uptick in cases of bubonic plague in the United States this year, with at least 12 reported human cases reported since April 1. The CDC notes that healthcare providers should consider plague in patients who have traveled to plague-endemic areas and exhibit fever, headache, chills, weakness, and one or more swollen or tender and painful lymph nodes, referred to as buboes. Officials note that the disease rarely passes from person to person, but that this is a concern with patients who have developed the pneumonic form of the disease. Health officials note that in recent years there has been an average of seven cases of human plague each year in the United States, and that most of these cases are the bubonic form of the illness. Four patients confirmed to have plague this year have died, including the most recent case, a Utah man in his 70s. Most cases of plague in the United States occur in two regions. The first includes northern New Mexico, northern Arizona, and southern Colorado, and the second includes California, southern Oregon, and far western Nevada. When plague is suspected, treatment with antibiotics should begin immediately.

  9. New Insights into How Yersinia pestis Adapts to Its Mammalian Host during Bubonic Plague

    PubMed Central

    Pradel, Elizabeth; Lemaître, Nadine; Merchez, Maud; Ricard, Isabelle; Reboul, Angéline; Dewitte, Amélie; Sebbane, Florent

    2014-01-01

    Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, “per-pool” screening method that we have developed. Our data showed that in addition to genes involved in physiological adaption and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site – probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability. PMID:24675805

  10. Plague

    MedlinePlus

    ... Bubonic plague causes the tonsils, adenoids, spleen, and thymus to become inflamed. Symptoms include fever, aches, chills, and tender lymph glands. In septicemic plague, bacteria multiply in the blood. ...

  11. Flea-borne transmission model to evaluate vaccine efficacy against naturally acquired bubonic plague.

    PubMed

    Jarrett, Clayton O; Sebbane, Florent; Adamovicz, Jeffrey J; Andrews, Gerard P; Hinnebusch, B Joseph

    2004-04-01

    A flea-to-mouse transmission model was developed for use in testing new candidate vaccines for the ability to protect against flea-borne plague. The model was used to evaluate a recombinant fusion protein vaccine consisting of the Yersinia pestis F1 and V antigens. After one to three challenges with Y. pestis-infected fleas, 14 of 15 unvaccinated control mice developed plague, with an average septicemia level of 9.2 x 10(8) Y. pestis CFU/ml. None of 15 vaccinated mice developed the disease after similar challenges, and serological testing indicated that transmitted bacteria were eliminated by the immune system before extensive replication and systemic infection could occur. The transmission and development of disease in control mice correlated with the number of bites by blocked fleas but not with the total number of fleabites. The model provides a means to directly assess the efficacy of new vaccines to prevent naturally acquired bubonic plague and to study events at the vector-host interface that lead to dissemination and disease.

  12. The Yfe and Feo Transporters Are Involved in Microaerobic Growth and Virulence of Yersinia pestis in Bubonic Plague

    PubMed Central

    Fetherston, Jacqueline D.; Mier, Ildefonso; Truszczynska, Helena

    2012-01-01

    The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD50) relative to the Yfe+ Feo+ parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified. PMID:22927049

  13. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis.

    PubMed

    Nham, Toan; Filali, Sofia; Danne, Camille; Derbise, Anne; Carniel, Elisabeth

    2012-01-01

    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response.

  14. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques.

    PubMed

    Zhang, Qingwen; Wang, Qiong; Tian, Guang; Qi, Zhizhen; Zhang, Xuecan; Wu, Xiaohong; Qiu, Yefeng; Bi, Yujing; Yang, Xiaoyan; Xin, Youquan; He, Jian; Zhou, Jiyuan; Zeng, Lin; Yang, Ruifu; Wang, Xiaoyi

    2014-01-01

    Yersinia pestis biovar Microtus is considered to be a virulent to larger mammals, including guinea pigs, rabbits and humans. It may be used as live attenuated plague vaccine candidates in terms of its low virulence. However, the Microtus strain's protection against plague has yet to be demonstrated in larger mammals. In this study, we evaluated the protective efficacy of the Microtus strain 201 as a live attenuated plague vaccine candidate. Our results show that this strain is highly attenuated by subcutaneous route, elicits an F1-specific antibody titer similar to the EV and provides a protective efficacy similar to the EV against bubonic plague in Chinese-origin rhesus macaques. The Microtus strain 201 could induce elevated secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4, IL-5, and IL-6), as well as chemokines MCP-1 and IL-8. However, the protected animals developed skin ulcer at challenge site with different severity in most of the immunized and some of the EV-immunized monkeys. Generally, the Microtus strain 201 represented a good plague vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses as well as its good protection against high dose of subcutaneous virulent Y. pestis challenge.

  15. Host resistance, population structure and the long-term persistence of bubonic plague: contributions of a modelling approach in the Malagasy focus.

    PubMed

    Gascuel, Fanny; Choisy, Marc; Duplantier, Jean-Marc; Débarre, Florence; Brouat, Carine

    2013-01-01

    Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar.

  16. Modelling the black death. A historical case study and implications for the epidemiology of bubonic plague.

    PubMed

    Monecke, Stefan; Monecke, Hannelore; Monecke, Jochen

    2009-12-01

    We analysed a plague outbreak in the mining town of Freiberg in Saxony which started in May 1613 and ended in February 1614. This epidemic was selected for study because of the high quality of contemporary sources. It was possible to identify 1400 individual victims meaning that more than 10% of the population of the city perished. The outbreak was modelled by 9 differential equations describing flea, rat, and human populations. This resulted in a close fit to the historical records of this outbreak. An interesting implication of the model is that the introduction of even a small number of immune rats into an otherwise unchanged setting results in an abortive outbreak with very few human victims. Hence, the percentage of immune rats directly influences the magnitude of a human epidemic by diverting search activities of the fleas. Thus, we conclude that the spread of Rattus norvegicus, which might acquire partial herd immunity by exposure to soil- or water-borne Yersinia species due to its preference for wet habitats, contributed to the disappearance of Black Death epidemics from Europe in the 18th century. In order to prove whether or not the parameter values obtained by fitting a given outbreak are also applicable to other cases, we modelled the plague outbreak in Bombay 1905/06 using the same parameter values except for the number of humans as well as of immune and susceptible rats.

  17. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.

    PubMed

    van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K

    2014-06-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.

  18. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2009-03-01

    Plague is a zoonosis transmitted by fleas and caused by the gram-negative bacterium Yersinia pestis. During infection, the plasmidic caf1M1A1 operon that encodes the Y. pestis F1 protein capsule is highly expressed, and anti-F1 antibodies are protective. Surprisingly, the capsule is not required for virulence after injection of cultured bacteria, even though it is an antiphagocytic factor and capsule-deficient Y. pestis strains are rarely isolated. We found that a caf-negative Y. pestis mutant was not impaired in either flea colonization or virulence in mice after intradermal inoculation of cultured bacteria. In contrast, absence of the caf operon decreased bubonic plague incidence after a flea bite. Successful development of plague in mice infected by flea bite with the caf-negative mutant required a higher number of infective bites per challenge. In addition, the mutant displayed a highly autoaggregative phenotype in infected liver and spleen. The results suggest that acquisition of the caf locus via horizontal transfer by an ancestral Y. pestis strain increased transmissibility and the potential for epidemic spread. In addition, our data support a model in which atypical caf-negative strains could emerge during climatic conditions that favor a high flea burden. Human infection with such strains would not be diagnosed by the standard clinical tests that detect F1 antibody or antigen, suggesting that more comprehensive surveillance for atypical Y. pestis strains in plague foci may be necessary. The results also highlight the importance of studying Y. pestis pathogenesis in the natural context of arthropod-borne transmission.

  19. Plague studies*

    PubMed Central

    Pollitzer, R.

    1953-01-01

    Epidemiological aspects of (a) bubonic plague and (b) primary pneumonic plague are discussed separately in this study. The cause, spread, and persistence of bubonic outbreaks are dealt with. In the case of primary pneumonic plague, the author systematically reviews the factors influencing the spread of the disease: climatic and social conditions, infectivity of the patients, immunity, and control measures. In discussing the cause of pneumonic plague outbreaks, the author deals with the possible influence of a special virulence of pneumonic strains, the role of the rodent and flea species involved, and the possibility of a pneumotropismus acquired by Pasteurella pestis. The periodicity (cyclical and secular) of bubonic plague epidemics is discussed with a view to the possible forecasting of future epidemics. The author indicates the influence of race, age, sex, and occupation on the incidence of both forms of the disease. PMID:13082391

  20. Plague studies*

    PubMed Central

    Pollitzer, R.

    1953-01-01

    The author examines in detail the symptomatology, diagnosis, and treatment of plague, and outlines the problem of the length of the incubation period. The clinical features commonly met with in all severely-affected plague patients, regardless of the primary localization of the infection, are described. The author then deals with the symptomatology and manifestations of bubonic plague as compared to those of primary pneumonic plague. The importance of a clinical diagnosis, from the point of view of prevention, is stressed, and the differential diagnosis of various forms of the disease is described. The study contains a detailed discussion of the respective merits of antibiotic treatment, serotherapy, and sulfonamide treatment. The author points out that the outstanding success of streptomycin and some other antibiotics will probably relegate the sulfonamides to the second rank in the treatment of bubonic plague. PMID:13082390

  1. A three-variable chaotic system for the epidemic of bubonic plague in Bombay by the end of the 19th century and its coupling to the epizootics of the two main species of rats

    NASA Astrophysics Data System (ADS)

    Mangiarotti, Sylvain

    2016-04-01

    A plague epidemic broke out in Bombay by the end of the 19th century. A committee was first appointed by the Bombay City [1] in order to stop the epidemic before the rain season started. Unfortunately, the disease could not be stopped and the epidemic became endemic. After several years, another Advisory Committee [2] was appointed that tried to investigate the causes of plague in all possible directions. An impressing quantity of information was gathered during the period 1907-1911 and published. In particular, it was noticed that the epidemic was systematically preceded by epizootics of rats. For this reason, the populations of the main species of rodents were systematically monitored. This data set is revisited here by using a multivariate version of the global modeling technique [3]. The aim of this technique is to obtain a set of Ordinary Differential Equations directly from time series. Three observational time series are considered: the number of person died of bubonic plague per half month (1), and the number of captured infected black rats Mus rattus (2) and brown rats Mus decumanus (3). Several models are obtained, all based on the same algebraic basic structure. These models are, either directly chaotic, or close to chaos (chaos could easily be obtained by tuning one model parameter). The algebraic structure of the simplest model obtained is analyzed in more details. Surprisingly, it is found that the interpretation of the coupling between the three variables can be done term by term. This interpretation is in quite good coherence with the conclusions of the Advisory Committee published one hundred years ago. This structure also shows that the human action to slow down the disease during this period was obviously effective, although insufficient to stop the epidemic drastically. This result suggests that the global modeling technique can be a powerful tool to detect causal couplings in epidemiology, and, more generally, among observational variables from

  2. Plague

    USGS Publications Warehouse

    Abbott, Rachel C.; Rocke, Tonie E.

    2012-01-01

    Plague offers readers an overview of this highly complex disease caused by the bacteria Yersinia pestis. The history of the disease, as well as information about Yersinia pestis and its transmission by fleas, is described. The section Geographic Distribution presents areas of the world and United States where plague occurs most commonly in rodents and humans. Species Susceptibility describes infection and disease rates in rodents, humans, and other animals. Disease Ecology considers the complex relationship among rodents, domestic and wild animals, and humans and explores possible routes of transmission and maintenance of the organism in the environment. The effects of climate change, the potential for Y. pestis to be used as a bioweapon, and the impact of plague on conservation of wildlife are considered in Points to Ponder. Disease Prevention and Control outlines methods of prevention and treatment including vaccination for prairie dogs and black-footed ferrets. A glossary of technical terms is included. Tonie E. Rocke, the senior author and an epizootiologist at the USGS National Wildlife Health Center (NWHC), is a prominent researcher on oral vaccination of prairie dogs to prevent plague. She is currently working to transfer her success in the laboratory to the field to control plague in prairie dogs. Rachel C. Abbott, a biologist at the NWHC, is assisting Dr. Rocke in this process and will coordinate field trials of the vaccine. Milt Friend, first director of the NWHC, wrote the foreword. Plague is intended for scholars and the general public. The material is presented in a simple, straightforward manner that serves both audiences. Numerous illustrations and tables provide easily understood summaries of key points and information.

  3. Plague studies*

    PubMed Central

    Pollitzer, R.

    1953-01-01

    In examining the control and prevention of plague, the author pays particular attention to the control of commensal rodents and their fleas. The various rat poisons in current use, their efficacy and practical application, and the dangers involved in their manipulation are described in great detail. The author also discusses other anti-rodent measures such as fumigation, rat-proofing, sanitation, protection of food, etc. The second part of the study deals with: vector control—the outstanding value of DDT application in rodent-flea control is emphasized—, the direct control of bubonic and pneumonic plague, and the control of the spread of plague at a distance. PMID:20603968

  4. Efficacy of the UK Recombinant Plague Vaccine to Protect Against Pneumonic Plague in the Nonhuman Primate, Macaca Fascicularis (PRIVATE)

    DTIC Science & Technology

    2007-11-02

    septicaemic illness. This prese classical bubonic plague [2]. However, man-to-man transmission can occu nuclei spread by the coughing of patients with... bubonic or septicaemic plagu as the USP plague vaccine. A new sub-unit vaccine for plague has been rese developed at DSTL, Porton Down in the UK and...Efficacy of the UK recombinant plague vaccine to protect against pneumonic plague in the nonhuman primate, Macaca fascicularis {PRIVATE

  5. The cause of the plague of Athens: plague, typhoid, typhus, smallpox, or measles?

    PubMed

    Cunha, Burke A

    2004-03-01

    The plague of Athens raged for 4 years and resulted in the defeat of Athens. The cause of the plague of Athens continues to be debated. Infectious diseases most often cited as causes of the plague include influenza, epidemic typhus, typhoid fever, bubonic plague, smallpox, and measles. Thucydides provides the only available description of the plague of Athens. Given the nuances of the translation, bubonic plague, smallpox, and measles are the most likely causes of the plague. In my view, measles is the most likely cause of the plague of Athens.

  6. Plague: from natural disease to bioterrorism

    PubMed Central

    2005-01-01

    Yersinia pestis is the causative agent of plague, an enzootic vectorborne disease usually infecting rodents (rats) and fleas. Humans can become infected after being bitten by fleas that have fed on infected rodents. In humans, the disease usually occurs in the form of bubonic plague. In rare cases, the infection spreads to the lungs via the bloodstream and causes secondary pneumonic plague. Person-to-person transmission has been described for pneumonic plague but is rare in primary bubonic plague. Bubonic plague can usually be treated successfully with antibiotics; however, pneumonic plague develops rapidly and carries a high fatality rate despite immediate treatment with antibiotics. Plague is also recognized as a potential agent of bioterrorism. It has been used, or considered for use, as a biologic weapon on several occasions. It is important for the medical community to be familiar with the epidemiology, diagnosis, and symptoms of plague so it can deliver an appropriate and calm response should the unthinkable happen. PMID:16200159

  7. [Historical and biological approaches to the study of Modern Age French plague mass burials].

    PubMed

    Bianuccii, Raffaella; Tzortzis, Stéfan; Fornaciari, Gino; Signoli, Michel

    2010-01-01

    The "Black Death" and subsequent epidemics from 1346 to the early 18th century spread from the Caspian Sea all over Europe six hundred years after the outbreak of the Justinian plague (541-767 AD). Plague has been one of the most devastating infectious diseases that affected the humankind and has caused approximately 200 million human deaths historically. Here we describe the different approaches adopted in the study of several French putative plague mass burials dating to the Modern Age (16th-18th centuries). Through complementation of historical, archaeological and paleobiological data, ample knowledge of both the causes that favoured the spread of the Medieval plague in cities, towns and small villages and of the modification of the customary funerary practices in urban and rural areas due to plague are gained.

  8. Plague's partners in crime.

    PubMed

    Davis, Kimberly M; Isberg, Ralph R

    2014-09-18

    The hallmark of bubonic plague is the presence of grotesquely swollen lymph nodes, called buboes. This frenzied inflammatory response to Yersinia pestis is poorly understood. In this issue of Immunity, St. John et al. (2014) explore the mechanism by which Y. pestis spreads and thus leads to this striking lymphadenopathy.

  9. Two medieval plague treatises and their afterlife in early modern England.

    PubMed

    Keiser, George R

    2003-07-01

    This study of an adaptation of the popular John of Burgundy plague treatise by Thomas Moulton, a Dominican friar, ca. 1475, and a translation of the so-called Canutus plague treatise by Thomas Paynell, printed 1534, shows how the medieval traditions they represent were carried forward, well into the sixteenth century, and also subjected to change in light of religious, moral, and medical concerns of early modern England. The former had a long life in print, ca. 1530-1580, whereas Paynell's translation exists in one printed version. Moulton's adaptation differs from its original and from the Canutus treatise in putting great emphasis on the idea that onsets of plague were acts of divine retribution for human sinfulness. In this respect, Moulton reshaped the tradition of the medieval plague treatise and anticipated the religious and social construction of plague that would take shape in the first half of the sixteenth century. Its long history in print indicates that Moulton's treatise expressed the spirit of that construction and probably influenced the construction as well. The contrasting histories of the two treatises attest not only to the dramatic change brought about by religious and social forces in the sixteenth century, but to a growing recognition of the value of the printing press for disseminating medical information-in forms that served social and ideological ends.

  10. [Human plague and pneumonic plague : pathogenicity, epidemiology, clinical presentations and therapy].

    PubMed

    Riehm, Julia M; Löscher, Thomas

    2015-07-01

    Yersinia pestis is a highly pathogenic gram-negative bacterium and the causative agent of human plague. In the last 1500 years and during three dreaded pandemics, millions of people became victims of Justinian's plague, the Black Death, or modern plague. Today, Y. pestis is endemic in natural foci of Asian, African and American countries. Due to its broad dissemination in mammal species and fleas, eradication of the pathogen will not be possible in the near future. In fact, plague is currently classified as a "re-emerging disease". Infection may occur after the bite of an infected flea, but also after oral ingestion or inhalation of the pathogen. The clinical presentations comprise the bubonic and pneumonic form, septicemia, rarely pharyngitis, and meningitis. Most human cases can successfully be treated with antibiotics. However, the high transmission rate and lethality of pneumonic plague require international and mandatory case notification and quarantine of patients. Rapid diagnosis, therapy and barrier nursing are not only crucial for the individual patient but also for the prevention of further spread of the pathogen or of epidemics. Therefore, WHO emergency schedules demand the isolation of cases, identification and surveillance of contacts as well as control of zoonotic reservoir animals and vectors. These sanctions and effective antibiotic treatment usually allow a rapid containment of outbreaks. However, multiple antibiotic resistant strains of Y. pestis have been isolated from patients in the past. So far, no outbreaks with such strains have been reported.

  11. Plague pneumonia disease caused by Yersinia pestis.

    PubMed

    Cleri, D J; Vernaleo, J R; Lombardi, L J; Rabbat, M S; Mathew, A; Marton, R; Reyelt, M C

    1997-03-01

    Plague is a zoonotic infection caused by Yersina pesits, a pleomorphic, gram-negative non-spore-forming coccobacillus that is more accurately classified as a subspecies of Y pseudotuberculosis. Animal reservoirs include rodents, rabbits, and occasionally larger animals. Cats become ill and have spread pneumonic disease to man. Dogs may be a significant sentinel animal as well as a reservoir, although do not usually become ill. Flea bites commonly spread disease to man. Person to person spread has not been a recent feature until the purported outbreak of plague and plague pneumonia in India in 1994. Other factors that increase risk of infection in endemic areas are occupation-veterinarians and assistants, pet ownership, direct animal-reservoir contact especially during the hunting season, living in households with an index case, and, mild winters, cool moist springs, and early summers. Clinical presentations include subclinical plague (positive serology without disease); plague pharyngitis; pestis minor (abortive bubonic plague); bubonic plague; septicemic plague; pneumonic plague; and plague meningitis. Most prominent of plague's differential diagnosis are Reye's syndrome, other causes of lymphadenitis, bacterial pneumonias, tularemia, and acute surgical abdomen. Treatment has reduced mortality from 40-90% to 5-18%. The drug of choice (except for plague meningitis) is streptomycin, with tetracyclines being alternatives. Parenteral cholamphenicol is the treatment of choice for plague meningitis. A tetracycline should be administered as chemoprophylaxis to all contacts over the age of 8 years. Plague vaccine is available, but is only partially protective.

  12. Clinical and epidemiological observations on an outbreak of plague in Nepal*

    PubMed Central

    Laforce, F. Marc; Acharya, I. L.; Stott, Gordon; Brachman, Philip S.; Kaufman, Arnold F.; Clapp, Richard F.; Shah, N. K.

    1971-01-01

    In the autumn of 1967, plague broke out among hill people in western Nepal, a country that had not previously reported human plague. Two persons were infected from an active sylvatic focus at a grazing area 5 km from Nawra, the village where the epidemic occurred. The second patient introduced plague into the village where the rest of the cases occurred. Clinical and epidemiological evidence suggests that plague was spread both by the airborne route, resulting in 6 cases of tonsillar plague and 1 case of primary pneumonic plague, as well as by infected fleas, resulting in 17 cases of bubonic plague. Since no evidence of a rodent epizootic was uncovered in the village itself, and because of the distinct clustering of the bubonic cases, human-to-human spread of plague by infected ectoparasite vectors, presumably Pulex irritans, is thought to have occurred. This focus probably represents the most southerly boundary of the central Asian plague area yet identified. PMID:5317008

  13. Plague dynamics are driven by climate variation.

    PubMed

    Stenseth, Nils Chr; Samia, Noelle I; Viljugrein, Hildegunn; Kausrud, Kyrre Linné; Begon, Mike; Davis, Stephen; Leirs, Herwig; Dubyanskiy, V M; Esper, Jan; Ageyev, Vladimir S; Klassovskiy, Nikolay L; Pole, Sergey B; Chan, Kung-Sik

    2006-08-29

    The bacterium Yersinia pestis causes bubonic plague. In Central Asia, where human plague is still reported regularly, the bacterium is common in natural populations of great gerbils. By using field data from 1949-1995 and previously undescribed statistical techniques, we show that Y. pestis prevalence in gerbils increases with warmer springs and wetter summers: A 1 degrees C increase in spring is predicted to lead to a >50% increase in prevalence. Climatic conditions favoring plague apparently existed in this region at the onset of the Black Death as well as when the most recent plague pandemic arose in the same region, and they are expected to continue or become more favorable as a result of climate change. Threats of outbreaks may thus be increasing where humans live in close contact with rodents and fleas (or other wildlife) harboring endemic plague.

  14. Plague Factsheet

    MedlinePlus

    ... death rate is over 50%. Geographic Distribution of Plague In the United States, most of the human ... southern Oregon, and far western Nevada. How Is Plague Transmitted? Plague is transmitted from animal to animal ...

  15. Human plague in 1992.

    PubMed

    1994-01-14

    Trends in the incidence of human plague cases reported to the World Health Organization were provided for 1992 and between 1978 and 1992 by country. Not all countries report or record plague. In 1992, there were 9 countries reporting a total of 1582 cases, of which 138 were deaths. In 1991, there were 10 countries reporting a total of 1966 cases, of which 133 were deaths. The case fatality rate in 1992 was 8.7% and 10.4% averaged over the previous 10 years. Between 1978 and 1992, 14,856 cases of plague were reported, of which 1451 cases were fatal. Countries reporting totaled 21, but only 6 reported almost annually: Brazil, Madagascar, Myanmar, the United Republic of Tanzania, the USA, and Viet Nam. Peak numbers of cases occurred in 1984, 1988, and 1990-92. Africa totaled 61% of cases and 77% of deaths. In 1992, Madagascar and Zaire reported 412 cases, of which 102 were fatal. Plague in Madagascar was concentrated in the provinces of Antananarivo, Fianarantsoa, Mahajanga, and Toamasina. Most of the cases in 1991 were from Antananarivo Province (61 cases and 19 deaths) and Fianarantsoa Province (99 case and 5 deaths). Plague peaks occurred in January through May and November and December. Zaire deaths were concentrated in Upper Zaire in 5 rural Heath Zones: Logo (125 cases and 47 deaths), Rethy (54 cases and 4 deaths), Nyarembe (22 cases and 9 deaths), Rimba (11 cases and 4 deaths), and Bunia (2 cases and 1 death). Almost 60% of all deaths occurred during May to July and included bubonic, septicemic, and pulmonary plague. American plague cases totaled 158 and 6 deaths (Peru, Brazil, and the USA). Asia reported 1012 cases and 26 cases (China, Mongolia, Myanmar, and Viet Nam). In the USA, the 13 cases were recorded as 1 each in Frenso County, California; Owyhee County, Idaho; Douglas County, Nevada; Utah County, Utah; and Sheridan County, Wyoming; 2 in New Mexico (Santa Fe, and Albuquerque and San Miguel Counties); and Arizona (3 in Apache County and 1 in Pima County

  16. Plague Symptoms

    MedlinePlus

    ... Search Form Controls Cancel Submit Search The CDC Plague Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Plague Home Ecology & Transmission Symptoms Diagnosis & Treatment Maps & Statistics ...

  17. Plague Prevention

    MedlinePlus

    ... Search Form Controls Cancel Submit Search The CDC Plague Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Plague Home Ecology & Transmission Symptoms Diagnosis & Treatment Maps & Statistics ...

  18. The plague under Commodus as an unintended consequence of Roman grain market regulation.

    PubMed

    Silver, Morris

    2012-01-01

    This paper begins with a review of Roman grain market policies. It is argued that policies such as forced sales and maximum prices made urban consumers hesitant to rely on the market for secure access to grain. Consequently, consumers hoarded grain in their homes. The hoarded grain formed a volatile fuel ready to be ignited by the arrival of the bubonic plague bacillus. This scenario fits events in the city of Rome under Commodus. Attested grain market interventions were followed by a severe epidemic, arguably bubonic plague, which decimated the city's population.

  19. Historical Y. pestis Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics.

    PubMed

    Spyrou, Maria A; Tukhbatova, Rezeda I; Feldman, Michal; Drath, Joanna; Kacki, Sacha; Beltrán de Heredia, Julia; Arnold, Susanne; Sitdikov, Airat G; Castex, Dominique; Wahl, Joachim; Gazimzyanov, Ilgizar R; Nurgaliev, Danis K; Herbig, Alexander; Bos, Kirsten I; Krause, Johannes

    2016-06-08

    Ancient DNA analysis has revealed an involvement of the bacterial pathogen Yersinia pestis in several historical pandemics, including the second plague pandemic (Europe, mid-14(th) century Black Death until the mid-18(th) century AD). Here we present reconstructed Y. pestis genomes from plague victims of the Black Death and two subsequent historical outbreaks spanning Europe and its vicinity, namely Barcelona, Spain (1300-1420 cal AD), Bolgar City, Russia (1362-1400 AD), and Ellwangen, Germany (1485-1627 cal AD). Our results provide support for (1) a single entry of Y. pestis in Europe during the Black Death, (2) a wave of plague that traveled toward Asia to later become the source population for contemporary worldwide epidemics, and (3) the presence of an historical European plague focus involved in post-Black Death outbreaks that is now likely extinct.

  20. [Yersinia pestis and plague - an update].

    PubMed

    Stock, Ingo

    2014-12-01

    The plague of man is a severe, systemic bacterial infectious disease. Without antibacterial therapy, the disease is associated with a high case fatality rate, ranging from 40% (bubonic plague) to nearly 100% (septicemic and pneumonic plague). The disease is caused by Yersinia pestis, a non-motile, gram-negative, facultative anaerobic bacterium belonging to the family of Enterobacteriaceae. In nature, Y. pestis has been found in several rodent species and some other small animals such as shrews. Within its reservoir host, Y. pestis circulates via flea bites. Transmission of Y. pestis to humans occurs by the bite of rat fleas, other flea vectors or by non vectorial routes, e. g., handling infected animals or consumption of contaminated food. Human-to-human transmission of the pathogen occurs primarily through aerosol droplets. Compared to the days when plague was a pandemic scourge, the disease is now relatively rare and limited to some rural areas of Africa. During the last ten years, however, plague outbreaks have been registered repea- tedly in some African regions. For treatment of plague, streptomycin is still considered the drug of choice. Chloramphenicol, doxycycline, gentamicin and ciprofloxacin are also promising drugs. Recombinant vaccines against plague are in clinical development.

  1. Plague: history and contemporary analysis.

    PubMed

    Raoult, Didier; Mouffok, Nadjet; Bitam, Idir; Piarroux, Renaud; Drancourt, Michel

    2013-01-01

    Plague has caused ravaging outbreaks, including the Justinian plague and the "black death" in the Middle Ages. The causative agents of these outbreaks have been confirmed using modern molecular tests. The vector of plague during pandemics remains the subject of controversy. Nowadays, plague must be suspected in all areas where plague is endemic in rodents when patients present with adenitis or with pneumonia with a bloody expectorate. Diagnosis is more difficult in the situation of the reemergence of plague, as in Algeria for example, told by the first physician involved in that outbreak (NM). When in doubt, it is preferable to prescribe treatment with doxycycline while waiting for the test results because of the risk of fatality in individuals with plague. The typical bubo is a type of adenitis that is painful, red and nonfluctuating. The diagnosis is simple when microbiological analysis is conducted. Plague is a likely diagnosis when one sees gram-negative bacilli in lymph node aspirate or biopsy samples. Yersinia pestis grows very easily in blood cultures and is easy to identify by biochemical tests and MALDI-TOF mass spectrometry. Pneumonic plague and septicemic plague without adenitis are difficult to diagnose, and these diagnoses are often made by chance or retrospectively when cases are not part of an epidemic or related to another specific epidemiologic context. The treatment of plague must be based on gentamicin or doxycycline. Treatment with one of these antibiotics must be started as soon as plague is suspected. Analysis of past plague epidemics by using modern laboratory tools illustrated the value of epidemic buboes for the clinical diagnosis of plague; and brought new concepts regarding its transmission by human ectoparasites.

  2. Human Anti-Plague Monoclonal Antibodies Protect Mice from Yersinia pestis in a Bubonic Plague Model

    DTIC Science & Technology

    2010-10-01

    growth medium and the secretion is important for virulence [24,25]. The secretion of V-antigen in the medium has been described to be dependent on contact...subsequent four rounds before the phage were rescued with TG1 cells at the exponential growth phase. For the bead format, biotin-labeled F1- and V...the expression of respective IgG1s and then adapted to growth in serum-free medium HyQSFM4CHO (HyClone, Logan, UT) supplemented with 30 mM MSX. The

  3. Plague Maps and Statistics

    MedlinePlus

    ... and Statistics Recommend on Facebook Tweet Share Compartir Plague in the United States Plague was first introduced ... per year in the United States: 1900-2012. Plague Worldwide Plague epidemics have occurred in Africa, Asia, ...

  4. [The spread of the plague: A sciento-historiographic review].

    PubMed

    Cuadrada, Coral

    2015-01-01

    There is still uncertainty about the diagnosis and nature of the plague; some scholars have been forced to abandon certainties and be filled with doubts: from believing that the mediaeval Black Plague was, in reality, the bubonic plague (although with unusual characteristics) to stating that there is very little evidence to support a retro-diagnosis. This article looks at this in depth, not only reviewing the historiography but also giving new interpretations which question previous hypotheses through research on images of the time, comparing them to the most recent investigative data. Two primary sources are analysed: Renaissance treaties written by four Italian doctors: Michele Savonarola, Marsilio Ficino, Leonardo Fioravanti and Gioseffo Daciano; and iconography: an illustrated manuscript of the Decameron by Giovanni Boccaccio and a Hebrew Haggadah from the XIVth century. The results are compared to the most recent research on DNA and in micropaleontology.

  5. An overview of plague in the United States and a report of investigations of two human cases in Kern county, California, 1995.

    PubMed

    Madon, M B; Hitchcock, J C; Davis, R M; Myers, C M; Smith, C R; Fritz, C L; Emery, K W; O'Rullian, W

    1997-06-01

    Plague was confirmed in the United States from nine western states during 1995. Evidence of Yersinia pestis infection was identified in 28 species of wild or domestic mammals. Thirteen of the plague positive species were wild rodents; 15 were predators/carnivores. Yersinia pestis was isolated from eight species of fleas. Seven confirmed cases of human plague were reported in 1995 (New Mexico 3; California 2; Arizona and Oregon 1 each). Five of the seven cases were bubonic; one was septicemic and one a fatal pneumonic case. Months of onset ranged from March through August. In California, during 1995, plague was recorded from 15 of the 58 counties. Over 1,500 animals were tested, of which 208 were plague positive. These included 144 rodents and 64 predators/carnivores. Two confirmed human cases (one bubonic and one fatal pneumonic) occurred, both in Kern County. Case No. 1 was reported from the town of Tehachapi. The patient, a 23 year-old male resident, died following a diagnosis of plague pneumonia. The patient's source of plague infection could not be determined precisely. Field investigations revealed an extensive plague epizootic surrounding Tehachapi, an area of approximately 500-600 square miles (800-970 square kilometers). Case No. 2 was a 57 year-old female diagnosed with bubonic plague; she was placed on an antibiotic regimen and subsequently recovered. The patient lives approximately 20 miles (32 km) north of Tehachapi. Field investigations revealed evidence of a plague epizootic in the vicinity of the victim's residence and adjacent areas. Overall results of the joint field investigations throughout the entire Kern county area revealed a high rate of plague positive animals. Of the numerous samples submitted, 48 non-human samples were plague positive.

  6. Yersinia pestis caf1 Variants and the Limits of Plague Vaccine Protection▿

    PubMed Central

    Quenee, Lauriane E.; Cornelius, Claire A.; Ciletti, Nancy A.; Elli, Derek; Schneewind, Olaf

    2008-01-01

    Yersinia pestis, the highly virulent agent of plague, is a biological weapon. Strategies that prevent plague have been sought for centuries, and immunization with live, attenuated (nonpigmented) strains or subunit vaccines with F1 (Caf1) antigen is considered effective. We show here that immunization with live, attenuated strains generates plague-protective immunity and humoral immune responses against F1 pilus antigen and LcrV. Y. pestis variants lacking caf1 (F1 pili) are not only fully virulent in animal models of bubonic and pneumonic plague but also break through immune responses generated with live, attenuated strains or F1 subunit vaccines. In contrast, immunization with purified LcrV, a protein at the tip of type III needles, generates protective immunity against the wild-type and the fully virulent caf1 mutant strain, in agreement with the notion that LcrV can elicit vaccine protection against both types of virulent plague strains. PMID:18347051

  7. Earthquakes and plague during Byzantine times: can lessons from the past improve epidemic preparedness.

    PubMed

    Tsiamis, Costas; Poulakou-Rebelakou, Effie; Marketos, Spyros

    2013-01-01

    Natural disasters have always been followed by a fear of infectious diseases. This raised historical debate about one of the most feared scenarios: the outbreak of bubonic plague caused by Yersinia pestis. One such event was recorded in the Indian state Maharashtra in 1994 after an earthquake. In multidisciplinary historical approach to the evolution of plague, many experts ignore the possibility of natural foci and their activation. This article presents historical records from the Byzantine Empire about outbreaks of the Plague of Justinian occurring months or even up to a year after high-magnitude earthquakes. Historical records of plague outbreaks can be used to document existence of natural foci all over the world. Knowledge of these historical records and the contemporary examples of plague support the assumption that, in terms of organising humanitarian aid, poor monitoring of natural foci could lead to unpredictable epidemiological consequences after high-magnitude earthquakes.

  8. Protect Yourself from Plague

    MedlinePlus

    ... The plague bacterium ( Yersinia pestis ) is transmitted by fleas and cycles naturally among wild rodents. Plague can ... How do people get plague? • • Bites of infected fleas • • Touching or skinning infected animals (such as prairie ...

  9. Oral vaccination against plague using Yersinia pseudotuberculosis.

    PubMed

    Demeure, Christian E; Derbise, Anne; Carniel, Elisabeth

    2017-04-01

    Yersinia pestis, the agent of plague, is among the deadliest bacterial pathogens affecting humans, and is a potential biological weapon. Because antibiotic resistant strains of Yersinia pestis have been observed or could be engineered for evil use, vaccination against plague might become the only means to reduce mortality. Although plague is re-emerging in many countries, a vaccine with worldwide license is currently lacking. The vaccine strategy described here is based on an oral vaccination with an attenuated strain of Yersinia pseudotuberculosis. Indeed, this species is genetically almost identical to Y. pestis, but has a much lower pathogenicity and a higher genomic stability. Gradual modifications of the wild-type Yersinia pseudotuberculosis strain IP32953 were performed to generate a safe and immunogenic vaccine. Genes coding for three essential virulence factors were deleted from this strain. To increase cross-species immunogenicity, an F1-encapsulated Y. pseudotuberculosis strain was then generated. For this, the Y. pestis caf operon, which encodes F1, was inserted first on a plasmid, and subsequently into the chromosome. The successive steps achieved to reach maximal vaccine potential are described, and how each step affected bacterial virulence and the development of a protective immune response is discussed. The final version of the vaccine, named VTnF1, provides a highly efficient and long-lasting protection against both bubonic and pneumonic plague after a single oral vaccine dose. Since a Y. pestis strain deprived of F1 exist or could be engineered, we also analyzed the protection conferred by the vaccine against such strain and found that it also confers full protection against the two forms of plague. Thus, the properties of VTnF1 makes it one of the most efficient candidate vaccine for mass vaccination in tropical endemic areas as well as for populations exposed to bioterrorism.

  10. [A molecular basis of the plague vaccine development].

    PubMed

    Dentovskaia, S V; Kopylov, P Kh; Ivanov, S A; Ageev, S A; Anisimov, A P

    2013-01-01

    Molecular mechanisms of the Yersinia pestis pathogenicity and peculiarities of maturation of specific immunity to plague are reviewed. The history and modern state of the plague vaccine development are described. Special attention is focused on the prospects in the area of the plague vaccine development. The possible approaches to improvement of vaccine preparations are discussed.

  11. Yersinia pestis Yop Secretion Portein F: Purification, Characterization, and Protective Efficacy Against Bubonic Plague

    DTIC Science & Technology

    2005-03-17

    enterocolitica, Yersinia enterocolitica ; Y. pestis, Yersinia pestis.CA), and used for a recombination reaction with the pDONR201 entry vector (Invitrogen, CA...158 (2002) 401–408. [15] E. Hoiczyk, G. Bloebel, Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures

  12. Plague: Frequently Asked Questions

    MedlinePlus

    ... visit this page: About CDC.gov . Plague Home Ecology & Transmission Symptoms Diagnosis & Treatment Maps & Statistics Info for ... periods in the fleas. An illustration of plague ecology in the United States is available. Top of ...

  13. Plague Diagnosis and Treatment

    MedlinePlus

    ... Search Form Controls Cancel Submit Search The CDC Plague Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Plague Home Ecology & Transmission Symptoms Diagnosis & Treatment Maps & Statistics ...

  14. Plague in the genomic area.

    PubMed

    Drancourt, M

    2012-03-01

    With plague being not only a subject of interest for historians, but still a disease of public health concern in several countries, mainly in Africa, there were hopes that analyses of the Yersinia pestis genomes would put an end to this deadly epidemic pathogen. Genomics revealed that Y. pestis isolates evolved from Yersinia pseudotuberculosis in Central Asia some millennia ago, after the acquisition of two Y. pestis-specific plasmids balanced genomic reduction parallel with the expansion of insertion sequences, illustrating the modern concept that, except for the acquisition of plasmid-borne toxin-encoding genes, the increased virulence of Y. pestis resulted from gene loss rather than gene acquisition. The telluric persistence of Y. pestis reminds us of this close relationship, and matters in terms of plague epidemiology. Whereas biotype Orientalis isolates spread worldwide, the Antiqua and Medievalis isolates showed more limited expansion. In addition to animal ectoparasites, human ectoparasites such as the body louse may have participated in this expansion and in devastating historical epidemics. The recent analysis of a Black Death genome indicated that it was more closely related to the Orientalis branch than to the Medievalis branch. Modern Y. pestis isolates grossly exhibit the same gene content, but still undergo micro-evolution in geographically limited areas by differing in the genome architecture, owing to inversions near insertion sequences and the stabilization of the YpfPhi prophage in Orientalis biotype isolates. Genomics have provided several new molecular tools for the genotyping and phylogeographical tracing of isolates and description of plague foci. However, genomics and post-genomics approaches have not yet provided new tools for the prevention, diagnosis and management of plague patients and the plague epidemics still raging in some sub-Saharan countries.

  15. Investigation of and Response to 2 Plague Cases, Yosemite National Park, California, USA, 2015

    PubMed Central

    Danforth, Mary; Novak, Mark; Petersen, Jeannine; Mead, Paul; Kingry, Luke; Weinburke, Matthew; Buttke, Danielle; Hacker, Gregory; Tucker, James; Niemela, Michael; Jackson, Bryan; Padgett, Kerry; Liebman, Kelly; Vugia, Duc

    2016-01-01

    In August 2015, plague was diagnosed for 2 persons who had visited Yosemite National Park in California, USA. One case was septicemic and the other bubonic. Subsequent environmental investigation identified probable locations of exposure for each patient and evidence of epizootic plague in other areas of the park. Transmission of Yersinia pestis was detected by testing rodent serum, fleas, and rodent carcasses. The environmental investigation and whole-genome multilocus sequence typing of Y. pestis isolates from the patients and environmental samples indicated that the patients had been exposed in different locations and that at least 2 distinct strains of Y. pestis were circulating among vector–host populations in the area. Public education efforts and insecticide applications in select areas to control rodent fleas probably reduced the risk for plague transmission to park visitors and staff. PMID:27870634

  16. Amino acid residues 196–225 of LcrV represent a plague protective epitope

    PubMed Central

    Quenee, Lauriane E.; Berube, Bryan J.; Segal, Joshua; Elli, Derek; Ciletti, Nancy A.; Anderson, Deborah; Schneewind, Olaf

    2010-01-01

    LcrV, a protein that resides at the tip of the type III secretion needles of Yersinia pestis, is the single most important plague protective antigen. Earlier work reported monoclonal antibody MAb 7.3, which binds a conformational epitope of LcrV and protects experimental animals against lethal plague challenge. By screening monoclonal antibodies directed against LcrV for their ability to protect immunized mice against bubonic plague challenge, we examined here the possibility of additional protective epitopes. MAb BA5 protected animals against plague, neutralized the Y. pestis type III secretion pathway and promoted opsonophagocytic clearance of bacteria in blood. LcrV residues 196–225 were necessary and sufficient for MAb-BA5 binding. Compared to full length LcrV, a variant lacking its residues 196–225 retained the ability of eliciting plague protection. These results identify LcrV residues 196–225 as a linear epitope that is recognized by the murine immune system to confer plague protection. PMID:20005318

  17. Enzootic plague foci, Algeria

    PubMed Central

    Malek, M.A.; Hammani, A.; Beneldjouzi, A.; Bitam, I.

    2014-01-01

    In Algeria, PCR sequencing of pla, glpD and rpoB genes found Yersinia pestis in 18/237 (8%) rodents of five species, including Apodemus sylvaticus, previously undescribed as pestiferous; and disclosed three new plague foci. Multiple spacer typing confirmed a new Orientalis variant. Rodent survey should be reinforced in this country hosting reemerging plague. PMID:25834736

  18. The tale of a modern animal plague: tracing the evolutionary history and determining the time-scale for foot and mouth disease virus.

    PubMed

    Tully, Damien C; Fares, Mario A

    2008-12-20

    Despite significant advances made in the understanding of its epidemiology, foot and mouth disease virus (FMDV) is among the most unexpected agricultural devastating plagues. While the disease manifests itself as seven immunologically distinct strains their origin, population dynamics, migration patterns and divergence times remain unknown. Herein we have assembled a comprehensive data set of gene sequences representing the global diversity of the disease and inferred the time-scale and evolutionary history for FMDV. Serotype-specific rates of evolution and divergence times were estimated using a Bayesian coalescent framework. We report that an ancient precursor FMDV gave rise to two major diversification events spanning a relatively short interval of time. This radiation event is estimated to have taken place towards the end of the 17th and the beginning of the 18th century giving us the present circulating Euro-Asiatic and South African viral strains. Furthermore our results hint that Europe acted as a possible hub for the disease from where it successfully dispersed elsewhere via exploration and trading routes.

  19. The tale of a modern animal plague: Tracing the evolutionary history and determining the time-scale for foot and mouth disease virus

    SciTech Connect

    Tully, Damien C. Fares, Mario A.

    2008-12-20

    Despite significant advances made in the understanding of its epidemiology, foot and mouth disease virus (FMDV) is among the most unexpected agricultural devastating plagues. While the disease manifests itself as seven immunologically distinct strains their origin, population dynamics, migration patterns and divergence times remain unknown. Herein we have assembled a comprehensive data set of gene sequences representing the global diversity of the disease and inferred the time-scale and evolutionary history for FMDV. Serotype-specific rates of evolution and divergence times were estimated using a Bayesian coalescent framework. We report that an ancient precursor FMDV gave rise to two major diversification events spanning a relatively short interval of time. This radiation event is estimated to have taken place towards the end of the 17th and the beginning of the 18th century giving us the present circulating Euro-Asiatic and South African viral strains. Furthermore our results hint that Europe acted as a possible hub for the disease from where it successfully dispersed elsewhere via exploration and trading routes.

  20. Plagues at the Gate.

    ERIC Educational Resources Information Center

    Siebert, Charles

    1995-01-01

    Discusses efforts to prevent the global expansion of killer viruses that threaten humans and livestock populations. Focuses on virus research efforts conducted at Plum Island. Profiles the most worrisome of potential plagues. (LZ)

  1. Outbreak of Plague in a High Malaria Endemic Region - Nyimba District, Zambia, March-May 2015.

    PubMed

    Sinyange, Nyambe; Kumar, Ramya; Inambao, Akatama; Moonde, Loveness; Chama, Jonathan; Banda, Mapopa; Tembo, Elliot; Nsonga, Beron; Mwaba, John; Fwoloshi, Sombo; Musokotwane, Kebby; Chizema, Elizabeth; Kapin'a, Muzala; Hang'ombe, Benard Mudenda; Baggett, Henry C; Hachaambwa, Lottie

    2016-08-12

    Outbreaks of plague have been recognized in Zambia since 1917 (1). On April 10, 2015, Zambia's Ministry of Health was notified by the Eastern Provincial Medical Office of possible bubonic plague cases in Nyimba District. Eleven patients with acute fever and cervical lymphadenopathy had been evaluated at two rural health centers during March 28-April 9, 2015; three patients died. To confirm the outbreak and develop control measures, the Zambia Ministry of Health's Field Epidemiology Training Program (ZFETP) conducted epidemiologic and laboratory investigations in partnership with the University of Zambia's schools of Medicine and Veterinary Medicine and the provincial and district medical offices. Twenty-one patients with clinically compatible plague were identified, with symptom onset during March 26-May 5, 2015. The median age was 8 years, and all patients were from the same village. Blood specimens or lymph node aspirates from six (29%) patients tested positive for Yersinia pestis by polymerase chain reaction (PCR). There is an urgent need to improve early identification and treatment of plague cases. PCR is a potential complementary tool for identifying plague, especially in areas with limited microbiologic capacity. Twelve (57%) patients, including all six with PCR-positive plague and all three who died, also tested positive for malaria by rapid diagnostic test (RDT). Plague patients coinfected with malaria might be misdiagnosed as solely having malaria, and appropriate antibacterial treatment to combat plague might not be given, increasing risk for mortality. Because patients with malaria might be coinfected with other pathogens, broad spectrum antibiotic treatment to cover other pathogens is recommended for all children with severe malaria, until a bacterial infection is excluded.

  2. ["I do not wish to be controversial": the arrival of the plague in Brazil; analysis of a controversy, 1899].

    PubMed

    Nascimento, Dilene Raimundo do; Silva, Matheus Alves Duarte da

    2013-11-30

    This article analyzes a debate brought to the public arena by Jornal do Commercio newspaper in August and September 1899 involving two sanitation officials: Nuno de Andrade, Director-General of Public Health, and Jorge Pinto, Director of Hygiene and Public Welfare of the State of Rio de Janeiro. The issue in question was the measures taken by the federal government to prevent bubonic plague reaching Brazil from Porto, Portugal, where there was an epidemic. The theoretical framework for the analysis is Pierre Bourdieu's notion of field, and Bruno Latour's studies into scientific controversy.

  3. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele.

    PubMed

    Galvani, Alison P; Slatkin, Montgomery

    2003-12-09

    The high frequency, recent origin, and geographic distribution of the CCR5-Delta 32 deletion allele together indicate that it has been intensely selected in Europe. Although the allele confers resistance against HIV-1, HIV has not existed in the human population long enough to account for this selective pressure. The prevailing hypothesis is that the selective rise of CCR5-Delta 32 to its current frequency can be attributed to bubonic plague. By using a population genetic framework that takes into account the temporal pattern and age-dependent nature of specific diseases, we find that smallpox is more consistent with this historical role.

  4. Plague Masquerading as Gastrointestinal Illness

    PubMed Central

    Hull, Harry F.; Montes, Jean M.; Mann, Jonathan M.

    1986-01-01

    In clinical descriptions of human plague, fever and tender lymphadenitis are emphasized and gastrointestinal manifestations are rarely mentioned. A review of 71 human plague cases showed that gastrointestinal symptoms occurred commonly (57%). Vomiting (39%) was the most frequent symptom, with nausea (34%), diarrhea (28%) and abdominal pain (17%) occurring less often. Physicians treating patients who reside in or have recently visited plague-endemic areas should include plague in the differential diagnosis in the presence of gastrointestinal symptoms and fever. PMID:3788132

  5. Molecular history of plague.

    PubMed

    Drancourt, M; Raoult, D

    2016-11-01

    Plague, a deadly zoonose caused by the bacterium Yersinia pestis, has been firmly documented in 39 historical burial sites in Eurasia that date from the Bronze Age to two historical pandemics spanning the 6th to 18th centuries. Palaeomicrobiologic data, including gene and spacer sequences, whole genome sequences and protein data, confirmed that two historical pandemics swept over Europe from probable Asian sources and possible two-way-ticket journeys back from Europe to Asia. These investigations made it possible to address questions regarding the potential sources and routes of transmission by completing the standard rodent and rodent-flea transmission scheme. This suggested that plague was transmissible by human ectoparasites such as lice, and that Y. pestis was able to persist for months in the soil, which is a source of reinfection for burrowing mammals. The analyses of seven complete genome sequences from the Bronze Age indicated that Y. pestis was probably not an ectoparasite-borne pathogen in these populations. Further analyses of 14 genomes indicated that the Justinian pandemic strains may have formed a clade distinct from the one responsible for the second pandemic, spanning in Y. pestis branch 1, which also comprises the third pandemic strains. Further palaeomicrobiologic studies must tightly connect with historical and anthropologic studies to resolve questions regarding the actual sources of plague in ancient populations, alternative routes of transmission and resistance traits. Answering these questions will broaden our understanding of plague epidemiology so we may better face the actuality of this deadly infection in countries where it remains epidemic.

  6. METHODS OF PLAGUE CONTROL

    PubMed Central

    Simpson, Friench

    1920-01-01

    If we are economically and efficiently to ward off plague we must rid ourselves of the rat. This demands coördination of effort, management, organization and funds. Rat destruction and rat-proofing are preventive measures that fortunately do not involve financial loss, while they will eliminate the dangerous rodent from the homes and environment of men. Imagesp850-ap850-bp850-cp850-d PMID:18010390

  7. Design and Testing for a Nontagged F1-V Fusion Protein as Vaccine Antigen Against Bubonic and Pneumonic Plague

    DTIC Science & Technology

    2005-08-01

    isolated to 99% purity by sequential liquid chromatography including capture and refolding of urea-denatured protein via anion exchange, followed by...purification process , and collect biophysical measurements across production lots pursuant to evaluating the structure of the fusion protein . The...recombinant human proinsulin. FEBS Lett. 1997, 402, 124-130. (38) Jungbauer, A.; Kaar, W.; Schlegl, R. Folding and refolding of proteins in chromatographic beds

  8. The plague of Athens: epidemiology and paleopathology.

    PubMed

    Littman, Robert J

    2009-10-01

    In 430 BC, a plague struck the city of Athens, which was then under siege by Sparta during the Peloponnesian War (431-404 BC). In the next 3 years, most of the population was infected, and perhaps as many as 75,000 to 100,000 people, 25% of the city's population, died. The Athenian general and historian Thucydides left an eye-witness account of this plague and a detailed description to allow future generations to identify the disease should it break out again. Because of the importance of Thucydides and Athens in Western history and culture, the Plague of Athens has taken a prominent position in the history of the West for the past 2500 years. Despite Thucydides' careful description, in the past 100 years, scholars and physicians have disagreed about the identification of the disease. Based on clinical symptoms, 2 diagnoses have dominated the modern literature on the Athenian plague: smallpox and typhus. New methodologies, including forensic anthropology, demography, epidemiology, and paleopathogy, including DNA analysis, have shed new light on the problem. Mathematical modeling has allowed the examination of the infection and attack rates and the determination of how long it takes a disease to spread in a city and how long it remains endemic. The highly contagious epidemic exhibited a pustular rash, high fever, and diarrhea. Originating in Ethiopia, it spread throughout the Mediterranean. It spared no segment of the population, including the statesman Pericles. The epidemic broke in early May 430 BC, with another wave in the summer of 428 BC and in the winter of 427-426 BC, and lasted 4.5 to 5 years. Thucydides portrays a virgin soil epidemic with a high attack rate and an unvarying course in persons of different ages, sexes, and nationalities.The epidemiological analysis excludes common source diseases and most respiratory diseases. The plague can be limited to either a reservoir diseases (zoonotic or vector-borne) or one of the respiratory diseases associated

  9. [The complex plague--reconsiderations of an epidemic from the past].

    PubMed

    Moseng, Ole Georg

    2007-12-13

    Speculations have arisen about the black plague in recent years - was it a disease caused by YERSINIA PESTIS: or something else? Extensive outbreaks in India in the 1890s have formed the basis for descriptions of the plague, both for those who believe that the medieval plagues and modern plague were different diseases and for those who claim that the plague has been one and the same disease throughout history. The plague was more or less defined as a disease in the 1890s, and the understanding of its clinical course and dissemination at the time has uncritically been understood as the general model for spreading of the plague. But plague is a many-faceted disease. It has spread to five continents in modern times, through an array of ecosystems and under widely different climatic conditions. It can also be passed on to man, and from one individual to another, in different ways. The biological conditions that prevailed in India have not been relevant for medieval Norway. The preconditions for spreading of plague epidemics of the past in a Nordic climate must therefore have been different. It can only be expected that contemporary descriptions of historic epidemics are different from those in modern times.

  10. Plague and climate: scales matter.

    PubMed

    Ben-Ari, Tamara; Ben Ari, Tamara; Neerinckx, Simon; Gage, Kenneth L; Kreppel, Katharina; Laudisoit, Anne; Leirs, Herwig; Stenseth, Nils Chr

    2011-09-01

    Plague is enzootic in wildlife populations of small mammals in central and eastern Asia, Africa, South and North America, and has been recognized recently as a reemerging threat to humans. Its causative agent Yersinia pestis relies on wild rodent hosts and flea vectors for its maintenance in nature. Climate influences all three components (i.e., bacteria, vectors, and hosts) of the plague system and is a likely factor to explain some of plague's variability from small and regional to large scales. Here, we review effects of climate variables on plague hosts and vectors from individual or population scales to studies on the whole plague system at a large scale. Upscaled versions of small-scale processes are often invoked to explain plague variability in time and space at larger scales, presumably because similar scale-independent mechanisms underlie these relationships. This linearity assumption is discussed in the light of recent research that suggests some of its limitations.

  11. Plague in Tanzania: an overview.

    PubMed

    Ziwa, Michael H; Matee, Mecky I; Hang'ombe, Bernard M; Lyamuya, Eligius F; Kilonzo, Bukheti S

    2013-10-01

    Human plague remains a public health concern in Tanzania despite its quiescence in most foci for years, considering the recurrence nature of the disease. Despite the long-standing history of this problem, there have not been recent reviews of the current knowledge on plague in Tanzania. This work aimed at providing a current overview of plague in Tanzania in terms of its introduction, potential reservoirs, possible causes of plague persistence and repeated outbreaks in the country. Plague is believed to have been introduced to Tanzania from the Middle East through Uganda with the first authentication in 1886. Xenopsylla brasiliensis, X. cheopis, Dinopsyllus lypusus, and Pulex irritans are among potential vectors while Lophuromys spp, Praomys delectorum, Graphiurus murinus, Lemniscomys striatus, Mastomys natalensis, and Rattus rattus may be the potential reservoirs. Plague persistence and repeated outbreaks in Tanzania are likely to be attributable to a complexity of factors including cultural, socio-economical, environmental and biological. Minimizing or preventing people's proximity to rodents is probably the most effective means of preventing plague outbreaks in humans in the future. In conclusion, much has been done on plague diagnosis in Tanzania. However, in order to achieve new insights into the features of plague epidemiology in the country, and to reorganize an effective control strategy, we recommend broader studies that will include the ecology of the pathogen, vectors and potential hosts, identifying the reservoirs, dynamics of infection and landscape ecology.

  12. Characterization of systemic and pneumonic murine models of plague infection using a conditionally virulent strain.

    PubMed

    Mellado-Sanchez, Gabriela; Ramirez, Karina; Drachenberg, Cinthia B; Diaz-McNair, Jovita; Rodriguez, Ana L; Galen, James E; Nataro, James P; Pasetti, Marcela F

    2013-03-01

    Yersinia pestis causes bubonic and pneumonic plague in humans. The pneumonic infection is the most severe and invariably fatal if untreated. Because of its high virulence, ease of delivery and precedent of use in warfare, Y. pestis is considered as a potential bioterror agent. No licensed plague vaccine is currently available in the US. Laboratory research with virulent strains requires appropriate biocontainment (i.e., Biosafety Level 3 (BSL-3) for procedures that generate aerosol/droplets) and secure facilities that comply with federal select agent regulations. To assist in the identification of promising vaccine candidates during the early phases of development, we characterized mouse models of systemic and pneumonic plague infection using the Y. pestis strain EV76, an attenuated human vaccine strain that can be rendered virulent in mice under in vivo iron supplementation. Mice inoculated intranasally or intravenously with Y. pestis EV76 in the presence of iron developed a systemic and pneumonic plague infection that resulted in disease and lethality. Bacteria replicated and severely compromised the spleen, liver and lungs. Susceptibility was age dependent, with younger mice being more vulnerable to pneumonic infection. We used these models of infection to assess the protective capacity of newly developed Salmonella-based plague vaccines. The protective outcome varied depending on the route and dose of infection. Protection was associated with the induction of specific immunological effectors in systemic/mucosal compartments. The models of infection described could serve as safe and practical tools for identifying promising vaccine candidates that warrant further potency evaluation using fully virulent strains in BSL-3 settings.

  13. Characterization of systemic and pneumonic murine models of plague infection using a conditionally virulent strain

    PubMed Central

    Mellado-Sanchez, Gabriela; Ramirez, Karina; Drachenberg, Cinthia B.; Diaz-McNair, Jovita; Rodriguez, Ana L.; Galen, James E.; Nataro, James P.; Pasetti, Marcela F.

    2012-01-01

    Yersinia pestis causes bubonic and pneumonic plague in humans. The pneumonic infection is the most severe and invariably fatal if untreated. Because of its high virulence, ease of delivery and precedent of use in warfare, Y. pestis is considered a potential bioterror agent. No licensed plague vaccine is currently available in the US. Laboratory research with virulent strains requires appropriate biocontainment (i.e., Biosafety Level 3 (BSL-3) for procedures that generate aerosol/droplets) and secure facilities that comply with federal select agent regulations. To assist in the identification of promising vaccine candidates during the early phases of development, we characterized mouse models of systemic and pneumonic plague infection using the Y. pestis strain EV76, an attenuated human vaccine strain that can be rendered virulent in mice under in vivo iron supplementation. Mice inoculated intranasally or intravenously with Y. pestis EV76 in the presence of iron developed a systemic and pneumonic plague infection that resulted in disease and lethality. Bacteria replicated and severely compromised the spleen, liver and lungs. Susceptibility was age dependent, with younger mice being more vulnerable to pneumonic infection. We used these models of infection to assess the protective capacity of newly developed Salmonella-based plague vaccines. The protective outcome varied depending on the route and dose of infection. Protection was associated with the induction of specific immunological effectors in systemic/mucosal compartments. The models of infection described could serve as safe and practical tools for identifying promising vaccine candidates that warrant further potency evaluation using fully virulent strains in BSL-3 settings. PMID:23195858

  14. [The Justinian plague (part two). Influence of the epidemic on the rise of the Islamic Empire].

    PubMed

    Sabbatani, Sergio; Manfredi, Roberto; Fiorino, Sirio

    2012-09-01

    The Islamic Empire started its tumultuous and rapid expansion from the year 622 A.D. (the year of Mohammed's Egira). This rapid growth coincided with the epidemic spread of the bubonic plague in the Middle East. Although a first epidemic event had been documented in the year 570 A.D. (pre-Islamic phase), in the Arabic peninsula, classically according to M.W. Dols five severe episodes of plague sub-epidemics are considered in the middle-eastern geographic area: the first occurred in 627 and 628 A.D., the fifth in 716 A.D.. Anyway, we may state that at the onset of Islam the geographic region including Egypt, Palestine, Syria, Iraq, and Iran was involved by endemic plague. In their work, on the ground of a literature review, the Authors describe the characteristics of the epidemic phenomenon, and analyze the how the plague affected the interpretation of Prophet's Koran and Hadits. The passive attitude demonstrated by many Muslims during early Islam was not shared by all believers, since others moved towards a more soft approach, which included the behaviour of the so called moving aside , when the contagion was of concern. The epidemic plague significantly contributed to the weakening of the Eastern Roman Empire, and the rapid decline of the Persian Empire, while during the early expansion phases of Islam, it indirectly favoured the nomadic Arab tribes which, moving on desert or semi-desert territories, succeeded in escaping the contagion more easily. Subsequently, when the Arab population became sedentary, after occupying the conquered cities, this initial advantage was significantly reduced.

  15. [Epidemics in the news in Portugal: cholera, plague, typhus, influenza and smallpox, 1854-1918].

    PubMed

    de Almeida, Maria Antónia Pires

    2014-01-01

    In severe health crisis like those of 1854-1856, 1899 and 1918, especially in Porto, where cholera morbus, the bubonic plague, typhus fever, pneumonic influenza and smallpox killed high percentages of the population, the images of the epidemics in the press enable us to identify the scientific knowledge in a country considered peripheral, but which had studies and personnel specialized at the most advanced levels for the time. A database of 6,700 news items and announcements reveals the medical and pharmaceutical knowledge of the second half of the nineteenth and early twentieth centuries, the way it was transmitted and disclosed to the public and the solutions offered by the health authorities. Hygiene was consistently highlighted in the news and announcements.

  16. Plague outbreak in Libya, 2009, unrelated to plague in Algeria.

    PubMed

    Cabanel, Nicolas; Leclercq, Alexandre; Chenal-Francisque, Viviane; Annajar, Badereddin; Rajerison, Minoarisoa; Bekkhoucha, Souad; Bertherat, Eric; Carniel, Elisabeth

    2013-02-01

    After 25 years of no cases of plague, this disease recurred near Tobruk, Libya, in 2009. An epidemiologic investigation identified 5 confirmed cases. We determined ribotypes, Not1 restriction profiles, and IS100 and IS1541 hybridization patterns of strains isolated during this outbreak. We also analyzed strains isolated during the 2003 plague epidemic in Algeria to determine whether there were epidemiologic links between the 2 events. Our results demonstrate unambiguously that neighboring but independent plague foci coexist in Algeria and Libya. They also indicate that these outbreaks were most likely caused by reactivation of organisms in local or regional foci believed to be dormant (Libya) or extinct (Algeria) for decades, rather than by recent importation of Yersinia pestis from distant foci. Environmental factors favorable for plague reemergence might exist in this area and lead to reactivation of organisms in other ancient foci.

  17. Plague Outbreak in Libya, 2009, Unrelated to Plague in Algeria

    PubMed Central

    Cabanel, Nicolas; Leclercq, Alexandre; Chenal-Francisque, Viviane; Annajar, Badereddin; Rajerison, Minoarisoa; Bekkhoucha, Souad; Bertherat, Eric

    2013-01-01

    After 25 years of no cases of plague, this disease recurred near Tobruk, Libya, in 2009. An epidemiologic investigation identified 5 confirmed cases. We determined ribotypes, Not1 restriction profiles, and IS100 and IS1541 hybridization patterns of strains isolated during this outbreak. We also analyzed strains isolated during the 2003 plague epidemic in Algeria to determine whether there were epidemiologic links between the 2 events. Our results demonstrate unambiguously that neighboring but independent plague foci coexist in Algeria and Libya. They also indicate that these outbreaks were most likely caused by reactivation of organisms in local or regional foci believed to be dormant (Libya) or extinct (Algeria) for decades, rather than by recent importation of Yersinia pestis from distant foci. Environmental factors favorable for plague reemergence might exist in this area and lead to reactivation of organisms in other ancient foci. PMID:23347743

  18. The threatened plague.

    PubMed

    Epstein, P

    1997-01-01

    This article discusses changes in disease patterns affecting human health that may be related to environmental and social changes in the world. The World Health Report reveals that 30 new diseases emerged in the past 20 years. Old diseases are becoming resistant to new drugs. Infectious diseases that were in decline are spreading: diphtheria, whooping cough, and measles. Illnesses such as malaria, fevers, cholera, and rodent-borne viruses are becoming more frequent. Diseases that are transmitted by animals or water are related to environmental and social changes. Degraded environments are susceptible to the appearance of opportunistic species, such as weeds, rodents, insects, and microorganisms. Stable environments support the welfare of large predators and control opportunistic species. Owls, coyotes, and snakes eat rodents that carry Lyme disease ticks and a variety of viruses, plague, and bacteria. Reptiles, birds, spiders, ladybugs, bats, and fish consume larvae and mosquitoes that cause malaria and fevers. Habitat loss and fragmentation, monocultures, excessive use of toxic chemicals, climate change, and weather instability are widespread global changes that reduce the predator population. Small wilderness habitats favor pests. Monocultures reduce genetic diversity and increase vulnerability. Excessive use of pesticides harms birds and helpful insects. A sign of a failing ecosystem is the population explosion of pests and disequilibrium. The Environmental Distress Syndrome is characterized as: 1) emerging infectious diseases, 2) loss of biodiversity, 3) increased generalist species and decreased specialist species, 4) declines in specific specialists, such as pollinators responsible for preservation of flowering plants, and 5) increased coastal algal blooms. The impacts of disease mean considerable costs to humans, agriculture, and livestock. Loss of resources is also costly.

  19. Contribution of land use to rodent flea load distribution in the plague endemic area of Lushoto District, Tanzania.

    PubMed

    Hieronimo, Proches; Kihupi, Nganga I; Kimaro, Didas N; Gulinck, Hubert; Mulungu, Loth S; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Fleas associated with different rodent species are considered as the major vectors of bubonic plague, which is still rampant in different parts of the world. The objective of this study was to investigate the contribution of land use to rodent flea load distribution at fine scale in the plague endemic area of north-eastern Tanzania. Data was collected in three case areas namely, Shume, Lukozi and Mwangoi, differing in plague incidence levels. Data collection was carried out during both wet and dry seasons of 2012. Analysis of Variance and Boosted Regression Tree (BRT) statistical methods were used to clarify the relationships between fleas and specific land use characteristics. There was a significant variation (P ≤ 0.05) of flea indices in different land use types. Fallow and natural forest had higher flea indices whereas plantation forest mono-crop and mixed annual crops had the lowest flea indices among the aggregated land use types. The influence of individual land use types on flea indices was variable with fallow having a positive effect and land tillage showing a negative effect. The results also demonstrated a seasonal effect, part of which can be attributed to different land use practices such as application of pesticides, or the presence of grass strips around fields. These findings suggest that land use factors have a major influence on rodent flea abundance which can be taken as a proxy for plague infection risk. The results further point to the need for a comprehensive package that includes land tillage and crop type considerations on one hand and the associated human activities on the other, in planning and implementation of plague control interventions.

  20. Red Plague Control Plan (RPCP)

    NASA Technical Reports Server (NTRS)

    Cooke, Robert W.

    2010-01-01

    SCOPE: Prescribes the minimum requirements for the control of cuprous / cupric oxide corrosion (a.k.a. Red Plague) of silver-coated copper wire, cable, and harness assemblies. PURPOSE: Targeted for applications where exposure to assembly processes, environmental conditions, and contamination may promote the development of cuprous / cupric oxide corrosion (a.k.a. Red Plague) in silver-coated copper wire, cable, and harness assemblies. Does not exclude any alternate or contractor-proprietary documents or processes that meet or exceed the baseline of requirements established by this document. Use of alternate or contractor-proprietary documents or processes shall require review and prior approval of the procuring NASA activity.

  1. Historians and plagues in pre-industrial Italy over the longue durée.

    PubMed

    Henderson, John

    2003-01-01

    This essay deals with plague and plagues in renaissance and early modern Europe over the longue durée, principally from a methodological perspective. I shall combine an historiographical approach with an historical account of developing reactions to plague and in passing compare measures to cope in the early sixteenth century with reactions to the impact of the Great Pox or the Mal de Naples. I shall concentrate on southern Europe and in particular on Italy and my aim is to re-assess the historiography of plague through the lens of some of the more recent Anglo-Saxon literature in this field. In the process I shall outline some of the debates within the field and end with some general methodological observations drawn from early modern Italy.

  2. Plague - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Plague URL of this page: https://medlineplus.gov/languages/plague.html Other topics A-Z A B C ... V W XYZ List of All Topics All Plague - Multiple Languages To use the sharing features on ...

  3. Zoonotic Focus of Plague, Algeria

    PubMed Central

    Bitam, Idir; Baziz, Belkacem; Rolain, Jean-Marc; Belkaid, Miloud

    2006-01-01

    After an outbreak of human plague, 95 Xenopsylla cheopis fleas from Algeria were tested for Yersinia pestis with PCR methods. Nine fleas were definitively confirmed to be infected with Y. pestis biovar orientalis. Our results demonstrate the persistence of a zoonotic focus of Y. pestis in Algeria. PMID:17326957

  4. AN EPIDEMIC OF PNEUMONIC PLAGUE

    PubMed Central

    Kellogg, W. H.

    1920-01-01

    Dr. Kellogg calls on health authorities to wake from their apathy with reference to plague in California, and instead of restrictive measures to adopt an aggressive warfare. He points out that there is real danger to the country and urges adequate appropriations to exterminate the animal disease carriers while this may be done with certainty. PMID:18010342

  5. Are carnivores universally good sentinels of plague?

    PubMed

    Brinkerhoff, R Jory; Collinge, Sharon K; Bai, Ying; Ray, Chris

    2009-10-01

    Sylvatic plague, caused by the bacterium Yersinia pestis, is a flea-borne disease that primarily affects rodents but has been detected in over 200 mammal species worldwide. Mammalian carnivores are routinely surveyed as sentinels of local plague activity, since they can present antibodies to Y. pestis infection but show few clinical signs. In Boulder County, Colorado, USA, plague epizootic events are episodic and occur in black-tailed prairie dogs. Enzootic hosts are unidentified as are plague foci. For three years, we systematically sampled carnivores in two distinct habitat types to determine whether carnivores may play a role in maintenance or transmission of Y. pestis and to identify habitats associated with increased plague prevalence. We sampled 83 individuals representing six carnivore species and found only two that had been exposed to Y. pestis. The low overall rate of plague exposure in carnivores suggests that plague may be ephemeral in this study system, and thus we cannot draw any conclusions regarding habitat-associated plague foci or temporal changes in plague activity. Plague epizootics involving prairie dogs were confirmed in this study system during two of the three years of this study, and we therefore suggest that the targeting carnivores to survey for plague may not be appropriate in all ecological systems.

  6. Are Carnivores Universally Good Sentinels of Plague?

    PubMed Central

    Collinge, Sharon K.; Bai, Ying; Ray, Chris

    2009-01-01

    Abstract Sylvatic plague, caused by the bacterium Yersinia pestis, is a flea-borne disease that primarily affects rodents but has been detected in over 200 mammal species worldwide. Mammalian carnivores are routinely surveyed as sentinels of local plague activity, since they can present antibodies to Y. pestis infection but show few clinical signs. In Boulder County, Colorado, USA, plague epizootic events are episodic and occur in black-tailed prairie dogs. Enzootic hosts are unidentified as are plague foci. For three years, we systematically sampled carnivores in two distinct habitat types to determine whether carnivores may play a role in maintenance or transmission of Y. pestis and to identify habitats associated with increased plague prevalence. We sampled 83 individuals representing six carnivore species and found only two that had been exposed to Y. pestis. The low overall rate of plague exposure in carnivores suggests that plague may be ephemeral in this study system, and thus we cannot draw any conclusions regarding habitat-associated plague foci or temporal changes in plague activity. Plague epizootics involving prairie dogs were confirmed in this study system during two of the three years of this study, and we therefore suggest that the targeting carnivores to survey for plague may not be appropriate in all ecological systems. PMID:18973449

  7. Plague and landscape resilience in premodern Iceland

    PubMed Central

    Streeter, Richard; Dugmore, Andrew J.; Vésteinsson, Orri

    2012-01-01

    In debates on societal collapse, Iceland occupies a position of precarious survival, defined by not becoming extinct, like Norse Greenland, but having endured, sometimes by the narrowest of margins. Classic decline narratives for late medieval to early modern Iceland stress compounding adversities, where climate, trade, political domination, unsustainable practices, and environmental degradation conspire with epidemics and volcanism to depress the Icelanders and turn the once-proud Vikings and Saga writers into one of Europe's poorest nations. A mainstay of this narrative is the impact of incidental setbacks such as plague and volcanism, which are seen to have compounded and exacerbated underlying structural problems. This research shows that this view is not correct. We present a study of landscape change that uses 15 precisely dated tephra layers spanning the whole 1,200-y period of human settlement in Iceland. These tephras have provided 2,625 horizons of known age within 200 stratigraphic sections to form a high-resolution spatial and temporal record of change. This finding shows short-term (50 y) declines in geomorphological activity after two major plagues in A.D. 15th century, variations that probably mirrored variations in the population. In the longer term, the geomorphological impact of climate changes from the 14th century on is delayed, and landscapes (as well as Icelandic society) exhibit resilience over decade to century timescales. This finding is not a simple consequence of depopulation but a reflection of how Icelandic society responded with a scaling back of their economy, conservation of core functionality, and entrenchment of the established order. PMID:22371601

  8. Immune defense against pneumonic plague

    PubMed Central

    Smiley, Stephen T.

    2009-01-01

    Summary Yersinia pestis is one of the world's most virulent human pathogens. Inhalation of this Gram-negative bacterium causes pneumonic plague, a rapidly progressing and usually fatal disease. Extensively antibiotic-resistant strains of Y. pestis exist and have significant potential for exploitation as agents of terrorism and biowarfare. Subunit vaccines comprised of the Y. pestis F1 and LcrV proteins are well-tolerated and immunogenic in humans but cannot be tested for efficacy, because pneumonic plague outbreaks are uncommon and intentional infection of humans is unethical. In animal models, F1/LcrV-based vaccines protect mice and cynomolgus macaques but have failed, thus far, to adequately protect African green monkeys. We lack an explanation for this inconsistent efficacy. We also lack reliable correlate assays for protective immunity. These deficiencies are hampering efforts to improve vaccine efficacy. Here, I review the immunology of pneumonic plague, focusing on evidence that humoral and cellular defense mechanisms collaborate to defend against pulmonary Y. pestis infection. PMID:18837787

  9. [Resurgence of the plague in the Ikongo district of Madagascar in 1998. 1. Epidemiological aspects in the human population].

    PubMed

    Migliani, R; Ratsitorahina, M; Rahalison, L; Rakotoarivony, I; Duchemin, J B; Duplantier, J M; Rakotonomenjanahary, J; Chanteau, S

    2001-05-01

    Between the 20th October and the 18th November 1998, an outbreak of bubonic plague was declared in a hamlet in the Ikongo district of Madagascar. We conducted an epidemiological survey because of the re-emergence of the disease in this area (the last cases had been notified in 1965) and because of the low altitude compared to the classical Malagasy foci. The outbreak had been preceded by an important rat epizootics during September. A total of 21 cases were registered with an attack rate of 16.7% (21/126) and a lethality rate of 33% (7/21). The disease was more prevalent in males (66% of cases) and children aged < 15 years, as observed in general throughout the country. The anti-F1 seroprevalence among the contact population was 13.5% (13/96), probably attributable to subclinical infection by Yersinia pestis. No rodent was trapped during the survey, but an endemic hedgehog (Tenrec ecaudatus) was highly seropositive, suggesting a recent transmission of the plague bacillus among this species. The small mammals and vectors possibly involved in these new foci were investigated in May 1999.

  10. Plague

    MedlinePlus

    ... by the bacteria Yersinia pestis. Rodents such as rats carry the disease. It is spread by their ... Rat control and watching for the disease in the wild rodent population are the main measures used ...

  11. Plague

    MedlinePlus

    ... on proventricular spines of a Xenopsylla cheopis flea. Biology & Genetics NIAID-supported investigators sequenced the genome of ... for this deadly pathogen. Read more about the biology and genetics of Yersinia pestis Vaccines NIAID is ...

  12. Yersinia pestis requires the 2-component regulatory system OmpR-EnvZ to resist innate immunity during the early and late stages of plague.

    PubMed

    Reboul, Angéline; Lemaître, Nadine; Titecat, Marie; Merchez, Maud; Deloison, Gaspard; Ricard, Isabelle; Pradel, Elizabeth; Marceau, Michaël; Sebbane, Florent

    2014-11-01

    Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues.

  13. Yersinia pestis Biofilm in the Flea Vector and Its Role in the Transmission of Plague

    PubMed Central

    Erickson, D. L.

    2013-01-01

    Transmission by fleabite is a relatively recent evolutionary adaptation of Yersinia pestis, the bacterial agent of bubonic plague. To produce a transmissible infection, Y. pestis grows as an attached biofilm in the foregut of the flea vector. Biofilm formation both in the flea foregut and in vitro is dependent on an extracellular matrix (ECM) synthesized by the Yersinia hms gene products. The hms genes are similar to the pga and ica genes of Escherichia coli and Staphylococcus epidermidis, respectively, that act to synthesize a poly-β-1,6-N-acetyl-d-glucosamine ECM required for biofilm formation. As with extracellular polysaccharide production in many other bacteria, synthesis of the Hms-dependent ECM is controlled by intracellular levels of cyclic-di-GMP. Yersinia pseudotuberculosis, the food- and water-borne enteric pathogen from which Y. pestis evolved recently, possesses identical hms genes and can form biofilm in vitro but not in the flea. The genetic changes in Y. pestis that resulted in adapting biofilm-forming capability to the flea gut environment, a critical step in the evolution of vector-borne transmission, have yet to be identified. During a flea bite, Y. pestis is regurgitated into the dermis in a unique biofilm phenotype, and this has implications for the initial interaction with the mammalian innate immune response. PMID:18453279

  14. [Ecological-geographic landscapes of natural plague foci in China VIII. Typing of natural plague foci].

    PubMed

    Fang, Xi-ye; Liu, Qi-yong; Xu, Lei; Zhou, Dong-sheng; Cui, Yu-jun; Dong, Xing-qi; Zhang, Rong-zu; Gu, Shao-hua; Ye, Cai-de; Yang, Rui-fu

    2013-01-01

    Since plague is an important natural focus zoonosis, the typing of natural plague foci becomes one of the elements in understanding the nature and developing related prevention program of the disease. Natural foci of plague are composed by four fundamental parts which include Eco-geographical landscape (natural plague foci), hosts, vectors and pathogens (Yersinia pestis) that comprehensively interact through the large temporal scale of evolution. Human activities have had great impact on the foci of natural plague. Based on the published serial research papers, we tried to integrate the knowledge of each factor in natural plague foci and focusing on theoretical aspects, so as to strengthen the prevention and surveillance programs of plague to be extrapolated to other zoonosis.

  15. New records of sylvatic plague in Kansas

    USGS Publications Warehouse

    Cully, J.F.; Carter, L.G.; Gage, K.L.

    2000-01-01

    Sylvatic plague, or plague of wild rodents is caused by Yersinia pestis and entered California (USA) from Asia about 1899. Extensive sampling during the 1930's and 1940's documented the spread of plague to approximately its current distribution in North America. Records from the Centers for Disease Control and Prevention document plague in Kansas (USA) between 1945 and 1950, but since then there has been no documentation of plague in the state. Following a die-off of a black-tailed prairie dog (Cynomys ludovicianus) colony on the Cimarron National Grassland, in the southwestern corner of Kansas (37??10???N, 101??45???W), we sampled fleas from burrows in June 1997, and tested them for Yersinia pestis. Twelve of 13 pools of Oropsyla hirsuta and one of two Pulex sp. were positive. A similar sample of fleas, from another colony where black-tailed prairie dogs were active at the time, yielded no positive fleas.

  16. Prospects for new plague vaccines.

    PubMed

    Feodorova, Valentina A; Corbel, Michael J

    2009-12-01

    The potential application of Yersinia pestis for bioterrorism emphasizes the urgent need to develop more effective vaccines against airborne infection. The current status of plague vaccines has been reviewed. The present emphasis is on subunit vaccines based on the F1 and LcrV antigens. These provide good protection in animal models but may not protect against F1 strains with modifications to the type III secretion system. The duration of protection against pneumonic infection is also uncertain. Other strategies under investigation include defined live-attenuated vaccines, DNA vaccines, mucosal delivery systems and heterologous immunization. The live-attenuated strain Y. pestis EV NIIEG protects against aerosol challenge in animal models and, with further modification to reduce residual virulence and to optimize respiratory protection, it could provide a shortcut to improved vaccines. The regulatory problems inherent in licensing vaccines for which efficacy data are unavailable and their possible solutions are discussed herein.

  17. Land use determinants of small mammal abundance and distribution in a plague endemic area of Lushoto District, Tanzania.

    PubMed

    Hieronimo, Proches; Kimaro, Didas N; Kihupi, Nganga I; Gulinck, Hubert; Mulungu, Loth S; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Small mammals are considered to be involved in the transmission cycle of bubonic plague, still occurring in different parts of the world, including the Lushoto District in Tanzania. The objective of this study was to determine the relationship between land use types and practices and small mammal abundance and distribution. A field survey was used to collect data in three landscapes differing in plague incidences. Data collection was done both in the wet season (April-June 2012) and dry season (August-October 2012). Analysis of variance and Boosted Regression Trees (BRT) modelling technique were used to establish the relationship between land use and small mammal abundance and distribution. Significant variations (p ≤ 0.05) of small mammal abundance among land use types were identified. Plantation forest with farming, natural forest and fallow had higher populations of small mammals than the other aggregated land use types. The influence of individual land use types on small mammal abundance level showed that, in both dry and wet seasons, miraba and fallow tended to favour small mammals' habitation whereas land tillage practices had the opposite effect. In addition, during the wet season crop types such as potato and maize appeared to positively influence the distribution and abundance of small mammals which was attributed to both shelter and food availability. Based on the findings from this study it is recommended that future efforts to predict and map spatial and temporal human plague infection risk at fine scale should consider the role played by land use and associated human activities on small mammal abundance and distribution.

  18. The natural history and incidence of Yersinia pestis and prospects for vaccination.

    PubMed

    Williamson, E D; Oyston, P C F

    2012-07-01

    Plague is an ancient, serious, infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses the natural history of the bacterium and its evolution into a flea-vectored bacterium able to transmit bubonic plague. It reviews the incidence of plague in the modern world and charts the history of vaccines which have been used to protect against the flea-vectored disease, which erupts as bubonic plague. Current approaches to vaccine development to protect against pneumonic, as well as bubonic, plague are also reviewed. The considerable challenges in achieving a vaccine which is licensed for human use and which will comprehensively protect against this serious human pathogen are assessed.

  19. Epizootiologic parameters for plague in Kazakhstan.

    PubMed

    Begon, Michael

    2006-02-01

    Reliable estimates are lacking of key epizootiologic parameters for plague caused by Yersinia pestis infection in its natural reservoirs. We report results of a 3-year longitudinal study of plague dynamics in populations of a maintenance host, the great gerbil (Rhombomys opimus), in 2 populations in Kazakhstan. Serologic results suggest a mid-summer peak in the abundance of infectious hosts and possible transmission from the reservoir to humans. Decrease in antibody titer to an undetectable level showed no seasonal pattern. Our findings did not support the use of the nitroblue-tetrazolium test characterization of plague-infected hosts. Y. pestis infection reduced survival of otherwise asymptomatic hosts.

  20. Epizootiologic Parameters for Plague in Kazakhstan

    PubMed Central

    Klassovskiy, Nikolay; Ageyev, Vladimir; Suleimenov, Bakhtiar; Atshabar, Bakhyt; Bennett, Malcolm

    2006-01-01

    Reliable estimates are lacking of key epizootiologic parameters for plague caused by Yersinia pestis infection in its natural reservoirs. We report results of a 3-year longitudinal study of plague dynamics in populations of a maintenance host, the great gerbil (Rhombomys opimus), in 2 populations in Kazakhstan. Serologic results suggest a mid-summer peak in the abundance of infectious hosts and possible transmission from the reservoir to humans. Decrease in antibody titer to an undetectable level showed no seasonal pattern. Our findings did not support the use of the nitroblue-tetrazolium test characterization of plague-infected hosts. Y. pestis infection reduced survival of otherwise asymptomatic hosts. PMID:16494753

  1. Sylvatic plague vaccine: combating plague in prarie dogs and black-footed ferrets

    USGS Publications Warehouse

    Rocke, Tonie E.; Abbott, Rachel C.

    2012-01-01

    After achieving promising results in laboratory trials, researchers at the USGS National Wildlife Health Center (NWHC) and University of Wisconsin at Madison will soon begin field testing a new oral vaccine for sylvatic plague, a devastating disease affecting prairie dogs and other mammals, particularly the endangered black-footed ferret. Our team has developed and is currently registering a sylvatic plague vaccine (SPV) that uses raccoon poxvirus (RCN) to express two key antigens of the Yersinia pestis bacterium, the causative agent of plague.

  2. Pneumonic Plague Outbreak, Northern Madagascar, 2011

    PubMed Central

    Richard, Vincent; Herindrainy, Perlinot; Soanandrasana, Rahelinirina; Ratsitoharina, Maherisoa; Rakotomanana, Fanjasoa; Andrianalimanana, Samuel; Scholz, Holger C.; Rajerison, Minoarisoa

    2015-01-01

    Yersinia pestis, the causative agent of plague, is endemic to Madagascar, particularly to the central highlands. Although plague has not been previously reported in northern Madagascar, an outbreak of pneumonic plague occurred in this remote area in 2011. Over a 27-day period, 17 suspected, 2 presumptive, and 3 confirmed human cases were identified, and all 15 untreated 20 patients died. Molecular typing of Y. pestis isolated from 2 survivors and 5 Rattus rattus rat samples identified the Madagascar-specific 1.ORI3-k single-nucleotide polymorphism genotype and 4 clustered regularly interspaced short palindromic repeat patterns. This outbreak had a case-fatality rate of 100% for nontreated patients. The Y. pestis 1.ORI3-k single-nucleotide polymorphism genotype might cause larger epidemics. Multidrug-resistant strains and persistence of the pathogen in natural foci near human settlements pose severe risks to populations in plague-endemic regions and require outbreak response strategies. PMID:25530466

  3. Pneumonic plague outbreak, Northern Madagascar, 2011.

    PubMed

    Richard, Vincent; Riehm, Julia M; Herindrainy, Perlinot; Soanandrasana, Rahelinirina; Ratsitoharina, Maherisoa; Rakotomanana, Fanjasoa; Andrianalimanana, Samuel; Scholz, Holger C; Rajerison, Minoarisoa

    2015-01-01

    Yersinia pestis, the causative agent of plague, is endemic to Madagascar, particularly to the central highlands. Although plague has not been previously reported in northern Madagascar, an outbreak of pneumonic plague occurred in this remote area in 2011. Over a 27-day period, 17 suspected, 2 presumptive, and 3 confirmed human cases were identified, and all 15 untreated 20 patients died. Molecular typing of Y. pestis isolated from 2 survivors and 5 Rattus rattus rat samples identified the Madagascar-specific 1.ORI3-k single-nucleotide polymorphism genotype and 4 clustered regularly interspaced short palindromic repeat patterns. This outbreak had a case-fatality rate of 100% for nontreated patients. The Y. pestis 1.ORI3-k single-nucleotide polymorphism genotype might cause larger epidemics. Multidrug-resistant strains and persistence of the pathogen in natural foci near human settlements pose severe risks to populations in plague-endemic regions and require outbreak response strategies.

  4. Pneumonic Plague Transmission, Moramanga, Madagascar, 2015

    PubMed Central

    Ramasindrazana, Beza; Andrianaivoarimanana, Voahangy; Rakotondramanga, Jean Marius; Birdsell, Dawn N.; Ratsitorahina, Maherisoa

    2017-01-01

    During a pneumonic plague outbreak in Moramanga, Madagascar, we identified 4 confirmed, 1 presumptive, and 9 suspected plague case-patients. Human-to-human transmission among close contacts was high (reproductive number 1.44) and the case fatality rate was 71%. Phylogenetic analysis showed that the Yersinia pestis isolates belonged to group q3, different from the previous outbreak. PMID:28221119

  5. Human Plague Risk: Spatial-Temporal Models

    NASA Technical Reports Server (NTRS)

    Pinzon, Jorge E.

    2010-01-01

    This chpater reviews the use of spatial-temporal models in identifying potential risks of plague outbreaks into the human population. Using earth observations by satellites remote sensing there has been a systematic analysis and mapping of the close coupling between the vectors of the disease and climate variability. The overall result is that incidence of plague is correlated to positive El Nino/Southem Oscillation (ENSO).

  6. Ecology of plague in Africa: response of indigenous wild rodents to experimental plague infection

    PubMed Central

    Isaäcson, Margaretha; Taylor, Paul; Arntzen, Lorraine

    1983-01-01

    The Mastomys natalensis species complex, subdivided into genetically distinct species having diploid chromosome numbers 2n = 32 and 2n = 36, is a reservoir for several zoonoses including Lassa fever and plague. This report describes a study to determine whether these sibling species and three other rodent species have different potential as reservoirs for plague. It was found that M. natalensis (2n = 32) was significantly more resistant to experimental plague infection (50% survived inoculation with 120 000 Yersinia pseudotuberculosis subsp. pestis) than was M. coucha (2n = 36) (none of which survived doses of 190 Y. pseudotuberculosis subsp.pestis). In descending order of resistance were M. natalensis, Aethomys chrysophilus, M. coucha, Tatera leucogaster and A. namaquensis. No A. namaquensis survived inoculation of 10 or more plague bacilli. Previous reports on susceptibility to plague or other infections, which were based exclusively on findings in the universally distributed laboratory-bred Mastomys, are thus not necessarily applicable to the M. natalensis species as a whole but probably only to M. coucha. The Y. pseudotuberculosis subsp. pestis fraction-1 passive haemagglutination test appeared to be relatively insensitive in that only 5 out of 47 animals surviving experimental plague infection showed specific antibodies 6 weeks after challenge. The geographic distribution of human plague in southern Africa corresponds closely with that of the plague-susceptible species, M. coucha, while the resistant species, M. natalensis, predominates in areas where human plague has not been recorded. The role of A. namaquensis in the ecology of plague needs to be carefully studied and its possible importance in plague research should be investigated further. PMID:6345015

  7. Ecology of plague in Africa: response of indigenous wild rodents to experimental plague infection.

    PubMed

    Isaäcson, M; Taylor, P; Arntzen, L

    1983-01-01

    The Mastomys natalensis species complex, subdivided into genetically distinct species having diploid chromosome numbers 2n = 32 and 2n = 36, is a reservoir for several zoonoses including Lassa fever and plague. This report describes a study to determine whether these sibling species and three other rodent species have different potential as reservoirs for plague. It was found that M. natalensis (2n = 32) was significantly more resistant to experimental plague infection (50% survived inoculation with 120 000 Yersinia pseudotuberculosis subsp. pestis) than was M. coucha (2n = 36) (none of which survived doses of 190 Y. pseudotuberculosis subsp.pestis). In descending order of resistance were M. natalensis, Aethomys chrysophilus, M. coucha, Tatera leucogaster and A. namaquensis. No A. namaquensis survived inoculation of 10 or more plague bacilli.Previous reports on susceptibility to plague or other infections, which were based exclusively on findings in the universally distributed laboratory-bred Mastomys, are thus not necessarily applicable to the M. natalensis species as a whole but probably only to M. coucha. The Y. pseudotuberculosis subsp. pestis fraction-1 passive haemagglutination test appeared to be relatively insensitive in that only 5 out of 47 animals surviving experimental plague infection showed specific antibodies 6 weeks after challenge.The geographic distribution of human plague in southern Africa corresponds closely with that of the plague-susceptible species, M. coucha, while the resistant species, M. natalensis, predominates in areas where human plague has not been recorded. The role of A. namaquensis in the ecology of plague needs to be carefully studied and its possible importance in plague research should be investigated further.

  8. Plague in Africa from 1935 to 1949

    PubMed Central

    Davis, D. H. S.

    1953-01-01

    The history of plague in Africa during the period 1935-49 is reviewed. Much of the information derives from a questionnaire sent to all African territories in 1950. The annual incidence of plague in Africa declined, particularly from 1946 onwards. In 1949, under 400 cases were reported, as compared with over 6,000 in 1935. By the end of 1949, plague was still active in the Belgian Congo, Kenya and Tanganyika, Madagascar, and southern Africa. No cases were reported from Egypt, Tunisia, Algeria, Morocco, Senegal, or Uganda during 1949. A comparison of the seasonal incidence of plague with prevailing atmospheric conditions (temperature and rainfall) in African territories shows that human plague is more frequent in warm moist weather—60°-80°F (15°-27°C)—than in hot dry, or cold, weather—over 80°F (27°C) or under 60°F (15°C). The highlands of equatorial Africa and of Madagascar appear to provide the optimum environment for the persistence of plague on the domestic (murine) plane and the high-veld and Kalahari of southern Africa on the sylvatic plane. The rat (Rattus rattus) and the multimammate mouse (R. (Mastomys) natalensis) and their fleas Xenopsylla brasiliensis and X. cheopis appear to be mainly responsible for the persistence of the reservoir in the East African highlands; R. rattus and X. cheopis play this role in Madagascar. The gerbils (Tatera and Desmodillus) and their burrow fleas X. philoxera and X. piriei are the main reservoirs of plague in southern Africa. Within these areas, Pasteurella pestis finds an environment suitable for its continued survival; the conditions seem to be comparable to those defined as obtaining in endemic centres in India. Elsewhere in Africa such endemic centres do not appear to exist. PMID:13115987

  9. Mountain plover responses to plague in Montana.

    PubMed

    Dinsmore, Stephen J; Smith, Mark D

    2010-01-01

    Plague is a bacterial (Yersinia pestis) disease that causes epizootic die-offs in black-tailed prairie dog (Cynomys ludovicianus) populations in the North American Great Plains. Through their grazing and burrowing, prairie dogs modify vegetation and landscape structure on their colonies in ways that affect other grassland species. Plague epizootics on prairie dog colonies can have indirect effects on species associated with colonies. The mountain plover (Charadrius montanus) preferentially nests on black-tailed prairie dog colonies and is thus negatively impacted by the loss of prairie dogs. We studied the effects of plague and colony spatial characteristics on the occupancy of 81 prairie dog colonies by nesting plovers in Phillips County, Montana, during a 13-year period (1995-2007). We used a robust design patch occupancy model to investigate how colony occupancy and extinction and colonization rates were affected by plague history, colony size, and colony shape. Here extinction and colonization rates refer to the probability that a colony loses/gains plovers in a subsequent nesting season, given that it had/lacked plovers in that breeding season. Colony occupancy was best explained by a model with no annual variation or plague effects. Colony extinction rates were driven by a combination of a quadratic of colony area, a 3-year plague response, and a measure of colony shape. Conversely, colonization rates were best explained by a model with a 4-year plague response. The estimated annual proportion of colonies occupied by plovers was 0.75 (95% confidence interval = 0.57-0.87). Estimated extinction probability ranged from a low of 0.07 (standard error [SE] = 0.02) in 2002 to a high of 0.25 (SE = 0.03) in 1995; colonization probability ranged from 0.24 (SE = 0.05) in 2006 to 0.35 (SE = 0.05) in 2000. Our results highlight how a bird that depends on prairie dogs for nesting habitat responds to plague history and other spatial characteristics of the colony. Ultimately

  10. Yersinia pestis halotolerance illuminates plague reservoirs

    PubMed Central

    Malek, Maliya Alia; Bitam, Idir; Levasseur, Anthony; Terras, Jérôme; Gaudart, Jean; Azza, Said; Flaudrops, Christophe; Robert, Catherine; Raoult, Didier; Drancourt, Michel

    2017-01-01

    The plague agent Yersinia pestis persists for years in the soil. Two millennia after swiping over Europe and North Africa, plague established permanent foci in North Africa but not in neighboring Europe. Mapping human plague foci reported in North Africa for 70 years indicated a significant location at <3 kilometers from the Mediterranean seashore or the edge of salted lakes named chotts. In Algeria, culturing 352 environmental specimens naturally containing 0.5 to 70 g/L NaCl yielded one Y. pestis Orientalis biotype isolate in a 40 g/L NaCl chott soil specimen. Core genome SNP analysis placed this isolate within the Y. pestis branch 1, Orientalis biovar. Culturing Y. pestis in broth steadily enriched in NaCl indicated survival up to 150 g/L NaCl as L-form variants exhibiting a distinctive matrix assisted laser desorption-ionization time-of-flight mass spectrometry peptide profile. Further transcriptomic analyses found the upregulation of several outer-membrane proteins including TolC efflux pump and OmpF porin implied in osmotic pressure regulation. Salt tolerance of Y. pestis L-form may play a role in the maintenance of natural plague foci in North Africa and beyond, as these geographical correlations could be extended to 31 plague foci in the northern hemisphere (from 15°N to 50°N). PMID:28054667

  11. Impact of the plague in Ancient Greece.

    PubMed

    Soupios, M A

    2004-03-01

    Disease as a pivotal factor in determining the course of human events may be one og the least considered historical variables. When assessing the critical junctures of history, historians seem more inclined to focus on the impact of conquering armies, economic revolutions, and technologic breakthroughs. This analysis attempts to illustrate the seminal effects of the great plague of Athens. By depleting Athenian military personnel, depriving Athens of its charismatic leadership, and dissolving the system of ideals and principles that distinguished Athens from the rest of antiquity, the plague materially altered the outcome of the Peloponnesian War, which in turn deflected the flow of all subsequent Hellenic history.

  12. Expression of the Plague Plasminogen Activator in Yersinia pseudotuberculosis and Escherichia coli

    PubMed Central

    Kutyrev, V.; Mehigh, R. J.; Motin, V. L.; Pokrovskaya, M. S.; Smirnov, G. B.; Brubaker, R. R.

    1999-01-01

    Enteropathogenic yersiniae (Yersinia pseudotuberculosis and Yersinia enterocolitica) typically cause chronic disease as opposed to the closely related Yersinia pestis, the causative agent of bubonic plague. It is established that this difference reflects, in part, carriage by Y. pestis of a unique 9.6-kb pesticin or Pst plasmid (pPCP) encoding plasminogen activator (Pla) rather than distinctions between shared ∼70-kb low-calcium-response, or Lcr, plasmids (pCD in Y. pestis and pYV in enteropathogenic yersiniae) encoding cytotoxic Yops and anti-inflammatory V antigen. Pla is known to exist as a combination of 32.6-kDa (α-Pla) and slightly smaller (β-Pla) outer membrane proteins, of which at least one promotes bacterial dissemination in vivo and degradation of Yops in vitro. We show here that only α-Pla accumulates in Escherichia coli LE392/pPCP1 cultivated in enriched medium and that either autolysis or extraction of this isolate with 1.0 M NaCl results in release of soluble α and β forms possessing biological activity. This process also converted cell-bound α-Pla to β-Pla and smaller forms in Y. pestis KIM/pPCP1 and Y. pseudotuberculosis PB1/+/pPCP1 but did not promote solubilization. Pla-mediated posttranslational hydrolysis of pulse-labeled Yops in Y. pseudotuberculosis PB1/+/pPCP1 occurred more slowly than that in Y. pestis but was otherwise similar except for accumulation of stable degradation products of YadA, a pYV-mediated fibrillar adhesin not encoded in frame by pCD. Carriage of pPCP by Y. pseudotuberculosis did not significantly influence virulence in mice. PMID:10024583

  13. A review of plague persistence with special emphasis on fleas

    USGS Publications Warehouse

    Wimsatt, Jeffrey; Biggins, Dean E.

    2009-01-01

    Here, we note a potentially pivotal role for fleas. These epizootic plague vectors should be closely studied with newer more exacting methods to determine their potential to serve as participants in or accomplices to a plague persistence reservoir.

  14. Current challenges in the development of vaccines for pneumonic plague

    PubMed Central

    Smiley, Stephen T

    2008-01-01

    Inhalation of Yersinia pestis bacilli causes pneumonic plague, a rapidly progressing and exceptionally virulent disease. Extensively antibiotic-resistant Y. pestis strains exist and we currently lack a safe and effective pneumonic plague vaccine. These facts raise concern that Y. pestis may be exploited as a bioweapon. Here, I review the history and status of plague vaccine research and advocate that pneumonic plague vaccines should strive to prime both humoral and cellular immunity. PMID:18324890

  15. Successful Treatment of Human Plague with Oral Ciprofloxacin.

    PubMed

    Apangu, Titus; Griffith, Kevin; Abaru, Janet; Candini, Gordian; Apio, Harriet; Okoth, Felix; Okello, Robert; Kaggwa, John; Acayo, Sarah; Ezama, Geoffrey; Yockey, Brook; Sexton, Christopher; Schriefer, Martin; Mbidde, Edward Katongole; Mead, Paul

    2017-03-01

    The US Food and Drug Administration recently approved ciprofloxacin for treatment of plague (Yersina pestis infection) based on animal studies. Published evidence of efficacy in humans is sparse. We report 5 cases of culture-confirmed human plague treated successfully with oral ciprofloxacin, including 1 case of pneumonic plague.

  16. Wild Felids as Hosts for Human Plague, Western United States

    PubMed Central

    Tracey, Jeff A.; Franklin, Sam P.; Schmit, Virginia L.; MacMillan, Martha L.; Gage, Kenneth L.; Schriefer, Martin E.; Logan, Kenneth A.; Sweanor, Linda L.; Alldredge, Mat W.; Krumm, Caroline; Boyce, Walter M.; Vickers, Winston; Riley, Seth P.D.; Lyren, Lisa M.; Boydston, Erin E.; Fisher, Robert N.; Roelke, Melody E.; Salman, Mo; Crooks, Kevin R.; VandeWoude, Sue

    2009-01-01

    Plague seroprevalence was estimated in populations of pumas and bobcats in the western United States. High levels of exposure in plague-endemic regions indicate the need to consider the ecology and pathobiology of plague in nondomestic felid hosts to better understand the role of these species in disease persistence and transmission. PMID:19961691

  17. Successful Treatment of Human Plague with Oral Ciprofloxacin

    PubMed Central

    Apangu, Titus; Griffith, Kevin; Abaru, Janet; Candini, Gordian; Apio, Harriet; Okoth, Felix; Okello, Robert; Kaggwa, John; Acayo, Sarah; Ezama, Geoffrey; Yockey, Brook; Sexton, Christopher; Schriefer, Martin; Mbidde, Edward Katongole

    2017-01-01

    The US Food and Drug Administration recently approved ciprofloxacin for treatment of plague (Yersina pestis infection) based on animal studies. Published evidence of efficacy in humans is sparse. We report 5 cases of culture-confirmed human plague treated successfully with oral ciprofloxacin, including 1 case of pneumonic plague. PMID:28125398

  18. Wild felids as hosts for human plague, Western United States

    USGS Publications Warehouse

    Bevins, S.N.; Tracey, J.A.; Franklin, S.P.; Schmit, V.L.; MacMillan, M.L.; Gage, K.L.; Schriefer, M.E.; Logan, K.A.; Sweanor, L.L.; Alldredge, M.W.; Krumm, C.; Boyce, W.M.; Vickers, W.; Riley, S.P.D.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Roelke, M.E.; Salman, M.; Crooks, K.R.; VandeWoude, S.

    2009-01-01

    Plague seroprevalence was estimated in populations pumas and bobcats in the western United States. High levels of exposure in plague-endemic regions indicate the need to consider the ecology and pathobiology of plague nondomestic felid hosts to better understand the role of these species in disease persistence and transmission.

  19. Saving Resources with Plagues in Genetic Algorithms

    SciTech Connect

    de Vega, F F; Cantu-Paz, E; Lopez, J I; Manzano, T

    2004-06-15

    The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes a number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.

  20. [The plague in Finland in 1710].

    PubMed

    Engström, N G

    1994-01-01

    In the autumn of 1710 Helsinki was struck by the so-called oriental plague during four months. The infection was transferred by black rats which harboured fleas. The flea-bites caused boils. It was believed that the plague was air-borne, and the air was very humid that autumn. Big fires were lit in order to reduce the humidity, the purpose being to make it easier for the infected to breathe. Attempts were also made to dissect the boils. The carriers of the contamination came as refugees from Estland over the Gulf of Finland. The infection had spread from Turkey to Poland and Balticum after the defeat of the Finnish-Swedish army in the summer of 1709 at Poltava in Ucraine. Helsingfors (Helsinki) was struck extremely hard. About two-thirds of the inhabitants died of the pestilence. Some escaped by fleeing to the countryside. The plague spread through the country as far north as to Uleåborg (Oulu) and Cajana (Kajaani). Marketplaces became important centres of infection. With the advent of the frost in December the plague dwindled. At that time Helsinki was practically a dead town.

  1. Recent Findings Regarding Maintenance of Enzootic Variants of Yersinia pestis in Sylvatic Reservoirs and Their Significance in the Evolution of Epidemic Plague

    PubMed Central

    Brubaker, Robert R.

    2010-01-01

    Abstract Despite the widespread presence of bubonic plague in sylvatic reservoirs throughout the world, the causative agent (Yersinia pestis) evolved in its present form within the last 20,000 years from enteropathogenic Yersinia pseudotuberculosis. Comparison of the genomes from the two species revealed that Y. pestis possesses only a few unique plasmid-encoded genes that contribute to acute disease, whereas this organism has lost about 13% of the chromosomal genes that remain active in Y. pseudotuberculosis. These losses reflect readily detectable additions, deletions, transpositions, inversions, and acquisition of about 70 insertion sequence (IS) inserts, none of which are likely to promote increased virulence. In contrast, major enzymes of intermediary metabolism, including glucose 6-phosphate dehydrogenase (Zwf ) and aspartase, are present but not catalytically functional due to the presence of missense mutations. The latter are generally not detectable by the technology of bioinformatics and, in the case of Y. pestis, result in radical changes in the metabolic flow of carbon. As an important consequence, plague bacilli exhibit a stringent low-calcium response characterized by conversion of L-glutamate (and metabolically related amino acids) to L-aspartate with secretion of the latter into supernatant fluid at 37°C in culture media containing Na+ but lacking added Ca2+. This phenomenon also occurs in vivo and likely adversely affects the bioenergetics of host amino acid pools. Curiously, aspartase is functional in all tested enzootic (pestoides) strains of Y. pestis. These isolates are typically restricted to the ancient plague reservoirs of Central Asia and Africa and are fully virulent in members of the rodent Superfamily Muroidea but avirulent in guinea pigs and man. The implications of these findings for the distribution and ecology of Y. pestis could be significant. PMID:20158336

  2. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague

    PubMed Central

    Sha, Jian; Rosenzweig, Jason A.; Kirtley, Michelle L.; van Lier, Christina J.; Fitts, Eric C.; Kozlova, Elena V.; Erova, Tatiana E.; Tiner, Bethany L.; Chopra, Ashok K.

    2012-01-01

    The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed. Yersina pestis is a Gram-negative bacterium capable of causing bubonic, septicemic, and pneumonic plague. In this study, we compared the conventional counting of bacterial colony forming units (cfu) in the various infected tissues to IVIBB in monitoring Y. pestis dissemination in a mouse model of pneumonic plague. By using a transposon mutagenesis system harboring the luciferase (luc) gene, we screened approximately 4000 clones and obtained a fully virulent, luc-positive Y. pestis CO92 (Y. pestis-luc2) reporter strain in which transposition occurred within the largest pMT1 plasmid which possesses murine toxin and capsular antigen encoding genes. The aforementioned reporter strain and the wild-type CO92 exhibited similar growth curves, formed capsule based on immunofluorescence microscopy and flow cytometry, and had a similar LD50. Intranasal infection of mice with 15 LD50 of CO92-luc2 resulted in animal mortality by 72 h, and an increasing number of bioluminescent bacteria were observed in various mouse organs over a 24–72 h period when whole animals were imaged. However, following levofloxacin treatment (10 mg/kg/day) for 6 days 24 h post infection, no luminescence was observed after 72 h of infection, indicating that the tested antimicrobial killed bacteria preventing their detection in host peripheral tissues. Overall, we demonstrated that IVIBB is an effective and non-invasive way of monitoring bacterial dissemination in animals following pneumonic plague having strong correlation with cfu, and our reporter CO92-luc2 strain can be employed as a useful tool to monitor the efficacy of

  3. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.

  4. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague.

    PubMed

    Sha, Jian; Rosenzweig, Jason A; Kirtley, Michelle L; van Lier, Christina J; Fitts, Eric C; Kozlova, Elena V; Erova, Tatiana E; Tiner, Bethany L; Chopra, Ashok K

    2013-02-01

    The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed. Yersinia pestis is a Gram-negative bacterium capable of causing bubonic, septicemic, and pneumonic plague. In this study, we compared the conventional counting of bacterial colony forming units (cfu) in the various infected tissues to IVIBB in monitoring Y. pestis dissemination in a mouse model of pneumonic plague. By using a transposon mutagenesis system harboring the luciferase (luc) gene, we screened approximately 4000 clones and obtained a fully virulent, luc-positive Y. pestis CO92 (Y. pestis-luc2) reporter strain in which transposition occurred within the largest pMT1 plasmid which possesses murine toxin and capsular antigen encoding genes. The aforementioned reporter strain and the wild-type CO92 exhibited similar growth curves, formed capsule based on immunofluorescence microscopy and flow cytometry, and had a similar LD(50). Intranasal infection of mice with 15 LD(50) of CO92-luc2 resulted in animal mortality by 72 h, and an increasing number of bioluminescent bacteria were observed in various mouse organs over a 24-72 h period when whole animals were imaged. However, following levofloxacin treatment (10 mg/kg/day) for 6 days 24 h post infection, no luminescence was observed after 72 h of infection, indicating that the tested antimicrobial killed bacteria preventing their detection in host peripheral tissues. Overall, we demonstrated that IVIBB is an effective and non-invasive way of monitoring bacterial dissemination in animals following pneumonic plague having strong correlation with cfu, and our reporter CO92-luc2 strain can be employed as a useful tool to monitor the efficacy

  5. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates

    PubMed Central

    Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.

    2016-01-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  6. Thinking extreme social violence: the model of the literary plague.

    PubMed

    Priel, Beatriz

    2007-12-01

    The author uses literary plagues as a model for thinking psychoanalytically about the basic anxieties activated among perpetrators of sanctioned massacres. The model of the plague allows abstracting an underlying primitive psychological organization characterized by syncretism and a powerful anxiety of de-differentiation and confusion, leading characteristically to imitative behavior within the in-group as well as to the disavowal of the out-group members similarities to oneself, i.e. the disavowal of the other's humanity. Recognizing the historical and social foundations of discrimination and genocide, the author analyzes the interaction between group and individual processes that allow ordinary people to join daily acts of immoral violence. She dramatizes the model of the plague through a psychoanalytic reading of three literary plagues: Thebes' plague according to Sophocles, Camus's chronicle of the plague in Oran, and Saramago's meditation on the plague of white blindness.

  7. Pneumonic Plague: The Darker Side of Yersinia pestis.

    PubMed

    Pechous, Roger D; Sivaraman, Vijay; Stasulli, Nikolas M; Goldman, William E

    2016-03-01

    Inhalation of the bacterium Yersinia pestis results in primary pneumonic plague. Pneumonic plague is the most severe manifestation of plague, with mortality rates approaching 100% in the absence of treatment. Its rapid disease progression, lethality, and ability to be transmitted via aerosol have compounded fears of the intentional release of Y. pestis as a biological weapon. Importantly, recent epidemics of plague have highlighted a significant role for pneumonic plague during outbreaks of Y. pestis infections. In this review we describe the characteristics of pneumonic plague, focusing on its disease progression and pathogenesis. The rapid time-course, severity, and difficulty of treating pneumonic plague highlight how differences in the route of disease transmission can enhance the lethality of an already deadly pathogen.

  8. The role and significance of Luo Zhiyuan's Shu yi hui bian in the history of plague in Lingnan (south of the five ridges).

    PubMed

    Li, H; Lai, W

    1999-04-01

    Being the earliest monograph on plague in China, Luo Zhiyuan's Shu yi hui bian, not included in the National Catalogue of TCM Books, include the following contents: personal idea on the etiology of plague; Luo's friend Wu Xuanchang' unpublished Shu yu zhi fa on the treatment and manifestations of plague; Luo's specific recipe for plague based on medified Wang Qingren's Jie du huo xue decoction based on Wang Qingrens yi lin gai cuo; therapy for critical cases; many therapies applied on Lingnan, including experimental recipes, external therapy, preventive methods, and preventing recurrence methods; Luo's special administrating methods, including persisting day-and-night method, immediate persisting method, single-dose persisting method, and double-dose persisting method. He also gave several cured case records. His book, featuring unique idea with good effect, was repeatedly printed and extensively distributed, exerting influence, more or less, on the plague monographs of later ages, and occupying important position in the history of plague on Lingnan and the whole country as well. His idea of "that poisons and static blood" in pathogenesis and therapeutic principle of antitoxicity and activating blood is coincided with the results of present day clinical and laboratory studies. His administration of medicines is heuristic to the therapy of critical cases with Chinese medicaments and to the recognition of pathogenesis, etiology, and treatment of modern plague as well as other diseases of similar etiology and pathognesis and is worth of further study.

  9. A review of recent literature on plague

    PubMed Central

    Pollitzer, R.

    1960-01-01

    In his comprehensive monograph on plague, published by WHO in 1954, Dr Pollitzer pointed out that despite the marked drop in the incidence of this disease in recent years, he considered it impossible for various reasons to be complacent about the situation. Since this monograph appeared, plague has shown a truly spectacular decrease, but in case this is partly the outcome of a natural periodicity of the infection, the author still feels that the disease ”should be given continued attention by those interested in global public health”. To this end he summarizes here the latest information on the subject, his review covering not only works published since 1954, but also some earlier literature (particularly from the USSR) which was not available to him at the time of preparation of his monograph. PMID:13736873

  10. Yersinia pestis--etiologic agent of plague.

    PubMed Central

    Perry, R D; Fetherston, J D

    1997-01-01

    Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague. PMID:8993858

  11. Flea diversity as an element for persistence of plague bacteria in an East African plague focus.

    PubMed

    Eisen, Rebecca J; Borchert, Jeff N; Mpanga, Joseph T; Atiku, Linda A; MacMillan, Katherine; Boegler, Karen A; Montenieri, John A; Monaghan, Andrew; Gage, Kenneth L

    2012-01-01

    Plague is a flea-borne rodent-associated zoonotic disease that is caused by Yersinia pestis and characterized by long quiescent periods punctuated by rapidly spreading epidemics and epizootics. How plague bacteria persist during inter-epizootic periods is poorly understood, yet is important for predicting when and where epizootics are likely to occur and for designing interventions aimed at local elimination of the pathogen. Existing hypotheses of how Y. pestis is maintained within plague foci typically center on host abundance or diversity, but little attention has been paid to the importance of flea diversity in enzootic maintenance. Our study compares host and flea abundance and diversity along an elevation gradient that spans from low elevation sites outside of a plague focus in the West Nile region of Uganda (~725-1160 m) to higher elevation sites within the focus (~1380-1630 m). Based on a year of sampling, we showed that host abundance and diversity, as well as total flea abundance on hosts was similar between sites inside compared with outside the plague focus. By contrast, flea diversity was significantly higher inside the focus than outside. Our study highlights the importance of considering flea diversity in models of Y. pestis persistence.

  12. Mapping risk of plague in Qinghai-Tibetan Plateau, China

    PubMed Central

    2014-01-01

    Background Qinghai-Tibetan Plateau of China is known to be the plague endemic region where marmot (Marmota himalayana) is the primary host. Human plague cases are relatively low incidence but high mortality, which presents unique surveillance and public health challenges, because early detection through surveillance may not always be feasible and infrequent clinical cases may be misdiagnosed. Methods Based on plague surveillance data and environmental variables, Maxent was applied to model the presence probability of plague host. 75% occurrence points were randomly selected for training model, and the rest 25% points were used for model test and validation. Maxent model performance was measured as test gain and test AUC. The optimal probability cut-off value was chosen by maximizing training sensitivity and specificity simultaneously. Results We used field surveillance data in an ecological niche modeling (ENM) framework to depict spatial distribution of natural foci of plague in Qinghai-Tibetan Plateau. Most human-inhabited areas at risk of exposure to enzootic plague are distributed in the east and south of the Plateau. Elevation, temperature of land surface and normalized difference vegetation index play a large part in determining the distribution of the enzootic plague. Conclusions This study provided a more detailed view of spatial pattern of enzootic plague and human-inhabited areas at risk of plague. The maps could help public health authorities decide where to perform plague surveillance and take preventive measures in Qinghai-Tibetan Plateau. PMID:25011940

  13. The effects of plague on the distribution of property: Ivrea, Northern Italy 1630.

    PubMed

    Alfani, Guido

    2010-03-01

    The demographic effects of the epidemics of plague in Early Modern Europe and their economic consequences illuminate the evolution of property structures and of wealth distribution during and after a mortality crisis. An analysis of the high-quality data available for the Italian city of Ivrea at the time of the 1630 plague shows the exceptional resilience of property structures. Like the social structures of the period, property structures were able to recover quickly, informed as they were by the lessons learnt by trial and error by the patrician families of the late Middle Ages, whose patrimonies had been badly damaged by the Black Death. In a period of recurrent catastrophes that struck European populations during the Old Demographic Regime, apparently 'inegalitarian' institutions seem to have had long-term 'egalitarian' effects.

  14. Ecology and Geography of Plague Transmission Areas in Northeastern Brazil

    PubMed Central

    Giles, John; Peterson, A. Townsend; Almeida, Alzira

    2011-01-01

    Plague in Brazil is poorly known and now rarely seen, so studies of its ecology are difficult. We used ecological niche models of historical (1966-present) records of human plague cases across northeastern Brazil to assess hypotheses regarding environmental correlates of plague occurrences across the region. Results indicate that the apparently focal distribution of plague in northeastern Brazil is indeed discontinuous, and that the causes of the discontinuity are not necessarily only related to elevation—rather, a diversity of environmental dimensions correlate to presence of plague foci in the region. Perhaps most interesting is that suitable areas for plague show marked seasonal variation in photosynthetic mass, with peaks in April and May, suggesting links to particular land cover types. Next steps in this line of research will require more detailed and specific examination of reservoir ecology and natural history. PMID:21245925

  15. Ecology and geography of plague transmission areas in northeastern Brazil.

    PubMed

    Giles, John; Peterson, A Townsend; Almeida, Alzira

    2011-01-04

    Plague in Brazil is poorly known and now rarely seen, so studies of its ecology are difficult. We used ecological niche models of historical (1966-present) records of human plague cases across northeastern Brazil to assess hypotheses regarding environmental correlates of plague occurrences across the region. Results indicate that the apparently focal distribution of plague in northeastern Brazil is indeed discontinuous, and that the causes of the discontinuity are not necessarily only related to elevation-rather, a diversity of environmental dimensions correlate to presence of plague foci in the region. Perhaps most interesting is that suitable areas for plague show marked seasonal variation in photosynthetic mass, with peaks in April and May, suggesting links to particular land cover types. Next steps in this line of research will require more detailed and specific examination of reservoir ecology and natural history.

  16. Disease limits populations: plague and black-tailed prairie dogs.

    PubMed

    Cully, Jack F; Johnson, Tammi L; Collinge, Sharon K; Ray, Chris

    2010-01-01

    Plague is an exotic vector-borne disease caused by the bacterium Yersinia pestis that causes mortality rates approaching 100% in black-tailed prairie dogs (Cynomys ludovicianus). We mapped the perimeter of the active portions of black-tailed prairie dog colonies annually between 1999 and 2005 at four prairie dog colony complexes in areas with a history of plague, as well as at two complexes that were located outside the distribution of plague at the time of mapping and had therefore never been affected by the disease. We hypothesized that the presence of plague would significantly reduce overall black-tailed prairie dog colony area, reduce the sizes of colonies on these landscapes, and increase nearest-neighbor distances between colonies. Within the region historically affected by plague, individual colonies were smaller, nearest-neighbor distances were greater, and the proportion of potential habitat occupied by active prairie dog colonies was smaller than at plague-free sites. Populations that endured plague were composed of fewer large colonies (>100 ha) than populations that were historically plague free. We suggest that these differences among sites in colony size and isolation may slow recolonization after extirpation. At the same time, greater intercolony distances may also reduce intercolony transmission of pathogens. Reduced transmission among smaller and more distant colonies may ultimately enhance long-term prairie dog population persistence in areas where plague is present.

  17. Protecting against plague: towards a next-generation vaccine.

    PubMed

    Williamson, E D; Oyston, P C F

    2013-04-01

    The causative organism of plague is the bacterium Yersinia pestis. Advances in understanding the complex pathogenesis of plague infection have led to the identification of the F1- and V-antigens as key components of a next-generation vaccine for plague, which have the potential to be effective against all forms of the disease. Here we review the roles of F1- and V-antigens in the context of the range of virulence mechanisms deployed by Y. pestis, in order to develop a greater understanding of the protective immune responses required to protect against plague.

  18. Disease limits populations: plague and black-tailed prairie dogs

    USGS Publications Warehouse

    Cully, Jack F.; Johnson, T.; Collinge, S.K.; Ray, C.

    2010-01-01

    Plague is an exotic vector-borne disease caused by the bacterium Yersinia pestis that causes mortality rates approaching 100% in black-tailed prairie dogs (Cynomys ludovicianus). We mapped the perimeter of the active portions of black-tailed prairie dog colonies annually between 1999 and 2005 at four prairie dog colony complexes in areas with a history of plague, as well as at two complexes that were located outside the distribution of plague at the time of mapping and had therefore never been affected by the disease. We hypothesized that the presence of plague would significantly reduce overall black-tailed prairie dog colony area, reduce the sizes of colonies on these landscapes, and increase nearest-neighbor distances between colonies. Within the region historically affected by plague, individual colonies were smaller, nearest-neighbor distances were greater, and the proportion of potential habitat occupied by active prairie dog colonies was smaller than at plague-free sites. Populations that endured plague were composed of fewer large colonies (>100 ha) than populations that were historically plague free. We suggest that these differences among sites in colony size and isolation may slow recolonization after extirpation. At the same time, greater intercolony distances may also reduce intercolony transmission of pathogens. Reduced transmission among smaller and more distant colonies may ultimately enhance long-term prairie dog population persistence in areas where plague is present.

  19. A review of plague persistence with special emphasis on fleas.

    PubMed

    Wimsatt, Jeffrey; Biggins, Dean E

    2009-06-01

    Sylvatic plague is highly prevalent during infrequent epizootics that ravage the landscape of western North America. During these periods, plague dissemination is very efficient. Epizootics end when rodent and flea populations are decimated and vectored transmission declines. A second phase (enzootic plague) ensues when plague is difficult to detect from fleas, hosts or the environment, and presents less of a threat to public health. Recently, researchers have hypothesized that the bacterium (Yersinia pestis) responsible for plague maintains a continuous state of high virulence and thus only changes in transmission efficiency explain the shift between alternating enzootic and epizootic phases. However, if virulent transmission becomes too inefficient, strong selection might favor an alternate survival strategy. Another plausible non-exclusive hypothesis, best supported from Asian field studies, is that Y. pestis persists (locally) at foci by maintaining a more benign relationship within adapted rodents during the long expanses of time between outbreaks. From this vantage, it can revert to the epizootic (transmission efficient) form. Similarly, in the United States (US), enzootic plague persistence has been proposed to develop sequestered within New World rodent carriers. However, the absence of clear support for rodent carriers in North America has encouraged a broader search for alternative explanations. A telluric plague existence has been proposed. However, the availability of flea life stages and their hosts could critically supplement environmental plague sources, or fleas might directly represent a lowlevel plague reservoir. Here, we note a potentially pivotal role for fleas. These epizootic plague vectors should be closely studied with newer more exacting methods to determine their potential to serve as participants in or accomplices to a plague persistence reservoir.

  20. Nathaniel Hodges (1629-1688): Plague doctor.

    PubMed

    Duffin, Christopher J

    2016-02-01

    Nathaniel Hodges was the son of Thomas Hodges (1605-1672), an influential Anglican preacher and reformer with strong connections in the political life of Carolingian London. Educated at Westminster School, Trinity College Cambridge and Christ Church College, Oxford, Nathaniel established himself as a physician in Walbrook Ward in the City of London. Prominent as one of a handful of medical men who remained in London during the time of the Great Plague of 1665, he wrote the definitive work on the outbreak. His daily precautions against contracting the disease included fortifying himself with Théodore de Mayerne's antipestilential electuary and the liberal consumption of Sack. Hodges' approach to the treatment of plague victims was empathetic and based on the traditional Galenic method rather than Paracelsianism although he was pragmatic in the rejection of formulae and simples which he judged from experience to be ineffective. Besieged by financial problems in later life, his practice began to fail in the 1680s and he eventually died in a debtor's prison.

  1. Plague epizootic cycles in Central Asia

    PubMed Central

    Reijniers, Jonas; Begon, Mike; Ageyev, Vladimir S.; Leirs, Herwig

    2014-01-01

    Infection thresholds, widely used in disease epidemiology, may operate on host abundance and, if present, on vector abundance. For wildlife populations, host and vector abundances often vary greatly across years and consequently the threshold may be crossed regularly, both up- and downward. Moreover, vector and host abundances may be interdependent, which may affect the infection dynamics. Theory predicts that if the relevant abundance, or combination of abundances, is above the threshold, then the infection is able to spread; if not, it is bound to fade out. In practice, though, the observed level of infection may depend more on past than on current abundances. Here, we study the temporal dynamics of plague (Yersinia pestis infection), its vector (flea) and its host (great gerbil) in the PreBalkhash region in Kazakhstan. We describe how host and vector abundances interact over time and how this interaction drives the dynamics of the system around the infection threshold, consequently affecting the proportion of plague-infected sectors. We also explore the importance of the interplay between biological and detectability delays in generating the observed dynamics. PMID:24966205

  2. Plague epizootic cycles in Central Asia.

    PubMed

    Reijniers, Jonas; Begon, Mike; Ageyev, Vladimir S; Leirs, Herwig

    2014-06-01

    Infection thresholds, widely used in disease epidemiology, may operate on host abundance and, if present, on vector abundance. For wildlife populations, host and vector abundances often vary greatly across years and consequently the threshold may be crossed regularly, both up- and downward. Moreover, vector and host abundances may be interdependent, which may affect the infection dynamics. Theory predicts that if the relevant abundance, or combination of abundances, is above the threshold, then the infection is able to spread; if not, it is bound to fade out. In practice, though, the observed level of infection may depend more on past than on current abundances. Here, we study the temporal dynamics of plague (Yersinia pestis infection), its vector (flea) and its host (great gerbil) in the PreBalkhash region in Kazakhstan. We describe how host and vector abundances interact over time and how this interaction drives the dynamics of the system around the infection threshold, consequently affecting the proportion of plague-infected sectors. We also explore the importance of the interplay between biological and detectability delays in generating the observed dynamics.

  3. Perceptions and reactions with regard to pneumonic plague.

    PubMed

    Rubin, G James; Amlot, Richard; Rogers, M Brooke; Hall, Ian; Leach, Steve; Simpson, John; Wessely, Simon

    2010-01-01

    We assessed perceptions and likely reactions of 1,005 UK adults to a hypothetical terrorist attack involving pneumonic plague. Likely compliance with official recommendations ranged from good (98% would take antimicrobial drugs) to poor (76% would visit a treatment center). Perceptions about plague were associated with these intentions.

  4. Plague: Infections of Companion Animals and Opportunities for Intervention

    PubMed Central

    Oyston, Petra C.F.; Williamson, Diane

    2011-01-01

    Simple Summary Plague is a notorious disease of humans, typically transmitted from rodents to man by the bite of infected fleas. However, plague can also be brought into the home by domestic animals. Cats are acutely susceptible to plague and can pose a significant hazard to close contacts. Dogs are relatively resistant to plague, but can import infected fleas into the home. This review discusses options available for vaccinating cats and dogs, to protect the animals, their owners and veterinarians from infection. Abstract Plague is a zoonotic disease, normally circulating in rodent populations, transmitted to humans most commonly through the bite of an infected flea vector. Secondary infection of the lungs results in generation of infectious aerosols, which pose a significant hazard to close contacts. In enzootic areas, plague infections have been reported in owners and veterinarians who come into contact with infected pets. Dogs are relatively resistant, but can import infected fleas into the home. Cats are acutely susceptible, and can present a direct hazard to health. Reducing roaming and hunting behaviours, combined with flea control measures go some way to reducing the risk to humans. Various vaccine formulations have been developed which may be suitable to protect companion animals from contracting plague, and thus preventing onward transmission to man. Since transmission has resulted in a number of fatal cases of plague, the vaccination of domestic animals such as cats would seem a low cost strategy for reducing the risk of infection by this serious disease in enzootic regions. PMID:26486314

  5. Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States

    PubMed Central

    Haseeb, MA

    2015-01-01

    Plague has been established in the western United States (US) since 1900 following the West Coast introduction of commensal rodents infected with Yersinia pestis via early industrial shipping. Over the last century, plague ecology has transitioned through cycles of widespread human transmission, urban domestic transmission among commensal rodents, and ultimately settled into the predominantly sylvan foci that remain today where it is maintained alternatively by enzootic and epizootic transmission. While zoonotic transmission to humans is much less common in modern times, significant plague risk remains in parts of the western US. Moreover, risk to some threatened species that are part of the epizootic cycle can be quite substantive. This investigation attempted to predict the risk of plague across the western US by modeling the ecologic niche of plague in sylvan and domestic animals identified between 2000 and 2015. A Maxent machine learning algorithm was used to predict this niche based on climate, altitude, land cover, and the presence of an important enzootic species, Peromyscus maniculatus. This model demonstrated good predictive ability (AUC = 86%) and identified areas of high risk in central Colorado, north-central New Mexico, and southwestern and northeastern California. The presence of P. maniculatus, altitude, precipitation during the driest and wettest quarters, and distance to artificial surfaces, all contributed substantively to maximizing the gain function. These findings add to the known landscape epidemiology and infection ecology of plague in the western US and may suggest locations of particular risk to be targeted for wild and domestic animal intervention. PMID:26713244

  6. Experimental plague infection in South African wild rodents.

    PubMed Central

    Shepherd, A. J.; Leman, P. A.; Hummitzsch, D. E.

    1986-01-01

    Susceptibility studies were undertaken to determine the response of some South African wild rodent species to experimental plague (Yersinia pestis) infection. A degree of plague resistance was found in three gerbil species captured in the plague enzootic region of the northern Cape Province, these being the Namaqua gerbil, Desmodillus auricularis, (LD50 1 X 10(6) organisms), the bushveld gerbil, Tatera leucogaster, (LD50 9.1 X 10(5)) and the highveld gerbil, T. brantsii (LD50 4 X 10(2)). Animals from a population of the four-striped mouse, Rhabdomys pumilio, captured in the plague area of Port Elizabeth, proved moderately resistant to experimental plague infection (LD50 1.3 X 10(4)) while those from another population of the same species captured in a plague-free area of the Orange Free State were extremely susceptible (LD50, 5 organisms). The response of both populations however was a heterogeneous one. Marked differences in susceptibility were also found between two populations of multimammate mice, Mastomys natalensis (2n = 32) although both originated from areas outwith the known distribution of plague in southern Africa. The 50% infectious dose was relatively high in T. leucogaster (3.2 X 10(2)) and D. auricularis (1.7 X 10(3)), but was low (2-16 organisms) in the other rodent species tested. The plague antibody response, determined by enzyme-linked immunosorbent assay (ELISA), was extremely short-lived in T. leucogaster, only 10% of inoculated animals remaining seropositive at low titres after 11 weeks. Antibodies persisted for only slightly longer in the sera of T. brantsii which were reinoculated with 2 X 10(3) plague organisms 6 weeks after initial challenge. The demonstration of the existence of both susceptible and resistant populations of R. pumilio and M. natalensis indicates that these species must be considered as potential plague reservoir hosts in parts of South Africa. The results suggest that resistance to plague infection in previously epizootic

  7. Hereditary hemochromatosis restores the virulence of plague vaccine strains.

    PubMed

    Quenee, Lauriane E; Hermanas, Timothy M; Ciletti, Nancy; Louvel, Helene; Miller, Nathan C; Elli, Derek; Blaylock, Bill; Mitchell, Anthony; Schroeder, Jay; Krausz, Thomas; Kanabrocki, Joseph; Schneewind, Olaf

    2012-10-01

    Nonpigmented Yersinia pestis (pgm) strains are defective in scavenging host iron and have been used in live-attenuated vaccines to combat plague epidemics. Recently, a Y. pestis pgm strain was isolated from a researcher with hereditary hemochromatosis who died from laboratory-acquired plague. We used hemojuvelin-knockout (Hjv(-/-)) mice to examine whether iron-storage disease restores the virulence defects of nonpigmented Y. pestis. Unlike wild-type mice, Hjv(-/-) mice developed lethal plague when challenged with Y. pestis pgm strains. Immunization of Hjv(-/-) mice with a subunit vaccine that blocks Y. pestis type III secretion generated protection against plague. Thus, individuals with hereditary hemochromatosis may be protected with subunit vaccines but should not be exposed to live-attenuated plague vaccines.

  8. Hereditary Hemochromatosis Restores the Virulence of Plague Vaccine Strains

    PubMed Central

    Quenee, Lauriane E.; Hermanas, Timothy M.; Ciletti, Nancy; Louvel, Helene; Miller, Nathan C.; Elli, Derek; Blaylock, Bill; Mitchell, Anthony; Schroeder, Jay; Krausz, Thomas; Kanabrocki, Joseph; Schneewind, Olaf

    2012-01-01

    Nonpigmented Yersinia pestis (pgm) strains are defective in scavenging host iron and have been used in live-attenuated vaccines to combat plague epidemics. Recently, a Y. pestis pgm strain was isolated from a researcher with hereditary hemochromatosis who died from laboratory-acquired plague. We used hemojuvelin-knockout (Hjv−/−) mice to examine whether iron-storage disease restores the virulence defects of nonpigmented Y. pestis. Unlike wild-type mice, Hjv−/− mice developed lethal plague when challenged with Y. pestis pgm strains. Immunization of Hjv−/− mice with a subunit vaccine that blocks Y. pestis type III secretion generated protection against plague. Thus, individuals with hereditary hemochromatosis may be protected with subunit vaccines but should not be exposed to live-attenuated plague vaccines. PMID:22896664

  9. Hong Kong Junk: Plague and the Economy of Chinese Things.

    PubMed

    Peckham, Robert

    2016-01-01

    Histories of the Third Plague Pandemic, which diffused globally from China in the 1890s, have tended to focus on colonial efforts to regulate the movement of infected populations, on the state's draconian public health measures, and on the development of novel bacteriological theories of disease causation. In contrast, this article focuses on the plague epidemic in Hong Kong and examines colonial preoccupations with Chinese "things" as sources of likely contagion. In the 1890s, laboratory science invested plague with a new identity as an object to be collected, cultivated, and depicted in journals. At the same time, in the increasingly vociferous anti-opium discourse, opium was conceived as a contagious Chinese commodity: a plague. The article argues that rethinking responses to the plague through the history of material culture can further our understanding of the political consequences of disease's entanglement with economic and racial categories, while demonstrating the extent to which colonial agents "thought through things."

  10. Where Does Human Plague Still Persist in Latin America?

    PubMed Central

    Schneider, Maria Cristina; Najera, Patricia; Aldighieri, Sylvain; Galan, Deise I.; Bertherat, Eric; Ruiz, Alfonso; Dumit, Elsy; Gabastou, Jean Marc; Espinal, Marcos A.

    2014-01-01

    Background Plague is an epidemic-prone disease with a potential impact on public health, international trade, and tourism. It may emerge and re-emerge after decades of epidemiological silence. Today, in Latin America, human cases and foci are present in Bolivia, Brazil, Ecuador, and Peru. Aims The objective of this study is to identify where cases of human plague still persist in Latin America and map areas that may be at risk for emergence or re-emergence. This analysis will provide evidence-based information for countries to prioritize areas for intervention. Methods Evidence of the presence of plague was demonstrated using existing official information from WHO, PAHO, and Ministries of Health. A geo-referenced database was created to map the historical presence of plague by country between the first registered case in 1899 and 2012. Areas where plague still persists were mapped at the second level of the political/administrative divisions (counties). Selected demographic, socioeconomic, and environmental variables were described. Results Plague was found to be present for one or more years in 14 out of 25 countries in Latin America (1899–2012). Foci persisted in six countries, two of which have no report of current cases. There is evidence that human cases of plague still persist in 18 counties. Demographic and poverty patterns were observed in 11/18 counties. Four types of biomes are most commonly found. 12/18 have an average altitude higher than 1,300 meters above sea level. Discussion Even though human plague cases are very localized, the risk is present, and unexpected outbreaks could occur. Countries need to make the final push to eliminate plague as a public health problem for the Americas. A further disaggregated risk evaluation is recommended, including identification of foci and possible interactions among areas where plague could emerge or re-emerge. A closer geographical approach and environmental characterization are suggested. PMID:24516682

  11. Plague in Iran: its history and current status

    PubMed Central

    2016-01-01

    OBJECTIVES: Plague remains a public health concern worldwide, particularly in old foci. Multiple epidemics of this disease have been recorded throughout the history of Iran. Despite the long-standing history of human plague in Iran, it remains difficult to obtain an accurate overview of the history and current status of plague in Iran. METHODS: In this review, available data and reports on cases and outbreaks of human plague in the past and present in Iran and in neighboring countries were collected, and information was compiled regarding when, where, and how many cases occurred. RESULTS: This paper considers the history of plague in Persia (the predecessor of today’s Iran) and has a brief review of plague in countries in the World Health Organization Eastern Mediterranean Region, including a range of countries in the Middle East and North Africa. CONCLUSIONS: Since Iran has experienced outbreaks of plague for several centuries, neighboring countries have reported the disease in recent years, the disease can be silent for decades, and the circulation of Yersinia pestis has been reported among rodents and dogs in western Iran, more attention should be paid to disease monitoring in areas with previously reported human cases and in high-risk regions with previous epizootic and enzootic activity. PMID:27457063

  12. Diagnosis of duck plague in waterfowl by polymerase chain reaction

    USGS Publications Warehouse

    Hansen, W.R.; Nashold, S.W.; Docherty, D.E.; Brown, S.E.; Knudson, D.L.

    2000-01-01

    A recently developed polymerase chain reaction (PCR) assay was used for diagnosis of duck plague in waterfowl tissues from past and current cases of waterfowl mortality and to identify duck plague virus in combined cloacal/oral-pharyngeal swab samples from healthy mallards (Anas platyrhynchos) after a disease outbreak. The PCR was able to detect viral DNA from all the individual or pooled tissues assayed from 10 waterfowl, including liver and spleen samples from three Muscovy ducks (Cairina moschata domesticus) that did not yield virus isolates. The strong staining intensity of the PCR products from the waterfowl tissues indicated that large amounts of virus were present, even when virus was not isolated. Duck plague DNA was also detected in a cloacal swab sample from a wood duck (Aix sponsa) carcass submitted for diagnosis. The PCR assay identified duck plague DNA in 13 swab samples that produced virus isolates from carrier mallards sampled in 1981 after a duck plague die-off. The duck plague PCR clearly demonstrated the ability to quickly diagnose duck plague in suspect mortality cases and to detect virus shed by carrier waterfowl.

  13. Interspecific comparisons of sylvatic plague in prairie dogs

    USGS Publications Warehouse

    Cully, J.F.; Williams, E.S.

    2001-01-01

    Of the 3 major factors (habitat loss, poisoning, and disease) that limit abundance of prairie dogs today, sylvatic plague caused by Yersinia pestis is the 1 factor that is beyond human control. Plague epizootics frequently kill >99% of prairie dogs in infected colonies. Although epizootics of sylvatic plague occur throughout most of the range of prairie dogs in the United States and are well described, long-term maintenance of plague in enzootic rodent species is not well documented or understood. We review dynamics of plague in white-tailed (Cynomys leucurus), Gunnison's (C. gunnisoni), and black-tailed (C. ludovicianus) prairie dogs, and their rodent and flea associates. We use epidemiologic concepts to support an enzootic hypothesis in which the disease is maintained in a dynamic state, which requires transmission of Y. pestis to be slower than recruitment of new susceptible mammal hosts. Major effects of plague are to reduce colony size of black-tailed prairie dogs and increase intercolony distances within colony complexes. In the presence of plague, black-tailed prairie dogs will probably survive in complexes of small colonies that are usually >3 km from their nearest neighbor colonies.

  14. Understanding the Persistence of Plague Foci in Madagascar

    PubMed Central

    Andrianaivoarimanana, Voahangy; Kreppel, Katharina; Elissa, Nohal; Duplantier, Jean-Marc; Carniel, Elisabeth; Rajerison, Minoarisoa; Jambou, Ronan

    2013-01-01

    Plague, a zoonosis caused by Yersinia pestis, is still found in Africa, Asia, and the Americas. Madagascar reports almost one third of the cases worldwide. Y. pestis can be encountered in three very different types of foci: urban, rural, and sylvatic. Flea vector and wild rodent host population dynamics are tightly correlated with modulation of climatic conditions, an association that could be crucial for both the maintenance of foci and human plague epidemics. The black rat Rattus rattus, the main host of Y. pestis in Madagascar, is found to exhibit high resistance to plague in endemic areas, opposing the concept of high mortality rates among rats exposed to the infection. Also, endemic fleas could play an essential role in maintenance of the foci. This review discusses recent advances in the understanding of the role of these factors as well as human behavior in the persistence of plague in Madagascar. PMID:24244760

  15. Understanding the persistence of plague foci in Madagascar.

    PubMed

    Andrianaivoarimanana, Voahangy; Kreppel, Katharina; Elissa, Nohal; Duplantier, Jean-Marc; Carniel, Elisabeth; Rajerison, Minoarisoa; Jambou, Ronan

    2013-11-01

    Plague, a zoonosis caused by Yersinia pestis, is still found in Africa, Asia, and the Americas. Madagascar reports almost one third of the cases worldwide. Y. pestis can be encountered in three very different types of foci: urban, rural, and sylvatic. Flea vector and wild rodent host population dynamics are tightly correlated with modulation of climatic conditions, an association that could be crucial for both the maintenance of foci and human plague epidemics. The black rat Rattus rattus, the main host of Y. pestis in Madagascar, is found to exhibit high resistance to plague in endemic areas, opposing the concept of high mortality rates among rats exposed to the infection. Also, endemic fleas could play an essential role in maintenance of the foci. This review discusses recent advances in the understanding of the role of these factors as well as human behavior in the persistence of plague in Madagascar.

  16. Plague in Arab Maghreb, 1940–2015: A Review

    PubMed Central

    Malek, Maliya Alia; Bitam, Idir; Drancourt, Michel

    2016-01-01

    We reviewed the epidemiology of 49 plague outbreaks that resulted in about 7,612 cases in 30 localities in the Arabic Maghreb (Mauritania, Morocco, Algeria, Tunisia, Libya, and Egypt) over 75 years. Between 1940 and 1950, most cases recorded in Morocco (75%) and Egypt (20%), resulted from plague imported to Mediterranean harbors and transmitted by rat ectoparasites. By contrast, the re-emergence of plague in the southern part of Western Sahara in 1953 and in northeast Libya in 1976 was traced to direct contact between nomadic populations and infected goats and camels in natural foci, including the consumption of contaminated meat, illustrating this neglected oral route of contamination. Further familial outbreaks were traced to human ectoparasite transmission. Efforts to identify the factors contributing to natural foci may guide where to focus the surveillance of sentinel animals in order to eradicate human plague, if not Yersinia pestis from the Arab Maghreb. PMID:27376053

  17. Plague in camels and its prevention in the USSR*

    PubMed Central

    Fedorov, V. N.

    1960-01-01

    In 1954-56 a series of experiments was carried out in Central Asia, under the guidance of the author, in which camels were infected with plague by infesting them with Ixodes and Argas ticks which had previously fed on plague-infected laboratory animals. Subcutaneous, intradermal and intravenous injection was also used. The experiments showed that the camels varied markedly in their susceptibility to plague, which in any case was relatively low. Special investigations on plague prevention in camels are also reported. Vaccination with dried live vaccine injected in a single dose of 30 000 million organisms created a sufficiently high degree of immunity in adult animals. Spraying of the camels' coats with insecticide is also recommended. PMID:13821869

  18. Sylvatic plague vaccine and management of prairie dogs

    USGS Publications Warehouse

    Rocke, Tonie E.

    2012-01-01

    Scientists at the USGS National Wildlife Health Center (NWHC), in collaboration with colleagues at the University of Wisconsin (UW), have developed a sylvatic plague vaccine that shows great promise in protecting prairie dogs against plague (Mencher and others, 2004; Rocke and others, 2010). Four species of prairie dogs reside in the United States and Canada, and all are highly susceptible to plague and regularly experience outbreaks with devastating losses. Along with habitat loss and poisoning, plague has contributed to a significant historical decline in prairie dog populations. By some estimates, prairie dogs now occupy only 1 to 2 percent of their former range (Proctor and others, 2006), with prairie dog colonies being now much smaller and fragmented than they were historically, making individual colonies more vulnerable to elimination by plague (Antolin and others, 2002). At least one species, the Utah prairie dog (Cynomys parvidens) is listed by the U.S. Fish and Wildlife Service (FWS) as "threatened." Controlling plague is a vital concern for ongoing management and conservation efforts for prairie dogs. Current efforts to halt the spread of plague in prairie dog colonies typically rely on dusting individual prairie dog burrows with pesticides to kill plague-infected fleas. Although flea-control insecticides, such as deltamethrin, are useful in stopping plague outbreaks in these prairie dog colonies, dusting of burrows is labor intensive and time consuming and may affect other insects and arthropods. As an alternative approach, NWHC and UW scientists developed a sylvatic plague vaccine (SPV) for prairie dogs that can be delivered via oral bait. Laboratory studies have shown that consumption of this vaccine-laden bait by different prairie dog species results in significant protection against plague infection that can last for at least 9 months (Rocke and others, 2010; Rocke, unpublished). Work has now shifted to optimizing baits and distribution methods for

  19. Plagued by kindness: contagious sympathy in Shakespearean drama.

    PubMed

    Langley, Eric

    2011-12-01

    This article considers Shakespeare's metaphors of transmission, contagion and infection in the light of period plague tracts, medical treatises and plague time literature. The author demonstrates how period conceptions of disease are predicated upon a notion of sympathetic transference and, consequently, how kindness, likeness and communication between characters in Shakespearean drama are complicated and fraught with period specific anxiety. This article situates Shakespearean literary texts within a precise historical and medical moment, considering how scientific conceptions contaminate dramatic text.

  20. Bibliographic Index to the Plague (1965-1970)

    DTIC Science & Technology

    1975-11-18

    34). 346. Orlova, G. MI. and B. N. 𔃾ishan’kin, Dynamics of the frowth of the Plague Microbe and the Accumulation of Fraction I (C-psalar Antigen) in a...T. Voronina and L. 1. Kalmykova, The Effect of Iron on the Growth and Biological Properties of Vaccine Strain FV in Conditions of Aeration. Prot...I., The Ability of Plague Microbes to Accumulate Mouse Toxin Under Various Cultural Conditions. Prob. Dread Dis., Issue 2 (12), pp. 96- 99, 1970

  1. [Sympatric Speciation of the Plague Microbe Yersinia pestis: Monohostal Specialization in the Host-Parasite Marmot-Flea (Marmota sibirica-Oropsylla silantiewi) System].

    PubMed

    Suntsov, V V

    2016-01-01

    An ecological scenario of the origin of the plague microbe that is interpreted in the light of modern Darwinism (synthetic theory of evolution) is presented. It is shown that the plague microbe emerged from a clone of the psychrophilic saprozoonotic pseudotuberculosis microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan time, 22000-15000 years ago, in the monohostal Mongolian marmot (Marmota sibirica)-flea (Oropsylla silantiewi) host-parasite system. It was noted that the evolutionary process described corresponds to the sympatric form of speciation by transition ofthe clone of migrant founders to a new, already-existing ecological niche. It was established that monohostal specialization of the plague microbe was made possible due to heterothermia (5-37 degrees C) of marmots in the hibernation period. The factors of the speciation process--isolation, the struggle for existence, and natural selection--were analyzed.

  2. Resistance to plague among black-tailed prairie dog populations

    USGS Publications Warehouse

    Rocke, T.E.; Williamson, J.; Cobble, K.R.; Busch, J.D.; Antolin, M.F.; Wagner, D.M.

    2012-01-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (p<0.001), with a mortality rate of nearly 100% over all doses. Colorado and Texas prairie dogs were quite similar in their response, with overall survival rates of 50% and 60%, respectively. Prairie dogs from these states were heterogenous in their response, with some animals dying at the lowest dose (37% and 20%, respectively) and some surviving even at the highest dose (29% and 40%, respectively). Microsatellite analysis revealed that all three groups were distinct genetically, but further studies are needed to establish a genetic basis for the observed differences in plague resistance. ?? 2012, Mary Ann Liebert, Inc.

  3. Resistance to plague among black-tailed prairie dog populations.

    PubMed

    Rocke, Tonie E; Williamson, Judy; Cobble, Kacy R; Busch, Joseph D; Antolin, Michael F; Wagner, David M

    2012-02-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (p<0.001), with a mortality rate of nearly 100% over all doses. Colorado and Texas prairie dogs were quite similar in their response, with overall survival rates of 50% and 60%, respectively. Prairie dogs from these states were heterogeneous in their response, with some animals dying at the lowest dose (37% and 20%, respectively) and some surviving even at the highest dose (29% and 40%, respectively). Microsatellite analysis revealed that all three groups were distinct genetically, but further studies are needed to establish a genetic basis for the observed differences in plague resistance.

  4. Resistance to plague among black-tailed prairie dog populations

    USGS Publications Warehouse

    Rocke, Tonie E.; Williamson, Judy; Cobble, Kacy R.; Busch, Joseph D.; Antolin, Michael F.; Wagner, David M.

    2012-01-01

    In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.5, 250, or 2500 mouse LD50s). South Dakota prairie dogs were far more susceptible to plague than Colorado and Texas prairie dogs (p<0.001), with a mortality rate of nearly 100% over all doses. Colorado and Texas prairie dogs were quite similar in their response, with overall survival rates of 50% and 60%, respectively. Prairie dogs from these states were heterogenous in their response, with some animals dying at the lowest dose (37% and 20%, respectively) and some surviving even at the highest dose (29% and 40%, respectively). Microsatellite analysis revealed that all three groups were distinct genetically, but further studies are needed to establish a genetic basis for the observed differences in plague resistance.

  5. Potential corridors and barriers for plague spread in central Asia

    PubMed Central

    2013-01-01

    Background Plague (Yersinia pestis infection) is a vector-borne disease which caused millions of human deaths in the Middle Ages. The hosts of plague are mostly rodents, and the disease is spread by the fleas that feed on them. Currently, the disease still circulates amongst sylvatic rodent populations all over the world, including great gerbil (Rhombomys opimus) populations in Central Asia. Great gerbils are social desert rodents that live in family groups in burrows, which are visible on satellite images. In great gerbil populations an abundance threshold exists, above which plague can spread causing epizootics. The spatial distribution of the host species is thought to influence the plague dynamics, such as the direction of plague spread, however no detailed analysis exists on the possible functional or structural corridors and barriers that are present in this population and landscape. This study aims to fill that gap. Methods Three 20 by 20 km areas with known great gerbil burrow distributions were used to analyse the spatial distribution of the burrows. Object-based image analysis was used to map the landscape at several scales, and was linked to the burrow maps. A novel object-based method was developed – the mean neighbour absolute burrow density difference (MNABDD) – to identify the optimal scale and evaluate the efficacy of using landscape objects as opposed to square cells. Multiple regression using raster maps was used to identify the landscape-ecological variables that explain burrow density best. Functional corridors and barriers were mapped using burrow density thresholds. Cumulative resistance of the burrow distribution to potential disease spread was evaluated using cost distance analysis. A 46-year plague surveillance dataset was used to evaluate whether plague spread was radially symmetric. Results The burrow distribution was found to be non-random and negatively correlated with Greenness, especially in the floodplain areas. Corridors and

  6. [ON SOME DEBATABLE PROBLEMS OF THE NATURAL NIDALITY OF PLAGUE].

    PubMed

    Verzhutsky, D B; Balakhonov, S V

    2016-01-01

    The communication substantiates the opinion that the theory of natural nidality of plague; which is based on the fundamental recognition that fleas play a leading role in the transmission and accumulation of the plague pathogen, cannot be disproved or substantially changed on the alternative weakly reasoned assumptions and hypotheses. All its "bottlenecks" are quite understandable when considering the long-term volumetric materials that have been gathered directly in nature and generalized in multiple publications. Plague is an obligate transmissive infection; its, agent is a highly specialized parasite that is completely associated in its vital activity with the only group of the blood-sucking insects--fleas and that is transmitted through periodic colonization of warm-blooded animals for a short time. All other types of plague microbe persistence in nature are either occasional or minor and do not play any significant role in pathogen persistence in the natural foci of this disease. There are no strong grounds for seriously considering the attempts to revise the main points of the theory of natural nidality of plague, which are widely held in current academic publications.

  7. Zoonoses As Ecological Entities: A Case Review of Plague

    PubMed Central

    de Almeida, Alzira Maria Paiva; Cordeiro-Estrela, Pedro

    2016-01-01

    As a zoonosis, Plague is also an ecological entity, a complex system of ecological interactions between the pathogen, the hosts, and the spatiotemporal variations of its ecosystems. Five reservoir system models have been proposed: (i) assemblages of small mammals with different levels of susceptibility and roles in the maintenance and amplification of the cycle; (ii) species-specific chronic infection models; (ii) flea vectors as the true reservoirs; (iii) Telluric Plague, and (iv) a metapopulation arrangement for species with a discrete spatial organization, following a source-sink dynamic of extinction and recolonization with naïve potential hosts. The diversity of the community that harbors the reservoir system affects the transmission cycle by predation, competition, and dilution effect. Plague has notable environmental constraints, depending on altitude (500+ meters), warm and dry climates, and conditions for high productivity events for expansion of the transmission cycle. Human impacts are altering Plague dynamics by altering landscape and the faunal composition of the foci and adjacent areas, usually increasing the presence and number of human cases and outbreaks. Climatic change is also affecting the range of its occurrence. In the current transitional state of zoonosis as a whole, Plague is at risk of becoming a public health problem in poor countries where ecosystem erosion, anthropic invasion of new areas, and climate change increase the contact of the population with reservoir systems, giving new urgency for ecologic research that further details its maintenance in the wild, the spillover events, and how it links to human cases. PMID:27711205

  8. The Venetian lazarettos of Candia and the Great Plague (1592 - 1595).

    PubMed

    Tsiamis, Costas; Thalassinou, Eleni; Poulakou-Rebelakou, Effie; Tsakris, Athanasios; Hatzakis, Angelos

    2014-03-01

    The present study highlights the history of lazarettos in Candia (modern Heraklion, Crete, Greece), which was the most important Venetian possession in the Mediterranean at the time, while at the same time it recounts the terrible plague which went down in history as the Great Plague of Candia (1592-1595). The study will also attempt to give a satisfactory answer to the epidemiological questions raised by the worst epidemic that Crete had experienced since the era of the Black Death in the 14th century. The city was about to lose more than a half of its population (51.3%), although it was saved from complete annihilation by the composure, courage and inventiveness of its Venetian commander, Filippo Pasqualigo, whose report to the Venetian Senate makes an invaluable source of information regarding the events of this dramatic period. Candia would also witness the emergence of typical human reactions in cases of epidemics and mass deaths, such as running away along with the feeling of self-preservation, dissolute life and ephemeral pleasures, as well as lawlessness and criminality. The lazaretto proved inefficient in the face of a disaster of such scale, whereas the epidemic functioned as a "crash-test" for the Venetian health system. Eventually, in an era when the microbial nature of the disease was unknown, it seems that it was practically impossible to handle emergency situations of large-scale epidemics successfully, despite strict laws and well-organized precautionary health systems.

  9. CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar.

    PubMed

    Tollenaere, C; Rahalison, L; Ranjalahy, M; Rahelinirina, S; Duplantier, J-M; Brouat, C

    2008-12-01

    Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a functionally important region of the gene. We then compared (i) CCR5 genotypes of dying and surviving plague-challenged rats and (ii) CCR5 allelic frequencies in plague focus and plague-free populations. Our results suggested a higher prevalence of the substitution in resistant animals compared to susceptible individuals, and a tendency for higher frequencies in plague focus areas compared to plague-free areas. Therefore, the CCR5 polymorphism may be involved in Malagasy black rat plague resistance. CCR5 and other undetermined plague resistance markers may provide useful biological information about host evolution and disease dynamics.

  10. A Taxonomic Update of Small Mammal Plague Reservoirs in South America.

    PubMed

    Bonvicino, Cibele R; Oliveira, João A; Cordeiro-Estrela, Pedro; D'andrea, Paulo S; Almeida, Alzira M P

    2015-10-01

    Plague is a disease of epidemic potential that may emerge with discontinuous outbreaks. In South America, 50 wild rodent species have been identified as plague reservoirs, in addition to one lagomorph and two marsupials. To review the nomenclature of plague reservoirs, we examined specimens collected in plague foci, carried out new surveys in Brazilian plague regions, and re-evaluated the nomenclature of South American reservoirs on the basis of the current literature. Five of the 15 species involved with plague in Argentina, three of 10 species involved with plague in Bolivia, three of the seven species involved with plague in Peru, five of the nine species involved with plague in Ecuador, and six of the nine species involved with plague in Brazil have undergone taxonomic changes. In the last 20 years, plague cases were recorded in Bolivia, Brazil, Ecuador, and Peru. These four countries have a high rodent species richness in plague foci, a fact that may be decisive for the maintenance of plague in the wild.

  11. Wet climate and transportation routes accelerate spread of human plague.

    PubMed

    Xu, Lei; Stige, Leif Chr; Kausrud, Kyrre Linné; Ben Ari, Tamara; Wang, Shuchun; Fang, Xiye; Schmid, Boris V; Liu, Qiyong; Stenseth, Nils Chr; Zhang, Zhibin

    2014-04-07

    Currently, large-scale transmissions of infectious diseases are becoming more closely associated with accelerated globalization and climate change, but quantitative analyses are still rare. By using an extensive dataset consisting of date and location of cases for the third plague pandemic from 1772 to 1964 in China and a novel method (nearest neighbour approach) which deals with both short- and long-distance transmissions, we found the presence of major roads, rivers and coastline accelerated the spread of plague and shaped the transmission patterns. We found that plague spread velocity was positively associated with wet conditions (measured by an index of drought and flood events) in China, probably due to flood-driven transmission by people or rodents. Our study provides new insights on transmission patterns and possible mechanisms behind variability in transmission speed, with implications for prevention and control measures. The methodology may also be applicable to studies of disease dynamics or species movement in other systems.

  12. Enzootic Plague Reduces Black-Footed Ferret (Mustela nigripes) Survival in Montana

    DTIC Science & Technology

    2010-01-01

    vaccinations against plague and canine distemper virus (Biggins et al. 2006b). We administered the F1-V fusion protein vaccine (a priming dose at first...again. Although most human risk of plague is associated with epizootic plague (Perry and Fetherston 1997), knowledge presented herein that Y. pestis...for human health, as well as wildlife conservation. Indeed, a re- cent fatal human case of pneumonic plague acquired from a mountain lion (Felis

  13. Controlling the geographical spread of infectious disease: plague in Italy, 1347-1851.

    PubMed

    Cliff, Andrew D; Smallman-Raynor, Matthew R; Stevens, Peta M

    2009-01-01

    After the establishment of the first quarantine station in the Republic of Ragusa (modern-day Dubrovnik) in 1377, the states and principalities of Italy developed a sophisticated system of defensive quarantine in an attempt to protect themselves from the ravages of plague. Using largely unknown and unseen historical maps, this paper reconstructs the extent and operation of the system used. It is shown that a cordon sanitaire existed around the coast of Italy for several centuries, consisting of three elements: (i) an outer defensive ring of armed sailing boats in the Mediterranean and the Adriatic, (ii) a middle coastal ring of forts and observation towers, and (iii) an inner defensive ring of land-based cavalry. The principles established, although not especially successful at the time against a disease of (then) unknown aetiology, are still used today in attempts to control the spread of infections of animal and human populations.

  14. Susceptibility to Yersinia pestis experimental infection in wild Rattus rattus, reservoir of plague in Madagascar.

    PubMed

    Tollenaere, C; Rahalison, L; Ranjalahy, M; Duplantier, J-M; Rahelinirina, S; Telfer, S; Brouat, C

    2010-06-01

    In Madagascar, the black rat, Rattus rattus, is the main reservoir of plague (Yersinia pestis infection), a disease still responsible for hundreds of cases each year in this country. This study used experimental plague challenge to assess susceptibility in wild-caught rats to better understand how R. rattus can act as a plague reservoir. An important difference in plague resistance between rat populations from the plague focus (central highlands) and those from the plague-free zone (low altitude area) was confirmed to be a widespread phenomenon. In rats from the plague focus, we observed that sex influenced plague susceptibility, with males slightly more resistant than females. Other individual factors investigated (weight and habitat of sampling) did not affect plague resistance. When infected at high bacterial dose (more than 10⁵ bacteria injected), rats from the plague focus died mainly within 3-5 days and produced specific antibodies, whereas after low-dose infection (< 5,000 bacteria), delayed mortality was observed and surviving seronegative rats were not uncommon. These results concerning plague resistance level and the course of infection in the black rat would contribute to a better understanding of plague circulation in Madagascar.

  15. [Advance to the research of the climate factor effect on the distribution of plague].

    PubMed

    Zhang, A P; Wei, R J; Xiong, H M; Wang, Z Y

    2016-05-01

    Plague is an anthropozoonotic disease caused by the Yersinia pestis ,which developed by many factors including local climate factors. In recent years, more and more studies on the effects of climate on plague were conducted. According to the researches, climate factors (mainly the rainfall and temperature) affected the development and distribution of plague by influencing the abundance of plague host animals and fleas index. The climate also affected the epidemic dynamics and the scope of plague. There were significant differences existing in the influence of climate on the palgue developed in the north and south China. In the two different plague epidemic systems, the solitary Daurian ground squirrel-flea-plague and the social Mongolian gerbil-flea-plague, the obvious population differences existed among the responses of the host animal to the climate changes. Although the internal relationship between the rainfall, the flea index, the density of rodents and the plague supported the nutritional cascade hypothesis, it can not prove that there is a clear causality between the occurrence of plague and rainfall. So the influence of climate factors on plague distribution can only be used for early forecasting and warning of the plague.

  16. Plague Vaccine Development: Current Research and Future Trends

    PubMed Central

    Verma, Shailendra Kumar; Tuteja, Urmil

    2016-01-01

    Plague is one of the world’s most lethal human diseases caused by Yersinia pestis, a Gram-negative bacterium. Despite overwhelming studies for many years worldwide, there is no safe and effective vaccine against this fatal disease. Inhalation of Y. pestis bacilli causes pneumonic plague, a fast growing and deadly dangerous disease. F1/LcrV-based vaccines failed to provide adequate protection in African green monkey model in spite of providing protection in mice and cynomolgus macaques. There is still no explanation for this inconsistent efficacy, and scientists leg behind to search reliable correlate assays for immune protection. These paucities are the main barriers to improve the effectiveness of plague vaccine. In the present scenario, one has to pay special attention to elicit strong cellular immune response in developing a next-generation vaccine against plague. Here, we review the scientific contributions and existing progress in developing subunit vaccines, the role of molecular adjuvants; DNA vaccines; live delivery platforms; and attenuated vaccines developed to counteract virulent strains of Y. pestis. PMID:28018363

  17. Mortality from duck plague virus in immunosuppressed adult mallard ducks

    SciTech Connect

    Goldberg, D.R.; Yuill, T.M.; Burgess, E.C. )

    1990-07-01

    Environmental contaminants contain chemicals that, if ingested, could affect the immunological status of wild birds, and in particular, their resistance to infectious disease. Immunosuppression caused by environmental contaminants, could have a major impact on waterfowl populations, resulting in increased susceptibility to contagious disease agents. Duck plague virus has caused repeated outbreaks in waterfowl resulting in mortality. In this study, several doses of cyclophosphamide (CY), a known immunosuppressant, were administered to adult mallards (Anas platyrhynchos) to determine if a resultant decrease in resistance to a normally sub-lethal strain of duck plague virus would occur, and induce mortality in these birds. Death occurred in birds given CY only, and in birds given virus and CY, but not in those given virus only. There was significantly greater mortality and more rapid deaths in the duck plague virus-infected groups than in groups receiving only the immunosuppressant. A positively correlated dose-response effect was observed with CY mortalities, irrespective of virus exposure. A fuel oil and a crude oil, common environmental contaminants with immunosuppressive capabilities, were tested to determine if they could produce an effect similar to that of CY. Following 28 days of oral oil administration, the birds were challenged with a sub-lethal dose of duck plague virus. No alteration in resistance to the virus (as measured by mortality) was observed, except in the positive CY control group.

  18. Mortality from duck plague virus in immunosuppressed adult mallard ducks

    USGS Publications Warehouse

    Goldberg, D.R.; Yuill, Thomas M.; Burgess, E.C.

    1990-01-01

    Environmental contaminants contain chemicals that, if ingested, could affect the immunological status of wild birds, and in particular, their resistance to infectious disease. Immunosuppression caused by environmental contaminants, could have a major impact on waterfowl populations, resulting in increased susceptibility to contagious disease agents. Duck plague virus has caused repeated outbreaks in waterfowl resulting in mortality. In this study, several doses of cyclophosphamide (CY), a known immunosuppressant, were administered to adult mallards (Anas platyrhynchos) to determine if a resultant decrease in resistance to a normally sub-lethal strain of duck plague virus would occur, and induce mortality in these birds. Death occurred in birds given CY only, and in birds given virus and CY, but not in those given virus only. There was significantly greater mortality and more rapid deaths in the duck plague virus-infected groups than in groups receiving only the immunosuppressant. A positively correlated dose-response effect was observed with CY mortalities, irrespective of virus exposure. A fuel oil and a crude oil, common environmental contaminants with immunosuppressive capabilities, were tested to determine if they could produce an effect similar to that of CY. Following 28 days of oral oil administration, the birds were challenged with a sub-lethal dose of duck plague virus. No alteration in resistance to the virus (as measured by mortality) was observed, except in the positive CY control group.

  19. Pathogenicity of duck plague and innate immune responses of the Cherry Valley ducks to duck plague virus.

    PubMed

    Li, Ning; Hong, Tianqi; Li, Rong; Guo, Mengjiao; Wang, Yao; Zhang, Jinzhou; Liu, Jiyuan; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-08-24

    Duck plague caused by duck plague virus (DPV) is an acute and contagious disease. To better understand the pathogenic mechanism of duck plague virus in ducklings, an infection experiment was performed. Our results showed that typical symptoms were observed in the infected ducklings. DPV could replicate quickly in many tissues, leading to pathological lesions, especially on the spleen. Real-time quantitative PCR demonstrated that expression of many innate immune-related genes was mostly up-regulated in the brain, and the antiviral innate immune response was established, but not sufficient to restrict viral replication. In contrast, although the expression of many major pattern recognition receptors (PRRs) increased in the spleen, the expression of most cytokines was declined. Our study indicates that DPV is a pantropic virus that can replicate rapidly in tissues, causing serious pathological lesions but the immune responses are different in the spleen and brain. To our knowledge, this is the first report to systematically explore the expression profiles of the immune genes in the DPV-infected ducks. Our data provide a foundation for further study of the pathogenicity of duck plague.

  20. Common Avian Infection Plagued the Tyrant Dinosaurs

    PubMed Central

    Wolff, Ewan D. S.; Salisbury, Steven W.; Horner, John R.; Varricchio, David J.

    2009-01-01

    Background Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name ‘Sue’) has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. Methodology/Principal Findings We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. Conclusions/Significance This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation. PMID:19789646

  1. [Use of nested PCR in detection of the plague pathogen].

    PubMed

    Glukhov, A I; Gordeev, S A; Al'tshuler, M L; Zykova, I E; Severin, S E

    2003-07-01

    Causative agents of plague, i.e. bacterium Yersina pestis (in the subcutaneous tissues of rodents) and their cutaneous parasites need to be isolated to enable plague prevention. A comparatively new method of polymerase chain reaction (PCR) opens up new possibilities of determining Y. pestis just within several hours and without any cultivation. The article contains a description of the PCR-method, which makes it possible to distinguish the culture of Y. pestis from cultures of other microorganism, including speci of Yersina. The method is of the cluster-type, i.e. it is made up of subsequent PC reactions with the substrate for the second reaction being the product of the first one. The cluster nature of the method preconditions a higher sensitivity and specificity versus the ordinary PCR.

  2. [Marcus Aurelius Antonius (121-180AD), philosopher and Roman emperor, and Galen's plague].

    PubMed

    Muñoz-Sanz, Agustín

    2012-11-01

    The study of the aetiologies of diseases in Ancient Times is usually a speculative intellectual exercise. When some authors attribute a specific aetiology to an old disease, there is a great risk of committing a methodological error, known as presentism by the modern historiography. The authority of the investigator, more than the weight of the scientific truth, is usually the reason why the diagnosis has remained over the years. The great epidemic of the years 164-165AD and afterwards, could have been smallpox (haemorrhagic form). Claude Galen, the famous doctor, described the symptoms in several books of his great Opera Omnia. For this reason, it is currently known among the scholars as Galen's plague. The epidemic was described for the first time in Seleucia (Mesopotamia). Until now, the actual geographic origin is unknown. We propose here that the beginning might be the kingdom of the old Han dynasty (now the Chinese Popular Republic). The epidemic swept the Roman Empire, from the east to the west, and from the southern to the northern borders. An immediate consequence of the infection was a high morbidity and mortality. In this sense, Galen's epidemic was one of the many factors that caused the fall and destruction of the Roman Empire. On the other hand, there is a general agreement among historians, biographers and researchers that the philosopher emperor Marcus Aurelius Antoninus (121-180AD was affected by the infection in the epidemic wave of 164-165AD. The death of Marcus Aurelius occurred on March 17 in the year 180AD, in Vindobonne, or perhaps Sirminium (near to Vienna). Many authors propose that the cause of the emperor's death was the same epidemic. We consider that it is not possible to demonstrate any of those speculative diagnoses. Finally, the epidemic of 189-190AD, that we have named of Commodus, was probably a different disease to the Galen's plague. There were several kinds of animals affected (anthropozoonoses). In this sense, this infection

  3. The Acridian plagues, a new Holocene and Pleistocene palaeoclimatic indicator

    NASA Astrophysics Data System (ADS)

    Meco, Joaquín; Petit-Maire, Nicole; Ballester, Javier; Betancort, Juan F.; Ramos, Antonio J. G.

    2010-07-01

    Five palaeosols, intercalated within the Quaternary dune beds of Fuerteventura and Lanzarote (Canary Islands), off the Moroccan coast, mark wetter climatic episodes. In all of them, billions of calcified insect ootheca testify to past occurrences of Acridian plagues, such as those reaching the western Sahara following heavy rainfall events over the Sahel. The most massive infestation is in the Holocene, and should coincide with the climax of Saharo-Sahelian humidity at the peak of the present interglacial.

  4. Microevolution and History of the Plague Bacillus, Yersinia pestis

    DTIC Science & Technology

    2007-11-02

    recognized by the three methods, and we propose an evolutionary tree for these populations, rooted on Yersinia pseudotuberculosis. The tree in- vokes...were recognized by the three methods, and we propose an evolutionary tree for these populations, rooted on Yersinia pseudotuberculosis. The tree invokes...Microevolution and history of the plague bacillus, Yersinia pestis Mark Achtman*†, Giovanna Morelli*, Peixuan Zhu*‡, Thierry Wirth*§, Ines Diehl

  5. Enhancing the Immune Response to Recombinant Plague Antigens

    DTIC Science & Technology

    2007-05-01

    CONTRACT NUMBER Enhancing the Immune Response to Recombinant Plague Antigens 5b. GRANT NUMBER DAMD17-02-2-0058 5c. PROGRAM ELEMENT NUMBER 6...mally integrated copy of the Bacillus anthracis protective antigen gene protects mice against an anthrax spore challenge. Infect Im- mun 2003;71(7):3831...multiplying the empirically determined aerosol exposure concentration (CFU/liter air) in the chamber by the amount of air that was estimated to have been

  6. Plague: the dreadful visitation occupying the human mind for centuries.

    PubMed

    Khan, Iqbal Akhtar

    2004-05-01

    Plague is one of mankind's greatest scourges, which has swept away millions of people over the centuries. The first available record of the occurrence of this calamity, in humans, is from the Bible, in 1000 bc, in the city of Ashdod. The first definitely identified pandemic originated in Egypt in ad 542 (the Justinian Plague) and is estimated to have caused 100 million deaths. The second one, lasting for three centuries and claiming over 25 million lives appeared in 1334 in China spreading to many spots on the globe. The third pandemic occurred in Europe from the fifteenth to eighteenth century. The current pandemic began around 1860, in the Chinese province Yunnan; it reached Hong Kong in 1894 killing 100 000 individuals. Within 20 years the disease spread from southern Chinese ports throughout the world resulting in more than 10 million deaths. Since the discovery of the causative agent in 1894, there have been remarkable advancements in immunoprophylaxis and chemoprophylaxis. However, the disease is still active in Africa, in Asia and in Americas and has been classified as a currently re-emerging disease. A 'Plague-free World' will probably remain a dream for an indefinite period.

  7. Plague foci in Viet Nam: zoological and parasitological aspects.

    PubMed

    Suntsov, V V; Huong, L T; Suntsova, N I; Gratz, N G

    1997-01-01

    Reported are the results of studies over the period 1989-94 on host-flea complexes in small mammals and their flea ectoparasites in and around a number of human settlements in Viet Nam in which human cases of plague had been found. Collections were also made in savanna and tropical forest areas within a 10-km radius of the settlements. The greatest numbers of small mammals, for the most part Rattus spp., and of the flea ectoparasite Xenopsylla cheopis were found in inhabited areas. X. cheopis was not found on any feral or sylvan mammal further than 0.6 km from settlements. A possible link between wild and commensal mammals may be provided by the flea Lentistivalius klossi, a specific parasite of squirrels and tree-shrews but also found in very small numbers on commensal rats. No zoonotic foci of plague were found in the immediate vicinity of the villages studied and it is most likely that plague persists in a commensal rat-X. cheopis cycle in and around human settlements in Viet Nam.

  8. The Eleventh Plague: The Politics of Biological and Chemical Warfare

    NASA Astrophysics Data System (ADS)

    Kovac, Jeffrey

    1997-07-01

    Leonard A. Cole. W. H. Freeman: New York, 1997. 250 pp. ISBN 0-7167-2950-4. $22.95 hc. The Eleventh Plague begins with a recitation of the ten plagues brought down upon Egypt, part of the Passover Seder celebrated each spring by Jews all over the world. Spring is also the anniversary of the first use of chemical weapons. On April 22, 1915, German soldiers released chlorine gas from 5,739 cylinders installed along the battle line at Ypres in southeastern Belgium. Germany achieved complete surprise. The gas drifted across no man's land, causing widespread terror and creating ten thousand serious casualties and five thousand deaths. Chlorine, of course, was a poor weapon, easily neutralized, but German scientists, including future Nobel laureates Fritz Haber, Otto Hahn, and James Franck, and the German chemical industry created ever more dangerous chemical weapons, culminating with the introduction of mustard gas in 1917. Despite cries of moral outrage, the Allies countered with their own chemical weapons efforts. The eleventh plague had been unleashed.

  9. Sylvatic plague vaccine: A new tool for conservation of threatened and endangered species?

    USGS Publications Warehouse

    Abbott, Rachel C.; Osorio, Jorge E.; Bunck, Christine M.; Rocke, Tonie E.

    2012-01-01

    Plague, a disease caused by Yersinia pestis introduced into North America about 100 years ago, is devastating to prairie dogs and the highly endangered black-footed ferret. Current attempts to control plague in these species have historically relied on insecticidal dusting of prairie dog burrows to kill the fleas that spread the disease. Although successful in curtailing outbreaks in most instances, this method of plague control has significant limitations. Alternative approaches to plague management are being tested, including vaccination. Currently, all black-footed ferret kits released for reintroduction are vaccinated against plague with an injectable protein vaccine, and even wild-born kits are captured and vaccinated at some locations. In addition, a novel, virally vectored, oral vaccine to prevent plague in wild prairie dogs has been developed and will soon be tested as an alternative, preemptive management tool. If demonstrated to be successful, oral vaccination of selected prairie dog populations could decrease the occurrence of plague epizootics in key locations, thereby reducing the source of bacteria while avoiding the indiscriminate environmental effects of dusting. Just as rabies in wild carnivores has largely been controlled through an active surveillance and oral vaccination program, we believe an integrated plague management strategy would be similarly enhanced with the addition of a cost-effective, bait-delivered, sylvatic plague vaccine for prairie dogs. Control of plague in prairie dogs, and potentially other rodents, would significantly advance prairie dog conservation and black-footed ferret recovery.

  10. Sylvatic plague vaccine: a new tool for conservation of threatened and endangered species?

    PubMed

    Abbott, Rachel C; Osorio, Jorge E; Bunck, Christine M; Rocke, Tonie E

    2012-09-01

    Plague, a disease caused by Yersinia pestis introduced into North America about 100 years ago, is devastating to prairie dogs and the highly endangered black-footed ferret. Current attempts to control plague in these species have historically relied on insecticidal dusting of prairie dog burrows to kill the fleas that spread the disease. Although successful in curtailing outbreaks in most instances, this method of plague control has significant limitations. Alternative approaches to plague management are being tested, including vaccination. Currently, all black-footed ferret kits released for reintroduction are vaccinated against plague with an injectable protein vaccine, and even wild-born kits are captured and vaccinated at some locations. In addition, a novel, virally vectored, oral vaccine to prevent plague in wild prairie dogs has been developed and will soon be tested as an alternative, preemptive management tool. If demonstrated to be successful, oral vaccination of selected prairie dog populations could decrease the occurrence of plague epizootics in key locations, thereby reducing the source of bacteria while avoiding the indiscriminate environmental effects of dusting. Just as rabies in wild carnivores has largely been controlled through an active surveillance and oral vaccination program, we believe an integrated plague management strategy would be similarly enhanced with the addition of a cost-effective, bait-delivered, sylvatic plague vaccine for prairie dogs. Control of plague in prairie dogs, and potentially other rodents, would significantly advance prairie dog conservation and black-footed ferret recovery.

  11. Testing the generality of a trophic-cascade model for plague

    USGS Publications Warehouse

    Collinge, S.K.; Johnson, W.C.; Ray, C.; Matchett, R.; Grensten, J.; Cully, J.F.; Gage, K.L.; Kosoy, M.Y.; Loye, J.E.; Martin, A.P.

    2005-01-01

    Climate may affect the dynamics of infectious diseases by shifting pathogen, vector, or host species abundance, population dynamics, or community interactions. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to plague, yet little is known about factors that influence the dynamics of plague epizootics in prairie dogs. We investigated temporal patterns of plague occurrence in black-tailed prairie dogs to assess the generality of links between climate and plague occurrence found in previous analyses of human plague cases. We examined long-term data on climate and plague occurrence in prairie dog colonies within two study areas. Multiple regression analyses revealed that plague occurrence in prairie dogs was not associated with climatic variables in our Colorado study area. In contrast, plague occurrence was strongly associated with climatic variables in our Montana study area. The models with most support included a positive association with precipitation in April-July of the previous year, in addition to a positive association with the number of "warm" days and a negative association with the number of "hot" days in the same year as reported plague events. We conclude that the timing and magnitude of precipitation and temperature may affect plague occurrence in some geographic areas. The best climatic predictors of plague occurrence in prairie dogs within our Montana study area are quite similar to the best climatic predictors of human plague cases in the southwestern United States. This correspondence across regions and species suggests support for a (temperature-modulated) trophic-cascade model for plague, including climatic effects on rodent abundance, flea abundance, and pathogen transmission, at least in regions that experience strong climatic signals. ?? 2005 EcoHealth Journal Consortium.

  12. Identification of duck plague virus by polymerase chain reaction

    USGS Publications Warehouse

    Hansen, W.R.; Brown, Sean E.; Nashold, S.W.; Knudson, D.L.

    1999-01-01

    A polymerase chain reaction (PCR) assay was developed for detecting duck plague virus. A 765-bp EcoRI fragment cloned from the genome of the duck plague vaccine (DP-VAC) virus was sequenced for PCR primer development. The fragment sequence was found by GenBank alignment searches to be similar to the 3a?? ends of an undefined open reading frame and the gene for DNA polymerase protein in other herpesviruses. Three of four primer sets were found to be specific for the DP-VAC virus and 100% (7/7) of field isolates but did not amplify DNA from inclusion body disease of cranes virus. The specificity of one primer set was tested with genome templates from other avian herpesviruses, including those from a golden eagle, bald eagle, great horned owl, snowy owl, peregrine falcon, prairie falcon, pigeon, psittacine, and chicken (infectious laryngotracheitis), but amplicons were not produced. Hence, this PCR test is highly specific for duck plague virus DNA. Two primer sets were able to detect 1 fg of DNA from the duck plague vaccine strain, equivalent to five genome copies. In addition, the ratio of tissue culture infectious doses to genome copies of duck plague vaccine virus from infected duck embryo cells was determined to be 1:100, making the PCR assay 20 times more sensitive than tissue culture for detecting duck plague virus. The speed, sensitivity, and specificity of this PCR provide a greatly improved diagnostic and research tool for studying the epizootiology of duck plague. /// Se desarroll?? una prueba de reacci??n en cadena por la polimerasa para detectar el virus de la peste del pato. Un fragmento EcoRI de 765 pares de bases clonado del genoma del virus vacunal de la peste del pato fue secuenciado para la obtenci??n de los iniciadores de la prueba de la reacci??n en cadena por la polimerasa. En investigaciones de alineaci??n en el banco de genes ('GenBank') se encontr?? que la secuencia del fragmento era similar a los extremos 3a?? de un marco de lectura abierto

  13. Identification of Chinese plague foci from long-term epidemiological data.

    PubMed

    Ben-Ari, Tamara; Neerinckx, Simon; Agier, Lydiane; Cazelles, Bernard; Xu, Lei; Zhang, Zhibin; Fang, Xiye; Wang, Shuchun; Liu, Qiyong; Stenseth, Nils C

    2012-05-22

    Carrying out statistical analysis over an extensive dataset of human plague reports in Chinese villages from 1772 to 1964, we identified plague endemic territories in China (i.e., plague foci). Analyses rely on (i) a clustering method that groups time series based on their time-frequency resemblances and (ii) an ecological niche model that helps identify plague suitable territories characterized by value ranges for a set of predefined environmental variables. Results from both statistical tools indicate the existence of two disconnected plague territories corresponding to Northern and Southern China. Altogether, at least four well defined independent foci are identified. Their contours compare favorably with field observations. Potential and limitations of inferring plague foci and dynamics using epidemiological data is discussed.

  14. Identification of Chinese plague foci from long-term epidemiological data

    PubMed Central

    Ben-Ari, Tamara; Neerinckx, Simon; Agier, Lydiane; Cazelles, Bernard; Xu, Lei; Zhang, Zhibin; Fang, Xiye; Wang, Shuchun; Liu, Qiyong; Stenseth, Nils C.

    2012-01-01

    Carrying out statistical analysis over an extensive dataset of human plague reports in Chinese villages from 1772 to 1964, we identified plague endemic territories in China (i.e., plague foci). Analyses rely on (i) a clustering method that groups time series based on their time-frequency resemblances and (ii) an ecological niche model that helps identify plague suitable territories characterized by value ranges for a set of predefined environmental variables. Results from both statistical tools indicate the existence of two disconnected plague territories corresponding to Northern and Southern China. Altogether, at least four well defined independent foci are identified. Their contours compare favorably with field observations. Potential and limitations of inferring plague foci and dynamics using epidemiological data is discussed. PMID:22570501

  15. Rodent and flea abundance fail to predict a plague epizootic in black-tailed prairie dogs.

    PubMed

    Brinkerhoff, Robert Jory; Collinge, Sharon K; Ray, Chris; Gage, Ken L

    2010-01-01

    Small rodents are purported to be enzootic hosts of Yersinia pestis and may serve as sources of infection to prairie dogs or other epizootic hosts by direct or flea-mediated transmission. Recent research has shown that small rodent species composition and small rodent flea assemblages are influenced by the presence of prairie dogs, with higher relative abundance of both small rodents and fleas at prairie dog colony sites compared to grasslands without prairie dogs. However, it is unclear if increased rodent or flea abundance predisposes prairie dogs to infection with Y. pestis. We tracked rodent and flea occurrence for 3 years at a number of prairie dog colony sites in Boulder County, Colorado, before, during, and after a local plague epizootic to see if high rodent or flea abundance was associated with plague-affected colonies when compared to colonies that escaped infection. We found no difference in preepizootic rodent abundance or flea prevalence or abundance between plague-positive and plague-negative colonies. Further, we saw no significant before-plague/after-plague change in these metrics at either plague-positive or plague-negative sites. We did, however, find that small rodent species assemblages changed in the year following prairie dog die-offs at plague-affected colonies when compared to unaffected colonies. In light of previous research from this system that has shown that landscape features and proximity to recently plagued colonies are significant predictors of plague occurrence in prairie dogs, we suggest that landscape context is more important to local plague occurrence than are characteristics of rodent or flea species assemblages.

  16. Primary plague pneumonia contracted from a domestic cat at South Lake Tahoe, Calif.

    PubMed

    Werner, S B; Weidmer, C E; Nelson, B C; Nygaard, G S; Goethals, R M; Poland, J D

    1984-02-17

    Primary plague pneumonia occurred in a 47-year-old South Lake Tahoe woman shortly after face-to-face exposure to her plague pneumonia-infected cat. Both died. Field investigation revealed a recent plague epizootic in squirrels and chipmunks around the patient's home. Control measures included active surveillance and chemoprophylaxis of 197 contacts to the victim, a community alert on methods of self- and pet protection, and application of insecticide to reduce rodent flea populations. No secondary cases occurred.

  17. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India

    PubMed Central

    Lewnard, Joseph A.

    2016-01-01

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference. PMID:27791071

  18. Nonlinear effect of climate on plague during the third pandemic in China.

    PubMed

    Xu, Lei; Liu, Qiyong; Stige, Leif Chr; Ben Ari, Tamara; Fang, Xiye; Chan, Kung-Sik; Wang, Shuchun; Stenseth, Nils Chr; Zhang, Zhibin

    2011-06-21

    Over the years, plague has caused a large number of deaths worldwide and subsequently changed history, not the least during the period of the Black Death. Of the three plague pandemics, the third is believed to have originated in China. Using the spatial and temporal human plague records in China from 1850 to 1964, we investigated the association of human plague intensity (plague cases per year) with proxy data on climate condition (specifically an index for dryness/wetness). Our modeling analysis demonstrates that the responses of plague intensity to dry/wet conditions were different in northern and southern China. In northern China, plague intensity generally increased when wetness increased, for both the current and the previous year, except for low intensity during extremely wet conditions in the current year (reflecting a dome-shaped response to current-year dryness/wetness). In southern China, plague intensity generally decreased when wetness increased, except for high intensity during extremely wet conditions of the current year. These opposite effects are likely related to the different climates and rodent communities in the two parts of China: In northern China (arid climate), rodents are expected to respond positively to high precipitation, whereas in southern China (humid climate), high precipitation is likely to have a negative effect. Our results suggest that associations between human plague intensity and precipitation are nonlinear: positive in dry conditions, but negative in wet conditions.

  19. Landscape ecology of plague in the American southwest, September 19-20, 2000, Fort Collins, Colorado

    USGS Publications Warehouse

    Brand, Christopher J.

    2002-01-01

    During September 19-20, 2000, a workshop titled "Landscape Ecology of Plague in the American Southwest" was held in Fort Collins, Colorado. The workshop was funded by the U.S. Geological Survey (USGS)-Earth Surface Processes Team and sponsored by the USGS National Wildlife Health Center. Forty scientists and natural resource managers and administrators representing 8 federal agencies, 4 state agencies, 6 universities, and other local agencies and nongovernment organizations met to discuss historical and current status of plague in the United States, current activities in plague surveillance, research, and management in wildlife, and research and information needs relative to plague control and management. Eleven individual presentations on plague history, status, and trends; diagnostic technologies; epizootiological studies and observations; and control and management strategies and studies, followed by a panel discussion on the impact of plague on wildlife and ecosystems, led the way to extensive group discussions on important plague-related questions, issues and problems. Workshop attendees participated in identifying important research and information needs relevant to control and management of plague in wildlife, and in the process, established new cooperative and collaborative partnerships and enhanced existing relationships upon which future research and information needs can be met. The proceedings from this workshop are intended to be used by the natural resource managers and researchers from the various participating agencies, research facilities, as well as other stakeholders to aid in the development of future research and information programs and funding initiatives related to both zoonotic and sylvatic plague.

  20. Recombinant raccoon pox vaccine protects mice against lethal plague

    USGS Publications Warehouse

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7??104LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague. ?? 2002 Elsevier Science Ltd. All rights reserved.

  1. The plague of Athens: an ancient act of bioterrorism?

    PubMed

    Papagrigorakis, Manolis J; Synodinos, Philippos N; Stathi, Angeliki; Skevaki, Chrysanthi L; Zachariadou, Levantia

    2013-09-01

    Recent data implicate Salmonella enterica serovar Typhi as a causative pathogen of the Plague of Athens during the Peloponnesian War (430-426 bc). According to Thucydides, the sudden outbreak of the disease may link to poisoning of the water reservoirs by the Spartans. The siege of a city was aimed at exhausting the supplies of a population, which often led to the outbreak and spread of epidemics. Poisoning of the water reservoirs of a besieged city as an act of bioterrorism would probably shorten the necessary time for such conditions to appear.

  2. Relationship between oriental migratory locust plague and soil moisture extracted from MODIS data

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbo; Shi, Xuezheng; Warner, Eric; Ge, Yunjian; Yu, Dongsheng; Ni, Shaoxiang; Wang, Hongjie

    2008-02-01

    Locust plagues have been the source of some of the most severe natural disasters in human history. Soil moisture content is among the most important of the numerous factors influencing plague onset and severity. This paper describes a study initiated in three pilot locust plague monitoring regions, i.e., Huangzao, Yangguanzhuang, and Tengnan in Huanghua county, Hebei province, China, to examine the impact of soil moisture status on oriental migratory locust [ Locusta migratoria manilensis (L.) Meyen] plague breakout as related to the life cycle, oviposition in autumn, survival in winter, and incubation in summer. Thirty-nine temperature vegetation dryness index (TVDI) data sets, which represent soil moisture content, were extracted from MODIS remote sensing images for two representative time periods: a severe locust plague breakout year (2001-2002) and a slight plague year (2003-2004). TVDI values demonstrated distinctive soil moisture status differences between the 2 years concerned. Soil moisture conditions in the severe plague year were shown to be lower than those in slight plague year. In all three pilot regions, average TVDI value in the severe plague year was 0.07 higher than that in slight plague year, and monthly TVDI values in locust oviposition period (September and October) and incubation period (March, April and May) were higher than their corresponding monthly figures in slight plague year. No remarkable TVDI differences were found in other months during the locust life cycle between the 2 years. TVDI values for September and October (2001), March, April and May (2002) were 0.11, 0.08, 0.16, 0.11 and 0.16 higher than their corresponding monthly figures in 2003-2004 period, respectively.

  3. AFLP genome scan in the black rat (Rattus rattus) from Madagascar: detecting genetic markers undergoing plague-mediated selection.

    PubMed

    Tollenaere, C; Duplantier, J-M; Rahalison, L; Ranjalahy, M; Brouat, C

    2011-03-01

    The black rat (Rattus rattus) is the main reservoir of plague (Yersinia pestis infection) in Madagascar's rural zones. Black rats are highly resistant to plague within the plague focus (central highland), whereas they are susceptible where the disease is absent (low altitude zone). To better understand plague wildlife circulation and host evolution in response to a highly virulent pathogen, we attempted to determine genetic markers associated with plague resistance in this species. To this purpose, we combined a population genomics approach and an association study, both performed on 249 AFLP markers, in Malagasy R. rattus. Simulated distributions of genetic differentiation were compared to observed data in four independent pairs, each consisting of one population from the plague focus and one from the plague-free zone. We found 22 loci (9% of 249) with higher differentiation in at least two independent population pairs or with combining P-values over the four pairs significant. Among the 22 outlier loci, 16 presented significant association with plague zone (plague focus vs. plague-free zone). Population genetic structure inferred from outlier loci was structured by plague zone, whereas the neutral loci dataset revealed structure by geography (eastern vs. western populations). A phenotype association study revealed that two of the 22 loci were significantly associated with differentiation between dying and surviving rats following experimental plague challenge. The 22 outlier loci identified in this study may undergo plague selective pressure either directly or more probably indirectly due to hitchhiking with selected loci.

  4. Duck plague epizootics in the United States, 1967-1995

    USGS Publications Warehouse

    Converse, K.A.; Kidd, Gregory A.

    2001-01-01

    In 1967, the first confirmed diagnosis of duck plague (DP) in the USA was made from pekin ducks (Anas platyrhynchos domesticus) on commercial duck farms on Long Island, New York. Within 10 mo, DP was confirmed as the cause of death in migratory waterfowl on a Long Island bay. This paper reviews 120 DP epizootics reported from 1967 to 1995 that involved waterfowl species native to North America or were reported in areas with free-flying waterfowl at risk. Duck plague epizootics occurred in 21 states with the greatest number reported in Maryland (29), New York (18), California (16), and Pennsylvania (13). The greatest frequency of epizootics (86%) was detected during the months of March to June. At least 40 waterfowl species were affected with the highest frequency of epizootics reported in captive or captive-reared ducks including muscovy ducks (Cairina moschata) (68%), mallard ducks (A. platyrhynchos) (18%) and black ducks (A. rubripes) (14%). The greatest number of waterfowl died in three epizootics that involved primarily migratory birds in 1967 and 1994 in New York (USA) and 1973 in South Dakota (USA). The greatest number of DP epizootics reported since 1967 appear to have involved flocks of non-migratory rather than migratory waterfowl; therefore, in our opinion it remains unknown if DP is enzootic in either non-migratory or migratory waterfowl.

  5. A plague epizootic in the black-tailed prairie dog (Cynomys ludovicianus).

    PubMed

    Pauli, Jonathan N; Buskirk, Steven W; Williams, Elizabeth S; Edwards, William H

    2006-01-01

    Plague is the primary cause for the rangewide decline in prairie dog (Cynomys spp.) distribution and abundance, yet our knowledge of plague dynamics in prairie dog populations is limited. Our understanding of the effects of plague on the most widespread species, the black-tailed prairie dog (C. ludovicianus), is particularly weak. During a study on the population biology of black-tailed prairie dogs in Wyoming, USA, plague was detected in a colony under intensive monitoring, providing a unique opportunity to quantify various consequences of plague. The epizootic reduced juvenile abundance by 96% and adult abundance by 95%. Of the survivors, eight of nine adults and one of eight juveniles developed antibodies to Yersinia pestis. Demographic groups appeared equally susceptible to infection, and age structure was unaffected. Survivors occupied three small coteries and exhibited improved body condition, but increased flea infestation compared to a neighboring, uninfected colony. Black-tailed prairie dogs are capable of surviving a plague epizootic and reorganizing into apparently functional coteries. Surviving prairie dogs may be critical in the repopulation of plague-decimated colonies and, ultimately, the evolution of plague resistance.

  6. Population genetic structure of the prairie dog flea and plague vector, Oropsylla hirsuta.

    PubMed

    Brinkerhoff, R Jory; Martin, Andrew P; Jones, Ryan T; Collinge, Sharon K

    2011-01-01

    Oropsylla hirsuta is the primary flea of the black-tailed prairie dog and is a vector of the plague bacterium, Yersinia pestis. We examined the population genetic structure of O. hirsuta fleas collected from 11 prairie dog colonies, 7 of which had experienced a plague-associated die-off in 1994. In a sample of 332 O. hirsuta collected from 226 host individuals, we detected 24 unique haplotype sequences in a 480 nucleotide segment of the cytochrome oxidase II gene. We found significant overall population structure but we did not detect a signal of isolation by distance, suggesting that O. hirsuta may be able to disperse relatively quickly at the scale of this study. All 7 colonies that were recently decimated by plague showed signs of recent population expansion, whereas 3 of the 4 plague-negative colonies showed haplotype patterns consistent with stable populations. These results suggest that O. hirsuta populations are affected by plague-induced prairie dog die-offs and that flea dispersal among prairie dog colonies may not be dependent exclusively on dispersal of prairie dogs. Re-colonization following plague events from plague-free refugia may allow for rapid flea population expansion following plague epizootics.

  7. Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics

    USGS Publications Warehouse

    Johnson, T.L.; Cully, J.F.; Collinge, S.K.; Ray, C.; Frey, C.M.; Sandercock, B.K.

    2011-01-01

    Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark-recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark-recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. ?? 2011 The Wildlife Society.

  8. Response of mountain plovers to plague-driven dynamics of black-tailed prairie dog colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sylvatic plague is a major factor influencing prairie dog colony dynamics in the western Great Plains. We studied the nesting response of the mountain plover (Charadrius montanus), a grassland bird that nests on prairie dog colonies, to plague-driven dynamics of prairie dog colonies at three sites i...

  9. India's Modern Slaves: Bonded Labor in India and Methods of Intervention

    ERIC Educational Resources Information Center

    Boutros, Heidi

    2005-01-01

    Slavery flourishes in the modern world. In nations plagued by debilitating poverty, individuals unable to afford food, clothing, and shelter may be compelled to make a devastating decision: to sell themselves or their children into slavery. Nowhere in the world is this more common than India. Conservative estimates suggest that there are 10…

  10. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus.

    PubMed

    Bos, Kirsten I; Herbig, Alexander; Sahl, Jason; Waglechner, Nicholas; Fourment, Mathieu; Forrest, Stephen A; Klunk, Jennifer; Schuenemann, Verena J; Poinar, Debi; Kuch, Melanie; Golding, G Brian; Dutour, Olivier; Keim, Paul; Wagner, David M; Holmes, Edward C; Krause, Johannes; Poinar, Hendrik N

    2016-01-21

    The 14th-18th century pandemic of Yersinia pestis caused devastating disease outbreaks in Europe for almost 400 years. The reasons for plague's persistence and abrupt disappearance in Europe are poorly understood, but could have been due to either the presence of now-extinct plague foci in Europe itself, or successive disease introductions from other locations. Here we present five Y. pestis genomes from one of the last European outbreaks of plague, from 1722 in Marseille, France. The lineage identified has not been found in any extant Y. pestis foci sampled to date, and has its ancestry in strains obtained from victims of the 14th century Black Death. These data suggest the existence of a previously uncharacterized historical plague focus that persisted for at least three centuries. We propose that this disease source may have been responsible for the many resurgences of plague in Europe following the Black Death.

  11. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe.

    PubMed

    Schmid, Boris V; Büntgen, Ulf; Easterday, W Ryan; Ginzler, Christian; Walløe, Lars; Bramanti, Barbara; Stenseth, Nils Chr

    2015-03-10

    The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries. To locate these putative plague reservoirs, we studied the climate fluctuations that preceded regional plague epidemics, based on a dataset of 7,711 georeferenced historical plague outbreaks and 15 annually resolved tree-ring records from Europe and Asia. We provide evidence for repeated climate-driven reintroductions of the bacterium into European harbors from reservoirs in Asia, with a delay of 15 ± 1 y. Our analysis finds no support for the existence of permanent plague reservoirs in medieval Europe.

  12. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe

    PubMed Central

    Büntgen, Ulf; Easterday, W. Ryan; Ginzler, Christian; Walløe, Lars; Bramanti, Barbara; Stenseth, Nils Chr.

    2015-01-01

    The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries. To locate these putative plague reservoirs, we studied the climate fluctuations that preceded regional plague epidemics, based on a dataset of 7,711 georeferenced historical plague outbreaks and 15 annually resolved tree-ring records from Europe and Asia. We provide evidence for repeated climate-driven reintroductions of the bacterium into European harbors from reservoirs in Asia, with a delay of 15 ± 1 y. Our analysis finds no support for the existence of permanent plague reservoirs in medieval Europe. PMID:25713390

  13. Modern thermoelectrochemistry.

    PubMed

    Gründler, Peter; Kirbs, Andreas; Dunsch, Lothar

    2009-08-03

    Thermoelectrochemistry as a branch of electrochemistry like photoelectrochemistry is reviewed in an integral treatment of the subject. Especially modern thermoelectrochemistry is focused on new techniques to vary the temperature as an independent variable. This review based on a definition of modern thermoelectrochemistry includes all the classical work which contributes to the formation of modern thermoelectrochemistry, among them high-temperature electrochemistry, subcritical- and supercritical electrochemistry and in-situ electrochemical calorimetry. The main focus is on modern techniques like fast electrode heating by lasers or by alternating current as well as on heating of solution spots by microwaves and related methods. Here the state of the art in modern thermoelectrochemistry is critically reviewed for the first time.

  14. Origin of the Old Testament Plagues: Explications and Implications

    PubMed Central

    Ehrenkranz, N. Joel; Sampson, Deborah A.

    2008-01-01

    Analyses of past disasters may supply insights to mitigate the impact of recurrences. In this context, we offer a unifying causative theory of Old Testament plagues, which has present day public health implications. We propose the root cause to have been an aberrant El Niño-Southern Oscillation teleconnection that brought unseasonable and progressive climate warming along the ancient Mediterranean littoral, including the coast of biblical Egypt, which, in turn, initiated the serial catastrophes of biblical sequence — in particular arthropod-borne and arthropod-caused diseases. Located beyond the boundary of focal climate change, inland Goshen would not have been similarly affected. Implicit in this analysis is a framework to consider a possibility of present day recurrence of similar catastrophes and their impact upon essential public services. PMID:18604309

  15. [Transylvanian refugees and the plague in 1708-1709].

    PubMed

    Kis, D

    1993-01-01

    Owing to the overwhelming military power of the Habsburg forces Transylvanian sympathizers fled twice to Hungary during the Rákóczi uprising (1704-1711): first in 1704-1706 and then in 1707-1711. In the autumn of 1707 they numbered as much as ten thousand people, and according to the decrees of the diet at Kisvárda, they were settled down in smaller units in around Szabolcs, Szatmár, Bereg, Ung, Ugocsa and Máramaros counties. Though always short of money, the leaders of the ukprising created a system that satisfied the basic needs of these refugees. By the end of the rebellion, nevertheless, as the territory controlled by Rákóczi's armies decreased considerably, the refugees were forced to move on and on, which certainly led to a corruption of their food supplies, accommodation and hygienic conditions. The worst among all came with the plague. The author examines the effects of the epidemic and the counter-measures taken by the individual and the authorities of the uprising. Kis has consulted the main Hungarian books of that age that referred to black death (among others Anna Zay's Herbarium [1719], Samuel Köleséri's Pestis Daicae, György Komáromi Csipkés's Pestis pestise, Ferenc Pápai Páriz's Pax Corporis and A [estos betegség etc., and Máté Tsanaki's A Döghalálról, etc.), as well as many archival papers (the correspondence of Count Sándor Károlyi with his wife Krisztina Barkóczy, thos of General Bercsényi to his wife and Prince Rákóczi, and some doctors' reports, etc.). His main source, however, is Zsigmond Szaniszló's diary. Szaniszló was a former fobiró (chief-sheriff) of the Transsylvanian Torda city, an Anti-Trinitarian stronghold, and remained a leader of his people during the emigration. According to his notes, which the author has compared with the data given by the others, there were hardly any measures taken against plague in this community. Although Szaniszló gives detailed descriptions about the everyday life of the

  16. A bibliography of literature pertaining to plague (Yersinia pestis)

    USGS Publications Warehouse

    Ellison, Laura E.; Frank, Megan K. Eberhardt

    2011-01-01

    Plague is an acute and often fatal zoonotic disease caused by the bacterium Yersinia pestis. Y. pestis mainly cycles between small mammals and their fleas; however, it has the potential to infect humans and frequently causes fatalities if left untreated. It is often considered a disease of the past; however, since the late 1800s, plagueis geographic range has expanded greatly, posing new threats in previously unaffected regions of the world, including the Western United States. A literature search was conducted using Internet resources and databases. The keywords chosen for the searches included plague, Yersinia pestis, management, control, wildlife, prairie dogs, fleas, North America, and mammals. Keywords were used alone or in combination with the other terms. Although this search pertains mostly to North America, citations were included from the international research community, as well. Databases and search engines used included Google (http://www.google.com), Google Scholar (http://scholar.google.com), SciVerse Scopus (http://www.scopus.com), ISI Web of Knowledge (http://apps.isiknowledge.com), and the USGS Library's Digital Desktop (http://library.usgs.gov). The literature-cited sections of manuscripts obtained from keyword searches were cross-referenced to identify additional citations or gray literature that was missed by the Internet search engines. This Open-File Report, published as an Internet-accessible bibliography, is intended to be periodically updated with new citations or older references that may have been missed during this compilation. Hence, the authors would be grateful to receive notice of any new or old papers that the audience (users) think need to be included.

  17. [PLAGUE IN PALERMO IN 1575 AND SOCIAL CONTROL].

    PubMed

    Malta, Renato; Salerno, Alfredo

    2015-01-01

    The work moves from the low mortality of the plague of Palermo in 1575 - 1576 in comparison to similar outbreaks and contemporary analysis of the activity of Ingrassia, a man that the city government had wanted at his side. The extraordinary health interventions, including those to favor of the predisposition of health building to isolation, gears for a more wide-ranging than the traditional one. The isolation adopted by Ingrassia wasn't a novelty because it was already in use half a century earlier, as the Previdelli wrote. We assume that the population in crisis, hungry and out of work for the huge military expenditure of king Philip II, would have prompted the City government to use the outbreak for the purposes of . At the same goal always answered in the sixteenth century the establishment of the parish, created to divide the territory in order to guide and control the practice of the faith of the people. Ingrassia, a man next to political power, which in turn welded with the spiritual power in order to implement the Catholic Counter-Reformation, justified the coercive initiatives towards the population. The practice of medicine, as still happens today, is affected by the conditions of the policy, raising one of the fundamental principles of bioethics, the question ofthe independence ofthe doctor: a physician divided by the duty to represent the legitimate interests of the patient and those of political power, perhaps not always shared. It is a new interpretation of the activity of Ingrassia and his results than the plague.

  18. Modernity's Prometheus.

    ERIC Educational Resources Information Center

    Morris, Richard

    1993-01-01

    Argues for reframing and reforging the relationship between text and context. Argues that the silences that modernity's tribute to text invites are grotesque, untenable, and fundamentally anti-intellectual. (SR)

  19. The history of the plague and the research on the causative agent Yersinia pestis.

    PubMed

    Zietz, Björn P; Dunkelberg, Hartmut

    2004-02-01

    The plague is an infectious bacterial disease having a high fatality rate without treatment. It has occurred in three huge pandemics since the 6th century with millions of deaths and numerous smaller epidemics and sporadic cases. Referring to specific clinical symptoms of pulmonary plague the disease became known as the Black Death. This pandemic probably originated in central Asia and began spreading westward along major trade routes. Upon the arrival in the eastern Mediterranean the disease quickly spread especially by sea traffic to Italy, Greece and France and later throughout Europe by land. Until the 18th century many European cities were frequently affected by other great plague epidemics. The worldwide spread of the third pandemic began when the plague reached Hong Kong and Canton in the year 1894. The gram-negative coccobacillus now designated as Yersinia pestis has been discovered as the causative agent of plague in this Hong Kong outbreak. In the following years the role of rats and fleas and their detailed role in the transmission of plague has been discovered and experimentally verified. Today the plague is still endemic in many countries of the world.

  20. Influence of human activity patterns on epidemiology of plague in Western Usambara Mountains, Tanzania.

    PubMed

    Hubeau, Marianne; Gulinck, Hubert; Kimaro, Didas N; Hieronimo, Proches; Meliyo, Joel

    2014-07-01

    Human plague has been a recurring public health threat in some villages in the Western Usambara Mountains, Tanzania, in the period between 1980 and 2004. Despite intensive past biological and medical research, the reasons for the plague outbreaks in the same set of villages remain unknown. Plague research needs to broaden its scope and formulate new hypotheses. This study was carried out to establish relationships between the nature and the spatial extent of selected human activities on one hand, and the reported plague cases on the other hand. Three outdoor activities namely, fetching water, collecting firewood and going to the market, were selected. Through enquiries the activity patterns related to these activities were mapped in 14 villages. Standard deviation ellipses represent the extent of action spaces. Over 130 activity types were identified and listed. Of these, fetching water, collecting firewood and going to the market were used for further analysis. The results indicate a significant correlation between the plague frequency and the size of these action spaces. Different characteristics of land use and related human activities were correlated with the plague frequency at village and hamlet levels. Significant relationships were found between plague frequency and specific sources of firewood and water, and specific market places.

  1. The trophic responses of two different rodent–vector–plague systems to climate change

    PubMed Central

    Xu, Lei; Schmid, Boris V.; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr.; Zhang, Zhibin

    2015-01-01

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. PMID:25540277

  2. The trophic responses of two different rodent-vector-plague systems to climate change.

    PubMed

    Xu, Lei; Schmid, Boris V; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr; Zhang, Zhibin

    2015-02-07

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change.

  3. Plague in Egypt: Disease biology, history and contemporary analysis: A minireview

    PubMed Central

    Lotfy, Wael M.

    2013-01-01

    Plague is a zoonotic disease with a high mortality rate in humans. Unfortunately, it is still endemic in some parts of the world. Also, natural foci of the disease are still found in some countries. Thus, there may be a risk of global plague re-emergence. This work reviews plague biology, history of major outbreaks, and threats of disease re-emergence in Egypt. Based on the suspected presence of potential natural foci in the country, the global climate change, and the threat posed by some neighbouring countries disease re-emergence in Egypt should not be excluded. The country is in need for implementation of some preventive measures. PMID:26199744

  4. The anti-plague system and the Soviet biological warfare program.

    PubMed

    Zilinskas, Raymond A

    2006-01-01

    The USSR possessed a unique national public health system that included an agency named "anti-plague system." Its mission was to protect the country from highly dangerous diseases of either natural or laboratory etiology. During the 1960s, the anti-plague system became the lead agency of a program to defend against biological warfare, codenamed Project 5. This responsibility grew and by the middle 1970s came to include undertaking tasks for the offensive biological warfare program, codenamed Ferment. This article describes the anti-plague system's activities relevant to both aspects of the Soviet Union's biological warfare program, offense and defense, and analyzes its contributions to each.

  5. [Mechanisms of power in disease: the case of the novel "The Plague" by Albert Camus].

    PubMed

    Hernández-Mansilla, José Miguel

    2009-01-01

    This paper explores the elements of power that can be found in an epidemic like the plague. To undertake this task we first studied, the form of containment of the plague from a historical perspective and then, compare them with those described by Camus in his novel The Plague. We also studied the experience of sin among humans in an effort to determine divine power. This last point explores the fear of being touched during an epidemic and how this is overcome by the innate feeling of love among men. Finally in the novel, this is illustrated by the love of Orpheus for Eurydice.

  6. Quinto Tiberio Angelerio and new measures for controlling plague in 16th-century Alghero, Sardinia.

    PubMed

    Bianucci, Raffaella; Benedictow, Ole Jørgen; Fornaciari, Gino; Giuffra, Valentina

    2013-01-01

    Plague, a zoonotic disease caused by the bacterium Yersinia pestis, has been responsible for at least 3 pandemics. During 1582-1583, a plague outbreak devastated the seaport of Alghero in Sardinia. By analyzing contemporary medical texts and local documentation, we uncovered the pivotal role played by the Protomedicus of Alghero, Quinto Tiberio Angelerio (1532-1617), in controlling the epidemic. Angelerio imposed rules and antiepidemic measures new to the 16th-century sanitary system of Sardinia. Those measures undoubtedly spared the surrounding districts from the spread of the contagion. Angelerio seems to have been an extremely successful public health officer in the history of plague epidemics in Sardinia.

  7. Quinto Tiberio Angelerio and New Measures for Controlling Plague in 16th-Century Alghero, Sardinia

    PubMed Central

    Benedictow, Ole Jørgen; Fornaciari, Gino; Giuffra, Valentina

    2013-01-01

    Plague, a zoonotic disease caused by the bacterium Yersinia pestis, has been responsible for at least 3 pandemics. During 1582–1583, a plague outbreak devastated the seaport of Alghero in Sardinia. By analyzing contemporary medical texts and local documentation, we uncovered the pivotal role played by the Protomedicus of Alghero, Quinto Tiberio Angelerio (1532–1617), in controlling the epidemic. Angelerio imposed rules and antiepidemic measures new to the 16th-century sanitary system of Sardinia. Those measures undoubtedly spared the surrounding districts from the spread of the contagion. Angelerio seems to have been an extremely successful public health officer in the history of plague epidemics in Sardinia. PMID:23968598

  8. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA

    USGS Publications Warehouse

    Collinge, S.K.; Johnson, W.C.; Ray, C.; Matchett, R.; Grensten, J.; Cully, J.F.; Gage, K.L.; Kosoy, M.Y.; Loye, J.E.; Martin, A.P.

    2005-01-01

    Landscape structure influences the abundance and distribution of many species, including pathogens that cause infectious diseases. Black-tailed prairie dogs in the western USA have declined precipitously over the past 100 years, most recently due to grassland conversion and their susceptibility to sylvatic plague. We assembled and analyzed two long-term data sets on plague occurrence in black-tailed prairie dogs to explore the hypotheses that plague occurrence is associated with colony characteristics and landscape context. Our two study areas (Boulder County, Colorado, and Phillips County, Montana) differed markedly in degree of urbanization and other landscape characteristics. In both study areas, we found associations between plague occurrence and landscape and colony characteristics such as the amount of roads, streams and lakes surrounding a prairie dog colony, the area covered by the colony and its neighbors, and the distance to the nearest plague-positive colony. Logistic regression models were similar between the two study areas, with the best models predicting positive effects of proximity to plague-positive colonies and negative effects of road, stream and lake cover on plague occurrence. Taken together, these results suggest that roads, streams and lakes may serve as barriers to plague in black-tailed prairie dog colonies by affecting movement of or habitat quality for plague hosts or for fleas that serve as vectors for the pathogen. The similarity in plague correlates between urban and rural study areas suggests that the correlates of plague are not altered by uniquely urban stressors. ?? Springer 2005.

  9. [Efficacy of cefixime and cefepime vs. other cephalosporins in experimental plague of albino mice due to variants FI+ and FI- of the plague microbe].

    PubMed

    Ryzhko, I V; Shcherbaniuk, A I; Moldavan, I A; Tsuraeva, R I; Anisimov, B I; Trishina, A V

    2007-01-01

    Efficacy of cefixime and cefepime vs. ceftriaxone, cefotaxime, ceftazidime and cefoperazone was studied in vitro and in the treatment of experimental plague of albino mice due to natural, antigen complete strains of the plague microbe and the pathogen variants deprived of the ability to produce the capsule antigen fraction I (FI- phenotype). The MICs of cefixime and cefepime for 20 FI+ and 20 FI- strains of the plague microbe were 0.02-0.08 mg/l, that corresponded to the MICs of ceftriaxone, cefotaxime and ceftazidime. The MICs of cefoperazone were somewhat higher (0.1-0.2 mg/l). The ED50 values of cefixime and cefepime for prevention and treatment of experimental plague in mice statistically did not significantly differ from the ED50 values of ceftriaxone, cefotaxime, ceftazidime and cefoperazone. The efficacy indices (EIs) of cefixime and cefepime were > 10(4) independent of the infective strain phenotype (FI+ or FI-) and did not differ from those of ceftriaxone and ceftazidime. The efficacy of cefotaxime and cefoperazone was somewhat lower (EIs 1.7 x 10(3)-8.9 x 10(3)). Both the antibacterials were shown to provide high protective and therapeutic efficacy (80-100% of the survivors) independent of the phenotype (FI+ or FI-) of the pathogen infective strain. The results allowed to consider the antibiotics prospective in prevention and treatment of plague.

  10. No evidence of deer mouse involvement in plague (Yersinia pestis) epizootics in prairie dogs.

    PubMed

    Salkeld, Daniel J; Stapp, Paul

    2008-06-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on black-tailed prairie dog (Cynomys ludovicianus) colonies. One suggested mechanism behind sporadic prairie dog die-offs involves an alternative mammal host, such as the deer mouse (Peromyscus maniculatus), which often inhabits prairie dog colonies. We examined the flea populations of deer mice to investigate the potential of flea-borne transmission of plague between deer mice and prairie dogs in northern Colorado, where plague is active in prairie dog colonies. Deer mice were predominantly infested with the flea Aetheca wagneri, and were rarely infested with prairie dog fleas, Oropsylla hirsuta. Likelihood of flea infestation increased with average monthly temperature, and flea loads were higher in reproductive animals. These results suggest that the deer mouse is an unlikely maintenance host of plague in this region.

  11. [Change in the habitat of Yersinia pestis in the Gorno-Altaisk natural focus of plague].

    PubMed

    Korzun, V M; Chipanin, E V; Balakhonov, S V; Denisov, A V; Rozhdestvenskiĭ, E N; Mihaĭlov, E P; Iarygina, M B; Kosilko, S A

    2014-01-01

    The paper analyzes the change that occurred in the habitat of the causative agent of plague in its Gorno-Altaisk natural focus in 1961 to 2012. Since 1961 when the plague microbe was found to come from the southern slopes of the Saylyugem mountain range, which are located in Mongolia, to the northern slopes situated in Russia, a gradual expansion of the habitat of Yersenia pestis subsp. altaica had commenced in South-Eastern Altai. During the considered period, the area where epizootic manifestations were registered showed an 11-fold increase. In most cases, the spread of the plague pathogen within the focus was natural and occurred in the successive and closely related settlements of Mongolian pikas (Ochotona pallasi). By now, the plague microbe has been widely distributed in three populations of this small animal, which inhabit the territory of South-Eastern Altai.

  12. Modern Spectroscopy

    ERIC Educational Resources Information Center

    Barrow, Gordon M.

    1970-01-01

    Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)

  13. Convergent evolution in European and Rroma populations reveals pressure exerted by plague on Toll-like receptors

    PubMed Central

    Laayouni, Hafid; Oosting, Marije; Luisi, Pierre; Ioana, Mihai; Alonso, Santos; Ricaño-Ponce, Isis; Trynka, Gosia; Zhernakova, Alexandra; Plantinga, Theo S.; Cheng, Shih-Chin; van der Meer, Jos W. M.; Popp, Radu; Sood, Ajit; Thelma, B. K.; Wijmenga, Cisca; Joosten, Leo A. B.; Bertranpetit, Jaume; Netea, Mihai G.

    2014-01-01

    Recent historical periods in Europe have been characterized by severe epidemic events such as plague, smallpox, or influenza that shaped the immune system of modern populations. This study aims to identify signals of convergent evolution of the immune system, based on the peculiar demographic history in which two populations with different genetic ancestry, Europeans and Rroma (Gypsies), have lived in the same geographic area and have been exposed to similar environments, including infections, during the last millennium. We identified several genes under evolutionary pressure in European/Romanian and Rroma/Gipsy populations, but not in a Northwest Indian population, the geographic origin of the Rroma. Genes in the immune system were highly represented among those under strong evolutionary pressures in Europeans, and infections are likely to have played an important role. For example, Toll-like receptor 1 (TLR1)/TLR6/TLR10 gene cluster showed a strong signal of adaptive selection. Their gene products are functional receptors for Yersinia pestis, the agent of plague, as shown by overexpression studies showing induction of proinflammatory cytokines such as TNF, IL-1β, and IL-6 as one possible infection that may have exerted evolutionary pressures. Immunogenetic analysis showed that TLR1, TLR6, and TLR10 single-nucleotide polymorphisms modulate Y. pestis–induced cytokine responses. Other infections may also have played an important role. Thus, reconstruction of evolutionary history of European populations has identified several immune pathways, among them TLR1/TLR6/TLR10, as being shaped by convergent evolution in two human populations with different origins under the same infectious environment. PMID:24550294

  14. Convergent evolution in European and Rroma populations reveals pressure exerted by plague on Toll-like receptors.

    PubMed

    Laayouni, Hafid; Oosting, Marije; Luisi, Pierre; Ioana, Mihai; Alonso, Santos; Ricaño-Ponce, Isis; Trynka, Gosia; Zhernakova, Alexandra; Plantinga, Theo S; Cheng, Shih-Chin; van der Meer, Jos W M; Popp, Radu; Sood, Ajit; Thelma, B K; Wijmenga, Cisca; Joosten, Leo A B; Bertranpetit, Jaume; Netea, Mihai G

    2014-02-18

    Recent historical periods in Europe have been characterized by severe epidemic events such as plague, smallpox, or influenza that shaped the immune system of modern populations. This study aims to identify signals of convergent evolution of the immune system, based on the peculiar demographic history in which two populations with different genetic ancestry, Europeans and Rroma (Gypsies), have lived in the same geographic area and have been exposed to similar environments, including infections, during the last millennium. We identified several genes under evolutionary pressure in European/Romanian and Rroma/Gipsy populations, but not in a Northwest Indian population, the geographic origin of the Rroma. Genes in the immune system were highly represented among those under strong evolutionary pressures in Europeans, and infections are likely to have played an important role. For example, Toll-like receptor 1 (TLR1)/TLR6/TLR10 gene cluster showed a strong signal of adaptive selection. Their gene products are functional receptors for Yersinia pestis, the agent of plague, as shown by overexpression studies showing induction of proinflammatory cytokines such as TNF, IL-1β, and IL-6 as one possible infection that may have exerted evolutionary pressures. Immunogenetic analysis showed that TLR1, TLR6, and TLR10 single-nucleotide polymorphisms modulate Y. pestis-induced cytokine responses. Other infections may also have played an important role. Thus, reconstruction of evolutionary history of European populations has identified several immune pathways, among them TLR1/TLR6/TLR10, as being shaped by convergent evolution in two human populations with different origins under the same infectious environment.

  15. [The North African plague and Charles Nicolle's theory of infectious diseases].

    PubMed

    Ben, Néfissa Kmar; Moulin, Anne Marie

    2010-01-01

    Many infectious diseases were described in North Africa in 18th-19th centuries by European travellers. Most of them were allegedly imported by new migrant populations coming from sub-Saharan, European or Middle East countries. Plague outbreaks have been described since the Black Death as diseases of the Mediterranean harbours. Charles Nicolle and his collaborators at the Pasteur Institute were witnesses to the extinction of plague and typhus fever in Tunisia. Both could be considered as endemo-epidemic diseases propagated by ancient nomad communities for centuries. Typhus was exported to other countries; plague was imported by Mediterranean travellers but also hid in unknown wild-animal reservoirs. The role of the bite of a rat's flea was not confirmed and the pneumonic form might have prevailed in the medieval North African cities. Association between plague, typhus, flu and other causes of immune deficiencies could explain the high morbidity and mortality caused by plague in the past. The authors comment the local history of plague at the light of the evolutionary laws of infectious disease proposed by Charles Nicolle in 1930.

  16. Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics.

    PubMed

    Tripp, Daniel W; Gage, Kenneth L; Montenieri, John A; Antolin, Michael F

    2009-06-01

    Black-tailed prairie dogs (Cynomys ludovicianus) on the Great Plains of the United States are highly susceptible to plague, caused by the bacterium Yersinia pestis, with mortality on towns during plague epizootics often approaching 100%. The ability of flea-borne transmission to sustain disease spread has been questioned because of inefficiency of flea vectors. However, even with low individual efficiency, overall transmission can be increased if flea abundance (the number of fleas on hosts) increases. Changes in flea abundance on hosts during plague outbreaks were recorded during a large-scale study of plague outbreaks in prairie dogs in north central Colorado during 3 years (2004-2007). Fleas were collected from live-trapped black-tailed prairie dogs before and during plague epizootics and tested by PCR for the presence of Y. pestis. The predominant fleas were two prairie dog specialists (Oropsylla hirsuta and Oropsylla tuberculata cynomuris), and a generalist flea species (Pulex simulans) was also recorded from numerous mammals in the area. The three species differ in seasonal abundance, with greatest abundance in spring (February and March) and fall (September and October). Flea abundance and infestation intensity increased during epizootics and were highest on prairie dogs with Y. pestis-infected fleas. Seasonal occurrence of epizootics among black-tailed prairie dogs was found to coincide with seasonal peaks in flea abundance. Concentration of infected fleas on surviving animals may account for rapid spread of plague during epizootics. In particular, the role of the generalist flea P. simulans was previously underappreciated.

  17. Climate-driven spatial dynamics of plague among prairie dog colonies.

    PubMed

    Snäll, T; O'Hara, R B; Ray, C; Collinge, S K

    2008-02-01

    We present a Bayesian hierarchical model for the joint spatial dynamics of a host-parasite system. The model was fitted to long-term data on regional plague dynamics and metapopulation dynamics of the black-tailed prairie dog, a declining keystone species of North American prairies. The rate of plague transmission between colonies increases with increasing precipitation, while the rate of infection from unknown sources decreases in response to hot weather. The mean annual dispersal distance of plague is about 10 km, and topographic relief reduces the transmission rate. Larger colonies are more likely to become infected, but colony area does not affect the infectiousness of colonies. The results suggest that prairie dog movements do not drive the spread of plague through the landscape. Instead, prairie dogs are useful sentinels of plague epizootics. Simulations suggest that this model can be used for predicting long-term colony and plague dynamics as well as for identifying which colonies are most likely to become infected in a specific year.

  18. Flea, rodent, and plague ecology at Chuchupate Campground, Ventura County, California.

    PubMed

    Davis, Richard M; Smith, Randall T; Madon, Minoo B; Sitko-Cleugh, Erika

    2002-06-01

    Chuchupate Campground in Ventura County, California, was closed to the public for 18 years (1982 to 2000) because of uncontrolled vector fleas and persistent plague antibody titers in rodents. The primary purpose of this study was to clarify the plague ecology of Chuchupate Campground by identifying involved rodents and their vector fleas and by determining many of their ecological parameters: abundance, flea and host preferences and diversities, and flea seasonality. Rodents and fleas were identified to species, some fleas were tested for Yersinia pestis, and rodent bloods were analyzed for the presence of antibodies to Y. pestis. During this study, 20 flea species were identified from 10 rodent and one lagomorph species collected. Five species of rodents were seropositive for plague during 13 of the 17 years in which plague testing was conducted. A likely reservoir species was not determined, but evidence of plague resistance was discovered in Merriam's chipmunks (Tamias merriami) and dusky-footed woodrats (Neotoma fuscipes). The "susceptible" rodent and flea complexes at Chuchupate are the California ground squirrel (Spermophilus beecheyi) and its fleas, Oropsylla montana and Hoplopsyllus anomalus, Merriam's chipmunk and its flea, Eumolpianusfornacis, and the dusky-footed woodrat and its flea, Orchopeas sexdentatus. Host preference, diversity, and seasonality of fleas are discussed, as well as the pivotal role of woodrat houses and nests as foci for hosts, fleas, and plague.

  19. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    PubMed Central

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-01-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347–1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe. PMID:27721393

  20. Small mammal distribution and diversity in a plague endemic area in West Usambara Mountains, Tanzania.

    PubMed

    Ralaizafisoloarivony, Njaka A; Kimaro, Didas N; Kihupi, Nganga I; Mulungu, Loth S; Leirs, Herwig; Msanya, Balthazar M; Deckers, Jozef A; Gulinck, Hubert

    2014-07-01

    Small mammals play a role in plague transmission as hosts in all plague endemic areas. Information on distribution and diversity of small mammals is therefore important for plague surveillance and control in such areas. The objective of this study was to investigate small mammals' diversity and their distribution in plague endemic area in the West Usambara Mountains in north-eastern Tanzania. Landsat images and field surveys were used to select trapping locations in different landscapes. Three landscapes with different habitats were selected for trapping of small mammals. Three types of trap were used in order to maximise the number of species captured. In total, 188 animals and thirteen species were captured in 4,905 trap nights. Praomys delectorum and Mastomys natalensis both reported as plague hosts comprised 50% of all the animals trapped. Trap success increased with altitude. Species diversity was higher in plantation forest followed by shrub, compared to other habitats, regardless of landscape type. It would therefore seem that chances of plague transmission from small mammals to humans are much higher under shrub, natural and plantation forest habitats.

  1. Human activity spaces and plague risks in three contrasting landscapes in Lushoto District, Tanzania.

    PubMed

    Hieronimo, Proches; Gulinck, Hubert; Kimaro, Didas N; Mulungu, Loth S; Kihupi, Nganga I; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Since 1980 plague has been a human threat in the Western Usambara Mountains in Tanzania. However, the spatial-temporal pattern of plague occurrence remains poorly understood. The main objective of this study was to gain understanding of human activity patterns in relation to spatial distribution of fleas in Lushoto District. Data were collected in three landscapes differing in plague incidence. Field survey coupled with Geographic Information System (GIS) and physical sample collections were used to collect data in wet (April to June 2012) and dry (August to October 2012) seasons. Data analysis was done using GIS, one-way ANOVA and nonparametric statistical tools. The degree of spatial co-occurrence of potential disease vectors (fleas) and humans in Lushoto focus differs significantly (p ≤ 0.05) among the selected landscapes, and in both seasons. This trend gives a coarse indication of the possible association of the plague outbreaks and the human frequencies of contacting environments with fleas. The study suggests that plague surveillance and control programmes at landscape scale should consider the existence of plague vector contagion risk gradient from high to low incidence landscapes due to human presence and intensity of activities.

  2. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    NASA Astrophysics Data System (ADS)

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-10-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347–1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe.

  3. Local persistence and extinction of plague in a metapopulation of great gerbil burrows, Kazakhstan.

    PubMed

    Schmid, B V; Jesse, M; Wilschut, L I; Viljugrein, H; Heesterbeek, J A P

    2012-12-01

    Speculation on how the bacterium Yersinia pestis re-emerges after years of absence in the Prebalkhash region in Kazakhstan has been ongoing for half a century, but the mechanism is still unclear. One of the theories is that plague persists in its reservoir host (the great gerbil) in so-called hotspots, i.e. small regions in which the conditions remain favourable for plague to persist during times where the conditions in the Prebalkhash region as a whole have become unfavourable for plague persistence. In this paper we use a metapopulation model that describes the dynamics of the great gerbil. With this model we study the minimum size of an individual hotspot and the combined size of multiple hotspots in the Prebalkhash region that would be required for Y. pestis to persist through an inter-epizootic period. We show that the combined area of hotspots required for plague persistence is so large that it would be unlikely to have been missed by existing plague surveillance. This suggests that persistence of plague in that region cannot solely be explained by the existence of hotspots, and therefore other hypotheses, such as survival in multiple host species, and persistence in fleas or in the soil should be considered as well.

  4. Identification of risk factors for plague in the West Nile Region of Uganda.

    PubMed

    Eisen, Rebecca J; MacMillan, Katherine; Atiku, Linda A; Mpanga, Joseph T; Zielinski-Gutierrez, Emily; Graham, Christine B; Boegler, Karen A; Enscore, Russell E; Gage, Kenneth L

    2014-06-01

    Plague is an often fatal, primarily flea-borne rodent-associated zoonosis caused by Yersinia pestis. We sought to identify risk factors for plague by comparing villages with and without a history of human plague cases within a model-defined plague focus in the West Nile Region of Uganda. Although rat (Rattus rattus) abundance was similar inside huts within case and control villages, contact rates between rats and humans (as measured by reported rat bites) and host-seeking flea loads were higher in case villages. In addition, compared with persons in control villages, persons in case villages more often reported sleeping on reed or straw mats, storing food in huts where persons sleep, owning dogs and allowing them into huts where persons sleep, storing garbage inside or near huts, and cooking in huts where persons sleep. Compared with persons in case villages, persons in control villages more commonly reported replacing thatch roofing, and growing coffee, tomatoes, onions, and melons in agricultural plots adjacent to their homesteads. Rodent and flea control practices, knowledge of plague, distance to clinics, and most care-seeking practices were similar between persons in case villages and persons in control villages. Our findings reinforce existing plague prevention recommendations and point to potentially advantageous local interventions.

  5. Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico

    PubMed Central

    Gibbons, Henry S.; Onischuk, Lisa; Leonard, Pascale; Broomall, Stacey; Sickler, Todd; Betters, Janet L.; McGregor, Paul; Donarum, Greg; Liem, Alvin; Fochler, Ed; McNew, Lauren; Rosenzweig, C. Nicole; Skowronski, Evan

    2012-01-01

    Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen. PMID:22359605

  6. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios

    PubMed Central

    Loya, Yossi; Stone, Lewi

    2015-01-01

    Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly

  7. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios.

    PubMed

    Zvuloni, Assaf; Artzy-Randrup, Yael; Katriel, Guy; Loya, Yossi; Stone, Lewi

    2015-06-01

    Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly

  8. Potential role of viruses in white plague coral disease.

    PubMed

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  9. [Recombinant viruses of poultry as vector vaccines against fowl plague].

    PubMed

    Fuchs, Walter; Veits, Jutta; Mettenleiter, Thomas C

    2006-01-01

    To help in the control of fowl plague caused by highly pathogenic avian influenza A viruses of hemagglutinin (HA) subtypes H5 and H7 several vaccines have been developed. A prophylactic immunization of poultry with inactivated influenza viruses in non-endemic situations is questionable, however, due to the impairment of serological identification of field virus-infected animals which hinders elimination of the infectious agent from the population. This problem might be overcome by the use of genetically engineered marker vaccines which contain only the protective influenza virus hemagglutinin. Infected animals could then be unambiguously identified by their serum antibodies against other influenza virus proteins, e.g. neuraminidase or nucleoprotein. For such a use, purified HA or HA-expressing DNA vaccines are conceivable. Economically advantageous and easier to apply are modified live virus vaccines in use against other poultry diseases, which have been modified to express influenza virus HA. So far, recombinant HA-expressing fowlpox virus (FPV) as well as infectious laryngotracheitis and Newcastle disease viruses have been asssessed in animal experiments. An H5-expressing FPV recombinant is already in use in Central America and Southeast Asia but without accompanying marker diagnostics. Advantages and disadvantages of the different viral vectors are discussed.

  10. Duck plague: carrier state and gross pathology in black ducks

    USGS Publications Warehouse

    Ossa, Jorge E.

    1975-01-01

    Duck plague (UP) is a highly fatal disease of ducks, geese, and swans (family Anatidae), produced by a reticulo-endotheliotrophic virus classified as a member of the Herpesvirus group. The disease was recognized in Europe in 1949. On the American continent, the disease was first diagnosed in the United States in 1967. Very little is known of DP virus ecology, particularly of the mechanisms of interepizootic survival and movement. The tendency of the IIerpesviruses to enter into a quiescent state after an overt or inapparent infection is a proven characteristic for most of the members of this group. Herpes simplex, which is the model of the Herpesviruses, is said to be the classical example of a persistent recurrent viral infection. Burnet and Williams (4) were the first to recognize this kind of relationship between herpes simplex and its host in 1939. Later, it was found that the reactivation of the virus can be brought on by a variety of stimuli either physiological (menstruation), pathological (anaphylactic shock), chemical (pesticides) or physical (sunburn). This same latency property has been proved for every member of this group of viruses which has been studied adequately, DP is among the few Herpesviruses for which the carrier state has not been demonstrated, but there is circumstantial evidence suggesting it. The carrier state for DP seems to be a likely explanation for the persistence and the particular pattern of movement of this disease.

  11. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs.

    PubMed

    Busch, Joseph D; Van Andel, Roger; Stone, Nathan E; Cobble, Kacy R; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William; Shuey, Megan M; Foster, Jeffrey T; Schupp, James M; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L; Rocke, Tonie E; Wagner, David M

    2013-10-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  12. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs

    USGS Publications Warehouse

    Busch, Joseph D.; Van Andel, Roger; Stone, Nathan E.; Cobble, Kacy R.; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William E.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L.; Rocke, Tonie E.; Wagner, David M.

    2013-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  13. Duration of plague (Yersinia pestis) outbreaks in black-tailed prairie dog (Cynomys ludovicianus) colonies of northern Colorado.

    PubMed

    St Romain, Krista; Tripp, Daniel W; Salkeld, Daniel J; Antolin, Michael F

    2013-09-01

    Plague, caused by the bacterium Yersinia pestis, triggers die-offs in colonies of black-tailed prairie dogs (Cynomys ludovicianus), but the time-frame of plague activity is not well understood. We document plague activity in fleas from prairie dogs and their burrows on three prairie dog colonies that suffered die-offs. We demonstrate that Y. pestis transmission occurs over periods from several months to over a year in prairie dog populations before observed die-offs.

  14. A historical vignette (15). "Be proud of yourself: you have a history!" The nose and the plague.

    PubMed

    Tainmont, J

    2009-01-01

    The nose and the plague. Although the plague does not cause any specific nasal pathology, the miasma theory and the repulsive smell of the disease were factors that contributed to a strong emphasis on the nose. To stop the spread of the disease, it was thought necessary to saturate the nose with protective scents (hence the nose of the plague doctors) (Figure 1), or simply to hold one's nose. Moreover, the nose was long considered to be an outlet for mucus from the encephalon, and so induced nose bleeding and sneezing were advised when the plague seemed to be attacking the brain.

  15. Epidemiological analysis of the Eyam plague outbreak of 1665–1666

    PubMed Central

    Whittles, Lilith K.

    2016-01-01

    Plague, caused by the bacterium Yersinia pestis, is one of the deadliest infectious diseases in human history, and still causes worrying outbreaks in Africa and South America. Despite the historical and current importance of plague, several questions remain unanswered concerning its transmission routes and infection risk factors. The plague outbreak that started in September 1665 in the Derbyshire village of Eyam claimed 257 lives over 14 months, wiping out entire families. Since previous attempts at modelling the Eyam plague, new data have been unearthed from parish records revealing a much more complete record of the disease. Using a stochastic compartmental model and Bayesian analytical methods, we found that both rodent-to-human and human-to-human transmission played an important role in spreading the infection, and that they accounted, respectively, for a quarter and three-quarters of all infections, with a statistically significant seasonality effect. We also found that the force of infection was stronger for infectious individuals living in the same household compared with the rest of the village. Poverty significantly increased the risk of disease, whereas adulthood decreased the risk. These results on the Eyam outbreak contribute to the current debate on the relative importance of plague transmission routes. PMID:27170724

  16. Sylvatic plague reduces genetic variability in black-tailed prairie dogs.

    PubMed

    Trudeau, Kristie M; Britten, Hugh B; Restani, Marco

    2004-04-01

    Small, isolated populations are vulnerable to loss of genetic diversity through in-breeding and genetic drift. Sylvatic plague due to infection by the bacterium Yersinia pestis caused an epizootic in the early 1990s resullting in declines and extirpations of many black-tailed prairie dog (Cynomys ludovicianus) colonies in north-central Montana, USA. Plague-induced population bottlenecks may contribute to significant reductions in genetic variability. In contrast, gene flow maintains genetic variability within colonies. We investigated the impacts of the plague epizootic and distance to nearest colony on levels of genetic variability in six prairie dog colonies sampled between June 1999 and July 2001 using 24 variable randomly amplified polymorphic DNA (RAPD) markers. Number of effective alleles per locus (n(e)) and gene diversity (h) were significantly decreased in the three colonies affected by plague that were recovering from the resulting bottlenecks compared with the three colonies that did not experience plague. Genetic variability was not significantly affected by geographic distance between colonies. The majority of variance in gene fieqnencies was found within prairie clog colonies. Conservation of genetic variability in black-tailed prairie dogs will require the preservation of both large and small colony complexes and the gene flow amonog them.

  17. A High-Coverage Yersinia pestis Genome from a Sixth-Century Justinianic Plague Victim

    PubMed Central

    Feldman, Michal; Harbeck, Michaela; Keller, Marcel; Spyrou, Maria A.; Rott, Andreas; Trautmann, Bernd; Scholz, Holger C.; Päffgen, Bernd; Peters, Joris; McCormick, Michael; Bos, Kirsten; Herbig, Alexander; Krause, Johannes

    2016-01-01

    The Justinianic Plague, which started in the sixth century and lasted to the mid eighth century, is thought to be the first of three historically documented plague pandemics causing massive casualties. Historical accounts and molecular data suggest the bacterium Yersinia pestis as its etiological agent. Here we present a new high-coverage (17.9-fold) Y. pestis genome obtained from a sixth-century skeleton recovered from a southern German burial site close to Munich. The reconstructed genome enabled the detection of 30 unique substitutions as well as structural differences that have not been previously described. We report indels affecting a lacl family transcription regulator gene as well as nonsynonymous substitutions in the nrdE, fadJ, and pcp genes, that have been suggested as plague virulence determinants or have been shown to be upregulated in different models of plague infection. In addition, we identify 19 false positive substitutions in a previously published lower-coverage Y. pestis genome from another archaeological site of the same time period and geographical region that is otherwise genetically identical to the high-coverage genome sequence reported here, suggesting low-genetic diversity of the plague during the sixth century in rural southern Germany. PMID:27578768

  18. Vegetation habitats and small mammals in a plague endemic area in Western Usambara Mountains, Tanzania.

    PubMed

    Ralaizafisoloarivony, Njaka A; Kimaro, Didas N; Kihupi, Nganga I; Mulungu, Loth S; Leirs, Herwig; Msanya, Balthazar M; Deckers, Jozef A; Gulinck, Hubert

    2014-07-01

    Human plague still exists in different parts of the world, including some landscapes in north-eastern Tanzania. Wherever the hotspot of plague, small mammals seem to play a key role as host. The objective of this study was to investigate the relationship between vegetation habitats types and small mammals in a plague endemic area of Lushoto District in Tanzania. A combination of field survey and Landsat images was used to identify the vegetation habitats. Small mammals were trapped in the mapped vegetation units, and identified. In total, six main types of vegetation habitats were investigated. A total of 13 small mammal species, potentially related to plague were trapped. Results show that annual cultivated crops habitat accounted for 80% of Mastomys natalensis while natural forest accounted for 60% of Praomys delectorum. These findings have shed new light on the diversity of rodents in different habitats of natural and semi-natural vegetations, and agricultural crops in the study area, which is an important intermediate step in unravelling the complex human plague system.

  19. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides.

    PubMed

    Miarinjara, Adélaïde; Boyer, Sébastien

    2016-02-01

    Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.

  20. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides

    PubMed Central

    Miarinjara, Adélaïde; Boyer, Sébastien

    2016-01-01

    Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar. PMID:26844772

  1. Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis)

    USGS Publications Warehouse

    Rocke, T.E.; Iams, Keith P.; Dawe, S.; Smith, S.R.; Williamson, J.L.; Heisey, D.M.; Osorio, J.E.

    2009-01-01

    In previous studies, we demonstrated protection against plague in mice and prairie dogs using a raccoon pox (RCN) virus-vectored vaccine that expressed the F1 capsular antigen of Yersinia pestis. In order to improve vaccine efficacy, we have now constructed additional RCN-plague vaccines containing two different forms of the lcrV (V) gene, including full-length (Vfull) and a truncated form (V307). Mouse challenge studies with Y. pestis strain CO92 showed that vaccination with a combination of RCN-F1 and the truncated V construct (RCN-V307) provided the greatest improvement (P = 0.01) in protection against plague over vaccination with RCN-F1 alone. This effect was mediated primarily by anti-F1 and anti-V antibodies and both contributed independently to increased survival of vaccinated mice.

  2. The plague of Thebes, a historical epidemic in Sophocles' Oedipus Rex.

    PubMed

    Kousoulis, Antonis A; Economopoulos, Konstantinos P; Poulakou-Rebelakou, Effie; Androutsos, George; Tsiodras, Sotirios

    2012-01-01

    Sophocles, one of the most noted playwrights of the ancient world, wrote the tragedy Oedipus Rex in the first half of the decade 430-420 bc. A lethal plague is described in this drama. We adopted a critical approach to Oedipus Rex in analyzing the literary description of the disease, unraveling its clinical features, and defining a possible underlying cause. Our goals were to clarify whether the plague described in Oedipus Rex reflects an actual historical event; to compare it with the plague of Athens, which was described by Thucydides as occurring around the same time Sophocles wrote; and to propose a likely causative pathogen. A critical reading of Oedipus Rex and a comparison with Thucydides' history, as well as a systematic review of historical data, strongly suggests that this epidemic was an actual event, possibly caused by Brucella abortus.

  3. Yersinia-flea interactions and the evolution of the arthropod-borne transmission route of plague

    PubMed Central

    Chouikha, Iman; Hinnebusch, B. Joseph

    2012-01-01

    Yersinia pestis, the causative agent of plague, is unique among the enteric group of Gram-negative bacteria in relying on a blood-feeding insect for transmission. The Yersinia-flea interactions that enable plague transmission cycles have had profound historical consequences as manifested by human plague pandemics. The arthropod-borne transmission route was a radical ecologic change from the food- and water-borne transmission route of Yersinia pseudotuberculosis, from which Y. pestis diverged only within the last 20,000 years. Thus, the interactions of Y. pestis with its flea vector that lead to colonization and successful transmission are the result of a recent evolutionary adaptation that required relatively few genetic changes. These changes from the Y. pseudotuberculosis progenitor included loss of insecticidal activity, increased resistance to antibacterial factors in the flea midgut, and extending Yersinia biofilm-forming ability to the flea host environment. PMID:22406208

  4. The Plague of Thebes, a Historical Epidemic in Sophocles’ Oedipus Rex

    PubMed Central

    Economopoulos, Konstantinos P.; Poulakou-Rebelakou, Effie; Androutsos, George; Tsiodras, Sotirios

    2012-01-01

    Sophocles, one of the most noted playwrights of the ancient world, wrote the tragedy Oedipus Rex in the first half of the decade 430–420 bc. A lethal plague is described in this drama. We adopted a critical approach to Oedipus Rex in analyzing the literary description of the disease, unraveling its clinical features, and defining a possible underlying cause. Our goals were to clarify whether the plague described in Oedipus Rex reflects an actual historical event; to compare it with the plague of Athens, which was described by Thucydides as occurring around the same time Sophocles wrote; and to propose a likely causative pathogen. A critical reading of Oedipus Rex and a comparison with Thucydides’ history, as well as a systematic review of historical data, strongly suggests that this epidemic was an actual event, possibly caused by Brucella abortus. PMID:22261081

  5. [A NATURAL PLAGUE FOCUS. IN GORNYI ALTAI: FORMATION, DEVELOPMENT, AND FUNCTIONING].

    PubMed

    Korzun, V M; Balakhoiov, S V; Chpanin, E V; Denisov, A V; Mikhailov, E P; Mischenko, A J; Yarygina, M B; Rozhdestvensky, E N; Fomina, L A

    2016-01-01

    The paper gives the results of analyzing the data of long-term studies of the natural focal pattern of plague in the Gornyi Altai natural focus. It describes a wide range of biological processes occurring in the focus and shows the most important patterns of its functioning as a complex multilevel ecological system. The key features of the formation of the focus have been revealed. The plague focus in South-Western Altai has formed relatively, recently, about half a century ago, then it has intensively developed and its enzootic area and the activity of epizootic manifestations have considerably increased. This process is due to the space-time transformations of the basic ecological and population characteristics of Pallas' pika (Ochotoma pallasi), the principal vector of the pathogen of plague and fleas parasitizing the mammal, which is in turn related to the aridization of mountain steppes in South-Western Altai.

  6. Controlling Ebola: what we can learn from China's 1911 battle against the pneumonic plague in Manchuria.

    PubMed

    Liu, He; Jiao, Mingli; Zhao, Siqi; Xing, Kai; Li, Ye; Ning, Ning; Liang, Libo; Wu, Qunhong; Hao, Yanhua

    2015-04-01

    The pneumonic plague, which spread across Northeast China during the winter of 1910 and spring of 1911, caused numerous deaths and brought about severe social turmoil. After compulsory quarantine and other epidemic prevention measures were enforced by Dr Wu Lien-teh, the epidemic was brought to an end within 4 months. This article reviews the ways in which the plague was dealt with from a historical perspective, based on factors such as clinical manifestations, duration of illness, case fatality rate, degree of transmissibility, poverty, inadequate healthcare infrastructure, and the region's recent strife-filled history. Similarities were sought between the pneumonic plague in Northeast China in the twentieth century and the Ebola virus outbreak that is currently ravaging Africa, and an effort made to summarize the ways in which specific measures were applied successfully to fight the earlier epidemic. Our efforts highlight valuable experiences that are of potential benefit in helping to fight the current rampant Ebola epidemic in West Africa.

  7. Post-epizootic surveys of waterfowl for duck plague (duck virus enteritis)

    USGS Publications Warehouse

    Brand, C.J.; Docherty, D.E.

    1988-01-01

    Surviving birds from nine duck plague outbreaks in urban and confined waterfowl were sampled for duck plague (DP) virus and DP antibody during 1979-86. Duck plague virus was found in combined oral and cloacal swabs of birds from three outbreaks, and DP-neutralizing antibody was demonstrated in some birds from all nine outbreaks. Greater prevalence of DP antibody and higher titers were found in survivors from confined populations than from free-flying urban populations. Free-flying waterfowl from within 52 km of four DP outbreak sites were also sampled; virus was not found in any birds, but DP antibody was found in urban waterfowl in the vicinity of an outbreak in Potterville, Michigan. No evidence of exposure to or shedding of DP virus in migratory waterfowl was found in two regions where DP appears enzootic in urban and confined waterfowl (Eastern Shore of Maryland and the vicinity of Sacramento, California).

  8. Classic flea-borne transmission does not drive plague epizootics in prairie dogs.

    PubMed

    Webb, Colleen T; Brooks, Christopher P; Gage, Kenneth L; Antolin, Michael F

    2006-04-18

    We lack a clear understanding of the enzootic maintenance of the bacterium (Yersinia pestis) that causes plague and the sporadic epizootics that occur in its natural rodent hosts. A key to elucidating these epidemiological dynamics is determining the dominant transmission routes of plague. Plague can be acquired from the bites of infectious fleas (which is generally considered to occur via a blocked flea vector), inhalation of infectious respiratory droplets, or contact with a short-term infectious reservoir. We present results from a plague modeling approach that includes transmission from all three sources of infection simultaneously and uses sensitivity analysis to determine their relative importance. Our model is completely parameterized by using data from the literature and our own field studies of plague in the black-tailed prairie dog (Cynomys ludovicianus). Results of the model are qualitatively and quantitatively consistent with independent data from our field sites. Although infectious fleas might be an important source of infection and transmission via blocked fleas is a dominant paradigm in the literature, our model clearly predicts that this form of transmission cannot drive epizootics in prairie dogs. Rather, a short-term reservoir is required for epizootic dynamics. Several short-term reservoirs have the potential to affect the prairie dog system. Our model predictions of the residence time of the short-term reservoir suggest that other small mammals, infectious prairie dog carcasses, fleas that transmit plague without blockage of the digestive tract, or some combination of these three are the most likely of the candidate infectious reservoirs.

  9. [Preventive measures against plague and the control of Chinese coolies in colonial Korea].

    PubMed

    Kim, Youngsoo

    2014-12-01

    This paper aims to examine the preventive measures taken against the plague in colonial Korea, particularly as applied to the control of Chinese coolies in 1911, soon after the annexation. The Government General of Korea began preventive measures with a train quarantine in Shin'uiju and Incheon in response to the spread of the plague to the Southern Manchuria. Shin' uiju had become urbanized due the development of the transportation network, and the seaport of Incheon was the major hub for traffic with China. Examining the transportation routes for the entry and exit of Chinese to and from Korea makes clear the reason why the Korea Government General initiated preventive measures in mid-January, 1911. The Government General of Korea tried to block the entry of Chinese through the land border crossing with China and through ports of entry, primarily Incheon. During the implementation of the preventive measures, quarantine facilities were built, including a quarantine station and isolation facility in Incheon. It was also needed to investigate the population and residential locations of Chinese in Korea to prevent the spread of plague. A certificate of residence was issued to all Chinese in Korea, which they needed to carry when they travelled. The preventive measures against plague which broke out in Manchuria were removed gradually. However, there was no specific measures against Chinese coolies, those who had migrated from China to work in the spring in Korea. Still the Government General of Korea had doubt about an infection of the respiratory system. As a result, the labor market in colonial Korea underwent changes in this period. The Government General recruited Korean laborers, instead of Chinese coolies whose employment had been planned. This move explains the Government General's strong preventive measures against plague and uncertainty in the route of plague infection, which influenced subsequent regulations on the prohibition of Chinese coolies working on

  10. Classic flea-borne transmission does not drive plague epizootics in prairie dogs

    PubMed Central

    Webb, Colleen T.; Brooks, Christopher P.; Gage, Kenneth L.; Antolin, Michael F.

    2006-01-01

    We lack a clear understanding of the enzootic maintenance of the bacterium (Yersinia pestis) that causes plague and the sporadic epizootics that occur in its natural rodent hosts. A key to elucidating these epidemiological dynamics is determining the dominant transmission routes of plague. Plague can be acquired from the bites of infectious fleas (which is generally considered to occur via a blocked flea vector), inhalation of infectious respiratory droplets, or contact with a short-term infectious reservoir. We present results from a plague modeling approach that includes transmission from all three sources of infection simultaneously and uses sensitivity analysis to determine their relative importance. Our model is completely parameterized by using data from the literature and our own field studies of plague in the black-tailed prairie dog (Cynomys ludovicianus). Results of the model are qualitatively and quantitatively consistent with independent data from our field sites. Although infectious fleas might be an important source of infection and transmission via blocked fleas is a dominant paradigm in the literature, our model clearly predicts that this form of transmission cannot drive epizootics in prairie dogs. Rather, a short-term reservoir is required for epizootic dynamics. Several short-term reservoirs have the potential to affect the prairie dog system. Our model predictions of the residence time of the short-term reservoir suggest that other small mammals, infectious prairie dog carcasses, fleas that transmit plague without blockage of the digestive tract, or some combination of these three are the most likely of the candidate infectious reservoirs. PMID:16603630

  11. Scavenging by mammalian carnivores on prairie dog colonies: implications for the spread of plague.

    PubMed

    Boone, Amanda; Kraft, John P; Stapp, Paul

    2009-04-01

    Plague causes mass mortality of prairie dogs (Cynomys ludovicianus) in shortgrass steppe. Although the pathogen, the bacterium Yersinia pestis, is spread within colonies by flea bites or contact between infected hosts, it is unclear how Y. pestis is transported over long distances between isolated colonies. One possibility is that wideranging, plague-resistant mammalian carnivores pick up fleas when scavenging prairie dog carcasses. Using guinea pigs as surrogates for prairie dogs, we compared how quickly scavengers discovered carcasses on active prairie dog colonies, on colonies recently extirpated by plague, and in grasslands without prairie dogs. In June-July 2007, we monitored the fates of 20 guinea pig carcasses for 4 consecutive days on each site type. Ten carcasses were placed in wire exclosures that restricted access only to arthropods and small rodents; the other 10 were exposed to all scavengers. Scavengers were identified by tracks, evidence of consumption, and/or remote cameras. Carnivores discovered carcasses more quickly on active and plague colonies (mean +/- 95% confidence interval [CI]: 1.6 +/- 0.7, 1.4 +/- 1.4 days, respectively) than on grasslands (3.1 +/- 0.7 days). By the end of the trials, all (100%) exposed carcasses were removed from active colonies, whereas 60% were removed from plague colonies and 30% were removed from grasslands. Rates of carcass discovery and removal on active colonies were significantly greater than in grasslands, which mirrored differences in carnivore activity recorded during earlier scat surveys. A small fraction (30%-40%) of carcasses in exclosures were eaten by rodents, but only on active and plague colonies, suggesting that small rodents, presumably grasshopper mice (Onychomys leucogaster), may also consume carcasses and pick up fleas if carcasses are not removed by carnivores first. These results, combined with observations that fleas remain alive on prairie dogs at least 1 day following their death, suggest that

  12. Use of Rhodamine B as a biomarker for oral plague vaccination of prairie dogs

    USGS Publications Warehouse

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E.

    2011-01-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of C. ludovicianus) when used at concentrations <0.5% of bait mass dosed to deliver >10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  13. [The plague and iron - or why didn't everybody die?].

    PubMed

    Palmblad, J

    1994-01-01

    In the years of the Black Death, contemporary observers noted that wealthy men were more likely to die from plague than women and the poor. One hypothesis, seeking an explanation for this phenomenon, is that the iron stores of an individual are a significant virulence factor for Yersina pestis, since this microorganism is dependent on iron for its multiplication. Thus, iron deficiency might confer some protection, whereas sufficient or even overabundant body iron stores contribute to the mortality in plague as well as in some other infectious diseases.

  14. Socio-epidemiological determinants of 2002 plague outbreak in Himachal Pradesh, India: a qualitative study

    PubMed Central

    2014-01-01

    Background This qualitative investigation was conducted to determine the socio-epidemiological factors related to the plague outbreak (2002) in Himachal Pradesh (HP), India. Methods The data for socio-epidemiological factors related to the plague outbreak (2002) in HP was obtained from residents through 150 in-depth Interviews (IDI) and 30 Focus Group Discussions (FGD) during six visits (from May 2011 to April 2012) by the research team. Natives, health officials and the nomadic population were interviewed. According to their opinion and viewpoints data was collected and their lifestyle and hunting practices were studied in detail. Tape recorders were used during various FGDs and IDIs. The interviews and FGDs were later transcribed and coded. In-depth analysis of the recorded data was done using an inductive thematic analysis approach. Results The study reports that the outbreak in 2002 in a few villages of Himachal Pradesh was that of plague and it occurred by the contact of an index case with wild animals after hunting and de-skinning. The first wave of plague transmission which took 16 lives of residents was followed by a second wave of transmission in a ward of a tertiary care hospital where one visitor acquired it from relatives of the index case and succumbed. The life-style practices of residents (hunting behavior, long stay in caves and jungles, overcrowding in houses, poor hygiene and sanitation, belief in ‘God’ and faith healers for cure of diseases) was optimal for the occurrence and rapid spread of such a communicable disease. The man-rodent contact is intensified due to the practice of hunting in such a rodent-ridden environment. The residents harbor a strong belief that plague occurs due to the wrath of gods. Various un-reported outbreaks of plague were also observed by officials, residents and old folk. The persistence of plague in HP is favoured by its hilly terrain, inaccessible areas, inclement weather (snow) in winters, unhygienic lifestyle

  15. Spatial analysis and identification of high risk plague regions in Pakistan based on associated rodent species distribution.

    PubMed

    Shabbir, Madiha; Aleem, Maha; Javed, Sundus; Wagner, David M; Keim, Paul S; Eqani, Syed Ali Musstjab Akbar Shah; Bokhari, Habib

    2016-08-02

    Plague, caused by Yersinia pestitis, is an infectious bacterial disease that has a high fatality rate if untreated. Rodents are plague reservoirs and play an important role in disease spread. Plague cases have been reported extensively since the second pandemic from the 14th century in countries sharing borders with Pakistan, such as China and India, as well as nearby countries including Russia and central Asia. Despite being centrally located in a plague-infested geographical zone, there has been no plague incidence reported from Pakistan. This study aims to pinpoint some of the potentially important aspects of the disease, which have to be considered when assessing potential risk associated with a plague outbreak in Pakistan. In this context, the occurrence and distribution of plague-associated rodent reservoirs in different regions of Pakistan in relation to those found in the neighboring countries were mapped. In addition, the climatic factors that may also influence disease spread by affecting the growth of the bacteria are also discussed. The combined epidemiological and ecological surveillance studies suggest a prevalence of several potential rodent carriers in certain districts with the possibility of a plague outbreak in Pakistan.

  16. A cluster of primary pneumonic plague transmitted in a truck cab in a new enzootic focus in China.

    PubMed

    Luo, Huiming; Dong, Xingqi; Li, Furong; Xie, Xu; Song, Zhizhong; Shao, Zhujun; Li, Zhongjie; Tong, Zhaohui; Wang, Guangfa; Zhang, Hongtao; Yang, Tielong; He, Gao; He, Zeyuan; Fontaine, Robert E; Zeng, Guang

    2013-05-01

    We investigated a cluster of five cases of severe pneumonia from one village in Yunnan Province, China. We searched for severe pneumonia in the village and hospitals. We interviewed patients and family members about exposures. We tested acute and convalescent sera for antigen and antibody of severe acute respiratory syndrome, avian influenza, and plague. The only common exposure of the five patients was riding together in the enclosed cab of a truck for 1.5 hours while taking the first patient to the hospital. Seroconversion to plague F1 antigen confirmed plague in three survivors. Unfamiliarity of clinicians with plague and lack of sputum examination, blood culture, or postmortem examination delayed the diagnosis. No plague cases occurred among family and village contacts and health care workers. High infectivity in this cluster was limited to a crowded, poorly ventilated truck.

  17. Contrasted patterns of selection on MHC-linked microsatellites in natural populations of the Malagasy plague reservoir.

    PubMed

    Tollenaere, Charlotte; Ivanova, Svilena; Duplantier, Jean-Marc; Loiseau, Anne; Rahalison, Lila; Rahelinirina, Soanandrasana; Brouat, Carine

    2012-01-01

    Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.

  18. Protecting Black-Footed Ferrets and Prairie Dogs Against Sylvatic Plague

    USGS Publications Warehouse

    Rocke, Tonie E.

    2008-01-01

    Scientists at the USGS National Wildlife Health Center (NWHC), in collaboration with colleagues at other federal agencies and the University of Wisconsin, are developing and testing vaccines that can be used to protect black-footed ferrets and prairie dogs against plague. The black-footed ferret is commonly regarded as the most endangered mammal in North America, and sylvatic plague is a major impediment to its recovery. The three prairie dog species (Gunnison's, black-tailed, and white-tailed prairie dogs), upon which the ferret depends for food and whose burrows they use for shelter, have been drastically reduced from historical levels, resulting in the near extinction of the ferret. All three species are considered 'at risk' and have been petitioned for listing as 'threatened' or 'endangered' by the U.S. Fish and Wildlife Service (FWS). Additionally, the Utah prairie dog is listed as threatened and the Mexican prairie dog is considered endangered in Mexico. Like the black-footed ferret, all five prairie dog species are highly susceptible to plague and regularly experience outbreaks with devastating losses. Controlling plague outbreaks in prairie dogs and ferrets is a vital concern for ongoing recovery programs and conservation efforts for both species.

  19. A Scottish doctor's association with the discovery of the plague bacillus.

    PubMed

    Yule, W L

    1995-12-01

    Plague killed at least a quarter of the population of Europe in 1348. This was the first wave of the epidemic known as 'The Black Death' which continued for two years and then recurred sporadically till the late 17th Century. In London in 1603, 22.6% of the population died from plague and in the outbreak known as The Great Plague of London in 1694 there were over 70,000 deaths out of a population of 460,000. Many English villages were completely wiped out at this time. Marseilles suffered severely in 1720. The next serious outbreak was in Canton in China in 1894, the disease spreading to Hong Kong. 80,000 died, the great majority of these being in China. A Scottish doctor played an important part in the management of this epidemic when it reached the British colony, and by chance found himself on the periphery of the controversy about who first discovered Yersinia Pestis, the Gram negative bacillus that causes plague.

  20. Monitoring the plague of oriental migratory locust using multi-temporal Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbo; Ni, Shaoxiang; Zha, Yong; Shi, Xuezheng

    2006-03-01

    Locust plague is a kind of the world-wide biological calamity to agriculture. In China's history, more than 90% of locust plagues were caused by the oriental migratory locust, Locusta migratoria manilensis (Meyen). At the present time, it is difficult for monitoring and forecasting systems in this country to provide real time information of locust plague outbreak in large area. In order to adopt timely measures for prevention and control of locust outbreak, it is necessary to apply advanced remote sensing technology for monitoring and forecasting locust outbreak This paper introduces a case study on monitoring oriental migratory locust plague with remote sensing technology in 3 pilot sites, namely, Huangzao, Yangguangzhuang, and Tengnan, which were the 3 major locust damaged areas in Huanghua City, Hebei Province, China during the period of large scale oriental migratory locust breakout in 2002. In this study, locust damage intensity, areas with various damage intensities and their distribution in pilot sites are determined by means of comparison between Landsat ETM+ image of locust damaged vegetation on 31st May, 2002 and TM image of healthy vegetation before damage on 23rd May, 2002. Then, information of various locust distribution density in pilot sites is extracted by establishing the Locust Density Index (LDI).

  1. Detections of Yersinia pestis East of the Known Distribution of Active Plague in the United States.

    PubMed

    Mize, Erica L; Britten, Hugh B

    2016-02-01

    We examined fleas collected from black-tailed prairie dog (Cynomys ludovicianus) burrows from 2009 through 2011 in five national park units east of the known distribution of active plague across the northern Great Plains for the presence of Yersinia pestis. Across all national park units, Oropsylla tuberculata and Oropsylla hirsuta were the most common fleas collected from prairie dog burrows, 42.4% and 56.9%, respectively, of the 3964 fleas collected from burrow swabbing. Using a nested PCR assay, we detected 200 Y. pestis-positive fleas from 3117 assays. In total, 6.4% of assayed fleas were Y. pestis positive and 13.9% of prairie dog burrows swabbed contained Y. pestis-positive fleas. Evidence of the presence of Y. pestis was observed at all national park units except Devils Tower National Monument in Wyoming. We detected the presence of Y. pestis without large die-offs, i.e., enzootic sylvatic plague, east of the known distribution of active plague and near the eastern edge of the present distribution of black-tailed prairie dogs. This study, in combination with previous work suggests that sylvatic plague likely occurs across the range of black-tailed prairie dogs and should now be treated as endemic across this range.

  2. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus

    PubMed Central

    Bos, Kirsten I; Herbig, Alexander; Sahl, Jason; Waglechner, Nicholas; Fourment, Mathieu; Forrest, Stephen A; Klunk, Jennifer; Schuenemann, Verena J; Poinar, Debi; Kuch, Melanie; Golding, G Brian; Dutour, Olivier; Keim, Paul; Wagner, David M; Holmes, Edward C; Krause, Johannes; Poinar, Hendrik N

    2016-01-01

    The 14th–18th century pandemic of Yersinia pestis caused devastating disease outbreaks in Europe for almost 400 years. The reasons for plague’s persistence and abrupt disappearance in Europe are poorly understood, but could have been due to either the presence of now-extinct plague foci in Europe itself, or successive disease introductions from other locations. Here we present five Y. pestis genomes from one of the last European outbreaks of plague, from 1722 in Marseille, France. The lineage identified has not been found in any extant Y. pestis foci sampled to date, and has its ancestry in strains obtained from victims of the 14th century Black Death. These data suggest the existence of a previously uncharacterized historical plague focus that persisted for at least three centuries. We propose that this disease source may have been responsible for the many resurgences of plague in Europe following the Black Death. DOI: http://dx.doi.org/10.7554/eLife.12994.001 PMID:26795402

  3. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis.

    PubMed

    Achtman, M; Zurth, K; Morelli, G; Torrea, G; Guiyoule, A; Carniel, E

    1999-11-23

    Plague, one of the most devastating diseases of human history, is caused by Yersinia pestis. In this study, we analyzed the population genetic structure of Y. pestis and the two other pathogenic Yersinia species, Y. pseudotuberculosis and Y. enterocolitica. Fragments of five housekeeping genes and a gene involved in the synthesis of lipopolysaccharide were sequenced from 36 strains representing the global diversity of Y. pestis and from 12-13 strains from each of the other species. No sequence diversity was found in any Y. pestis gene, and these alleles were identical or nearly identical to alleles from Y. pseudotuberculosis. Thus, Y. pestis is a clone that evolved from Y. pseudotuberculosis 1,500-20,000 years ago, shortly before the first known pandemics of human plague. Three biovars (Antiqua, Medievalis, and Orientalis) have been distinguished by microbiologists within the Y. pestis clone. These biovars form distinct branches of a phylogenetic tree based on restriction fragment length polymorphisms of the locations of the IS100 insertion element. These data are consistent with previous inferences that Antiqua caused a plague pandemic in the sixth century, Medievalis caused the Black Death and subsequent epidemics during the second pandemic wave, and Orientalis caused the current plague pandemic.

  4. Utility of Respiratory Vaccination With Recombinant Subunit Vaccines for Protection Against Pneumonic Plague

    DTIC Science & Technology

    2002-01-01

    Immunity at mucosal sites can prevent pathogen infection of the host. A) oral poliovirus vaccine B) inhaled influenza vaccine C) kennel cough & Newcastle...Utility of respiratory vaccination with recombinant subunit vaccines for protection against pneumonic plague. Douglas S. Reed & Jennifer Smoll...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Utility of respiratory vaccination with recombinant subunit vaccines for

  5. SEROLOGICAL INTERRELATIONSHIPS BETWEEN THE PLAGUE MICROBE AND BACTERIA OF THE INTESTINAL GROUP

    DTIC Science & Technology

    31 cases (8.9%). Plague serum agglutinated 46 cultures of enterobacteria from various species out of 165 checked (27.8%). In the tests of the cross...microbe and enterobacteria . The presence in strains of P. pestis of antigens which are inherent to bacteria of the intestinal group was not connected with

  6. Enzootic plague reduces black-footed ferret (Mustela nigripes) survival in Montana

    USGS Publications Warehouse

    Matchett, Marc R.; Biggins, Dean E.; Carlson, Valerie; Powell, Bradford; Rocke, Tonie E.

    2010-01-01

    Black-footed ferrets (Mustela nigripes) require extensive prairie dog colonies (Cynomys spp.) to provide habitat and prey. Epizootic plague kills both prairie dogs and ferrets and is a major factor limiting recovery of the highly endangered ferret. In addition to epizootics, we hypothesized that enzootic plague, that is, presence of disease-causing Yersinia pestis without any noticeable prairie dog die off, may also affect ferret survival. We reduced risk of plague on portions of two ferret reintroduction areas by conducting flea control for 3 years. Beginning in 2004, about half of the ferrets residing on dusted and nondusted colonies were vaccinated against plague with an experimental vaccine (F1-V fusion protein). We evaluated 6-month reencounter rates (percentage of animals observed at the end of an interval that were known alive at the beginning of the interval), an index to survival, for ferrets in four treatment groups involving all combinations of vaccination and flea control. For captive-reared ferrets (115 individuals observed across 156 time intervals), reencounter rates were higher for vaccinates (0.44) than for nonvaccinates (0.23, p = 0.044) on colonies without flea control, but vaccination had no detectable effect on colonies with flea control (vaccinates = 0.41, nonvaccinates = 0.42, p = 0.754). Flea control resulted in higher reencounter rates for nonvaccinates (p = 0.026), but not for vaccinates (p = 0.508). The enhancement of survival due to vaccination or flea control supports the hypothesis that enzootic plague reduces ferret survival, even when there was no noticeable decline in prairie dog abundance. The collective effects of vaccination and flea control compel a conclusion that fleas are required for maintenance, and probably transmission, of plague at enzootic levels. Other studies have demonstrated similar effects of flea control on several species of prairie dogs and, when combined with this study, suggest

  7. [Measures taken against the plague in Diest in the fifteenth and sixteenth centuries].

    PubMed

    De Backer, C

    1999-01-01

    Older literature about the city of Diest reveals that in 1348 the plague wiped out half of the population; in 1439, 1523 and 1578-1579, the plague struck again. In the course of time the municipal authorities issued ordinances which were aimed at combating the disease and stopping it spreading. These ordinances were first published and then renewed or modified several times. This was done in the years 1469, 1483 and 1519. These texts have virtually the same contents and all contain about twenty articles of a prophylactic nature. A house where people had died of the plague had to remain shut for a number of months, and the relatives were not allowed in public for a while. Dirty water could not be emptied into the gutters, food had to be placed by the door, the clothes of those who were sick or who had died could not be washed in wells or in the river Demer and could not be sold, people caring for the sick had to wear a white sign, no one was allowed to take in any sick person from outside Diest, etc. Other articles are about refuse in the streets and pigs roaming around freely. Infringements were made punishable by fines, or if the perpetrators were insolvent, they had to make a pilgrimage to Strasbourg, Cologne or Rome. The ordinance of 1469 was issued again in 1472. It seems to be based on an ordinance of the city of Louvain, as this indication of the origin in the text was replaced by the word "Diest", and references to places in Diest were added. The ordinance of 1519 was confirmed in 1523, 1532, 1543-1544, 1558, 1574 and 1579. Separate regulations were issued in 1530, 1532-1533, 1573, 1578-1579, 1599. They relate to infected clothes and household articles, dung heaps, dead animals in the Demer, people who came into contact with anyone suffering from the plague, epidemics in the area, such as Beringen (1556) and Turnhout (1571). Diest also had municipal plague masters; these were surgeons. A number of names and data are known to us from municipal accounts from

  8. Enzootic plague reduces black-footed ferret (Mustela nigripes) survival in Montana.

    PubMed

    Matchett, Marc R; Biggins, Dean E; Carlson, Valerie; Powell, Bradford; Rocke, Tonie

    2010-01-01

    Black-footed ferrets (Mustela nigripes) require extensive prairie dog colonies (Cynomys spp.) to provide habitat and prey. Epizootic plague kills both prairie dogs and ferrets and is a major factor limiting recovery of the highly endangered ferret. In addition to epizootics, we hypothesized that enzootic plague, that is, presence of disease-causing Yersinia pestis without any noticeable prairie dog die off, may also affect ferret survival. We reduced risk of plague on portions of two ferret reintroduction areas by conducting flea control for 3 years. Beginning in 2004, about half of the ferrets residing on dusted and nondusted colonies were vaccinated against plague with an experimental vaccine (F1-V fusion protein). We evaluated 6-month reencounter rates (percentage of animals observed at the end of an interval that were known alive at the beginning of the interval), an index to survival, for ferrets in four treatment groups involving all combinations of vaccination and flea control. For captive-reared ferrets (115 individuals observed across 156 time intervals), reencounter rates were higher for vaccinates (0.44) than for nonvaccinates (0.23, p = 0.044) on colonies without flea control, but vaccination had no detectable effect on colonies with flea control (vaccinates = 0.41, nonvaccinates = 0.42, p = 0.754). Flea control resulted in higher reencounter rates for nonvaccinates (p = 0.026), but not for vaccinates (p = 0.508). The enhancement of survival due to vaccination or flea control supports the hypothesis that enzootic plague reduces ferret survival, even when there was no noticeable decline in prairie dog abundance. The collective effects of vaccination and flea control compel a conclusion that fleas are required for maintenance, and probably transmission, of plague at enzootic levels. Other studies have demonstrated similar effects of flea control on several species of prairie dogs and, when combined with this study, suggest that the effects of enzootic

  9. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague

    USGS Publications Warehouse

    Augustine, D.J.; Matchett, M.R.; Toombs, T.P.; Cully, J.F.; Johnson, T.L.; Sidle, John G.

    2008-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are a key component of the disturbance regime in semi-arid grasslands of central North America. Many studies have compared community and ecosystem characteristics on prairie dog colonies to grasslands without prairie dogs, but little is known about landscape-scale patterns of disturbance that prairie dog colony complexes may impose on grasslands over long time periods. We examined spatiotemporal dynamics in two prairie dog colony complexes in southeastern Colorado (Comanche) and northcentral Montana (Phillips County) that have been strongly influenced by plague, and compared them to a complex unaffected by plague in northwestern Nebraska (Oglala). Both plague-affected complexes exhibited substantial spatiotemporal variability in the area occupied during a decade, in contrast to the stability of colonies in the Oglala complex. However, the plague-affected complexes differed in spatial patterns of colony movement. Colonies in the Comanche complex in shortgrass steppe shifted locations over a decade. Only 10% of the area occupied in 1995 was still occupied by prairie dogs in 2006. In 2005 and 2006 respectively, 74 and 83% of the total area of the Comanche complex occurred in locations that were not occupied in 1995, and only 1% of the complex was occupied continuously over a decade. In contrast, prairie dogs in the Phillips County complex in mixed-grass prairie and sagebrush steppe primarily recolonized previously occupied areas after plague-induced colony declines. In Phillips County, 62% of the area occupied in 1993 was also occupied by prairie dogs in 2004, and 12% of the complex was occupied continuously over a decade. Our results indicate that plague accelerates spatiotemporal movement of prairie dog colonies, and have significant implications for landscape-scale effects of prairie dog disturbance on grassland composition and productivity. These findings highlight the need to combine landscape-scale measures of

  10. Exposure of small rodents to plague during epizootics in black-tailed prairie dogs.

    PubMed

    Stapp, Paul; Salkeld, Daniel J; Eisen, Rebecca J; Pappert, Ryan; Young, John; Carter, Leon G; Gage, Kenneth L; Tripp, Daniel W; Antolin, Michael F

    2008-07-01

    Plague, caused by the bacterium Yersinia pestis, causes die-offs of colonies of prairie dogs (Cynomys ludovicianus). It has been argued that other small rodents are reservoirs for plague, spreading disease during epizootics and maintaining the pathogen in the absence of prairie dogs; yet there is little empirical support for distinct enzootic and epizootic cycles. Between 2004 and 2006, we collected blood from small rodents captured in colonies in northern Colorado before, during, and for up to 2 yr after prairie dog epizootics. We screened 1,603 blood samples for antibodies to Y. pestis, using passive hemagglutination and inhibition tests, and for a subset of samples we cultured blood for the bacterium itself. Of the four species of rodents that were common in colonies, the northern grasshopper mouse (Onychomys leucogaster) was the only species with consistent evidence of plague infection during epizootics, with 11.1-23.1% of mice seropositive for antibody to Y. pestis during these events. Seropositive grasshopper mice, thirteen-lined ground squirrels (Spermophilus tridecemlineatus), and deer mice (Peromyscus maniculatus) were captured the year following epizootics. The appearance of antibodies to Y. pestis in grasshopper mice coincided with periods of high prairie dog mortality; subsequently, antibody prevalence rates declined, with no seropositive individuals captured 2 yr after epizootics. We did not detect plague in any rodents off of colonies, or on colonies prior to epizootics, and found no evidence of persistent Y. pestis infection in blood cultures. Our results suggest that grasshopper mice could be involved in epizootic spread of Y. pestis, and possibly, serve as a short-term reservoir for plague, but provide no evidence that the grasshopper mouse or any small rodent acts as a long-term, enzootic host for Y. pestis in prairie dog colonies.

  11. Modeling susceptible infective recovered dynamics and plague persistence in California rodent-flea communities.

    PubMed

    Foley, Patrick; Foley, Janet

    2010-01-01

    Plague persists as an enzootic in several very different rodent-flea communities around the world. In California, a diversity of rodent-flea communities maintains the disease, and a single-host reservoir seems unlikely. Logistic regression of plague presence on climate and topographic variables predicts plague in many localities where it is absent. Thus, a dynamic community-based analysis was needed. Deterministic Susceptible Infective Recovered (SIR) models were adapted for plague and analyzed with an eye for insights concerning disease persistence. An R simulation program, Plaguesirs, was developed incorporating multihost and multivector SIR dynamics, demographic and environmental stochasticity, density dependence, and seasonal variation in birth and death. Flea-rodent utilization matrices allowed us to get transmission rates as well as flea carrying capacities. Rodent densities allowed us to estimate host carrying capacities, while maximum birth rates were mainly approximated through an examination of litter phenology and demography. We ran a set of simulations to assess the role of community structure in maintaining plague in a simulated version of Chuchupate campground in Ventura County. Although the actual campground comprises 10 rodent and 19 flea species, we focused on a subset suspected to act as a reservoir community. This included the vole Microtus californicus, the deer mouse Peromyscus maniculatus, the Ceratophyllid fleas Aetheca wagneri and Malareus telchinum, and the Leptopsyllid flea Peromyscopsylla hesperomys. The dynamics of 21 subsets of this community were simulated for 20 years. Single-rodent communities showed much lower disease persistence than two-rodent communities. However, so long as Malareus was present, endemicity was enhanced; removal of the other two fleas slightly increased disease persistence. Two critical features improved disease persistence: (1) host breeding season heterogeneity and (2) host population augmentation (due to two

  12. Highly Effective Soluble and Bacteriophage T4 Nanoparticle Plague Vaccines Against Yersinia pestis

    PubMed Central

    Tao, Pan; Mahalingam, Marthandan; Rao, Venigalla B.

    2016-01-01

    Plague caused by Yersinia pestis is an ancient disease, responsible for millions of deaths in human history. Unfortunately, there is no FDA-approved vaccine available. Recombinant subunit vaccines based on two major antigens, Caf 1 (F1) and LcrV (V), have been under investigation and showed promise. However, there are two main problems associated with these vaccines. First, the Yersinia capsular protein F1 has high propensity to aggregate, particularly when expressed in heterologous systems such as Escherichia coli, thus affecting vaccine quality and efficacy. Second, the subunit vaccines do not induce adequate cell-mediated immune responses that also appear to be essential for optimal protection against plague. We have developed two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that may overcome these problems. First, by engineering F1 protein, we generated a monomeric and soluble F1V mutant (F1mutV) which has similar immunogenicity as wild-type F1V. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to retain a key CD4+ T cell epitope. Second, we generated a nanoparticle plague vaccine that can induce balanced antibody- and cell-mediated immune responses. This was done by arraying the F1mutV on phage T4 via the small outer capsid (Soc) protein which binds to T4 capsid at nanomolar affinity. Preparation of these vaccines is described in detail and we hope that these would be considered as candidates for licensing a next-generation plague vaccine. PMID:27076150

  13. Influence of satellite-derived rainfall patterns on plague occurrence in northeast Tanzania

    PubMed Central

    2010-01-01

    Background In the tropics, rainfall data are seldom accurately recorded, and are often discontinuous in time. In the scope of plague-research in northeast Tanzania, we adapted previous research to reconstruct rainfall patterns at a suitable resolution (1 km), based on time series of NDVI: more accurate satellite imagery was used, in the form of MODIS NDVI, and rainfall data were collected from the TRMM sensors instead of in situ data. First, we established a significant relationship between monthly rainfall and monthly composited MODIS NDVI. The established linear relationship was then used to reconstruct historic precipitation patterns over a mountainous area in northeastern Tanzania. Results We validated the resulting precipitation estimates with in situ rainfall time series of three meteorological stations located in the study area. Taking the region's topography into account, a correlation coefficient of 0.66 was obtained for two of the three meteorological stations. Our results suggest that the adapted strategy can be applied fruitfully to estimate rainfall variability and seasonality, despite the underestimation of overall rainfall rates. Based on this model, rainfall in previous years (1986) is modelled to obtain a dataset with which we can compare plague occurrence in the area. A positive correlation of 82% is obtained between high rainfall rates and plague incidence with a two month lag between rainfall and plague cases. Conclusions We conclude that the obtained results are satisfactory in support of the human plague research in which this study is embedded, and that this approach can be applied in other studies with similar goals. PMID:21144014

  14. [Variola: the history of a museal present plague].

    PubMed

    Moser, Markus W; Patzak, Beatrix

    2008-01-01

    Smallpox, once a major menace of humankind, is the only endemic anthroponosis that has completely disappeared due to organized human action. The history of variola and of the rationales of prevention and control associated with ancient variolation, modern vaccination and the surrounding research enterprises and sanitary regimes provide paradigmatic examples of the involvement of medical thought and scientific dynamics with natural and cultural necessities and technological evolution. Taking the form of a broad historiographic sketch this is discussed not only based on representative literature, but contemplating material relics of the medical endeavor with smallpox. The objects are maintained by the Austrian Federal Museum of Pathological Anatomy, located in the unique historic building known as Narrenturm or Fool's Tower in Vienna's traditional medical district. They range from textual documents to wet specimens recently reactivated for virological research. Special focus lies on waxen moulages, crafted in the context of early 20th century clinical research and teaching.

  15. Landscape and residential variables associated with plague-endemic villages in the West Nile region of Uganda.

    PubMed

    MacMillan, Katherine; Enscore, Russell E; Ogen-Odoi, Asaph; Borchert, Jeff N; Babi, Nackson; Amatre, Gerald; Atiku, Linda A; Mead, Paul S; Gage, Kenneth L; Eisen, Rebecca J

    2011-03-01

    Plague, caused by the bacteria Yersinia pestis, is a severe, often fatal disease. This study focuses on the plague-endemic West Nile region of Uganda, where limited information is available regarding environmental and behavioral risk factors associated with plague infection. We conducted observational surveys of 10 randomly selected huts within historically classified case and control villages (four each) two times during the dry season of 2006 (N = 78 case huts and N = 80 control huts), which immediately preceded a large plague outbreak. By coupling a previously published landscape-level statistical model of plague risk with this observational survey, we were able to identify potential residence-based risk factors for plague associated with huts within historic case or control villages (e.g., distance to neighboring homestead and presence of pigs near the home) and huts within areas previously predicted as elevated risk or low risk (e.g., corn and other annual crops grown near the home, water storage in the home, and processed commercial foods stored in the home). The identified variables are consistent with current ecologic theories on plague transmission dynamics. This preliminary study serves as a foundation for future case control studies in the area.

  16. Evaluation of Yersinia pestis Transmission Pathways for Sylvatic Plague in Prairie Dog Populations in the Western U.S.

    PubMed

    Richgels, Katherine L D; Russell, Robin E; Bron, Gebbiena M; Rocke, Tonie E

    2016-06-01

    Sylvatic plague, caused by the bacterium Yersinia pestis, is periodically responsible for large die-offs in rodent populations that can spillover and cause human mortalities. In the western US, prairie dog populations experience nearly 100% mortality during plague outbreaks, suggesting that multiple transmission pathways combine to amplify plague dynamics. Several alternate pathways in addition to flea vectors have been proposed, such as transmission via direct contact with bodily fluids or inhalation of infectious droplets, consumption of carcasses, and environmental sources of plague bacteria, such as contaminated soil. However, evidence supporting the ability of these proposed alternate pathways to trigger large-scale epizootics remains elusive. Here we present a short review of potential plague transmission pathways and use an ordinary differential equation model to assess the contribution of each pathway to resulting plague dynamics in black-tailed prairie dogs (Cynomys ludovicianus) and their fleas (Oropsylla hirsuta). Using our model, we found little evidence to suggest that soil contamination was capable of producing plague epizootics in prairie dogs. However, in the absence of flea transmission, direct transmission, i.e., contact with bodily fluids or inhalation of infectious droplets, could produce enzootic dynamics, and transmission via contact with or consumption of carcasses could produce epizootics. This suggests that these pathways warrant further investigation.

  17. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague.

    PubMed

    Harbeck, Michaela; Seifert, Lisa; Hänsch, Stephanie; Wagner, David M; Birdsell, Dawn; Parise, Katy L; Wiechmann, Ingrid; Grupe, Gisela; Thomas, Astrid; Keim, Paul; Zöller, Lothar; Bramanti, Barbara; Riehm, Julia M; Scholz, Holger C

    2013-01-01

    Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19(th) and 20(th) centuries, during which plague was spread around the world, and the second pandemic of the 14(th)-17(th) centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6(th)-8(th) centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics.

  18. Evaluation of Yersinia pestis transmission pathways for sylvatic plague in prairie dog populations in the western U.S.

    USGS Publications Warehouse

    Richgels, Katherine L. D.; Russell, Robin E.; Bron, Gebbiena; Rocke, Tonie E.

    2016-01-01

    Sylvatic plague, caused by the bacterium Yersinia pestis, is periodically responsible for large die-offs in rodent populations that can spillover and cause human mortalities. In the western US, prairie dog populations experience nearly 100% mortality during plague outbreaks, suggesting that multiple transmission pathways combine to amplify plague dynamics. Several alternate pathways in addition to flea vectors have been proposed, such as transmission via direct contact with bodily fluids or inhalation of infectious droplets, consumption of carcasses, and environmental sources of plague bacteria, such as contaminated soil. However, evidence supporting the ability of these proposed alternate pathways to trigger large-scale epizootics remains elusive. Here we present a short review of potential plague transmission pathways and use an ordinary differential equation model to assess the contribution of each pathway to resulting plague dynamics in black-tailed prairie dogs (Cynomys ludovicianus) and their fleas (Oropsylla hirsuta). Using our model, we found little evidence to suggest that soil contamination was capable of producing plague epizootics in prairie dogs. However, in the absence of flea transmission, direct transmission, i.e., contact with bodily fluids or inhalation of infectious droplets, could produce enzootic dynamics, and transmission via contact with or consumption of carcasses could produce epizootics. This suggests that these pathways warrant further investigation.

  19. Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights into Justinianic Plague

    PubMed Central

    Harbeck, Michaela; Seifert, Lisa; Hänsch, Stephanie; Wagner, David M.; Birdsell, Dawn; Parise, Katy L.; Wiechmann, Ingrid; Grupe, Gisela; Thomas, Astrid; Keim, Paul; Zöller, Lothar; Bramanti, Barbara; Riehm, Julia M.; Scholz, Holger C.

    2013-01-01

    Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19th and 20th centuries, during which plague was spread around the world, and the second pandemic of the 14th–17th centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6th–8th centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics. PMID:23658525

  20. [IMPACT OF CASPIAN SEA LEVEL FLUCTUATIONS ON THE EPIZOOTIC ACTIVITY OF THE CASPIAN SANDY NATURAL PLAGUE FOCUS].

    PubMed

    Popov, N V; Udovikov, A I; Eroshenko, G A; Karavaeva, T B; Yakovlev, S A; Porshakov, A M; Zenkevich, E S; Kutyrev, V V

    2016-01-01

    There is evidence that in 1923-2014 the sharp aggravations of the epizootic situation of plague in the area of its Caspian sandy natural focus after long interepizootic periods are in time with the ups of the Caspian Sea in the extrema of 11-year solar cycles. There were cases of multiple manifestations of plague in the same areas in the epizootic cycles of 1946-1954, 1979-1996, 2001, and 2013-2014. The paper considers the possible role of amebae of the genus Acanthamoeba and nematodes, the representatives of the orders Rhabditida and Tylenchida in the microfocal pattern of plague manifestations.

  1. [Seasonal dynamics of infecting ability of the flea Citellophilus tesquorum altaicus in the Tuva natural focus of the plague].

    PubMed

    Bazanova, L P; Popkov, A F; Galatsevich, N F

    2004-01-01

    The infecting ability of the fleas Citellophilus tesquorum altaicus loff, 1936, the main plague vectors in the Tuva natural focus, was experimentally studied in different periods of the epizootic season. Seasonal dynamics in the efficiency of infecting the long-tailed Siberian souslik with the plague causative agent through flea bites was noticed. Seasonal differences in infectivity of the "blocked" flea bites are revealed. An increase of infected experimental animals with a generalization of infection process in the period of epizooty activation in the natural focus was observed. A resistance of the long-tailed Siberian souslik to the plague agent infection through flea bites in the spring season was registered.

  2. Scurvy: historically a plague of the sailor that remains a consideration in the modern intensive care unit.

    PubMed

    Holley, A D; Osland, E; Barnes, J; Krishnan, A; Fraser, J F

    2011-03-01

    We report the case of the case of a 56 year old female with sepsis on a background of rheumatoid arthritis and steroid use manifesting with overt clinical features of scurvy. Ascorbic acid assays were able to demonstrate severe deficiency and confirm a diagnosis of scurvy. Clinical resolution of signs and symptoms following commencement of vitamin C replacement was rapid. The intensivist and dietitian need to consider this diagnosis even in the first world setting, particularly in the presence of sepsis, inflammatory conditions, steroid use and importantly malnutrition.

  3. Plague studies in California: a review of long-term disease activity, flea-host relationships and plague ecology in the coniferous forests of the Southern Cascades and northern Sierra Nevada mountains.

    PubMed

    Smith, Charles R; Tucker, James R; Wilson, Barbara A; Clover, James R

    2010-06-01

    We review 28 years of long-term surveillance (1970-1997) for plague activity among wild rodents from ten locations within three coniferous forest habitat types in the northern Sierra Nevada and the Southern Cascade mountains of northeastern California. We identify rodent hosts and their fleas and document long-term plague activity in each habitat type. The highest seroprevalence for Yersinia pestis occurred in the chipmunks, Tamias senex and T. quadrimaculatus, and the pine squirrel, Tamiasciurus douglasii. The most commonly infected fleas were Ceratophyllus ciliatus and Eumolpianus eumolpi from chipmunks and Oropsylla montana and O. idahoensis from ground squirrels. Serological surveillance demonstrated that populations of T. senex, T. quadrimaculatus and T. douglasii are moderately resistant to plague, survive infection, and are, therefore, good sentinels for plague activity. Recaptured T. senex and T. quadrimaculatus showed persistence of plague antibodies and evidence of re-infection over a two year period. These rodent species, their fleas, and the ecological factors common to the coniferous forest habitats likely promote the maintenance of plague foci in northeastern California.

  4. Effects of weather and plague-induced die-offs of prairie dogs on the fleas of northern grasshopper mice.

    PubMed

    Salkeld, Daniel J; Stapp, Paul

    2009-05-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on black-tailed prairie dogs (Cynomys ludovicianus Ord). Other mammal hosts living on prairie dog colonies may be important in the transmission and maintenance of plague. We examined the flea populations of northern grasshopper mice (Onychomys leucogaster Wied) before, during, and after plague epizootics in northern Colorado and studied the influence of host and environmental factors on flea abundance patterns. Grasshopper mice were frequently infested with high numbers of fleas, most commonly Pleochaetis exilis Jordan and Thrassis fotus Jordan. Flea loads changed in response to both environmental temperature and rainfall. After plague-induced prairie dog die-offs, flea loads and likelihood of infestation were unchanged for P. exilis, but T. fotus loads declined.

  5. Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001

    SciTech Connect

    Navid, A; Almaas, E

    2009-01-13

    The gram-negative bacterium Yersinia pestis, the aetiological agent of bubonic plague, is one the deadliest pathogens known to man. Despite its historical reputation, plague is a modern disease which annually afflicts thousands of people. Public safety considerations greatly limit clinical experimentation on this organism and thus development of theoretical tools to analyze the capabilities of this pathogen is of utmost importance. Here, we report the first genome-scale metabolic model of Yersinia pestis biovar Mediaevalis based both on its recently annotated genome, and physiological and biochemical data from literature. Our model demonstrates excellent agreement with Y. pestis known metabolic needs and capabilities. Since Y. pestis is a meiotrophic organism, we have developed CryptFind, a systematic approach to identify all candidate cryptic genes responsible for known and theoretical meiotrophic phenomena. In addition to uncovering every known cryptic gene for Y. pestis, our analysis of the rhamnose fermentation pathway suggests that betB is the responsible cryptic gene. Despite all of our medical advances, we still do not have a vaccine for bubonic plague. Recent discoveries of antibiotic resistant strains of Yersinia pestis coupled with the threat of plague being used as a bioterrorism weapon compel us to develop new tools for studying the physiology of this deadly pathogen. Using our theoretical model, we can study the cell's phenotypic behavior under different circumstances and identify metabolic weaknesses which may be harnessed for the development of therapeutics. Additionally, the automatic identification of cryptic genes expands the usage of genomic data for pharmaceutical purposes.

  6. Use of rhodamine B as a biomarker for oral plague vaccination of prairie dogs.

    PubMed

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E

    2011-07-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of <60 days in black-tailed prairie dogs (C. ludovicianus) when used at concentrations <0.5% of bait mass dosed to deliver >10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  7. A survey of North American migratory waterfowl for duck plague (duck virus enteritis) virus

    USGS Publications Warehouse

    Brand, Christopher J.; Docherty, Douglas E.

    1984-01-01

    A survey of migratory waterfowl for duck plague (DP) virus was conducted in the Mississippi and Central flyways during 1982 and in the Atlantic and Pacific flyways during 1983. Cloacal and pharyngeal swabs were collected from 3,169 migratory waterfowl in these four flyways, principally mallards (Anas platyrhynchos L.), black ducks (Anas rubripes Brewster), and pintails (Anas acuta L). In addition 1,033 birds were sampled from areas of recurrent DP outbreaks among nonmigratory and captive waterfowl, and 590 from Lake Andes National Wildlife Refuge, the site of the only known major DP outbreak in migratory waterfowl. Duck plague virus was not found in any of the samples. Results support the hypothesis that DP is not established in North American migratory waterfowl as an enzootic disease.

  8. High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy

    PubMed Central

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background Historical records suggest that multiple burial sites from the 14th–16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. Methodology/Principal Findings High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. Conclusions These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century. PMID:21423736

  9. The Red Sea and the port of Clysma. A possible gate of Justinian's plague.

    PubMed

    Tsiamis, Costas; Poulakou-Rebelakou, Effie; Petridou, Eleni

    2009-01-01

    The aim of this study is to present the sea and land commercial routes of the Byzantine Egypt and their role in the dissemination of the plague bacteria Yersinia pestis from the Red Sea to Mediterranean ports. The Mediterranean port of Pelusium was considered as the starting point of the first plague pandemic, according to the historical and archaeological data; the port of Clysma in the Red Sea, however, can also be assumed as possible entrance gate of the Yersinia pestis. Indeed, it is proposed that the port of Clysma is most likely to have been the gateway of Yersinia pestis in the Byzantine Egypt when the epidemic broke out, given its geographic position and close trade relationship at the time of the epidemic in Pelusium.

  10. Age at vaccination may influence response to sylvatic plague vaccine (SPV) in Gunnison’s prairie dogs (Cynomys gunnisoni)

    USGS Publications Warehouse

    Rocke, Tonie E.; Tripp, Daniel W.; Lorenzsonn, Faye; Falendysz, Elizabeth A.; Smith, Susan; Williamson, Judy L.; Abbott, Rachel C.

    2015-01-01

    Gunnison’s prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or “montane” population and a C. g. zuniensis or “prairie” population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P < 0.01) than those from the montane population. Upon further analysis, we determined that response to immunization was most likely associated with differences in age, as the prairie group was much younger on average than the montane group. Vaccinates that were juveniles or young adults survived plague challenge at a much higher rate than adults (P < 0.01 and P = 0.02, respectively), but no difference (P = 0.83) was detected in survival rates between control animals of different ages. These results suggest that host susceptibility is probably not related to the assumed greater risk from plague in the C. g. gunnisoni or “montane” populations of Gunnison’s prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  11. Primary case of human pneumonic plague occurring in a Himalayan marmot natural focus area Gansu Province, China.

    PubMed

    Ge, Pengfei; Xi, Jinxiao; Ding, Jun; Jin, Fachang; Zhang, Hong; Guo, Limin; Zhang, Jie; Li, Junlin; Gan, Zhiqiang; Wu, Bin; Liang, Junrong; Wang, Xin; Wang, Xinhua

    2015-04-01

    A case of primary pneumonic plague (PPP) caused by Yersinia pestis is reported. This case occurred in the largest plague area in China. The patient died after contact with a dog that had captured an infected marmot. Three of 151 contacts were shown to be positive for antibody against F1 antigen by indirect hemagglutination assay, but none had clinical symptoms. There was no secondary case.

  12. Age at Vaccination May Influence Response to Sylvatic Plague Vaccine (SPV) in Gunnison's Prairie Dogs (Cynomys gunnisoni).

    PubMed

    Rocke, Tonie E; Tripp, Dan; Lorenzsonn, Faye; Falendysz, Elizabeth; Smith, Susan; Williamson, Judy; Abbott, Rachel

    2015-06-01

    Gunnison's prairie dogs (Cynomys gunnisoni) have been considered at greater risk from Yersinia pestis (plague) infection in the montane portion of their range compared to populations at lower elevations, possibly due to factors related to flea transmission of the bacteria or greater host susceptibility. To test the latter hypothesis and determine whether vaccination against plague with an oral sylvatic plague vaccine (SPV) improved survival, we captured prairie dogs from a C. g. gunnisoni or "montane" population and a C. g. zuniensis or "prairie" population for vaccine efficacy and challenge studies. No differences (P = 0.63) were found in plague susceptibility in non-vaccinated animals between these two populations; however, vaccinates from the prairie population survived plague challenge at significantly higher rates (P < 0.01) than those from the montane population. Upon further analysis, we determined that response to immunization was most likely associated with differences in age, as the prairie group was much younger on average than the montane group. Vaccinates that were juveniles or young adults survived plague challenge at a much higher rate than adults (P < 0.01 and P = 0.02, respectively), but no difference (P = 0.83) was detected in survival rates between control animals of different ages. These results suggest that host susceptibility is probably not related to the assumed greater risk from plague in the C. g. gunnisoni or "montane" populations of Gunnison's prairie dogs, and that SPV could be a useful plague management tool for this species, particularly if targeted at younger cohorts.

  13. Humoral and cellular immune responses to Yersinia pestis infection in long-term recovered plague patients.

    PubMed

    Li, Bei; Du, Chunhong; Zhou, Lei; Bi, Yujing; Wang, Xiaoyi; Wen, Li; Guo, Zhaobiao; Song, Zhizhong; Yang, Ruifu

    2012-02-01

    Plague is one of the most dangerous diseases and is caused by Yersinia pestis. Effective vaccine development requires understanding of immune protective mechanisms against the bacterium in humans. In this study, the humoral and memory cellular immune responses in plague patients (n = 65) recovered from Y. pestis infection during the past 16 years were investigated using a protein microarray and an enzyme-linked immunosorbent spot assay (ELISpot). The seroprevalence to the F1 antigen in all recovered patients is 78.5%. In patients infected more than a decade ago, the antibody-positive rate still remains 69.5%. There is no difference in the antibody presence between gender, age, and infected years, but it seems to be associated with the F1 antibody titers during infection (r = 0.821; P < 0.05). Except F1 antibody, the antibodies against LcrV and YopD were detected in most of the patients, suggesting they could be the potential diagnostic markers for detecting the infection of F1-negative strains. Regarding cellular immunity, the cell number producing gamma interferon (IFN-γ), stimulated by F1 and LcrV, respectively, in vitro to the peripheral blood mononuclear cells of 7 plague patients and 4 negative controls, showed no significant difference, indicating F1 and LcrV are not dominant T cell antigens against plague for a longer time in humans. Our findings have direct implications for the future design and development of effective vaccines against Y. pestis infection and the development of new target-based diagnostics.

  14. [The black rat (Rattus rattus) and the plague in ancient and medieval western Europe].

    PubMed

    Audoin-Rouzeau, F

    1999-12-01

    The first time plague affected Western Europe was in the early Middle Ages: rom 541 to 767, there were no fewer than 15 outbreaks in southern parts of the continent. Plague then disappeared from Europe for some seven centuries but came back with a vengeance in 1347, this time by way of the Mediterranean, and ravaged the entire continent for five years, resulting in a serious demographic depression. From then on until 1722 (and 1771 in Moscow), the disease remained endemic to Europe, periodically undermining its economy. These epidemics were major determinants of medieval history, but their study has not been completed to this day. It was not until the 1970s that archeo-zoologists finally discovered that the black rat had indeed been present in Europe since Roman times. Further extensive research revealed that the rat population had gradually grown from a fairly restricted one in the early Middle Ages to a significant one in the 11th and 13th centuries. The rodents spread along the major highways explaining the very different geographical impact of the various plague epidemics of the early and late medieval periods. However, the mystery of the exact mechanisms by which plague spread has still not been entirely elucidated, since the Asian rat flea, Xenopsylla cheopis, whose role as vector was demonstrated by P. L. Simond, could not have survived in the temperate European climate. Thus, the question of the European vector is still left hanging: was it a human or a rat flea? Was the rat a propagator or simply an initiator? This article considers these unresolved questions by re-examining P. L. Simond's very precise observations.

  15. Critical Factors for Parameterisation of Disease Diagnosis Modelling for Anthrax, Plague and Smallpox

    DTIC Science & Technology

    2012-09-01

    197 Suppl 2: S191-5. UNCLASSIFIED 11 UNCLASSIFIED DSTO-GD-0699 UNCLASSIFIED 12 35. Lynch JP 3rd, Zhanel GG. Streptococcus pneumonia ... pneumonia . Where information is not available in precise quantitative form, semi-quantitative graphs are provided, which provide a useful summary for...anthrax and its comparison with influenza pneumonia , pneumococcal pneumonia and pneumonic plague are detailed in Table 2. 2.4 Differential Diagnosis

  16. Prediction of Frost Risks and Plagues using WRF model: a Port Wine region case study

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. A.; Rocha, A.; Monteiro, A.; Quénol, H.; de Freitas, J. R.

    2012-04-01

    In viticulture where the quality of the wine, the selection of the grapevines or even the characteristics of the farming soil, also depending from local soil features like topography, proximity of a river or water body, will act locally on the weather. Frosts are of significant concern to growers of many cultures crops such as winegrapes. Because of their high latitude and some altitude, the vineyards of the Demarcated Douro Region (DDR) are subjected to the frost, which cause serious damages. But the hazards of vineyard don't confine to the incidents of the fortuitous and meteorological character. The illnesses and plagues affect frequently the vineyards of Demarcated Douro Region due, namely to the weather, to the high power of the regional stocks, to the dense vegetation badly drained and favourable to the setting of numberless fungi, viruses and/or poisonous insects. In the case of DDR it is worth noticing the meteorological conditions due to the weather characteristics. Although there are several illnesses and plagues the most important enemies for the vine in the DDR are the mildew, oidium, grey rottenness, grape moth,. . . , if the climatic conditions favour their appearance and development. For this study, we selected some months for different periods, at the 16 weather stations of the Region of Douro. We use the Weather Research and Forecast Model (WRF) to study and possibly predict the occurrence of risk and plagues (mildew) episodes. The model is first validated with the meteorological data obtained at the weather stations. The knowledge of frost and plagues occurrence allows one to decrease its risks not only by selecting the cultural species and varieties but also the places of growth and the planting and sowing dates.

  17. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits

    USGS Publications Warehouse

    Rocke, T.E.; Smith, S.R.; Stinchcomb, D.T.; Osorio, J.E.

    2008-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis and, along with other wild rodents, are significant reservoirs of plague for other wildlife and humans in the western United States. A recombinant raccoon poxvirus, expressing the F1 antigen of Y. pestis, was incorporated into a palatable bait and offered to three groups (n = 18, 19, and 20) of black-tailed prairie dogs (Cynomys ludovicianus) for voluntary consumption, either one, two, or three times, at roughly 3-wk intervals. A control group (n = 19) received baits containing raccoon poxvirus without the inserted antigen. Mean antibody titers to Y. pestis F1 antigen increased significantly in all groups ingesting the vaccine-laden baits, whereas the control group remained negative. Upon challenge with virulent Y. pestis, immunized groups had higher survival rates (38%) than the unimmunized control group (11%). The mean survival time of groups ingesting vaccine-laden baits either two or three times was significantly higher than that of animals ingesting vaccine-laden baits just one time and of animals in the control group. These results show that oral immunization of prairie dogs against plague provides some protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous (3-10) flea bites. ?? Wildlife Disease Association 2008.

  18. A rapid field test for sylvatic plague exposure in wild animals.

    PubMed

    Abbott, Rachel C; Hudak, Robert; Mondesire, Roy; Baeten, Laurie A; Russell, Robin E; Rocke, Tonie E

    2014-04-01

    Plague surveillance is routinely conducted to predict future epizootics in wildlife and exposure risk for humans. The most common surveillance method for sylvatic plague is detection of antibodies to Yersinia pestis F1 capsular antigen in sentinel animals, such as coyotes (Canis latrans). Current serologic tests for Y. pestis, hemagglutination (HA) test and enzyme-linked immunosorbent assay (ELISA), are expensive and labor intensive. To address this need, we developed a complete lateral flow device for the detection of specific antibodies to Y. pestis F1 and V antigens. Our test detected anti-F1 and anti-V antibodies in serum and Nobuto filter paper samples from coyotes, and in serum samples from prairie dogs (Cynomys ludovicianus), lynx (Lynx canadensis), and black-footed ferrets (Mustela nigripes). Comparison of cassette results for anti-F1 and anti-V antibodies with results of ELISA or HA tests showed correlations ranging from 0.68 to 0.98. This device provides an affordable, user-friendly tool that may be useful in plague surveillance programs and as a research tool.

  19. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits.

    PubMed

    Rocke, Tonie E; Smith, Susan R; Stinchcomb, Dan T; Osorio, Jorge E

    2008-10-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis and, along with other wild rodents, are significant reservoirs of plague for other wildlife and humans in the western United States. A recombinant raccoon poxvirus, expressing the F1 antigen of Y. pestis, was incorporated into a palatable bait and offered to three groups (n = 18, 19, and 20) of black-tailed prairie dogs (Cynomys ludovicianus) for voluntary consumption, either one, two, or three times, at roughly 3-wk intervals. A control group (n = 19) received baits containing raccoon poxvirus without the inserted antigen. Mean antibody titers to Y. pestis F1 antigen increased significantly in all groups ingesting the vaccine-laden baits, whereas the control group remained negative. Upon challenge with virulent Y. pestis, immunized groups had higher survival rates (38%) than the unimmunized control group (11%). The mean survival time of groups ingesting vaccine-laden baits either two or three times was significantly higher than that of animals ingesting vaccine-laden baits just one time and of animals in the control group. These results show that oral immunization of prairie dogs against plague provides some protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous (3-10) flea bites.

  20. Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague.

    PubMed

    Eddy, Justin L; Schroeder, Jay A; Zimbler, Daniel L; Bellows, Lauren E; Lathem, Wyndham W

    2015-12-01

    Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection.

  1. A rapid field test for sylvatic plague exposure in wild animals

    USGS Publications Warehouse

    Abbott, Rachel C.; Hudak, Robert; Mondesire, Roy; Baeten, Laurie A.; Russell, Robin E.; Rocke, Tonie E.

    2014-01-01

    Plague surveillance is routinely conducted to predict future epizootics in wildlife and exposure risk for humans. The most common surveillance method for sylvatic plague is detection of antibodies to Yersinia pestis F1 capsular antigen in sentinel animals, such as coyotes (Canis latrans). Current serologic tests for Y. pestis, hemagglutination (HA) test and enzyme-linked immunosorbent assay (ELISA), are expensive and labor intensive. To address this need, we developed a complete lateral flow device for the detection of specific antibodies to Y. pestis F1 and V antigens. Our test detected anti-F1 and anti-V antibodies in serum and Nobuto filter paper samples from coyotes, and in serum samples from prairie dogs (Cynomys ludovicianus), lynx (Lynx canadensis), and black-footed ferrets (Mustela nigripes). Comparison of cassette results for anti-F1 and anti-V antibodies with results of ELISA or HA tests showed correlations ranging from 0.68 to 0.98. This device provides an affordable, user-friendly tool that may be useful in plague surveillance programs and as a research tool.

  2. Inhaled Liposomal Ciprofloxacin Protects against a Lethal Infection in a Murine Model of Pneumonic Plague

    PubMed Central

    Hamblin, Karleigh A.; Armstrong, Stuart J.; Barnes, Kay B.; Davies, Carwyn; Laws, Thomas; Blanchard, James D.; Harding, Sarah V.; Atkins, Helen S.

    2017-01-01

    Inhalation of Yersinia pestis can lead to pneumonic plague, which without treatment is inevitably fatal. Two novel formulations of liposome-encapsulated ciprofloxacin, ‘ciprofloxacin for inhalation’ (CFI, Lipoquin®) and ‘dual release ciprofloxacin for inhalation’ (DRCFI, Pulmaquin®) containing CFI and ciprofloxacin solution, are in development. These were evaluated as potential therapies for infection with Y. pestis. In a murine model of pneumonic plague, human-like doses of aerosolized CFI, aerosolized DRCFI or intraperitoneal (i.p.) ciprofloxacin were administered at 24 h (representing prophylaxis) or 42 h (representing treatment) post-challenge. All three therapies provided a high level of protection when administered 24 h post-challenge. A single dose of CFI, but not DRCFI, significantly improved survival compared to a single dose of ciprofloxacin. Furthermore, single doses of CFI and DRCFI reduced bacterial burden in lungs and spleens to below the detectable limit at 60 h post-challenge. When therapy was delayed until 42 h post-challenge, a single dose of CFI or DRCFI offered minimal protection. However, single doses of CFI or DRCFI were able to significantly reduce the bacterial burden in the spleen compared to empty liposomes. A three-day treatment regimen of ciprofloxacin, CFI, or DRCFI resulted in high levels of protection (90–100% survival). This study suggests that CFI and DRCFI may be useful therapies for Y. pestis infection, both as prophylaxis and for the treatment of plague. PMID:28220110

  3. Multiple mechanisms of transmission of the Caribbean coral disease white plague

    NASA Astrophysics Data System (ADS)

    Clemens, E.; Brandt, M. E.

    2015-12-01

    White plague is one of the most devastating coral diseases in the Caribbean, and yet important aspects of its epidemiology, including how the disease transmits, remain unknown. This study tested potential mechanisms and rates of transmission of white plague in a laboratory setting. Transmission mechanisms including the transport of water, contact with macroalgae, and predation via corallivorous worms and snails were tested on the host species Orbicella annularis. Two of the tested mechanisms were shown to transmit disease: water transport and the corallivorous snail Coralliophila abbreviata. Between these transmission mechanisms, transport of water between a diseased coral and a healthy coral resulted in disease incidence significantly more frequently in exposed healthy corals. Transmission via water transport also occurred more quickly and was associated with higher rates of tissue loss (up to 3.5 cm d-1) than with the corallivorous snail treatment. In addition, water that was in contact with diseased corals but was filtered with a 0.22-μm filter prior to being introduced to apparently healthy corals also resulted in the transmission of disease signs, but at a much lower rate than when water was not filtered. This study has provided important information on the transmission potential of Caribbean white plague disease and highlights the need for a greater understanding of how these processes operate in the natural environment.

  4. [A quarantine of plague at the lazaret of Frioul in 1901].

    PubMed

    Chevallier, Jacques

    2015-01-01

    In September 1901, a cruise for work and pleasure is organized in Mediterranean including VIP all firstclass (politicals, scientists, clergymen...) These were 174 passengers on the ship Senegal. After a departure from Marseille, the ship must quickly turn and go back on account of a sailor in the crew might be sicked with plague. A quarantine was organised in the lazaret of Frioul's island. This man died but an another actually ill will be cured. All the conference participents landed in the Frioul lazaret stayed only seven days on place and remained uninjured. This misadventure will be studied by scientific people and given to authorities. So, Pr Jules Buckoy' communication to the french Academy of medicine. Adrien Proust gave a report. In this doctoral thesis in 1902 Joseph Pellissier reported all the cases of plague cured in the Frioul lazaret. The physician Charles Leroux made an epidemiologic study about effects and troubles with plague serums. A lot of orig- inal and beautiful photographs, notably those by the famous passenger, Léon Gaumont, are joined in our presentation.

  5. Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague.

    PubMed

    Albrecht, Mark T; Livingston, Brian D; Pesce, John T; Bell, Matt G; Hannaman, Drew; Keane-Myers, Andrea M

    2012-07-06

    Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined.

  6. Investigation of vesicle-capsular plague antigen complex formation by elastic laser radiation scattering

    NASA Astrophysics Data System (ADS)

    Guseva, N. P.; Maximova, Irina S.; Romanov, Sergey V.; Shubochkin, L. P.; Tatarintsev, Sergey N.

    1991-05-01

    Recently a great deal of attention has been given to the investigation artificial lipid liposomes, due to their application as "containers" for directed transport of biologically active compounds into particular cells, organs and tissues for prophylaxis and therapy of infectious diseases. The use of traditional methods of liposome investigation, such as sedimentation, electrophoresis and chromatography is impeded by low liposome resistivity to different deformations. In conjunction with this, optical methods of laser light scattering are promising as they allow nondisturbing, precise and quick investigations. This paper describes the investigation of vesicle systems prepared from egg lecithin of Serva Corporation and their complexes with the capsular antigen of the plague microbe. The capsular antigen Fl was obtained from EV plague microbe grown at 37° C on Huttinger agar. Fl was isolated by gel-filtration on ASA-22 followed by freeze drying of the preparation. Angular dependences of polarized radiation scattering were measured for several liposome suspension samples in a saline solution before and after the interaction with the plague microbe capsular antigen. The aim of the investigation was to analyze the nature of mutual antigen arrangement in a liposome and to develop methods for measuring its inclusion percentage.

  7. Integrating land cover and terrain characteristics to explain plague risks in Western Usambara Mountains, Tanzania: a geospatial approach.

    PubMed

    Hieronimo, Proches; Meliyo, Joel; Gulinck, Hubert; Kimaro, Didas N; Mulungu, Loth S; Kihupi, Nganga I; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Literature suggests that higher resolution remote sensing data integrated in Geographic Information System (GIS) can provide greater possibility to refine the analysis of land cover and terrain characteristics for explanation of abundance and distribution of plague hosts and vectors and hence of health risk hazards to humans. These technologies are not widely used in East Africa for studies on diseases including plague. The objective of this study was to refine the analysis of single and combined land cover and terrain characteristics in order to gain an insight into localized plague infection risks in the West Usambara Mountains in north-eastern Tanzania. The study used a geospatial approach to assess the influence of land cover and terrain factors on the abundance and spatial distribution of plague hosts (small mammals) and plague vectors (fleas). It considered different levels of scale and resolution. Boosted Regression Tree (BRT) statistical method was used to clarify the relationships between land cover and terrain variables with small mammals and fleas. Results indicate that elevation positively influenced the presence of small mammals. The presence of fleas was clearly influenced by land management features such as miraba. Medium to high resolution remotely sensed data integrated in a GIS have been found to be quite useful in this type of analysis. These findings contribute to efforts on plague surveillance and awareness creation among communities on the probable risks associated with various landscape factors during epidemics.

  8. Colorado animal-based plague surveillance systems: relationships between targeted animal species and prediction efficacy of areas at risk for humans.

    PubMed

    Lowell, Jennifer L; Eisen, Rebecca J; Schotthoefer, Anna M; Xiaocheng, Liang; Montenieri, John A; Tanda, Dale; Pape, John; Schriefer, Martin E; Antolin, Michael F; Gage, Kenneth L

    2009-06-01

    Human plague risks (Yersinia pestis infection) are greatest when epizootics cause high mortality among this bacterium's natural rodent hosts. Therefore, health departments in plague-endemic areas commonly establish animal-based surveillance programs to monitor Y. pestis infection among plague hosts and vectors. The primary objectives of our study were to determine whether passive animal-based plague surveillance samples collected in Colorado from 1991 to 2005 were sampled from high human plague risk areas and whether these samples provided information useful for predicting human plague case locations. By comparing locations of plague-positive animal samples with a previously constructed GIS-based plague risk model, we determined that the majority of plague-positive Gunnison's prairie dogs (100%) and non-prairie dog sciurids (85.82%), and moderately high percentages of sigmodontine rodents (71.4%), domestic cats (69.3%), coyotes (62.9%), and domestic dogs (62.5%) were recovered within 1 km of the nearest area posing high peridomestic risk to humans. In contrast, the majority of white-tailed prairie dog (66.7%), leporid (cottontailed and jack rabbits) (71.4%), and black-tailed prairie dog (93.0%) samples originated more than 1 km from the nearest human risk habitat. Plague-positive animals or their fleas were rarely (one of 19 cases) collected within 2 km of a case exposure site during the 24 months preceding the dates of illness onset for these cases. Low spatial accuracy for identifying epizootic activity prior to human plague cases suggested that other mammalian species or their fleas are likely more important sources of human infection in high plague risk areas. To address this issue, epidemiological observations and multi-locus variable number tandem repeat analyses (MLVA) were used to preliminarily identify chipmunks as an under-sampled, but potentially important, species for human plague risk in Colorado.

  9. The plagues of Egypt: what killed the animals and the firstborn?

    PubMed

    Hoyte, H M

    1993-05-17

    The Book of Exodus, various translations, chapters 7 to 12--The plagues: 1. The river Nile turned the colour of blood, the water stank and the fish died 2. Hordes of frogs left the river, then they died and their bodies stank 3. Swarms of gnats attacked the people and their animals 4. Swarms of flies then did the same 5. An epidemic disease killed many farm animals 6. Boils and skin sores broke out on the people and their animals 7. A violent hail storm ruined the crops 8. A swarm of locusts ate what was left of them 9. Darkness blanketed the country for three days 10. The eldest child in each family died suddenly, and so did the first born animals. THE PERIOD: Uncertain, but deduced to be about 1470 BC. THE PEOPLE: The Egyptians, a population of about 2.5 million, about one million living in the Nile delta at an average density of about 90 people per km2 of cultivated land, and the Israelites, working as slave-labourers and quartered in the land of Goshen, a relatively small area probably near the margin of the north-east part of the Nile delta. THE PROTAGONISTS: Thutmosis III, Pharoah of Egypt, and Moses, leader of the Israelites. THE PLACE: The encounters between Thutmosis and Moses occurred just before each of the plagues, in or close to the Pharoah's palace. Given Moses' location, this must have been the palace at Memphis, the old capital, near the southern apex or beginning of the delta, not the one at Thebes, 600 km further to the south along the river. The Israelites' perception of the geographical extent of the plagues was therefore limited to what happened in the delta. The statements that plagues 1, 2, 3 and 8 affected "all the land of Egypt" should be interpreted as: all of the Nile delta including the land of Goshen. The other plagues affected parts neighbouring on, but not including, the land of Goshen.

  10. Use of a public telephone hotline to detect urban plague cases.

    PubMed

    Malberg, J A; Pape, W J; Lezotte, D; Hill, A E

    2012-11-01

    Current methods for vector-borne disease surveillance are limited by time and cost. To avoid human infections from emerging zoonotic diseases, it is important that the United States develop cost-effective surveillance systems for these diseases. This study examines the methodology used in the surveillance of a plague epizootic involving tree squirrels (Sciurus niger) in Denver Colorado, during the summer of 2007. A call-in centre for the public to report dead squirrels was used to direct animal carcass sampling. Staff used these reports to collect squirrel carcasses for the analysis of Yersinia pestis infection. This sampling protocol was analysed at the census tract level using Poisson regression to determine the relationship between higher call volumes in a census tract and the risk of a carcass in that tract testing positive for plague. Over-sampling owing to call volume-directed collection was accounted for by including the number of animals collected as the denominator in the model. The risk of finding an additional plague-positive animal increased as the call volume per census tract increased. The risk in the census tracts with >3 calls a month was significantly higher than that with three or less calls in a month. For tracts with 4-5 calls, the relative risk (RR) of an additional plague-positive carcass was 10.08 (95% CI 5.46-18.61); for tracts with 6-8 calls, the RR = 5.20 (2.93-9.20); for tracts with 9-11 calls, the RR = 12.80 (5.85-28.03) and tracts with >11 calls had RR = 35.41 (18.60-67.40). Overall, the call-in centre directed sampling increased the probability of locating plague-infected carcasses in the known Denver epizootic. Further studies are needed to determine the effectiveness of this methodology at monitoring large-scale zoonotic disease occurrence in the absence of a recognized epizootic.

  11. Persistence of black-tailed prairie-dog populations affected by plague in northern Colorado, USA.

    PubMed

    George, Dylan B; Webb, Colleen T; Pepin, Kim M; Savage, Lisa T; Antolini, Michael F

    2013-07-01

    The spatial distribution of prairie dog (Cynomys ludovicianus) colonies in North America has changed from large, contiguous populations to small, isolated colonies in metapopulations. One factor responsible for this drastic change in prairie-dog population structure is plague (caused by the bacterium Yersinia pestis). We fit stochastic patch occupancy models to 20 years of prairie-dog colony occupancy data from two discrete metapopulations (west and east) in the Pawnee National Grassland in Colorado, USA, that differ in connectivity among suitable habitat patches. We conducted model selection between two hypothesized modes of plague movement: independent of prairie-dog dispersal (colony-area) vs. plague movement consistent with prairie-dog dispersal (connectivity to extinct colonies). The best model, which fit the data well (area under the curve [AUC]: 0.94 west area; 0.79 east area), revealed that over time the proportion of extant colonies was better explained by colony size than by connectivity to extinct (plagued) colonies. The idea that prairie dogs are not likely to be the main vector that spreads Y. pestis across the landscape is supported by the observation that colony extinctions are primarily caused by plague, prairie-dog dispersal is short range, and connectivity to extinct colonies was not selected as a factor in the models. We also conducted simulations with the best model to examine long-term patterns of colony occupancy and persistence of prairie-dog metapopulations. In the case where the metapopulations persist, our model predicted that the western metapopulation would have a colony occupancy rate approximately 2.5 times higher than that of the eastern metapopulation (-50% occupied colonies vs. 20%) in 50 years, but that the western metapopulation has -80% chance of extinction in 100 years while the eastern metapopulation has a less than 25% chance. Extinction probability of individual colonies depended on the frequency with which colonies of the

  12. Plague cycles in two rodent species from China: Dry years might provide context for epizootics in wet years

    USGS Publications Warehouse

    Eads, David; Biggins, Dean E.; Xu, Lei; Liu, Qiyong

    2016-01-01

    Plague, a rodent-associated, flea-borne zoonosis, is one of the most notorious diseases in history. Rates of plague transmission can increase when fleas are abundant. Fleas commonly desiccate and die when reared under dry conditions in laboratories, suggesting fleas will be suppressed during droughts in the wild, thus reducing the rate at which plague spreads among hosts. In contrast, fleas might increase in abundance when precipitation is plentiful, producing epizootic outbreaks during wet years. We tested these hypotheses using a 27-yr data set from two rodents in Inner Mongolia, China: Mongolian gerbils (Meriones unguiculatus) and Daurian ground squirrels (Spermophilus dauricus). For both species of rodents, fleas were most abundant during years preceded by dry growing seasons. For gerbils, the prevalence of plague increased during wet years preceded by dry growing seasons. If precipitation is scarce during the primary growing season, succulent plants decline in abundance and, consequently, herbivorous rodents can suffer declines in body condition. Fleas produce more offspring and better survive when parasitizing food-limited hosts, because starving animals tend to exhibit inefficient behavioral and immunological defenses against fleas. Further, rodent burrows might buffer fleas from xeric conditions aboveground during dry years. After a dry year, fleas might be abundant due to the preceding drought, and if precipitation and succulent plants become more plentiful, rodents could increase in density, thereby creating connectivity that facilitates the spread of plague. Moreover, in wet years, mild temperatures might increase the efficiency at which fleas transmit the plague bacterium, while also helping fleas to survive as they quest among hosts. In this way, dry years could provide context for epizootics of plague in wet years.

  13. Vector control improves survival of three species of prairie dogs (Cynomys) in areas considered enzootic for plague

    USGS Publications Warehouse

    Biggins, Dean E.; Godbey, Jerry L.; Gage, Kenneth L.; Carter, Leon G.; Montenieri, John A.

    2010-01-01

    Plague causes periodic epizootics that decimate populations of prairie dogs (PDs) (Cynomys), but the means by which the causative bacterium (Yersinia pestis) persists between epizootics are poorly understood. Plague epizootics in PDs might arise as the result of introductions of Y. pestis from sources outside PD colonies. However, it remains possible that plague persists in PDs during interepizootic periods and is transmitted at low rates among highly susceptible individuals within and between their colonies. If this is true, application of vector control to reduce flea numbers might reduce mortality among PDs. To test whether vector control enhances PD survival in the absence of obvious plague epizootics, we reduced the numbers of fleas (vectors for Y. pestis) 96–98% (1 month posttreatment) on 15 areas involving three species of PDs (Cynomys leucurus, Cynomys parvidens in Utah, and Cynomys ludovicianus in Montana) during 2000–2004 using deltamethrin dust delivered into burrows as a pulicide. Even during years without epizootic plague, PD survival rates at dusted sites were 31–45% higher for adults and 2–34% higher for juveniles compared to survival rates at nondusted sites. Y. pestis was cultured from 49 of the 851 flea pools tested (6882 total fleas) and antibodies against Y. pestis were identified in serum samples from 40 of 2631 PDs. Although other explanations are possible, including transmission of other potentially fatal pathogens by fleas, ticks, or other ectoparasites, our results suggest that plague might be maintained indefinitely in PD populations in the absence of free epizootics and widespread mortality among these animals. If PDs and their fleas support enzootic cycles of plague transmission, there would be important implications for the conservation of these animals and other species.

  14. Vaccination with F1-V Fusion Protein Protects Black-Footed Ferrets (Mustela Nigripes) Against Plague Upon Oral Challenge with Yersinia Pestis

    DTIC Science & Technology

    2008-01-01

    with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This...study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable...boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days

  15. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics.

    PubMed

    Eisen, Rebecca J; Bearden, Scott W; Wilder, Aryn P; Montenieri, John A; Antolin, Michael F; Gage, Kenneth L

    2006-10-17

    Plague is a highly virulent disease believed to have killed millions during three historic human pandemics. Worldwide, it remains a threat to humans and is a potential agent of bioterrorism. Dissemination of Yersinia pestis, the etiological agent of plague, by blocked fleas has been the accepted paradigm for flea-borne transmission. However, this mechanism, which requires a lengthy extrinsic incubation period before a short infectious window often followed by death of the flea, cannot sufficiently explain the rapid rate of spread that typifies plague epidemics and epizootics. Inconsistencies between the expected rate of spread by blocked rat fleas and that observed during the Black Death has even caused speculation that plague was not the cause of this medieval pandemic. We used the primary vector to humans in North America, Oropsylla montana, which rarely becomes blocked, as a model for studying alternative flea-borne transmission mechanisms. Our data revealed that, in contrast to the classical blocked flea model, O. montana is immediately infectious, transmits efficiently for at least 4 d postinfection (early phase) and may remain infectious for a long time because the fleas do not suffer block-induced mortality. These factors match the criteria required to drive plague epizootics as defined by recently published mathematical models. The scenario of efficient early-phase transmission by unblocked fleas described in our study calls for a paradigm shift in concepts of how Y. pestis is transmitted during rapidly spreading epizootics and epidemics, including, perhaps, the Black Death.

  16. Tularemia and plague survey in rodents in an earthquake zone in southeastern Iran

    PubMed Central

    Gyuranecz, Miklós

    2015-01-01

    OBJECTIVES: Earthquakes are one the most common natural disasters that lead to increased mortality and morbidity from transmissible diseases, partially because the rodents displaced by an earthquake can lead to an increased rate of disease transmission. The aim of this study was to evaluate the prevalence of plague and tularemia in rodents in the earthquake zones in southeastern Iran. METHODS: In April 2013, a research team was dispatched to explore the possible presence of diseases in rodents displaced by a recent earthquake magnitude 7.7 around the cities of Khash and Saravan in Sistan and Baluchestan Province. Rodents were trapped near and in the earthquake zone, in a location where an outbreak of tularemia was reported in 2007. Rodent serums were tested for a serological survey using an enzyme-linked immunosorbent assay. RESULTS: In the 13 areas that were studied, nine rodents were caught over a total of 200 trap-days. Forty-eight fleas and 10 ticks were obtained from the rodents. The ticks were from the Hyalomma genus and the fleas were from the Xenopsylla genus. All the trapped rodents were Tatera indica. Serological results were negative for plague, but the serum agglutination test was positive for tularemia in one of the rodents. Tatera indica has never been previously documented to be involved in the transmission of tularemia. CONCLUSIONS: No evidence of the plague cycle was found in the rodents of the area, but evidence was found of tularemia infection in rodents, as demonstrated by a positive serological test for tularemia in one rodent. PMID:26602769

  17. Duck plague in free-flying waterfowl observed during the Lake Andes epizootic

    USGS Publications Warehouse

    Proctor, S.J.; Pearson, G.L.; Leibovitz, L.

    1975-01-01

    The first major epizootic of duck plague in free-flying waterfowl occurred at Lake Andes, South Dakota, in January and February, 1973. Duck plague was diagnosed in black ducks, mallards, pintail-mallard hybrids, redheads, common mergansers, common golden eyes, canvasbacks, American widgeon, wood ducks, and Canada geese, indicating the general susceptibility of ducks to duck plague. Clinical signs observed in mallards were droopiness, polydipsia, lethargy, reduced wariness, weakness, reluctance to fly, swimming in circles, bloody diarrhea, bloody fluid draining from the nares and bill, and terminal convulsions.Because the mallard was the most numerous and heavily infected species during the Lake Andes epizootic, gross and microscopic lesions of the gastrointestinal tract, liver, spleen, thymus, bursa of Fabricius, heart, lung, bone marrow, pancreas, and ovaries were described. Lesions of the esophagus and cloaca were in the stratified submucosal glands. In the small and large intestine, lesions were located in lymphocytic aggregates, lamina propria, and crypt epithelium. Hemorrhages and necrosis of hepatocytes and bile duct epithelium were noted in the liver. Diffuse necrosis of lymphocytic and reticuloendothelial tissue were evident in the spleen, bursa of Fabricius, and thymus. Hemorrhages in other tissues such as the lung and heart were often associated with lymphoid nodules, while those in organs such as the pancreas were associated with acinar necrosis. Intranuclear inclusion bodies were seen in stratified squamous epithelium of the esophagus and cloaca, crypt epithelium of the intestine, hepatocytes, bile duct epithelium, cells of Hassel's corpuscles, splenic periarteriolar reticular cells, and epithelial cells in the bursa of Fabricius.

  18. Fast and simple detection of Yersinia pestis applicable to field investigation of plague foci.

    PubMed

    Simon, Stéphanie; Demeure, Christian; Lamourette, Patricia; Filali, Sofia; Plaisance, Marc; Créminon, Christophe; Volland, Hervé; Carniel, Elisabeth

    2013-01-01

    Yersinia pestis, the plague bacillus, has a rodent-flea-rodent life cycle but can also persist in the environment for various periods of time. There is now a convenient and effective test (F1-dipstick) for the rapid identification of Y. pestis from human patient or rodent samples, but this test cannot be applied to environmental or flea materials because the F1 capsule is mostly produced at 37°C. The plasminogen activator (PLA), a key virulence factor encoded by a Y. pestis-specific plasmid, is synthesized both at 20°C and 37°C, making it a good candidate antigen for environmental detection of Y. pestis by immunological methods. A recombinant PLA protein from Y. pestis synthesized by an Escherichia coli strain was used to produce monoclonal antibodies (mAbs). PLA-specific mAbs devoid of cross-reactions with other homologous proteins were further cloned. A pair of mAbs was selected based on its specificity, sensitivity, comprehensiveness, and ability to react with Y. pestis strains grown at different temperatures. These antibodies were used to develop a highly sensitive one-step PLA-enzyme immunoassay (PLA-EIA) and an immunostrip (PLA-dipstick), usable as a rapid test under field conditions. These two PLA-immunometric tests could be valuable, in addition to the F1-disptick, to confirm human plague diagnosis in non-endemic areas (WHO standard case definition). They have the supplementary advantage of allowing a rapid and easy detection of Y. pestis in environmental and flea samples, and would therefore be of great value for surveillance and epidemiological investigations of plague foci. Finally, they will be able to detect natural or genetically engineered F1-negative Y. pestis strains in human patients and environmental samples.

  19. PRECIPITATION, CLIMATE CHANGE, AND PARASITISM OF PRAIRIE DOGS BY FLEAS THAT TRANSMIT PLAGUE.

    PubMed

    Eads, David; Hoogland, John

    2017-03-30

    Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that can reduce the fitness of vertebrate hosts. Laboratory populations of fleas decline under dry conditions, implying that populations of fleas will also decline when precipitation is scarce under natural conditions. If precipitation and hence vegetative production are reduced, however, then herbivorous hosts might suffer declines in body condition and have weakened defenses against fleas, so that fleas will increase in abundance. We tested these competing hypotheses using information from 23 yr of research on 3 species of colonial prairie dogs in western USA: Gunnison's prairie dogs (Cynomys gunnisoni, 1989-1994), Utah prairie dogs (C. parvidens, 1996-2005), and white-tailed prairie dogs (C. leucurus, 2006-2012). For all 3 species, flea-counts per individual varied inversely with the number of days in the prior growing season with >10 mm of precipitation, an index of the number of precipitation events that might have caused a substantial, prolonged increase in soil moisture and vegetative production. Flea-counts per Utah prairie dog also varied inversely with cumulative precipitation of the prior growing season. Further, flea-counts per Gunnison's and white-tailed prairie dog varied inversely with cumulative precipitation of the just-completed January and February. These results complement research on black-tailed prairie dogs (C. ludovicianus) and might have important ramifications for plague, a bacterial disease, transmitted by fleas, that devastates populations of prairie dogs. In particular, our results might help to explain why, at some colonies, epizootics of plague, which can kill >95% of prairie dogs, are more likely to occur during or shortly after periods of reduced precipitation. Climate change is projected to increase the frequency of droughts in the grasslands of western North America. If so, then climate change might affect the occurrence of plague epizootics among prairie dogs and other

  20. Viral association with the elusive rickettsia of viper plague from Ghana, West Africa.

    PubMed

    Kiel, Johnathan L; Gonzalez, Yvette; Parker, Jill E; Andrews, Carrie; Martinez, Dominique; Vachiéry, Nathalie; Lefrançois, Thierry

    2008-12-01

    We previously reported a rickettsial heartwater-like disease in vipers from Ghana that resembled heartwater in its gross lesions, was apparently transmitted by ticks (Aponomma and Amblyomma), and responded clinically favorably to early treatment with tetracycline. Cell culture showed consistent cytopathic effects in bovine endothelial cells, viper cells, and mouse cells, and inhibition of cytopathic effect by tetracycline in vitro. A type D retrovirus was observed in vacuoles in all infected cells. The virus and rickettsia infection was associated with transfer of cytopathic effect, regardless of cell species. Close association of virus and rickettsia may indicate a dual infection etiology of viper plague.

  1. Congruences in Chinese and Western medicine from 1830-1911: smallpox, plague and cholera.

    PubMed Central

    Summers, W. C.

    1994-01-01

    A close examination of three examples, smallpox, plague and cholera, suggest that for acute infectious diseases the Chinese viewed the symptomatologies, the causes, and the rational treatments of these illnesses in many ways similar to that of their contemporary Western counterparts. Rather than holding an opposing, clashing or incongruent system of medical thoughts for these common, well-recognized infectious diseases, the Chinese were prepared, by a long tradition of ontological thinking, to be receptive to the adoption, incorporation or modification of Western medical ideas in the late nineteenth century. PMID:7544052

  2. Ancient medical texts, modern reading problems.

    PubMed

    Rosa, Maria Carlota

    2006-12-05

    The word tradition has a very specific meaning in linguistics: the passing down of a text, which may have been completed or corrected by different copyists at different times, when the concept of authorship was not the same as it is today. When reading an ancient text the word tradition must be in the reader's mind. To discuss one of the problems an ancient text poses to its modern readers, this work deals with one of the first printed medical texts in Portuguese, the Regimento proueytoso contra ha pestenença, and draws a parallel between it and two related texts, A moche profitable treatise against the pestilence, and the Recopilaçam das cousas que conuem guardar se no modo de preseruar à Cidade de Lixboa E os sãos, & curar os que esteuerem enfermos de Peste. The problems which arise out of the textual structure of those books show how difficult is to establish a tradition of another type, the medical tradition. The linguistic study of the innumerable medieval plague treatises may throw light on the continuities and on the disruptions of the so-called hippocratic-galenical medical tradition.

  3. Use of Insecticide Delivery Tubes for Controlling Rodent-Associated Fleas in a Plague Endemic Region of West Nile, Uganda

    PubMed Central

    BOEGLER, KAREN A.; ATIKU, LINDA A.; MPANGA, JOSEPH TENDO; CLARK, REBECCA J.; DELOREY, MARK J.; GAGE, KENNETH L.; EISEN, REBECCA J.

    2015-01-01

    Plague is a primarily flea-borne rodent-associated zoonosis that is often fatal in humans. Our study focused on the plague-endemic West Nile region of Uganda where affordable means for the prevention of human plague are currently lacking. Traditional hut construction and food storage practices hinder rodent exclusion efforts, and emphasize the need for an inexpensive but effective host-targeted approach for controlling fleas within the domestic environment. Here we demonstrate the ability of an insecticide delivery tube that is made from inexpensive locally available materials to reduce fleas on domestic rodents. Unbaited tubes were treated with either an insecticide alone (fipronil) or in conjunction with an insect growth regulator [(S)-methoprene], and placed along natural rodent runways within participant huts. Performance was similar for both treatments throughout the course of the study, and showed significant reductions in the proportion of infested rodents relative to controls for at least 100 d posttreatment. PMID:26309315

  4. Prevalence and abundance of fleas in black-tailed prairie dog burrows: implications for the transmission of plague (Yersinia pestis).

    PubMed

    Salkeld, Dan J; Stapp, Paul

    2008-06-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on North American wildlife. Epizootics, or die-offs, in prairie dogs (Cynomys ludovicianus) occur sporadically and fleas (Siphonaptera) are probably important in the disease's transmission and possibly as maintenance hosts of Y. pestis between epizootics. We monitored changes in flea abundance in prairie dog burrows in response to precipitation, temperature, and plague activity in shortgrass steppe in northern Colorado. Oropsylla hirsuta was the most commonly found flea, and it increased in abundance with temperature. In contrast, Oropsylla tuberculata cynomuris declined with rising temperature. During plague epizootics, flea abundance in burrows increased and then subsequently declined after the extirpation of their prairie dog hosts.

  5. 275 years since the epidemic of plague in Cluj: Dr. Alexandru Lenghel’s contribution to its investigation

    PubMed Central

    ROGOZEA, LILIANA; LEAȘU, FLORIN; DUMITRASCU, DINU IULIU; DUMITRASCU, DAN L.

    2015-01-01

    Plague is one of the most impressive diseases in the cultural history of mankind. Its lethality has influenced the evolution of society and it is frequently represented in fine arts and literature. The principality of Transylvania was also affected by this infection, the plague having strongly impacted both economic and social development. Between 1738 and 1739 an important plague epidemic spread in Transylvania. The authors introduce and discuss a less known work on this epidemic, with focus on its impact on the city of Cluj - a book written in 1930 by Dr. Alexandru Lenghel, who later became a target of political persecution during the Stalinist period, while his work entered a cone of shadow. PMID:26733757

  6. Pneumonic Plague

    MedlinePlus

    ... CDC.gov . Specific Hazards Bioterrorism A-Z Anthrax (Bacillus anthracis) Arenaviruses Treatment & Infection Control Specimen Submission & Lab Testing Education & Training Related Bioterrorism Resources Bacillus anthracis (Anthrax) Botulism (Clostridium botulinum toxin) Brucella species ( ...

  7. Black plague.

    PubMed

    Whitfield, L

    1997-01-01

    Many African-Americans are reluctant to participate in clinical trials of any type, citing the Federal government's unethical syphilis experiments in the Tuskegee Study. African-Americans are also more predisposed to choose alternative treatments over mainstream therapies. These attitudes contribute to the rise in infection rates in this population that now accounts for 41 percent of all reported cases. It is essential that African-Americans participate in HIV research at every level.

  8. 76 FR 69034 - Microbiology Devices; Classification of In Vitro Diagnostic Device for Yersinia Species Detection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... specimens as an aid in the diagnosis of plague and other diseases caused by Yersinia spp. This device may... three different forms of plague (bubonic, pneumonic, and septicemic), caused by Y. pestis, and... treatment, as well as inaccurate epidemiological information on the presence of plague disease in...

  9. Comparative tests for detection of plague antigen and antibody in experimentally infected wild rodents.

    PubMed Central

    Shepherd, A J; Hummitzsch, D E; Leman, P A; Swanepoel, R; Searle, L A

    1986-01-01

    The enzyme-linked immunosorbent assay (ELISA) was compared with other standard tests for detection of plague (Yersinia pestis) antibody and antigen in multimammate mice (Mastomys coucha and M. natalensis) which were experimentally infected and then killed at daily intervals postinoculation. For detection of antibody in sera from M. natalensis, the immunoglobulin G (IgG) ELISA was equivalent in sensitivity to passive hemagglutination and more sensitive than the IgM ELISA and complement fixation. Antibody was first detected on postinfection day 6 by all four tests, but IgM ELISA titers had declined to undetectable levels after 8 weeks. For detection of fraction 1 Y. pestis antigen in rodent organs, the ELISA was less sensitive than fluorescent antibody but more sensitive than complement fixation or immunodiffusion. Plague fraction 1 antigen was detected in 16 of 34 bacteremic sera from M. coucha and M. natalensis. The threshold sensitivity of the ELISA was approximately 10(5) Y. pestis per ml. PMID:3097065

  10. [Historical review of the plague in South America: a little-known disease in Colombia].

    PubMed

    Faccini-Martínez, Álvaro A; Sotomayor, Hugo A

    2013-01-01

    The plague is an infectious disease that has transcended through history and has been responsible for three pandemics with high mortality rates. During the third pandemic that started in Hong Kong (1894), the disease spread through maritime routes to different regions in the world, including South America. In this region, approximately 16 million people are thought to be at risk in relation to this disease due to specific situations like human-rodent coexistence inside houses in rural areas, homes built with inadequate materials that are vulnerable to invasion by these animals, inappropriate storage of crops and an increase in rainfall and deforestation, which allows for the displacement of wild fauna and man invasion of the natural foci of the disease. Between 1994 and 1999, five countries: Bolivia, Brazil, Ecuador, Peru and the United States of America, reported approximately 1,700 cases with 79 related deaths. In Colombia we have historical data about an "infectious pneumonia" with high mortality rates that occurred during the same months, for three consecutive years (1913 to 1915) in the departments of Magdalena, Atlántico and Bolívar, located in the Colombian Atlantic coast, which suggested plague, but could not be confirmed.

  11. A cure for the plague of parameters: constraining models of complex population dynamics with allometries

    PubMed Central

    Hudson, Lawrence N.; Reuman, Daniel C.

    2013-01-01

    A major goal of ecology is to discover how dynamics and structure of multi-trophic ecological communities are related. This is difficult, because whole-community data are limited and typically comprise only a snapshot of a community instead of a time series of dynamics, and mathematical models of complex system dynamics have a large number of unmeasured parameters and therefore have been only tenuously related to real systems. These are related problems, because long time-series, if they were commonly available, would enable inference of parameters. The resulting ‘plague of parameters’ means most studies of multi-species population dynamics have been very theoretical. Dynamical models parametrized using physiological allometries may offer a partial cure for the plague of parameters, and these models are increasingly used in theoretical studies. However, physiological allometries cannot determine all parameters, and the models have also rarely been directly tested against data. We confronted a model of community dynamics with data from a lake community. Many important empirical patterns were reproducible as outcomes of dynamics, and were not reproducible when parameters did not follow physiological allometries. Results validate the usefulness, when parameters follow physiological allometries, of classic differential-equation models for understanding whole-community dynamics and the structure–dynamics relationship. PMID:24026824

  12. [Interaction of plague microbe strains varying in plasmid composition with the fleas Xenopsylla cheopis (Roths. 1903)].

    PubMed

    Voronova, G A; Tokmakova, E G; Balakhonov, S V; Bazanova, L P

    2011-01-01

    The interaction of two Yersinia pestis strains varying in plasmid composition with the fleas Xenopsylla cheopis was studied. The reference virulent strain I-2638 having four plasmids (pCad, pPst, pFra, and pTP 33) and its selected avirulent strain I-3480 that had lost the plasmids pCad and pPst formed a proventricular block in the fleas with equal frequency. There were no differences in the block-forming capacity of these strains among the infected females; however, the stock strain was more active in blocking the proventriculus in females in spring than was the mutant one. in summer. The fleas infected with a defect strain failed to transmit the pathogen. It follows that the presence of a proventricular block is not an indicator of how effectively the fleas transmit the causative agent of plague. While being in the insect, both strains of plague microbe did not alter their biological properties. In experiments, the death rate for insects infected with different strains was similar, but higher in spring than that in summer. The males naturally died more frequently than the females.

  13. [ON THE ORIGIN OF HYPERVIRULENCE OF THE CAUSATIVE AGENT OF PLAGUE].

    PubMed

    Anisimov, N V; Kislichkina, A A; Platonov, M E; Evseeva, V V; Kadnikova, L A; Lipatnikova, N A; Bogun, A G; Dentovskaya, S V; Anisimov, A P

    2016-01-01

    The attempt to combine Yersinia pseudotuberculosis and Yersinia pestis into one species has been unsupported by microbiologists due to the specific features of the epidemiology and clinical presentations of their induced diseases and to basic differences in their virulence. Pseudotuberculosis is predominantly a relatively mild human intestinal infection transmitted through contaminated food and plague is an acute generalized disease with high mortality, which is most frequently transmitted by the bites of infected fleas. Y. pestis hypervirulence, the ability of single bacteria to ensure the development of predagonal bacteriemia in rodents, which is sufficient to contaminate the fleas, is one of the main events during pathogen adaptation to a new ecological niche. By analyzing the data of molecular typing of the representative kits of naturally occurring Y. pestis isolates, the authois consider the issues of formation of intraspecies groups with universal hypervirulence, as well as biovars that are highly virulent only to their major host. A strategy for searching for selective virulence factors, the potential molecular targets for vaccination and etiotropic treatment of plague, is discussed.

  14. Phylogenetic Analysis of Entomoparasitic Nematodes, Potential Control Agents of Flea Populations in Natural Foci of Plague

    PubMed Central

    Koshel, E. I.; Aleshin, V. V.; Eroshenko, G. A.; Kutyrev, V. V.

    2014-01-01

    Entomoparasitic nematodes are natural control agents for many insect pests, including fleas that transmit Yersinia pestis, a causative agent of plague, in the natural foci of this extremely dangerous zoonosis. We examined the flea samples from the Volga-Ural natural focus of plague for their infestation with nematodes. Among the six flea species feeding on different rodent hosts (Citellus pygmaeus, Microtus socialis, and Allactaga major), the rate of infestation varied from 0 to 21%. The propagation rate of parasitic nematodes in the haemocoel of infected fleas was very high; in some cases, we observed up to 1,000 juveniles per flea specimen. Our study of morphology, life cycle, and rDNA sequences of these parasites revealed that they belong to three distinct species differing in the host specificity. On SSU and LSU rRNA phylogenies, these species representing three genera (Rubzovinema, Psyllotylenchus, and Spilotylenchus), constitute a monophyletic group close to Allantonema and Parasitylenchus, the type genera of the families Allantonematidae and Parasitylenchidae (Nematoda: Tylenchida). We discuss the SSU-ITS1-5.8S-LSU rDNA phylogeny of the Tylenchida with a special emphasis on the suborder Hexatylina. PMID:24804197

  15. Linking lifestyle of marginalized Gujjar population in Himachal Pradesh with plague outbreaks: a qualitative enquiry.

    PubMed

    Goel, Sonu; Gauri, Ajay; Kaur, Harvinder; Chauhan, Umesh Singh; Singh, Amarjeet

    2014-01-01

    It was a qualitative enquiry conducted amongst Gujjar population of Shimla district, Himachal Pradesh (HP). The study was carried out to link various lifestyle factors of the Gujjar population with the 2002 outbreak of plague in HP. Focus Group discussions guide was prepared beforehand which had information about education, livelihood, dietary pattern, relationships, personal hygiene and habits and health care utilization. It was emerged out of the study that the population has poor literacy levels, poor personal hygiene, overcrowding in hutments, closely-knit social structure, lack of awareness about common diseases, and frequent visits to forests and living in caves during their visits. Further, government health care facilities are not routinely utilized by the Gujjar community. These factors might lead to increased proximity and exposure to wild rats among Gujjar population, thus increasing their susceptibility to plague. They are, therefore a potential link between any source of infection in forests and in native population of HP and other states. The government agencies should take various measures to increase health care access of such vulnerable population through outreach health care programs.

  16. Effects of Land Use on Plague (Yersinia pestis) Activity in Rodents in Tanzania

    PubMed Central

    McCauley, Douglas J.; Salkeld, Daniel J.; Young, Hillary S.; Makundi, Rhodes; Dirzo, Rodolfo; Eckerlin, Ralph P.; Lambin, Eric F.; Gaffikin, Lynne; Barry, Michele; Helgen, Kristofer M.

    2015-01-01

    Understanding the effects of land-use change on zoonotic disease risk is a pressing global health concern. Here, we compare prevalence of Yersinia pestis, the etiologic agent of plague, in rodents across two land-use types—agricultural and conserved—in northern Tanzania. Estimated abundance of seropositive rodents nearly doubled in agricultural sites compared with conserved sites. This relationship between land-use type and abundance of seropositive rodents is likely mediated by changes in rodent and flea community composition, particularly via an increase in the abundance of the commensal species, Mastomys natalensis, in agricultural habitats. There was mixed support for rodent species diversity negatively impacting Y. pestis seroprevalence. Together, these results suggest that land-use change could affect the risk of local transmission of plague, and raise critical questions about transmission dynamics at the interface of conserved and agricultural habitats. These findings emphasize the importance of understanding disease ecology in the context of rapidly proceeding landscape change. PMID:25711606

  17. Survey of the crayfish plague pathogen presence in the Netherlands reveals a new Aphanomyces astaci carrier.

    PubMed

    Tilmans, M; Mrugała, A; Svoboda, J; Engelsma, M Y; Petie, M; Soes, D M; Nutbeam-Tuffs, S; Oidtmann, B; Roessink, I; Petrusek, A

    2014-07-01

    North American crayfish species as hosts for the crayfish plague pathogen Aphanomyces astaci contribute to the decline of native European crayfish populations. At least six American crayfish species have been reported in the Netherlands but the presence of this pathogenic oomycete with substantial conservational impact has not yet been confirmed in the country. We evaluated A. astaci prevalence in Dutch populations of six alien crustaceans using species-specific quantitative PCR. These included three confirmed crayfish carriers (Orconectes limosus, Pacifastacus leniusculus, Procambarus clarkii), two recently introduced but yet unstudied crayfish (Orconectes cf. virilis, Procambarus cf. acutus), and a catadromous crab Eriocheir sinensis. Moderate levels of infection were observed in some populations of O. limosus and P. leniusculus. Positive results were also obtained for E. sinensis and two Dutch populations of O. cf. virilis. English population of the latter species was also found infected, confirming this taxon as another A. astaci carrier in European waters. In contrast, Dutch P. clarkii seem only sporadically infected, and the pathogen was not yet detected in P. cf. acutus. Our study is the first confirmation of crayfish plague infections in the Netherlands and demonstrates substantial variation in A. astaci prevalence among potential hosts within a single region, a pattern possibly linked to their introduction history and coexistence.

  18. Treatment of black-tailed prairie dog burrows with deltamethrin to control fleas (Insecta: Siphonaptera) and plague.

    PubMed

    Seery, David B; Biggins, Dean E; Montenieri, John A; Enscore, Russell E; Tanda, Dale T; Gage, Kenneth L

    2003-09-01

    Burrows within black-tailed prairie dog (Cynomys ludovicianus) colonies on the Rocky Mountain Arsenal National Wildlife Refuge, Colorado, were dusted with deltamethrin insecticide to reduce flea (Insecta: Siphonaptera) abundance. Flea populations were monitored pre- and posttreatment by combing prairie dogs and collecting fleas from burrows. A single application of deltamethrin significantly reduced populations of the plague vector Oropsylla hirsuta, and other flea species on prairie dogs and in prairie dog burrows for at least 84 d. A plague epizootic on the Rocky Mountain Arsenal National Wildlife Refuge caused high mortality of prairie dogs on some untreated colonies, but did not appear to affect nearby colonies dusted with deltamethrin.

  19. 2010 Army Modernization Strategy

    DTIC Science & Technology

    2010-01-01

    details outlined in Chapter 4 will describe the following modernization objectives: With night vision goggles our Soldiers “own the night .” 10 2010 ARMY...modern armor-capable truck versus a non-armor capable truck? What percentage of our Night Vision Devices must be the most modern variant? The Army...Soldier weapons sight and sensors so they operate within the GSS framework. Systems such as the Digital Enhanced Night Vision Goggle could allow

  20. Perinatal exposure to the pesticide DDT impairs energy expenditure and metabolism in adult female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene have an increa...

  1. Nuclear weapons modernizations

    SciTech Connect

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  2. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  3. Mechanism study on a plague outbreak driven by the construction of a large reservoir in southwest china (surveillance from 2000-2015)

    PubMed Central

    Liang, Junrong; Liang, Yun; Duan, Ran; Tian, Kecheng; Zhao, Yong; Tang, Guangpeng; You, Lv; Yang, Guirong; Liu, Xuebin; Chen, Yuhuang; Zeng, Jun; Wu, Shengrong; Luo, Shoujun; Qin, Gang; Hao, Huijing; Jing, Huaiqi

    2017-01-01

    Background Plague, a Yersinia pestis infection, is a fatal disease with tremendous transmission capacity. However, the mechanism of how the pathogen stays in a reservoir, circulates and then re-emerges is an enigma. Methodology/Principal findings We studied a plague outbreak caused by the construction of a large reservoir in southwest China followed 16-years’ surveillance. Conclusions/Significance The results show the prevalence of plague within the natural plague focus is closely related to the stability of local ecology. Before and during the decade of construction the reservoir on the Nanpan River, no confirmed plague has ever emerged. With the impoundment of reservoir and destruction of drowned farmland and vegetation, the infected rodent population previously dispersed was concentrated together in a flood-free area and turned a rest focus alive. Human plague broke out after the enzootic plague via the flea bite. With the construction completed and ecology gradually of human residential environment, animal population and type of vegetation settling down to a new balance, the natural plague foci returned to a rest period. With the rodent density decreased as some of them died, the flea density increased as the rodents lived near or in local farm houses where had more domestic animals, and human has a more concentrated population. In contrast, in the Himalayan marmot foci of the Qinghai-Tibet Plateau in the Qilian Mountains. There are few human inhabitants and the local ecology is relatively stable; plague is prevalence, showing no rest period. Thus the plague can be significantly affected by ecological shifts. PMID:28257423

  4. MATERIALS FOR MODERNIZATION.

    ERIC Educational Resources Information Center

    JACKSON, R. GRAHAM

    CHOICES AND ISSUES IN SELECTING MATERIALS FOR MODERNIZATION OF SCHOOL BUILDINGS ARE DISCUSSED IN THIS REPORT. BACKGROUND INFORMATION IS INTRODUCED IN TERMS OF REASONS FOR ABANDONMENT, THE CAUSES AND EFFECTS OF SCHOOL BUILDING OBSOLESCENCE, AND PROBLEMS IN THE MODERNIZATION PROCESS. INTERIOR PARTITIONS ARE DISCUSSED IN TERMS OF BUILDING MATERIALS,…

  5. Deltamethrin flea-control preserves genetic variability of black-tailed prairie dogs during a plague outbreak

    USGS Publications Warehouse

    Jones, P.H.; Biggins, D.E.; Eads, D.A.; Eads, S.L.; Britten, H.B.

    2012-01-01

    Genetic variability and structure of nine black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies were estimated with 15 unlinked microsatellite markers. A plague epizootic occurred between the first and second years of sampling and our study colonies were nearly extirpated with the exception of three colonies in which prairie dog burrows were previously dusted with an insecticide, deltamethrin, used to control fleas (vectors of the causative agent of plague, Yersinia pestis). This situation provided context to compare genetic variability and structure among dusted and non-dusted colonies pre-epizootic, and among the three dusted colonies pre- and post-epizootic. We found no statistical difference in population genetic structures between dusted and non-dusted colonies pre-epizootic. On dusted colonies, gene flow and recent migration rates increased from the first (pre-epizootic) year to the second (post-epizootic) year which suggested dusted colonies were acting as refugia for prairie dogs from surrounding colonies impacted by plague. Indeed, in the dusted colonies, estimated densities of adult prairie dogs (including dispersers), but not juveniles (non-dispersers), increased from the first year to the second year. In addition to preserving BTPDs and many species that depend on them, protecting colonies with deltamethrin or a plague vaccine could be an effective method to preserve genetic variability of prairie dogs. ?? 2011 Springer Science+Business Media B.V.

  6. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    USGS Publications Warehouse

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  7. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

    PubMed Central

    Rocke, Tonie E.; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307—a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  8. Possible vector dissemination by swift foxes following a plague epizootic in black-tailed prairie dogs in northwestern Texas.

    PubMed

    McGee, Brady K; Butler, Matthew J; Pence, Danny B; Alexander, James L; Nissen, Janet B; Ballard, Warren B; Nicholson, Kerry L

    2006-04-01

    To determine whether swift foxes (Vulpes velox) could facilitate transmission of Yersinia pestis to uninfected black-tailed prairie dog (Cynomys ludovicianus) colonies by acquiring infected fleas, ectoparasite and serologic samples were collected from swift foxes living adjacent to prairie dog towns during a 2004 plague epizootic in northwestern Texas, USA. A previous study (1999-2001) indicated that these swift foxes were infested almost exclusively with the flea Pulex irritans. Black-tailed prairie dogs examined from the study area harbored only Pulex simulans and Oropsylla hirsuta. Although P. irritans was most common, P. simulans and O. hirsuta were collected from six swift foxes and a single coyote (Canis latrans) following the plague epizootic. Thus, both of these canids could act as transport hosts (at least temporarily) of prairie dog fleas following the loss of their normal hosts during a plague die-off. All six adult swift foxes tested positive for antibodies to Y. pestis. All 107 fleas from swift foxes tested negative for Y. pestis by mouse inoculation. Although swift foxes could potentially carry Y. pestis to un-infected prairie dog colonies, we believe they play only a minor role in plague epidemiology, considering that they harbored just a few uninfected prairie dog fleas (P. simulans and O. hirsuta).

  9. SEASON OF DELTAMETHRIN APPLICATION AFFECTS FLEA AND PLAGUE CONTROL IN WHITE-TAILED PRAIRIE DOG (CYNOMYS LEUCURUS) COLONIES, COLORADO, USA.

    PubMed

    Tripp, Daniel W; Streich, Sean P; Sack, Danielle A; Martin, Daniel J; Griffin, Karen A; Miller, Michael W

    2016-07-01

    In 2008 and 2009, we evaluated the duration of prophylactic deltamethrin treatments in white-tailed prairie dog ( Cynomys leucurus ) colonies and compared effects of autumn or spring dust application in suppressing flea numbers and plague. Plague occurred before and during our experiment. Overall, flea abundance tended to increase from May or June to September, but it was affected by deltamethrin treatment and plague dynamics. Success in trapping prairie dogs (animals caught/trap days) declined between June and September at all study sites. However, by September trap success on dusted sites (19%; 95% confidence interval [CI] 16-22%) was about 15-fold greater than on undusted control sites (1%; CI 0.3-4%; P≤0.0001). Applying deltamethrin dust as early as 12 mo prior seemed to afford some protection to prairie dogs. Our data showed that dusting even a portion of a prairie dog colony can prolong its persistence despite epizootic plague. Autumn dusting may offer advantages over spring in suppressing overwinter or early-spring flea activity, but timing should be adjusted to precede the annual decline in aboveground activity for hibernating prairie dog species. Large colony complexes or collections of occupied but fragmented habitat may benefit from dusting some sites in spring and others in autumn to maximize flea suppression in a portion of the complex or habitat year-round.

  10. Intranasal Administration of an Inactivated Yersinia pestis Vaccine with Interleukin-12 Generates Protective Immunity against Pneumonic Plague ▿ #

    PubMed Central

    Kumar, Devender; Kirimanjeswara, Girish; Metzger, Dennis W.

    2011-01-01

    Inhalation of Yersinia pestis causes pneumonic plague, which rapidly progresses to death. A previously licensed killed whole-cell vaccine is presently unavailable due to its reactogenicity and inconclusive evidence of efficacy. The present study now shows that vaccination intranasally (i.n.) with inactivated Y. pestis CO92 (iYp) adjuvanted with interleukin-12 (IL-12) followed by an i.n. challenge with a lethal dose of Y. pestis CO92 prevented bacterial colonization and protected 100% of mice from pneumonic plague. Survival of the vaccinated mice correlated with levels of systemic and lung antibodies, reduced pulmonary pathology and proinflammatory cytokines, and the presence of lung lymphoid cell aggregates. Protection against pneumonic plague was partially dependent upon Fc receptors and could be transferred to naïve mice with immune mouse serum. On the other hand, protection was not dependent upon complement, and following vaccination, depletion of CD4 and/or CD8 T cells before challenge did not affect survival. In summary, the results demonstrate the safety, immunogenicity, and protective efficacy of i.n. administered iYp plus IL-12 in a mouse model of pneumonic plague. PMID:21880856

  11. Distribution and epidemiology of genotypes of the crayfish plague agent Aphanomyces astaci from noble crayfish Astacus astacus in Finland.

    PubMed

    Viljamaa-Dirks, S; Heinikainen, S; Torssonen, H; Pursiainen, M; Mattila, J; Pelkonen, S

    2013-04-11

    The crayfish plague agent Aphanomyces astaci was isolated from 69 noble crayfish Astacus astacus samples in Finland between 1996 and 2006. All isolates were genotyped using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Altogether, 43 isolates belonged to the genotype group of Astacus strains (As), which is assumed to represent the genotype originally introduced into Europe around 1860 and into Finland in 1893. There were 26 crayfish plague isolates belonging to the group of Pacifastacus strain I (Ps1), which appeared in Europe after the stocking of the North American species signal crayfish Pacifastacus leniusculus. The geographical distribution of the 2 genotypes in Finland corresponded with the stocking strategies of signal crayfish. The majority of Ps1-strains (83%) were associated with a classical crayfish plague episode involving acute mortality, compared with only 33% of the As-strains. As-strains were found more often by searching for reasons for population declines or permanently weak populations, or through cage experiments in connection with reintroduction programmes. In some water bodies, isolations of the As-strains were made in successive years. This study shows that persistent crayfish plague infection is not uncommon in noble crayfish populations. The described epidemiological features suggest a difference in virulence between these 2 genotypes.

  12. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    PubMed

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  13. The 'Hittite plague', an epidemic of tularemia and the first record of biological warfare.

    PubMed

    Trevisanato, Siro Igino

    2007-01-01

    A long-lasting epidemic that plagued the Eastern Mediterranean in the 14th century BC was traced back to a focus in Canaan along the Arwad-Euphrates trading route. The symptoms, mode of infection, and geographical area, identified the agent as Francisella tularensis, which is also credited for outbreaks in Canaan around 1715 BC and 1075 BC. At first, the 14th century epidemic contaminated an area stretching from Cyprus to Iraq, and from Israel to Syria, sparing Egypt and Anatolia due to quarantine and political boundaries, respectively. Subsequently, wars spread the disease to central Anatolia, from where it was deliberately brought to Western Anatolia, in what constitutes the first known record of biological warfare. Finally, Aegean soldiers fighting in western Anatolia returned home to their islands, further spreading the epidemic.

  14. Is plague a problem in the Egyptians returning back from Libya?

    PubMed

    El-Bahnasawy, Mamdouh M; Gabr, M Sayed Ahmed; Abdel-Fattah, Magda A; Gaber, Wafaa A Ibrahim; Morsy, Tosson A

    2012-08-01

    Many employees return home with fever with or without other accompanying symptoms. Fever can be a manifestation of a minor, self-limited process or can herald a progressive, life-threatening illness. The assessment of this group is often hampered by the clinician's lack of familiarity with the types of infections that the patient may have encountered while traveling. The evaluation of such patients should focus on: What infections are possible given where the patient has lived or traveled and the time when exposures may have occurred? Which of these infections is more probable given the patient's clinical findings and potential exposures? Which of these infections is treatable or transmissible or both? On the other hand, the outbreak of plague at the Libyan-Egyptian borders and the high density rodents and their ecto-parasitic fleas in many Egyptian governorates should be embarked a control program to rodents and fleas and to raise the awareness of the concerned authorizes.

  15. Phage therapy of the white plague-like disease of Favia favus in the Red Sea

    NASA Astrophysics Data System (ADS)

    Atad, I.; Zvuloni, A.; Loya, Y.; Rosenberg, E.

    2012-09-01

    Coral disease is a major factor in the global decline of coral reefs. At present, there are no known procedures for preventing or treating infectious diseases of corals. Immunization is not possible because corals have a restricted adaptive immune system and antibiotics are neither ecologically safe nor practical in an open system. Thus, we tested phage therapy as an alternative therapeutic method for treating diseased corals. Phage BA3, specific to the coral pathogen Thalassomonas loyana, inhibited the progression of the white plague-like disease and transmission to healthy corals in the Gulf of Aqaba, Red Sea. Only one out of 19 (5 %) of the healthy corals became infected when placed near phage-treated diseased corals, whereas 11 out of 18 (61 %) healthy corals were infected in the no-phage control. This is the first successful treatment for a coral disease in the sea. We posit that phage therapy of certain coral diseases is achievable in situ.

  16. Ecological Opportunity, Evolution, and the Emergence of Flea-Borne Plague

    PubMed Central

    Chouikha, Iman; Sun, Yi-Cheng

    2016-01-01

    The plague bacillus Yersinia pestis is unique among the pathogenic Enterobacteriaceae in utilizing an arthropod-borne transmission route. Transmission by fleabite is a recent evolutionary adaptation that followed the divergence of Y. pestis from the closely related food- and waterborne enteric pathogen Yersinia pseudotuberculosis. A combination of population genetics, comparative genomics, and investigations of Yersinia-flea interactions have disclosed the important steps in the evolution and emergence of Y. pestis as a flea-borne pathogen. Only a few genetic changes, representing both gene gain by lateral transfer and gene loss by loss-of-function mutation (pseudogenization), were fundamental to this process. The emergence of Y. pestis fits evolutionary theories that emphasize ecological opportunity in adaptive diversification and rapid emergence of new species. PMID:27160296

  17. Climate change effects on plague and tularemia in the United States.

    PubMed

    Nakazawa, Yoshinori; Williams, Richard; Peterson, A Townsend; Mead, Paul; Staples, Erin; Gage, Kenneth L

    2007-01-01

    Plague and tularemia are serious zoonotic diseases endemic to North America. We evaluated spatial patterns in their transmission in view of changing climates. First, we tested whether observed shifts since the 1960s are consistent with expected patterns of shift given known climate changes over that period. Then, we used general circulation model results summarizing global patterns of changing climates into the future to forecast likely shifts in patterns of transmission over the next 50 years. The results indicate that these diseases are indeed shifting in accord with patterns of climatic shift, but that overall geographic shifts will likely be subtle, with some northward movement of southern limits and possibly northward movement of northern limits as well.

  18. Characterization of a Cynomolgus Macaque Model of Pneumonic Plague for Evaluation of Vaccine Efficacy

    PubMed Central

    Price, Jessica; Martin, Shannon; Metcalfe, Karen; Krile, Robert; Barnewall, Roy; Hart, Mary Kate; Lockman, Hank

    2015-01-01

    The efficacy of a recombinant plague vaccine (rF1V) was evaluated in cynomolgus macaques (CMs) to establish the relationship among vaccine doses, antibody titers, and survival following an aerosol challenge with a lethal dose of Yersinia pestis strain Colorado 92. CMs were vaccinated with a range of rF1V doses on a three-dose schedule (days 0, 56, and 121) to provide a range of survival outcomes. The humoral immune response following vaccination was evaluated with anti-rF1, anti-rV, and anti-rF1V bridge enzyme-linked immunosorbent assays (ELISAs). Animals were challenged via aerosol exposure on day 149. Vaccine doses and antibody responses were each significantly associated with the probability of CM survival (P < 0.0001). Vaccination also decreased signs of pneumonic plague in a dose-dependent manner. There were statistically significant correlations between the vaccine dose and the time to onset of fever (P < 0.0001), the time from onset of fever to death (P < 0.0001), the time to onset of elevated respiratory rate (P = 0.0003), and the time to onset of decreased activity (P = 0.0251) postinfection in animals exhibiting these clinical signs. Delays in the onset of these clinical signs of disease were associated with larger doses of rF1V. Immunization with ≥12 μg of rF1V resulted in 100% CM survival. Since both the vaccine dose and anti-rF1V antibody titers correlate with survival, rF1V bridge ELISA titers can be used as a correlate of protection. PMID:26224691

  19. Oral administration of a recombinant attenuated Yersinia pseudotuberculosis strain elicits protective immunity against plague.

    PubMed

    Sun, Wei; Sanapala, Shilpa; Rahav, Hannah; Curtiss, Roy

    2015-11-27

    A Yersinia pseudotuberculosis PB1+ (Yptb PB1+) mutant strain combined with chromosome insertion of the caf1R-caf1A-caf1M-caf1 operon and deletions of yopJ and yopK, χ10068 [pYV-ω2 (ΔyopJ315 ΔyopK108) ΔlacZ044::caf1R-caf1M-caf1A-caf1] was constructed. Results indicated that gene insertion and deletion did not affect the growth rate of χ10068 compared to wild-type Yptb cultured at 26 °C. In addition, the F1 antigen in χ10068 was synthesized and secreted on the surface of bacteria at 37 °C (mammalian body temperature), not at ambient culture temperature (26 °C). Immunization with χ10068 primed antibody responses and specific T-cell responses to F1 and YpL (Y. pestis whole cell lysate). Oral immunization with a single dose of χ10068 provided 70% protection against a subcutaneous (s.c.) challenge with ∼ 2.6 × 10(5) LD50 of Y. pestis KIM6+ (pCD1Ap) (KIM6+Ap) and 90% protection against an intranasal (i.n.) challenge with ∼ 500 LD50 of KIM6+Ap in mice. Our results suggest that χ10068 can be used as an effective precursor to make a safe vaccine to prevent plague in humans and to eliminate plague circulation among humans and animals.

  20. Characterization of a Cynomolgus Macaque Model of Pneumonic Plague for Evaluation of Vaccine Efficacy.

    PubMed

    Fellows, Patricia; Price, Jessica; Martin, Shannon; Metcalfe, Karen; Krile, Robert; Barnewall, Roy; Hart, Mary Kate; Lockman, Hank

    2015-09-01

    The efficacy of a recombinant plague vaccine (rF1V) was evaluated in cynomolgus macaques (CMs) to establish the relationship among vaccine doses, antibody titers, and survival following an aerosol challenge with a lethal dose of Yersinia pestis strain Colorado 92. CMs were vaccinated with a range of rF1V doses on a three-dose schedule (days 0, 56, and 121) to provide a range of survival outcomes. The humoral immune response following vaccination was evaluated with anti-rF1, anti-rV, and anti-rF1V bridge enzyme-linked immunosorbent assays (ELISAs). Animals were challenged via aerosol exposure on day 149. Vaccine doses and antibody responses were each significantly associated with the probability of CM survival (P < 0.0001). Vaccination also decreased signs of pneumonic plague in a dose-dependent manner. There were statistically significant correlations between the vaccine dose and the time to onset of fever (P < 0.0001), the time from onset of fever to death (P < 0.0001), the time to onset of elevated respiratory rate (P = 0.0003), and the time to onset of decreased activity (P = 0.0251) postinfection in animals exhibiting these clinical signs. Delays in the onset of these clinical signs of disease were associated with larger doses of rF1V. Immunization with ≥ 12 μg of rF1V resulted in 100% CM survival. Since both the vaccine dose and anti-rF1V antibody titers correlate with survival, rF1V bridge ELISA titers can be used as a correlate of protection.

  1. Improvement of disease prediction and modeling through the use of meteorological ensembles: human plague in Uganda.

    PubMed

    Moore, Sean M; Monaghan, Andrew; Griffith, Kevin S; Apangu, Titus; Mead, Paul S; Eisen, Rebecca J

    2012-01-01

    Climate and weather influence the occurrence, distribution, and incidence of infectious diseases, particularly those caused by vector-borne or zoonotic pathogens. Thus, models based on meteorological data have helped predict when and where human cases are most likely to occur. Such knowledge aids in targeting limited prevention and control resources and may ultimately reduce the burden of diseases. Paradoxically, localities where such models could yield the greatest benefits, such as tropical regions where morbidity and mortality caused by vector-borne diseases is greatest, often lack high-quality in situ local meteorological data. Satellite- and model-based gridded climate datasets can be used to approximate local meteorological conditions in data-sparse regions, however their accuracy varies. Here we investigate how the selection of a particular dataset can influence the outcomes of disease forecasting models. Our model system focuses on plague (Yersinia pestis infection) in the West Nile region of Uganda. The majority of recent human cases have been reported from East Africa and Madagascar, where meteorological observations are sparse and topography yields complex weather patterns. Using an ensemble of meteorological datasets and model-averaging techniques we find that the number of suspected cases in the West Nile region was negatively associated with dry season rainfall (December-February) and positively with rainfall prior to the plague season. We demonstrate that ensembles of available meteorological datasets can be used to quantify climatic uncertainty and minimize its impacts on infectious disease models. These methods are particularly valuable in regions with sparse observational networks and high morbidity and mortality from vector-borne diseases.

  2. Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague.

    PubMed

    Vagima, Yaron; Zauberman, Ayelet; Levy, Yinon; Gur, David; Tidhar, Avital; Aftalion, Moshe; Shafferman, Avigdor; Mamroud, Emanuelle

    2015-05-01

    Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel

  3. Beyond an AFLP genome scan towards the identification of immune genes involved in plague resistance in Rattus rattus from Madagascar.

    PubMed

    Tollenaere, C; Jacquet, S; Ivanova, S; Loiseau, A; Duplantier, J-M; Streiff, R; Brouat, C

    2013-01-01

    Genome scans using amplified fragment length polymorphism (AFLP) markers became popular in nonmodel species within the last 10 years, but few studies have tried to characterize the anonymous outliers identified. This study follows on from an AFLP genome scan in the black rat (Rattus rattus), the reservoir of plague (Yersinia pestis infection) in Madagascar. We successfully sequenced 17 of the 22 markers previously shown to be potentially affected by plague-mediated selection and associated with a plague resistance phenotype. Searching these sequences in the genome of the closely related species Rattus norvegicus assigned them to 14 genomic regions, revealing a random distribution of outliers in the genome (no clustering). We compared these results with those of an in silico AFLP study of the R. norvegicus genome, which showed that outlier sequences could not have been inferred by this method in R. rattus (only four of the 15 sequences were predicted). However, in silico analysis allowed the prediction of AFLP markers distribution and the estimation of homoplasy rates, confirming its potential utility for designing AFLP studies in nonmodel species. The 14 genomic regions surrounding AFLP outliers (less than 300 kb from the marker) contained 75 genes encoding proteins of known function, including nine involved in immune function and pathogen defence. We identified the two interleukin 1 genes (Il1a and Il1b) that share homology with an antigen of Y. pestis, as the best candidates for genes subject to plague-mediated natural selection. At least six other genes known to be involved in proinflammatory pathways may also be affected by plague-mediated selection.

  4. Plague Gives Surprises in the First Decade of the 21st Century in the United States and Worldwide

    PubMed Central

    Butler, Thomas

    2013-01-01

    Plague is an ancient disease caused by the bacterium Yersinia pestis and transmitted by rodent flea bites that continues to surprise us with first-ever events. This review documents plague in human cases in the 1st decade of the 21st century and updates our knowledge of clinical manifestations, transmission during outbreaks, diagnostic testing, antimicrobial treatment, and vaccine development. In the United States, 57 persons were reported to have the disease, of which seven died. Worldwide, 21,725 persons were affected with 1,612 deaths, for a case-fatality rate of 7.4%. The Congo reported more cases than any other country, including two large outbreaks of pneumonic plague, surpassing Madagascar, which had the most cases in the previous decade. Two United States scientists suffered fatal accidental exposures: a wildlife biologist, who carried out an autopsy on a mountain lion in Arizona in 2007, and a geneticist with subclinical hemochromatosis in Chicago, who was handling an avirulent strain of Y. pestis in 2009. Antimicrobial drugs given early after the onset of symptoms prevented many deaths; those recommended for treatment and prophylaxis included gentamicin, doxycycline, and fluoroquinolones, although fluoroquinolones have not been adequately tested in humans. Fleas that do not have their guts blocked by clotted blood meals were shown to be better transmitters of plague than blocked fleas. Under development for protection against bioterrorist use, a subunit vaccine containing F1 and V antigens of Y. pestis was administered to human volunteers eliciting antibodies without any serious side effects. These events, although showing progress, suggest that plague will persist in rodent reservoirs mostly in African countries burdened by poverty and civil unrest, causing death when patients fail to receive prompt antimicrobial treatment. PMID:24043686

  5. Modern Physics Simulations

    NASA Astrophysics Data System (ADS)

    Lopez, Jorge; Correa, Jose

    1999-10-01

    Due to the lack of laboratories for introductory modern physics classes, Dr. Jorge A. Lopez and Mr. Jose Ricardo Correa from the UTEP Physics Department work in the development of computer simulations of important modern physics experiments for the aforementioned physics classes. The presentation will inform the audience about this resource in the instruction of introductory modern physics as well as the success it has had. Introductory modern physics classes expose students to radically new concepts that defy common sense. As if this was not hard enough, students encounter a lack of hands-on activities due to the lack of lab equipment for their modern physics class. This is to be understood since most of the experiments cannot be performed in the conditions university laboratories provide and at the undergraduate level organization. Therefore, much time and effort have been devoted to the development of computer simulations of key modern physics experiments. These virtual experiments are a great alternative that will alleviate the limitations physics professors face when teaching introductory modern physics courses in addition to enchance student understanding.

  6. GPS Status and Modernization

    DTIC Science & Technology

    2010-03-10

    11 GPS IIA • 12 GPS IIR • 7 GPS IIR-M • 4 additional satellites in residual status • 1 additional IIR-M waiting to be set healthy • Global GPS ...AEP) Next Generation Control Segment (OCX) Legacy Control System 7 GPS Modernization – Ground • Architecture Evolution Plan (AEP) • Transitioned in 2007...Modern distributed system replaced 1970’s mainframes • Increased capacity for monitoring of GPS signals • Increased worldwide commanding

  7. Small oversights that led to the Great Plague of Marseille (1720-1723): lessons from the past.

    PubMed

    Devaux, Christian A

    2013-03-01

    In recent decades, the issue of emerging and re-emerging infectious diseases has become an increasingly important area of concern in public health. Today, like centuries ago, infectious diseases confront us with the fear of death and have heavily influenced social behaviors and policy decisions at local, national and international levels. Remarkably, an infectious disease such as plague, which is disseminated from one country to another mainly by commercial transportation, remains today, as it was in the distant past, a threat for human societies. Throughout history, plague outbreaks prevailed on numerous occasions in Mediterranean harbors, including Marseille in the south of France. A few months ago, the municipal authorities of the city of Marseille, announced the archaeological discovery of the last remnants of a "lazaretto" or "lazaret" (http://20.minutes.fr, March 3th, 2012), a place equipped with an infirmary and destined to isolate ship passengers quarantined for health reasons. More recently, on September 16th, 2012, the anchor of the ship "Grand Saint Antoine" responsible for bringing the plague to Marseille in 1720, was recovered and it will be restored before being presented to the public in 2013 (http://www.libemarseille.fr/henry/2012/09/lancre-du-bateau-qui-amena-la-grande-peste-%C3%A0-marseille.html). In the light of these recent archaeological discoveries, it is quite instructive to revisit the sequence of events and decisions that led to the outbreak of the Great Plague of Marseille between 1720 and 1723. It comes to the evidence that although the threat was known and health surveillance existed with quite effective preventive measures such as quarantine, the accumulation of small negligence led to one of the worst epidemics in the city (about 30% of casualties among the inhabitants). This is an excellent model to illustrate the issues we are facing with emerging and re-emerging infectious diseases today and to define how to improve biosurveillance

  8. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines.

    PubMed

    Tao, Pan; Mahalingam, Marthandan; Kirtley, Michelle L; van Lier, Christina J; Sha, Jian; Yeager, Linsey A; Chopra, Ashok K; Rao, Venigalla B

    2013-01-01

    Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH₂-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines.

  9. White plague-like coral disease in remote reefs of the Western Caribbean.

    PubMed

    Sánchez, Juan A; Herrera, Santiago; Navas-Camacho, Raúl; Rodríguez-Ramírez, Alberto; Herron, Pilar; Pizarro, Valeria; Acosta, Alison R; Castillo, Paula A; Montoya, Phanor; Orozco, Carlos

    2010-05-01

    The health of coral reef communities has been decreasing over the last 50 years, due the negative effects of human activities combined with other natural processes. We present documentation of a White Plague Disease (WPD) outbreak in the Serrana Bank, an isolated Western Caribbean atoll with presumably inexistent pollutant inputs from local human settlements. In addition, this study summarizes seven years of observations on diseased corals in the nearby island of San Andrés, which in contrast is one of the most populated islands of the Caribbean. There was a massive coral mortality in the atoll lagoon (14 degrees 27'53.24", 80 degrees 14'22.27" W, and 12m depth) due to WPD on May 4 of 2003. Seventeen species were found dead or largely affected by the disease. The information resulting from GPS and manta-tow transects revealed that approximately 5.8 ha of reticulate Montastraea spp. patch reefs were lethally affected by the disease in the atoll. On May 8 of the same year we observed and calculated a mean coral cover of 7.03% (SD +/- 2.44), a mean diseased coral tissue cover of 5.5% (SD +/- 1.1) and a 13.4% (SD +/- 8.05) of recently dead coral covered with a thin filamentous algae layer; approximately 73% of mortalities caused by the disease occurred before the end of the outbreak. A rough estimate of 18.9% in recent coral cover reduction can be attributed to WPD. This represents about 82% of the total coral cover decline since 1995. Semi-enclosed environments such as atoll lagoons and the reticulate patch-reefs of Montastraea spp. seem to be particularly vulnerable to this kind of coral disease, which constitute an alert to increase the monitoring of the same kind of atoll environments. The WPD has been present in the area of the nearby island of San Andrés at a low prevalence level, with sporadic increasing peaks of disease proliferation. The peaks observed during 1999 and 2004 comprised increases of 266% and 355% respectively, suggesting an alarming progression

  10. [Macro- and microevolution as related to the problem of origin and global expansion of the plague pathogen Yersinia pestis].

    PubMed

    Suntsov, V V; Suntsova, N I

    2008-01-01

    The ratio of macro- and microevolutionary processes is considered with reference to the ecological scenario of the origin of the plague pathogen and its subsequent natural and anthropogenic global expansion. The macroevolutionary transformation of the ancestral pseudotuberculosis microbe clone into the initial plague microbe Yersinia pestis tarbagani occurred in Central Asia at the end of the Late Pleistocene by a "vertical" Darwinian way in an inadaptive heterothermal continual intermediate environment--the Mongolian marmot Marmota sibirica-flea Oropsylla silantiewi system--via a sequence of unstable and currently extinct intermediate forms. Its natural geographic expansion on the "oil spot" principle in the postglacial time led to the microevolutionary formation of 20-30 hostal subspecies circulating in populations of the background species of burrowing rodents and pikas in arid areas of Eurasia. The intercontinental spread of the "marmot" and "rat" pathogen subspecies in the past few centuries has been exclusively anthropogenic, with the involvement of synanthropic (ship) rats.

  11. Blood meal identification in off-host cat fleas (Ctenocephalides felis) from a plague-endemic region of Uganda.

    PubMed

    Graham, Christine B; Borchert, Jeff N; Black, William C; Atiku, Linda A; Mpanga, Joseph T; Boegler, Karen A; Moore, Sean M; Gage, Kenneth L; Eisen, Rebecca J

    2013-02-01

    The cat flea, Ctenocephalides felis, is an inefficient vector of the plague bacterium (Yersinia pestis) and is the predominant off-host flea species in human habitations in the West Nile region, an established plague focus in northwest Uganda. To determine if C. felis might serve as a Y. pestis bridging vector in the West Nile region, we collected on- and off-host fleas from human habitations and used a real-time polymerase chain reaction-based assay to estimate the proportion of off-host C. felis that had fed on humans and the proportion that had fed on potentially infectious rodents or shrews. Our findings indicate that cat fleas in human habitations in the West Nile region feed primarily on domesticated species. We conclude that C. felis is unlikely to serve as a Y. pestis bridging vector in this region.

  12. A seasonal SIR metapopulation model with an Allee effect with application to controlling plague in prairie dog colonies.

    PubMed

    Ekanayake, A J; Ekanayake, D B

    2015-01-01

    For wildlife species living among patchy habitats, disease and the Allee effect (reduced per capita birth rates at low population densities) may together drive a patch's population to extinction, particularly if births are seasonal. Yet local extinction may not be indicative of global extinction, and a patch may become recolonized by migrating individuals. We introduce deterministic and stochastic susceptible, infectious, and immune epidemic models with vector species to study disease in a metapopulation with an Allee effect and seasonal birth and dispersal. We obtain conditions for the existence of a strong Allee effect and existence and stability of a disease-free positive periodic solution. These general models have application to many wildlife diseases. As a case study, we apply them to evaluate dynamics of the sylvatic plague in prairie dog colonies interconnected through dispersal. We further evaluate the effects of control of the vector population and control by immunization on plague eradication.

  13. Differential plague-transmission dynamics determine Yersinia pestis population genetic structure on local, regional, and global scales

    PubMed Central

    Girard, Jessica M.; Wagner, David M.; Vogler, Amy J.; Keys, Christine; Allender, Christopher J.; Drickamer, Lee C.; Keim, Paul

    2004-01-01

    Plague, the disease caused by the bacterium Yersinia pestis, has greatly impacted human civilization. Y. pestis is a successful global pathogen, with active foci on all continents except Australia and Antarctica. Because the Y. pestis genome is highly monomorphic, previous attempts to characterize the population genetic structure within a single focus have been largely unsuccessful. Here we report that highly mutable marker loci allow determination of Y. pestis population genetic structure and tracking of transmission patterns at two spatial scales within a single focus. In addition, we found that in vitro mutation rates for these loci are similar to those observed in vivo, which allowed us to develop a mutation-rate-based model to examine transmission mechanisms. Our model suggests there are two primary components of plague ecology: a rapid expansion phase for population growth and dispersal followed by a slower persistence phase. This pattern seems consistent across local, regional, and even global scales. PMID:15173603

  14. Predicting small mammal and flea abundance using landform and soil properties in a plague endemic area in Lushoto District, Tanzania.

    PubMed

    Meliyo, Joel L; Kimaro, Didas N; Msanya, Balthazar M; Mulungu, Loth S; Hieronimo, Proches; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Small mammals particularly rodents, are considered the primary natural hosts of plague. Literature suggests that plague persistence in natural foci has a root cause in soils. The objective of this study was to investigate the relationship between on the one hand landforms and associated soil properties, and on the other hand small mammals and fleas in West Usambara Mountains in Tanzania, a plague endemic area. Standard field survey methods coupled with Geographical Information System (GIS) technique were used to examine landform and soils characteristics. Soil samples were analysed in the laboratory for physico-chemical properties. Small mammals were trapped on pre-established landform positions and identified to genus/species level. Fleas were removed from the trapped small mammals and counted. Exploration of landform and soil data was done using ArcGIS Toolbox functions and descriptive statistical analysis. The relationships between landforms, soils, small mammals and fleas were established by generalised linear regression model (GLM) operated in R statistics software. Results show that landforms and soils influence the abundance of small mammals and fleas and their spatial distribution. The abundance of small mammals and fleas increased with increase in elevation. Small mammal species richness also increases with elevation. A landform-soil model shows that available phosphorus, slope aspect and elevation were statistically significant predictors explaining richness and abundance of small mammals. Fleas' abundance and spatial distribution were influenced by hill-shade, available phosphorus and base saturation. The study suggests that landforms and soils have a strong influence on the richness and evenness of small mammals and their fleas' abundance hence could be used to explain plague dynamics in the area.

  15. Consumption of baits containing raccoon pox-based plague vaccines protects black-tailed prairie dogs (Cynomys ludovicianus).

    PubMed

    Rocke, Tonie E; Pussini, Nicola; Smith, Susan R; Williamson, Judy; Powell, Bradford; Osorio, Jorge E

    2010-01-01

    Baits containing recombinant raccoon poxvirus (RCN) expressing plague antigens (fraction 1 [F1] and a truncated form of the V protein-V307) were offered for voluntary consumption several times over the course of several months to a group of 16 black-tailed prairie dogs (Cynomys ludovicianus). For comparison, another group of prairie dogs (n = 12) was injected subcutaneously (SC) (prime and boost) with 40 microg of F1-V fusion protein absorbed to alum, a vaccine-adjuvant combination demonstrated to elicit immunity to plague in mice and other mammals. Control animals received baits containing RCN without the inserted antigen (n = 8) or injected diluent (n = 7), and as there was no difference in their survival rates by Kaplan-Meier analysis, all of them were combined into one group in the final analysis. Mean antibody titers to Yersinia pestis F1 and V antigen increased (p < 0.05) in the vaccinated groups compared to controls, but titers were significantly higher (p < 0.0001) in those receiving injections of F1-V fusion protein than in those orally vaccinated with RCN-based vaccine. Interestingly, upon challenge with approximately 70,000 cfu of virulent Y. pestis, oral vaccination resulted in survival rates that were significantly higher (p = 0.025) than the group vaccinated by injection with F1-V fusion protein and substantially higher (p < 0.0001) than the control group. These results demonstrate that oral vaccination of prairie dogs using RCN-based plague vaccines provides significant protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous flea bites.

  16. Microsatellite markers for direct genotyping of the crayfish plague pathogen Aphanomyces astaci (Oomycetes) from infected host tissues.

    PubMed

    Grandjean, Frédéric; Vrålstad, Trude; Diéguez-Uribeondo, Javier; Jelić, Mišel; Mangombi, Joa; Delaunay, Carine; Filipová, Lenka; Rezinciuc, Svetlana; Kozubíková-Balcarová, Eva; Guyonnet, Daniel; Viljamaa-Dirks, Satu; Petrusek, Adam

    2014-06-04

    Aphanomyces astaci is an invasive pathogenic oomycete responsible for the crayfish plague, a disease that has devastated European freshwater crayfish. So far, five genotype groups of this pathogen have been identified by applying random amplified polymorphic DNA analysis on axenic cultures. To allow genotyping of A. astaci in host tissue samples, we have developed co-dominant microsatellite markers for this pathogen, tested them on pure cultures of all genotype groups, and subsequently evaluated their use on tissues of (1) natural A. astaci carriers, i.e., North American crayfish species, and (2) A. astaci-infected indigenous European species from crayfish plague outbreaks. Out of over 200 potential loci containing simple sequence repeat (SSR) motifs identified by 454 pyrosequencing of SSR-enriched library, we tested 25 loci with highest number of repeats, and finally selected nine that allow unambiguous separation of all known RAPD-defined genotype groups of A. astaci from axenic cultures. Using these markers, we were able to characterize A. astaci strains from DNA isolates from infected crayfish tissues when crayfish had a moderate to high agent level according to quantitative PCR analyses. The results support the hypothesis that different North American crayfish hosts carry different genotype groups of the pathogen, and confirm that multiple genotype groups, including the one originally introduced to Europe in the 19th century, cause crayfish plague outbreaks in Central Europe. So far undocumented A. astaci genotype seems to have caused one of the analysed outbreaks from the Czech Republic. The newly developed culture-independent approach allowing direct genotyping of this pathogen in both axenic cultures and mixed genome samples opens new possibilities in studies of crayfish plague pathogen distribution, diversity and epidemiology.

  17. Flea-associated zoonotic diseases of cats in the USA: bartonellosis, flea-borne rickettsioses, and plague.

    PubMed

    McElroy, Kristina M; Blagburn, Byron L; Breitschwerdt, Edward B; Mead, Paul S; McQuiston, Jennifer H

    2010-04-01

    Cat-scratch disease, flea-borne typhus, and plague are three flea-associated zoonoses of cats of concern in the USA. Although flea concentrations may be heaviest in coastal and temperate climates, fleas and flea-borne disease agents can occur almost anywhere in the USA. Understanding flea-borne pathogens, and the associated risks for owners and veterinarians, is important to reduce the likelihood of zoonotic infection.

  18. A chaotic model for the plague epidemic that has occurred in Bombay at the end of the 19th century

    NASA Astrophysics Data System (ADS)

    Mangiarotti, Sylvain

    2015-04-01

    The plague epidemic that has occurred in Bombay at the end of the 19th century was detected in 1896. One year before, an Advisory Committee had been appointed by the Secretary of State for India, the Royal Society, and the Lister Institute. This Committee made numerous investigations and gathered a large panel of data including the number of people attacked and died from the plague, records of rat and flea populations, as well as meteorological records of temperature and humidity [1]. The global modeling technique [2] aims to obtain low dimensional models able to simulate the observed cycles from time series. As far as we know, this technique has been tried only to one case of epidemiological analysis (the whooping cough infection) based on a discrete formulation [3]. In the present work, the continuous time formulation of this technique is used to analyze the time evolution of the plague epidemic from this data set. One low dimensional model (three variables) is obtained exhibiting a limit cycle of period-5. A chaotic behavior could be derived from this model by tuning the model parameters. It provides a strong argument for a dynamical behavior that can be approximated by low dimensional deterministic equations. This model also provides an empirical argument for chaos in epidemics. [1] Verjbitski D. T., Bannerman W. B. & Kápadiâ R. T., 1908. Reports on Plague Investigations in India (May,1908), The Journal of Hygiene, 8(2), 161 -308. [2] Mangiarotti S., Coudret R., Drapeau L. & Jarlan L., 2012. Polynomial search and Global modelling: two algorithms for modeling chaos. Physical Review E, 86(4), 046205. [3] Boudjema G. & Cazelles B., 2003. Extraction of nonlinear dynamics from short and noisy time series. Chaos, Solitons and Fractals, 12, 2051-2069.

  19. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs.

    PubMed

    Sackett, Loren C; Collinge, Sharon K; Martin, Andrew P

    2013-05-01

    Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals.

  20. Transmission efficiency of two flea species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) involved in plague epizootics among prairie dogs.

    PubMed

    Wilder, Aryn P; Eisen, Rebecca J; Bearden, Scott W; Montenieri, John A; Tripp, Daniel W; Brinkerhoff, R Jory; Gage, Kenneth L; Antolin, Michael F

    2008-06-01

    Plague, caused by Yersinia pestis, is an exotic disease in North America circulating predominantly in wild populations of rodents and their fleas. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to infection, often experiencing mortality of nearly all individuals in a town as a result of plague. The fleas of black-tailed prairie dogs are Oropsylla tuberculata cynomuris and Oropsylla hirsuta. We tested the efficiency of O. tuberculata cynomuris to transmit Y. pestis daily from 24 to 96 h postinfection and compared it to previously collected data for O. hirsuta. We found that O. tuberculata cynomuris has over threefold greater transmission efficiency (0.18 infected fleas transmit Y. pestis at 24 h postinfection) than O. hirsuta (0.05 fleas transmit). Using a simple model of flea-borne transmission, we combine these laboratory measurements with field data on monthly flea loads to compare the seasonal vectorial capacity of these two flea species. Coinciding with seasonal patterns of flea abundance, we find a peak in potential for flea-borne transmission in March, during high O. tuberculata cynomuris abundance, and in September-October when O. hirsuta is common. Our findings may be useful in determining the timing of insecticidal dusting to slow plague transmission in black-tailed prairie dogs.

  1. Polymerase chain reaction (PCR) identification of rodent blood meals confirms host sharing by flea vectors of plague.

    PubMed

    Franklin, Heather A; Stapp, Paul; Cohen, Amybeth

    2010-12-01

    Elucidating feeding relationships between hosts and parasites remains a significant challenge in studies of the ecology of infectious diseases, especially those involving small or cryptic vectors. Black-tailed prairie dogs (Cynomys ludovicianus) are a species of conservation importance in the North American Great Plains whose populations are extirpated by plague, a flea-vectored, bacterial disease. Using polymerase chain reaction (PCR) assays, we determined that fleas (Oropsylla hirsuta) associated with prairie dogs feed upon northern grasshopper mice (Onychomys leucogaster), a rodent that has been implicated in the transmission and maintenance of plague in prairie-dog colonies. Our results definitively show that grasshopper mice not only share fleas with prairie dogs during plague epizootics, but also provide them with blood meals, offering a mechanism by which the pathogen, Yersinia pestis, may be transmitted between host species and maintained between epizootics. The lack of identifiable host DNA in a significant fraction of engorged Oropsylla hirsuta collected from animals (47%) and prairie-dog burrows (100%) suggests a rapid rate of digestion and feeding that may facilitate disease transmission during epizootics but also complicate efforts to detect feeding on alternative hosts. Combined with other analytical approaches, e.g., stable isotope analysis, molecular genetic techniques can provide novel insights into host-parasite feeding relationships and improve our understanding of the role of alternative hosts in the transmission and maintenance of disease.

  2. Droughts may increase susceptibility of prairie dogs to fleas: Incongruity with hypothesized mechanisms of plague cycles in rodents

    USGS Publications Warehouse

    Eads, David; Biggins, Dean E.; Long, Dustin H.; Gage, Kenneth L.; Antolin, Michael F.

    2016-01-01

    Plague is a reemerging, rodent-associated zoonosis caused by the flea-borne bacterium Yersinia pestis. As a vector-borne disease, rates of plague transmission may increase when fleas are abundant. Fleas are highly susceptible to desiccation under hot-dry conditions; we posited that their densities decline during droughts. We evaluated this hypothesis with black-tailed prairie dogs (Cynomys ludovicianus) in New Mexico, June–August 2010–2012. Precipitation was relatively plentiful during 2010 and 2012 but scarce during 2011, the driest spring–summer on record for the northeastern grasslands of New Mexico. Unexpectedly, fleas were 200% more abundant in 2011 than in 2010 and 2012. Prairie dogs were in 27% better condition during 2010 and 2012, and they devoted 287% more time to grooming in 2012 than in 2011. During 2012, prairie dogs provided with supplemental food and water were in 23% better condition and carried 40% fewer fleas. Collectively, these results suggest that during dry years, prairie dogs are limited by food and water, and they exhibit weakened defenses against fleas. Long-term data are needed to evaluate the generality of whether droughts increase flea densities and how changes in flea abundance during sequences of dry and wet years might affect plague cycles in mammalian hosts.

  3. Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries.

    PubMed

    Cui, Yujun; Yang, Xianwei; Xiao, Xiao; Anisimov, Andrey P; Li, Dongfang; Yan, Yanfeng; Zhou, Dongsheng; Rajerison, Minoarisoa; Carniel, Elisabeth; Achtman, Mark; Yang, Ruifu; Song, Yajun

    2014-08-01

    Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world. Here we compared the whole genome sequence of an EV76 strain used in China (EV76-CN) with the genomes of Y. pestis wild isolates to identify genetic variations specific to the EV76 lineage. We identified 6 SNPs and 6 Indels (insertions and deletions) differentiating EV76-CN from its counterparts. Then, we screened these polymorphic sites in 28 other strains of EV76 lineage that were stored in different countries. Based on the profiles of SNPs and Indels, we reconstructed the parsimonious dissemination history of EV76 lineage. This analysis revealed that there have been at least three independent imports of EV76 strains into China. Additionally, we observed that the pyrE gene is a mutation hotspot in EV76 lineages. The fine comparison results based on whole genome sequence in this study provide better understanding of the effects of laboratory passages on the accumulation of genetic polymorphisms in plague vaccine strains. These variations identified here will also be helpful in discriminating different EV76 derivatives.

  4. Vaccination as a potential means to prevent plague in black-footed ferrets:progress and continuing challenges

    USGS Publications Warehouse

    Rocke, T.E.; Nol, P.; Marinari, P.E.; Kreeger, J.S.; Smith, S.R.; Andrews, G.P.; Friedlander, A.W.

    2006-01-01

    received a placebo by the same route. Two weeks after the second immunization, mean antibody titers to Y. pestis F1 and V antigens were measured and found to be significantly higher in vaccinates than their preimmunization values (P < 0.0001) and significantly higher than the control values (P < 0.0001). Six months postimmunization, 16 vaccinates and eight controls were challenged with approximately 8,000 colony forming units of virulent plague by subcutaneous inoculation. Eleven of 16 vaccinates (69 percent) survived with no ill effects whereas all eight control animals died within 3a??6 days. Two months later, the 11 surviving vaccinates were challenged again by ingestion of a plague-infected mouse. None of the animals showed any ill effects and all survived. In contrast, seven control ferrets fed infected mice died within 2a??4 days, including one animal that did not actually ingest the mouse but was likely exposed to it. This study demonstrates that immunization of ferrets with the recombinant F1-V fusion protein can induce significant antibody responses and reduce their susceptibility to plague infection.

  5. [Fowl plague and avian influenza A viruses of poultry and birds. Diagnosis, control measures and practical experiences].

    PubMed

    Kaleta, E F

    2014-01-01

    The causes of the notifiable fowl plague are high and low pathogenic avian influenza A viruses of the haemagglutinin subtypes H5 and H7 but also other haemagglutinin subtypes If the intravenous pathogenicity index is greater than 1.2. The German fowl plague order (Geflügelpest-Verordnung) differentiates between highly pathogenic influenza A viruses of the subtypes H5 and H7, if multiple basic amino acids at the cleavage site of the haemagglutinin molecules are detected by virus isolation, antigen or genome determination and low pathogenic avian influenza A viruses of the subtypes H5 and H7 if either the intravenous pathogenicity index is lower than 1.2 or no basic amino acids are present at the cleavage site of the haemagglutinin molecule. Aspects of diagnosis, control including culling, therapy and vaccination are reviewed. The currently available means and their limitations of a therapy of fowl plague by oral administration of neuraminidase inhibitors (e. g. oseltamivir) are described. Following granted permission, individually marked valuable zoo and pet birds may be vaccinated using licensed inactivated vaccines. Vector vaccines have not been used in Germany so far. Avian influenza A viruses of other haemagglutinin subtypes (H1-H4, H6, H8-H18) may also cause infections and severe disease. These subtypes are not subject to governmental interventions and disease can be prevented by timely use of inactivated vaccines.

  6. Managing prairie dogs by managing plague: a vaccine for the future?

    USGS Publications Warehouse

    Johnson, Terry B.; Rocke, Tonie E.; Gober, Pete; Van Pelt, Bill E.; Miller, Michael W.; Tripp, Daniel W.; Abbott, Rachel C.; Bergman, David L.

    2014-01-01

    The Black-footed Ferret Recovery Implementation Team Executive Committee is conducting a project to develop,and (hopefully) eventually implement, a plague vaccination program for prairie dogs. The project is a component of the WesternAssociation of Fish and Wildlife Agencies Grasslands Conservation Initiative. An effective, field-worthy vaccine against plaguecould be the biggest breakthrough in recovery efforts for the black-footed ferret since the 1981 rediscovery of wild ferrets nearMeeteetse, Wyoming. If proven efficacious, the vaccine could help agencies and stakeholder cooperators maintain specificpopulations of prairie dogs at robust levels, thus enhancing range-wide conservation of those species, as well recovery of the ferret,while enabling control of other prairie dog populations to resolve site-specific agricultural and human health concerns. The resultsof laboratory and field-testing in the early stages of developing this vaccine are preliminary but mostly encouraging. A plan forbroad-scale application is being developed for possible use when testing has been completed and (if warranted) the vaccine isregistered for governmental use. An overview of all aspects of the project is discussed.

  7. Embryonic diapause in the Australian plague locust relative to parental experience of cumulative photophase decline.

    PubMed

    Deveson, Edward D; Woodman, James D

    2014-11-01

    The Australian plague locust Chortoicetes terminifera (Walker) exhibits facultative embryonic diapause during autumn. To approximate natural photoperiod changes during late summer and autumn, locust nymphs were reared under different total declines in laboratory photophase (-0.5, -0.75, -1.0, -1.25, -1.5, -1.75, -2 h each lowered in 15 min steps) in a 24 h photoperiod to quantify any effect on the subsequent production of diapause eggs. Induction of diapause eggs was significantly affected by accumulated photoperiod decline experienced by the parental generation throughout all development stages from mid-instar nymph to fledgling adult. The incidence of embryonic diapause ranged from nil at -0.5 h to 86.6% diapause at -2 h. Continued declines in photoperiod for post-teneral locusts (transitioned from -1h until fledging to -1.75 h) produced a further increase in the proportion of diapause eggs. The results were unaffected by time spent at any given photoperiod, despite a previously indicated maximal inductive photoperiod of 13.5h being used as the mid-point of all treatments. Implications for the seasonal timing processes of photoperiodism in C. terminifera, which has a high migratory capacity and a latitudinal cline in the timing of diapause egg production across a broad geographic range, are discussed.

  8. The insomnia plague: a Gabriel García Márquez story.

    PubMed

    Sghirlanzoni, A; Carella, F

    2000-08-01

    "All the great writers have good eyes" is a sentence by V. Nabokov that is very suitable for G.G. Márquez and his One Hundred Years of Solitude. The novel, published in 1967, introduces among many others, the character of little Rebeca, whose frailness and greenish skin revealed hunger "that was older than she was". The girl, because of a pica syndrome, only liked to eat earth and the cake of whitewash. But her fate appears to be determined by the lethal insomnia plague, whose most fearsome part was not the impossibility of sleeping but its inexorable evolution toward a loss of memory in which the sick person "sinks into a kind of idiocy that had no past". Rebeca's lethal insomnia looks quite similar to the "peculiar, fatal disorder of sleep" originally described by Lugaresi et al. in 1986. One Hundred Years (of Solitude shows that G.G. Márquez was gifted not only with good eyes, but has the seductive power of changing reality into fantasy, while transforming his visions into reality.

  9. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    PubMed

    Roder, Cornelia; Arif, Chatchanit; Bayer, Till; Aranda, Manuel; Daniels, Camille; Shibl, Ahmed; Chavanich, Suchana; Voolstra, Christian R

    2014-01-01

    Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.

  10. Expression and immunohistochemical distribution of duck plague virus glycoprotein gE in infected ducks.

    PubMed

    Chang, Hua; Cheng, Anchun; Wang, Mingshu; Xiang, Jun; Xie, Wei; Shen, Fuxiao; Jia, Renyong; Zhu, Dekang; Luo, Qihui; Zhou, Yi; Chen, Xiaoyue

    2011-03-01

    To determine the distribution of duck plague virus (DPV) gE protein in paraformaldehyde-fixed, paraffin-embedded tissues of experimentally DPV-infected ducks, an indirect immunoperoxidase assay was established to detect glycoprotein E (gE) protein for the first time. The rabbit anti-His-gE serum, raised against the recombinant His-gE fusion protein expressed in Escherichia coli BL21 (DE3), was prepared and purified. Western blotting and indirect immunofluorescence analysis showed that the anti-His-gE serum had a high level of reactivity and specificity and could be used as the first antibody for further experiments to study the distribution of DPV gE protein in DPV-infected tissues. A number of DPV gE proteins were distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus, duodenum, jejunum, ileum, and kidney of DPV-infected ducks and a few DPV gE were distributed in the Harders glands, myocardium, cerebrum, and lung, whereas the gE was not seen in the skin, muscle, and pancreas. Moreover, DPV gE was expressed abundantly in the cytoplasm of lymphocytes, reticulum cells, macrophages, epithelial cells, and hepatocytes. The present study may be useful not only for describing the characteristics of gE expression and distribution in infected ducks but also for understanding the pathogenesis of DPV.

  11. Meta Modernism: An Introduction

    ERIC Educational Resources Information Center

    Snell, Joel

    2016-01-01

    The author introduces Hegel. From the triad (Hegelian Dialect), he briefly gives an overview of the history of philosophy. In true Hegelian form, it is now time to reform "Postmodernism" and replace it with "Meta modernism." Postmodern had a short life from 1950 to now and has left few adherents. It is confusing and…

  12. Modern aspects of electrochemistry

    SciTech Connect

    Bockris, J.M.; Conway, B.E.; White, R.E.

    1986-01-01

    This book presents information on the following topics: perspectives in electrochemical physics; modern state of double layer study of solid metals; photoelectrolysis and photoelectrochemical catalysis; electron transfer reactions on oxide-covered metal electrodes; and interfacial electrostatics and electrodynamics in disperse systems.

  13. A Modern Periodic Table.

    ERIC Educational Resources Information Center

    Herrenden-Harker, B. D.

    1997-01-01

    Presents a modern Periodic Table based on the electron distribution in the outermost shell and the order of filling of the sublevels within the shells. Enables a student to read off directly the electronic configuration of the element and the order in which filling occurs. (JRH)

  14. Deconstructing Modern Educational Technology.

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    1994-01-01

    Discusses modern educational technology, including postmodernism; deconstruction; the Shannon-Weaver Model for telecommunication apparatus and the epistemology of educational technology; the systems approach; and possible demands of postmodern educational technology, including technoscience, instructional design issues, and cultural aspects.…

  15. Modern Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  16. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  17. Gnotobiology in modern medicine

    NASA Technical Reports Server (NTRS)

    Podoprigora, G. I.

    1980-01-01

    A review is given of currently accepted theories and applications of gnotobiology. A brief history of gnotobiology is supplied. Problems involved in creating germ-free gnotobiota and the use of these animals in experimental biology are cited. Examples of how gnotobiology is used in modern medical practice illustrate the future prospects for this area of science.

  18. Modern Regression Discontinuity Analysis

    ERIC Educational Resources Information Center

    Bloom, Howard S.

    2012-01-01

    This article provides a detailed discussion of the theory and practice of modern regression discontinuity (RD) analysis for estimating the effects of interventions or treatments. Part 1 briefly chronicles the history of RD analysis and summarizes its past applications. Part 2 explains how in theory an RD analysis can identify an average effect of…

  19. Modern programming language

    NASA Technical Reports Server (NTRS)

    Feldman, G. H.; Johnson, J. A.

    1980-01-01

    Structural-programming language is especially-tailored for producing assembly language programs for MODCOMP II and IV mini-computes. Modern programming language consists of set of simple and powerful control structures that include sequencing alternative selection, looping, sub-module linking, comment insertion, statement continuation, and compilation termination capabilities.

  20. Modern biotechnology in China.

    PubMed

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2010-01-01

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  1. Modernizing Mechanical Services.

    ERIC Educational Resources Information Center

    Rutgers, Norman L.

    Some of the problems of renovating school buildings and in particular the modernization of mechanical services in existing facilities are discussed. According to school management publications, approximately 42 per cent of our elementary and 59 per cent of our secondary schools are 15 years old or older. School plants, which were built 12 to 15…

  2. Modern vs. Traditional.

    ERIC Educational Resources Information Center

    Zhenhui, Rao

    1999-01-01

    This article discusses traditional methods, such as the grammar-translation, and modern methods, the communicative approach, for teaching English-as-a-foreign-language in China. The relationship between linguistic accuracy and communicative competence, student-centered orientation, and the role of the teacher are highlighted. (Author/VWL)

  3. Modern Versus Traditional Mathematics

    ERIC Educational Resources Information Center

    Roberts, A. M.

    1974-01-01

    The effect of different secondary school mathematics syllabi on first-year performance in college-level mathematics was studied in an attempt to evaluate the syllabus change. Students with a modern mathematics background performed sigficantly better on most first-year units. A topic-by-topic analysis of results is included. (DT)

  4. Modern School Mathematics

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2008-01-01

    There was much enthusiasm when the phrase "Modern School Mathematics" was coined shortly after the 1958 National Defense Education Act was passed. Many federally funded study groups came into being. Presently, criticisms in secondary teaching are just as great as it was in 1958. The innovations recommended by federally funded study groups has had…

  5. Industrial technology modernization (ITM) program

    NASA Astrophysics Data System (ADS)

    Hawk, M. R.

    The Industrial Technology Modernization (ITM) program represents an F-16 technology modernization program for subcontractors. The original F-16 Technology Modernization Program was conceived to establish a manufacturing environment which would minimize the manufacturing costs of F-16 aircraft. The success of this program led to the expansion of the concept of modernization to include key F-16 subcontractors. The phases in the ITM program structure are related to analysis and conceptual design, detailed factory modernization designs, and the implementation of factory medernization. Attention is also given to aspects of program documentation, and details regarding the contracting mechanics established for initiating subcontractor technology modernization.

  6. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico.

    PubMed

    Friggens, Megan M; Parmenter, Robert R; Boyden, Michael; Ford, Paulette L; Gage, Kenneth; Keim, Paul

    2010-04-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our objectives were to describe flea communities and identify flea and rodent species important to the maintenance of plague. We live-trapped prairie dogs and conducted burrow sweeps at three colonies in spring and summer of each year. One hundred thirty prairie dogs and 51 golden-mantled ground squirrels (Spermophilus lateralis) were captured over 3,640 trap nights and 320 burrows were swabbed for fleas. Five flea species were identified from prairie dogs and ground squirrels and four were identified from burrow samples. Oropsylla hirsuta was the most abundant species found on prairie dogs and in burrows. Oropsylla idahoensis was most common on ground squirrels. Two colonies experienced plague epizootics in fall 2004. Plague-positive fleas were recovered from burrows (O. hirsuta and Oropsylla tuberculata tuberculata) and a prairie dog (O. hirsuta) in spring 2005 and summer 2006. Three prairie dogs collected in summer 2005 and 2006 had plague antibody. We found a significant surge in flea abundance and prevalence, particularly within burrows, following plague exposure. We noted an increased tendency for flea exchange opportunities in the spring before O. hirsuta reached its peak population. We hypothesize that the role of burrows as a site of flea exchange, particularly between prairie dogs and ground squirrels, may be as important as summer conditions that lead to buildup in O. hirsuta populations for determining plague outbreaks.

  7. A baiting system for delivery of an oral plague vaccine to black-tailed prairie dogs

    USGS Publications Warehouse

    Creekmore, Terry E.; Rocke, T.E.; Hurley, J.

    2002-01-01

    Laboratory and field studies were conducted between July and October 1999 to identify bait preference, biomarker efficacy, and bait acceptance rates for delivering an oral plague vaccine to black-tailed prairie dogs (Cynomys ludovicianus). Twenty juvenile captive prairie dogs were offered alfalfa baits containing either alfalfa, alfalfa and 5% molasses, or alfalfa, 5% molasses and 4% salt. Based on the results of these trials we selected a bait containing alfalfa, 7% molasses, and 1% salt for field trials to determine bait acceptance rates by free-ranging animals. The biomarkers DuPont Blue dye, iophenoxic acid, and tetracycline hydrochloride were orally administered to captive prairie dogs to determine their efficacy. Only tetracycline proved effective as a biomarker. Two field trials were conducted at separate prairie dog colonies located at the Buffalo Gap National Grassland (Pennington County, South Dakota, USA). In Trial 1, three baits containing tetracycline were distributed around each active burrow entrance and an additional bait was placed inside the burrow (1,276 baits total). In Trial 2, baits were distributed at the same density per burrow as Trial 1, but along transects spaced 10 m apart (1,744 baits total). Trapping began 3 days after bait distribution, and 30 prairie dogs then were captured at each site to determine the percentage of animals marked. In Trial 1, 67% of the prairie dogs captured had tetracycline deposits indicative of bait consumption. In Trial 2, 83% of the prairie dogs had ingested a bait. Approximately 15% of the animals in both trials ate more than one bait. Fleas (Opisocrostis hirsutus) were found on 64 of 70 (91%) of the prairie dogs captured during this study.

  8. Temporal Progression of Pneumonic Plague in Blood of Nonhuman Primate: A Transcriptomic Analysis

    PubMed Central

    Borschel, Richard; Gautam, Aarti; Miller, Stacy-Ann; Chakraborty, Nabarun; Jett, Marti

    2016-01-01

    Early identification of impending illness during widespread exposure to a pathogenic agent offers a potential means to initiate treatment during a timeframe when it would be most likely to be effective and has the potential to identify novel therapeutic strategies. The latter could be critical, especially as antibiotic resistance is becoming widespread. In order to examine pre-symptomatic illness, African green monkeys were challenged intranasally with aerosolized Yersinia pestis strain CO92 and blood samples were collected in short intervals from 45 m till 42 h post-exposure. Presenting one of the first genomic investigations of a NHP model challenged by pneumonic plague, whole genome analysis was annotated in silico and validated by qPCR assay. Transcriptomic profiles of blood showed early perturbation with the number of differentially expressed genes increasing until 24 h. By then, Y. pestis had paralyzed the host defense, as suggested by the functional analyses. Early activation of the apoptotic networks possibly facilitated the pathogen to overwhelm the defense mechanisms, despite the activation of the pro-inflammatory mechanism, toll-like receptors and microtubules at the port-of-entry. The overexpressed transcripts encoding an early pro-inflammatory response particularly manifested in active lymphocytes and ubiquitin networks were a potential deviation from the rodent models, which needs further verification. In summary, the present study recognized a pattern of Y. pestis pathogenesis potentially more applicable to the human system. Independent validation using the complementary omics approach with comprehensive evaluation of the organs, such as lungs which showed early bacterial infection, is essential. PMID:27003632

  9. A baiting system for delivery of an oral plague vaccine to black-tailed prairie dogs.

    PubMed

    Creekmore, Terry E; Rocke, Tonie E; Hurley, Jerry

    2002-01-01

    Laboratory and field studies were conducted between July and October 1999 to identify bait preference, biomarker efficacy, and bait acceptance rates for delivering an oral plague vaccine to black-tailed prairie dogs (Cynomys ludovicianus). Twenty juvenile captive prairie dogs were offered alfalfa baits containing either alfalfa, alfalfa and 5% molasses, or alfalfa, 5% molasses and 4% salt. Based on the results of these trials we selected a bait containing alfalfa, 7% molasses, and 1% salt for field trials to determine bait acceptance rates by free-ranging animals. The biomarkers DuPont Blue dye, iophenoxic acid, and tetracycline hydrochloride were orally administered to captive prairie dogs to determine their efficacy. Only tetracycline proved effective as a biomarker. Two field trials were conducted at separate prairie dog colonies located at the Buffalo Gap National Grassland (Pennington County, South Dakota, USA). In Trial 1, three baits containing tetracycline were distributed around each active burrow entrance and an additional bait was placed inside the burrow (1,276 baits total). In Trial 2, baits were distributed at the same density per burrow as Trial 1, but along transects spaced 10 m apart (1,744 baits total). Trapping began 3 days after bait distribution, and 30 prairie dogs then were captured at each site to determine the percentage of animals marked. In Trial 1, 67% of the prairie dogs captured had tetracycline deposits indicative of bait consumption. In Trial 2, 83% of the prairie dogs had ingested a bait. Approximately 15% of the animals in both trials ate more than one bait. Fleas (Opisocrostis hirsutus) were found on 64 of 70 (91%) of the prairie dogs captured during this study.

  10. Studies on vertical and horizontal transmission of duck plague virus in apparently healthy waterfowl

    USGS Publications Warehouse

    Burgess, Elizabeth C.

    1978-01-01

    Healthy waterfowl were found to be carriers of duck plague (DP) virus. Black ducks (Anas rubripes) and Canada geese (Branta canadensis) surviving a natural outbreak of DP at Coloma, Wisconsin, in 1973 yielded DP virus in cloacal swabs taken four years postinfection. Experimental infection of previously unexposed mallard ducks (Anas platyrhynochos) with the Coloma strain of DP virus CO-WI (73) also produced cloacal virus shedding for up to four years after infection. A second DP virus strain, LA-SD (73) from the Lake Andes, South Dakota, epornitic, was detected from cloacal swabs of pintail ducks (Anas acuta), gadwall ducks (Anas strepera), wood ducks (Aix sponsa), and Canada geese infected experimentally one year before. The frequency of swabs positive for DP virus varied between individuals within each of the tested species. The amount of detectable DP virus shed was about 100 plaqueforming units of virus percloacal swab. Oral erosions were present in all species tested except Canada geese and gadwall ducks. Erosions occurred at the openings of the sublingual salivary gland ducts. DP virus was isolated from erosions. All ducks with lesions proved to shed DP virus, although not necessarily at the time they had the lesion. Three pintail ducks treated with dexamethasone for ten days, shed DP virus daily for 19 days after the first day of treatment. These birds also shed DP virus the one time they were tested prior to dexamethosone treatment. An acute lethal outbreak occurred in CO-WI (73) carrier birds. Both DP virus and specific lesions were found in dead birds. The deaths coincided with a change in housing and with the simultaneous introduction of co-housed LA-SD (73) infected ducklings. DP virus was isolated from the chorio-allantoic (CA) fluid of a fourteen day pekin embryo and from five of ten infertile pekin eggs laid by DP carrier birds.

  11. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata.

    PubMed

    Sunagawa, Shinichi; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; DeSalvo, Michael K; Voolstra, Christian R; Weil, Ernesto; Andersen, Gary L; Medina, Mónica

    2009-05-01

    Increasing evidence confirms the crucial role bacteria and archaea play within the coral holobiont, that is, the coral host and its associated microbial community. The bacterial component constitutes a community of high diversity, which appears to change in structure in response to disease events. In this study, we highlight the limitation of 16S rRNA gene (16S rDNA) clone library sequencing as the sole method to comprehensively describe coral-associated communities. This limitation was addressed by combining a high-density 16S rRNA gene microarray with, clone library sequencing as a novel approach to study bacterial communities in healthy versus diseased corals. We determined an increase in diversity as well as a significant shift in community structure in Montastraea faveolata colonies displaying phenotypic signs of White Plague Disease type II (WPD-II). An accumulation of species that belong to families that include known coral pathogens (Alteromonadaceae, Vibrionaceae), bacteria previously isolated from diseased, stressed or injured marine invertebrates (for example, Rhodobacteraceae), and other species (for example, Campylobacteraceae) was observed. Some of these species were also present in healthy tissue samples, but the putative primary pathogen, Aurantimonas corallicida, was not detected in any sample by either method. Although an ecological succession of bacteria during disease progression after causation by a primary agent represents a possible explanation for our observations, we also discuss the possibility that a disease of yet to be determined etiology may have affected M. faveolata colonies and resulted in (or be a result of) an increase in opportunistic pathogens.

  12. Timing and quantifying Aphanomyces astaci sporulation from the noble crayfish suffering from the crayfish plague.

    PubMed

    Makkonen, J; Strand, D A; Kokko, H; Vrålstad, T; Jussila, J

    2013-03-23

    Aphanomyces astaci sporulation is crucial for the spreading potential of this disease agent. For the first time, we are reporting timing and quantity of A. astaci spores released from noble crayfish (Astacus astacus) suffering from crayfish plague under practical aquatic conditions. We infected nine noble crayfish with A. astaci PsI-genotype and maintained them in individual 8L tanks. Spores (zoospores and cysts) were quantified from water samples (3 × 1 mL) taken every 12h over 10 d using A. astaci specific qPCR. A clear sporulation trend was found, together with a high individual spore estimate variation. The median spore counts from two days before death to 12h post mortem were from ~500 to ~2000 spores L(-1). A significant sporulation increase occurred after 24h post mortem (~12,000 spores L(-1)) and reached a peak after two days (~65,000 spores L(-1)) before declining to or below pre mortem levels from the fourth day. The single most sporulating crayfish released from ~75,000 to ~400,000 spores L(-1) during the mass sporulating period, yielding a maximum estimate of ~3,200,000 spores released from a single crayfish if we assume homogeneous spore distribution. The results confirm a mass A. astaci spore release from moribund and recently dead infected noble crayfish, with a sporulation peak one to three days post mortem. The acute crayfish mortality only three days after zoospore exposure confirm the lethal potential of the PsI-genotype. The powerful sporulation potential observed here may be one of the key virulence factors of this genotype.

  13. Army Equipment Modernization Plan

    DTIC Science & Technology

    2013-01-01

    transition , we must continue to provide the Nation with the best equipped, most modernized, and highly capable Army to prevail in any operational...interoperability. • Conducted the Initial Operational Test and Evaluation (IOTE) for WIN-T Inc 2 provid- ing an initial on-the-move capability to BCTs and...the Joint Air to Ground Missile (JAGM) which supports the transition of Army Hellfire missile to a joint missile system and replaces the Marine

  14. Modernizing public health law.

    PubMed

    Griffith, Richard; Tengnah, Cassam

    2011-07-01

    The rapid spread of a mutant strain of Escherichia coli throughout Europe highlights the need for modern and flexible public health laws to identify, control and treat infections and contamination that give significant concern for the health of the population. In this article, Richard Griffith and Cassam Tengnah outline the amendments to the Public Health (Control of Disease) Act 1984 that adopt an all-hazards approach to threats to public health.

  15. Neanderthals and Modern Humans

    NASA Astrophysics Data System (ADS)

    Finlayson, Clive

    2004-04-01

    The Neanderthals were a people native to Europe during the Pleistocene period, who became extinct between forty and thirty thousand years ago. Challenging the commonly held view that extinction was caused by the arrival of our ancestors, Clive Finlayson provides evidence that their extinction actually occurred because the Neanderthals could not adapt fast enough to changing ecological and environmental conditions, not their relationship with modern humans.

  16. Modern HF Communications.

    DTIC Science & Technology

    1983-05-01

    AD-A131 163 MODERN HF COUNICATIONS(U) ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILLY-SUR-SEINE (FRANCE) d AARONS ET AL. MAY 83 AGARD...NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Lecture...other NATO bodies and to member nation-, in connection with research aind development problems in the aerospace field: Plros iding assistance to

  17. Evaluation of Quantitative Anti-F1 IgG and Anti-V IgG ELISAs for use as an in Vitro-Based Potency Assay of Plague Vaccine in Mice

    DTIC Science & Technology

    2008-04-01

    protein, rF1-V, which is being developed as a plague vaccine. Several fundamental parameters of the ELISA were evaluated: specificity, precision, accuracy...assay1. Introduction Two major proteins of Yersinia pestis are associated with protection against plague . The first is Fraction 1 (F1) capsular protein...and translocation of Yersinia outer proteins (Yops) [11], inhibits chemotaxis [12], and modulates the cytokine response [13,14]. Two early plague

  18. Modern sports eye injuries

    PubMed Central

    Capão Filipe, J A; Rocha-Sousa, A; Falcão-Reis, F; Castro-Correia, J

    2003-01-01

    Aims: To determine the severity and long term sequelae of eye injuries caused by modern sports that could be responsible for significant ocular trauma in the future. Methods: Prospective observational study of 24 (25 eyes) athletes with sports related ocular injuries from health clubs, war games, adventure, radical and new types of soccer, presenting to an eye emergency department between 1992 and 2002 (10 years). Results: Modern sports were responsible for 8.3% of the 288 total sports eye injuries reported. Squash (29.2%) was the most common cause, followed by paintball (20.8%) and motocross (16.6%). The most common diagnosis during the follow up period was retinal breaks (20%). 18 (75%) patients sustained a severe injury. The final visual acuity remained <20/100 in two paintball players. Conclusions: Ocular injuries resulting from modern sports are often severe. Adequate instruction of the participants in the games, proper use of eye protectors, and a routine complete ophthalmological examination after an eye trauma should be mandatory. PMID:14609827

  19. Discovery of a leptospirosis cluster amidst a pneumonic plague outbreak in a miners' camp in the Democratic Republic of the Congo.

    PubMed

    Bertherat, Eric; Mueller, Melissa J; Shako, Jean-Christophe; Picardeau, Mathieu

    2014-02-07

    Conditions in the Democratic Republic of the Congo provide an ideal environment for leptospirosis and plague, both of which can cause severe pulmonary manifestations. In December 2004, an outbreak of lethal pneumonia occurred in a local mining camp, affecting 130 persons and killing 57 of them. Clinical signs, fast disease spread, and initial laboratory investigations suggested pneumonic plague. While leptospirosis had not recently been described in the region, it was considered as a differential diagnosis. Anti-Leptospira antibodies were detected by microscopic agglutination test (MAT). A confirmed case of leptospirosis was defined as having consistent clinical signs and any one of the following: seroconversion or four-fold increase in MAT titre for paired serum samples, or a MAT titre ≥ 1:400 for acute-phase serum samples. Twenty-nine of the 54 patients or convalescents tested for leptospirosis were seropositive. Two cases showed a confirmed infection for both plague and leptospirosis. While evidence supports the plague nature of this outbreak, the results suggest that some of the suspected plague cases might be due to leptospirosis. In any case, this diagnosis will have to be evoked in the future if a similar outbreak occurs in this region of Africa.

  20. Outbreak of Human Pneumonic Plague with Dog-to-Human and Possible Human-to-Human Transmission--Colorado, June-July 2014.

    PubMed

    Runfola, Janine K; House, Jennifer; Miller, Lisa; Colton, Leah; Hite, Donna; Hawley, Alex; Mead, Paul; Schriefer, Martin; Petersen, Jeannine; Casaceli, Colleen; Erlandson, Kristine M; Foster, Clayton; Pabilonia, Kristy L; Mason, Gary; Douglas, John M

    2015-05-01

    On July 8, 2014, the Colorado Department of Public Health and Environment (CDPHE) laboratory identified Yersinia pestis, the bacterium that causes plague, in a blood specimen collected from a man (patient A) hospitalized with pneumonia. The organism had been previously misidentified as Pseudomonas luteola by an automated system in the hospital laboratory. An investigation led by Tri-County Health Department (TCHD) revealed that patient A's dog had died recently with hemoptysis. Three other persons who had contact with the dog, one of whom also had contact with patient A, were ill with fever and respiratory symptoms, including two with radiographic evidence of pneumonia. Specimens from the dog and all three human contacts yielded evidence of acute Y. pestis infection. One of the pneumonia cases might have resulted through human-to-human transmission from patient A, which would be the first such event reported in the United States since 1924. This outbreak highlights 1) the need to consider plague in the differential diagnosis of ill domestic animals, including dogs, in areas where plague is endemic; 2) the limitations of automated diagnostic systems for identifying rare bacteria such as Y. pestis; and 3) the potential for milder plague illness in patients taking antimicrobial agents. Hospital laboratorians should be aware of the limitations of automated identification systems, and clinicians should suspect plague in patients with clinically compatible symptoms from whom P. luteola is isolated.

  1. Discovery of a Leptospirosis Cluster Amidst a Pneumonic Plague Outbreak in a Miners’ Camp in the Democratic Republic of the Congo

    PubMed Central

    Bertherat, Eric; Mueller, Melissa J.; Shako, Jean-Christophe; Picardeau, Mathieu

    2014-01-01

    Conditions in the Democratic Republic of the Congo provide an ideal environment for leptospirosis and plague, both of which can cause severe pulmonary manifestations. In December 2004, an outbreak of lethal pneumonia occurred in a local mining camp, affecting 130 persons and killing 57 of them. Clinical signs, fast disease spread, and initial laboratory investigations suggested pneumonic plague. While leptospirosis had not recently been described in the region, it was considered as a differential diagnosis. Anti-Leptospira antibodies were detected by microscopic agglutination test (MAT). A confirmed case of leptospirosis was defined as having consistent clinical signs and any one of the following: seroconversion or four-fold increase in MAT titre for paired serum samples, or a MAT titre ≥ 1:400 for acute-phase serum samples. Twenty-nine of the 54 patients or convalescents tested for leptospirosis were seropositive. Two cases showed a confirmed infection for both plague and leptospirosis. While evidence supports the plague nature of this outbreak, the results suggest that some of the suspected plague cases might be due to leptospirosis. In any case, this diagnosis will have to be evoked in the future if a similar outbreak occurs in this region of Africa. PMID:24514425

  2. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague

    USGS Publications Warehouse

    Wolfe, Lisa L.; Shenk, Tanya M.; Powell, Bradford; Rocke, Tonie E.

    2011-01-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log10 reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29–59%) unvaccinated lynx captured or recaptured in Colorado during 2000–08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  3. Establishment of a Swiss Webster Mouse Model of Pneumonic Plague To Meet Essential Data Elements under the Animal Rule

    PubMed Central

    Lin, Winston; Detrisac, Carol; Hu, Shu-Chieh; Rajendran, Narayanan; Gingras, Bruce; Holland, Louis; Price, Jessica; Bolanowski, Mark; House, Robert V.

    2012-01-01

    A recombinant vaccine (rF1V) is being developed for protection against pneumonic plague. This study was performed to address essential data elements to establish a well-characterized Swiss Webster mouse model for licensing the rF1V vaccine using the FDA's Animal Rule. These elements include the documentation of challenge material characteristics, aerosol exposure parameters, details of the onset and severity of clinical signs, pathophysiological response to disease, and relevance to human disease. Prior to animal exposures, an evaluation of the aerosol system was performed to determine and understand the variability of the aerosol exposure system. Standardized procedures for the preparation of Yersinia pestis challenge material also were developed. The 50% lethal dose (LD50) was estimated to be 1,966 CFU using Probit analysis. Following the LD50 determination, pathology was evaluated by exposing mice to a target LD99 (42,890 CFU). Mice were euthanized at 12, 24, 36, 48, 60, and 72 h postexposure. At each time point, samples were collected for clinical pathology, detection of bacteria in blood and tissues, and pathology evaluations. A general increase in incidence and severity of microscopic findings was observed in the lung, lymph nodes, spleen, and liver from 36 to 72 h postchallenge. Similarly, the incidence and severity of pneumonia increased throughout the study; however, some mice died in the absence of pneumonia, suggesting that disease progression does not require the development of pneumonia. Disease pathology in the Swiss Webster mouse is similar to that observed in humans, demonstrating the utility of this pneumonic plague model that can be used by researchers investigating plague countermeasures. PMID:22336286

  4. Flea-Associated Bacterial Communities across an Environmental Transect in a Plague-Endemic Region of Uganda

    PubMed Central

    Jones, Ryan Thomas; Borchert, Jeff; Eisen, Rebecca; MacMillan, Katherine; Boegler, Karen; Gage, Kenneth L.

    2015-01-01

    The vast majority of human plague cases currently occur in sub-Saharan Africa. The primary route of transmission of Yersinia pestis, the causative agent of plague, is via flea bites. Non-pathogenic flea-associated bacteria may interact with Y. pestis within fleas and it is important to understand what factors govern flea-associated bacterial assemblages. Six species of fleas were collected from nine rodent species from ten Ugandan villages between October 2010 and March 2011. A total of 660,345 16S rRNA gene DNA sequences were used to characterize bacterial communities of 332 individual fleas. The DNA sequences were binned into 421 Operational Taxonomic Units (OTUs) based on 97% sequence similarity. We used beta diversity metrics to assess the effects of flea species, flea sex, rodent host species, site (i.e. village), collection date, elevation, mean annual precipitation, average monthly precipitation, and average monthly temperature on bacterial community structure. Flea species had the greatest effect on bacterial community structure with each flea species harboring unique bacterial lineages. The site (i.e. village), rodent host, flea sex, elevation, precipitation, and temperature also significantly affected bacterial community composition. Some bacterial lineages were widespread among flea species (e.g. Bartonella spp. and Wolbachia spp.), but each flea species also harbored unique bacterial lineages. Some of these lineages are not closely related to known bacterial diversity and likely represent newly discovered lineages of insect symbionts. Our finding that flea species has the greatest effect on bacterial community composition may help future investigations between Yersinia pestis and non-pathogenic flea-associated bacteria. Characterizing bacterial communities of fleas during a plague epizootic event in the future would be helpful. PMID:26485147

  5. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague.

    PubMed

    Wolfe, Lisa L; Shenk, Tanya M; Powell, Bradford; Rocke, Tonie E

    2011-10-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log(10) reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29-59%) unvaccinated lynx captured or recaptured in Colorado during 2000-08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  6. Flea-Associated Bacterial Communities across an Environmental Transect in a Plague-Endemic Region of Uganda.

    PubMed

    Jones, Ryan Thomas; Borchert, Jeff; Eisen, Rebecca; MacMillan, Katherine; Boegler, Karen; Gage, Kenneth L

    2015-01-01

    The vast majority of human plague cases currently occur in sub-Saharan Africa. The primary route of transmission of Yersinia pestis, the causative agent of plague, is via flea bites. Non-pathogenic flea-associated bacteria may interact with Y. pestis within fleas and it is important to understand what factors govern flea-associated bacterial assemblages. Six species of fleas were collected from nine rodent species from ten Ugandan villages between October 2010 and March 2011. A total of 660,345 16S rRNA gene DNA sequences were used to characterize bacterial communities of 332 individual fleas. The DNA sequences were binned into 421 Operational Taxonomic Units (OTUs) based on 97% sequence similarity. We used beta diversity metrics to assess the effects of flea species, flea sex, rodent host species, site (i.e. village), collection date, elevation, mean annual precipitation, average monthly precipitation, and average monthly temperature on bacterial community structure. Flea species had the greatest effect on bacterial community structure with each flea species harboring unique bacterial lineages. The site (i.e. village), rodent host, flea sex, elevation, precipitation, and temperature also significantly affected bacterial community composition. Some bacterial lineages were widespread among flea species (e.g. Bartonella spp. and Wolbachia spp.), but each flea species also harbored unique bacterial lineages. Some of these lineages are not closely related to known bacterial diversity and likely represent newly discovered lineages of insect symbionts. Our finding that flea species has the greatest effect on bacterial community composition may help future investigations between Yersinia pestis and non-pathogenic flea-associated bacteria. Characterizing bacterial communities of fleas during a plague epizootic event in the future would be helpful.

  7. The influence of the growth conditions of the plague microbe vaccine strain colonies on the fractal dimension of biospeckles

    SciTech Connect

    Ul'yanov, A S; Lyapina, A M; Ulianova, O V; Fedorova, V A; Uianov, S S

    2011-04-30

    Specific statistical characteristics of biospeckles, emerging under the diffraction of coherent beams on the bacterial colonies, are studied. The dependence of the fractal dimensions of biospeckles on the conditions of both illumination and growth of the colonies is studied theoretically and experimentally. Particular attention is paid to the fractal properties of biospeckles, emerging under the scattering of light by the colonies of the vaccinal strain of the plague microbe. The possibility in principle to classify the colonies of Yersinia pestis EV NIIEG using the fractal dimension analysis is demonstrated. (optical technologies in biophysics and medicine)

  8. Acupuncture in modern society.

    PubMed

    Vanderploeg, Kristin; Yi, Xiaobin

    2009-03-01

    For at least 2,500 years, acupuncture has been an integral part of traditional Chinese medicine. However, recently as more people in western countries are diagnosed with chronic disease poorly treated with modern medical therapies, many are turning to acupuncture and other forms of alternative medical treatments. Based on the theory of harmonious flowing qi being the basis of good health, acupuncture focuses on restoring qi by manipulation of the complementary and opposing elements of yin and yang. However, in the modern medical community we struggle to with the concept of qi, given a lack of anatomic and histological evidence supporting its existence. However, with the surge in public interest in acupuncture, the scientific community begun heavy investigation of acupuncture's efficacy, as well as the physiologic basis behind it. Thus far, evidence supports the use of acupuncture in post-operative nausea and vomiting, postoperative dental pain, chronic pain conditions such as lower back pain, and possibly also such psychologic conditions as addiction. It is possible that by affecting afferent nerve signaling, acupuncture may influence the release of endogenous opioids to promote pain relief. This effect may be augmented by release of ACTH and cortisol, as well as through down-regulation of signaling through pain fibers. When treating patients who may utilize alternative forms of medicine, it is important that medical practitioners be educated in regards to the basic fundamental beliefs behind acupuncture, as well as the scientific evidence supporting its use and revealing its efficacy. The purpose of this review is to give western trained physicians exposure to history, basic knowledge and its clinical applications of acupuncture to accommodate accelerating interests in acupuncture in modern society.

  9. Foundations of modern cosmology

    NASA Astrophysics Data System (ADS)

    Hawley, John F.; Holcomb, Katherine A.

    2005-07-01

    Recent discoveries in astronomy, especially those made with data collected by satellites such as the Hubble Space Telescope and the Wilkinson Microwave Anisotropy Probe, have revolutionized the science of cosmology. These new observations offer the possibility that some long-standing mysteries in cosmology might be answered, including such fundamental questions as the ultimate fate of the universe. Foundations of modern cosmology provides an accessible, thorough and descriptive introduction to the physical basis for modern cosmological theory, from the big bang to a distant future dominated by dark energy. This second edition includes the latest observational results and provides the detailed background material necessary to understand their implications, with a focus on the specific model supported by these observations, the concordance model. Consistent with the book's title, emphasis is given to the scientific framework for cosmology, particularly the basics concepts of physics that underlie modern theories of relativity and cosmology; the importance of data and observations is stressed throughout. The book sketches the historical background of cosmology, and provides a review of the relevant basic physics and astronomy. After this introduction, both special and general relativity are treated, before proceeding to an in-depth discussion of the big bang theory and physics of the early universe. The book includes current research areas, including dark matter and structure formation, dark energy, the inflationary universe, and quantum cosmology. The authors' website (http://www.astro.virginia.edu/~jh8h/Foundations) offers a wealth of supplemental information, including questions and answers, references to other sources, and updates on the latest discoveries.

  10. Fielding a Division Staff in the Modern Day

    DTIC Science & Technology

    2016-06-10

    threats to the American way of life. Balancing this demand, during an interwar period plagued with financial restriction, has forced the Army to reduce...world to respond to many different threats to the American way of life. Balancing this demand, during an interwar period plagued with financial

  11. Early modern mathematical instruments.

    PubMed

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  12. Modern Physics Simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Douglas; Hiller, John R.; Moloney, Michael J.

    1995-10-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  13. Historical Epidemics Cartography Generated by Spatial Analysis: Mapping the Heterogeneity of Three Medieval "Plagues" in Dijon

    PubMed Central

    Galanaud, Pierre; Galanaud, Anne; Giraudoux, Patrick

    2015-01-01

    Objectives This work was designed to adapt Geographical Information System-based spatial analysis to the study of historical epidemics. We mapped "plague" deaths during three epidemics of the early 15th century, analyzed spatial distributions by applying the Kulldorff's method, and determined their relationships with the distribution of socio-professional categories in the city of Dijon. Materials and Methods Our study was based on a database including 50 annual tax registers (established from 1376 to 1447) indicating deaths and survivors among the heads of households, their home location, tax level and profession. The households of the deceased and survivors during 6 years with excess mortality were individually located on a georeferenced medieval map, established by taking advantage of the preserved geography of the historical center of Dijon. We searched for clusters of heads of households characterized by shared tax levels (high-tax payers, the upper decile; low-tax payers, the half charged at the minimum level) or professional activities and for clusters of differential mortality. Results High-tax payers were preferentially in the northern intramural part, as well as most wealthy or specialized professionals, whereas low-tax payers were preferentially in the southern part. During two epidemics, in 1400–1401 and 1428, areas of higher mortality were found in the northern part whereas areas of lower mortality were in the southern one. A high concentration of housing and the proximity to food stocks were common features of the most affected areas, creating suitable conditions for rats to pullulate. A third epidemic, lasting from 1438 to 1440 had a different and evolving geography: cases were initially concentrated around the southern gate, at the confluence of three rivers, they were then diffuse, and ended with residual foci of deaths in the northern suburb. Conclusion Using a selected historical source, we designed an approach allowing spatial analysis of

  14. Heliotropism in modern stromatolites

    SciTech Connect

    Awramik, S.M.

    1985-01-01

    Three different examples of modern microbial mats and stromatolites have been discovered that exhibit a preferred orientation towards specular sunlight. In Hamelin Pool of Shark Bay, Western Australia, subtidal decimeter-sized discrete columns and intertidal centimeter-sized tufts were found pointing north. In thermal spring effluents and pools of Yellowstone National Park, columnar and conical centimeter-sized microbial structures were found to be inclined to the south. None of these inclined structures show growth orientation in response to prevailing fluid directions. Each example occurs in markedly different environments and each has different photosynthetic microbes: (1) the subtidal Shark Bay columns are dominated by surficial diatoms: (2) the intertidal Shark Bay tufts constructed by a filamentous cyanobacterium; and (3) the cones and columns in Yellowstone are built by filamentous flexibacteria and cyanobacteria. Sunlight must be considered a major driving force in stromatolite morphogenesis. Extrapolation of these modern heliotropic columnar stromatolites to fossil examples supports the paleolatitude hypothesis of Vologdin (1961) and of Nordeng (1963) and the days per year hypothesis of Vanyo and Awramik (1982). Taken together, and especially when combined with paleomagnetic analyses, the procedures yield an impressive array of data on Earth and Earth-Sun-Moon histories.

  15. [The experimental evaluation with flow cytofluorimetry technique of the level of cellular immunologic memory in persons vaccinated against plague and anthrax].

    PubMed

    Bogacheva, N V; Kriuchkov, A V; Darmov, I V; Vorob'ev, K A; Pechenkin, D V; Elagin, G D; Kolesnikiov, D P

    2013-11-01

    The article deals with experimental evaluation with flow cytofluorimetry technique of the level of cellular immunologic memory in persons vaccinated with plague and anthrax live dry vaccines. It is established that the introduction of plague and anthrax live dry vaccines into organism of vaccinated persons ignites immunologic rearrangement manifested by reliable increase of level of blood concentration of Th1-lymphocytes (immunologic memory cells) against the background of vaccination. The higher correlation coefficient is detected between leucocytes lysis coefficient and stimulation coefficient according blood concentration level of T-lymphocytes predominantly at the expense of Th1-lymphocytes. The values of stimulation coefficient were calculated for corresponding blood cells of vaccinated persons. This data testifies the effectiveness of application of vaccination against plague and anthrax.

  16. [The involvement of some flea species in the epizootic process in the Gorno-Altai natural plague focus: spatial and temporary characteristics].

    PubMed

    Korzun, V M; Iarygina, M B; Fomina, L A; Rozhdestvenskiĭ, E N; Denisov, A V

    2014-01-01

    The relative number of plague pathogen strains isolated from some flea species in different Gorno-Altai natural plague foci substantially varies; this indicator also varies with time. These patterns are due to the difference in the structure of multispecies communities of ectoparasites in these areas and their long-term transformation. As of now, the three species Paradoxopsyllus scorodumovi, Ctenophyllus hirticrus, and Amphalius runatus are widely involved in pathogen transmission in all three foci. These ectoparasites should be referred to as main plague vectors. In each focus, they are joined by other flea species, such as Rhadinopsylla dahurica and Amphipsylla primaris in the Ulandryk focus, Frontopsylla hetera, R. dahurica, Paradoxopsyllus kalabukhovi, and Paramonopsyllus scalodae in the Tarkhatin focus, and P. scalonae and P. kalabukhovi in the Kurai focus, which should be classified as an additional vector.

  17. Efficacy of primate humoral passive transfer in a murine model of pneumonic plague is mouse strain-dependent.

    PubMed

    Graham, V A; Hatch, G J; Bewley, K R; Steeds, K; Lansley, A; Bate, S R; Funnell, S G P

    2014-01-01

    New vaccines against biodefense-related and emerging pathogens are being prepared for licensure using the US Federal Drug Administration's "Animal Rule." This allows licensure of drugs and vaccines using protection data generated in animal models. A new acellular plague vaccine composed of two separate recombinant proteins (rF1 and rV) has been developed and assessed for immunogenicity in humans. Using serum obtained from human volunteers immunised with various doses of this vaccine and from immunised cynomolgus macaques, we assessed the pharmacokinetic properties of human and cynomolgus macaque IgG in BALB/c and the NIH Swiss derived Hsd:NIHS mice, respectively. Using human and cynomolgus macaque serum with known ELISA antibody titres against both vaccine components, we have shown that passive immunisation of human and nonhuman primate serum provides a reproducible delay in median time to death in mice exposed to a lethal aerosol of plague. In addition, we have shown that Hsd:NIHS mice are a better model for humoral passive transfer studies than BALB/c mice.

  18. Climate predictors of the spatial distribution of human plague cases in the West Nile region of Uganda.

    PubMed

    MacMillan, Katherine; Monaghan, Andrew J; Apangu, Titus; Griffith, Kevin S; Mead, Paul S; Acayo, Sarah; Acidri, Rogers; Moore, Sean M; Mpanga, Joseph Tendo; Enscore, Russel E; Gage, Kenneth L; Eisen, Rebecca J

    2012-03-01

    East Africa has been identified as a region where vector-borne and zoonotic diseases are most likely to emerge or re-emerge and where morbidity and mortality from these diseases is significant. Understanding when and where humans are most likely to be exposed to vector-borne and zoonotic disease agents in this region can aid in targeting limited prevention and control resources. Often, spatial and temporal distributions of vectors and vector-borne disease agents are predictable based on climatic variables. However, because of coarse meteorological observation networks, appropriately scaled and accurate climate data are often lacking for Africa. Here, we use a recently developed 10-year gridded meteorological dataset from the Advanced Weather Research and Forecasting Model to identify climatic variables predictive of the spatial distribution of human plague cases in the West Nile region of Uganda. Our logistic regression model revealed that within high elevation sites (above 1,300 m), plague risk was positively associated with rainfall during the months of February, October, and November and negatively associated with rainfall during the month of June. These findings suggest that areas that receive increased but not continuous rainfall provide ecologically conducive conditions for Yersinia pestis transmission in this region. This study serves as a foundation for similar modeling efforts of other vector-borne and zoonotic disease in regions with sparse observational meteorologic networks.

  19. Present susceptibility status of rat flea Xenopsylla cheopis (Siphonaptera: Pulicidae), vector of plague against organochlorine, organophosphate and synthetic pyrethroids 1. The Nilgiris District, Tamil Nadu, India.

    PubMed

    Shyamal, Biswas; Ravi Kumar, R; Sohan, Lal; Balakrishnan, N; Veena, Mittal; Shiv, Lal

    2008-03-01

    The susceptibility status of Xenopsylla cheopis, the efficient vector of human plague in India was assessed in erstwhile plague endemic areas of Nilgiris district, Tamil Nadu following standard WHO techniques. The studies revealed the development of resistance in rat fleas to DDT--4.0%, Malathion--5.0%, Deltamethrin--0.05% and tolerance to Permethrin--0.75% in all the four blocks of Nilgiris hill district. Development of resistance may be due to the extensive use of insecticides in tea plantations and agricultural sectors where the domestic/peri-domestic rodents find their natural habitats and intermingle with each other.

  20. New Insights into Autoinducer-2 Signaling as a Virulence Regulator in a Mouse Model of Pneumonic Plague

    PubMed Central

    Fitts, Eric C.; Andersson, Jourdan A.; Kirtley, Michelle L.; Sha, Jian; Erova, Tatiana E.; Chauhan, Sadhana; Motin, Vladimir L.

    2016-01-01

    ABSTRACT The Enterobacteriaceae family members, including the infamous Yersinia pestis, the causative agent of plague, have a highly conserved interbacterial signaling system that is mediated by the autoinducer-2 (AI-2) quorum-sensing molecule. The AI-2 system is implicated in regulating various bacterial virulence genes in diverse environmental niches. Deletion of the gene encoding the synthetic enzyme for the AI-2 substrate, luxS, leads to either no significant change or, paradoxically, an increase in in vivo bacterial virulence. We showed that deletion of the rbsA and lsrA genes, components of ABC transport systems that interact with AI-2, synergistically disrupted AI-2 signaling patterns and resulted in a more-than-50-fold decrease in Y. pestis strain CO92 virulence in a stringent pneumonic plague mouse model. Deletion of luxS or lsrK (encoding AI-2 kinase) from the ΔrbsA ΔlsrA background strain or complementation of the ΔrbsA ΔlsrA mutant with the corresponding gene(s) reverted the virulence phenotype to that of the wild-type Y. pestis CO92. Furthermore, the administration of synthetic AI-2 in mice infected with the ΔrbsA ΔlsrA ΔluxS mutant strain attenuated this triple mutant to a virulence phenotype similar to that of the ΔrbsA ΔlsrA strain in a pneumonic plague model. Conversely, the administration of AI-2 to mice infected with the ΔrbsA ΔlsrA ΔluxS ΔlsrK mutant did not rescue animals from lethality, indicating the importance of the AI-2–LsrK axis in regulating bacterial virulence. By performing high-throughput RNA sequencing, the potential role of some AI-2-signaling-regulated genes that modulated bacterial virulence was determined. We anticipate that the characterization of AI-2 signaling in Y. pestis will lead to reexamination of AI-2 systems in other pathogens and that AI-2 signaling may represent a broad-spectrum therapeutic target to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century. IMPORTANCE

  1. Modernizing sports facilities

    SciTech Connect

    Dustin, R.

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  2. Modern problems of thermodynamics

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.

    2012-12-01

    The role of energy and methods of its saving for the development of human society and life are analyzed. The importance of future use of space energy flows and energy of water and air oceans is emphasized. The authors consider the idea of the unit for production of electric energy and pure substances using sodium chloride which reserves are limitless on the planet. Looking retrospectively at the development of power engineering from the elementary fire to modern electric power station, we see that the used method of heat production, namely by direct interaction of fuel and oxidizer, is the simplest. However, it may be possible to combust coal, i.e., carbon in salt melt, for instance, sodium chloride that would be more rational and efficient. If the stated problems are solved positively, we would master all energy properties of the substance; and this is the main problem of thermodynamics being one of the sciences on energy.

  3. Ground Forces Modernization in China.

    DTIC Science & Technology

    1987-08-11

    modernization has been improved training in strategy, tactics on the modern battle- field, and science and technology. In general, political education and...nuclear weapons, 168.". and the integration of various PLA branches. 6 . Despite the statistics on political education versus military training, the PLA...dedicated to modern military science and the practice of actual military tactics and techniques. The -." remainder of the time will be devoted to political

  4. Dialogue on Modernity and Modern Education in Dispute

    ERIC Educational Resources Information Center

    Baker, Michael; Peters, Michael A.

    2012-01-01

    This is a dialogue or conversation between Michael Baker (MB) and Michael A. Peters (MP) on the concept of modernity and its significance for educational theory. The dialogue took place originally as a conversation about a symposium on modernity held at the American Educational Studies Association meeting 2010. It was later developed for…

  5. Bibliographie Moderner Fremdsprachenunterricht (Bibliography of Modern Foreign Language Instruction), 1995.

    ERIC Educational Resources Information Center

    Bibliographie Moderner Fremdsprachenunterricht, 1995

    1995-01-01

    This quarterly annotated bibliography lists periodicals, scholarly journals, and institutions that may be of interest to modern language teachers, and provides bibliographic information for modern language reference, research, and teaching materials. In each issue, an introductory section provides background information on sources and details the…

  6. Bibliographie Moderner Fremdsprachenunterricht (Bibliography of Modern Foreign Language Instruction), 1996.

    ERIC Educational Resources Information Center

    Bibliographie Moderner Fremdsprachenunterricht, 1996

    1996-01-01

    This quarterly annotated bibliography lists periodicals, scholarly journals, and institutions that may be of interest to modern language teachers, and provides bibliographic information for modern language reference, research, and teaching materials. In each issue, an introductory section provides background information on sources and details the…

  7. Dismantling Terrorism: Developing Actionable Solutions for Today’s Plague of Violence

    DTIC Science & Technology

    2007-11-01

    York: Carroll & Graf, 2003. (JZ 1308 .H37 2003) HarZub, Kh alid. Khaled Hroub. Hamas: A Beginners Guide. Ann Arbor: Pluto , 2006. (JQ 1830 .A98 H3752...2006. (HV 6768 .L55 2006) Napoleoni, Loretta. Modern Jihad: Tracing the Dollars behind the Terror Networks. London: Pluto , 2003. (HV 6431 N3654 2003...York: I.B. Tauris, 1995. (HV 6431 .G86 1995) HarZub, Kh alid. Khaled Hroub. Hamas: A Beginner’s Guide. Ann Arbor: Pluto , 2006. (JO 1830 .A98 H3752 2006

  8. IGISOL control system modernization

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  9. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  10. When and What to Modernize.

    ERIC Educational Resources Information Center

    Price, D. Dana

    After a brief discussion of when a school board should consider modernizing mechanical and electrical equipment the speaker explored the specifics of lighting, heating, and ventilation. Technical data on foot candles, types of light fixtures, and the importance of air conditioning in modern school buildings are presented. The presentation…

  11. Mendel in the Modern Classroom

    ERIC Educational Resources Information Center

    Smith, Mike U.; Gericke, Niklas M.

    2015-01-01

    Mendel is an icon in the history of genetics and part of our common culture and modern biology instruction. The aim of this paper is to summarize the place of Mendel in the modern biology classroom. In the present article we will identify key issues that make Mendel relevant in the classroom today. First, we recount some of the historical…

  12. Modern Mathematics and Your Child.

    ERIC Educational Resources Information Center

    Phillips, Harry L.; Kluttz, Marguerite

    This guide for parents explains the objectives of the modern mathematics being taught in the schools and discusses the teaching methods being used. A few of the elementary concepts of modern mathematics (number lines, searching for patterns, different ways of analyzing problems, number bases, and sets) are briefly explained and justifications are…

  13. The plague of the Philistines and other pestilences in the Ancient World: exploring relations between the religious-literary tradition, artistic evidence and scientific proof.

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio

    2010-09-01

    In ancient times the term pestilence referred not only to infectious disease caused by Yersinia pestis, but also to several different epidemics. We explore the relations between references in the Bible and recent scientific evidence concerning some infectious diseases, especially the so-called Plague of the Philistines and leprosy. In addition, some considerations regarding possible connections among likely infectious epidemic diseases and the Ten Plagues of Egypt are reported. Evidence suggesting the presence of the rat in the Nile Valley in the II millennium BC is shown; a possible role of the rat in the plague spreading already in this historical period should be confirmed by these data. While the biblical tale in the Book of Samuel may well report an epidemic event resembling the plague, as to date this infectious disease remains unknown, it is not conceivable to confirm the presence of leprosy in the same age, because the little palaeopathologic evidence of the latter disease, in the geographic area corresponding to Egypt and Palestine, is late, dating back only to the II century AD.

  14. Population differences in host immune factors may influence survival of Gunnison's prairie dogs (Cynomys Gunnisoni) during plague outbreaks

    USGS Publications Warehouse

    Busch, Joseph D.; Van Andel, Roger; Cordova, Jennifer; Colman, Rebecca E.; Keim, Paul; Rocke, Tonie E.; Leid, Jeff G.; Van Pelt, William E.; Wagner, David M.

    2011-01-01

    Over the past 40 yr, epizootics of plague (Yersinia pestis) in northern Arizona have reduced populations of the Gunnison’s prairie dog (Cynomys gunnisoni), with the exception of a large population found in the Aubrey Valley (AV). To examine potential mechanisms accounting for their survival, we collected prairie dog serum samples in 2005–2006 from AV and a neighboring population near Seligman (SE), Arizona. We quantified gene expression at 58 diverse immune proteins using a multiplexed enzyme-linked immunosorbent assay panel. We found a subset of proteins important in coagulation and inflammation (tissue factor [TF], calbindin [Cal], and thrombopoietin [TPO]) and T-cell responses (CD40L and CD40) that were present in AV at levels two to eight times greater than SE. These results suggest that AV and SE animals might differ in their ability to mount an immune response.

  15. [German-Hungarian medical relationships during the Enlightenment; including an 18th century work on inoculation against plague].

    PubMed

    Schultheisz, E

    2001-09-01

    The influence of German science and medicine on the development of Hungarian medicine in the age of Enlightenment has been extraordinary strong. Many Hungarian medical students stayed in German medical faculties. The medical interrelationships between Germany and Hungary in the 18th century are discussed in an overview according to the following dimensions: education of protestant Hungarian medical students at German >Aufklaerungs-Universitaeten<, practical and theoretical resonance, membership of scientific societies, personal contacts and correspondence. Outstanding personalities of this area were Daniel Fischer, István Weszprémi, Abraham Vater. Special attention is given to a new idea: inoculation against plague was first described by A. Vater in his work Blattern-Beltzen (1721). Thirty years later I. Weszprémi published his original conception - independently from Vater - in the Tentamen de inoculanda peste (1755).

  16. [Modern mitral valve surgery].

    PubMed

    Bothe, W; Beyersdorf, F

    2016-04-01

    At the beginning of the 20th century, Cutler and Levine performed the first successful surgical treatment of a stenotic mitral valve, which was the only treatable heart valve defect at that time. Mitral valve surgery has evolved significantly since then. The introduction of the heart-lung machine in 1954 not only reduced the surgical risk, but also allowed the treatment of different mitral valve pathologies. Nowadays, mitral valve insufficiency has become the most common underlying pathomechanism of mitral valve disease and can be classified into primary and secondary mitral insufficiency. Primary mitral valve insufficiency is mainly caused by alterations of the valve (leaflets and primary order chords) itself, whereas left ventricular dilatation leading to papillary muscle displacement and leaflet tethering via second order chords is the main underlying pathomechanism for secondary mitral valve regurgitation. Valve reconstruction using the "loop technique" plus annuloplasty is the surgical strategy of choice and normalizes life expectancy in patients with primary mitral regurgitation. In patients with secondary mitral regurgitation, implanting an annuloplasty is not superior to valve replacement and results in high rates of valve re-insufficiency (up to 30 % after 3 months) due to ongoing ventricular dilatation. In order to improve repair results in these patients, we add a novel subvalvular technique (ring-noose-string) to the annuloplasty that aims to prevent ongoing ventricular remodeling and re-insufficiency. In modern mitral surgery, a right lateral thoracotomy is the approach of choice with excellent repair and cosmetic results.

  17. Monitoring the coral disease, plague type II, on coral reefs in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Miller, J.; Rogers, C.; Waara, R.

    2003-01-01

    In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has >50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annular is. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (?? 0.04 SD) to 1.74% (?? 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.

  18. Molecular detection and genotyping of Aphanomyces astaci directly from preserved crayfish samples uncovers the Norwegian crayfish plague disease history.

    PubMed

    Vrålstad, Trude; Strand, David A; Grandjean, Frédéric; Kvellestad, Agnar; Håstein, Tore; Knutsen, Ann Kristin; Taugbøl, Trond; Skaar, Ida

    2014-09-17

    Aphanomyces astaci causes crayfish plague in European freshwater crayfish, but most historical epizootics lack agent isolation and identification. Although declared as crayfish plague outbreaks by the Norwegian Competent Authorities, only presumptive diagnoses without agent isolation exist from Norwegian epizootics until 2005. Molecular methods now allow both A. astaci detection and genotype determination from preserved samples. We therefore aimed to (1) investigate molecularly if A. astaci was involved in a selection of mass-mortality events in Norwegian noble crayfish populations from 1971 to 2004, and (2) determine the eventually involved A. astaci genotype groups both from these historical and also more recent mass-mortality events. DNA was extracted directly from presumptively infected crayfish tissues, and screened by A. astaci specific qPCR. A representative selection of positive samples was confirmed by ITS-sequencing. Finally, genotype determination was performed with microsatellite markers that distinguish all known A. astaci genotype groups. The molecular examination detected A. astaci in crayfish materials from all examined mass-mortality events. The first event in 1971-1974 was caused by the A. astaci genotype group A, presumably the first genotype group that entered Europe more than 150 years ago. All later outbreaks were caused by the A. astaci genotype group B which was introduced to Europe by importation of signal crayfish in the 1960s. The results suggest that molecular methods can verify the involvement of A. astaci in the vast majority of observed crayfish mass mortalities in Europe whenever preserved materials exist. Moreover, microsatellite genotyping can reveal at least parts of the underlying epidemiology.

  19. Dose-dependent mortality of the noble crayfish (Astacus astacus) to different strains of the crayfish plague (Aphanomyces astaci).

    PubMed

    Makkonen, Jenny; Kokko, Harri; Vainikka, Anssi; Kortet, Raine; Jussila, Japo

    2014-01-01

    Several reports of the European crayfish species carrying a latent infection of the crayfish plague (Aphanomyces astaci) have emerged and the discussion has focused especially on the lowered virulence of As-genotypes behind decreased mortality. The aim of this study was to compare the killing rate of different A. astaci strains in controlled infection experiments. Two separate infection experiments with three A. astaci strains (UEFT2B (As), Evira6462/06 (As) and UEF8866-2 (PsI)) were made to compare the noble crayfish populations from the Lake Viitajärvi, Tervo, (Expt I) and the Lake Mikitänjärvi, Hyrynsalmi (Expt II). In the Expt III, the Lake Koivujärvi population noble crayfish were infected with A. astaci strains UEF8866-2 (PsI) and Evira6462/06 (As) using different dosages (1, 10, 100 and 1000sporesml(-1)) of A. astaci zoospores. The results confirmed that PsI-genotype strain is highly virulent and kills all the crayfish within a few days. The tested two As-genotype strains caused the mortalities more slowly, and part of the challenged crayfish survived until the end of the follow-up period. Our results also confirmed the variance of virulence among A. astaci strains within the As-genotype and demonstrated that the mortality is dependent on the number of zoospores used in the infections. It also appeared, that some noble crayfish populations show increased resistance towards the crayfish plague, especially against the As-genotype of A. astaci.

  20. Anthropogenic soils and land use patterns in relation to small mammal and flea abundance in plague endemic area of Western Usambara Mountains, Tanzania.

    PubMed

    Kimaro, Didas N; Msanya, Balthazar M; Meliyo, Joel; Hieronimo, Proches; Mwango, Sibaway; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Heterogeneity in the landscapes of West Usambara Mountains on land use and human activities has been reported. However, the interface of land use patterns and human modified soils with small mammal and flea abundance for possible explanation of plague has not been explored. This study was carried out to determine the link between anthropogenic soils and land use patterns on small mammal and flea abundance and the occurrence of reported plague in the Western Usambara Mountains in Tanzania. Standard soil survey methods were used to identify and describe soils and land use patterns on lower slopes and valley bottoms on which the surrounding villages are reported to have high and medium plague frequencies. The identified soils were characterised in terms of their morphological and physico-chemical properties and classified according to FAO-World Reference Base for Soil Resources. Small mammals were trapped on the same landscape positions and identified to genus/species level. Fleas were removed from the trapped small mammals, counted and identified to species level. In total 57 small mammals were captured from which 32 fleas were collected. Results show that human settlements and mixed cultivation on lower slopes and continuous vegetable cropping in the valley bottoms are dominant land use types. Intensive use of forest soils, manuring and irrigation on farms in the studied landscapes have contributed to the development of uniquely human modified soils namely Hortic Anthrosols in the lower slopes and Plaggic Irragric Hortic Anthrosols in valley bottoms. The identified anthropogenic soils and land use patterns are associated with high abundance of small mammals (Mastomys natalensis) and flea species (Xenopsylla brasiliensis and Dinopsyllus lypusus). This phenomenon is vividly apparent in the villages with medium to high plague frequencies. The study suggests that plague surveillance programmes should consider the existing relationship between anthropogenic soils, land

  1. BOOK REVIEW: Modern Supersymmetry

    NASA Astrophysics Data System (ADS)

    Kulish, Petr P.

    2006-12-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad

  2. Modern Physics, 4th edition

    NASA Astrophysics Data System (ADS)

    Tipler, Paul A.; Llewellyn, Ralph

    The new edition of the classic text for the intermediate-level modern physics course, revised and updated to take students to the forefront of contemporary research and applications across the full spectrum of science and technology."

  3. CHALLENGES OF MODERN CONTROL THEORY

    DTIC Science & Technology

    The fundamental objective of the new scientific discipline called ’ control theory ’ is that of modifying the behavior of a system subject to various...possible contributions of modern control theory to the biomedical domain are briefly indicated.

  4. The inventor of modern science

    NASA Astrophysics Data System (ADS)

    Dyson, Freeman J.

    1999-07-01

    James Bradley laid the foundations of modern science in his aunt's attic. His impressively precise astronomical measurements gave birth to experimental physics as we know it. The first in our series of millennium essays.

  5. Modern Mathematics and the Mole.

    ERIC Educational Resources Information Center

    Henson, R.; Stumbles, A.

    1979-01-01

    Discusses several examples of the modern mathematics familiar to the pupils at the age where the mole concept is introduced, to help the teacher adopt an appropriate approach when dealing with this topic. (GA)

  6. Modernizing Fortran 77 Legacy Codes

    NASA Technical Reports Server (NTRS)

    Decyk, Viktor; Norton, Charles

    2003-01-01

    An incremental approach to modernization of scientific software written in the Fortran 77 computing language has been developed. This approach makes it possible to preserve the investment in legacy Fortran software while augmenting the software with modern capabilities to satisfy expanded requirements. This approach could be advantageous (1) in situations in which major rewriting of application programs is undesirable or impossible, or (2) as a means of transition to major rewriting.

  7. On Heidegger, medicine, and the modernity of modern medical technology.

    PubMed

    Brassington, Iain

    2007-06-01

    This paper examines medicine's use of technology in a manner from a standpoint inspired by Heidegger's thinking on technology. In the first part of the paper, I shall suggest an interpretation of Heidegger's thinking on the topic, and attempt to show why he associates modern technology with danger. However, I shall also claim that there is little evidence that medicine's appropriation of modern technology is dangerous in Heidegger's sense, although there is no prima facie reason why it mightn't be. The explanation for this, I claim, is ethical. There is an initial attraction to the thought that Heidegger's thought echoes Kantian moral thinking, but I shall dismiss this. Instead, I shall suggest that the considerations that make modern technology dangerous for Heidegger are simply not in the character - the ethos - of medicine properly understood. This is because there is a distinction to be drawn between chronological and historical modernity, and that even up-to-date medicine, empowered by technology, retains in its ethos crucial aspects of a historically pre-modern understanding of technology. A large part of the latter half of the paper will be concerned with explaining the difference.

  8. Network technology for depot modernization

    SciTech Connect

    Hostick, C.J.

    1990-12-01

    This report was prepared by the Pacific Northwest Laboratory to summarize existing and emerging information system technology and standards applicable to Depot System Command (DESCOM) modernization efforts. The intent of this summarization is to provide the Revitalization of Army Depots for the Year 2000 (READY 2000) team a clear understanding of the enabling information system technologies required to support effective modernization activities. Much of the information contained in this report was acquired during the last year in support of the US Army Armament, Munitions, and Chemical Command (AMCCOM) Facility Integrated Manufacturing Management System (FIMMS) project at PNL, which is targeting the modernization of plant-wide information systems at Army Ammunition Plants. The objective of information system modernization is to improve the effectiveness of an organization in performing its mission. Information system modernization strives to meet this objective by creating an environment where data is electronically captured near the source and readily available to all areas of the organization. Advanced networks, together with related information system technology, are the enabling mechanisms that make modern information system infrastructures possible. The intent of this paper is to present an overview of advanced information system network technology to support depot modernization planners in making technology management decisions. Existing and emerging Open System Interconnection (OSI) and Government Open System Interconnection Profile (GOSIP) standards are explained, as well as a brief assessment of existing products compliant with these standards. Finally, recommendations for achieving plant-wide integration using existing products are presented, and migration strategies for full OSI compliance are introduced. 5 refs., 16 figs. (JF)

  9. Osler and the Infected Letter

    PubMed Central

    2005-01-01

    The spread of infectious agents through the mail has concerned public health officials for 5 centuries. The dissemination of anthrax spores in the US mail in 2001 was a recent example. In 1901, two medical journals reported outbreaks of smallpox presumably introduced by letters contaminated with variola viruses. The stability and infectivity of the smallpox virus are reviewed from both a historical (anecdotal) perspective and modern virologic studies. Bubonic plague was the contagious disease that led to quarantines as early as the 14th century in port cities in southern Europe. Later, smallpox, cholera, typhus, and yellow fever were recognized as also warranting quarantine measures. Initially, attempts were made to decontaminate all goods imported from pestilential areas, particularly mail. Disinfection of mail was largely abandoned in the early 20th century with newer knowledge about the spread and stability of these 5 infectious agents. PMID:15890120

  10. Mendel in the Modern Classroom

    NASA Astrophysics Data System (ADS)

    Smith, Mike U.; Gericke, Niklas M.

    2015-01-01

    Mendel is an icon in the history of genetics and part of our common culture and modern biology instruction. The aim of this paper is to summarize the place of Mendel in the modern biology classroom. In the present article we will identify key issues that make Mendel relevant in the classroom today. First, we recount some of the historical controversies that have relevance to modern curricular design, such as Fisher's (Ann Sci 1:115-137, 1936/2008) claim that Mendel's data were too good to be true. We also address questions about Mendel's status as the father of genetics as well as questions about the sequencing of Mendel's work in genetics instruction in relation to modern molecular genetics and evolution. Next, we present a systematic set of examples of research based approaches to the use of Mendel in the modern classroom along with criticisms of these designs and questions about the historical accuracy of the story of Mendel as presented in the typical classroom. Finally, we identify gaps in our understanding in need of further study and present a selected set of resources that, along with the references cited, should be valuable to science educators interested in further study of the story of Mendel.

  11. Self-limiting outbreak of crayfish plague in an Austropotamobius pallipes population of a river basin in the Abruzzi region (central Italy).

    PubMed

    Caprioli, Riccardo; Cargini, Daniele; Marcacci, Maurilia; Cammà, Cesare; Giansante, Carla; Ferri, Nicola

    2013-03-26

    Crayfish plague, caused by the oomycete Aphanomyces astaci, is a serious disease of European freshwater crayfish and has eliminated entire populations in several European countries. In September 2011, mortality was observed among the Austropotamobius pallipes population of a river basin in the Abruzzi region (central Italy), and A. astaci DNA was detected by PCR in dead crayfish. A systematic survey was carried out to evaluate the spread and the effects of the plague in the river basin. The source of the outbreak remained unknown since North American crayfish species, which frequently act as subclinical carriers of the infection, were not detected in the area. The A. pallipes population disappeared from a river stretch of ~1 km, where A. astaci infection was detected in dead crayfish. However, apparently unaffected crayfish were still present upstream of that area as well as in a tributary that joined the brook in the apparently depopulated stretch. A. astaci infection was not detected in dead individuals collected in the upstream area and tributary. A follow-up visit conducted in the following season showed the presence of A. pallipes in the river stretch hit by the plague. In this outbreak, the spread of the infection could have been limited by a low density of the crayfish population and by the geographic conformation of the river basin, which includes a dense network of small tributaries, characterized by high flow velocity and low water temperature. In this particular setting, crayfish plague outbreaks can remain undetected. This underlines the importance of active monitoring programs aimed at the prompt recognition of both episodes of mortality and the presence of non-indigenous crayfish species.

  12. Beck, Asia and second modernity.

    PubMed

    Calhoun, Craig

    2010-09-01

    The work of Ulrich Beck has been important in bringing sociological attention to the ways issues of risk are embedded in contemporary globalization, in developing a theory of 'reflexive modernization', and in calling for social science to transcend 'methodological nationalism'. In recent studies, he and his colleagues help to correct for the Western bias of many accounts of cosmopolitanism and reflexive modernization, and seek to distinguish normative goals from empirical analysis. In this paper I argue that further clarification of this latter distinction is needed but hard to reach within a framework that still embeds the normative account in the idea that empirical change has a clear direction. Similar issues beset the presentation of diverse patterns in recent history as all variants of 'second modernity'. Lastly, I note that ironically, given the declared 'methodological cosmopolitanism' of the authors, the empirical studies here all focus on national cases.

  13. Modernizing medical photography, part 2.

    PubMed

    Crompton, Paul

    2005-03-01

    Part 1 of this paper explored the origins of process activity mapping, one of the major tools currently being used to modernize patient pathways in the National Health Service in Great Britain. Within medical photography the current notion of modernization is inextricably linked to the development of digital technology. Whilst the core principle of capturing light on a sensitive medium remains as clear and relevant as ever, the mechanisms by which the image is processed and presented to the client have changed profoundly. Part 2 shows how the principles of lean thinking and process activity mapping can be utilized to harness the advantages of digital technology to provide a modern and appropriate medical photography service in a large disparate teaching hospital.

  14. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    USGS Publications Warehouse

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  15. Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis.

    PubMed

    Wilder, Aryn P; Eisen, Rebecca J; Bearden, Scott W; Montenieri, John A; Gage, Kenneth L; Antolin, Michael F

    2008-06-01

    Plague, caused by the bacterium Yersinia pestis, often leads to rapid decimation of black-tailed prairie dog colonies. Flea-borne transmission of Y. pestis has been thought to occur primarily via blocked fleas, and therefore studies of vector efficiency have focused on the period when blockage is expected to occur (> or =5 days post-infection [p.i.]). Oropsylla hirsuta, a prairie dog flea, rarely blocks and transmission is inefficient > or =5 days p.i.; thus, this flea has been considered incapable of explaining rapid dissemination of Y. pestis among prairie dogs. By infecting wild-caught fleas with Y. pestis and exposing naïve mice to groups of fleas at 24, 48, 72, and 96 h p.i., we examined the early-phase (1-4 days p.i.) efficiency of O. hirsuta to transmit Y. pestis to hosts and showed that O. hirsuta is a considerably more efficient vector at this largely overlooked stage (5.19% of fleas transmit Y. pestis at 24 h p.i.) than at later stages. Using a model of vectorial capacity, we suggest that this level of transmission can support plague at an enzootic level in a population when flea loads are within the average observed for black-tailed prairie dogs in nature. Shared burrows and sociality of prairie dogs could lead to accumulation of fleas when host population is reduced as a result of the disease, enabling epizootic spread of plague among prairie dogs.

  16. Vaccination with F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against plague upon oral challenge with Yersinia pestis.

    PubMed

    Rocke, Tonie E; Smith, Susan; Marinari, Paul; Kreeger, Julie; Enama, Jeffrey T; Powell, Bradford S

    2008-01-01

    Previous studies have established that vaccination of black-footed ferrets (Mustela nigripes) with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable route for natural infection. Eight black-footed ferret kits were vaccinated with F1-V protein by SC injection at approximately 60 days-of-age. A booster vaccination was administered 3 mo later via SC injection. Four additional ferret kits received placebos. The animals were challenged 6 wk after the boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days after exposure. To determine the duration of antibody postvaccination, 18 additional black-footed ferret kits were vaccinated and boosted with F1-V by SC injection at 60 and 120 days-of-age. High titers to both F1 and V (mean reciprocal titers of 18,552 and 99,862, respectively) were found in all vaccinates up to 2 yr postvaccination, whereas seven control animals remained antibody negative throughout the same time period.

  17. Plague history: Yersin's discovery of the causative bacterium in 1894 enabled, in the subsequent century, scientific progress in understanding the disease and the development of treatments and vaccines.

    PubMed

    Butler, T

    2014-03-01

    The causative bacterium of plague was described and cultured by Alexandre Yersin in Hong Kong in 1894, after which transmission of bacteria from rodents by flea bites was discovered by Jean-Paul Simond in 1898. Effective treatment with antiserum was initiated in 1896, but this therapy was supplanted by sulphonamides in the 1930s and by streptomycin starting in 1947. India suffered an estimated 6 million deaths in 1900-1909, and Vietnam, during its war in 1965-1975, accounted for approximately 80% of the world's cases; since then, African countries have dominated, with >90% of the world's cases in the 1990s and early 21st century. Serological diagnosis with fraction 1 antigen to detect anti-plague antibodies was developed in the 1950s. Vaccine development started in 1897 with killed whole bacterial cells, and this was followed by a live attenuated bacterial vaccine, leading to millions of persons receiving injections, but the benefits of these vaccines remain clouded by controversy. Plasmid-mediated virulence was established in 1981, and this was followed by specific DNA methods that have allowed detection of plague genes in skeletal specimens from European graves of the sixth to 17th centuries.

  18. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    PubMed

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  19. Vaccination with F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against plague upon oral challenge with Yersinia pestis

    USGS Publications Warehouse

    Rocke, T.E.; Smith, S.; Marinari, Paul E.; Kreeger, J.; Enama, J.T.; Powell, B.S.

    2008-01-01

    Previous studies have established that vaccination of black-footed ferrets (Mustela nigripes) with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable route for natural infection. Eight black-footed ferret kits were vaccinated with F1-V protein by SC injection at approximately 60 days-of-age. A booster vaccination was administered 3 mo later via SC injection. Four additional ferret kits received placebos. The animals were challenged 6 wk after the boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days after exposure. To determine the duration of antibody postvaccination, 18 additional black-footed ferret kits were vaccinated and boosted with F1-V by SC injection at 60 and 120 days-of-age. High titers to both F1 and V (mean reciprocal titers of 18,552 and 99,862, respectively) were found in all vaccinates up to 2 yr postvaccination, whereas seven control animals remained antibody negative throughout the same time period. ?? Wildlife Disease Association 2008.

  20. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice.

    PubMed

    Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin

    2017-01-01

    Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague.